X2804CPI-90 [XICOR]

5 Volt, Byte Alterable E2PROM; 5伏,可变的字节E2PROM
X2804CPI-90
型号: X2804CPI-90
厂家: XICOR INC.    XICOR INC.
描述:

5 Volt, Byte Alterable E2PROM
5伏,可变的字节E2PROM

可编程只读存储器
文件: 总13页 (文件大小:57K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4K  
X2804C  
5 Volt, Byte Alterable E2PROM  
DESCRIPTION  
512 x 8 Bit  
FEATURES  
2
The Xicor X2804C is a 512 x 8 E PROM, fabricated with  
anadvanced, highperformanceN-channelfloatinggate  
MOS technology. Like all Xicor Programmable nonvola-  
tile memories it is a 5V only device. The X2804C  
features the JEDEC approved pinout for byte-wide  
memories, compatible with industry standard RAMs,  
ROMs and EPROMs.  
90ns Access Time  
Simple Byte and Page Write  
—Single 5V Supply  
—No External High Voltages or VPP Control  
Circuits  
—Self-Timed  
—No Erase Before Write  
—No Complex Programming Algorithms  
—No Overerase Problem  
High Performance Advanced NMOS Technology  
Fast Write Cycle Times  
—16 Byte Page Write Operation  
—Byte or Page Write Cycle: 5ms Typical  
—Complete Memory Rewrite: 640ms Typical  
—Effective Byte Write Cycle Time: 300µs  
Typical  
The X2804C supports a 16-byte page write operation,  
typicallyprovidinga300µs/bytewritecycle,enablingthe  
entire memory to be written in less than 640ms. The  
X2804C also features DATA Polling, a system software  
support scheme used to indicate the early completion of  
a write cycle.  
2
Xicor E PROMs are designed and tested for applica-  
tions requiring extended endurance. Inherent data re-  
tention is greater than 100 years.  
DATA Polling  
—Allows User to Minimize Write Cycle Time  
JEDEC Approved Byte-Wide Pinout  
High Reliability  
—Endurance: 10,000 Cycles  
—Data Retention: 100 Years  
PIN CONFIGURATION  
PLASTIC DIP  
A
A
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
A
7
6
5
4
3
2
1
0
0
1
2
CC  
8
2
A
3
NC  
A
4
WE  
A
5
OE  
NC  
A
6
X2804C  
A
7
CE  
I/O  
A
8
7
I/O  
I/O  
I/O  
V
9
I/O  
I/O  
I/0  
6
5
10  
11  
12  
4
I/O  
SS  
3
6612 FHD F02.1  
©Xicor, Inc. 1993, 1995 Patents Pending  
6612-1.3 3/27/96 T2/C1/D1 NS  
Characteristics subject to change without notice  
1
X2804C  
PIN DESCRIPTIONS  
PIN NAMES  
Symbol  
Addresses (A –A )  
Description  
0
8
The Address inputs select an 8-bit memory location  
during a read or write operation.  
A –A  
Address Inputs  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
0
8
I/O –I/O  
0
7
WE  
CE  
OE  
Chip Enable (CE)  
The Chip Enable input must be LOW to enable all  
read/write operations. When CE is HIGH, power con-  
sumption is reduced.  
V
CC  
V
Ground  
SS  
Output Enable (OE)  
NC  
No Connect  
TheOutputEnableinputcontrolsthedataoutputbuffers  
and is used to initiate read operations.  
6612 PGM T01  
FUNCTIONAL DIAGRAM  
4.096-BIT  
E PROM  
ARRAY  
X BUFFERS  
LATCHES AND  
DECODER  
2
A –A  
0
8
ADDRESS  
INPUTS  
I/O BUFFERS  
AND LATCHES  
Y BUFFERS  
LATCHES AND  
DECODER  
I/O –I/O  
DATA INPUTS/OUTPUTS  
0
7
CE  
OE  
WE  
CONTROL  
LOGIC  
V
CC  
V
6612 FHD F01  
SS  
2
X2804C  
DEVICE OPERATION  
Read  
byte load cycle, started by the WE HIGH to LOW  
transition, must begin within 20µs of the falling edge of  
the preceding WE. If a subsequent WE HIGH to LOW  
transition is not detected within 20µs, the internal auto-  
matic programming cycle will commence. There is no  
page write window limitation. The page write window is  
infinitely wide, so long as the host continues to access  
the device within the byte load cycle time of 20µs.  
Read operations are initiated by both OE and CE LOW  
and WE HIGH. The read operation is terminated by  
either CE or OE returning HIGH. This two line control  
architecture eliminates bus contention in a system envi-  
ronment. The data bus will be in a high impedance state  
when either OE or CE is HIGH.  
DATA Polling  
Write  
The X2804C features DATA Polling as a method to  
indicate to the host system that the byte write or page  
writecyclehascompleted.DATAPollingallowsasimple  
bit test operation to determine the status of the X2804C,  
eliminating additional interrupt inputs or external hard-  
ware. During the internal programming cycle, any at-  
tempt to read the last byte written will produce the  
Write operations are initiated when bothCE and WE are  
LOW and OE is HIGH. The X2804C supports both a CE  
and WE controlled write cycle. That is, the address is  
latchedbythefallingedgeofeitherCEorWE,whichever  
occurslast. Similarly, thedataislatchedinternallybythe  
rising edge of either CE or WE, whichever occurs first.  
A byte write operation, once initiated, will automatically  
continue to completion, typically within 5ms.  
complement of that data on I/O (i.e., write data = 0xxx  
7
xxxx, read data = 1xxx xxxx). Once the programming  
cycle is complete, I/O will reflect true data.  
7
Page Write Operation  
WRITE PROTECTION  
The page write feature of the X2804C allows the entire  
memory to be typically written in 450ms. Page write  
allows two to sixteen bytes of data to be consecutively  
written to the X2804C prior to the commencement of the  
internal programming cycle. Although the host system  
may read data from any other device in the system to  
transfer to the X2804C, the destination page address of  
the X2804C should be the same on each subsequent  
Therearethreefeaturesthatprotectthenonvolatiledata  
from inadvertent writes.  
• Noise Protection—A WE pulse which is typically  
less than 10ns will not initiate a write cycle.  
• V Sense—All functions are inhibited when V is  
CC  
CC  
3V, typically.  
• Write Inhibit—Holding either OE LOW, WE HIGH,  
or CE HIGH during power-up and power-down, will  
inhibit inadvertent writes. Write cycle timing specifi-  
cations must be observed concurrently.  
strobe of the WE and CE inputs. That is, A through A  
must be the same for each transfer of data to the  
X2804C during a page write cycle.  
4
10  
The page write mode can be entered during any write  
operation. Following the initial byte write cycle, the host  
can write an additional one to fifteen bytes in the same  
manner as the first byte was written. Each successive  
ENDURANCE  
2
Xicor E PROMs are designed and tested for applica-  
tions requiring extended endurance.  
3
X2804C  
SYSTEM CONSIDERATIONS  
prime concern. Enabling CE will cause transient current  
spikes. The magnitude of these spikes is dependent on  
the output capacitive loading of the l/Os. Therefore, the  
larger the array sharing a common bus, the larger the  
transient spikes. The voltage peaks associated with the  
current transients can be suppressed by the proper  
selection and placement of decoupling capacitors. As a  
minimum, it is recommended that a 0.1µF high fre-  
BecausetheX2804Cisfrequentlyusedinlargememory  
arrays, it is provided with a two line control architecture  
for both read and write operations. Proper usage can  
provide the lowest possible power dissipation and elimi-  
nate the possibility of contention where multiple I/O pins  
share the same bus.  
quency ceramic capacitor be used between V  
and  
To gain the most benefit, it is recommended that CE be  
decoded from the address bus and be used as the  
primary device selection input. Both OE and WE would  
then be common among all devices in the array. For a  
read operation this assures that all deselected devices  
are in their standby mode and that only the selected  
device(s) is outputting data on the bus.  
CC  
V
SS  
at each device. Depending on the size of the array,  
the value of the capacitor may have to be larger.  
In addition, it is recommended that a 4.7µF electrolytic  
bulk capacitor be placed between V and V for each  
CC  
SS  
eight devices employed in the array. This bulk capacitor  
is employed to overcome the voltage droop caused by  
the inductive effects of the PC board traces.  
Because the X2804C has two power modes, standby  
and active, proper decoupling of the memory array is of  
4
X2804C  
ABSOLUTE MAXIMUM RATINGS*  
*COMMENT  
Temperature under Bias  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and the functional operation of  
the device at these or any other conditions above those  
indicatedintheoperationalsectionsofthisspecificationis  
not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
X2804C....................................... –10°C to +85°C  
X2804CI..................................... –65°C to +135°C  
Storage Temperature ....................... –65°C to +150°C  
Voltage on any Pin with  
Respect to V  
.................................. –1V to +7V  
SS  
D.C. Output Current ............................................. 5mA  
Lead Temperature (Soldering, 10 seconds)...... 300°C  
RECOMMENDED OPERATING CONDITIONS  
Temperature  
Min.  
Max.  
Supply Voltage  
Limits  
Commercial  
Industrial  
0°C  
+70°C  
X2804C  
5V ±10%  
6612 PGM T03  
–40°C  
+85°C  
6612 PGM T02.2  
D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)  
Limits  
(1)  
Symbol  
Parameter  
Min. Typ.  
Max.  
Units  
Test Conditions  
I
V
V
Current (Active)  
70  
110  
mA  
CE = OE = V  
CC  
CC  
IL  
All I/O’s = Open  
Other Inputs = V  
CC  
I
SB  
Current (Standby)  
35  
50  
mA  
CE = V , OE = V  
CC  
IH  
IL  
All I/O’s = Open  
Other Inputs = V  
CC  
I
I
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
10  
10  
µA  
µA  
V
V
V
= V to V  
SS CC  
LI  
IN  
= V to V , CE = V  
LO  
OUT  
SS  
CC  
IH  
(2)  
V
V
V
V
–1  
2
0.8  
lL  
(2)  
Input HIGH Voltage  
Output LOW Voltage  
Output HIGH Voltage  
V
+1  
V
IH  
CC  
0.4  
V
I
I
= 2.1mA  
OL  
OH  
OL  
2.4  
V
= –400µA  
OH  
6612 PGM T02.1  
Notes: (1) Typical values are for T = 25°C and nominal supply voltage and are not tested.  
A
(2) V min. and V max. are for reference only and are not tested.  
IL IH  
5
X2804C  
ENDURANCE AND DATA RETENTION  
Parameter  
Min.  
Max.  
Unit  
Minimum Endurance  
Data Retention  
10,000  
100  
Cycles/Byte  
Years  
6612 PGM T03  
POWER-UP TIMING  
(1)  
Typ.  
Symbol  
Parameter  
Units  
(3)  
t
t
Power-Up to Read Operation  
Power-Up to Write Operation  
1
5
ms  
ms  
PUR  
(3)  
PUW  
6612 PGM T04  
CAPACITANCE T = +25°C, f = 1MHz, V = 5V  
A
CC  
Symbol  
Test  
Max.  
Units  
Conditions  
(3)  
C
C
Input/Output Capacitance  
Input Capacitance  
10  
6
pF  
pF  
V
= 0V  
= 0V  
I/O  
I/O  
(3)  
IN  
V
IN  
6612 PGM T05.1  
A.C. CONDITIONS OF TEST  
MODE SELECTION  
Input Pulse Levels  
0V to 3V  
CE  
OE  
WE  
Mode  
I/O  
Power  
Input Rise and  
Fall Times  
L
L
L
H
X
L
H
L
Read  
Write  
D
D
Active  
Active  
OUT  
5ns  
IN  
Input and Output  
Timing Levels  
H
X
X
X
X
H
Standby and Write Inhibit  
Write Inhibit  
High Z Standby  
1.5V  
3852 PGM T06.1  
X
Write Inhibit  
6612 PGM T07  
Note: (3) This parameter is periodically sampled and not 100% tested.  
EQUIVALENT A.C. LOAD CIRCUITS  
5V  
1.92KΩ  
OUTPUT  
1.37KΩ  
100pF  
6612 FHD F22.3  
6
X2804C  
A.C. CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)  
Read Cycle Limits  
X2804C-90 X2804C-15  
X2804C-20  
X2804C-25  
Symbol  
Parameter  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
t
t
t
t
t
t
t
t
t
Read Cycle Time  
90  
150  
200  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
CE  
AA  
OE  
Chip Enable Access Time  
Address Access Time  
90  
90  
60  
150  
150  
80  
200  
200  
100  
250  
250  
100  
Output Enable Access Time  
CE LOW to Active Output  
OE LOW to Active Output  
CE HIGH to High Z Output  
OE HIGH to High Z Output  
(4)  
0
0
0
0
0
0
0
0
LZ  
(4)  
OLZ  
(4)  
50  
50  
60  
60  
60  
60  
60  
60  
HZ  
(4)  
OHZ  
OH  
Output Hold from  
Address Change  
0
0
0
0
6612 PGM T10.1  
Read Cycle  
t
RC  
ADDRESS  
CE  
t
CE  
t
OE  
OE  
V
IH  
WE  
t
t
OLZ  
OHZ  
t
t
t
LZ  
OH  
HZ  
HIGH Z  
DATA I/O  
DATA VALID  
DATA VALID  
t
AA  
6612 FHD F04  
Notes: (4) t min., t , t  
LZ HZ OLZ  
, and t  
OHZ  
are periodically sampled and not 100% tested. t max. and t max. are measured from the  
HZ OHZ  
point when CE or OE return HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
7
X2804C  
Write Cycle Limits  
X2804C-90  
X2804C-15,-20,-25  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Units  
(5)  
t
Write Cycle Time  
Address Setup Time  
Address Hold Time  
Write Setup Time  
Write Hold Time  
CE Pulse Width  
OE HIGH Setup Time  
OE HIGH Hold Time  
WE Pulse Width  
WE HIGH Recovery  
Data Valid  
10  
10  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
WC  
t
5
80  
0
5
100  
0
AS  
AH  
CS  
CH  
t
t
t
0
0
t
80  
10  
5
100  
10  
10  
100  
50  
CW  
t
OES  
t
OEH  
t
80  
50  
WP  
t
WPH  
t
t
100  
100  
100  
100  
DV  
DS  
DH  
Data Setup  
35  
5
50  
10  
10  
1
t
Data Hold  
t
Delay to Next Write  
Byte Load Cycle  
10  
1
DW  
t
µs  
BLC  
6612 PGM T09.1  
WE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AS  
AH  
t
t
CS  
CH  
CE  
OE  
t
t
OES  
t
OEH  
t
WP  
WE  
DV  
DATA IN  
DATA OUT  
DATA VALID  
DS  
t
t
DH  
HIGH Z  
6612 FHD F05  
Notes: (5) t  
WC  
is the minimum cycle time to be allowed from the system perspective unless polling techniques are used. It is the maximum  
time the device requires to automatically complete the internal write operation. For faster t , please refer to X28C16 and  
WC  
X28HC16 product data sheets.  
8
X2804C  
CE Controlled Write Cycle  
ADDRESS  
t
WC  
t
t
AS  
AH  
t
CW  
CE  
t
OES  
OE  
t
OEH  
t
t
CS  
CH  
WE  
t
DV  
DATA IN  
DATA VALID  
t
t
DS  
HIGH Z  
DH  
DATA OUT  
6612 FHD F06  
Page Mode Write Cycle  
(6)  
OE  
CE  
t
t
BLC  
WP  
WE  
(7)  
t
WPH  
ADDR.*  
I/O  
LAST BYTE  
BYTE n+2  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE n  
BYTE n+1  
t
WC  
*For each successive write within the page write operation, A –A should be the same or  
10  
4
writes to an unknown address could occur.  
6612 FHD F07.1  
Notes: (6) Between successive byte writes within a page write operation, OE can be strobed LOW: e.g. this can be done with CE and WE  
HIGH to fetch data from another memory device within the system for the next write; or with WE HIGH and CE LOW effectively  
performing a polling operation.  
(7) The timings shown above are unique to page write operations. Individual byte load operations within the page write must conform  
to either the CE or WE controlled write cycle timing.  
9
X2804C  
DATA Polling Timing Diagram(10)  
ADDRESS  
CE  
An  
An  
An  
WE  
t
t
OEH  
OES  
OE  
t
DW  
=X  
D
=X  
D
=X  
D
I/O  
7
IN  
OUT  
OUT  
t
WC  
6612 FHD F08  
Note: (10) Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
10  
X2804C  
Normalized Active Supply Current  
vs. Ambient Temperature  
Normalized Standby Supply Current  
vs. Ambient Temperature  
1.4  
1.4  
V
= 5V  
V
= 5V  
CC  
CC  
1.2  
1.0  
0.8  
0.6  
1.2  
1.0  
0.8  
0.6  
–55  
+25  
+125  
–55  
+25  
+125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
6612 FHD F09.1  
6612 FHD F10.1  
Normalized Access Time  
vs. Ambient Temperature  
1.4  
1.2  
1.0  
0.8  
0.6  
V
= 5V  
CC  
–55  
+25  
+125  
AMBIENT TEMPERATURE (°C)  
6612 FHD F11.1  
11  
X2804C  
PACKAGING INFORMATION  
24-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P  
1.265 (32.13)  
1.230 (31.24)  
0.557 (14.15)  
0.530 (13.46)  
PIN 1 INDEX  
PIN 1  
0.080 (2.03)  
0.065 (1.65)  
1.100 (27.94)  
REF.  
0.162 (4.11)  
0.140 (3.56)  
SEATING  
PLANE  
0.030 (0.76)  
0.015 (0.38)  
0.150 (3.81)  
0.125 (3.18)  
0.110 (2.79)  
0.090 (2.29)  
0.065 (1.65)  
0.040 (1.02)  
0.022 (0.56)  
0.014 (0.36)  
0.625 (15.87)  
0.600 (15.24)  
0°  
TYP. 0.010 (0.25)  
15°  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH  
3926 FHD F03  
12  
X2804C  
ORDERING INFORMATION  
X2804C  
X
X
-X  
Access Time  
–90 = 90ns  
Device  
–15 = 150ns  
–20 = 200ns  
–25 = 250ns  
Temperature Range  
Blank = Commercial = 0°C to +70°C  
I = Industrial = –40°C to +85°C  
Package  
P = 24-Lead Plastic DIP  
13  

相关型号:

X2816AD

EEPROM, 2KX8, 300ns, Parallel, NMOS, CDIP24, HERMETIC SEALED, CERDIP-24
XICOR

X2816AD-25

EEPROM, 2KX8, 250ns, Parallel, NMOS, CDIP24, HERMETIC SEALED, CERDIP-24
XICOR

X2816AD-45

EEPROM, 2KX8, 450ns, Parallel, NMOS, CDIP24, HERMETIC SEALED, CERDIP-24
XICOR

X2816ADI

EEPROM, 2KX8, 300ns, Parallel, NMOS, CDIP24, HERMETIC SEALED, CERDIP-24
XICOR

X2816ADI-25

EEPROM, 2KX8, 250ns, Parallel, NMOS, CDIP24, HERMETIC SEALED, CERDIP-24
XICOR

X2816ADI-35

x8 EEPROM
ETC

X2816ADI-45

x8 EEPROM
ETC

X2816ADM

EEPROM, 2KX8, 300ns, Parallel, NMOS, CDIP24, HERMETIC SEALED, CERDIP-24
XICOR

X2816ADM-35

x8 EEPROM
ETC

X2816ADM-45

x8 EEPROM
ETC

X2816ADMB

EEPROM, 2KX8, 300ns, Parallel, MOS, CDIP24,
XICOR

X2816ADMB-25

EEPROM, 2KX8, 250ns, Parallel, MOS, CDIP24,
XICOR