X28HC64 [XICOR]

5 Volt, Byte Alterable E2PROM; 5伏,可变的字节E2PROM
X28HC64
型号: X28HC64
厂家: XICOR INC.    XICOR INC.
描述:

5 Volt, Byte Alterable E2PROM
5伏,可变的字节E2PROM

可编程只读存储器
文件: 总24页 (文件大小:114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
64K  
X28HC64  
8K x 8 Bit  
5 Volt, Byte Alterable E2PROM  
FEATURES  
High Reliability  
—Endurance: 100,000 Cycles  
55ns Access Time  
Simple Byte and Page Write  
—Single 5V Supply  
—Data Retention: 100 Years  
JEDEC Approved Byte-Wide Pinout  
—No External High Voltages or VPP Control  
Circuits  
—Self-Timed  
DESCRIPTION  
The X28HC64 is an 8K x 8 E2PROM, fabricated with  
Xicor’s proprietary, high performance, floating gate  
CMOS technology. Like all Xicor programmable non-  
volatilememoriestheX28HC64isa5Vonlydevice. The  
X28HC64featurestheJEDECapprovedpinoutforbyte-  
widememories,compatiblewithindustrystandardRAMs.  
—No Erase Before Write  
—No Complex Programming Algorithms  
—No Overerase Problem  
Low Power CMOS  
—40 mA Active Current Max.  
—200 µA Standby Current Max.  
Fast Write Cycle Times  
—64 Byte Page Write Operation  
—Byte or Page Write Cycle: 2ms Typical  
—Complete Memory Rewrite: 0.25 sec. Typical  
—Effective Byte Write Cycle Time: 32µs Typical  
Software Data Protection  
End of Write Detection  
The X28HC64 supports a 64-byte page write operation,  
effectively providing a 32µs/byte write cycle and en-  
abling the entire memory to be typically written in 0.25  
seconds. The X28HC64 also features DATA Polling and  
Toggle Bit Polling, two methods providing early end of  
write detection. In addition, the X28HC64 includes a  
user-optional software data protection mode that further  
enhances Xicor’s hardware write protect capability.  
DATA Polling  
Xicor E2PROMs are designed and tested for applica-  
tions requiring extended endurance. Inherent data re-  
tention is greater than 100 years.  
—Toggle Bit  
TSOP  
PIN CONFIGURATIONS  
A
A
A
I/O  
I/O  
I/O  
1
2
3
4
5
6
7
8
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
A
A
A
A
A
A
NC  
NC  
V
NC  
WE  
NC  
A
A
A
2
1
0
0
1
2
3
4
5
6
7
12  
PLASTIC DIP  
LCC  
FLAT PACK  
PLCC  
NC  
CERDIP  
SOIC  
V
SS  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
X28HC64  
9
CC  
10  
11  
12  
13  
14  
15  
16  
3
4
5
6
7
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
4
3
2
1
32 31 30  
29  
CC  
A
2
WE  
8
9
11  
12  
A
A
A
A
A
A
A
5
6
7
8
9
A
A
A
6
5
4
3
2
1
0
8
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
0
3
NC  
28  
27  
26  
25  
24  
23  
22  
21  
CE  
9
A
OE  
10  
4
A
8
A
9
11  
5
NC  
OE  
A
3857 ILL F22  
X28HC64  
PGA  
6
A
11  
10  
11  
12  
13  
7
OE  
10  
I/O  
12  
I/O  
13  
I/O  
15  
I/O  
17  
I/O  
18  
1
2
3
5
6
X28HC64  
CE  
8
A
10  
NC  
I/O  
I/O  
7
I/O  
11  
A
10  
V
14  
I/O  
16  
I/O  
19  
9
CE  
0
0
SS  
4
7
I/O  
0
6
10  
11  
12  
13  
14  
I/O  
7
I/O  
6
I/O  
5
I/0  
4
14 15 16 17 18 19 20  
A
A
A
8
CE  
20  
A
21  
1
3
2
4
10  
11  
I/O  
0
1
2
9
7
I/O  
I/O  
V
X28HC64  
A
6
OE  
22  
A
23  
3857 FHD F03  
I/O  
3
A
A
V
28  
A
24  
A
25  
SS  
5
6
12  
7
CC  
9
8
5
4
2
3
3857 FHD F02.1  
A
A
NC  
1
WE  
27  
NC  
26  
3857 FHD F04  
BOTTOM VIEW  
© Xicor, Inc. 1994, 1995, 1996 Patents Pending  
3857-3.0 8/5/97 T1/C0/D0 EW  
Characteristics subject to change without notice  
1
X28HC64  
PIN DESCRIPTIONS  
Addresses (A0–A12)  
PIN NAMES  
Symbol  
A –A  
Description  
Address Inputs  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
The Address inputs select an 8-bit memory location  
during a read or write operation.  
0
12  
I/O –I/O  
0
7
WE  
CE  
OE  
Chip Enable (CE)  
The Chip Enable input must be LOW to enable all read/  
writeoperations.WhenCEisHIGH,powerconsumption  
is reduced.  
V
CC  
V
SS  
Ground  
Output Enable (OE)  
NC  
No Connect  
TheOutputEnableinputcontrolsthedataoutputbuffers  
and is used to initiate read operations.  
3857 PGM T01  
Data In/Data Out (I/O0–I/O7)  
Data is written to or read from the X28HC64 through the  
I/O pins.  
Write Enable (WE)  
The Write Enable input controls the writing of data to the  
X28HC64.  
FUNCTIONAL DIAGRAM  
65,536-BIT  
2
E PROM  
X BUFFERS  
LATCHES AND  
DECODER  
ARRAY  
A –A  
0
12  
ADDRESS  
INPUTS  
I/O BUFFERS  
AND LATCHES  
Y BUFFERS  
LATCHES AND  
DECODER  
I/O –I/O  
0
7
DATA INPUTS/OUTPUTS  
CE  
OE  
WE  
CONTROL  
LOGIC AND  
TIMING  
V
CC  
V
3857 FHD F01  
SS  
2
X28HC64  
DEVICE OPERATION  
Read  
Write Operation Status Bits  
The X28HC64 provides the user two write operation  
status bits. These can be used to optimize a system  
write cycle time. The status bits are mapped onto the  
I/O bus as shown in Figure 1.  
Read operations are initiated by both OE and CE LOW.  
The read operation is terminated by either CE or OE  
returning HIGH. This two line control architecture elimi-  
natesbuscontentioninasystemenvironment. Thedata  
bus will be in a high impedance state when either OE or  
CE is HIGH.  
Figure 1. Status Bit Assignment  
Write  
I/O DP TB  
5
4
3
2
1
0
Write operations are initiated when bothCE and WE are  
LOW and OE is HIGH. The X28HC64 supports both a  
CE and WE controlled write cycle. That is, the address  
is latched by the falling edge of either CE or WE,  
whichever occurs last. Similarly, the data is latched  
internally by the rising edge of either CE or WE, which-  
ever occurs first. A byte write operation, once initiated,  
willautomaticallycontinuetocompletion,typicallywithin  
2ms.  
RESERVED  
TOGGLE BIT  
DATA POLLING  
3857 FHD F11  
DATA Polling (I/O7)  
The X28HC64 features DATA Polling as a method to  
indicate to the host system that the byte write or page  
writecyclehascompleted.DATAPollingallowsasimple  
bittestoperationtodeterminethestatusoftheX28HC64,  
eliminating additional interrupt inputs or external hard-  
ware. During the internal programming cycle, any at-  
tempt to read the last byte written will produce the  
complement of that data on I/O7 (i.e. write data = 0xxx  
xxxx, read data = 1xxx xxxx). Once the programming  
cycle is complete, I/O7 will reflect true data.  
Page Write Operation  
The page write feature of the X28HC64 allows the entire  
memorytobewrittenin0.25seconds. Pagewriteallows  
twotosixty-fourbytesofdatatobeconsecutivelywritten  
to the X28HC64 prior to the commencement of the  
internal programming cycle. The host can fetch data  
from another device within the system during a page  
write operation (change the source address), but the  
page address (A6 through A12) for each subsequent  
valid write cycle to the part during this operation must be  
the same as the initial page address.  
Toggle Bit (I/O6)  
The X28HC64 also provides another method for deter-  
mining when the internal write cycle is complete. During  
the internal programming cycle I/O6 will toggle from  
HIGH to LOW and LOW to HIGH on subsequent  
attempts to read the device. When the internal cycle is  
complete the toggling will cease and the device will be  
accessible for additional read or write operations.  
The page write mode can be initiated during any write  
operation. Following the initial byte write cycle, the host  
can write an additional one to sixty-three bytes in the  
samemannerasthefirstbytewaswritten. Eachsucces-  
sive byte load cycle, started by the WE HIGH to LOW  
transition, must begin within 100µs of the falling edge of  
the preceding WE. If a subsequent WE HIGH to LOW  
transition is not detected within 100µs, the internal  
automatic programming cycle will commence. There is  
no page write window limitation. Effectively the page  
write window is infinitely wide, so long as the host  
continuestoaccessthedevicewithinthebyteloadcycle  
time of 100µs.  
3
X28HC64  
DATA POLLING I/O  
7
Figure 2. DATA Polling Bus Sequence  
LAST  
WRITE  
WE  
CE  
OE  
V
IH  
V
HIGH Z  
OH  
I/O  
7
V
OL  
X28HC64  
READY  
A –A  
0
12  
An  
An  
An  
An  
An  
An  
An  
3857 FHD F12  
Figure 3. DATA Polling Software Flow  
DATA Polling can effectively reduce the time for writing  
to the X28HC64. The timing diagram in Figure 2 illus-  
trates the sequence of events on the bus. The software  
flow diagram in Figure 3 illustrates one method of  
implementing the routine.  
WRITE DATA  
NO  
WRITES  
COMPLETE?  
YES  
SAVE LAST DATA  
AND ADDRESS  
READ LAST  
ADDRESS  
IO  
NO  
7
COMPARE?  
YES  
READY  
3857 FHD F13  
4
X28HC64  
THE TOGGLE BIT I/O  
6
Figure 4. Toggle Bit Bus Sequence  
LAST  
WRITE  
WE  
CE  
OE  
V
OH  
HIGH Z  
I/O  
6
*
*
V
OL  
X28HC64  
READY  
* Beginning and ending state of I/O will vary.  
6
3857 FHD F14  
Figure 5. Toggle Bit Software Flow  
TheToggleBitcaneliminatethesoftwarehousekeeping  
chore of saving and fetching the last address and data  
written to a device in order to implement DATA Polling.  
This can be especially helpful in an array comprised of  
multiple X28HC64 memories that is frequently updated.  
Toggle Bit Polling can also provide a method for status  
checking in multiprocessor applications. The timing  
diagraminFigure4illustratesthesequenceofeventson  
thebus. ThesoftwareflowdiagraminFigure5illustrates  
a method for polling the Toggle Bit.  
LAST WRITE  
LOAD ACCUM  
FROM ADDR n  
COMPARE  
ACCUM WITH  
ADDR n  
NO  
COMPARE  
OK?  
YES  
READY  
3857 FHD F15  
5
X28HC64  
HARDWARE DATA PROTECTION  
ture. The internal software data protection circuit is  
enabled after the first write operation utilizing the soft-  
warealgorithm. Thiscircuitisnonvolatileandwillremain  
set for the life of the device unless the reset command  
is issued.  
The X28HC64 provides two hardware features that  
protect nonvolatile data from inadvertent writes.  
• Default VCC Sense—All write functions are inhibited  
when VCC is 3V typically.  
• Write Inhibit—Holding either OE LOW, WE HIGH, or  
CE HIGHwillpreventaninadvertentwritecycleduring  
power-up and power-down, maintaining data integrity.  
Once the software protection is enabled, the X28HC64  
is also protected from inadvertent and accidental writes  
in the powered-up state. That is, the software algorithm  
must be issued prior to writing additional data to the  
device.  
SOFTWARE DATA PROTECTION  
The X28HC64 offers a software controlled data protec-  
tion feature. The X28HC64 is shipped from Xicor with  
thesoftwaredataprotectionNOTENABLED;thatis, the  
device will be in the standard operating mode. In this  
mode data should be protected during power-up/-down  
operations through the use of external circuits. The host  
would then have open read and write access of the  
device once VCC was stable.  
SOFTWARE ALGORITHM  
Selecting the software data protection mode requires  
the host system to precede data write operations by a  
series of three write operations to three specific ad-  
dresses. Refer to Figure 6 and 7 for the sequence. The  
three-byte sequence opens the page write window  
enabling the host to write from one to sixty-four bytes of  
data. Oncethepageloadcyclehasbeencompleted, the  
device will automatically be returned to the data pro-  
tected state.  
The X28HC64 can be automatically protected during  
power-upandpower-downwithouttheneedforexternal  
circuits by employing the software data protection fea-  
6
X28HC64  
SOFTWARE DATA PROTECTION  
Figure 6. Timing Sequence—Byte or Page Write  
V
(V  
)
CC  
CC  
0V  
AA  
1555  
55  
0AAA  
A0  
1555  
WRITES  
OK  
WRITE  
PROTECTED  
DATA  
ADDR  
t
WC  
CE  
t  
BYTE  
OR  
PAGE  
BLC MAX  
WE  
3857 FHD F16  
Figure 7. Write Sequence for  
Software Data Protection  
Regardless of whether the device has previously been  
protected or not, once the software data protection  
algorithm is used, the X28HC64 will automatically dis-  
able further writes unless another command is issued to  
deactivate it. If no further commands are issued the  
X28HC64 will be write protected during power-down  
and after any subsequent power-up.  
WRITE DATA AA  
TO ADDRESS  
1555  
WRITE DATA 55  
TO ADDRESS  
0AAA  
Note: Onceinitiated,thesequenceofwriteoperations  
should not be interrupted.  
WRITE DATA A0  
TO ADDRESS  
1555  
BYTE/PAGE  
LOAD ENABLED  
WRITE DATA XX  
TO ANY  
ADDRESS  
OPTIONAL BYTE  
OR PAGE WRITE  
ALLOWED  
WRITE LAST  
BYTE TO  
LAST ADDRESS  
AFTER t  
RE-ENTERS DATA  
WC  
PROTECTED STATE  
3857 FHD F17  
7
X28HC64  
RESETTING SOFTWARE DATA PROTECTION  
Figure 8. Reset Software Data Protection Timing Sequence  
Vcc  
STANDARD  
OPERATING  
MODE  
DATA AA  
ADDR 1555  
55  
0AAA  
80  
1555  
AA  
1555  
55  
0AAA  
20  
1555  
t  
WC  
CE  
WE  
3857 ILL F18.2  
Figure 9. Software Sequence to  
Deactivate Software Data Protection  
In the event the user wants to deactivate the software  
data protection feature for testing or reprogramming in  
an E2PROM programmer, the following six step algo-  
WRITE DATA AA  
TO ADDRESS  
1555  
rithm will reset the internal protection circuit. After tWC  
,
the X28HC64 will be in standard operating mode.  
Note: Onceinitiated,thesequenceofwriteoperations  
should not be interrupted.  
WRITE DATA 55  
TO ADDRESS  
0AAA  
WRITE DATA 80  
TO ADDRESS  
1555  
WRITE DATA AA  
TO ADDRESS  
1555  
WRITE DATA 55  
TO ADDRESS  
0AAA  
WRITE DATA 20  
TO ADDRESS  
1555  
3857 ILL F19.2  
8
X28HC64  
SYSTEM CONSIDERATIONS  
prime concern. Enabling CE will cause transient current  
spikes. The magnitude of these spikes is dependent on  
the output capacitive loading of the I/Os. Therefore, the  
larger the array sharing a common bus, the larger the  
transient spikes. The voltage peaks associated with the  
current transients can be suppressed by the proper  
selection and placement of decoupling capacitors. As a  
minimum, it is recommended that a 0.1µF high fre-  
quency ceramic capacitor be used between VCC and  
VSS at each device. Depending on the size of the array,  
the value of the capacitor may have to be larger.  
BecausetheX28HC64isfrequentlyusedinlargememory  
arrays, it is provided with a two line control architecture  
for both read and write operations. Proper usage can  
provide the lowest possible power dissipation and elimi-  
nate the possibility of contention where multiple I/O pins  
share the same bus.  
To gain the most benefit it is recommended that CE be  
decoded from the address bus and be used as the  
primary device selection input. Both OE and WE would  
then be common among all devices in the array. For a  
read operation, this assures that all deselected devices  
are in their standby mode and that only the selected  
device(s) is outputting data on the bus.  
In addition, it is recommended that a 4.7µF electrolytic  
bulk capacitor be placed between VCC and VSS for each  
eight devices employed in the array. This bulk capacitor  
is employed to overcome the voltage droop caused by  
the inductive effects of the PC board traces.  
Because the X28HC64 has two power modes, standby  
and active, proper decoupling of the memory array is of  
Normalized ICC(RD) by Temperature  
Over Frequency  
Normalized ICC(RD) @ 25% Over  
the VCC Range and Frequency  
1.4  
1.4  
5.5 V  
CC  
- 55°C  
1.2  
5.5 V  
5.0 V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
CC  
CC  
+ 25°C  
1.0  
+ 125°C  
4.5 V  
CC  
0.8  
0.6  
0.4  
0.2  
0
10  
20  
0
10  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
3857 FHD F20.1  
3857 FHD F21.1  
9
X28HC64  
ABSOLUTE MAXIMUM RATINGS*  
*COMMENT  
Temperature under Bias  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and the functional operation of  
the device at these or any other conditions above those  
indicatedintheoperationalsectionsofthisspecificationis  
not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
X28HC64 ..................................... –10°C to +85°C  
X28HC64I, X28HC64M ............. –65°C to +135°C  
Storage Temperature ....................... –65°C to +150°C  
Voltage on any Pin with  
Respect to V  
....................................... –1V to +7V  
SS  
D.C. Output Current ............................................. 5mA  
Lead Temperature  
(Soldering, 10 seconds).............................. 300°C  
RECOMMENDED OPERATING CONDITIONS  
Temperature  
Min.  
Max.  
Supply Voltage  
Limits  
Commercial  
Industrial  
Military  
0°C  
+70°C  
+85°C  
+125°C  
X28HC64  
5V ±10%  
3857 PGM T03.1  
–40°C  
–55°C  
3857 PGM T02.1  
D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)  
Limits  
(1)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
CE = OE = V , WE = V , All  
I
V
Current (Active)  
15  
40  
mA  
CC  
CC  
IL  
IH  
(TTL Inputs)  
I/O’s = Open, Address Inputs =  
TTL Levels @ f = 10 MHz  
I
I
V
Current (Standby)  
1
2
mA  
CE = V , OE = V  
IH IL  
All I/O’s = Open, Other Inputs = V  
SB1  
CC  
(TTL Inputs)  
IH  
V
CC  
Current (Standby)  
100  
200  
µA  
CE = V – 0.3V, OE = GND  
SB2  
CC  
(CMOS Inputs)  
All I/O’s = Open, Other Inputs =  
V
V
V
– 0.3V  
CC  
I
I
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
±10  
±10  
0.8  
µA  
µA  
V
= V to V  
SS CC  
LI  
IN  
= V to V , CE = V  
IH  
LO  
OUT  
SS  
CC  
(2)  
V
V
V
V
–1  
2
lL  
(2)  
Input HIGH Voltage  
Output LOW Voltage  
Output HIGH Voltage  
V
+ 1  
V
IH  
CC  
0.4  
V
I = 5mA  
OL  
OL  
OH  
2.4  
V
I = –5mA  
OH  
3857 PGM T04.2  
Notes: (1) Typical values are for T = 25°C and nominal supply voltage  
A
(2) V min. and V max. are for reference only and are not tested.  
IL IH  
10  
X28HC64  
ENDURANCE AND DATA RETENTION  
Parameter  
Min.  
Max.  
Unit  
Minimum Endurance  
Data Retention  
100,000  
100  
Cycles  
Years  
3857 PGM T05.3  
POWER-UP TIMING  
(1)  
Symbol  
Parameter  
Typ.  
Units  
(3)  
t
t
Power-up to Read Operation  
Power-up to Write Operation  
100  
µs  
PUR  
(3)  
5
ms  
PUW  
3857 PGM T06  
CAPACITANCE TA = +25°C, f = 1MHz, VCC = 5V  
Symbol  
Parameter  
Max.  
Units  
Test Conditions  
(3)  
C
C
Input/Output Capacitance  
Input Capacitance  
10  
6
pF  
pF  
V
V
= 0V  
= 0V  
I/O  
I/O  
(3)  
IN  
IN  
3857 PGM T07.1  
A.C. CONDITIONS OF TEST  
MODE SELECTION  
Input Pulse Levels  
0V to 3V  
CE  
L
OE  
L
WE  
H
Mode  
Read  
I/O  
Power  
Active  
D
D
OUT  
IN  
Input Rise and  
Fall Times  
L
H
L
Write  
Active  
5ns  
H
X
X
Standby and  
Write Inhibit  
High Z  
Standby  
Input and Output  
Timing Levels  
1.5V  
3857 PGM T08.1  
X
X
L
X
H
Write Inhibit  
Write Inhibit  
X
3857 PGM T09  
Note: (3) This parameter is periodically sampled and not 100% tested.  
EQUIVALENT A.C. LOAD CIRCUITS  
SYMBOL TABLE  
5V  
WAVEFORM  
INPUTS  
OUTPUTS  
1.92KΩ  
Must be  
steady  
Will be  
steady  
OUTPUT  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
1.37KΩ  
30pF  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
3857 FHD F22.3  
N/A  
Center Line  
is High  
Impedance  
11  
X28HC64  
A.C. CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Read Cycle Limits  
X28HC64-70 X28HC64-90 X28HC64-12  
–55°Cto+125°C –55°Cto+125°C –55°Cto+125°C  
Symbol  
Parameter  
Min. Max. Min. Max. Min. Max. Units  
t
t
t
t
t
t
t
t
t
Read Cycle Time  
70  
90  
120  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
CE  
AA  
OE  
Chip Enable Access Time  
Address Access Time  
70  
70  
35  
90  
90  
40  
120  
120  
50  
Output Enable Access Time  
CE LOW to Active Output  
OE LOW to Active Output  
CE HIGH to High Z Output  
OE HIGH to High Z Output  
(4)  
0
0
0
0
0
0
LZ  
(4)  
OLZ  
(4)  
30  
30  
30  
30  
30  
30  
HZ  
(4)  
OHZ  
OH  
Output Hold from  
Address Change  
0
0
0
3857 PGM T10.1  
Read Cycle  
t
RC  
ADDRESS  
CE  
t
CE  
t
OE  
OE  
V
IH  
WE  
t
t
OLZ  
OHZ  
t
t
t
LZ  
OH  
HZ  
HIGH Z  
DATA I/O  
DATA VALID  
DATA VALID  
t
AA  
3857 FHD F05  
Notes: (4) t min., t , t  
LZ HZ OLZ  
min., and t  
are periodically sampled and not 100% tested. t max. and t  
HZ  
max. are measured from the  
OHZ  
OHZ  
point when CE or OE return HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
12  
X28HC64  
WRITE CYCLE LIMITS  
(1)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
(5)  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
Address Setup Time  
Address Hold Time  
Write Setup Time  
Write Hold Time  
CE Pulse Width  
OE HIGH Setup Time  
OE HIGH Hold Time  
WE Pulse Width  
WE HIGH Recovery  
Data Valid  
2
5
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
WC  
AS  
0
50  
0
AH  
CS  
0
CH  
50  
0
CW  
OES  
OEH  
WP  
WPH  
0
50  
50  
(6)  
(6)  
1
DV  
DS  
Data Setup  
50  
0
Data Hold  
DH  
(6)  
Delay to Next Write  
Byte Load Cycle  
10  
DW  
0.15  
100  
µs  
BLC  
3857 PGM T11.2  
WE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AS  
AH  
t
t
CS  
CH  
CE  
OE  
t
t
OES  
t
OEH  
t
WP  
WE  
DV  
DATA IN  
DATA OUT  
DATA VALID  
DS  
t
t
DH  
HIGH Z  
3857 FHD F06  
Notes: (5) t  
is the minimum cycle time to be allowed from the system perspective unless polling techniques are used. It is the maximum  
WC  
time the device requires to automatically complete the internal write operation.  
(6) t  
and t  
are periodically sampled and not 100% tested.  
WPH  
DW  
13  
X28HC64  
CE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
CW  
CE  
t
OES  
OE  
t
OEH  
t
t
CH  
CS  
WE  
t
DV  
DATA IN  
DATA VALID  
t
t
DH  
DS  
HIGH Z  
DATA OUT  
3857 FHD F07  
Page Write Cycle  
OE(7)  
CE  
WE  
t
t
BLC  
WP  
t
WPH  
ADDRESS *(8)  
I/O  
LAST BYTE  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE n  
BYTE n+1  
BYTE n+2  
t
WC  
*For each successive write within the page write operation, A –A should be the same or  
12  
6
writes to an unknown address could occur.  
3857 FHD F08  
Notes: (7) Between successive byte writes within a page write operation, OE can be strobed LOW: e.g. this can be done with CE and WE  
HIGH to fetch data from another memory device within the system for the next write; or with WE HIGH and CE LOW effectively  
performing a polling operation.  
(8) The timings shown above are unique to page write operations. Individual byte load operations within the page write must  
conform to either the CE or WE controlled write cycle timing.  
14  
X28HC64  
(9)  
DATA Polling Timing Diagram  
ADDRESS  
CE  
An  
An  
An  
WE  
t
t
OEH  
OES  
OE  
t
DW  
=X  
D
=X  
D
=X  
D
I/O  
7
IN  
OUT  
OUT  
t
WC  
3857 FHD F09  
(9)  
Toggle Bit Timing Diagram  
CE  
WE  
t
t
OES  
OEH  
OE  
t
DW  
HIGH Z  
I/O  
6
*
*
t
WC  
* I/O beginning and ending state will vary, depending upon actual t  
.
6
WC  
3857 FHD F10  
Note: (9) Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
15  
X28HC64  
PACKAGING INFORMATION  
28-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P  
1.460 (37.08)  
1.400 (35.56)  
0.550 (13.97)  
0.510 (12.95)  
PIN 1 INDEX  
PIN 1  
0.085 (2.16)  
0.040 (1.02)  
1.300 (33.02)  
REF.  
0.160 (4.06)  
0.125 (3.17)  
SEATING  
PLANE  
0.030 (0.76)  
0.015 (0.38)  
0.150 (3.81)  
0.125 (3.17)  
0.110 (2.79)  
0.090 (2.29)  
0.062 (1.57)  
0.050 (1.27)  
0.020 (0.51)  
0.016 (0.41)  
0.610 (15.49)  
0.590 (14.99)  
0°  
15°  
TYP. 0.010 (0.25)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F04  
16  
X28HC64  
PACKAGING INFORMATION  
28-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE D  
1.490 (37.85)  
1.435 (36.45)  
0.610 (15.49)  
0.500 (12.70)  
PIN 1  
0.100 (2.54)  
0.035 (0.89)  
1.30 (33.02)  
REF.  
0.225 (5.72)  
0.140 (3.56)  
SEATING  
PLANE  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
0.125 (3.18)  
0.110 (2.79)  
0.090 (2.29)  
0.070 (1.78)  
0.030 (0.76)  
0.026 (0.66)  
0.014 (0.36)  
TYP. 0.100 (2.54)  
TYP. 0.055 (1.40)  
TYP. 0.018 (0.46)  
0.620 (15.75)  
0.590 (14.99)  
TYP. 0.614 (15.60)  
0°  
15°  
TYP. 0.010 (0.25)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F08  
17  
X28HC64  
PACKAGING INFORMATION  
32-LEAD PLASTIC LEADED CHIP CARRIER PACKAGE TYPE J  
0.420 (10.67)  
0.050 (1.27) TYP.  
0.021 (0.53)  
0.013 (0.33)  
TYP. 0.017 (0.43)  
SEATING PLANE  
±0.004 LEAD  
CO – PLANARITY  
0.045 (1.14) x 45°  
0.015 (0.38)  
0.095 (2.41)  
0.495 (12.57)  
0.485 (12.32)  
TYP. 0.490 (12.45)  
0.060 (1.52)  
0.140 (3.56)  
0.453 (11.51)  
0.100 (2.45)  
TYP. 0.136 (3.45)  
0.447 (11.35)  
TYP. 0.450 (11.43)  
0.048 (1.22)  
0.042 (1.07)  
0.300 (7.62)  
REF.  
PIN 1  
0.595 (15.11)  
0.585 (14.86)  
TYP. 0.590 (14.99)  
0.553 (14.05)  
0.547 (13.89)  
TYP. 0.550 (13.97)  
0.400  
REF.  
(10.16)  
3° TYP.  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. DIMENSIONS WITH NO TOLERANCE FOR REFERENCE ONLY  
3926 FHD F13  
18  
X28HC64  
PACKAGING INFORMATION  
28-LEAD PLASTIC SMALL OUTLINE GULL WING PACKAGE TYPE S  
0.2980 (7.5692) 0.4160 (10.5664)  
0.2920 (7.4168) 0.3980 (10.1092)  
0.0192 (0.4877)  
0.0138 (0.3505)  
0.7080 (17.9832)  
0.7020 (17.8308)  
0.1040 (2.6416)  
0.0940 (2.3876)  
BASE PLANE  
SEATING PLANE  
0.0110 (0.2794)  
0.050 (1.270)  
BSC  
0.0040 (0.1016)  
0.0160 (0.4064)  
0.0100 (0.2540)  
X 45°  
0.0125 (0.3175)  
0.0090 (0.2311)  
0° – 8°  
0.0350 (0.8890)  
0.0160 (0.4064)  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. FORMED LEAD SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN 0.004 INCHES  
3. BACK EJECTOR PIN MARKED “KOREA”  
4. CONTROLLING DIMENSION: INCHES (MM)  
3926 FHD F17  
19  
X28HC64  
PACKAGING INFORMATION  
32-PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE TYPE E  
0.150 (3.81) BSC  
0.020 (0.51) x 45° REF.  
0.095 (2.41)  
0.075 (1.91)  
PIN 1  
0.022 (0.56)  
0.006 (0.15)  
0.055 (1.39)  
0.200 (5.08)  
BSC  
0.045 (1.14)  
TYP. (4) PLCS.  
0.028 (0.71)  
0.040 (1.02) x 45° REF.  
0.022 (0.56)  
(32) PLCS.  
TYP. (3) PLCS.  
0.050 (1.27) BSC  
0.458 (11.63)  
0.442 (11.22)  
0.088 (2.24)  
0.050 (1.27)  
0.458 (11.63)  
––  
0.300 (7.62)  
BSC  
0.120 (3.05)  
0.060 (1.52)  
0.560 (14.22)  
0.540 (13.71)  
0.558 (14.17)  
––  
0.400 (10.16)  
BSC  
PIN 1 INDEX CORDER  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. TOLERANCE: ±1% NLT ±0.005 (0.127)  
3926 FHD F14  
20  
X28HC64  
PACKAGING INFORMATION  
28-LEAD CERAMIC PIN GRID ARRAY PACKAGE TYPE K  
12  
11  
13  
10  
15  
14  
17  
16  
18  
19  
A
A
0.008  
9
7
5
4
8
6
2
3
20  
22  
24  
27  
21  
23  
25  
26  
0.050  
28  
1
NOTE: LEADS 4,12,18 & 26  
0.080  
0.070  
TYP. 0.100  
ALL LEADS  
4 CORNERS  
0.080  
0.070  
0.100  
0.080  
0.072  
0.061  
PIN 1 INDEX  
0.020  
0.016  
0.660 (16.76)  
0.640 (16.26)  
A
A
0.185 (4.70)  
0.175 (4.44)  
0.561 (14.25)  
0.541 (13.75)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F15  
21  
X28HC64  
PACKAGING INFORMATION  
28-LEAD CERAMIC FLAT PACK  
0.019 (0.48)  
0.015 (0.38)  
PIN 1 INDEX  
1
28  
0.050 (1.27) BSC  
0.740 (18.80)  
MAX.  
0.045 (1.14) MAX.  
0.440 (11.18)  
MAX.  
0.130 (3.30)  
0.090 (2.29)  
0.006 (0.15)  
0.003 (0.08)  
0.370 (9.40)  
0.250 (6.35)  
0.045 (1.14)  
0.025 (0.66)  
TYP. 0.300 2 PLCS.  
0.180 (4.57)  
MIN.  
0.030 (0.76)  
MIN.  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F16  
22  
X28HC64  
PACKAGING INFORMATION  
32-LEAD THIN SMALL OUTLINE PACKAGE (TSOP) TYPE T  
SEE NOTE 2  
12.50 (0.492)  
12.30 (0.484)  
PIN #1 IDENT.  
O 0.76 (0.03)  
0.50 (0.0197) BSC  
SEE NOTE 2  
8.02 (0.315)  
7.98 (0.314)  
0.26 (0.010)  
0.14 (0.006)  
1.18 (0.046)  
1.02 (0.040)  
0.17 (0.007)  
0.03 (0.001)  
SEATING  
PLANE  
0.58 (0.023)  
0.42 (0.017)  
14.15 (0.557)  
13.83 (0.544)  
14.80 ± 0.05  
(0.583 ± 0.002)  
0.30 ± 0.05  
(0.012 ± 0.002)  
SOLDER PADS  
TYPICAL  
32 PLACES  
15 EQ. SPC. 0.50 ± 0.04  
0.0197 ± 0.016 = 7.50 ± 0.06  
(0.295 ± 0.0024) OVERALL  
TOL. NON-CUMULATIVE  
0.17 (0.007)  
0.03 (0.001)  
0.50 ± 0.04  
(0.0197 ± 0.0016)  
1.30 ± 0.05  
(0.051 ± 0.002)  
FOOTPRINT  
NOTE:  
1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES IN PARENTHESES).  
3926 ILL F38.1  
23  
X28HC64  
ORDERING INFORMATION  
X28HC64  
X
X
-X  
Access Time  
–55 = 55ns  
–70 = 70ns  
–90 = 90ns  
–12 = 120ns  
Device  
Temperature Range  
Blank = Commercial = 0°C to +70°C  
I = Industrial = –40°C to +85°C  
M = Military = –55°C to +125°C  
MB = MIL-STD-883  
Package  
P = 28-Lead Plastic DIP  
D = 28-Lead Cerdip  
J = 32-Lead PLCC  
S = 28-Lead Plastic SOIC  
E = 32-Pad LCC  
K = 28-Lead Pin Grid Array  
F = 28-Lead Flat Pack  
T = 32-Lead TSOP  
LIMITED WARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes  
no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described  
devices from patent infringement. Xicor, Inc. makes no warranty of merchantability or fitness tor any purpose. Xicor, Inc. reserves the right to  
discontinue production and change specifications and prices at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents,  
licenses are implied.  
US. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481;  
4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967;  
4,883,976. Foreign patents and additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with  
appropriate error detection and correction, redundancy and back-up features to prevent such an occurrence.  
Xicor’s products are not authorized for use as critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life,  
and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected  
to result in a significant injury to the user.  
2. Acriticalcomponentisanycomponentofalifesupportdeviceorsystemwhosefailuretoperformcanbereasonablyexpectedtocausethefailure  
of the life support device or system, or to affect its satety or effectiveness.  
24  

相关型号:

X28HC64D-12

5 Volt, Byte Alterable E2PROM
XICOR

X28HC64D-50

5 Volt, Byte Alterable E2PROM
XICOR

X28HC64D-55

EEPROM, 8KX8, 55ns, Parallel, CMOS, CDIP28, HERMETIC SEALED, CERDIP-28
XICOR

X28HC64D-70

5 Volt, Byte Alterable E2PROM
XICOR

X28HC64D-90

5 Volt, Byte Alterable E2PROM
XICOR

X28HC64DI-12

5 Volt, Byte Alterable E2PROM
XICOR

X28HC64DI-12

5 Volt, Byte Alterable EEPROM
INTERSIL

X28HC64DI-50

5 Volt, Byte Alterable E2PROM
XICOR

X28HC64DI-55

x8 EEPROM
ETC

X28HC64DI-70

5 Volt, Byte Alterable E2PROM
XICOR

X28HC64DI-70

5 Volt, Byte Alterable EEPROM
INTERSIL

X28HC64DI-90

5 Volt, Byte Alterable E2PROM
XICOR