WM9711_06 [WOLFSON]

Low Power Audio CODEC for Portable Applications; 低功耗音频编解码器用于便携式应用
WM9711_06
型号: WM9711_06
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

Low Power Audio CODEC for Portable Applications
低功耗音频编解码器用于便携式应用

解码器 编解码器 便携式
文件: 总65页 (文件大小:587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM9711L  
w
Low Power Audio CODEC for Portable Applications  
DESCRIPTION  
FEATURES  
AC’97 Rev 2.2 compatible stereo codec  
- DAC SNR 94dB, THD –87dB  
The WM9711L is a highly integrated input / output device  
designed for mobile computing and communications. The  
device can connect directly to mono or stereo microphones,  
stereo headphones and a mono speaker, reducing total  
component count in the system. Additionally, phone input  
and output pins are provided for seamless integration with  
wireless communication devices.  
- ADC SNR 92dB, THD –87dB  
- Variable Rate Audio, supports all WinCE sample rates  
- Tone Control, Bass Boost and 3D Enhancement  
On-chip 45mW headphone driver  
On-chip 400mW mono speaker driver  
Stereo, mono or differential microphone input  
- Automatic Level Control (ALC)  
Auxiliary mono DAC (ring tone or DC level generation)  
Seamless interface to wireless chipset  
Up to 5 GPIO pins  
The WM9711L also offers five GPIO pins for interfacing to  
buttons or other digital devices. To monitor the battery  
voltage in portable systems, the WM9711L has two  
uncommitted comparator inputs.  
2 comparator inputs for battery monitoring  
1.8V to 3.6V supplies  
7x7mm QFN  
All device functions are accessed and controlled through a  
single AC-Link interface compliant with the AC’97 standard.  
Additionally, the WM9711L can generate interrupts to  
indicate low battery, dead battery, thermal cut-out and GPIO  
conditions.  
APPLICATIONS  
Personal Digital Assistants (PDA)  
Smartphones  
Handheld and Tablet Computers  
The WM9711L operates at supply voltages from 1.8 to 3.6  
Volts. Each section of the chip can be powered down under  
software control to save power. The device is available in a  
small leadless 7x7mm QFN package, ideal for use in hand-  
held portable systems.  
BLOCK DIAGRAM  
WOLFSON MICROELECTRONICS plc  
Production Data, August 2006, Rev 4.3  
Copyright ©2004 Wolfson Microelectronics plc  
To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews/  
WM9711L  
Production Data  
TABLE OF CONTENTS  
DESCRIPTION .......................................................................................................1  
FEATURES.............................................................................................................1  
APPLICATIONS .....................................................................................................1  
BLOCK DIAGRAM .................................................................................................1  
TABLE OF CONTENTS .........................................................................................2  
PIN CONFIGURATION...........................................................................................4  
ORDERING INFORMATION ..................................................................................4  
PIN DESCRIPTION ................................................................................................5  
ABSOLUTE MAXIMUM RATINGS.........................................................................6  
RECOMMENDED OPERATING CONDITIONS .....................................................6  
ELECTRICAL CHARACTERISTICS ......................................................................7  
AUDIO OUTPUTS.......................................................................................................... 7  
AUDIO INPUTS.............................................................................................................. 8  
AUXILIARY MONO DAC (AUXDAC).............................................................................. 8  
COMPARATORS ........................................................................................................... 8  
REFERENCE VOLTAGES............................................................................................. 9  
DIGITAL INTERFACE CHARACTERISTICS.................................................................. 9  
HEADPHONE / SPEAKER OUTPUT THD VERSUS POWER..................................... 10  
POWER CONSUMPTION............................................................................................ 11  
DEVICE DESCRIPTION.......................................................................................12  
INTRODUCTION.......................................................................................................... 12  
AUDIO PATHS OVERVIEW......................................................................................... 13  
AUDIO INPUTS ....................................................................................................14  
LINE INPUT ................................................................................................................. 14  
MICROPHONE INPUT................................................................................................. 14  
PHONE INPUT............................................................................................................. 16  
PCBEEP INPUT........................................................................................................... 17  
AUDIO ADC..........................................................................................................18  
RECORD SELECTOR ................................................................................................. 19  
RECORD GAIN............................................................................................................ 20  
AUTOMATIC LEVEL CONTROL.................................................................................. 21  
AUDIO DACS .......................................................................................................24  
STEREO DAC.............................................................................................................. 24  
AUXILIARY DAC.......................................................................................................... 27  
ANALOGUE AUDIO OUTPUTS...........................................................................28  
HEADPHONE OUTPUTS – HPOUTL AND HPOUTR.................................................. 28  
EAR SPEAKER OUTPUT – OUT3............................................................................... 29  
LOUDSPEAKER OUTPUTS – LOUT2 AND ROUT2.................................................... 30  
PHONE OUTPUT (MONOOUT)................................................................................... 31  
THERMAL CUTOUT .................................................................................................... 31  
JACK INSERTION AND AUTO-SWITCHING............................................................... 32  
DIGITAL AUDIO (SPDIF) OUTPUT ............................................................................. 33  
AUDIO MIXERS........................................................................................................... 34  
VARIABLE RATE AUDIO / SAMPLE RATE CONVERSION ...............................36  
BATTERY ALARM ...............................................................................................37  
PRINCIPLE OF OPERATION ...................................................................................... 37  
GPIO AND INTERRUPT CONTROL....................................................................40  
POWER MANAGEMENT .....................................................................................43  
PD Rev 4.3 August 2006  
w
2
Production Data  
WM9711L  
AC97 DATA AND CONTROL INTERFACE .........................................................46  
INTERFACE PROTOCOL............................................................................................ 46  
INTERFACE TIMING ................................................................................................... 47  
REGISTER MAP...................................................................................................50  
REGISTER BITS BY ADDRESS.................................................................................. 51  
APPLICATIONS INFORMATION .........................................................................59  
RECOMMENDED EXTERNAL COMPONENTS........................................................... 59  
RECOMMENDED EXTERNAL COMPONENT VALUES.............................................. 60  
LINE OUTPUT ............................................................................................................. 60  
AC-COUPLED HEADPHONE OUTPUT....................................................................... 61  
DC COUPLED (CAPLESS) HEADPHONE OUTPUT ................................................... 61  
BTL SPEAKER OUTPUT............................................................................................. 62  
COMBINED HEADSET / BTL EAR SPEAKER............................................................. 62  
COMBINED HEADSET / SINGLE-ENDED EAR SPEAKER......................................... 62  
JACK INSERT DETECTION ........................................................................................ 63  
HOOKSWITCH DETECTION....................................................................................... 63  
PACKAGE DRAWING..........................................................................................64  
IMPORTANT NOTICE..........................................................................................65  
ADDRESS:................................................................................................................... 65  
PD Rev 4.3 August 2006  
w
3
WM9711L  
Production Data  
PIN CONFIGURATION  
ORDERING INFORMATION  
TEMPERATURE  
MOISTURE  
SENSITIVITY LEVEL  
PEAK SOLDERING  
TEMPERATURE  
DEVICE  
RANGE  
PACKAGE  
48-lead QFN  
(Pb-free)  
MSL3  
WM9711LGEFL/V  
WM9711LGEFL/RV  
-25 to +85oC  
260oC  
48-lead QFN  
(Pb-free, tape and reel)  
MSL3  
-25 to +85oC  
260oC  
Note:  
Reel quantity = 2,200  
PD Rev 4.3 August 2006  
4
w
Production Data  
WM9711L  
PIN DESCRIPTION  
PIN  
1
NAME  
DBVDD  
XTLIN  
TYPE  
DESCRIPTION  
Supply  
Digital I/O Buffer Supply  
2
Digital Input  
Digital Output  
Supply  
Clock Crystal Connection 1 / External Clock Input  
Clock Crystal Connection 2  
3
XTLOUT  
DGND1  
SDATAOUT  
BITCLK  
DGND2  
SDATAIN  
DCVDD  
SYNC  
4
Digital Ground (return path for both DCVDD and DBVDD)  
Serial Data Output from Controller / Input to WM9711L  
Serial Interface Clock Output to Controller  
Digital Ground (return path for both DCVDD and DBVDD)  
Serial Data Input to Controller / Output from WM9711L  
Digital Core Supply  
5
Digital Input  
Digital Output  
Supply  
6
7
8
Digital Output  
Supply  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Digital Input  
Digital Input  
Analogue Input  
Supply  
Serial Interface Synchronisation Pulse from Controller  
Reset (Active Low, resets all registers to their default)  
Reference for analogue comparators (COMP1,2,3)  
Connect to AVDD  
RESETB  
CREF  
AVDD2  
DNC  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Supply  
Leave this pin floating  
DNC  
Leave this pin floating  
DNC  
Leave this pin floating  
DNC  
Leave this pin floating  
AGND1  
PCBEEP  
PHONE  
MIC1  
Connect to AGND  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Supply  
Line Input to analogue audio mixers, typically used for beeps  
Phone Input (RX)  
Left Microphone Input  
MIC2  
Right Microphone Input  
LINEINL  
LINEINR  
AVDD  
Left Line Input  
Right Line Input  
Analogue Supply (feeds audio DACs, ADCs, PGAs, mic boost,  
mixers)  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
AGND  
VREF  
Supply  
Analogue Ground  
Analogue Output  
Analogue Output  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue In / Out  
Analogue Output  
Supply  
Internal Reference Voltage (buffered CAP2)  
Bias Voltage for Microphones (buffered CAP2 × 1.8)  
Comparator Input 1  
MICBIAS  
COMP1  
COMP2  
COMP3  
CAP2  
Comparator Input 2  
Comparator Input 3  
Internal Reference Voltage (normally AVDD/2, if not overdriven)  
Mono Output, intended for Phone TX signal  
Speaker Ground (feeds output buffers on pins 35 and 36)  
Left Output 2 (Speaker, Line or Headphone)  
Right Output 2 (Speaker, Line or Headphone)  
Analogue Output 3 (from AUXDAC or headphone pseudo-ground)  
Speaker Supply (feeds output buffers on pins 35 and 36)  
Headphone Left Output  
MONOOUT  
SPKGND  
LOUT2  
Analogue Output  
Analogue Output  
Analogue Output  
Supply  
ROUT2  
OUT3  
SPKVDD  
HPOUTL  
HPGND  
HPOUTR  
AGND2  
HPVDD  
GPIO1  
Analogue Output  
Supply  
Headphone Ground (feeds output buffers on pins 37, 39, 41)  
Headphone Left Output  
Analogue Output  
Supply  
Chip Substrate, connect to AGND  
Digital In / Out  
Digital In / Out  
Digital In / Out  
Digital In / Out  
Digital In / Out  
Headphone Supply (feeds output buffers on pins 37, 39, 41)  
GPIO Pin 1  
GPIO2 / IRQ  
GPIO3  
GPIO Pin 2 or IRQ (Interrupt Request) Output  
GPIO Pin 3  
GPIO4  
GPIO Pin 4 (On reset, pin level configures device power up status.  
See Applications section for external components configuration)  
48  
GPIO5 / SPDIF_OUT  
Digital In / Out  
GPIO Pin 5 or SPDIF Digital Audio Output  
Note: It is recommended that the QFN ground paddle should be connected to analogue ground on the application PCB.  
PD Rev 4.3 August 2006  
w
5
WM9711L  
Production Data  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
Digital supply voltages (DCVDD, DBVDD)  
Analogue supply voltages (AVDD, HPVDD, SPKVDD)  
Voltage range digital inputs  
MIN  
-0.3V  
MAX  
+3.63V  
-0.3V  
+3.63V  
DGND -0.3V  
AGND -0.3V  
DBVDD +0.3V  
AVDD +0.3V  
+5V  
Voltage range analogue inputs  
Voltage range, COMP3 (pin31)  
Operating temperature range, TA  
-25oC  
+85oC  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital input/output buffer  
supply range  
DBVDD  
1.8  
3.6  
V
Digital core supply range  
Analogue supply range  
DCVDD  
1.8  
1.8  
3.6  
3.6  
V
V
AVDD, HPVDD,  
SPKVDD  
Digital ground  
DCGND, DBGND  
0
0
V
V
Analogue ground  
AGND, HPGND,  
SPKGND  
Difference AGND to DGND  
Note 1  
-0.3  
0
+0.3  
V
Notes:  
1. AGND is normally the same potential as DGND.  
2. AVDD, DCVDD and DBVDD can all be different  
3. Digital supplies (DCVDD, DBVDD) must not exceed analogue supplies (AVDD, HPVDD, SPKVDD) by more than 0.3V  
PD Rev 4.3 August 2006  
6
w
Production Data  
WM9711L  
ELECTRICAL CHARACTERISTICS  
AUDIO OUTPUTS  
Test Conditions  
DBVDD=3.3V, DCVDD = 3.3V, AVDD=HPVDD=SPKVDD =3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 18-bit audio data unless  
otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC to Line-Out (HPOUTL/R or MONOOUT with 10k/ 50pF load)  
Full-scale output  
AVDD = 3.3V, PGA gains  
set to 0dB  
1
V rms  
dB  
Signal to Noise Ratio  
(A-weighted)  
SNR  
85  
94  
Total Harmonic Distortion  
Power Supply Rejection  
THD  
-3dB output  
-87  
50  
-80  
dB  
dB  
PSRR  
20Hz to 20kHz  
Speaker Output (LOUT2/ROUT2 with 8bridge tied load, INV=1)  
Output Power  
PO  
PO  
Output power is very closely correlated with THD; see below.  
Output Power at 1% THD  
Abs. Max Output Power  
Total Harmonic Distortion  
400  
500  
mW  
mW  
dB  
POmax  
THD  
PO=200mW  
-66  
0.05  
100  
%
Signal to Noise Ratio  
(A-weighted)  
SNR  
90  
dB  
Headphone Output (HPOUTL/R, OUT3 or LOUT2/ROUT2 with 16or 32load)  
HPVDD=1.8V, RL=32Ω  
5
mW  
dB  
Total Harmonic Distortion  
(Note 1)  
THD  
SNR  
PO=10mW, RL=16Ω  
PO=10mW, RL=32Ω  
PO=20mW, RL=16Ω  
PO=20mW, RL=32Ω  
AVDD=3.3V  
-76  
-73  
-75  
-78  
95  
Signal to Noise Ratio  
(A-weighted)  
90  
dB  
Note:  
1. All THD values are valid for the output power level quoted above – for example, at HPVDD=3.3V and RL=16, THD is  
–76dB when output power is 10mW. Higher output power is possible, but will result in a deterioration in THD.  
PD Rev 4.3 August 2006  
7
w
WM9711L  
Production Data  
AUDIO INPUTS  
Test Conditions  
DBVDD=3.3V, DCVDD = 3.3V, AVDD = 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 18-bit audio data unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LINEINL/R, MICL/R and PHONE pins  
Full Scale Input Signal Level  
VINFS  
AVDD = 3.3V  
AVDD = 1.8V  
1.0  
V rms  
(for ADC 0dB Input at 0dB Gain)  
0.545  
differential input mode  
(MS = 01)  
half of the value listed above  
Input Resistance  
Input Capacitance  
RIN  
0dB PGA gain  
12dB PGA gain  
34  
kΩ  
pF  
dB  
10  
16  
5
22  
Line input to ADC (LINEINL, LINEINR, PHONE)  
Signal to Noise Ratio  
(A-weighted)  
SNR  
85  
92  
Total Harmonic Distortion  
Power Supply Rejection  
THD  
-6dBFs  
-87  
50  
-80  
dB  
dB  
PSRR  
20Hz to 20kHz  
Microphone input to ADC (MIC1/2 pins)  
Signal to Noise Ratio  
SNR  
20dB boost enabled  
80  
dB  
(A-weighted)  
Total Harmonic Distortion  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
THD  
20dB boost enabled  
TBD  
-80  
50  
dB  
dB  
dB  
PSRR  
CMRR  
Differential mic mode  
TBD  
AUXILIARY MONO DAC (AUXDAC)  
Test Conditions  
AVDD = 3.3V, TA = +25oC, unless otherwise stated.  
PARAMETER  
Resolution  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
12  
1
MAX  
UNIT  
bits  
Full scale output voltage  
Signal to Noise Ratio  
(A-weighted)  
AVDD=3.3V  
Vrms  
dB  
SNR  
THD  
65  
70  
Total Harmonic Distortion  
-62  
-50  
dB  
COMPARATORS  
Test Conditions  
AVDD = 3.3V, TA = +25oC, unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
AGND  
-50  
TYP  
MAX  
AVDD  
+50  
UNIT  
COMP1, COMP2 and COMP3 (pins 29, 30, 31)  
Input Voltage  
V
Input leakage current  
<10  
nA  
mV  
Comparator Input Offset  
(COMP1, COMP2 only)  
COMP2 delay (COMP2 only)  
24.576MHz crystal  
0
10.9  
s
PD Rev 4.3 August 2006  
8
w
Production Data  
WM9711L  
REFERENCE VOLTAGES  
Test Conditions  
DBVDD=3.3V, DCVDD = 3.3V, AVDD = 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 18-bit audio data unless otherwise stated.  
PARAMETER  
Audio ADCs, DACs, Mixers  
Reference Input/Output  
Buffered Reference Output  
Microphone Bias  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CAP2 pin  
VREF pin  
1.6  
1.6  
1.65  
1.65  
1.7  
1.7  
V
V
Bias Voltage  
VMICBIAS  
IMICBIAS  
Vn  
2.88  
2.97  
15  
3.06  
3
V
Bias Current Source  
Output Noise Voltage  
mA  
1K to 20kHz  
nV/Hz  
DIGITAL INTERFACE CHARACTERISTICS  
Test Conditions  
DBVDD = 3.3V, DCVDD = 3.3V, TA = +25oC, unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Logic Levels (all digital input or output pins) – CMOS Levels  
Input HIGH level  
VIH  
VIL  
DBVDD×0.7  
DBVDD×0.9  
V
V
Input LOW level  
DBVDD×0.3  
DBVDD×0.1  
Output HIGH level  
VOH  
VOL  
source current = 2mA  
sink current = 2mA  
Output LOW level  
Clock Frequency  
Master clock (XTLIN pin)  
AC’97 bit clock (BIT_CLK pin)  
AC’97 sync pulse (SYNC pin)  
24.576  
12.288  
48  
MHz  
MHz  
kHz  
Note:  
1. All audio and non-audio sample rates and other timing scales proportionately with the master clock.  
2. For signal timing on the AC-Link, please refer to the AC’97 specification (Revision 2.2)  
PD Rev 4.3 August 2006  
9
w
WM9711L  
Production Data  
HEADPHONE / SPEAKER OUTPUT THD VERSUS POWER  
-20  
Headphone Power vs THD+N (32Ohm load)  
-40  
-60  
-80  
-100  
0
5
10  
15  
20  
25  
30  
Power (mW)  
-20  
-40  
Headphone Power vs THD+N (16Ohm load)  
-60  
-80  
-100  
0
10  
20  
30  
40  
50  
60  
Power (mW)  
PD Rev 4.3 August 2006  
10  
w
Production Data  
WM9711L  
POWER CONSUMPTION  
The power consumption of the WM9711L depends on the following factors.  
Supply voltages: Reducing the supply voltages also reduces digital supply currents, and therefore results in significant  
power savings especially in the digital sections of the WM9711L.  
Operating mode: Significant power savings can be achieved by always disabling parts of the WM9711L that are not  
used (e.g. audio ADC, DAC, AUXDAC, speaker driver, etc.)  
Mode Description  
26h 14:8  
24h 15:0  
Other Settings  
AVDD  
I (mA)  
DCVDD  
I (mA)  
DBVDD  
I (mA)  
Total Power  
(mW)  
V
V
V
OFF (lowest possible power)  
Clocks stopped  
1111111 0111111111111111 58h, SVD = 1  
1111111 0111111111111111  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
0.0005  
0.0004  
0.0003  
0.005  
0.004  
0.003  
0.56  
0.37  
0.241  
1.1  
0.76  
0.508  
2.36  
1.838  
1.218  
2.385  
1.837  
1.218  
3.27  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.00165  
0.001  
0.00054  
0.0165  
0.01  
0.0054  
1.848  
0.925  
0.4338  
3.63  
1.9  
0.9144  
7.788  
4.595  
2.1924  
7.8705  
4.5925  
2.1924  
56.364  
31.425  
15.2244  
80.1933  
45.28  
LPS (Low Power Standby)  
VREF maintained using 1MOhm string  
Standby Mode (ready to playback)  
VREF maintained using 50kOhm string  
1110111 0111111111111111  
"Idle" Mode  
VREF maintained using 50kOhm string  
use LPS mode instead, if possible  
Phone Call - using headphone / ear speaker 0110011 0111100010101100 0Eh, bit 7 = 1  
HPOUTL, HPOUTR and OUT3 active  
AC-Link stopped  
1100111 0111111111111111  
(mic gain boost)  
Phone Call - using loudspeaker  
AC-Link stopped  
1110011 0111101100110100 0Eh, bit 7 = 1  
(mic gain boost)  
0
0
Record from mono microphone  
with MICBIAS  
all analogue outputs disabled  
Record phone call  
both sides mixed to mono  
call using headphone / ear speaker  
DAC Playback - using loudspeaker  
1000110 0110101111111111 0Eh, bit 7 = 1  
(mic gain boost)  
11.21  
7.78  
5.21  
12.22  
8.552  
5.799  
9.884  
6.755  
4.606  
9.8  
6.78  
4.606  
9.8  
6.78  
4.606  
12.26  
8.563  
5.8  
2.6  
2.13  
1.41  
2.62  
2.1  
1.48  
2.6  
2.1  
1.41  
2.6  
2.1  
1.47  
2.6  
2.1  
1.41  
2.62  
2.12  
1.48  
2.66  
1.838  
9.461  
7.46  
5.318  
3.45  
2.549  
1.738  
3.62  
0000000 0000000010001000 0Eh, bit 7 = 1  
(mic gain boost)  
22.6746  
52.5822  
28.51  
1000001 0001111101110111  
0000001 0001110011101111  
0000001 0001110011110111  
13.9572  
52.866  
28.975  
14.0832  
52.866  
28.975  
13.9752  
80.7609  
45.1325  
22.8024  
DAC Playback - using headphone  
DAC Playback - to Line-out  
2.71  
1.748  
3.62  
2.71  
1.748  
9.593  
7.37  
Maximum Power (everything on)  
0000000 0000000000000000 0Eh, bit 7 = 1  
(mic gain boost)  
5.388  
Table 1 Supply Current Consumption (Simulation)  
Notes:  
1. All figures are at TA = +25oC, audio sample rate fs = 48kHz, with zero signal (quiescent).  
2. The power dissipated in the headphone and speaker is not included in the above table.  
PD Rev 4.3 August 2006  
11  
w
WM9711L  
Production Data  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM9711L is designed to meet the mixed-signal requirements of portable and wireless computer  
systems. It includes audio recording and playback, analogue comparators for battery alarms, and  
GPIO functions, all controlled through a single 5-wire AC-Link interface.  
SOFTWARE SUPPORT  
The basic audio features of the WM9711L are software compatible with standard AC’97 device  
drivers. However, to better support its unique and additional functions, Wolfson Microelectronics  
supplies custom device drivers for selected CPUs and operating systems. Please contact your local  
Wolfson Sales Office for more information.  
AC’97 COMPATIBILITY  
The WM9711L uses an AC’97 interface to communicate with a microprocessor or controller. The  
audio and GPIO functions are largely compliant with AC’97 Revision 2.2. The following differences  
from the AC’97 standard are noted:  
Pinout: The function of some pins has been changed to support device specific features.  
The PHONE and PCBEEP pins have been moved to different locations on the device  
package.  
Audio mixing: The WM9711L handles all the audio functions of a smartphone, including  
audio playback, voice recording, phone calls, phone call recording, ring tones, as well as  
simultaneous use of these features. The AC’97 mixer architecture does not fully support  
this. The WM9711L therefore uses a modified AC’97 mixer architecture with three  
separate mixers.  
Tone Control, Bass Boost and 3D Enhancement: These functions are implemented in  
the digital domain and therefore affect only signals being played through the audio  
DACs, not all output signals as stipulated in AC’97.  
Some other functions are additional to AC’97:  
On-chip BTL loudspeaker driver  
On-chip BTL driver for ear speaker (phone receiver)  
Auxiliary mono DAC for ring tones, system alerts etc.  
2 Analogue Comparators for Battery Alarm  
Programmable Filter Characteristics for Tone Control and 3D Enhancement  
PD Rev 4.3 August 2006  
12  
w
Production Data  
WM9711L  
AUDIO PATHS OVERVIEW  
18h:12-8  
00000 = +12dB  
11111 = -34.5dB  
20h:7  
(Loopback)  
Slot 3  
L Line Volume  
02h:12-8  
00000 = 0dB  
1
ADC Left  
AC Link  
to SPKR MIXER  
Left Channel  
18 Bit DAC  
Tone and 3D  
08h / 22h /  
PCM  
PGA  
0
11111 = -46.5dB  
20h:13 (3DE)  
L
1
LOUT2  
Pin 35  
headphone  
mixer L  
0
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
02h:6 (INV)  
Zero-  
cross  
detect  
10h:12-8  
00000 = +12dB  
11111 = -34.5dB  
LINEL PGA  
14h:15-12  
1
02h:7 (ZC)  
02h:15 (MUTE)  
to SPKR MIXER  
LINEINL  
Pin 23  
0
16h:8 (SRC)  
L Headphone Volume  
04h:12-8  
00000 = 0dB  
11111 = -46.5dB  
PCBEEP  
Pin 19  
HPOUTL  
Pin 39  
0Ch:0-4  
00000 = +12dB  
11111 = -34.5dB  
Zero-  
cross  
detect  
PHONE  
Pin 20  
PHONE PGA  
04h:7 (ZC)  
04h:15 (MUTE)  
Phone  
Mixer  
6dB -> -15dB  
0Eh:12-8  
0Ah7:4  
00000 = +12dB  
11111 = -34.5dB  
Mono Volume  
0dB  
0dB  
/
/
20dB  
20dB  
06h:4-0  
00000 = 0dB  
11111 = -46.5dB  
MIC1  
Pin 21  
MICL PGA  
OEh:6-5 (MS)  
MONOOUT  
Pin 33  
0dB  
0dB  
/
/
20dB  
20dB  
Zero-  
cross  
detect  
6dB -> -15dB  
06h:7 (ZC)  
06h:15 (MUTE)  
PCBEEP  
PHONE  
DACR  
1Ah[10:8] = 110  
1Ah[10:8] = 101  
MONOMIX  
SPKRMIX  
OUT3 Volume  
16h:4-0  
00000 = 0dB  
11111 = -46.5dB  
Note: MS bits  
also affect  
sidetone path  
Gain Ranges:  
LINER  
MICR  
1Ch:13 (GRL=0)  
1Ch:11:8  
MICL  
ALCL  
(1Ah[10:8] = 000) & (MS = 01)  
(1Ah[10:8] = 000) & (MS = 00 or 11)  
1Ah[10:8] = 111  
0000 = 0db  
ALCR  
1111 = +22.5dB  
1Ch:6 (GRL=1)  
1Ch:13-8  
11111 = +30dB  
00000 = -17.25dB  
AUXDAC  
OUT3  
Zero- Pin 37  
1Ah:14  
0 = 0dB  
1 = 20dB  
1Ah:  
10-8  
16h:10-9  
(OUT3SRC)  
Left Channel  
18 Bit ADC  
Variable Slot  
5C:1-0 (ASS)  
5C:3 (HPF)  
cross  
detect  
ADC  
PGA  
1Ah[10:8] = 100  
AC Link  
16h:7 (ZC)  
16h:15 (MUTE)  
1Ch:15 (Mute)  
(1Ah[10:8] = 000) & (MS = 10)  
1Ah[10:8] = 011  
5C:4 (ADCO)  
ALC:5Ch/60h/62h  
AUXDAC  
ALCR  
ALCL  
MICL  
MICR  
LINER  
DACR  
PHONE  
18h:4-0  
00000 = +12dB  
11111 = -34.5dB  
PCBEEP  
20h:7  
(Loopback)  
Slot 4  
MONOMIX  
SPKRMIX  
1
R
ADC Right  
AC Link  
Right Channel  
18 Bit DAC  
Tone and 3D  
PCM  
PGA  
08h / 22h /  
20h:13 (3DE)  
0
10h:5-0  
12 Bit Resistor  
string DAC  
2Eh/64h/12h:0(EN)  
00000 = +12dB  
11111 = -34.5dB  
LINEINR  
Pin 24  
LINER PGA  
R Headphone Volume  
04h:4-0  
00000 = 0dB  
headphone  
mixer R  
5Ch:8 (DS)  
6dB -> -15dB  
0Eh:5-0  
00000 = +12dB  
11111 = -34.5dB  
11111 = -46.5dB  
-15dB14h:15-12  
6dB ->  
HPOUTR  
Pin 41  
MS = 01  
6dB -> -15dB  
MICR PGA  
Zero-  
cross  
detect  
6dB -> -15dB  
6dB -> -15dB  
MS = 10 or 11  
0Eh:6-5  
(MS)  
Note: MS bits also  
affect ADC input  
path from MICs  
04h:7 (ZC)  
04h:15 (MUTE)  
MIC2  
6dB -> -15dB  
Pin 22  
R Line Volume  
02h:4-0  
00000 = 0dB  
11111 = -46.5dB  
FROM  
LINEL  
PGA  
1
0
ROUT2  
Pin 36  
16h:8 (SRC)  
FROM  
DACL  
Speaker  
Mixer  
Zero-  
cross  
detect  
0Ch:14  
02h:7 (ZC)  
02h:15 (MUTE)  
6dB -> -15dB  
6dB -> -15dB  
1Ah[2:0] = 110  
Note: MS bits  
also affect  
sidetone path  
Gain Ranges:  
1Ch:6 (GRR=0)  
1Ch:3:0  
1Ah[2:0] = 101  
(1Ah[2:0] = 000) & (MS = 01)  
(1Ah[2:0] = 000) & (MS = 10 or 11)  
(1Ah[2:0] = 000) & (MS = 00)  
0000 = 0db  
1111 = +22.5dB  
1Ch:6 (GRR=1)  
1Ch:5-0  
11111 = +30dB  
00000 = -17.25dB  
PR3 (REF disable) &  
58h:10 (SVD)  
1Ah:  
2-0  
1Ah:14  
0 = 0dB  
1 = 20dB  
4.5k  
3.6k  
MICBIAS  
Pin 28  
Right Channel  
18 Bit ADC  
Variable Slot  
5C:1-0 (ASS)  
5C:3 (HPF)  
1Ah[2:0] = 111  
1Ah[2:0] = 100  
1Ah[2:0] = 011  
AC Link  
500k  
50k  
50k  
ADC  
PGA  
1Ch:15 (Mute)  
5C:4 (ADCO)  
500k  
ALC:5Ch/60h/62h  
AVDD  
Pin 25  
AGND  
Pin 24  
CAP2  
Pin 32  
VREF  
Pin 27  
Figure 1 Audio Paths Overview  
PD Rev 4.3 August 2006  
13  
w
WM9711L  
Production Data  
AUDIO INPUTS  
The following sections give an overview of the analogue audio input pins and their function. For more  
information on recommended external components, please refer to the “Applications Information”  
section.  
LINE INPUT  
The LINEINL and LINEINR inputs are designed to record line level signals, and/or to mix into one of  
the analogue outputs.  
Both pins are directly connected to the record selector. The record PGA adjusts the recording  
volume, controlled by register 1Ch or by the ALC function.  
For analogue mixing, the line input signals pass through a separate PGA, controlled by register 10h.  
The signals can be routed into all three output mixers (headphone, speaker and phone). Each  
LINEIN-to-mixer path has an independent mute bit. When the line inputs are not used, the line-in  
PGA can be switched off to save power (see “Power Management” section).  
LINEINL and LINEINR are biased internally to the reference voltage VREF. Whenever the inputs are  
muted or the device placed into standby mode, the inputs remain biased to VREF using special anti-  
thump circuitry to suppress any audible clicks when changing inputs.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
10h  
12:8  
LINEINL  
VOL  
01000  
(0dB)  
LINEINL input gain  
00000: +12dB  
… (1.5dB steps)  
11111: -34.5dB  
4:0  
15  
14  
13  
LINEINR  
VOL  
01000  
(0dB)  
1
LINEINR input gain  
similar to LINEINLVOL  
Mute LINEIN path to headphone mixer  
1: Mute, 0: No mute (ON)  
Mute LINEIN path to speaker mixer  
1: Mute, 0: No mute (ON)  
Mute LINEIN path to phone mixer  
1: Mute, 0: No mute (ON)  
L2H  
L2S  
L2P  
1
1
Table 2 Line Input Control  
MICROPHONE INPUT  
The MIC1 and MIC2 inputs are designed for direct connection to single-ended mono, stereo or  
differential mono microphone. If the microphone is mono, the same signal appears on both left and  
right channels. In stereo mode, MIC1 is routed to the left and MIC2 to the right channel.  
For voice recording, the microphone signal is directly connected to the record selector. The record  
PGA adjusts the recording volume, controlled by register 1Ch or by the ALC function.  
For analogue mixing, the signal passes through a separate PGA, controlled by register 0Eh. The  
microphone signal can be routed into the phone mixer (for normal phone call operation) and/or the  
headphone mixer (using register 14h, see “Audio Mixers / Sidetone Control” section), but not into the  
speaker mixer (to prevent acoustic feedback from the speaker into the microphone). When the  
microphone inputs are not used, the microphone PGA can be switched off to save power (see  
“Power Management” section).  
MIC1 and MIC2 are biased internally to the reference voltage VREF. Whenever the inputs are muted  
or the device placed into standby mode, the inputs remain biased to VREF using special anti-thump  
circuitry to suppress any audible clicks when changing inputs.  
It is also possible to use the LINEINL and LINEINR pins as a second differential microphone input.  
This is achieved by setting the DS bit (register 5Ch, bit 11) to ‘1’. This disables the line-in audio paths  
PD Rev 4.3 August 2006  
14  
w
Production Data  
WM9711L  
and routes the signal from LINEINL and LINEINR through the differential mic path, as if it came from  
the MIC1 and MIC2 pins. Only one differential microphone be used at a time. The DS bit only has an  
effect when MS = 01 (differential mode).  
REGISTER  
ADDRESS  
BIT  
14  
LABEL  
M12P  
DEFAULT  
DESCRIPTION  
0Eh  
1
Mute MIC1 path to phone mixer  
1: Mute, 0: No mute (ON)  
Mute MIC2 path to phone mixer  
1: Mute, 0: No mute (ON)  
Left microphone volume  
Only used when MS = 11  
Similar to MICVOL  
Mic Volume  
13  
M22P  
1
12:8  
LMICVOL  
01000  
(0dB)  
7
20dB  
MS  
0
Microphone gain boost (Note 1)  
1: 20dB boost ON  
0: No boost (0dB gain)  
6:5  
00  
Microphone mode select  
00  
01  
10  
11  
Single-ended mono (left)  
left = right = MIC1 (pin 21)  
Volume controlled by MICVOL  
Differential mono mode  
left = right = MIC1 – MIC2  
Volume controlled by MICVOL  
Single-ended mono (right)  
left = right = MIC2 (pin 22)  
Volume controlled by MICVOL  
: Stereo mode  
MIC1 = left, MIC2 = right  
Left Volume controlled by LMICVOL  
Right volume controlled by MICVOL  
4:0  
8
MICVOL  
DS  
01000  
(0dB)  
Microphone volume to mixers  
00000: +12dB  
… (1.5dB steps)  
11111: -34.5dB  
Reg 5Ch  
0
Differential Microphone Select  
0 : Use MIC1 and MIC2  
1: Use LINEL and LINER (Note 2)  
Additional  
Analogue  
Functions  
Table 3 Microphone Input Control  
Note:  
1. The 20dB gain boost acts on the input to the phone mixer only. A separate microphone  
boost for recording can be enabled using the BOOST bit in register 1Ah.  
2. When the LINEL and LINER are selected for differential microphone select then the  
MIC1 and MIC2 input pins become disabled, these signals can therefore not be routed  
internally to the device.  
MICROPHONE BIAS  
The MICBIAS output (pin 28) provides a low noise reference voltage suitable for biasing electret type  
microphones and the associated external resistor biasing network. The internal MICBIAS circuitry is  
shown below. Note that the maximum source current capability for MICBIAS is 3mA. The external  
biasing resistors and microphone cartridge therefore must limit the MICBIAS current to 3mA.  
PD Rev 4.3 August 2006  
15  
w
WM9711L  
Production Data  
CAP2  
MICBIAS  
= 1.8 x CAP2  
= 0.9 X AVDD  
WM9711L  
AGND  
Figure 2 Microphone Bias Schematic  
PHONE INPUT  
Pin 20 (PHONE) is a mono, line level input designed to connect to the receive path of a telephony  
device.  
The pin connects directly to the record selector for phone call recording (Note: to record both sides of  
a phone call, one ADC channel should record the PHONE signal while the other channel records the  
MIC signal). The RECVOL PGA adjusts the recording volume, controlled by register 1Ch or by the  
ALC function.  
To listen to the PHONE signal, the signal passes through a separate PGA, controlled by register  
0Ch. The signal can be routed into the headphone mixer (for normal phone call operation) and/or the  
speaker mixer (for speakerphone operation), but not into the phone mixer (to prevent forming a  
feedback loop). When the phone input is not used, the phone-in PGA can be switched off to save  
power (see “Power Management” section).  
PHONE is biased internally to the reference voltage VREF. Whenever the input is muted or the  
device placed into standby mode, the input remains biased to VREF using special anti-thump  
circuitry to suppress any audible clicks when changing inputs.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
P2H  
DEFAULT  
DESCRIPTION  
0Ch  
1
Mute PHONE path to headphone mixer  
1: Mute, 0: No mute (ON)  
Mute PHONE path to speaker mixer  
1: Mute, 0: No mute (ON)  
PHONE input gain  
Phone Input  
14  
P2S  
1
4:0  
PHONE  
VOL  
01000  
(0dB)  
00000: +12dB  
… (1.5dB steps)  
11111: -34.5dB  
Table 4 Phone Input Control  
PD Rev 4.3 August 2006  
16  
w
Production Data  
WM9711L  
PCBEEP INPUT  
Pin 19 (PCBEEP) is a mono, line level input intended for externally generated signal or warning  
tones. It is routed directly to the record selector and all three output mixers, without an input  
amplifier. The signal gain into each mixer can be independently controlled, with a separate mute bit  
for each signal path.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0Ah  
15  
B2H  
1
Mute PCBEEP path to headphone mixer  
1: Mute, 0: No mute (ON)  
PCBEEP to headphone mixer gain  
000: +6dB  
PCBEEP  
input  
14:12  
B2HVOL 010  
(0dB)  
… (3dB steps)  
111: -15dB  
11  
B2S  
1
Mute PCBEEP path to speaker mixer  
1: Mute, 0: No mute (ON)  
PCBEEP to speaker mixer gain  
000: +6dB  
10:8  
B2SVOL 010  
(0dB)  
… (3dB steps)  
111: -15dB  
7
B2P  
1
Mute PCBEEP path to phone mixer  
1: Mute, 0: No mute (ON)  
PCBEEP to phone mixer gain  
000: +6dB  
6:4  
B2PVOL 010  
(0dB)  
… (3dB steps)  
111: -15dB  
Table 5 PCBEEP Control  
PD Rev 4.3 August 2006  
17  
w
WM9711L  
Production Data  
AUDIO ADC  
The WM9711L has a stereo sigma-delta ADC to digitise audio signals. The ADC achieves high  
quality audio recording at low power consumption. The ADC sample rate can be controlled by writing  
to a control register (see “Variable Rate Audio”). It is independent of the DAC sample rate.  
To save power, the left and right ADCs can be separately switched off using the PD11 and PD12  
bits, whereas PR0 disables both ADCs (see “Power Management” section). If only one ADC is  
running, the same ADC data appears on both the left and right AC-Link slots.  
HIGH PASS FILTER  
The WM9711L audio ADC incorporates a digital high-pass filter that eliminates any DC bias from the  
ADC output data. The filter is enabled by default. For DC measurements, it can be disabled by  
writing a ‘1’ to the HPF bit (register 5Ch, bit 3).  
ADC SLOT MAPPING  
By default, the output of the left audio ADC appears on slot 3 of the SDATAIN signal (pin 8), and the  
right ADC data appears on slot 4. However, the ADC output data can also be sent to other slots, by  
setting the ASS (ADC slot select) control bits as shown below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
5Ch  
3
HPF  
0
High-pass filter disable  
Additional  
Function  
Control  
0: Filter enabled (for audio)  
1: Filter disabled (for DC measurements)  
ADC to slot mapping  
1:0  
ASS  
00  
00: Left = Slot 3, Right = Slot 4 (default)  
01: Left = Slot 7, Right = Slot 8  
10: Left = Slot 6, Right = Slot 9  
11: Left = Slot 10, Right = Slot 11  
Table 6 ADC Slot Mapping  
PD Rev 4.3 August 2006  
18  
w
Production Data  
WM9711L  
RECORD SELECTOR  
The record selector determines which input signals are routed into the audio ADC. The left and right  
channels can be selected independently. This is useful for recording a phone call: one channel can  
be used for the RX signal and the other for the TX signal, so that both sides of the conversation are  
digitised.  
REGISTER  
ADDRESS  
BIT  
14  
LABEL  
BOOST  
DEFAULT  
DESCRIPTION  
1Ah  
0
20dB Boost  
Record  
Select  
1: Boost ADC input signal by 20dB  
0 :No boost  
13:12 R2P  
11  
Record to phone path enable  
00: Left ADC and Right ADC to phone  
mixer  
01 : Left ADC to phone mixer  
10: Right ADC to phone imixer  
11 : Muted  
11  
R2PBOOST  
0
20dB Boost for ADC to phone signal  
1: Boost signal by 20dB  
0 :No boost  
10:8  
RECSL  
000  
Left ADC signal source  
000: MIC* (pre-PGA)  
001-010: Reserved (do not use this setting)  
011: Speaker mix  
100: LINEINL (pre-PGA)  
101: Headphone Mix (left)  
110: Phone Mix  
111: PHONE (pre-PGA)  
2:0  
RECSR  
000  
Right ADC signal source  
000: MIC* (pre-PGA)  
001-010: Reserved (do not use this setting)  
011: Speaker mix  
100: LINEINR (pre-PGA)  
101: Headphone Mix (right)  
110: Phone Mix  
111: PHONE (pre-PGA)  
Table 7 Audio Record Selector  
Note:  
*In stereo mic mode, MIC1 is routed to the left ADC and MIC2 to the right ADC. In all mono  
mic modes, the same signal (MIC1, MIC2 or MIC1-MIC2) is routed to both the left and right  
ADCs. See “Microphone Input” section for details.  
PD Rev 4.3 August 2006  
19  
w
WM9711L  
Production Data  
RECORD GAIN  
The amplitude of the signal that enters the audio ADC is controlled by the Record PGA  
(Programmable Gain Amplifier). The PGA gain can be programmed either by writing to the Record  
Gain register, or by the Automatic Level Control (ALC) circuit (see next section). When the ALC is  
enabled, any writes to the Record Gain register have no effect.  
Two different gain ranges can be implemented: the standard gain range defined in the AC’97  
standard, or an extended gain range with smaller gain steps. The ALC circuit always uses the  
extended gain range, as this has been found to result in better sound quality.  
The output of the Record PGA can also be mixed into the phone and/or headphone outputs (see  
“Audio Mixers”). This makes it possible to use the ALC function for the microphone signal in a  
smartphone application.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
RMU  
DEFAULT  
DESCRIPTION  
1Ch  
1
Mute Audio ADC (both channels)  
1: Mute (OFF)  
Record Gain  
0: No Mute (ON)  
14  
GRL  
0
Gain range select (left)  
0: Standard (0 to 22.5dB, 1.5dB step size)  
1: Extended (-17.25 to +30dB, 0.75dB steps)  
Record Volume (left)  
13:8  
RECVOLL  
000000  
Standard (GRL=0)  
XX0000: 0dB  
Extended (GRL=1)  
000000: -17.25dB  
000001: -16.5dB  
… (0.75dB steps)  
111111: +30dB  
XX0001: +1.5dB  
… (1.5dB steps)  
XX1111: +22.5dB  
Zero Cross Enable  
7
ZC  
0
0
0: Record Gain changes immediately  
1: Record Gain changes when signal is zero  
or after time-out  
6
GRR  
Gain range select (right)  
Similar to GRL  
5:0  
RECVOLR 000000  
Record Volume (right)  
Similar to RECVOLL  
Table 8 Record Gain Register  
PD Rev 4.3 August 2006  
20  
w
Production Data  
WM9711L  
AUTOMATIC LEVEL CONTROL  
The WM9711L has an automatic level control that aims to keep a constant recording volume  
irrespective of the input signal level. This is achieved by continuously adjusting the PGA gain so that  
the signal level at the ADC input remains constant. A digital peak detector monitors the ADC output  
and changes the PGA gain if necessary.  
input  
signal  
PGA  
gain  
signal  
after  
ALC  
ALC  
target  
level  
hold decay  
time time  
attack  
time  
Figure 3 ALC Operation  
The ALC function is enabled using the ALCSEL control bits. When enabled, the recording volume  
can be programmed between –6dB and –28.5dB (relative to ADC full scale) using the ALCL register  
bits.  
HLD, DCY and ATK control the hold, decay and attack times, respectively:  
Hold time is the time delay between the peak level detected being below target and the PGA gain  
beginning to ramp up. It can be programmed in power-of-two (2n) steps, e.g. 2.67ms, 5.33ms,  
10.67ms etc. up to 43.7s. Alternatively, the hold time can also be set to zero. The hold time only  
applies to gain ramp-up, there is no delay before ramping the gain down when the signal level is  
above target.  
Decay (Gain Ramp-Up) Time is the time that it takes for the PGA gain to ramp up across 90% of its  
range (e.g. from –15B up to 27.75dB). The time it takes for the recording level to return to its target  
value therefore depends on both the decay time and on the gain adjustment required. If the gain  
adjustment is small, it will be shorter than the decay time. The decay time can be programmed in  
power-of-two (2n) steps, from 24ms, 48ms, 96ms, etc. to 24.58s.  
Attack (Gain Ramp-Down) Time is the time that it takes for the PGA gain to ramp down across 90%  
of its range (e.g. from 27.75dB down to –15B gain). The time it takes for the recording level to return  
to its target value therefore depends on both the attack time and on the gain adjustment required. If  
the gain adjustment is small, it will be shorter than the attack time. The attack time can be  
programmed in power-of-two (2n) steps, from 6ms, 12ms, 24ms, etc. to 6.14s.  
When operating in stereo, the peak detector takes the maximum of left and right channel peak  
values, and any new gain setting is applied to both left and right PGAs, so that the stereo image is  
preserved. However, the ALC function can also be enabled on one channel only. In this case, only  
one PGA is controlled by the ALC mechanism, while the other channel runs independently with its  
PGA gain set through the control register.  
PD Rev 4.3 August 2006  
21  
w
WM9711L  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ALC function select  
62h  
15:14  
ALCSEL  
00  
ALC / Noise  
Gate Control  
(OFF)  
00 = ALC off (PGA gain set by register)  
01 = Right channel only  
10 = Left channel only  
11 = Stereo (PGA registers unused)  
Note: Ensure that RECVOLL and  
RECVOLR settings (reg. 1Ch) are the same  
before entering this mode.  
13:11  
MAXGAIN  
111  
PGA gain limit for ALC  
111 = +30dB  
(+30dB)  
110 = +24dB  
….(6dB steps)  
001 = -6dB  
000 = -12dB  
10:9  
ZC  
TIMEOUT  
11  
Programmable zero cross timeout  
11 217 x MCLK period  
10 216 x MCLK period  
01 215 x MCLK period  
00 214 x MCLK period  
8
ALCZC  
ALCL  
0
ALC Zero Cross enable (overrides ZC bit in  
register 1Ch)  
0: PGA Gain changes immediately  
1: PGA Gain changes when signal is zero or  
after time-out  
60h  
15:12  
1011  
ALC target – sets signal level at ADC input  
0000 = -28.5dB FS  
ALC Control  
(-12dB)  
0001 = -27.0dB FS  
… (1.5dB steps)  
1110 = -7.5dB FS  
1111 = -6dB FS  
11:8  
HLD  
DCY  
ATK  
0000  
ALC hold time before gain is increased.  
0000 = 0ms  
(0ms)  
0001 = 2.67ms  
0010 = 5.33ms  
… (time doubles with every step)  
1111 = 43.691s  
7:4  
0011  
ALC decay (gain ramp-up) time  
0000 = 24ms  
(192ms)  
0001 = 48ms  
0010 = 96ms  
… (time doubles with every step)  
1010 or higher = 24.58s  
ALC attack (gain ramp-down) time  
0000 = 6ms  
3:0  
0010  
(24ms)  
0001 = 12ms  
0010 = 24ms  
… (time doubles with every step)  
1010 or higher = 6.14s  
Table 9 ALC Control  
PD Rev 4.3 August 2006  
22  
w
Production Data  
WM9711L  
MAXIMUM GAIN  
The MAXGAIN register sets the maximum gain value that the PGA can be set to whilst under the  
control of the ALC. This has no effect on the PGA when ALC is not enabled.  
PEAK LIMITER  
To prevent clipping when a large signal occurs just after a period of quiet, the ALC circuit includes a  
limiter function. If the ADC input signal exceeds 87.5% of full scale (–1.16dB), the PGA gain is  
ramped down at the maximum attack rate (as when ATK = 0000), until the signal level falls below  
87.5% of full scale. This function is automatically enabled whenever the ALC is enabled.  
(Note: If ATK = 0000, then the limiter makes no difference to the operation of the ALC. It is designed  
to prevent clipping when long attack times are used).  
NOISE GATE  
When the signal is very quiet and consists mainly of noise, the ALC function may cause “noise  
pumping”, i.e. loud hissing noise during silence periods. The WM9711L has a noise gate function  
that prevents noise pumping by comparing the signal level at the input pins (i.e. before the record  
PGA) against a noise gate threshold, NGTH. Provided that the noise gate function is enabled (NGAT  
= 1), the noise gate cuts in when:  
Signal level at ADC [dB] < NGTH [dB] + PGA gain [dB] + Mic Boost gain [dB]  
This is equivalent to:  
Signal level at input pin [dB] < NGTH [dB]  
The PGA gain is then held constant (preventing it from ramping up as it normally would when the  
signal is quiet). If the NGG bit is set, the ADC output is also muted when the noise gate cuts in.  
The table below summarises the noise gate control register. The NGTH control bits set the noise  
gate threshold with respect to the ADC full-scale range. The threshold is adjusted in 1.5dB steps.  
Levels at the extremes of the range may cause inappropriate operation, so care should be taken with  
set–up of the function. Note that the noise gate only works in conjunction with the ALC function, and  
always operates on the same channel(s) as the ALC (left, right, both, or none).  
REGISTER  
ADDRESS  
BIT  
LABEL  
NGAT  
DEFAULT  
DESCRIPTION  
62h  
7
5
0
Noise gate function enable  
1 = enable  
ALC / Noise  
Gate Control  
0 = disable  
NGG  
0
Noise gate type  
0 = PGA gain held constant  
1 = mute ADC output  
Noise gate threshold  
-76.5dBfs  
4:0  
NGTH(4:0) 00000  
-75dBfs  
… 1.5 dB steps  
11110 -31.5dBfs  
11111 -30dBfs  
Table 10 Noise Gate Control  
PD Rev 4.3 August 2006  
23  
w
WM9711L  
Production Data  
AUDIO DACS  
STEREO DAC  
The WM9711L has a stereo sigma-delta DAC that achieves high quality audio playback at low power  
consumption. Digital tone control, adaptive bass boost and 3-D enhancement functions operate on  
the digital audio data before it is passed to the stereo DAC. (Contrary to the AC’97 specification, they  
have no effect on analogue input signals or signals played through the auxiliary DAC. Nevertheless,  
the ID2 and ID5 bits in the reset register, 00h, are set to ‘1’ to indicate that the WM9711L supports  
tone control and bass boost.)  
The DAC output has a PGA for volume control. The DAC sample rate can be controlled by writing to  
a control register (see “Variable Rate Audio”). It is independent of the ADC sample rate. The left and  
right DACs can be separately powered down using the PD13 and PD14 control bits, whereas the  
PR1 bit disables both DACs (see “Power Management” section).  
STEREO DAC VOLUME  
The volume of the DAC output signal is controlled by a PGA (Programmable Gain Amplifier). It can  
be mixed into the headphone, speaker and phone output paths (see “Audio Mixers”).  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
D2H  
DEFAULT  
DESCRIPTION  
18h  
1
Mute DAC path to headphone mixer  
1: Mute, 0: No mute (ON)  
Mute DAC path to speaker mixer  
1: Mute, 0: No mute (ON)  
Mute DAC path to phone mixer  
1: Mute, 0: No mute (ON)  
Left DAC Volume  
DAC  
Volume  
14  
D2S  
D2P  
1
1
13  
12:8  
DACL  
VOL  
01000  
(0dB)  
00000: +12dB  
… (1.5dB steps)  
11111: -34.5dB  
4:0  
15  
DACR  
VOL  
01000  
(0dB)  
N/A  
Right DAC Volume  
similar to DACLVOL  
5Ch  
AMUTE  
Read-only bit to indicate auto-muting  
1: DAC auto-muted  
Additional  
Functions  
(1)  
0: DAC not muted  
7
AMEN  
0
DAC Auto-Mute Enable  
1: Automatically mutes analogue output of  
stereo DAC if digital input is zero  
0: Auto-mute OFF  
Table 11 Stereo DAC Volume Control  
PD Rev 4.3 August 2006  
24  
w
Production Data  
WM9711L  
TONE CONTROL / BASS BOOST  
The WM9711L provides separate controls for bass and treble with programmable gains and filter  
characteristics. This function operates on digital audio data before it is passed to the audio DACs.  
Bass control can take two different forms:  
Linear bass control: bass signals are amplified or attenuated by a user programmable  
gain. This is independent of signal volume, and very high bass gains on loud signals  
may lead to signal clipping.  
Adaptive bass boost: The bass volume is amplified by a variable gain. When the bass  
volume is low, it is boosted more than when the bass volume is high. This method is  
recommended because it prevents clipping, and usually sounds more pleasant to the  
human ear.  
Treble control applies a user programmable gain, without any adaptive boost function.  
Treble, linear bass and 3D enhancement can all produce signals that exceed full-scale. In order to  
avoid limiting under these conditions, it is recommended to set the DAT bit to attenuate the digital  
input signal by 6dB. The gain at the outputs should be increased by 6dB to compensate for the  
attenuation. Cut-only tone adjustment and adaptive bass boost cannot produce signals above full-  
scale and therefore do not require the DAT bit to be set.  
REGISTER  
ADDRESS  
BIT  
LABEL  
BB  
DEFAULT  
DESCRIPTION  
08h  
15  
0
Bass Boost  
0 = OFF  
1 = ON  
DAC Tone  
Control  
12  
BC  
0
Bass Cut-off Frequency  
0 = Low (130Hz at 48kHz sampling)  
1 = High (200Hz at 48kHz sampling)  
Bass Intensity  
11:8  
BASS  
1111 (OFF)  
Code  
BB=0  
BB=1  
(Normal)  
(Boost)  
0000  
0001  
0010  
+9dB  
15 (max)  
+9dB  
14  
+7.5dB  
13  
(1.5dB steps)  
0dB  
0111  
8
(1.5dB steps)  
1011-1101 -6dB  
4-2  
1 (min)  
1110  
1111  
-6dB  
Bypass (OFF)  
6
DAT  
TC  
0
0
-6dB attenuation  
0 = Off  
1 = On  
4
Treble Cut-off Frequency  
0 = High (8kHz at 48kHz sampling)  
1 = Low (4kHz at 48kHz sampling)  
Treble Intensity  
3:0  
TRBL  
1111  
(Disabled)  
0000 or 0001 = +9dB  
0010 = +7.5dB  
… (1.5dB steps)  
1011 to 1110 = -6dB  
1111 = Treble Control Disabled  
Table 12 DAC Tone Control  
Note:  
1. All cut-off frequencies change proportionally with the DAC sample rate.  
PD Rev 4.3 August 2006  
25  
w
WM9711L  
Production Data  
3D STEREO ENHANCEMENT  
The 3D stereo enhancement function artificially increases the separation between the left and right  
channels by amplifying the (L-R) difference signal in the frequency range where the human ear is  
sensitive to directionality. The programmable 3D depth setting controls the degree of stereo  
expansion introduced by the function. Additionally, the upper and lower limits of the frequency range  
used for 3D enhancement can be selected using the 3DFILT control bits.  
REGISTER  
ADDRESS  
BIT  
LABEL  
3DE  
DEFAULT  
DESCRIPTION  
20h  
13  
0
3D enhancement enable  
(disabled)  
General  
Purpose  
22h  
5
3DLC  
0
Lower Cut-off Frequency  
0 = Low (200Hz at 48kHz sampling)  
1 = High (500Hz at 48kHz sampling)  
Upper Cut-off Frequency  
0 = High (2.2kHz at 48kHz sampling)  
1 = Low (1.5kHz at 48kHz sampling)  
3D Depth  
DAC 3D  
Control  
4
3DUC  
0
3:0  
3DDEPTH  
0000  
0000: 0% (minimum 3D effect)  
0001: 6.67%  
1110: 93.3%  
1111: 100% (maximum)  
Table 13 Stereo Enhancement Control  
Note:  
1. All cut-off frequencies change proportionally with the DAC sample rate.  
PD Rev 4.3 August 2006  
26  
w
Production Data  
WM9711L  
AUXILIARY DAC  
AUXDAC is a simple 12-bit mono DAC. It can be used to generate DC signals (with the numeric input  
written into a control register), or AC signals such as telephone-quality ring tones or system beeps  
(with the input signal supplied through an AC-Link slot). In AC mode (XSLE = 1), the input data is  
binary offset coded; in DC mode (XSLE = 0), there is no offset.  
The analogue output of AUXDAC is routed directly into the output mixers. The signal gain into each  
mixer can be adjusted at the mixer inputs using control register 12h. In slot mode (XSLE = 1), the  
AUXDAC also supports variable sample rates (See “Variable Rate Audio” section).  
When the auxiliary DAC is not used, it can be powered down by setting AXE = 0. This is also the  
default setting.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
XSLE  
DEFAULT  
DESCRIPTION  
64h  
0
AUXDAC input selection  
AUDAC Input  
Control  
0: from AUXDACVAL (for DC signals)  
1: from AC-Link slot selected by  
AUXDACSLT (for AC signals)  
14:12  
AUXDAC  
SLT  
000  
AUXDAC Input Selection  
000 – Slot 5, bits 8-19 (with XSLE=1)  
001 – Slot 6, bits 8-19 (with XSLE=1)  
010 – Slot 7, bits 8-19 (with XSLE=1)  
011 – Slot 8, bits 8-19 (with XSLE=1)  
100 – Slot 9, bits 8-19 (with XSLE=1)  
101 – Slot 10, bits 8-19 (with XSLE=1)  
110 – Slot 11, bits 8-19 (with XSLE=1)  
111 – RESERVED (do not use)  
AUXDAC Digital Input (with XSLE=0)  
000h: minimum  
11:0  
AUXDAC  
VAL  
000h  
1
FFFh: full-scale  
12h  
15  
A2H  
Mute AUXDAC path to headphone  
mixer  
AUXDAC Output  
Control  
1: Mute, 0: No mute (ON)  
AUXDAC to headphone mixer gain  
000: +6dB  
14:12  
A2HVOL  
010  
(0dB)  
… (3dB steps)  
111: -15dB  
11  
A2S  
1
Mute AUXDAC path to speaker mixer  
1: Mute, 0: No mute (ON)  
AUXDAC to speaker mixer gain  
000: +6dB  
10:8  
A2SVOL  
010  
(0dB)  
… (3dB steps)  
111: -15dB  
7
A2P  
1
Mute AUXDAC path to phone mixer  
1: Mute, 0: No mute (ON)  
AUXDAC to phone mixer gain  
000: +6dB  
6:4  
A2PVOL  
010  
(0dB)  
… (3dB steps)  
111: -15dB  
0
AXE  
0
0: AUXDAC off  
1: AUXDAC enabled  
Table 14 AUXDAC Control  
PD Rev 4.3 August 2006  
27  
w
WM9711L  
Production Data  
ANALOGUE AUDIO OUTPUTS  
The following sections give an overview of the analogue audio output pins. For more information on  
recommended external components, please refer to the “Applications Information” section.  
HEADPHONE OUTPUTS – HPOUTL AND HPOUTR  
The HPOUTL and HPOUTR (pins 39 and 41) are designed to drive a 16or 32headphone or a  
line output. They can also be used as line-out pins. The output signal is produced by the headphone  
mixer.  
The signal volume on HPOUTL and HPOUTR can be independently adjusted under software control  
by writing to register 04h. When HPOUTL and HPOUTR are not used, the output drivers can be  
disabled to save power (see “Power Management” section). Both pins remain at the same DC level  
(the reference voltage VREF) when they are disabled, so that no click noise is produced.  
REGISTER  
ADDRESS  
BIT  
LABEL  
MUTE  
DEFAULT  
DESCRIPTION  
04h  
15  
1
Mute HPOUTL and HPOUTR  
1: Mute (OFF)  
HPOUTL /  
HPOUTR  
0: No Mute (ON)  
Volume  
13:8  
HPOUTLVOL  
000000  
(0dB)  
HPOUTL Volume  
000000: 0dB (maximum)  
000001: -1.5dB  
… (1.5dB steps)  
011111: -46.5dB  
1xxxxx: -46.5dB  
7
ZC  
0
Zero Cross Enable  
0: Change gain immediately  
1: Change gain only on zero crossings,  
or after time-out  
5:0  
HPOUTRVOL  
00000  
(0dB)  
HPOUTR Volume  
Similar to HPOUTLVOL  
Table 15 HPOUTL / HPOUTR Control  
PD Rev 4.3 August 2006  
28  
w
Production Data  
WM9711L  
EAR SPEAKER OUTPUT – OUT3  
Pin 37 (OUT3) has a buffer that can drive load impedances down to 16. It can be used to:  
Drive an ear speaker (phone receiver). The speaker can be connected differentially  
between OUT3 and HPOUTL, or in single-ended configuration (OUT3 to HPGND). The  
ear speaker output is produced by the headphone mixer. The right signal must be  
inverted (OUT3INV = 1), so that the left and right channel are mixed to mono in the  
speaker [L–(-R) = L+R].  
Eliminate the DC blocking capacitors on HPOUTL and HPOUTR. In this configuration,  
OUT3 produces a buffered midrail voltage (AVDD/2) and is connected to the headphone  
socket’s ground pin (see “Applications Information”)  
Produce the inverse of the MONOOUT signal, for a differential mono output.  
Note: OUT3 can only handle one of the above functions at any given time.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
16h  
MUTE  
1
Mute OUT3  
OUT3  
Control  
1: Mute (Buffer OFF)  
0: No Mute (Buffer ON)  
Source of OUT3 signal  
10:9  
OUT3  
SRC  
00  
00  
inverse of HPOUTR  
(for BTL ear speaker)  
01  
10  
VREF (for capless headphone drive)  
mono mix of both headphone  
channels (for single-ended ear  
speaker)  
11  
inverse of MONOOUT  
(for differential mono output)  
7
ZC  
0
Zero Cross Enable  
0: Change gain immediately  
1: Change gain only on zero crossings, or  
after time-out  
5:0  
OUT3  
VOL  
000000  
(0dB)  
OUT3 Volume  
000000: 0dB (maximum)  
000001: -1.5dB  
… (1.5dB steps)  
011111: -46.5dB  
1xxxxx: -46.5dB  
Table 16 OUT3 Control  
PD Rev 4.3 August 2006  
29  
w
WM9711L  
Production Data  
LOUDSPEAKER OUTPUTS – LOUT2 AND ROUT2  
The LOUT2 and ROUT2 outputs are designed to differentially drive an 8mono speaker. They can  
also be used as a stereo line-out or headphone output.  
For speaker drive, the LOUT2 signal must be inverted (INV = 1), so that the left and right channel are  
added up in the speaker [R–(-L) = R+L].  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
MUTE  
DEFAULT  
DESCRIPTION  
02h  
1
Mute LOUT2 and ROUT2  
1: Mute (OFF)  
LOUT2/ROUT2  
Volume  
0: No Mute (ON)  
13:8  
LOUT2VOL  
00000  
(0dB)  
LOUT2 Volume  
000000: 0dB (maximum)  
000001: -1.5dB  
… (1.5dB steps)  
011111: -46.5dB  
1xxxxx: -46.5dB  
7
6
ZC  
0
0
Zero Cross Enable  
0: Change gain immediately  
1: Change gain only on zero crossings,  
or after time-out  
INV  
LOUT2 Invert  
0 = No Inversion (0° phase shift)  
1 = Signal inverted (180° phase shift)  
ROUT2 Volume  
5:0  
8
ROUT2VOL  
SRC  
00000  
(0dB)  
0
Similar to LOUT2VOL  
16h  
Source of LOUT2/ROUT2 signals  
0: speaker mixer (for BTL speaker)  
1: headphone mixer (for stereo output)  
Table 17 LOUT2 / ROUT2 Control  
Note:  
1. For BTL speaker drive, it is recommended that LOUT2VOL = ROUT2VOL.  
PD Rev 4.3 August 2006  
30  
w
Production Data  
WM9711L  
PHONE OUTPUT (MONOOUT)  
The MONOOUT output (pin 33) is intended for connection to the TX side of a wireless chipset. The  
signal is generated in a dedicated mono mixer; it is not necessarily a mono mix of the stereo outputs  
HPOUTL/R or LOUT2/ROUT2 (see “Audio Mixers” section).  
The MONOOUT volume can be controlled by writing to register 06h. When MONOOUT is not used,  
the output buffer can be disabled to save power (see “Power Management” section). The MONOOUT  
pin remains at the same DC level (the reference voltage on the VREF pin), so that no click noise is  
produced when muting or un-muting.  
REGISTER  
ADDRESS  
BIT  
LABEL  
MUTE  
DEFAULT  
DESCRIPTION  
06h  
15  
1
Mute MONOOUT  
MONOOUT  
Volume  
1: Mute  
0: No Mute  
7
ZC  
0
Zero Cross Enable  
0: Change gain immediately  
1: Change gain only on zero crossings,  
or after time-out  
4:0  
MONOOUT  
VOL  
00000  
(0dB)  
MONOOUT Volume  
00000: 0dB (maximum)  
00001: -1.5dB  
… (1.5dB steps)  
11111: -46.5dB  
Table 18 MONOOUT Control  
THERMAL CUTOUT  
The speaker and headphone outputs can drive very large currents. To protect the WM9711L from  
becoming too hot, a thermal cutout has been built in. If the chip temperature reaches approximately  
150°C, and the ENT bit is set, the WM9711L deasserts GPIO bit 11 in register 54h, a virtual GPIO  
that can be set up to generate an interrupt to the CPU (see “GPIO and Interrupt Control” section).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
5Ch  
2
ENT  
0
Enable thermal cutout  
0: Disabled  
1: Enabled  
54h  
11  
TI  
1
Thermal cutout (virtual GPIO)  
1: Temperature below 150°C  
0: Temperature above 150°C  
See also “GPIO and Interrupt Control” section.  
Table 19 Thermal Cutout Control  
PD Rev 4.3 August 2006  
31  
w
WM9711L  
Production Data  
JACK INSERTION AND AUTO-SWITCHING  
In a phone application, a BTL ear speaker may be connected across OUT3 and HPOUTL, and a  
stereo headphone on HPOUTL and HPOUTR. Typically, only one of these two output devices is  
used at any given time: when no headphone is plugged in, the BTL ear speaker is active, otherwise  
the headphone is used.  
The presence of a headphone can be detected using GPIO1 (pin 44) and an external pull-up resistor  
(see “Applications Information” section for a circuit diagram). When the jack is inserted GPIO1 is  
pulled low by a switch on the socket. When the jack is removed GPIO1 is pulled high by a resistor. If  
the JIEN bit is set, the WM9711L automatically switches between headphone and ear speaker, as  
shown below.  
REGISTER  
ADDRESS  
BIT  
12  
11  
LABEL  
DEFAULT  
DESCRIPTION  
58h  
JIEN  
0
Jack Insert Enable – Takes output of GPIO1  
logic  
Additional  
Functional  
Control  
FRC  
0
Force Ear Speaker Mode  
See table below  
Table 20 Jack Insertion / Auto-Switching (1)  
JIEN FRC GPIO1  
MODE DESCRIPTION  
0
0
X
Jack insert detection disabled Set by  
(headphone and ear speaker  
can be used at the same  
time)  
reg.  
24h  
and  
26h  
1
1
0
0
1
Jack insert detection  
enabled, headphone plugged  
in  
X
Jack insert detection  
enabled, headphone not  
plugged in  
Set by  
reg.  
24h  
Set by  
reg.  
16h  
and  
26h  
0
1
1
1
X
X
Force Ear Speaker Mode  
Invalid; do not use this setting  
Table 21 Jack Insertion / Auto-Switching (2)  
PD Rev 4.3 August 2006  
32  
w
Production Data  
WM9711L  
DIGITAL AUDIO (SPDIF) OUTPUT  
The WM9711L supports the SPDIF standard using pin 47 as its output. Note that pin 47 can also be  
used as a GPIO pin. The GE5 bit (register 56h, bit 5) selects between GPIO and SPDIF functionality  
(see “GPIO and Interrupt control” section).  
Register 3Ah is a read/write register that controls SPDIF functionality and manages bit fields  
propagated as channel status (or sub-frame in the V case). With the exception of V, this register  
should only be written to when the SPDIF transmitter is disabled (SPDIF bit in register 2Ah is ‘0’).  
Once the desired values have been written to this register, the contents should be read back to  
ensure that the sample rate in particular is supported, then SPDIF validity bit SPCV in register 2Ah  
should be read to ensure the desired configuration is valid. Only then should the SPDIF enable bit in  
register 2Ah be set. This ensures that control and status information start up correctly at the  
beginning of SPDIF transmission.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
2Ah  
10  
SPCV  
0
SPDIF validity bit (read-only)  
SPDIF slot assignment (ADCO = 0)  
00: Slots 3, 4  
Extended  
Audio  
5:4  
SPSA  
SEN  
00  
01: Slots 6, 9  
10: Slots 7, 8  
11: Slots 10, 11  
2
0
SPDIF output enable  
1 = enabled, 0 = disabled  
3Ah  
15  
14  
V
0
Validity bit; ‘0’ indicates frame valid, ‘1’  
indicates frame not valid  
SPDIF  
Control  
Register  
DRS  
SPSR  
L
0
Double rate SPDIF support; not  
supported by WM9705 therefore fixed ‘0’  
13:1  
2
10  
SPDIF sample rate; WM9705 supports  
only 48kHz = ‘10’. This value is fixed.  
11  
10:4  
3
0
Generation level; programmed as  
required by user  
CC  
0000000  
0
Category code; programmed as required  
by user  
PRE  
Pre-emphasis; ‘0’ indicates not pre-  
emphasis, ‘1’ indicates 50/15us pre-  
emphasis  
2
1
COPY  
AUDIB  
0
Copyright; ‘0’ indicates copyright is not  
asserted, ‘1’ indicates copyright  
TBD  
Non-audio; ‘0’ indicates data is PCM, ‘1’  
indicates non-PCM format (eg DD or  
DTS)  
0
4
PRO  
TBD  
0
Professional; ‘0’ indicates consumer, ‘1’  
indicates professional  
5Ch  
ADCO  
Source of SPDIF data  
Additional  
Function  
Control  
0: SPDIF data comes from SDATAOUT  
(pin 5), slot selected by SPSA  
1: SPDIF data comes from audio ADC  
Table 22 SPDIF Output Control  
PD Rev 4.3 August 2006  
33  
w
WM9711L  
Production Data  
AUDIO MIXERS  
MIXER OVERVIEW  
The WM9711L has three separate low-power audio mixers to cover all audio functions required by  
smartphones, PDAs and handheld computers. The diagram below shows the routing of the analogue  
audio signals into the mixers. The numbers at the mixer inputs refer to the control register bits that  
control the volume and muting for that particular signal.  
0Eh [7]  
DIFF /  
MICL  
0/20  
dB  
0Eh [12:8,4:0]  
OUT3VOL  
(Reg 16h)  
STEREO/  
0Eh [14,13]  
18h [13]  
MICR  
MONO  
MONOOUT  
(PHONE TX)  
(Reg 20h)  
1Ah [13:11]  
10h [13]  
PHONE  
MIX  
10h [12:8,4:0]  
LINE_IN  
12h [7:4]  
0Ah [7:4]  
OUT3SRC  
(Reg 16h)  
PCBEEP  
VREF  
0Ch [4:0]  
M
U
X
OUT3  
MONOOUT  
PHONE_IN  
0Ch [15]  
ear  
speaker  
10h [15]  
HEAD  
PHONE/  
EAR  
SPEAKER  
MIX  
14h [11:7]  
18h [15]  
18h [12:8,4:0]  
1Ch / ALC  
STEREO  
DAC  
HPOUTL  
HPOUTR  
14h [15:12]  
0Ah [15:12]  
12h [15:12]  
HPVOL  
(Reg 04h)  
Stereo  
headphone /  
headset  
M
U
X
RECORD  
SELECT  
INV  
(Reg 02h)  
PHONE MIX  
HEADPHONE MIX  
BACK SPKR MIX  
10h [14]  
-1  
LOUT2  
ROUT2  
18h [14]  
BACK  
SPEAKER  
MIX  
M
U
X
AUX  
DAC  
(12-BIT)  
loud  
speaker  
12h [11:8]  
0Ah [11:8]  
0Ch [14]  
0/20  
dB  
OUT2VOL  
(Reg 02h)  
SRC  
1Ah [14]  
STEREO  
(Reg 16h)  
ADC  
Figure 4 Audio Mixer Overview  
HEADPHONE MIXER  
The headphone mixer drives the HPOUTL and HPOUTR outputs. It also drives OUT3, if this pin is  
connected to an ear speaker (phone receiver). The following signals can be mixed into the  
headphone path:  
PHONE (controlled by register 0Ch, see “Audio Inputs”)  
LINE_IN (controlled by register 10h, see “Audio Inputs”)  
the output of the Record PGA (see “Audio ADC”, “Record Gain”)  
the stereo DAC signal (controlled by register 18h, see “Audio DACs”)  
the MIC signal (controlled by register 0Eh, see “Audio Inputs”)  
PC_BEEP (controlled by register 0Ah, see “Audio Inputs”)  
the AUXDAC signal (controlled by register 12h, see “Auxiliary DAC”)  
In a typical smartphone application, the headphone signal is a mix of PHONE and sidetone (for  
phone calls) and the stereo DAC signal (for music playback).  
PD Rev 4.3 August 2006  
34  
w
Production Data  
WM9711L  
SPEAKER MIXER  
The speaker mixer drives the LOUT2 and ROUT2 output. The following signals can be mixed into the  
speaker path:  
PHONE (controlled by register 0Ch, see “Audio Inputs”)  
LINE_IN (controlled by register 10h, see “Audio Inputs”)  
the stereo DAC signal (controlled by register 18h, see “Audio DACs”)  
PC_BEEP (controlled by register 0Ah, see “Audio Inputs”)  
the AUXDAC signal (controlled by register 12h, see “Auxiliary DAC”)  
In a typical smartphone application, the speaker signal is a mix of AUXDAC (for system alerts or ring  
tone playback), PHONE (for speakerphone function), and PC_BEEP (for externally generated ring  
tones).  
MONO MIXER  
The mono mixer drives the MONOOUT pin. The following signals can be mixed into MONOOUT:  
LINE_IN (controlled by register 10h, see “Audio Inputs”)  
the output of the Record PGA (see “Audio ADC”, “Record Gain”)  
the stereo DAC signal (controlled by register 18h, see “Audio DACs”)  
the MIC signal (controlled by register 10h, see “Audio Inputs”)  
PC_BEEP (controlled by register 0Ah, see “Audio Inputs”)  
the AUXDAC signal (controlled by register 12h, see “Auxiliary DAC”)  
In a typical smartphone application, the MONOOUT signal is a mix of the amplified microphone  
signal (possibly with Automatic Gain Control) and (if enabled) an audio playback signal from the  
stereo DAC or the auxiliary DAC.  
SIDE TONE CONTROL  
The side tone path is into the headphone mixer and is either from the MIC or ALC path (with no 20dB  
boost)  
REGISTER  
ADDRESS  
BIT  
LABEL  
STM  
DEFAULT  
DESCRIPTION  
14h  
15  
1
MIC side tone select  
Sidetone  
Control  
0: selected  
1 : not selected (path muted)  
MIC Sidetone volume  
000 : +6dB (max.)  
001: +3dB  
14:12  
11:10  
9:7  
STVOL  
ALCM  
010  
(0dB)  
… (3dB steps)  
111 : -15dB (min.)  
ALC side tone select  
11: mute  
11  
10: mono – left  
01: mono – right  
00: stereo  
ALCVOL  
010  
ALC Sidetone volume  
Similar to STVOL  
(0dB)  
Table 23 Side Tone Control  
PD Rev 4.3 August 2006  
35  
w
WM9711L  
Production Data  
VARIABLE RATE AUDIO / SAMPLE RATE CONVERSION  
By using an AC’97 Rev2.2 compliant audio interface, the WM9711L can record and playback at all  
commonly used audio sample rates, and offer full split-rate support (i.e. the DAC, ADC and  
AUXDAC sample rates are completely independent of each other – any combination is possible).  
The default sample rate is 48kHz. If the VRA bit (register 20h) is set and the appropriate block is  
enabled, then other sample rates can be selected by writing to registers 2Ch, 32h and 2Eh. The AC-  
Link continues to run at 48k frames per second irrespective of the sample rate selected. However, if  
the sample rate is less than 48kHz, then some frames do not carry an audio sample.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
2Ah  
0
VRA  
0 (OFF)  
Variable Rate Audio  
Extended  
Audio  
Stat/Ctrl  
0: OFF (DAC and ADC run at 48kHz)  
1: ON (sample rates determined by  
registers 2Ch, 2Eh and 32h)  
2Ch  
15:0  
DACSR  
BB80h  
Audio DAC sample rate  
1F40h: 8kHz  
Audio DAC  
(48kHz)  
Sample Rate  
2B11h: 11.025kHz  
2EE0h: 12kHz  
3E80h: 16kHz  
5622h: 22.05kHz  
5DC0h: 24kHz  
7D00h: 32kHz  
AC44h: 44.1kHz  
BB80h: 48kHz  
Any other value defaults to the nearest  
supported sample rate  
32h  
15:0  
15:0  
ADCSR  
BB80h  
Audio ADC sample rate  
similar to DACSR  
Audio ADC  
Sample Rate  
(48kHz)  
2Eh  
AUXDA  
CSR  
BB80h  
(48kHz)  
AUXDAC sample rate  
similar to DACSR  
AUXDAC  
Sample Rate  
Table 24 Audio Sample Rate Control  
PD Rev 4.3 August 2006  
36  
w
Production Data  
WM9711L  
BATTERY ALARM  
PRINCIPLE OF OPERATION  
The WM9711L has two on-chip comparators that can be used to implement a battery alarm function,  
or other functions such as a window comparator. Each comparator has one of its inputs tied to any  
one of three device pins and the other tied to a voltage reference. The voltage reference can be  
either internally generated (VREF = AVDD/2) or externally connected on CREF (pin 12).  
The comparator output signals are passed to the GPIO logic block (see “GPIO and Interrupt Control”  
section), where they can be used to send an interrupt to the CPU via the AC-Link or via the IRQ pin,  
and / or to wake up the WM9711L from sleep mode. COMP1 (pin 29) corresponds to GPIO bit 15  
and COMP2 (pin30) to bit 14.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
4Eh  
CP1  
1
COMP1 Polarity (see also “GPIO and Interrupt  
Control”)  
0: Alarm when COMP1 voltage is above VREF  
1: Alarm when COMP1 voltage is below VREF  
14  
CP2  
1
0
COMP2 Polarity (see also “GPIO and Interrupt  
Control”)  
0: Alarm when COMP2 voltage is above VREF  
1: Alarm when COMP2 voltage is below VREF  
Low Battery Alarm Delay  
58h  
15:13 COMP2  
DEL  
000: No delay  
001: 0.17s (213 = 8192 AC-Link frames)  
010: 0.34s (214 = 16384 AC-Link frames)  
011: 0.68s (215 = 32768 AC-Link frames)  
100: 1.4s (216 = 65536 AC-Link frames)  
101: 2.7s (217 = 131072 AC-Link frames)  
110: 5.5s (218 = 262144 AC-Link frames)  
111: 10.9s (219 = 524288 AC-Link frames)  
Table 25 Comparator Control  
REGISTER  
ADDRESS  
BIT  
14  
LABEL  
DEFAULT  
DESCRIPTION  
5Ch  
C1REF  
0
Comparator 1 Reference Voltage  
Additional  
Analogue  
Functions  
0
1
VREF = AVDD/2  
WIPER/AUX4 (pin 12)  
13:12 C1SRC  
00  
Comparator 1 Signal Source  
00  
AVDD/2 when C1REF=’1’. Otherwise  
comparator 1 is powered down  
01  
10  
11  
COMP1/AUX1 (pin 29)  
COMP2/AUX2 (pin 30)  
BMON/AUX3 (pin 31)  
11  
C2REF  
C2SRC  
0
Comparator 2 Reference Voltage  
0
1
VREF = AVDD/2  
WIPER/AUX4 (pin 12)  
10:9  
00  
Comparator 2 Signal Source  
00  
AVDD/2 when C2REF=’1’. Otherwise  
comparator 2 is powered down  
01  
10  
11  
COMP1/AUX1 (pin 29)  
COMP2/AUX2 (pin 30)  
BMON/AUX3 (pin 31)  
Table 26 Comparator Reference and Source Control  
PD Rev 4.3 August 2006  
37  
w
WM9711L  
Production Data  
COMP2 DELAY FUNCTION  
COMP2 has an optional delay function for use when the input signal is noisy. When COMP2 triggers  
and the delay is enabled (i.e. COMP2DEL is non-zero), then GPIO bit 14 does not change state  
immediately, and no interrupt is generated. Instead, the WM9711L starts a delay timer and checks  
COMP2 again after the delay time has passed. If COMP2 is still active, then the GPIO bit is set and  
an interrupt may be generated (depending on the state of the GW14 bit). If COMP2 is no longer  
active, the GPIO bit is not set, i.e. all register bits are as if COMP2 had never triggered.  
Note: If COMP2 triggers while the WM9711L is in sleep mode, and the delay is enabled, then the  
device starts the on-chip crystal oscillator in order to count the time delay.  
COMP2  
TRIGGERS  
C2W?  
1
0
END  
COMP2  
DEL?  
non-zero  
START TIMER  
WAIT  
time=COMP2DEL  
000  
SHUT DOWN  
TIMER  
END  
[FALSE ALARM]  
COMP2?  
Inactive  
Active  
SET GI14  
END  
Figure 5 COMP2 Delay Flow Chart  
PD Rev 4.3 August 2006  
38  
w
Production Data  
WM9711L  
VOLTAGE  
REGULATOR  
AVDD, DCVDD, ...  
WM9711L  
IALARM  
R1  
COMP1  
DEAD  
BAT  
+
-
C
GPIO /  
INTERRUPT  
LOGIC  
R2  
R3  
VREF  
VBATT  
-
+
LOW  
BAT  
COMP2  
GPIO2/ GPIO  
IRQ  
PINS  
Figure 6 Battery Alarm Example Schematic  
The typical schematic for a dual threshold battery alarm is shown above. This alarm has two  
thresholds, “dead battery” (COMP1) and “low battery” (COMP2). R1, R2 and R3 set the threshold  
voltages. Their values can be up to about 1Min order to keep the battery current [IALARM = VBATT  
/
(R1+R2+R3)] to a minimum (higher resistor values may affect the accuracy of the system as leakage  
currents into the input pins become significant).  
Dead battery alarm: COMP1 triggers when VBATT < VREF × (R1+R2+R3) / (R2+R3)  
A dead battery alarm is the highest priority of interrupt in the system. It should immediately save all  
unsaved data and shut down the system. The GP15, GS15 and GW15 bits must be set to generate  
this interrupt.  
Low battery alarm: COMP2 triggers when VBATT < VREF × (R1+R2+R3) / R3  
A low battery alarm has a lower priority than a dead battery alarm. Since the threshold voltage is  
higher than for a dead battery alarm, there is enough power left in the battery to give the user a  
warning and/or shut down “gracefully”. When VBATT gets close to the low battery threshold, spurious  
alarms are filtered out by the COMP2 delay function.  
The purpose of the capacitor C is to remove from the comparator inputs any high frequency noise or  
glitches that may be present on the battery (for example, noise generated by a charge pump). It  
forms a low pass filter with R1, R2 and R3.  
Low pass cutoff fc [Hz] = 1/ (2π C × (R1 || (R2+R3)))  
Provided that the cutoff frequency is several orders of magnitude lower than the noise frequency fn,  
this simple circuit can achieve excellent noise rejection.  
Noise rejection [dB] = 20 log (fn / fc)  
PD Rev 4.3 August 2006  
39  
w
WM9711L  
Production Data  
GPIO AND INTERRUPT CONTROL  
The WM9711L has five GPIO pins that operate as defined in the AC’97 Revision 2.2 specification.  
Each GPIO pin can be set up as an input or as an output, and has corresponding bits in register 54h  
and in slot 12. The state of a GPIO output is determined by sending data through slot 12 of outgoing  
frames (SDATAOUT). Data can be returned from a GPIO input by reading the register bit, or  
examining slot 12 of incoming frames (SDATAIN). GPIO inputs can be made sticky, and can be  
programmed to generate and interrupt, transmitted either through the AC-Link or through a  
dedicated, level-mode interrupt pin (GPIO2/IRQ, pin 45).  
GPIO pins 2 to 5 are multi-purpose pins that can also be used for other (non-GPIO) purposes, e.g.  
as a SPDIF output or to signal pen-down. This is controlled by register 56h.  
Independently of the GPIO pins, the WM9711L also has three virtual GPIOs. These are signals from  
inside the WM9711L, which are treated as if they were GPIO input signals. From a software  
perspective, virtual GPIOs are the same as GPIO pins, but they cannot be set up as outputs, and are  
not tied to an actual pin. This allows for simple, uniform processing of different types of signals that  
may generate interrupts (e.g. pen down, battery warnings, jack insertion, high-temperature warning,  
or GPIO signals).  
Figure 7 GPIO logic  
PD Rev 4.3 August 2006  
40  
w
Production Data  
WM9711L  
GPIO  
BIT  
1
SLOT1  
2 BIT  
TYPE  
PIN NO.  
DESCRIPTION  
5
6
GPIO Pin  
GPIO Pin  
44  
45  
GPIO1  
2
GPIO2 / IRQ  
enabled only when pin not used as IRQ  
3
4
5
7
8
9
GPIO Pin  
GPIO Pin  
GPIO Pin  
46  
47  
48  
GPIO3  
GPIO4  
GPIO5 / SPDIF_OUT  
enabled only when pin not used as  
SPDIF_OUT  
6-10  
11  
N/A  
15  
Unused  
-
GPIO Logic not implemented for these bits  
Virtual  
GPIO  
-
Internal thermal cutout signal, indicates when  
internal temperature reaches approximately  
150°C (see “Thermal Sensor”)  
[Thermal Cutout]  
12-13  
14  
N/A  
18  
Unused  
-
GPIO Logic not implemented for these bits  
Internal COMP2 output (Low Battery Alarm)  
enabled only when COMP2 is on  
Virtual  
GPIO  
-
[COMP2]  
-
15  
19  
Virtual  
GPIO  
Internal COMP1 output (Dead Battery Alarm)  
enabled only when COMP1 is on  
[COMP1]  
Table 27 GPIO Bits and Pins  
PD Rev 4.3 August 2006  
41  
w
WM9711L  
Production Data  
The properties of the GPIOs are controlled through registers 4Ch to 52h, as shown below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
4Ch  
n
GCn  
1
GPIO Pin Configuration  
0: Output  
1: Input  
GC11-15 are always ‘1’  
Unused bits GC6-GC10 are always ‘0’  
GPIO Pin Polarity / Type  
0: Active Low  
4Eh  
n
GPn  
1
1: Active High  
[GIn = pin level XNOR GPn)  
Unused bits GP6-GP10, GP12 and GP13 are  
always ‘1’  
50h  
52h  
54h  
n
n
n
GSn  
GWn  
GIn  
0
GPIO Pin Sticky  
1: Sticky  
0: Not Sticky  
Unused bits GS6-GS10, GS12 and GS13 are  
always ‘0’  
0
GPIO Pin Wake-up  
1: Wake Up (generate interrupts from this pin)  
0: No wake-up (no interrupts generated)  
Unused bits GW6-GW10, GW12 and GW13 are  
always ‘0’  
N/A  
GPIO Pin Status  
Read: Returns status of each GPIO pin  
Write: Sets output pin high or low.  
(Writing ‘0’ clears sticky bit)  
Unused bits GI6-GI10, GI12 and GI13 are  
always ‘0’  
Table 28 GPIO Control  
The following procedure is recommended for handling interrupts:  
When the controller receives an interrupt, check register 54h. For each GPIO bit in descending order  
of priority, check if the bit is ‘1’. If yes, execute corresponding interrupt routine, then write ‘0’ to  
corresponding bit in 54h. If no, continue to next lower priority GPIO. After all GPIOs have been  
checked, check if interrupt still present or no. If yes, repeat procedure. If no, then jump back to  
process that ran before the interrupt.  
If the system CPU cannot execute such an interrupt routine, it may be preferable to switch internal  
signals (such as PENDOWN) directly onto the GPIO pins. However, in this case the interrupt signals  
cannot be made sticky, and more GPIO pins are tied up both on the WM9711L and on the CPU.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
56h  
2
GE2  
1
GPIO2 / IRQ output select  
GPIO pins  
function  
select  
0: Pin 45 disconnected from GPIO logic  
set 4Ch, bit 2 to ‘0’ to output IRQ signal  
1: Pin 45 connected to GPIO logic (IRQ disabled)  
GPIO5 / SPDIF output select  
5
GE5  
1
0: Pin 48 = SPDIF (disconnected from GPIO logic)  
set 4Ch, bit 5 to ‘0’ to output SPDIF signal  
1: Pin 48 connected to GPIO logic (SPDIF  
disabled)  
Table 29 Using GPIO Pins for Non-GPIO Functions  
PD Rev 4.3 August 2006  
42  
w
Production Data  
WM9711L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
58h  
0
IRQ INV  
0
Inverts the IRQ signal (pin 45)  
0: IRQ signal not inverted  
1: IRQ signal inverted  
Enables GPIO wake-up  
0: Disabled  
Additional  
Functional  
Control  
1
WAKEEN  
0
1: Enabled  
Table 30 Additional Functionality for GPIO Pins  
POWER MANAGEMENT  
The WM9711L includes the standard power down control register defined by the AC’97 specification  
(register 26h). Additionally, it also allows more specific control over the individual blocks of the device  
through register 24h. Each particular circuit block is ON when both the relevant bit in register 26h and  
the relevant bit in register 24h are set to ‘0’.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
NORMAL  
PIN 47 ‘HI’  
DURING  
RESET  
26h  
14  
PR6  
0 (ON)  
1 (OFF)  
Disables HPOUTL, HPOUTR and  
OUT3 Buffer  
Powerdown/  
Status  
register  
13  
12  
PR5  
PR4  
0 (ON)  
0 (ON)  
1 (OFF)  
1 (OFF)  
Disables internal clock  
Disables AC-link interface  
(external clock off)  
11  
10  
PR3  
PR2  
0 (ON)  
0 (ON)  
1 (OFF)  
1 (OFF)  
Disables VREF, analogue mixers  
and outputs  
Disables analogue mixers,  
LOUT2, ROUT2 (but not VREF)  
9
8
PR1  
PR0  
0 (ON)  
0 (ON)  
1 (OFF)  
1 (OFF)  
Disables stereo DAC  
Disables audio ADCs and input  
Mux  
3
2
1
0
REF  
ANL  
DAC  
ADC  
1
1
1
1
0
0
0
0
Read-only bit, indicates VREF is  
ready (inverse of PR2)  
Read-only bit, indicates analogue  
mixers are ready (inverse of PR3)  
Read-only bit, indicates audio  
DACs are ready (inverse of PR1)  
Read-only bit, indicates audio  
ADCs are ready (inverse of PR0)  
Table 31 Powerdown and Status Register (Conforms to AC’97 Rev 2.2)  
As can be seen from the table above, most blocks are ‘ON’ by default. However, if pin 47  
(GPIO4/ADA/MASK) is held high during reset, the WM9711L starts up with all blocks powered down  
by default, saving power. This is achieved by connecting a pull-up resistor (e.g. 100k) from pin 47  
to DBVDD. Note that the state of pin 47 during reset only affects register 26h.  
PD Rev 4.3 August 2006  
43  
w
WM9711L  
Production Data  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
Disables Crystal Oscillator  
24h  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
0 (ON)  
0 (ON)  
0 (ON)  
0 (ON)  
0 (ON)  
0 (ON)  
0 (ON)  
0 (ON)  
0 (ON)  
0 (ON)  
Additional  
power down  
control  
14  
13  
12  
11  
10  
9
Disables left audio DAC  
Disables right audio DAC  
Disables left audio ADC  
Disables right audio ADC  
Disables MICBIAS  
Disables left headphone mixer  
Disables right headphone mixer  
Disables speaker mixer  
8
PD8  
7
PD7  
6
PD6  
Disables MONO_OUT buffer (pin 33) and phone  
mixer  
5
4
3
2
1
0
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
0 (ON)  
0 (ON)  
0 (ON)  
0 (ON)  
0 (ON)  
0 (ON)  
Disables OUT3 buffer (pin 37)  
Disables headphone buffers (HPOUTL/R)  
Disables speaker outputs (LOUT2, ROUT2)  
Disables Line Input PGA (left and right) *  
Disables Phone Input PGA *  
Disables Mic Input PGA (left and right) *  
Note: When analogue inputs or outputs are disabled, they are internally connected to VREF  
through a large resistor (VREF=AVDD/2 except in OFF mode, when VREF itself is disabled). This  
maintains the potential at that node and helps to eliminate pops when the pins are re-enabled.  
Table 32 Extended Power Down Register (Additional to AC’97 Rev 2.2)  
Note:  
*When disabling a PGA, always ensure that it is muted first.  
ADDITIONAL POWER MANAGEMENT:  
AUXDAC: see “Auxiliary DAC” section. AUXDAC is OFF by default.  
SLEEP MODE  
Whenever the PR4 bit (reg. 26h) is set, the AC-Link interface is disabled, and the WM9711L is in  
sleep mode. There is in fact a very large number of different sleep modes, depending on the other  
control bits. For example, the low-power standby mode described below is a sleep mode. It is  
desirable to use sleep modes whenever possible, as this will save power. The following functions do  
not require a clock and can therefore operate in sleep mode:  
Analogue-to-analogue audio (DACs and ADCs unused), e.g. phone call mode  
GPIO and interrupts  
Battery alarm / analogue comparators  
The WM9711L can awake from sleep mode as a result of  
A warm reset on the AC-Link (according to the AC’97 specification)  
A signal on a GPIO pin (if the pin is configured as an input, with wake-up enabled – see  
“GPIO and Interrupt Control” section)  
A virtual GPIO event such as battery alarm, thermal sensor, etc. (see “GPIO and  
Interrupt Control” section)  
PD Rev 4.3 August 2006  
44  
w
Production Data  
WM9711L  
LOW POWER STANDBY MODE  
If all the bits in registers 26h and 24h are set, then the WM9711L is in low-power standby mode and  
consumes very little current. A 1Mresistor string remains connected across AVDD to generate  
VREF. This is necessary if the on-chip analogue comparators are used (see “Battery Alarm” section),  
and helps shorten the delay between wake-up and playback readiness. If VREF is not required, the  
1Mresistor string can be disabled by setting the SVD bit, reducing current consumption further.  
REGISTER  
ADDRESS  
BIT  
10  
LABEL  
DEFAULT  
DESCRIPTION  
58h  
SVD  
0
VREF Disable  
0: VREF enabled using 1Mstring (low-power  
standby mode)  
1 : VREF disabled, 1Mstring disconnected  
(OFF mode)  
Table 33 Disabling VREF (for lowest possible power consumption)  
SAVING POWER AT LOW SUPPLY VOLTAGES  
The analogue supplies to the WM9711L can run from 1.8V to 3.6V. By default, all analogue circuitry  
on the IC is optimized to run at 3.3V. This set-up is also good for all other supply voltages down to  
1.8V. However, at lower voltages, it is possible to save power by reducing the internal bias currents  
used in the analogue circuitry. This is controlled as shown below.  
REGISTER  
ADDRESS  
BIT  
6:5  
LABEL  
DEFAULT  
DESCRIPTION  
5Ch  
V[1:0]  
11  
Analogue Bias optimization  
11 : Lowest bias current, optimized for 1.8V  
10 : Low bias current, optimized for 2.5V  
01, 00 : Default bias current, optimized for 3.3V  
Table 34 Analogue Bias Selection  
PD Rev 4.3 August 2006  
45  
w
WM9711L  
Production Data  
AC97 DATA AND CONTROL INTERFACE  
INTERFACE PROTOCOL  
The WM9711Lhas a single AC’97 interface for both data transfer and control. The AC-Link uses 5  
wires:  
SDATAIN (pin 8) carries data from the WM9711L to the controller  
SDATAOUT (pin 5) carries data from the controller to the WM9711L  
BITCLK (pin 6) is a clock, normally generated by the WM9711L crystal oscillator and  
supplied to the controller. However, BITCLK can also be passed to the WM9711L from  
an off-chip generator.  
SYNC is a synchronization signal generated by the controller and passed to the  
WM9711L  
RESETB resets the WM9711L to its default state  
AC-LINK  
24.576MHz  
XTAL  
SYNC  
BITCLK  
CONTROLLER  
e.g. CPU  
WM9711L  
SDATAIN  
SDATAOUT  
RESETB  
ANALOGUE  
INPUTS /  
OUTPUTS  
Figure 8 AC-Link Interface (typical case with BITCLK generated by the AC97 codec)  
The SDATAIN and SDATAOUT signals each carry 13 time-division multiplexed dat  
a streams (slots 0 to 12). A complete sequence of slots 0 to 12 is referred to as an AC-Link frame,  
and contains a total of 256 bits. The frame rate is 48kHz. This makes it possible to simultaneously  
transmit and receive multiple data streams (e.g. audio in, audio out, AUXDAC, GPIO, control) at  
sample rates up to 48kHz.  
Detailed information can be found in the AC’97 (Revision 2.2) specification, which can be obtained at  
www.intel.com/labs/media/audio/  
Note:  
SDATAOUT and SYNC must be held low for when RESETB is applied. These signals must be held  
low for the entire duration of the RESETB pulse and especially during the low-to-high transition of  
RESETB. If either is set high during reset the AC'97 device may enter test modes. Information  
relating to this operation is available in the AC'97 specification or in Wolfson applications note WAN-  
0104 available at www.wolfsonmirco.com.  
PD Rev 4.3 August 2006  
46  
w
Production Data  
WM9711L  
INTERFACE TIMING  
Test Characteristics:  
DBVDD = 3.3V, DCVDD = 3.3V, DGND1 = DGND2 = 0V, TA = -25°C to +85°C, unless otherwise stated.  
CLOCK SPECIFICATIONS  
tCLK_HIGH  
tCLK_LOW  
BITCLK  
SYNC  
tCLK_PERIOD  
tSYNC_HIGH  
tSYNC_LOW  
tSYNC_PERIOD  
Figure 9 Clock Specifications (50pF External Load)  
PARAMETER  
BITCLK frequency  
SYMBOL  
MIN  
TYP  
12.288  
81.4  
MAX  
UNIT  
MHz  
ns  
BITCLK period  
tCLK_PERIOD  
BITCLK output jitter  
BITCLK high pulse width (Note 1)  
BITCLK low pulse width (Note 1)  
SYNC frequency  
750  
45  
ps  
tCLK_HIGH  
tCLK_LOW  
36  
36  
40.7  
40.7  
48  
ns  
45  
ns  
kHz  
µs  
µs  
SYNC period  
tSYNC_PERIOD  
tSYNC_HIGH  
tSYNC_LOW  
20.8  
1.3  
SYNC high pulse width  
SYNC low pulse width  
Note:  
19.5  
µs  
1. Worst case duty cycle restricted to 45/55  
DATA SETUP AND HOLD  
Figure 10 Data Setup and Hold (50pF External Load)  
Note:  
1. Setup and hold times for SDATAIN are with respect to the AC’97 controller, not the  
WM9711L.  
PD Rev 4.3 August 2006  
47  
w
WM9711L  
Production Data  
PARAMETER  
SYMBOL  
tSETUP  
tHOLD  
MIN  
10  
TYP  
MAX  
UNIT  
ns  
Setup to falling edge of BITCLK  
Hold from falling edge of BITCLK  
10  
ns  
Output valid delay from rising edge of  
BITCLK  
tCO  
15  
ns  
SIGNAL RISE AND FALL TIMES  
triseCLK  
tfallCLK  
BITCLK  
t
riseSYNC  
tfallSYNC  
SYNC  
triseDIN  
tfallDIN  
SDATAIN  
t
riseDOUT  
tfallDOUT  
SDATAOUT  
Figure 11 Signal Rise and Fall Times (50pF External Load)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Incoming signals (from the AC’97 controller to the WM9711L)  
SDATAOUT rise time  
SDATAOUT fall time  
SYNC rise time  
triseDOUT  
tfallDOUT  
triseSYNC  
tfallSYNC  
6
6
6
6
ns  
ns  
ns  
ns  
SYNC fall time  
Outgoing signals (from the WM9711L to the AC’97 controller)  
BITCLK rise time  
BITCLK fall time  
SDATAIN rise time  
SDATAIN fall time  
triseCLK  
tfallCLK  
triseDIN  
tfallDIN  
2
2
2
2
6
6
6
6
ns  
ns  
ns  
ns  
AC-LINK POWERDOWN  
SLOT 1 SLOT 2  
SYNC  
BITCLK  
WRITE  
DATA PR4  
DON'T  
CARE  
TO 0X20  
SDATAOUT  
tS2_PDOWN  
SDATAIN  
Figure 12 AC-Link Powerdown Timing  
PD Rev 4.3 August 2006  
48  
w
Production Data  
WM9711L  
AC-Link powerdown occurs when PR4 (register 26h, bit 12) is set (see “Power Management”  
section).  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
End of Slot 2 to BITCLK and SDATAIN  
low  
tS2_PDOWN  
1.0  
µs  
COLD RESET (ASYNCHRONOUS, RESETS REGISTER SETTINGS)  
tRST_LOW  
tRST2CLK  
RESETB  
BITCLK  
Figure 13 Cold Reset Timing  
Note:  
For correct operation SDATAOUT and SYNC must be held LOW for entire RESETB active  
low period otherwise the device may enter test mode. See AC'97 specification or Wolfson  
applications note WAN104 for more details.  
PARAMETER  
SYMBOL  
tRST_LOW  
tRST2CLK  
MIN  
1.0  
TYP  
MAX  
UNIT  
µs  
RESETB active low pulse width  
RESETB inactive to BITCLK startup  
delay  
162.8  
ns  
WARM RESET (ASYNCHRONOUS, PRESERVES REGISTER SETTINGS)  
Figure 14 Warm Reset Timing  
PARAMETER  
SYMBOL  
tSYNC_HIGH  
tRST2CLK  
MIN  
TYP  
MAX  
UNIT  
µs  
SYNC active high pulse width  
1.3  
SYNC inactive to BITCLK startup  
delay  
162.4  
ns  
PD Rev 4.3 August 2006  
49  
w
WM9711L  
Production Data  
REGISTER MAP  
Note: Highlighted bits differ from the AC’97 specification (newly added for non-AC’97 function, or same bit used in a  
different way, or for another function)  
Reg  
Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
00h Reset  
0
SE4  
0
SE3  
SE2  
SE1  
SE0  
ID9  
ID8  
ID7  
ZC  
ZC  
ZC  
0
ID6  
INV  
0
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
6174h  
8000h  
8000h  
8000h  
0F0Fh  
AAA0h  
C008h  
6808h  
02h LOUT2/ROUT2 Volume  
04h Headphone Volume  
06h MONOOUT Volume  
08h DAC Tone Control  
0Ah PCBEEP Input  
MU  
MU  
MU  
BB  
LOUT2 Volume  
ROUT2 Volume  
0
HPOUTL Volume  
HPOUTR Volume  
0
0
0
0
0
0
0
0
0
0
MONOOUT Volume  
TRBL  
0
0
B2HVOL  
0
BC  
BASS  
DAT  
0
B2PVOL  
0
TC  
B2H  
P2H  
0
B2S  
0
B2SVOL  
0
B2P  
0
0
0
0
0
0Ch PHONE Volume  
0Eh MIC Volume  
P2S  
0
0
0
0
PHONEIN Volume  
M12P M22P  
LMICVOL (Left Only)  
LINEINLVOL  
20dB  
MS  
MICVOL (Mono /Right)  
10h LINEIN Volume  
12h AUXDAC Volume / Routing  
14h Sidetone Volume  
16h OUT3 Volume  
L2H  
A2H  
STM  
MU  
D2H  
0
L2S  
L2P  
A2HVOL  
STVOL  
0
0
0
A2PVOL  
0
LINEINRVOL  
E808h  
AAA0h  
AD00h  
8000h  
E808h  
3000h  
A2S  
ALCM  
A2SVOL  
A2P  
0
0
0
0
0
0
AXE  
0
ALCVOL  
SRC  
0
0
0
0
0
0
0
0
0
OUT3SRC  
Left DAC Volume  
R2P RECSL  
ZC  
0
OUT3 Volume  
Right DAC Volume  
18h DAC Volume  
D2S  
D2P  
0
0
1Ah Record Select  
BOOST  
R2P  
(Extended)  
0
0
RECSR  
RECVOLR  
BST  
1Ch Record Gain  
RMU  
GRL  
RECVOLL  
ZC  
LB  
0
GRR  
(Extended)  
8000h  
0000h  
0000h  
20h General Purpose  
22h DAC 3D Control  
0
0
0
0
3DE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3DLC 3DUC  
3DDEPTH  
24h Powerdown  
PD15  
EAPD  
PD14  
PR6  
PD13 PD12 PD11 PD10  
PR5 PR4 PR3 PR2  
PD9  
PR1  
PD8  
PR0  
PD7  
0
PD6  
0
PD5  
0
PD4  
0
PD3  
REF  
PD2  
ANL  
PD1  
DAC  
PD0  
ADC  
0000h  
26h Powerdown Ctrl/Stat  
Default for reg. 26h - pin 47 "low"  
Default for reg. 26h - pin 47 "high" during reset (recommended for lowest power)  
000Fh  
FFF0h  
0405h  
28h Extended Audio ID  
2Ah Ext’d Audio stst/ctrl  
ID1  
0
ID0  
0
0
0
0
0
REV1 REV0 AMAP LDAC SDAC CDAC  
0
0
VRM SPDIF DRA  
SEN  
VRA  
VRA  
0
SPCV  
0
0
0
0
SPSA  
0
0
0410h  
2Ch Audio DACs Sample Rate  
2Eh AUXDAC Sample Rate  
32h Audio ADCs Sample Rate  
3Ah SPDIF control  
DACSR (Audio DACs Sample Rate)  
BB80h  
BB80h  
BB80h  
2000h  
AUXDACSR (Auxiliary DAC Sample Rate)  
ADCSR (Audio ADCs Sample Rate)  
CC (Category Code)  
V
DRS  
SPSR  
L
PRE COPY AUD IB PRO  
4Ch GPIO Pin Configuration  
4Eh GPIO Pin Polarity / Type  
50h GPIO Pin Sticky  
1
1
1
1
0
0
0
1
1
1
0
0
0
1
1
TP  
0
1
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
GC5  
GP5  
GS5  
GC4  
GP4  
GS4  
GC3  
GP3  
GS3  
GC2  
GP2  
GS2  
GC1  
GP1  
GS1  
0
1
0
0
0
0
F83Eh  
FFFFh  
0000h  
C1P  
C1S  
C1W  
C1I  
C2P  
C2S  
C2W  
C2I  
TS  
0
52h GPIO Pin Wake-Up  
54h GPIO Pin Status  
TW  
TI  
0
GW5 GW4 GW3 GW2 GW1  
0000h  
0
GI5  
GE5  
0
GI4  
1
GI3  
1
GI2  
GI1  
1
GPIO pins  
F83Eh  
0008h  
56h GPIO Pin Assignment  
COM1 COM2  
COMP2DEL  
TCO  
JIF  
0
GE2  
58h GPIO pin sharing / Additional  
Functions  
JIEN  
SVD  
0
Die Revision WAKE IRQ  
EN INV  
5Ah Vendor Reserved  
RESERVED FOR TEST  
DS AM EN  
AMUTE  
C1 REF  
C2 REF  
5Ch Add. Function Control  
C2SRC  
C2SRC  
V (BIAS)  
AD CO HPF  
ENT  
ASS  
0000h  
5Eh Vendor Reserved  
60h ALC Control  
RESERVED FOR TEST  
ALCL (target level)  
ALCSEL MAXGAIN  
HLD (hold time)  
ZC TIMEOUT  
DCY (decay time)  
NGG  
ATK (attack time)  
NGTH (threshold)  
B032h  
3E00h  
62h ALC / Noise Gate Control  
ALC NG AT  
ZC  
0
64h AUXDAC input control  
XSLE  
AUXDACSLT  
AUXDAC VAL  
0000h  
N/A  
66h- Vendor Reserved  
7Ah  
RESERVED. DO NOT WRITE TO THESE REGISTERS  
7Ch Vendor ID1  
ASCII character “W”  
ASCII character “L”  
ASCII character “M”  
Number “12”  
574Dh  
4C12h  
7Eh Vendor ID2  
Table 35 WM9711L Register Map  
PD Rev 4.3 August 2006  
50  
w
Production Data  
WM9711L  
REGISTER BITS BY ADDRESS  
Register 00h is a read-only register. Writing any value to this register resets all registers to their default, but does not  
change the contents of reg. 00h. Reading the register reveals information about the codec to the driver, as required by the  
AC’97 Specification, Revision 2.2  
REG  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
ADDR  
00h  
14:10  
SE [4:0]  
ID9:6  
ID5  
11000  
Indicates a codec from Wolfson Microelectronics  
Intel’s AC’97  
Component  
Specification,  
Revision 2.2,  
page 50  
9:6  
5
0101  
Indicates 18 bits resolution for ADCs and DACs  
1
1
0
1
0
0
Indicates that the WM9711L supports bass boost  
4
ID4  
Indicates that the WM9711L has a headphone output  
Indicates that the WM9711L does not support simulated stereo  
Indicates that the WM9711L supports bass and treble control  
Indicates that the WM9711L does not support modem functions  
3
ID3  
2
ID2  
1
ID1  
0
ID0  
Indicates that the WM9711L does not have a dedicated microphone  
ADC  
Register 02h controls the output pins LOUT2 and ROUT2.  
REG  
ADDR  
BIT  
15  
LABEL  
DEFAULT  
1 (mute)  
DESCRIPTION  
Mutes LOUT2 and ROUT2.  
REFER TO  
02h  
MU  
Analogue  
Audio Outputs  
13:8  
7
LOUT2 VOL  
ZC  
000000 (0dB)  
0 (OFF)  
LOUT2 volume  
Enables zero-cross detector  
Inverts LOUT2 (for BTL speaker operation)  
ROUT2 volume  
6
INV  
0 (not inverted)  
000000 (0dB)  
5:0  
ROUT2 VOL  
Register 04h controls the headphone output pins, HPOUTL and HPOUTR.  
REG  
ADDR  
BIT  
15  
LABEL  
DEFAULT  
1 (mute)  
DESCRIPTION  
Mutes HPOUTL and HPOUTR.  
REFER TO  
04h  
MU  
Analogue  
Audio Outputs  
13:8  
7
HPOUTL VOL  
ZC  
000000 (0dB)  
0 (OFF)  
HPOUTL volume  
Enables zero-cross detector  
HPOUTR volume  
5:0  
HPOUTR VOL 000000 (0dB)  
Register 06h controls the analogue output pin MONOOUT.  
REG  
ADDR  
BIT  
15  
LABEL  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
06h  
MU  
ZC  
Mutes MONOOUT.  
Analogue  
Audio Outputs  
7
0 (OFF)  
Enables zero-cross detector  
MONOOUT volume  
5:0  
MONOOUT  
VOL  
000000 (0dB)  
PD Rev 4.3 August 2006  
51  
w
WM9711L  
Production Data  
Register 08h controls the bass and treble response of the left and right audio DAC (but not AUXDAC).  
REG  
ADDR  
BIT  
15  
LABEL  
DEFAULT  
0 (linear)  
DESCRIPTION  
REFER TO  
08h  
BB  
BC  
Selects linear bass control or adaptive bass boost  
Selects bass cut-off frequency  
Controls bass intensity  
Audio DACs,  
Tone Control /  
Bass Boost  
12  
11:8  
6
0 (low)  
BASS  
DAT  
TC  
1111 (OFF)  
0 (OFF)  
Enables 6dB pre-DAC attenuation  
Selects treble cut-off frequency  
Controls treble intensity  
4
0 (high)  
3:0  
TRBL  
1111 (OFF)  
Register 0Ah controls the analogue input pin PCBEEP.  
REG  
ADDR  
BIT  
15  
LABEL  
B2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
0Ah  
Mutes PCBEEP to headphone mixer path  
Controls gain of PCBEEP to headphone mixer path  
Mutes PCBEEP to speaker mixer path  
Analogue  
Inputs,  
PCBEEP Input  
14:12  
11  
B2HVOL  
B2S  
010 (0dB)  
1 (mute)  
10:8  
7
B2SVOL  
B2P  
010 (0dB)  
1 (mute)  
Controls gain of PCBEEP to speaker mixer path  
Mutes PCBEEP to phone mixer path  
6:4  
B2PVOL  
010 (0dB)  
Controls gain of PCBEEP to phone mixer path  
Register 0Ch controls the analogue input pin PHONE.  
REG  
ADDR  
BIT  
15  
LABEL  
P2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
0Ch  
Mutes PHONE to headphone mixer path  
Analogue  
Inputs,  
PHONE Input  
14  
P2S  
1 (mute)  
Mutes PHONE to speaker mixer path  
4:0  
PHONEVOL  
01000 (0dB)  
Controls PHONE input gain to all mixers (but not to ADC)  
Register 0Eh controls the analogue input pins MIC1 and MIC2.  
REG  
ADDR  
BIT  
14  
LABEL  
M12P  
DEFAULT  
1 (mute)  
DESCRIPTION  
Mutes MIC1 to phone mixer path  
REFER TO  
0Eh  
Analogue  
Inputs,  
Microphone  
Input  
13  
M22P  
LMICVOL  
20dB  
1 (mute)  
Mutes MIC2 to phone mixer path  
12:8  
7
01000 (0dB)  
0 (OFF)  
Controls volume of MIC1 (left), in stereo mode only  
Enables 20dB gain boost  
6:5  
MS  
00 (MIC1 only) Selects microphone mode. 00=MIC1 only, 01=differential,  
10=MIC2 only, 11=stereo  
4:0  
MICVOL  
01000 (0dB)  
Controls mic volume (except MIC1 in stereo mode)  
Register 10h controls the analogue input pins LINEINL and LINEINR.  
REG  
ADDR  
BIT  
15  
LABEL  
L2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
10h  
Mutes LINEIN to headphone mixer path  
Analogue  
Inputs, Line  
Input  
14  
L2S  
1 (mute)  
Mutes LINEIN to speaker mixer path  
13  
L2P  
1 (mute)  
Mutes LINEIN to phone mixer path  
12:8  
4:0  
LINEINLVOL  
LINEINRVOL  
01000 (0dB)  
01000 (0dB)  
Controls LINEINL input gain to all mixers (but not to ADC)  
Controls LINEINR input gain to all mixers (but not to ADC)  
PD Rev 4.3 August 2006  
52  
w
Production Data  
WM9711L  
Register 12h controls the output signal of the auxiliary DAC.  
REG  
ADDR  
BIT  
15  
LABEL  
A2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
12h  
Mutes AUXDAC to headphone mixer path  
Controls gain of AUXDAC to headphone mixer path  
Mutes AUXDAC to speaker mixer path  
Controls gain of AUXDAC to speaker mixer path  
Mutes AUXDAC to phone mixer path  
Controls gain of AUXDAC to phone mixer path  
Enables AUXDAC  
Auxiliary DAC  
14:12  
11  
A2HVOL  
A2S  
010 (0dB)  
1 (mute)  
010 (0dB)  
1 (mute)  
010 (0dB)  
0 (0FF)  
10:8  
7
A2SVOL  
A2P  
6:4  
0
A2PVOL  
AXE  
Register 14h controls the side tone paths.  
REG  
ADDR  
BIT  
15  
LABEL  
STM  
DEFAULT  
DESCRIPTION  
REFER TO  
14h  
1 (mute)  
010 (0dB)  
Mutes microphone to headphone mixer path  
Audio Mixers,  
Side Tone  
Control  
14:12  
11:10  
STVOL  
ALCM  
Controls gain of microphone to headphone mixer path  
11 (mute both) Selects ALC to headphone mixer path. 00=stereo,  
01=right only, 10=left only, 11=mute both left and right  
9:7  
ALCVOL  
010 (0dB)  
Controls gain of ALC to headphone mixer path  
Register 16h controls the analogue output pin OUT3, and also contains one control bit that affects LOUT2 and ROUT2.  
REG  
ADDR  
BIT  
15  
LABEL  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
16h  
MU  
Mutes OUT3.  
Analogue  
Audio Outputs  
10:9  
OUT3SRC  
00 (-HPOUTL)  
Selects source of OUT3 signal. 00=-HPOUTL, 01=VREF,  
10=HPOUTL+HPOUTR, 11=-MONOOUT  
8
SRC  
0 (spkr mix)  
Selects source of LOUT2 and ROUT2 signals. 0=from  
speaker mixer, 1=from headphone mixer  
7
ZC  
0 (disabled)  
Zero-cross enable  
OUT3 volume  
5:0  
OUT3VOL  
000000 (0dB)  
Register 18h controls the audio DACs (but not AUXDAC).  
REG  
ADDR  
BIT  
15  
LABEL  
D2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
18h  
Mutes DAC to headphone mixer path  
Mutes DAC to speaker mixer path  
Mutes DAC to phone mixer path  
Audio DACs  
14  
D2S  
1 (mute)  
13  
D2P  
1 (mute)  
12:8  
4:0  
LDACVOL  
RDACVOL  
01000 (0dB)  
01000 (0dB)  
Controls left DAC input gain to all mixers  
Controls right DAC input gain to all mixers  
Register 1Ah controls the record selector and the ADC to phone mixer path.  
REG  
ADDR  
BIT  
14  
LABEL  
BOOST  
DEFAULT  
0 (OFF)  
DESCRIPTION  
REFER TO  
1Ah  
Enables 20dB gain boost for recording  
Audio ADC,  
Record  
Selector  
13:12  
R2P  
11 (mute)  
Controls ADC to phone mixer path. 00=stereo, 01=left  
ADC only, 10=right ADC only, 11=mute left and right  
11  
R2PBST  
RECSL  
RECSR  
0 (OFF)  
Enables 20dB gain boost for ADC to phone mixer path  
Selects left ADC signal source  
10:8  
2:0  
000 (mic)  
000 (mic)  
Selects right ADC signal source  
PD Rev 4.3 August 2006  
53  
w
WM9711L  
Production Data  
Register 1Ch controls the recording gain.  
REG  
ADDR  
BIT  
15  
LABEL  
RMU  
DEFAULT  
1 (mute)  
DESCRIPTION  
Mutes audio ADC input  
REFER TO  
1Ch  
Audio ADC,  
Record Gain  
14  
GRL  
0 (standard)  
Selects gain range for PGA of left ADC. 0=0...+22.5dB in  
1.5dB steps, 1=-17.25...+30dB in 0.75dB steps  
13:8  
7
RECVOLL  
ZC  
000000 (0dB)  
0 (OFF)  
Controls left ADC recording volume  
Enables zero-cross detector  
6
GRR  
0 (standard)  
Selects gain range for PGA of left ADC. 0=0...+22.5dB in  
1.5dB steps, 1=-17.25...+30dB in 0.75dB steps  
5:0  
RECVOLR  
000000 (0dB)  
Controls right ADC recording volume  
Register 20h is a “general purpose” register as defined by the AC’97 specification. Only two bits are implemented in the  
WM9711L.  
REG  
ADDR  
BIT  
13  
LABEL  
3DE  
DEFAULT  
0 (OFF)  
DESCRIPTION  
Enables 3D enhancement  
REFER TO  
20h  
Audio DACs, 3D Stereo  
Enhancement  
7
LB  
0 (OFF)  
Enables loopback (i.e. feed ADC output data  
directly into DAC)  
Intel’s AC’97 Component  
Specification, Revision 2.2, page 55  
Register 22h controls 3D stereo enhancement for the audio DACs.  
REG  
ADDR  
BIT  
LABEL  
3DLC  
DEFAULT  
0 (low)  
DESCRIPTION  
Selects lower cut-off frequency  
REFER TO  
22h  
5
4
Audio DACs,  
3D Stereo  
Enhancement  
3DUC  
0 (high)  
Selects upper cut-off frequency  
Controls depth of 3D effect  
3:0  
3DDEPTH  
0000 (0%)  
Register 24h is for power management additional to the AC’97 specification. Note that the actual state of each circuit block  
depends on both register 24h AND register 26h.  
REG  
ADDR  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
Power  
24h  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
Disables Crystal Oscillator  
Disables left audio DAC  
Disables right audio DAC  
Disables left audio ADC  
Disables right audio ADC  
Disables MICBIAS  
Management  
14  
13  
12  
11  
10  
9
Disables left headphone mixer  
8
PD8  
Disables right headphone mixer  
7
PD7  
Disables speaker mixer  
6
PD6  
Disables MONO_OUT buffer (pin 33) and phone mixer  
Disables OUT3 buffer (pin 37)  
5
PD5  
4
PD4  
Disables headphone buffers (HPOUTL/R)  
Disables speaker outputs (LOUT2, ROUT2)  
Disables Line Input PGA (left and right)  
Disables Phone Input PGA  
3
PD3  
2
PD2  
1
PD1  
0
PD0  
Disables Mic Input PGA (left and right)  
* “0” corresponds to “ON”, if and only if the corresponding bit in register 26h is also 0.  
PD Rev 4.3 August 2006  
54  
w
Production Data  
WM9711L  
Register 26h is for power management according to the AC’97 specification. Note that the actual state of many circuit  
blocks depends on both register 24h AND register 26h.  
REG  
ADDR  
BIT  
14  
LABEL  
DEFAULT  
see note  
DESCRIPTION  
REFER TO  
26h  
PR6  
PR5  
PR4  
PR3  
PR2  
PR1  
PR0  
REF  
ANL  
DAC  
ADC  
Disables HPOUTL, HPOUTR and OUT3 Buffer  
Disables Internal Clock  
Power  
Management  
13  
12  
11  
10  
9
Disables AC-link interface (external clock off)  
Disables VREF, analogue mixers and outputs  
Disables analogue mixers, LOUT2, ROUT2 (but not VREF)  
Disables Stereo DAC and AUXDAC  
8
Disables audio ADCs and input Mux  
3
inverse of PR2  
inverse of PR3  
inverse of PR1  
inverse of PR0  
Read-only bit, Indicates VREF is ready  
2
Read-only bit, indicates analogue mixers are ready  
Read-only bit, indicates audio DACs are ready  
Read-only bit, indicates audio ADCs are ready  
1
0
Note: PR6 to PR0 default to 1 if pin 47 is held high during reset, otherwise they default to 0.  
Register 28h is a read-only register that indicates to the driver which advanced AC’97 features the WM9711L supports.  
REG  
ADDR  
BIT  
LABEL  
ID  
DEFAULT  
DESCRIPTION  
REFER TO  
28h  
15:14  
00  
Indicates that the WM9711L is configured as the primary codec in  
the system.  
Intel’s AC’97  
Component  
Specification,  
Revision 2.2,  
page 59  
11:10  
REV  
01  
0
Indicates that the WM9711L conforms to AC’97 Rev2.2  
Indicates that the WM9711L does not support slot mapping  
Indicates that the WM9711L does not have an LFE DAC  
Indicates that the WM9711L does not have Surround DACs  
Indicates that the WM9711L does not have a Centre DAC  
9
8
7
6
3
AMAP  
LDAC  
SDAC  
CDAC  
VRM  
0
0
0
0
Indicates that the WM9711L does not have a dedicated, variable  
rate microphone ADC  
2
1
0
SPDIF  
DRA  
1
0
1
Indicates that the WM9711L supports SPDIF output  
Indicates that the WM9711L does not support double rate audio  
Indicates that the WM9711L supports variable rate audio  
VRA  
Register 2Ah controls the SPDIF output and variable rate audio.  
REG  
ADDR  
BIT  
10  
LABEL  
SPCV  
DEFAULT  
1 (valid)  
DESCRIPTION  
SPDIF validity bit (read-only)  
REFER TO  
2Ah  
Digital Audio  
(SPDIF)  
Output  
5:4  
SPSA  
01 (slots 6, 9)  
Controls SPDIF slot assignment. 00=slots 3 and 4,  
01=6/9, 10=7/8, 11=10/11  
2
0
SEN  
VRA  
0 (OFF)  
0 (OFF)  
Enables SPDIF output enable  
Enables variable rate audio  
Registers 2Ch, 2Eh 32h and control the sample rates for the stereo DAC, auxiliary DAC and audio ADC, respectively.  
REG  
ADDR  
BIT  
all  
LABEL  
DACSR  
DEFAULT  
BB80h  
DESCRIPTION  
Controls stereo DAC sample rate  
REFER TO  
2Ch  
2Eh  
32h  
Variable Rate  
Audio /  
Sample Rate  
Conversion  
all  
all  
AUXDACSR  
ADCSR  
BB80h  
BB80h  
Controls auxiliary DAC sample rate  
Controls audio ADC sample rate  
Note: The VRA bit in register 2Ah must be set first to obtain sample rates other than 48kHz  
PD Rev 4.3 August 2006  
55  
w
WM9711L  
Production Data  
Register 3Ah controls the SPDIF output.  
REG  
ADDR  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
3Ah  
V
0
0
Validity bit; ‘0’ indicates frame valid, ‘1’ indicates frame not Digital Audio  
valid  
(SPDIF)  
Output  
14  
DRS  
Indicates that the WM9711L does not support double rate  
SPDIF output (read-only)  
13:12  
SPSR  
10  
Indicates that the WM9711L only supports 48kHz  
sampling on the SPDIF output (read-only)  
11  
10:4  
3
L
0
Generation level; programmed as required by user  
Category code; programmed as required by user  
CC  
PRE  
0000000  
0
Pre-emphasis; ‘0’ indicates no pre-emphasis, ‘1’ indicates  
50/15us pre-emphasis  
2
1
0
COPY  
AUDIB  
PRO  
0
0
0
Copyright; ‘0’ indicates copyright is not asserted, ‘1’  
indicates copyright  
Non-audio; ‘0’ indicates data is PCM, ‘1’ indicates non-  
PCM format (e.g. DD or DTS)  
Professional; ‘0’ indicates consumer, ‘1’ indicates  
professional  
Register 4Ch to 54h control the GPIO pins and virtual GPIO signals.  
REG  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER  
ADDR  
TO  
4Ch  
all 1 (all inputs)  
except unused  
bits  
Controls GPIO configuration as inputs or as outputs (note:  
virtual GPIOs can only be inputs)  
GPIO and  
Interrupt  
Control  
4Eh  
all 1  
Controls GPIO polarity (actual polarity depends on register  
4Ch AND register 4Eh)  
50h  
52h  
54h  
all 0 (not sticky)  
all 0 (OFF)  
Makes GPIO signals sticky  
Enables wake-up for each GPIO signal  
= status of GPIO GPIO pin status (read from inputs, write ‘0’ to clear sticky bits)  
inputs  
please  
refer to  
the  
register  
map  
15  
14  
Controls Comparator 1 signal (virtual GPIO)  
Controls Comparator 2 signal (virtual GPIO)  
Unused  
13-12  
11  
10-6  
5
Controls Thermal sensor signal (virtual GPIO)  
Unused  
Controls GPIO5 (pin 48)  
4
Controls GPIO4 (pin 47)  
3
Controls GPIO3 (pin 46)  
2
Controls GPIO2 (pin 45)  
1
Controls GPIO1 (pin 44)  
Register 56h controls the use of GPIO pins for non-GPIO functions.  
REG  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
ADDR  
56h  
5
2
GE5  
GE2  
1 (GPIO)  
1 (GPIO)  
Selects between GPIO5 and SPDIF_OUT function for pin 48  
Selects between GPIO2 and IRQ function for pin 45  
GPIO and  
Interrupt  
Control  
PD Rev 4.3 August 2006  
56  
w
Production Data  
WM9711L  
Register 58h controls several additional functions.  
REG  
ADDR  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
Battery Alarm  
58h  
15:13  
12  
COMP2DEL  
JIEN  
000 (no delay)  
Selects Comparator 2 delay  
Enables Jack Insert Detection  
Forces Jack Insert Detection  
0
Analogue Audio Outputs, Jack  
Insertion and Auto-Switching  
11  
FRC  
0
10  
SVD  
0 (enabled)  
Disables VREF for lowest possible power  
consumption  
Power Management  
3:2  
1
DIE REV  
WAKEEN  
IRQ INV  
Indicates device revision. 10=Rev.C  
N/A  
0 (no wake-up)  
0 (not inverted)  
Enables GPIO wake-up  
GPIO and Interrupt Control  
0
Inverts the IRQ signal (pin 45)  
Register 5Ch controls several additional functions.  
REG  
ADDR  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
5Ch  
AMUTE  
C1REF  
C1SRC  
C2REF  
C2SRC  
DS  
0
Read-only bit to indicate DAC auto-muting  
Selects Comparator 1 Reference Voltage  
Selects Comparator 1 Signal Source  
Selects Comparator 1 Reference Voltage  
Selects Comparator 1 Signal Source  
Audio DACs, Stereo DACs  
Battery Alarm  
14  
0 (AVDD/2)  
00 (OFF)  
0 (AVDD/2)  
00 (OFF)  
0
13:12  
11  
10:9  
8
Selects differential microphone input pins. 0=MIC1  
and MIC2, 1=LINEL and LINER  
Analogue Inputs,  
Microphone Input  
7
AMEN  
VBIAS  
0 (OFF)  
00  
Enables DAC Auto-Mute  
6:5  
Selects analogue bias for lowest power, depending  
on AVDD supply. 0X=3.3V, 10=2.5V, 11=1.8V  
Power Management  
4
ADCO  
0
Selects source of SPDIF data. 0=from SDATAOUT,  
1= from audio ADC  
Digital Audio (SPDIF)  
Output  
3
2
HPF  
ENT  
0
0
Disables ADC high-pass filter  
Enables thermal sensor  
Audio ADC  
Analogue Audio Outputs,  
Thermal Sensor  
1:0  
ASS  
00  
Selects time slots for stereo ADC data. 00=slots 3  
and 4, 01=7/8, 10=6/9, 11=10/11  
Audio ADC, ADC Slot  
Mapping  
Registers 60h and 62h control the ALC and Noise Gate functions.  
REG  
ADDR  
BIT  
LABEL  
ALCL  
DEFAULT  
DESCRIPTION  
Controls ALC threshold  
REFER TO  
60h  
15:12  
11:8  
7:4  
1011 (-12dB)  
0000 (0 ms)  
0011 (192 ms)  
0010 (24 ms)  
00 (OFF)  
Audio ADC,  
Automatic  
Level Control  
HLD  
Controls ALC hold time  
Controls ALC decay time  
Controls ALC attack time  
DCY  
3:0  
ATK  
62h  
15:14  
ALCSEL  
Controls which channel ALC operates on. 00=none,  
01=right only, 10=left only, 11=both  
13:11  
10:9  
8
MAXGAIN  
ZC TIMEOUT  
ALCZC  
111 (+30dB)  
11 (slowest)  
0 (OFF)  
Controls upper gain limit for ALC  
Controls time-out for zero-cross detection  
Enables zero-cross detection for ALC  
Enables noise gate function  
7
NGAT  
0 (OFF)  
5
NGG  
0 (hold gain)  
00000 (-76.5dB)  
Selects noise gate type. 0=hold gain, 1=mute  
Controls noise gate threshold  
4:0  
NGTH  
PD Rev 4.3 August 2006  
57  
w
WM9711L  
Production Data  
Register 64h controls the input signal of the auxiliary DAC.  
REG  
ADDR  
BIT  
15  
LABEL  
XSLE  
DEFAULT  
DESCRIPTION  
REFER TO  
64h  
0
Selects input for AUXDAC. 0=from AUXDACVAL (for DC  
signals), 1=from AC-Link slot (for AC signals)  
Auxiliary DAC  
14:12  
11:0  
AUXDACSLT  
AUXDACVAL  
000 (Slot 5)  
000000000  
Selects input slot for AUXDAC (with XSLE=1)  
AUXDAC Digital Input for AUXDAC (with XSLE=0). 000h=  
minimum, FFFh=full-scale  
Register 7Ch and 7Eh are read-only registers that indicate the identity of the device to the driver.  
REG  
ADDR  
BIT  
LABEL  
DEFAULT  
57h  
DESCRIPTION  
ASCII character “W” for Wolfson  
REFER TO  
7Ch  
7Eh  
15:8  
7:0  
F7:0  
Intel’s AC’97  
Component  
Specification,  
Revision 2.2,  
page 50  
S7:0  
4Dh  
4Ch  
12h  
ASCII character “M”  
ASCII character “L”  
Number 12  
15:8  
7:0  
T7:0  
REV7:0  
PD Rev 4.3 August 2006  
58  
w
Production Data  
WM9711L  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
Figure 15 External Components Diagram  
PD Rev 4.3 August 2006  
59  
w
WM9711L  
Production Data  
RECOMMENDED EXTERNAL COMPONENT VALUES  
COMPONENT  
REFERENCE  
SUGGESTED  
VALUE  
DESCRIPTION  
C1 - C6  
C7 - C8  
100nF  
10uF  
De-coupling for DBVDD,DCVDD,TPVDD,AVDD,SPKVDD,HPVDD  
Reservoir capacitor for DVDD, AVDD. Should the supplies use separate sources then  
additional capacitors will be required of each additional source.  
C9  
C10  
100nF  
10uF  
De-coupling for CAP2.  
Reservoir capacitor for CAP2  
C11  
100nF  
10uF  
De-coupling for VREF  
C12  
Reservoir capacitor for VREF  
C13  
100nF  
10uF  
De-coupling for MICBIAS - Not required if MICBIAS output is not used  
Reservoir capacitor for MICBIAS - Not required if MICBIAS output is not used  
Required when used with a parallel resonant crystal.  
AC coupling capacitors  
C14  
C27 and C28  
C15 - C20  
C21 - C23  
C24 - C26  
R1  
22pF  
1uF  
2.2uF  
Output AC coupling capacitors to remove VREF DC level from outputs  
Output AC coupling capacitors to remove VREF DC level from outputs.  
Pull-up resistor, ensures that all circuit blocks are OFF by default  
Pull down resistor, ensures that all circuit blocks are ON by default  
220µF  
100kΩ  
100kΩ  
24.576MHz  
R2  
XT  
AC'97 master clock frequency. A bias resistor is not required but if connected will not  
affect operation if the value is large (above 1M)  
Table 36 External Components Descriptions  
Note:  
1. For Capacitors C7, C8, C10, C12 and C14 it is recommended that very low ESR components are used.  
LINE OUTPUT  
The headphone outputs, HPOUTL and HPOUTR, can be used as stereo line outputs. The speaker  
outputs, LOUT2 and ROUT2, can also be used as line outputs, if ROUT2 is not inverted for BTL  
operation (INV = 0). Recommended external components are shown below.  
C1  
R1  
1uF  
100 Ohm  
HPOUTL /  
LOUT2  
LINE-OUT SOCKET  
(LEFT)  
HPGND  
HPGND  
WM9711L  
HPOUTR /  
ROUT2  
LINE-OUT SOCKET  
(RIGHT)  
C2  
1uF  
R2  
100 Ohm  
Figure 16 Recommended Circuit for Line Output  
The DC blocking capacitors and the load resistance together determine the lower cut-off frequency,  
fc. Assuming a 10 kload and C1, C2 = 10µF:  
fc = 1 / 2π (RL+R1) C1 = 1 / (2π x 10.1kx 1µF) = 16 Hz  
Increasing the capacitance lowers fc, improving the bass response. Smaller values of C1 and C2 will  
diminish the bass response. The function of R1 and R2 is to protect the line outputs from damage  
when used improperly.  
PD Rev 4.3 August 2006  
60  
w
Production Data  
WM9711L  
AC-COUPLED HEADPHONE OUTPUT  
The circuit diagram below shows how to connect a stereo headphone to the WM9711L.  
C1 220uF  
HPOUTL  
HPOUTR  
WM9711L  
C2 220uF  
HPGND = 0V  
Figure 17 Simple Headphone Output Circuit Diagram  
The DC blocking capacitors C1 and C2 together with the load resistance determine the lower cut-off  
frequency, fc. Increasing the capacitance lowers fc, improving the bass response. Smaller  
capacitance values will diminish the bass response. For example, with a 16load and C1 = 220µF:  
fc = 1 / 2π RLC1 = 1 / (2π x 16x 220µF) = 45 Hz  
DC COUPLED (CAPLESS) HEADPHONE OUTPUT  
In the interest of saving board space and cost, it may be desirable to eliminate the 220µF DC  
blocking capacitors. This can be achieved by using OUT3 as a headphone pseudo-ground, as shown  
below.  
HPOUTL  
WM9711L  
HPOUTR  
OUT3 = AVDD/2  
Figure 18 Capless Headphone Output Circuit Diagram (OUT3SRC = 10)  
As the OUT3 pin produces  
a DC voltage of AVDD/2, there is no DC offset between  
HPOUTL/HPOUTR and OUT3, and therefore no DC blocking capacitors are required. However, this  
configuration has some drawbacks:  
The power consumption of the WM9711L is increased, due to the additional power  
consumed in the OUT3 output buffer.  
If the DC coupled output is connected to the line-in of a grounded piece of equipment,  
then OUT3 becomes short-circuited. Although the built-in short circuit protection will  
prevent any damage to the WM9711L, the audio signal will not be transmitted properly.  
OUT3 cannot be used for another purpose  
PD Rev 4.3 August 2006  
61  
w
WM9711L  
Production Data  
BTL SPEAKER OUTPUT  
LOUT2 and ROUT2 can differentially drive a mono 8speaker as shown below.  
LOUT2  
Stereo: VSPKR = L-(-R) = L+R  
Mono: VSPKR = M-(-M) = 2M  
LOUT2VOL  
ROUT2VOL  
WM9711L  
INV = 1  
-1  
ROUT2  
Figure 19 Speaker Output Connection (INV = 1)  
The right channel is inverted by setting the INV bit, so that the signal across the loudspeaker is the  
sum of left and right channels.  
COMBINED HEADSET / BTL EAR SPEAKER  
In smartphone applications with a loudspeaker and separate ear speaker (receiver), a BTL ear  
speaker can be connected at the OUT3 pin, as shown below.  
OUT3  
BTL ear  
speaker  
HPOUTL  
WM9711L  
HPOUTR  
HPGND = 0V  
Figure 20 Combined Headset / BTL Ear Speaker (OUT3SRC = 00)  
The ear speaker and the headset play the same signal. Whenever the headset is plugged in, the  
headphone outputs are enabled and OUT3 disabled. When the headset is not plugged in, OUT3 is  
enabled (see “Jack Insertion and Auto-Switching”).  
COMBINED HEADSET / SINGLE-ENDED EAR SPEAKER  
Instead of a BTL ear speaker, a single-ended ear speaker can also be used, as shown below.  
OUT3  
ear speaker  
(single-ended)  
HPOUTL  
WM9711L  
HPOUTR  
HPGND = 0V  
Figure 21 Combined Headset / Single-ended Ear Speaker (OUT3SRC = 01)  
PD Rev 4.3 August 2006  
62  
w
Production Data  
WM9711L  
JACK INSERT DETECTION  
The circuit diagram below shows how to detect when a headphone or headset has been plugged into  
the headphone socket. It generates an interrupt, instructing the controller to enable HPOUTL and  
HPOUTR and disable OUT3.  
-
-
HPOUTR  
HPOUTL  
L
R
interrupt  
logic  
GPIO  
switch closes  
on insertion  
Figure 22 Jack Insert Detection Circuit  
The circuit requires a headphone socket with a switch that closes on insertion. It detects both  
headphones and phone headsets. Any GPIO pin can be used, provided that it is configured as an  
input.  
HOOKSWITCH DETECTION  
The circuit diagram below shows how to detect when the “hookswitch” of a phone headset is pressed  
(pressing the hookswitch is equivalent to lifting the receiver in a stationary telephone).  
-
-
HPOUTR  
HPOUTL  
AGND  
WM9711L  
L
R
MICL/MICR  
GPIO  
HOOK  
SWITCH  
MIC  
interrupt  
logic  
MICBIAS  
47  
680Ω − 2.2k  
PHONE HEADSET  
Figure 23 Hookswitch Detection Circuit  
The circuit uses a GPIO pin as a sense input. The impedance of the microphone and the resistor in  
the MICBIAS path must be such that the potential at the GPIO pin is above 0.7×DBVDD when the  
hookswitch is open, and below 0.3×DBVDD when it is closed.  
PD Rev 4.3 August 2006  
63  
w
WM9711L  
Production Data  
PACKAGE DRAWING  
DM029.E  
FL: 48 PIN QFN PLASTIC PACKAGE 7 X 7 X 0.9 mm BODY, 0.50 mm LEAD PITCH  
D2  
SEE DETAIL 1  
D
D2/2  
48  
37  
L
INDEX AREA  
(D/2 X E/2)  
36  
1
EXPOSED  
GROUND  
PADDLE  
6
E2/2  
E2  
E
SEE DETAIL 2  
25  
12  
aaa  
C
2 X  
2 X  
24  
13  
b
aaa  
C
TOP VIEW  
e
BOTTOM VIEW  
ccc  
C
(A3)  
A
0.08 C  
A1  
SIDE VIEW  
SEATING PLANE  
DETAIL 1  
C
DETAIL 2  
DETAIL 3  
Terminal  
tip  
R = 0.3MM  
Datum  
W
e/2  
T
EXPOSED  
(A3)  
GROUND  
PADDLE  
G
e
H
b
R
Exposed lead  
Half etch tie bar  
DETAIL 3  
Symbols  
Dimensions (mm)  
MIN  
0.80  
0
NOM  
0.90  
MAX  
1.00  
0.05  
NOTE  
A
A1  
A3  
b
0.02  
0.20 REF  
0.25  
0.18  
5.00  
5.00  
0.30  
5.25  
5.25  
1
D
7.00 BSC  
5.15  
D2  
E
7.00 BSC  
5.15  
E2  
e
0.5 BSC  
0.213  
G
H
L
0.1  
0.50  
0.30  
0.4  
0.1  
0.2  
T
W
Tolerances of Form and Position  
aaa  
bbb  
ccc  
REF  
0.15  
0.10  
0.10  
JEDEC, MO-220, VARIATION VKKD-2  
NOTES:  
1. DIMENSION b APPLIED TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 mm AND 0.30 mm FROM TERMINAL TIP.  
2. ALL DIMENSIONS ARE IN MILLIMETRES  
3. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-002.  
4. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
5. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
6. REFER TO APPLICATION NOTE WAN_0118 FOR FURTHER INFORMATION REGARDING PCB FOOTPRINTS AND QFN PACKAGE SOLDERING.  
PD Rev 4.3 August 2006  
64  
w
Production Data  
WM9711L  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (“Wolfson”) products and services are sold subject to Wolfson’s terms and conditions of sale,  
delivery and payment supplied at the time of order acknowledgement.  
Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the  
right to make changes to its products and specifications or to discontinue any product or service without notice. Customers  
should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.  
Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty.  
Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.  
In order to minimise risks associated with customer applications, the customer must use adequate design and operating  
safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer  
product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for  
such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.  
Wolfson’s products are not intended for use in life support systems, appliances, nuclear systems or systems where  
malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage.  
Any use of products by the customer for such purposes is at the customer’s own risk.  
Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other  
intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or  
services might be or are used. Any provision or publication of any third party’s products or services does not constitute  
Wolfson’s approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document  
belong to the respective third party owner.  
Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is  
accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is  
not liable for any unauthorised alteration of such information or for any reliance placed thereon.  
Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in  
this datasheet or in Wolfson’s standard terms and conditions of sale, delivery and payment are made, given and/or  
accepted at that person’s own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any  
reliance placed thereon by any person.  
ADDRESS:  
Wolfson Microelectronics plc  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PD Rev 4.3 August 2006  
65  
w

相关型号:

WM9712CLGEFL/RV

AC’97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM9712CLGEFL/V

AC’97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM9712L

AC97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM9712LEFL

AC97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM9712LEFL/RV

AC97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM9712LEFL/V

AC97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM9712LEFT

AC97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM9712LEFT/RV

AC97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM9712LEFT/V

PCM Codec

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CIRRUS

WM9712LEFV

AC97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM9712LGEFL/RV

AC97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM9712LGEFL/V

AC97 Audio and Touchpanel CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON