X28VC256JMB-70 [XICOR]

5 Volt, Byte Alterable E2PROM; 5伏,可变的字节E2PROM
X28VC256JMB-70
型号: X28VC256JMB-70
厂家: XICOR INC.    XICOR INC.
描述:

5 Volt, Byte Alterable E2PROM
5伏,可变的字节E2PROM

存储 内存集成电路 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总24页 (文件大小:111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256K  
X28VC256  
5 Volt, Byte Alterable E2PROM  
DESCRIPTION  
32K x 8 Bit  
FEATURES  
Access Time: 45ns  
Simple Byte and Page Write  
Single 5V Supply  
The X28VC256 is a second generation high perfor-  
mance CMOS 32K x 8 E PROM. It is fabricated with  
Xicor’s proprietary, textured poly floating gate tech-  
nology, providing a highly reliable 5 Volt only nonvolatile  
memory.  
2
No External High Voltages or V Control  
PP  
Circuits  
Self-Timed  
The X28VC256 supports a 128-byte page write opera-  
tion, effectively providing a 24µs/byte write cycle and  
enabling the entire memory to be typically rewritten in  
less than 0.8 seconds. The X28VC256 also features  
DATA Polling and Toggle Bit Polling, two methods of  
providing early end of write detection. The X28VC256  
also supports the JEDEC standard Software Data Pro-  
tection feature for protecting against inadvertent writes  
during power-up and power-down.  
No Erase Before Write  
No Complex Programming Algorithms  
—No Overerase Problem  
Low Power CMOS:  
Active: 80mA  
Standby: 10mA  
Software Data Protection  
Protects Data Against System Level  
Inadvertent Writes  
High Speed Page Write Capability  
Endurance for the X28VC256 is specified as a minimum  
100,000 write cycles per byte and an inherent data  
retention of 100 years.  
Highly Reliable Direct Write Cell  
Endurance: 100,000 Write Cycles  
Data Retention: 100 Years  
Early End of Write Detection  
DATA Polling  
Toggle Bit Polling  
PIN CONFIGURATION  
PLASTIC DIP  
CERDIP  
FLAT PACK  
LCC  
PLCC  
SOIC  
TSOP  
A14  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
4
3
2
1
32 31 30  
29  
A
WE  
A
A
A
I/O  
I/O  
I/O  
1
2
3
4
5
6
7
8
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
A
A
A
A
A
A
A
NC  
V
NC  
WE  
12  
2
1
0
0
1
2
3
4
5
6
7
12  
14  
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
0
A
A
A
A
A
A
A
A
5
6
7
8
9
A
A
A
13  
6
5
4
3
2
1
0
8
A
8
A
9
28  
27  
26  
25  
24  
23  
22  
21  
9
11  
A
NC  
OE  
A
11  
NC  
X28VC256  
OE  
V
SS  
NC  
X28VC256  
X28VC256  
9
CC  
A
10  
11  
12  
13  
10  
10  
I/O  
10  
11  
12  
13  
14  
15  
16  
3
4
5
6
7
CE  
CE  
I/O  
I/O  
I/O  
I/O  
I/O  
A
A
A
A
13  
8
9
10  
11  
12  
13  
14  
I/O  
7
I/O  
6
I/O  
5
I/0  
4
NC  
I/O  
7
I/O  
0
I/O  
1
I/O  
2
I/O  
0
6
14 15 16 17 18 19 20  
CE  
11  
A
OE  
10  
V
I/O  
3
SS  
3869 FHD F03  
3869 ILL F22  
3869 FHD F02  
©Xicor, Inc. 1991, 1995 Patents Pending  
3869-2.6 4/2/96 T4/C4/D0 NS  
Characteristics subject to change without notice  
1
X28VC256  
PIN DESCRIPTIONS  
Addresses (A –A )  
PIN NAMES  
Symbol  
Description  
0
14  
The Address inputs select an 8-bit memory location  
during a read or write operation.  
A –A  
Address Inputs  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
0
14  
I/O –I/O  
0
7
WE  
CE  
OE  
Chip Enable (CE)  
The Chip Enable input must be LOW to enable all read/  
writeoperations.WhenCEisHIGH,powerconsumption  
is reduced.  
V
V
CC  
SS  
Ground  
Output Enable (OE)  
NC  
No Connect  
TheOutputEnableinputcontrolsthedataoutputbuffers  
and is used to initiate read operations.  
3869 PGM T01  
PIN CONFIGURATION  
Data In/Data Out (I/O –I/O )  
0
7
PGA  
DataiswrittentoorreadfromtheX28VC256throughthe  
I/O pins.  
I/O  
12  
I/O  
13  
I/O  
15  
I/O  
17  
I/O  
18  
1
2
3
5
6
I/O  
11  
A
10  
V
14  
I/O  
16  
I/O  
19  
0
0
SS  
4
7
Write Enable (WE)  
A
A
A
A
CE  
20  
A
21  
1
3
2
4
10  
11  
The Write Enable input controls the writing of data to the  
X28VC256.  
9
7
8
6
OE  
22  
A
23  
A
A
V
28  
A
24  
A
25  
5
6
12  
7
CC  
9
8
5
4
2
3
A
A
WE  
27  
A
13  
26  
A
14  
1
3869 FHD F04  
X28VC256  
(BOTTOM VIEW)  
FUNCTIONAL DIAGRAM  
256K-BIT  
E PROM  
ARRAY  
X BUFFERS  
LATCHES AND  
DECODER  
2
A –A  
0
14  
ADDRESS  
INPUTS  
I/O BUFFERS  
AND LATCHES  
Y BUFFERS  
LATCHES AND  
DECODER  
I/O –I/O  
0
7
DATA INPUTS/OUTPUTS  
CE  
OE  
WE  
CONTROL  
LOGIC AND  
TIMING  
V
CC  
3869 FHD F01  
V
SS  
2
X28VC256  
DEVICE OPERATION  
Read  
Write Operation Status Bits  
The X28VC256 provides the user two write operation  
status bits. These can be used to optimize a system write  
cycletime. ThestatusbitsaremappedontotheI/Obusas  
shown in Figure 1.  
Read operations are initiated by both OE and CE LOW.  
The read operation is terminated by either CE or OE  
returning HIGH. This two line control architecture elimi-  
natesbuscontentioninasystemenvironment. Thedata  
bus will be in a high impedance state when either OE or  
CE is HIGH.  
Figure 1. Status Bit Assignment  
I/O DP TB  
5
4
3
2
1
0
Write  
Write operations are initiated when bothCE and WE are  
LOW and OE is HIGH. The X28VC256 supports both a  
CE and WE controlled write cycle. That is, the address  
is latched by the falling edge of either CE or WE,  
whichever occurs last. Similarly, the data is latched  
internally by the rising edge of either CE or WE,  
whichever occurs first. A byte write operation, once  
initiated, will automatically continue to completion, typi-  
cally within 3ms.  
RESERVED  
TOGGLE BIT  
DATA POLLING  
3869 FHD F11  
DATA Polling (I/O )  
7
The X28VC256 features DATA Polling as a method to  
indicate to the host system that the byte write or page  
writecyclehascompleted.DATAPollingallowsasimple  
bit test operation to determine the status of the  
X28VC256, eliminating additional interrupt inputs or  
external hardware. During the internal programming  
cycle, any attempt to read the last byte written will  
Page Write Operation  
The page write feature of the X28VC256 allows the  
entire memory to be written in typically 0.8 seconds.  
Page write allows up to one hundred twenty-eight bytes  
of data to be consecutively written to the X28VC256  
prior to the commencement of the internal programming  
cycle. The host can fetch data from another device  
within the system during a page write operation (change  
produce the complement of that data on I/O (i.e., write  
data = 0xxx xxxx, read data = 1xxx xxxx). Once the  
7
programming cycle is complete, I/O will reflect true  
7
data.  
the source address), but the page address (A through  
7
A ) for each subsequent valid write cycle to the part  
14  
Toggle Bit (I/O )  
6
during this operation must be the same as the initial  
page address.  
The X28VC256 also provides another method for deter-  
mining when the internal write cycle is complete. During  
the internal programming cycle I/O will toggle from  
6
The page write mode can be initiated during any write  
operation. Following the initial byte write cycle, the host  
can write an additional one to one hundred twenty-  
seven bytes in the same manner as the first byte was  
written. Each successive byte load cycle, started by the  
WE HIGH to LOW transition, must begin within 100µs of  
the falling edge of the preceding WE. If a subsequent  
WE HIGH to LOW transition is not detected within  
100µs, the internal automatic programming cycle will  
commence. There is no page write window limitation.  
Effectively the page write window is infinitely wide, so  
long as the host continues to access the device within  
the byte load cycle time of 100µs.  
HIGH to LOW and LOW to HIGH on subsequent at-  
tempts to read the device. When the internal cycle is  
complete the toggling will cease and the device will be  
accessible for additional read and write operations.  
3
X28VC256  
DATA POLLING I/O  
7
Figure 2. DATA Polling Bus Sequence  
LAST  
WRITE  
WE  
CE  
OE  
V
IH  
V
HIGH Z  
OH  
I/O  
7
V
OL  
X28VC256  
READY  
A –A  
An  
An  
An  
An  
An  
An  
An  
0
14  
3869 FHD F12  
Figure 3. DATA Polling Software Flow  
DATA Polling can effectively halve the time for writing to  
the X28VC256. The timing diagram in Figure 2 illus-  
trates the sequence of events on the bus. The software  
flow diagram in Figure 3 illustrates one method of  
implementing the routine.  
WRITE DATA  
NO  
WRITES  
COMPLETE?  
YES  
SAVE LAST DATA  
AND ADDRESS  
READ LAST  
ADDRESS  
IO  
NO  
7
COMPARE?  
YES  
X28VC256  
READY  
3869 FHD F13  
4
X28VC256  
THE TOGGLE BIT I/O  
6
Figure 4. Toggle Bit Bus Sequence  
LAST  
WRITE  
WE  
CE  
OE  
V
OH  
HIGH Z  
I/O  
*
6
*
V
OL  
X28VC256  
READY  
* I/O beginning and ending state of I/O will vary.  
6
6
3869 FHD F14  
Figure 5. Toggle Bit Software Flow  
TheToggleBitcaneliminatethesoftwarehousekeeping  
chore of saving and fetching the last address and data  
written to a device in order to implement DATA Polling.  
This can be especially helpful in an array comprised of  
multiple X28VC256 memories that is frequently up-  
dated. The timing diagram in Figure 4 illustrates the  
sequence of events on the bus. The software flow  
diagram in Figure 5 illustrates a method for polling the  
Toggle Bit.  
LAST WRITE  
YES  
LOAD ACCUM  
FROM ADDR n  
COMPARE  
ACCUM WITH  
ADDR n  
NO  
COMPARE  
OK?  
YES  
X28VC256  
READY  
3869 FHD F15  
5
X28VC256  
HARDWARE DATA PROTECTION  
circuits by employing the software data protection fea-  
ture. The internal software data protection circuit is  
enabled after the first write operation utilizing the soft-  
warealgorithm. Thiscircuitisnonvolatileandwillremain  
set for the life of the device unless the reset command  
is issued.  
The X28VC256 provides two hardware features that  
protect nonvolatile data from inadvertent writes.  
Default V Sense—All write functions are inhibited  
CC  
when V is 3.5V typically.  
CC  
Write Inhibit—Holding either OE LOW, WE HIGH, or  
CE HIGH will prevent an inadvertent write cycle during  
power-up and power-down, maintaining data integrity.  
Once the software protection is enabled, the X28VC256  
is also protected from inadvertent and accidental writes  
in the powered-up state. That is, the software algorithm  
must be issued prior to writing additional data to the  
device.  
SOFTWARE DATA PROTECTION  
TheX28VC256offersasoftwarecontrolleddataprotec-  
tion feature. The X28VC256 is shipped from Xicor with  
thesoftwaredataprotectionNOTENABLED;thatis, the  
device will be in the standard operating mode. In this  
mode data should be protected during power-up/down  
operations through the use of external circuits. The host  
would then have open read and write access of the  
SOFTWARE ALGORITHM  
Selecting the software data protection mode requires  
the host system to precede data write operations by a  
series of three write operations to three specific ad-  
dresses. Refer to Figure 6 and 7 for the sequence. The  
three-byte sequence opens the page write window  
enabling the host to write from one to one hundred  
twenty-eightbytesofdata.Oncethepageloadcyclehas  
been completed, the device will automatically be re-  
turned to the data protected state.  
device once V was stable.  
CC  
The X28VC256 can be automatically protected during  
power-upandpower-downwithouttheneedforexternal  
6
X28VC256  
SOFTWARE DATA PROTECTION  
Figure 6. Timing Sequence—Byte or Page Write  
V
(V  
)
CC  
CC  
0V  
DATA  
ADDRESS  
AA  
5555  
55  
2AAA  
A0  
5555  
t
WRITE  
PROTECTED  
WC  
WRITES  
OK  
CE  
t  
BYTE  
OR  
PAGE  
BLC MAX  
WE  
3869 FHD F16  
Figure 7. Write Sequence for  
Software Data Protection  
Regardless of whether the device has previously been  
protected or not, once the software data protection  
algorithm is used and data has been written, the  
X28VC256 will automatically disable further writes un-  
less another command is issued to cancel it. If no further  
commands are issued the X28VC256 will be write  
protected during power-down and after any subsequent  
power-up.  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
Note: Onceinitiated,thesequenceofwriteoperations  
should not be interrupted.  
WRITE DATA A0  
TO ADDRESS  
5555  
BYTE/PAGE  
LOAD ENABLED  
WRITE DATA XX  
TO ANY  
ADDRESS  
OPTIONAL  
BYTE OR  
PAGE WRITE  
ALLOWED  
WRITE LAST  
BYTE TO  
LAST ADDRESS  
AFTER t  
RE-ENTERS DATA  
WC  
PROTECTED STATE  
3869 FHD F17  
7
X28VC256  
RESETTING SOFTWARE DATA PROTECTION  
Figure 8. Reset Software Data Protection Timing Sequence  
V
CC  
DATA  
ADDRESS  
STANDARD  
OPERATING  
MODE  
t
AA  
5555  
55  
2AAA  
80  
5555  
AA  
5555  
55  
2AAA  
20  
5555  
WC  
CE  
WE  
3869 FHD F18  
Figure 9. Write Sequence for Resetting  
Software Data Protection  
In the event the user wants to deactivate the software  
data protection feature for testing or reprogramming in  
an E PROM programmer, the following six step algo-  
WRITE DATA AA  
TO ADDRESS  
5555  
2
rithm will reset the internal protection circuit. After t  
the X28VC256 will be in standard operating mode.  
,
WC  
WRITE DATA 55  
TO ADDRESS  
2AAA  
Note: Onceinitiated,thesequenceofwriteoperations  
should not be interrupted.  
WRITE DATA 80  
TO ADDRESS  
5555  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
WRITE DATA 20  
TO ADDRESS  
5555  
AFTER t  
,
WC  
RE-ENTERS  
UNPROTECTED  
STATE  
3869 FHD F19  
8
X28VC256  
SYSTEM CONSIDERATIONS  
prime concern. Enabling CE will cause transient current  
spikes. The magnitude of these spikes is dependent on  
the output capacitive loading of the l/Os. Therefore, the  
larger the array sharing a common bus, the larger the  
transient spikes. The voltage peaks associated with the  
current transients can be suppressed by the proper  
selection and placement of decoupling capacitors. As a  
minimum, it is recommended that a 0.1µF high fre-  
Because the X28VC256 is frequently used in large  
memory arrays it is provided with a two line control  
architecture for both read and write operations. Proper  
usagecanprovidethelowestpossiblepowerdissipation  
and eliminate the possibility of contention where mul-  
tiple I/O pins share the same bus.  
quency ceramic capacitor be used between V  
and  
To gain the most benefit it is recommended that CE be  
decoded from the address bus and be used as the  
primary device selection input. Both OE and WE would  
then be common among all devices in the array. For a  
read operation this assures that all deselected devices  
are in their standby mode and that only the selected  
device(s) is outputting data on the bus.  
CC  
V
SS  
at each device. Depending on the size of the array,  
the value of the capacitor may have to be larger.  
In addition, it is recommended that a 4.7µF electrolytic  
bulk capacitor be placed between V and V for each  
CC  
SS  
eight devices employed in the array. This bulk capacitor  
is employed to overcome the voltage droop caused by  
the inductive effects of the PC board traces.  
BecausetheX28VC256hastwopowermodes, standby  
and active, proper decoupling of the memory array is of  
9
X28VC256  
ABSOLUTE MAXIMUM RATINGS*  
*COMMENT  
Temperature under Bias  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and the functional operation of  
the device at these or any other conditions above those  
indicatedintheoperationalsectionsofthisspecificationis  
not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
X28VC256 .................................. –10°C to +85°C  
X28VC256I, X28VC256M .......... –65°C to +135°C  
Storage Temperature ....................... –65°C to +150°C  
Voltage on any Pin with  
Respect to V  
.................................. –1V to +7V  
SS  
D.C. Output Current ........................................... 10mA  
Lead Temperature (Soldering, 10 seconds)...... 300°C  
RECOMMENDED OPERATING CONDITIONS  
Temperature  
Min.  
Max.  
Supply Voltage  
Limits  
Commercial  
Industrial  
Military  
0°C  
+70°C  
+85°C  
+125°C  
X28VC256  
5V ±10%  
3869 PGM T03.1  
–40°C  
–55°C  
3869 PGM T02.1  
D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)  
Limits  
(1)  
Symbol  
Parameter  
Min. Typ.  
Max.  
Units  
Test Conditions  
CE = OE = V , WE = V ,  
All I/O’s = Open, Address Inputs =  
0.4V/2.4V Levels @ f = 10MHz  
I
V
V
Active Current  
30  
80  
mA  
CC  
CC  
IL  
IH  
I
SB  
Standby Current  
10  
25  
mA  
CE = V , OE = V , All I/O’s =  
IH IL  
CC  
Open, Other Inputs = V  
IH  
I
I
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
10  
10  
µA  
µA  
V
V
V
= V to V  
SS CC  
LI  
IN  
= V to V , CE = V  
LO  
OUT  
SS  
CC  
IH  
(2)  
V
V
V
V
–1  
2
0.8  
lL  
(2)  
Input HIGH Voltage  
Output LOW Voltage  
Output HIGH Voltage  
V
+ 1  
CC  
V
IH  
0.4  
V
I = 6mA  
OL  
OL  
OH  
2.4  
V
I = –4mA  
OH  
3869 PGM T04.2  
Notes: (1) Typical values are for T = 25°C and nominal supply voltage.  
A
(2) V min. and V max. are for reference only and are not tested.  
IL IH  
10  
X28VC256  
POWER-UP TIMING  
Symbol  
Parameter  
Max.  
Units  
(3)  
t
Power-Up to Read  
Power-Up to Write  
100  
5
µs  
PUR  
(3)  
t
ms  
PUW  
3869 PGM T05  
CAPACITANCE T = +25°C, f = 1MHZ, V = 5V.  
A
CC  
Symbol  
Test  
Max.  
Units  
Conditions  
(3)  
C
C
Input/Output Capacitance  
Input Capacitance  
10  
6
pF  
pF  
V
= 0V  
= 0V  
I/O  
I/O  
(3)  
V
IN  
IN  
3869 PGM T06.1  
ENDURANCE AND DATA RETENTION  
Parameter  
Min.  
Max.  
Units  
Endurance  
100,000  
100  
Cycles  
Years  
Data Retention  
3869 PGM T07.3  
A.C. CONDITIONS OF TEST  
MODE SELECTION  
Input Pulse Levels  
0V to 3V  
CE  
OE  
WE  
Mode  
I/O  
Power  
Input Rise and  
Fall Times  
L
L
L
H
X
L
H
L
Read  
Write  
D
Active  
Active  
OUT  
5ns  
D
IN  
Input and Output  
Timing Levels  
H
X
X
X
X
H
Standby and Write Inhibit  
Write Inhibit  
High Z Standby  
1.5V  
3869 PGM T08.1  
X
Write Inhibit  
3869 PGM T09  
Note: (3) This parameter is periodically sampled and not 100%  
tested.  
SYMBOL TABLE  
EQUIVALENT A.C. LOAD CIRCUIT  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
5V  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
1.92K  
OUTPUT  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
1.37KΩ  
30pF  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
3869 FHD F20.3  
11  
X28VC256  
A.C. CHARACTERISTICS (Over the recommended operating conditions, unless otherwise specified.)  
Read Cycle Limits  
X28VC256-45 X28VC256-55 X28VC256-70 X28VC256-90  
–40°C to 85°C –55°C to 125°C –55°C to 125°C –55°C to 125°C  
Symbol  
Parameter  
Read Cycle Time  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
t
t
t
t
t
t
t
t
t
45  
55  
70  
90  
ns  
90  
90  
40  
RC  
CE  
AA  
OE  
LZ  
Chip Enable Access Time  
Address Access Time  
45  
45  
30  
55  
55  
30  
70  
70  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time  
CE LOW to Active Output  
OE LOW to Active Output  
CE HIGH to High Z Output  
OE HIGH to High Z Output  
Output Hold From Address Change  
(4)  
0
0
0
0
0
0
0
0
(4)  
OLZ  
(4)  
30  
30  
30  
30  
35  
35  
40  
40  
HZ  
(4)  
OHZ  
OH  
0
0
0
0
3869 PGM T10.1  
Read Cycle  
t
RC  
ADDRESS  
CE  
t
CE  
t
OE  
OE  
V
IH  
WE  
t
t
OLZ  
OHZ  
t
t
t
LZ  
OH  
HZ  
HIGH Z  
DATA I/O  
DATA VALID  
DATA VALID  
t
AA  
3869 FHD F05  
Notes: (4)  
t
LZ  
min., t , t  
HZ OLZ  
min. and t  
OHZ  
are periodically sampled and not 100% tested, t and t are measured, with CL = 5pF,  
HZ OHZ  
from the point whin CE, OE return HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
12  
X28VC256  
Write Cycle Limits  
(5)  
Symbol  
Parameter  
Write Cycle Time  
Min.  
Typ.  
Max.  
Units  
(6)  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
3
5
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
WC  
Address Setup Time  
Address Hold Time  
Write Setup Time  
0
50  
0
AS  
AH  
CS  
Write Hold Time  
0
CH  
CE Pulse Width  
50  
0
CW  
OES  
OEH  
WP  
WPH  
DV  
OE HIGH Setup Time  
OE HIGH Hold Time  
WE Pulse Width  
WE HIGH Recovery (page write only)  
Data Valid  
0
50  
50  
(7)  
1
Data Setup  
50  
0
DS  
Data Hold  
DH  
(7)  
Delay to Next Write after Polling is True  
Byte Load Cycle  
10  
DW  
0.150  
100  
µs  
BLC  
3869 PGM T11.2  
WE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AS  
AH  
t
t
CS  
CH  
CE  
OE  
t
t
OES  
OEH  
t
WP  
WE  
DATA IN  
DATA OUT  
DATA VALID  
t
t
DS  
DH  
HIGH Z  
3869 FHD F06  
Notes: (5) Typical values are for T = 25°C and nominal supply voltage.  
A
(6) t  
is the minimum cycle time to be allowed from the system perspective unless polling techniques are used. It is the maximum  
WC  
time the device requires to automatically complete the internal write operation.  
(7) t and t are periodically sampled and not 100% tested.  
WPH  
DW  
13  
X28VC256  
CE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
CW  
CE  
t
t
OES  
OEH  
OE  
t
t
CH  
CS  
WE  
DATA IN  
DATA VALID  
t
t
DH  
DS  
HIGH Z  
DATA OUT  
3869 FHD F07  
Page Write Cycle  
OE(8)  
CE  
t
t
WP  
BLC  
WE  
t
WPH  
ADDRESS*(9)  
I/O  
LAST BYTE  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE n  
BYTE n+1  
BYTE n+2  
t
WC  
*For each successive write within the page write operation, A –A should be the same or  
14  
7
writes to an unknown address could occur.  
3869 FHD F08  
Notes: (8) Between successive byte writes within a page write operation, OE can be strobed LOW: e.g. this can be done with CE and WE  
HIGH to fetch data from another memory device within the system for the next write; or with WE HIGH and CE LOW effectively  
performing a polling operation.  
(9) The timings shown above are unique to page write operations. Individual byte load operations within the page write must conform  
to either the CE or WE controlled write cycle timing.  
14  
X28VC256  
DATA Polling Timing Diagram(10)  
A
A
A
N
ADDRESS  
CE  
N
N
WE  
t
t
OES  
OEH  
OE  
t
DW  
=X  
D
=X  
D
=X  
D
I/O  
7
IN  
OUT  
OUT  
t
WC  
3869 FHD F09  
Toggle Bit Timing Diagram(10)  
CE  
WE  
t
t
OES  
OEH  
OE  
t
DW  
HIGH Z  
I/O  
6
*
*
t
WC  
* I/O beginning and ending state will vary, depending upon actual t  
WC  
6
3869 FHD F10  
Note: (10) Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
15  
X28VC256  
PACKAGING INFORMATION  
28-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P  
1.460 (37.08)  
1.400 (35.56)  
0.550 (13.97)  
0.510 (12.95)  
PIN 1 INDEX  
PIN 1  
0.085 (2.16)  
0.040 (1.02)  
1.300 (33.02)  
REF.  
0.160 (4.06)  
0.125 (3.17)  
SEATING  
PLANE  
0.030 (0.76)  
0.015 (0.38)  
0.150 (3.81)  
0.125 (3.17)  
0.110 (2.79)  
0.090 (2.29)  
0.062 (1.57)  
0.050 (1.27)  
0.020 (0.51)  
0.016 (0.41)  
0.610 (15.49)  
0.590 (14.99)  
0°  
15°  
TYP. 0.010 (0.25)  
3926 FHD F04  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
16  
X28VC256  
PACKAGING INFORMATION  
28-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE D  
1.490 (37.85) MAX.  
0.610 (15.49)  
0.500 (12.70)  
PIN 1  
0.005 (0.127) MIN.  
0.100 (2.54) MAX.  
SEATING  
PLANE  
0.232 (5.90) MAX.  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
0.150 (3.81) MIN.  
0.125 (3.18)  
0.110 (2.79)  
0.090 (2.29)  
0.065 (1.65)  
0.038 (0.97)  
0.023 (0.58)  
0.014 (0.36)  
TYP. 0.100 (2.54)  
TYP. 0.055 (1.40)  
TYP. 0.018 (0.46)  
0.620 (15.75)  
0.590 (14.99)  
TYP. 0.614 (15.60)  
0°  
0.015 (0.38)  
0.008 (0.20)  
15°  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F08  
17  
X28VC256  
PACKAGING INFORMATION  
32-LEAD PLASTIC LEADED CHIP CARRIER PACKAGE TYPE J  
0.420 (10.67)  
0.050 (1.27) TYP.  
0.021 (0.53)  
0.013 (0.33)  
TYP. 0.017 (0.43)  
SEATING PLANE  
±0.004 LEAD  
CO – PLANARITY  
0.045 (1.14) x 45°  
0.015 (0.38)  
0.095 (2.41)  
0.495 (12.57)  
0.485 (12.32)  
TYP. 0.490 (12.45)  
0.060 (1.52)  
0.140 (3.56)  
0.453 (11.51)  
0.100 (2.45)  
TYP. 0.136 (3.45)  
0.447 (11.35)  
TYP. 0.450 (11.43)  
0.048 (1.22)  
0.042 (1.07)  
0.300 (7.62)  
REF.  
PIN 1  
0.595 (15.11)  
0.585 (14.86)  
TYP. 0.590 (14.99)  
0.553 (14.05)  
0.547 (13.89)  
TYP. 0.550 (13.97)  
0.400  
REF.  
(10.16)  
3° TYP.  
3926 FHD F13  
3926 Fhd F13  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. DIMENSIONS WITH NO TOLERANCE FOR REFERENCE ONLY  
18  
X28VC256  
PACKAGING INFORMATION  
28-LEAD PLASTIC SMALL OUTLINE GULL WING PACKAGE TYPE S  
0.2980 (7.5692) 0.4160 (10.5664)  
0.2920 (7.4168) 0.3980 (10.1092)  
0.0192 (0.4877)  
0.0138 (0.3505)  
0.7080 (17.9832)  
0.7020 (17.8308)  
0.1040 (2.6416)  
0.0940 (2.3876)  
BASE PLANE  
SEATING PLANE  
0.0110 (0.2794)  
0.050 (1.270)  
BSC  
0.0040 (0.1016)  
0.0160 (0.4064)  
0.0100 (0.2540)  
X 45°  
0.0125 (0.3175)  
0.0090 (0.2311)  
0° – 8°  
0.0350 (0.8890)  
0.0160 (0.4064)  
3926 FHD F17  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. FORMED LEAD SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN 0.004 INCHES  
3. BACK EJECTOR PIN MARKED “KOREA”  
4. CONTROLLING DIMENSION: INCHES (MM)  
19  
X28VC256  
PACKAGING INFORMATION  
32-PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE TYPE E  
0.300 (7.62)  
BSC  
0.150 (3.81) BSC  
0.020 (0.51) x 45° REF.  
0.015 (0.38)  
0.003 (0.08)  
0.095 (2.41)  
0.075 (1.91)  
PIN 1  
0.022 (0.56)  
DIA.  
0.006 (0.15)  
0.055 (1.39)  
0.200 (5.08)  
BSC  
0.045 (1.14)  
TYP. (4) PLCS.  
0.015 (0.38)  
MIN.  
0.028 (0.71)  
0.040 (1.02) x 45° REF.  
0.022 (0.56)  
(32) PLCS.  
TYP. (3) PLCS.  
0.050 (1.27) BSC  
0.458 (11.63)  
0.088 (2.24)  
0.050 (1.27)  
0.442 (11.22)  
0.120 (3.05)  
0.458 (11.63)  
––  
0.060 (1.52)  
0.558 (14.17)  
––  
0.560 (14.22)  
0.540 (13.71)  
0.400 (10.16)  
BSC  
PIN 1 INDEX CORNER  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. TOLERANCE: ±1% NLT ±0.005 (0.127)  
3926 FHD F14  
20  
X28VC256  
PACKAGING INFORMATION  
28-LEAD CERAMIC PIN GRID ARRAY PACKAGE TYPE K  
12  
11  
9
13  
10  
8
15  
14  
17  
16  
20  
22  
24  
27  
18  
19  
21  
23  
25  
26  
A
A
0.008 (0.20)  
0.050 (1.27)  
7
6
5
2
28  
1
NOTE: LEADS 4,12,18 & 26  
4
3
0.080 (2.03)  
0.070 (1.78)  
TYP. 0.100 (2.54)  
ALL LEADS  
4 CORNERS  
0.080 (2.03)  
0.070 (1.78)  
0.110 (2.79)  
0.080 (2.03)  
0.072 (1.83)  
0.061 (1.55)  
PIN 1 INDEX  
0.020 (0.51)  
0.016 (0.41)  
0.660 (16.76)  
0.640 (16.26)  
A
A
0.185 (4.70)  
0.175 (4.44)  
0.561 (14.25)  
0.541 (13.75)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F15  
21  
X28VC256  
PACKAGING INFORMATION  
28-LEAD CERAMIC FLAT PACK TYPE F  
0.019 (0.48)  
0.015 (0.38)  
PIN 1 INDEX  
1
28  
0.050 (1.27) BSC  
0.740 (18.80)  
MAX.  
0.045 (1.14) MAX.  
0.440 (11.18)  
MAX.  
0.130 (3.30)  
0.090 (2.29)  
0.006 (0.15)  
0.003 (0.08)  
0.370 (9.40)  
0.250 (6.35)  
0.045 (1.14)  
0.025 (0.66)  
TYP. 0.300 2 PLCS.  
0.180 (4.57)  
MIN.  
0.030 (0.76)  
MIN.  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F16  
22  
X28VC256  
PACKAGING INFORMATION  
32-LEAD THIN SMALL OUTLINE PACKAGE (TSOP) TYPE T  
SEE NOTE 2  
12.50 (0.492)  
12.30 (0.484)  
PIN #1 IDENT.  
O 0.76 (0.03)  
0.50 (0.0197) BSC  
SEE NOTE 2  
8.02 (0.315)  
7.98 (0.314)  
0.26 (0.010)  
0.14 (0.006)  
1.18 (0.046)  
1.02 (0.040)  
0.17 (0.007)  
0.03 (0.001)  
SEATING  
PLANE  
0.58 (0.023)  
0.42 (0.017)  
14.15 (0.557)  
13.83 (0.544)  
14.80 ± 0.05  
(0.583 ± 0.002)  
0.30 ± 0.05  
(0.012 ± 0.002)  
SOLDER PADS  
TYPICAL  
32 PLACES  
15 EQ. SPC. 0.50 ± 0.04  
0.0197 ± 0.016 = 7.50 ± 0.06  
(0.295 ± 0.0024) OVERALL  
TOL. NON-CUMULATIVE  
0.17 (0.007)  
0.03 (0.001)  
0.50 ± 0.04  
(0.0197 ± 0.0016)  
1.30 ± 0.05  
(0.051 ± 0.002)  
FOOTPRINT  
NOTE:  
1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES IN PARENTHESES).  
3926 ILL F38.1  
23  
X28VC256  
ORDERING INFORMATION  
X28VC256  
X
X
-X  
Access Time  
–45 = 45ns  
–55 = 55ns  
–70 = 70ns  
–90 = 90ns  
Device  
Temperature Range  
Blank = Commercial = 0°C to +70°C  
I = Industrial = –40°C to +85°C  
M = Military = –55°C to +125°C  
MB = MIL-STD-883  
Package  
P = 28-Lead Plastic DIP  
D = 28-Lead Cerdip  
J = 32-Lead PLCC  
S = 28-Lead Plastic SOIC  
E = 32-Pad LCC  
K = 28-Lead Pin Grid Array  
F = 28-Lead Flat Pack  
T = 32-Lead TSOP  
LIMITED WARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty,  
express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement.  
Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and  
prices at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, licenses are  
implied.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481; 4,404,475;  
4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829, 482; 4,874, 967; 4,883, 976. Foreign patents and  
additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error  
detection and correction, redundancy and back-up features to prevent such an occurrence.  
Xicor's products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
24  

相关型号:

X28VC256JMB-90

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256K-45

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256K-55

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256K-70

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256K-90

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256KI-45

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256KI-55

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256KI-70

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256KI-90

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256KM-45

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256KM-55

5 Volt, Byte Alterable E2PROM
XICOR

X28VC256KM-70

5 Volt, Byte Alterable E2PROM
XICOR