X28C513JM-15 [XICOR]

5 Volt, Byte Alterable E2PROM; 5伏,可变的字节E2PROM
X28C513JM-15
型号: X28C513JM-15
厂家: XICOR INC.    XICOR INC.
描述:

5 Volt, Byte Alterable E2PROM
5伏,可变的字节E2PROM

存储 内存集成电路 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总25页 (文件大小:127K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
512K  
X28C512/X28C513  
64K x 8 Bit  
5 Volt, Byte Alterable E2PROM  
FEATURES  
Two PLCC and LCC Pinouts  
—X28C512  
—X28C010 E PROM Pin Compatible  
—X28C513  
Access Time: 90ns  
2
Simple Byte and Page Write  
—Single 5V Supply  
2
—Compatible with Lower Density E PROMs  
— No External High Voltages or V Control  
PP  
Circuits  
—Self-Timed  
DESCRIPTION  
2
The X28C512/513 is an 64K x 8 E PROM, fabricated  
—No Erase Before Write  
—No Complex Programming Algorithms  
—No Overerase Problem  
Low Power CMOS:  
with Xicor’s proprietary, high performance, floating gate  
CMOS technology. Like all Xicor programmable non-  
volatile memories the X28C512/513 is a 5V only device.  
TheX28C512/513featurestheJEDECapprovedpinout  
for bytewide memories, compatible with industry stan-  
dard EPROMS.  
—Active: 50mA  
—Standby: 500µA  
Software Data Protection  
—Protects Data Against System Level  
Inadvertant Writes  
High Speed Page Write Capability  
Highly Reliable Direct Write™ Cell  
—Endurance: 100,000 Write Cycles  
—Data Retention: 100 Years  
Early End of Write Detection  
DATA Polling  
The X28C512/513 supports a 128-byte page write op-  
eration, effectivelyprovidinga39µs/bytewritecycleand  
enabling the entire memory to be written in less than 2.5  
seconds. TheX28C512/513alsofeaturesDATA Polling  
andToggleBitPolling,systemsoftwaresupportschemes  
used to indicate the early completion of a write cycle. In  
addition, the X28C512/513 supports the Software Data  
Protection option.  
—Toggle Bit Polling  
TSOP  
PIN CONFIGURATIONS  
PLCC / LCC  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
A
A
A
A
A
NC  
NC  
NC  
WE  
OE  
A
10  
CE  
11  
9
8
13  
14  
30  
29  
I/O  
I/O  
I/O  
I/O  
I/O  
7
6
5
4
3
4
3
2
32 31  
A
A
5
6
7
8
9
A
A
A
A
A
PLASTIC DIP  
CERDIP  
7
6
5
4
3
2
1
0
0
14  
13  
8
1
28  
27  
26  
25  
24  
23  
22  
FLAT PACK  
SOIC (R)  
A
A
9
9
NC  
NC  
V
X28C512  
(TOP VIEW)  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
X28C512  
11  
CC  
NC  
A
OE  
A
SS  
10  
11  
12  
13  
NC  
NC  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
V
CC  
NC  
NC  
NC  
NC  
I/O  
A
10  
2
WE  
NC  
A
CE  
I/O  
NC  
A
A
A
A
A
A
2
1
0
A
3
I/O  
I/O  
I/O  
15  
12  
15  
12  
7
6
5
4
7
15 16 17 18 19 20  
21  
14  
A
4
A
14  
A
A
A
A
0
1
2
3
A
5
A
7
6
5
4
3
2
1
0
0
1
2
13  
A
6
A
8
A
9
3856 FHD F03  
A
7
3856 ILL F22  
A
8
PGA  
A
11  
X28C512  
A
9
I/O  
15  
I/O  
17  
I/O  
I/O  
21  
I/O  
22  
OE  
0
2
3
5
6
30  
19  
4
3
2
32 31  
A
10  
11  
12  
13  
14  
15  
16  
A
A
A
A
A
A
A
5
29  
28  
27  
26  
25  
24  
23  
22  
A
A
A
A
6
5
4
3
2
1
0
8
10  
CE  
24  
A
13  
A
14  
I/O  
16  
V
I/O  
20  
I/O  
23  
1
1
0
1
SS  
4
7
6
9
A
CE  
18  
7
11  
OE  
26  
A
A
12  
A
A
25  
I/O  
7
I/O  
6
I/O  
5
I/0  
4
2
4
3
10  
11  
NC  
OE  
A
8
11  
X28C513  
(TOP VIEW)  
9
I/O  
I/O  
I/O  
V
A
10  
A
A
27  
A
28  
5
9
BOTTOM  
VIEW  
10  
11  
12  
13  
9
7
10  
CE  
A
A
A
29  
A
13  
30  
6
7
8
NC  
I/O  
8
6
7
I/O  
I/O  
I/O  
3
0
6
15 16 17 18 19 20  
SS  
21  
NC  
NC  
32  
A
V
36  
NC  
34  
A
A
31  
15  
CC  
14  
12  
14  
5
4
2
3856 FHD F01  
NC  
NC  
NC  
1
NC  
33  
WE  
35  
3
3856 FHD F04  
3856 FHD F02  
© Xicor, Inc. 1991, 1995, 1996 Patents Pending  
3856-3.2 8/5/97 T1/C0/D0 EW  
Characteristics subject to change without notice  
1
X28C512/X28C513  
PIN DESCRIPTIONS  
PIN NAMES  
Symbol  
A –A  
Addresses (A –A )  
Description  
Address Inputs  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
0
15  
The Address inputs select an 8-bit memory location  
during a read or write operation.  
0
15  
I/O –I/O  
0
7
WE  
CE  
OE  
Chip Enable (CE)  
The Chip Enable input must be LOW to enable all read/  
writeoperations.WhenCEisHIGH,powerconsumption  
is reduced.  
V
CC  
V
SS  
Ground  
Output Enable (OE)  
NC  
No Connect  
TheOutputEnableinputcontrolsthedataoutputbuffers  
and is used to initiate read operations.  
3856 PGM T01  
Data In/Data Out (I/O –I/O )  
0
7
Data is written to or read from the X28C512/513 through  
the I/O pins.  
Write Enable (WE)  
The Write Enable input controls the writing of data to the  
X28C512/513.  
FUNCTIONAL DIAGRAM  
512K-BIT  
E PROM  
ARRAY  
X BUFFERS  
LATCHES AND  
DECODER  
2
A –A  
7
15  
I/O BUFFERS  
AND LATCHES  
Y BUFFERS  
LATCHES AND  
DECODER  
A –A  
0
6
I/O –I/O  
0
7
DATA INPUTS/OUTPUTS  
CE  
OE  
CONTROL  
LOGIC AND  
TIMING  
WE  
V
CC  
V
SS  
3856 FHD F05  
2
X28C512/X28C513  
DEVICE OPERATION  
Read  
Effectively the page write window is infinitely wide, so  
long as the host continues to access the device within  
the byte load cycle time of 100µs.  
Read operations are initiated by both OE and CE LOW.  
The read operation is terminated by either CE or OE  
returning HIGH. This two line control architecture elimi-  
natesbuscontentioninasystemenvironment. Thedata  
bus will be in a high impedance state when either OE or  
CE is HIGH.  
Write Operation Status Bits  
TheX28C512/513providestheusertwowriteoperation  
status bits. These can be used to optimize a system  
write cycle time. The status bits are mapped onto the  
I/O bus as shown in Figure 1.  
Write  
Figure 1. Status Bit Assignment  
Write operations are initiated when both CE and WE are  
LOW and OE is HIGH. The X28C512/513 supports both  
a CE and WE controlled write cycle. That is, the address  
is latched by the falling edge of either CE or WE,  
whichever occurs last. Similarly, the data is latched  
internally by the rising edge of either CE or WE, which-  
ever occurs first. A byte write operation, once initiated,  
will automatically continue to completion, typically within  
5ms.  
I/O DP TB  
5
4
3
2
1
0
RESERVED  
TOGGLE BIT  
DATA POLLING  
3856 FHD F06  
Page Write Operation  
DATA Polling (I/O )  
7
The page write feature of the X28C512/513 allows the  
entire memory to be written in 2.5 seconds. Page write  
allows two to one hundred twenty-eight bytes of data to  
beconsecutivelywrittentotheX28C512/513priortothe  
commencement of the internal programming cycle. The  
host can fetch data from another device within the  
systemduringapagewriteoperation(changethesource  
The X28C512/513 features DATA Polling as a method  
to indicate to the host system that the byte write or page  
writecyclehascompleted.DATAPollingallowsasimple  
bittestoperationtodeterminethestatusoftheX28C512/  
513, eliminating additional interrupt inputs or external  
hardware. During the internal programming cycle, any  
attempt to read the last byte written will produce the  
address), but the page address (A through A ) for  
7
15  
complement of that data on I/O (i.e. write data = 0xxx  
7
each subsequent valid write cycle to the part during this  
operation must be the same as the initial page address.  
xxxx, read data = 1xxx xxxx). Once the programming  
cycle is complete, I/O will reflect true data.  
7
The page write mode can be initiated during any write  
operation. Following the initial byte write cycle, the host  
can write an additional one to one hundred twenty-  
seven bytes in the same manner as the first byte was  
written. Each successive byte load cycle, started by the  
WE HIGH to LOW transition, must begin within 100µs of  
the falling edge of the preceding WE. If a subsequent  
WE HIGH to LOW transition is not detected within  
100µs, the internal automatic programming cycle will  
commence. There is no page write window limitation.  
Toggle Bit (I/O )  
6
The X28C512/513 also provides another method for  
determining when the internal write cycle is complete.  
During the internal programming cycle, I/O will toggle  
from HIGH to LOW and LOW to HIGH on subsequent  
attempts to read the device. When the internal cycle is  
complete the toggling will cease and the device will be  
accessible for additional read or write operations.  
6
3
X28C512/X28C513  
DATA Polling I/O  
7
Figure 2a. DATA Polling Bus Sequence  
LAST  
WRITE  
WE  
CE  
OE  
V
IH  
V
HIGH Z  
OH  
I/O  
7
V
OL  
X28C512/513  
READY  
A –A  
0
15  
An  
An  
An  
An  
An  
An  
An  
3856 FHD F07.1  
Figure 2b. DATA Polling Software Flow  
DATA Polling can effectively halve the time for writing to  
the X28C512/513. The timing diagram in Figure 2a  
illustrates the sequence of events on the bus. The  
softwareflowdiagraminFigure2billustratesonemethod  
of implementing the routine.  
WRITE DATA  
NO  
WRITES  
COMPLETE?  
YES  
SAVE LAST DATA  
AND ADDRESS  
READ LAST  
ADDRESS  
IO  
NO  
7
COMPARE?  
YES  
X28C512  
READY  
3856 FHD F08  
4
X28C512/X28C513  
The Toggle Bit I/O  
6
Figure 3a. Toggle Bit Bus Sequence  
LAST  
WRITE  
WE  
CE  
OE  
V
OH  
HIGH Z  
I/O  
6
*
*
V
OL  
X28C512/513  
READY  
3856 FHD F09.1  
* Beginning and ending state of I/O will vary.  
6
Figure 3b. Toggle Bit Software Flow  
TheToggleBitcaneliminatethesoftwarehousekeeping  
chore of saving and fetching the last address and data  
written to a device in order to implement DATA Polling.  
This can be especially helpful in an array comprised of  
multiple X28C512/513 memories that is frequently up-  
dated. Toggle Bit Polling can also provide a method for  
status checking in multiprocessor applications. The  
timing diagram in Figure 3a illustrates the sequence of  
events on the bus. The software flow diagram in Figure  
3b illustrates a method for polling the Toggle Bit.  
LAST WRITE  
LOAD ACCUM  
FROM ADDR n  
COMPARE  
ACCUM WITH  
ADDR n  
NO  
COMPARE  
OK?  
YES  
X28C512  
READY  
3856 FHD F10  
5
X28C512/X28C513  
HARDWARE DATA PROTECTION  
The X28C512/513 can be automatically protected dur-  
ing power-up and power-down without the need for  
external circuits by employing the software data protec-  
tion feature. The internal software data protection circuit  
is enabled after the first write operation utilizing the  
software algorithm. This circuit is nonvolatile and will  
remain set for the life of the device unless the reset  
command is issued.  
The X28C512/513 provides three hardware features  
that protect nonvolatile data from inadvertent writes.  
• Noise Protection—A WE pulse typically less than  
10ns will not initiate a write cycle.  
• Default V Sense—All write functions are inhibited  
CC  
when V is 3.6V.  
CC  
• Write Inhibit—Holding either OE LOW, WE HIGH,  
or CE HIGH will prevent an inadvertent write cycle  
during power-up and power-down, maintaining data  
integrity. Write cycle timing specifications must be  
observed concurrently.  
Once the software protection is enabled, the X28C512/  
513 is also protected from inadvertent and accidental  
writes in the powered-up state. That is, the software  
algorithm must be issued prior to writing additional data  
to the device. Note: The data in the three-byte enable  
sequence is not written to the memory array.  
SOFTWARE DATA PROTECTION  
The X28C512/513 offers a software controlled data  
protection feature. The X28C512/513 is shipped from  
Xicor with the software data protection NOT ENABLED;  
thatis,thedevicewillbeinthestandardoperatingmode.  
In this mode data should be protected during power-up/  
-down operations through the use of external circuits.  
The host would then have open read and write access  
SOFTWARE ALGORITHM  
Selecting the software data protection mode requires  
the host system to precede data write operations by a  
series of three write operations to three specific ad-  
dresses. Refer to Figure 4a and 4b for the sequence.  
The three byte sequence opens the page write window  
enabling the host to write from one to one hundred  
twenty-eightbytesofdata.Oncethepageloadcyclehas  
been completed, the device will automatically be re-  
turned to the data protected state.  
of the device once V was stable.  
CC  
6
X28C512/X28C513  
Software Data Protection  
Figure 4a. Timing Sequence—Software Data Protect Enable Sequence followed by Byte or Page Write  
V
(V  
)
CC  
0V  
CC  
DATA  
ADDR  
AA  
5555  
55  
2AAA  
A0  
5555  
WRITES  
OK  
t
WC  
WRITE  
PROTECTED  
CE  
t  
BYTE  
OR  
PAGE  
BLC MAX  
WE  
NOTE: All other timings and control pins are per page write timing requirements.  
3856 FHD F11  
Figure 4b. Write Sequence for Software Data  
Protection  
Regardless of whether the device has previously been  
protected or not, once the software data protected  
algorithm is used and data has been written, the  
X28C512/513 will automatically disable further writes  
unless another command is issued to cancel it. If no  
further commands are issued the X28C512/513 will be  
writeprotectedduringpower-downandafteranysubse-  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
quent power-up. The state of A while executing the  
15  
algorithm is don’t care.  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
WRITE DATA A0  
TO ADDRESS  
5555  
WRITE DATA XX  
TO ANY  
ADDRESS  
OPTIONAL  
BYTE/PAGE  
LOAD OPERATION  
WRITE LAST  
BYTE TO  
LAST ADDRESS  
AFTER t  
RE-ENTERS DATA  
WC  
PROTECTED STATE  
3856 FHD F12  
7
X28C512/X28C513  
Resetting Software Data Protection  
Figure 5a. Reset Software Data Protection Timing Sequence  
V
CC  
STANDARD  
OPERATING  
MODE  
DATA  
AA  
55  
2AAA  
80  
5555  
AA  
5555  
55  
2AAA  
20  
5555  
t  
WC  
ADDR 5555  
CE  
WE  
NOTE: All other timings and control pins are per page write timing requirements.  
3856 FHD F13  
Figure 5b. Software Sequence to Deactivate  
Software Data Protection  
In the event the user wants to deactivate the software  
data protection feature for testing or reprogramming in  
an E PROM programmer, the following six step algo-  
WRITE DATA AA  
TO ADDRESS  
5555  
2
rithm will reset the internal protection circuit. After t  
,
WC  
the X28C512/513 will be in standard operating mode.  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
WRITE DATA 55  
TO ADDRESS  
2AAA  
WRITE DATA 80  
TO ADDRESS  
5555  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
WRITE DATA 20  
TO ADDRESS  
5555  
3856 FHD F14  
8
X28C512/X28C513  
SYSTEM CONSIDERATIONS  
array is of prime concern. Enabling CE will cause  
transient current spikes. The magnitude of these spikes  
is dependent on the output capacitive loading of the I/  
Os. Therefore, the larger the array sharing a common  
bus, the larger the transient spikes. The voltage peaks  
associated with the current transients can be sup-  
pressed by the proper selection and placement of  
decoupling capacitors. As a minimum, it is recom-  
mended that a 0.1µF high frequency ceramic capacitor  
be used between V and V at each device. Depend-  
Because the X28C512/513 is frequently used in large  
memory arrays it is provided with a two line control  
architecture for both read and write operations. Proper  
usagecanprovidethelowestpossiblepowerdissipation  
and eliminate the possibility of contention where mul-  
tiple I/O pins share the same bus.  
To gain the most benefit it is recommended that CE be  
decoded from the address bus and be used as the  
primary device selection input. Both OE and WE would  
then be common among all devices in the array. For a  
read operation this assures that all deselected devices  
are in their standby mode and that only the selected  
device(s) is outputting data on the bus.  
CC  
SS  
ing on the size of the array, the value of the capacitor  
may have to be larger.  
In addition, it is recommended that a 4.7µF electrolytic  
bulk capacitor be placed between V and V for each  
CC  
SS  
eight devices employed in the array. This bulk capacitor  
is employed to overcome the voltage droop caused by  
the inductive effects of the PC board traces.  
Because the X28C512/513 has two power modes,  
standby and active, proper decoupling of the memory  
Active Supply Current vs. Ambient Temperature  
I
(RD) by Temperature over Frequency  
CC  
70  
14  
5.0 V  
CC  
V
= 5V  
CC  
13  
12  
11  
10  
9
60  
–55°C  
+25°C  
50  
40  
30  
20  
10  
+125°C  
8
–55  
–10  
+35  
+80  
+125  
AMBIENT TEMPERATURE (°C)  
3856 ILL F24  
3
6
9
12  
15  
0
FREQUENCY (MHz)  
3856 ILL F25  
Standby Supply Current vs. Ambient Temperature  
0.24  
V
= 5V  
CC  
0.22  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
–10  
+35  
+80  
+125  
–55  
AMBIENT TEMPERATURE (°C)  
3856 ILL F26  
9
X28C512/X28C513  
ABSOLUTE MAXIMUM RATINGS*  
*COMMENT  
Temperature under Bias  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and the functional operation of  
the device at these or any other conditions above those  
indicatedintheoperationalsectionsofthisspecificationis  
not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
X28C512/513............................... –10°C to +85°C  
X28C512I/513I........................... –65°C to +135°C  
X28C512M/513M....................... –65°C to +135°C  
Storage Temperature ....................... –65°C to +150°C  
Voltage on any Pin with  
Respect to V  
....................................... –1V to +7V  
SS  
D.C. Output Current ............................................. 5mA  
Lead Temperature  
(Soldering, 10 seconds).............................. 300°C  
RECOMMEND OPERATING CONDITIONS  
Supply Voltage  
Limits  
Temperature  
Min.  
Max.  
X28C512/513  
5V ±10%  
Commercial  
Industrial  
Military  
0°C  
+70°C  
+85°C  
+125°C  
3856 PGM T03.1  
–40°C  
–55°C  
3856 PGM T02  
D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions, unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Max.  
Units  
Test Conditions  
I
V
Current (Active)  
50  
mA CE = OE = V , WE = V ,  
CC  
CC  
IL  
IH  
(TTL Inputs)  
All I/O’s = Open, Address Inputs =  
.4V/2.4V Levels @ f = 5MHz  
I
I
V
Current (Standby)  
3
mA CE = V , OE = V  
IH IL  
SB1  
CC  
(TTL Inputs)  
All I/O’s = Open, Other Inputs = V  
IH  
V
CC  
Current (Standby)  
500  
µA  
CE = V – 0.3V, OE = V  
CC IL  
SB2  
(CMOS Inputs)  
All I/O’s = Open, Other Inputs = V  
IH  
I
I
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
Input HIGH Voltage  
Output LOW Voltage  
Output HIGH Voltage  
10  
10  
µA  
µA  
V
V
V
= V to V  
SS CC  
LI  
IN  
= V to V , CE = V  
IH  
LO  
OUT  
SS  
CC  
(1)  
V
V
V
V
–1  
2
0.8  
lL  
(1)  
V
+ 1  
CC  
V
IH  
0.4  
V
I
I
= 2.1mA  
OL  
OH  
OL  
2.4  
V
= –400µA  
OH  
3856 PGM T04.2  
Notes: (1) V min. and V max. are for reference only and are not tested.  
IL  
IH  
10  
X28C512/X28C513  
POWER-UP TIMING  
Symbol  
Parameter  
Max.  
Units  
(2)  
t
t
Power-up to Read Operation  
Power-up to Write Operation  
100  
5
µs  
PUR  
(2)  
ms  
PUW  
3856 PGM T05  
CAPACITANCE T = +25°C, f = 1MHz, V = 5V  
A
CC  
Symbol  
Parameter  
Max.  
Units  
Test Conditions  
(2)  
C
C
Input/Output Capacitance  
Input Capacitance  
10  
10  
pF  
pF  
V
V
= 0V  
= 0V  
I/O  
I/O  
(2)  
IN  
IN  
3856 PGM T06.1  
ENDURANCE AND DATA RETENTION  
Parameter  
Min.  
Max.  
Units  
Endurance  
Endurance  
10,000  
100,000  
100  
Cycles Per Byte  
Cycles Per Page  
Years  
Data Retention  
3856 PGM T07.1  
A.C. CONDITIONS OF TEST  
MODE SELECTION  
Input Pulse Levels  
0V to 3V  
CE  
L
OE  
L
WE  
H
Mode  
Read  
Write  
I/O  
Power  
D
Active  
OUT  
IN  
Input Rise and  
Fall Times  
L
H
L
D
Active  
10ns  
1.5V  
H
X
X
Standby and  
Write Inhibit  
High Z  
Standby  
Input and Output  
Timing Levels  
3856 PGM T07.1  
X
X
L
X
H
Write Inhibit  
Write Inhibit  
X
3856 PGM T08  
EQUIVALENT A.C. LOAD CIRCUIT  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
5V  
Must be  
steady  
Will be  
steady  
1.92K  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
OUTPUT  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
100pF  
1.37KΩ  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
3856 FHD F15.3  
N/A  
Center Line  
is High  
Impedance  
Note: (2) This parameter is periodically sampled and not 100%  
tested.  
11  
X28C512/X28C513  
A.C. CHARACTERISTICS (Over the recommended operating conditions, unless otherwise specified.)  
Read Cycle Limits  
X28C512-90 X28C512-12 X28C512-15 X28C512-20 X28C512-25  
X28C513-90 X28C513-12 X28C513-15 X28C513-20 X28C513-25  
Symbol  
Parameter  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
t
t
t
t
t
t
t
t
t
Read Cycle Time  
90  
120  
150  
200  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
CE  
AA  
OE  
Chip Enable Access Time  
Address Access Time  
90  
90  
40  
120  
120  
50  
150  
150  
50  
200  
200  
50  
250  
250  
50  
Output Enable Access Time  
CE LOW to Active Output  
OE LOW to Active Output  
CE HIGH to High Z Output  
OE HIGH to High Z Output  
(3)  
0
0
0
0
0
0
0
0
0
0
LZ  
(3)  
OLZ  
(3)  
40  
40  
50  
50  
50  
50  
50  
50  
50  
50  
HZ  
(3)  
OHZ  
OH  
Output Hold from  
Address Change  
0
0
0
0
0
3856 PGM T09.4  
Read Cycle  
ADDRESS  
CE  
t
RC  
t
CE  
t
OE  
OE  
V
IH  
WE  
t
t
OLZ  
OHZ  
t
t
t
t
LZ  
OH  
HZ  
HIGH Z  
DATA I/O  
DATA VALID  
DATA VALID  
AA  
3856 FHD F16  
Notes: (3) t min., t , t  
min., and tOHZ are periodically sampled and not 100% tested. t max. and t  
max. are measured, with  
OHZ  
LZ  
HZ OLZ  
HZ  
C = 5pF from the point when CE or OE return HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
L
12  
X28C512/X28C513  
WRITE CYCLE LIMITS  
Symbol  
Parameter  
Min.  
Max.  
Units  
(4)  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
Address Setup Time  
Address Hold Time  
Write Setup Time  
Write Hold Time  
CE Pulse Width  
OE HIGH Setup Time  
OE HIGH Hold Time  
WE Pulse Width  
WE HIGH Recovery  
Data Valid  
10  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
µs  
WC  
AS  
0
50  
0
AH  
CS  
0
CH  
100  
10  
10  
100  
100  
CW  
OES  
OEH  
WP  
WPH  
DV  
1
Data Setup  
50  
0
DS  
Data Hold  
DH  
Delay to Next Write  
Byte Load Cycle  
10  
0.2  
DW  
BLC  
100  
3856 PGM T10.2  
WE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
t
CS  
CH  
CE  
OE  
t
t
OEH  
OES  
t
t
WP  
WE  
DV  
DATA IN  
DATA OUT  
DATA VALID  
DS  
t
t
DH  
HIGH Z  
3856 FHD F17  
Notes: (4) t  
is the minimum cycle time to be allowed from the system perspective unless polling techniques are used. It is the maximum time  
WC  
the device requires to complete the internal write operation.  
13  
X28C512/X28C513  
CE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
CW  
CE  
t
WPH  
t
OES  
OE  
t
OEH  
t
t
CS  
CH  
DH  
WE  
t
DV  
DATA IN  
DATA VALID  
t
t
DS  
HIGH Z  
DATA OUT  
3856 FHD F18  
Page Write Cycle  
OE(5)  
CE  
t
t
BLC  
WP  
WE  
t
WPH  
*ADDRESS(6)  
I/O  
LAST BYTE  
BYTE n+2  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE n  
BYTE n+1  
t
WC  
*For each successive write within the page write operation, A –A should be the same or  
15  
7
writes to an unknown address could occur.  
3856 FHD F19.1  
Notes: (5) Between successive byte writes within a page write operation, OE can be strobed LOW: e.g. this can be done with CE and WE HIGH  
to fetch data from another memory device within the system for the next write; or with WE HIGH and CE LOW effectively performing  
a polling operation.  
(6) The timings shown above are unique to page write operations. Individual byte load operations within the page write must conform  
to either the CE or WE controlled write cycle timing.  
14  
X28C512/X28C513  
(7)  
DATA Polling Timing Diagram  
A
A
A
ADDRESS  
CE  
n
n
n
WE  
t
t
OEH  
OES  
OE  
t
DW  
=X  
D
=X  
D
=X  
D
I/O  
7
IN  
OUT  
OUT  
t
WC  
3856 FHD F20  
Toggle Bit Timing Diagram  
CE  
WE  
t
t
OES  
OEH  
OE  
t
DW  
HIGH Z  
I/O  
6
*
*
t
WC  
* Starting and ending state of I/O will vary, depending upon actual t  
.
6
WC  
3856 FHD F21  
Note: (7) Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
15  
X28C512/X28C513  
NOTES  
16  
X28C512/X28C513  
PACKAGING INFORMATION  
32-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE D  
1.690 (42.95)  
MAX.  
0.610 (15.49)  
0.500 (12.70)  
PIN 1  
0.005 (0.13) MIN.  
0.100 (2.54) MAX.  
SEATING  
PLANE  
0.232 (5.90) MAX.  
0.060 (1.52)  
0.015 (0.38)  
0.150 (3.81) MIN.  
0.200 (5.08)  
0.125 (3.18)  
0.065 (1.65)  
0.023 (0.58)  
0.033 (0.84)  
TYP. 0.055 (1.40)  
0.014 (0.36)  
TYP. 0.018 (0.46)  
0.110 (2.79)  
0.090 (2.29)  
TYP. 0.018 (0.46)  
0.620 (15.75)  
0.590 (14.99)  
TYP. 0.614 (15.60)  
0°  
0.015 (0.38)  
0.008 (0.20)  
15°  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F09  
17  
X28C512/X28C513  
PACKAGING INFORMATION  
32-PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE TYPE E  
0.300 (7.62)  
BSC  
0.150 (3.81) BSC  
0.020 (0.51) x 45° REF.  
0.015 (0.38)  
0.003 (0.08)  
0.095 (2.41)  
0.075 (1.91)  
PIN 1  
0.022 (0.56)  
DIA.  
0.006 (0.15)  
0.055 (1.39)  
0.200 (5.08)  
BSC  
0.045 (1.14)  
TYP. (4) PLCS.  
0.015 (0.38)  
MIN.  
0.028 (0.71)  
0.040 (1.02) x 45° REF.  
0.022 (0.56)  
(32) PLCS.  
TYP. (3) PLCS.  
0.050 (1.27) BSC  
0.458 (11.63)  
0.088 (2.24)  
0.050 (1.27)  
0.442 (11.22)  
0.120 (3.05)  
0.458 (11.63)  
––  
0.060 (1.52)  
0.558 (14.17)  
––  
0.560 (14.22)  
0.540 (13.71)  
0.400 (10.16)  
BSC  
PIN 1 INDEX CORNER  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. TOLERANCE: ±1% NLT ±0.005 (0.127)  
3926 FHD F14  
18  
X28C512/X28C513  
PACKAGING INFORMATION  
32-LEAD CERAMIC FLAT PACK TYPE F  
0.019 (0.48)  
0.015 (0.38)  
PIN 1 INDEX  
1
32  
0.50 (1.27) BSC  
0.828 (21.04)  
0.812 (20.64)  
0.045 (1.14) MAX.  
0.005 (0.13) MIN.  
0.488  
0.130 (3.30)  
0.090 (2.29)  
0.007 (0.18)  
0.004 (0.10)  
0.430 (10.93)  
0.370 (9.40)  
0.270 (6.86)  
0.047 (1.19)  
0.026 (0.66)  
0.347 (8.82)  
0.330 (8.38)  
0.030 (0.76)  
MIN  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F20  
19  
X28C512/X28C513  
PACKAGING INFORMATION  
32-LEAD PLASTIC LEADED CHIP CARRIER PACKAGE TYPE J  
0.420 (10.67)  
0.050 (1.27) TYP.  
0.021 (0.53)  
0.013 (0.33)  
TYP. 0.017 (0.43)  
SEATING PLANE  
±0.004 LEAD  
CO – PLANARITY  
0.045 (1.14) x 45°  
0.015 (0.38)  
0.095 (2.41)  
0.495 (12.57)  
0.485 (12.32)  
TYP. 0.490 (12.45)  
0.060 (1.52)  
0.140 (3.56)  
0.453 (11.51)  
0.100 (2.45)  
TYP. 0.136 (3.45)  
0.447 (11.35)  
TYP. 0.450 (11.43)  
0.048 (1.22)  
0.042 (1.07)  
0.300 (7.62)  
REF.  
PIN 1  
0.595 (15.11)  
0.585 (14.86)  
TYP. 0.590 (14.99)  
0.553 (14.05)  
0.547 (13.89)  
TYP. 0.550 (13.97)  
0.400  
REF.  
(10.16)  
3° TYP.  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. DIMENSIONS WITH NO TOLERANCE FOR REFERENCE ONLY  
3926 FHD F13  
20  
X28C512/X28C513  
PACKAGING INFORMATION  
36-LEAD CERAMIC PIN GRID ARRAY PACKAGE TYPE K  
15  
14  
11  
9
17  
16  
19  
18  
21  
20  
22  
23  
25  
27  
29  
32  
33  
A
0.008 (0.20)  
13  
12  
10  
8
24  
26  
0.050 (1.27)  
A
28  
30  
31  
NOTE: LEADS 5, 14, 23, & 32  
7
TYP. 0.100 (2.54)  
ALL LEADS  
6
5
2
3
36  
1
34  
35  
0.090 (2.29)  
0.070 (1.78)  
4
0.090 (2.29)  
0.070 (1.78)  
0.120 (3.05)  
0.100 (2.54)  
0.072 (1.83)  
0.062 (1.57)  
PIN 1 INDEX  
0.770 (19.56)  
0.750 (19.05)  
SQ.  
0.020 (0.51)  
0.016 (0.41)  
A
A
0.185 (4.70)  
0.175 (4.45)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F21  
21  
X28C512/X28C513  
PACKAGING INFORMATION  
32-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P  
1.665 (42.29)  
1.644 (41.76)  
0.557 (14.15)  
0.510 (12.95)  
PIN 1 INDEX  
PIN 1  
0.085 (2.16)  
0.040 (1.02)  
1.500 (38.10)  
REF.  
0.160 (4.06)  
0.140 (3.56)  
SEATING  
PLANE  
0.030 (0.76)  
0.015 (0.38)  
0.160 (4.06)  
0.125 (3.17)  
0.110 (2.79)  
0.090 (2.29)  
0.070 (17.78)  
0.030 (7.62)  
0.022 (0.56)  
0.014 (0.36)  
0.625 (15.88)  
0.590 (14.99)  
0°  
TYP. 0.010 (0.25)  
15°  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH  
3926 FHD F25  
22  
X28C512/X28C513  
PACKAGING INFORMATION  
32-LEAD CERAMIC SMALL OUTLINE GULL WING PACKAGE TYPE R  
0.060 NOM.  
SEE DETAIL “A”  
FOR LEAD  
INFORMATION  
0.020 MIN.  
0.165 TYP.  
0.035 TYP.  
0.340  
±0.007  
0.015 R TYP.  
0.015 R  
TYP.  
0.035 MIN.  
DETAIL “A”  
0.050"  
TYPICAL  
0.0192  
0.0138  
0.050"  
TYPICAL  
0.560"  
TYPICAL  
0.840  
MAX.  
0.750  
±0.005  
0.030" TYPICAL  
32 PLACES  
0.050  
FOOTPRINT  
0.440 MAX.  
0.560 NOM.  
NOTES:  
1. ALL DIMENSIONS IN INCHES  
2. FORMED LEAD SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN 0.004 INCHES  
3926 FHD F27  
23  
X28C512/X28C513  
PACKAGING INFORMATION  
40-LEAD THIN SMALL OUTLINE PACKAGE (TSOP) TYPE T  
12.522 (0.493)  
12.268 (0.483)  
1.143 (0.045)  
0.889 (0.035)  
0.965  
PIN #1 IDENT.  
(0.038)  
O 1.016 (0.040) 0.127 (0.005) DP.  
O 0.762 (0.030) 0.076 (0.003) DP.  
X
1.219 (0.048)  
0.500 (0.0197)  
1
10.058 (0.396)  
9.957 (0.392)  
0.178 (0.007)  
15° TYP.  
SEATING  
PLANE  
0.254 (0.010)  
0.152 (0.006)  
A
0.065 (0.0025)  
1.016 (0.040)  
SEATING  
PLANE  
DETAIL A  
0.813 (0.032) TYP.  
0.432 (0.017)  
14.148 (0.557)  
13.894 (0.547)  
0.152 (0.006)  
TYP.  
4° TYP.  
0.432 (0.017)  
0.508 (0.020) TYP.  
14.80 ± 0.05  
(0.583 ± 0.002)  
0.30 ± 0.05  
(0.012 ± 0.002)  
SOLDER PADS  
TYPICAL  
40 PLACES  
15 EQ. SPC. @ 0.50 ± 0.04  
0.0197 ± 0.016 = 9.50 ± 0.06  
(0.374 ± 0.0024) OVERALL  
TOL. NON-CUMULATIVE  
0.17 (0.007)  
0.03 (0.001)  
0.50 ± 0.04  
(0.0197 ± 0.0016)  
1.30 ± 0.05  
(0.051 ± 0.002)  
FOOTPRINT  
NOTE:  
3926 ILL F39.2  
1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES IN PARENTHESES).  
24  
X28C512/X28C513  
ORDERING INFORMATION  
X28C512  
X
X
-X  
Access Time  
–90 = 90ns  
Device  
–12 = 120ns  
–15 = 150ns  
–20 = 200ns  
–25 = 250ns  
Temperature Range  
Blank = Commercial = 0°C to +70°C  
I = Industrial = –40°C to +85°C  
M = Military = –55°C to +125°C  
MB = Mil-STD-883  
X28C513  
X
X
-X  
Package  
D = 32-Lead CerDip  
E = 32-Pad LCC  
Access Time  
–90 = 90ns  
–12 = 120ns  
–15 = 150ns  
–20 = 200ns  
–25 = 250ns  
Device  
F = 32-Lead Flat Pack  
J = 32-Lead PLCC  
K = 36-Lead Pin Grid Array  
P = 32-Lead Plastic Dip  
R = 32-Lead Ceramic SOIC  
T = 40-Lead TSOP  
Temperature Range  
Blank = Commercial = 0°C to +70°C  
I = Industrial = –40°C to +85°C  
M = Military = –55°C to +125°C  
MB = Mil-STD-883  
Package  
E = 32-Pad LCC  
J = 32-Lead PLCC  
LIMITED WARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes  
no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described  
devices from patent infringement. Xicor, Inc. makes no warranty of merchantability or fitness tor any purpose. Xicor, Inc. reserves the right to  
discontinue production and change specifications and prices at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents,  
licenses are implied.  
US. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481;  
4,404,475;4,450,402;4,486,769;4,488,060;4,520,461;4,533,846;4,599,706;4,617,652;4,668,932;4,752,912;4,829,482;4,874,967;4,883,976.  
Foreign patents and additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with  
appropriate error detection and correction, redundancy and back-up features to prevent such an occurrence.  
Xicor’s products are not authorized for use as critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life,  
and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected  
to result in a significant injury to the user.  
2. Acriticalcomponentisanycomponentofalifesupportdeviceorsystemwhosefailuretoperformcanbereasonablyexpectedtocausethefailure  
of the life support device or system, or to affect its satety or effectiveness.  
25  

相关型号:

X28C513JM-15T1

EEPROM, 64KX8, 150ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C513JM-20

5 Volt, Byte Alterable E2PROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C513JM-20

EEPROM, 64KX8, 200ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

X28C513JM-20T1

EEPROM, 64KX8, 200ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C513JM-25

5 Volt, Byte Alterable E2PROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C513JM-25T1

EEPROM, 64KX8, 250ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C513JM-90

5 Volt, Byte Alterable E2PROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

X28C513JM-90T1

EEPROM, 64KX8, 90ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C513JMB-12

5 Volt, Byte Alterable E2PROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C513JMB-15

5 Volt, Byte Alterable E2PROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C513JMB-15

EEPROM, 64KX8, 150ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER