X9250US24I-2.7T2 [XICOR]

Digital Potentiometer, 4 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PDSO24, PLASTIC, SOIC-24;
X9250US24I-2.7T2
型号: X9250US24I-2.7T2
厂家: XICOR INC.    XICOR INC.
描述:

Digital Potentiometer, 4 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PDSO24, PLASTIC, SOIC-24

光电二极管
文件: 总21页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APPLICATION NOTE  
A V A I L A B L E  
AN99 • AN115 • AN120 • AN124 • AN133 • AN134 • AN135  
Low Noise/Low Power/SPI Bus/256 Taps  
X9250  
Quad Digitally Controlled Potentiometers (XDCP)  
FEATURES  
DESCRIPTION  
• Four potentiometers in one package  
• 256 resistor taps/pot–0.4% resolution  
• SPI serial interface  
The X9250 integrates  
potentiometers (XDCP) on a monolithic CMOS  
integrated circuit.  
4
digitally controlled  
• Wiper resistance, 40typical @ V  
= 5V  
CC  
The digitally controlled potentiometer is implemented  
using 255 resistive elements in a series array.  
Between each element are tap points connected to  
the wiper terminal through switches. The position of  
the wiper on the array is controlled by the user through  
the SPI bus interface. Each potentiometer has  
associated with it a volatile Wiper Counter Register  
(WCR) and 4 nonvolatile Data Registers (DR0:DR3)  
that can be directly written to and read by the user.  
The contents of the WCR controls the position of the  
wiper on the resistor array though the switches. Power  
up recalls the contents of DR0 to the WCR.  
• Four nonvolatile data registers for each pot  
• Nonvolatile storage of wiper position  
• Standby current < 5µA max (total package)  
• Power supplies  
—V  
= 2.7V to 5.5V  
CC  
—V+ = 2.7V to 5.5V  
—V– = -2.7V to -5.5V  
• 100K, 50Ktotal pot resistance  
• High reliability  
—Endurance – 100,000 data changes per bit per  
register  
—Register data retention – 100 years  
• 24-lead SOIC, 24-lead TSSOP, 24-lead CSP (Chip  
Scale Package)  
The XDCP can be used as a three-terminal  
potentiometer or as a two-terminal variable resistor in  
a wide variety of applications including control,  
parameter adjustments, and signal processing.  
• Dual supply version of X9251  
BLOCK DIAGRAM  
V
V
V+  
V-  
CC  
Pot 0  
SS  
R
R
R
R
V /R  
H0 H0  
R
R
R
R
0
2
1
3
0
2
1
3
Wiper  
V
/R  
Wiper  
Counter  
Register  
(WCR)  
H2 H2  
Resistor  
Array  
Pot 2  
Counter  
Register  
(WCR)  
V
/R  
L0 L0  
HOLD  
V
/R  
L2 L2  
CS  
SCK  
SO  
V
V
/R  
W0 W0  
V
/R  
W2 W2  
Interface  
and  
Control  
SI  
8
Circuitry  
A0  
A1  
/R  
W1 W1  
Data  
V
V
/R  
W3 W3  
WP  
R
R
R
R
0
2
1
3
R
R
R
R
V
/R  
Wiper  
Counter  
Register  
(WCR)  
0
2
1
3
H1 H1  
/R  
Wiper  
Counter  
Register  
(WCR)  
H3 H3  
Resistor  
Array  
Pot1  
Resistor  
Array  
Pot 3  
V
/R  
L1 L1  
V
/R  
L3 H3  
Characteristics subject to change without notice. 1 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
PIN DESCRIPTIONS  
Serial Output (SO)  
V /R (V /R –V /R  
)
W
W
W0 W0 W3 W3  
The wiper pins are equivalent to the wiper terminal of  
a mechanical potentiometer.  
SO is a serial data output pin. During a read cycle,  
data is shifted out on this pin. Data is clocked out by  
the falling edge of the serial clock.  
Hardware Write Protect Input (WP)  
Serial Input  
The WP pin when LOW prevents nonvolatile writes to  
the Data Registers.  
SI is the serial data input pin. All opcodes, byte  
addresses and data to be written to the pots and pot  
registers are input on this pin. Data is latched by the  
rising edge of the serial clock.  
Analog Supplies (V+, V-)  
The analog supplies V+, V- are the supply voltages for  
the XDCP analog section.  
Serial Clock (SCK)  
The SCK input is used to clock data into and out of the  
X9250.  
PIN CONFIGURATION  
SOIC/TSSOP  
Chip Select (CS)  
When CS is HIGH, the X9250 is deselected and the  
SO pin is at high impedance, and (unless an internal  
write cycle is underway) the device will be in the  
standby state. CS LOW enables the X9250, placing it  
in the active power mode. It should be noted that after  
a power-up, a HIGH to LOW transition on CS is  
required prior to the start of any operation.  
S0  
A0  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
HOLD  
SCK  
V
/R  
3
V
V
V
/R  
W3 W3  
L2 L2  
V
/R  
4
/R  
H3 H3  
H2 L2  
/R  
5
V
/R  
W2 W2  
L3 L3  
V–  
V+  
6
X9250  
V
7
V
V
V
CC  
SS  
V
/R  
/R  
8
L0 L0  
Hold (HOLD)  
W1 W1  
/R  
V
/R  
9
H1 H1  
H0 H0  
HOLD is used in conjunction with the CS pin to select  
the device. Once the part is selected and a serial  
sequence is underway, HOLD may be used to pause  
the serial communication with the controller without  
resetting the serial sequence. To pause, HOLD must  
be brought LOW while SCK is LOW. To resume  
communication, HOLD is brought HIGH, again while  
SCK is LOW. If the pause feature is not used, HOLD  
should be held HIGH at all times.  
V
/R  
10  
V
/R  
W0 W0  
L1 L1  
CS  
11  
12  
14  
13  
A1  
SI  
WP  
CSP  
2
1
3
4
A
R
R
L1  
CS  
W0  
1
A
B
C
D
E
F
R
R
SI  
W1  
Device Address (A A )  
L0 WP  
0
1
The address inputs are used to set the least significant  
2 bits of the 8-bit slave address. A match in the slave  
address serial data stream must be made with the  
address input in order to initiate communication with  
the X9250. A maximum of 4 devices may occupy the  
SPI serial bus.  
V
R
H0  
R V  
H1 SS  
CC  
R
R
V+  
R
V-  
H2  
H3  
SO HOLDR  
L3  
W2  
L2  
R
A SCK R  
0
W3  
Potentiometer Pins  
Top View–Bumps Down  
V /R (V /R –V /R ), V /R (V /R –V /R )  
H
H
H0 H0 H3 H3  
L
L
L0 L0 L3 L3  
The R and R pins are equivalent to the terminal  
H
L
connections on a mechanical potentiometer.  
Characteristics subject to change without notice. 2 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
PIN NAMES  
Wiper Counter Register (WCR)  
The X9250 contains four Wiper Counter Registers,  
one for each XDCP potentiometer. The WCR is  
equivalent to a serial-in, parallel-out register/counter  
with its outputs decoded to select one of 256 switches  
along its resistor array. The contents of the WCR can  
be altered in four ways: it may be written directly by the  
host via the write Wiper Counter Register instruction  
(serial load); it may be written indirectly by transferring  
the contents of one of four associated Data Registers  
via the XFR Data Register or Global XFR Data  
Register instructions (parallel load); it can be modified  
one step at a time by the increment/decrement  
instruction. Finally, it is loaded with the contents of its  
Data Register zero (DR0) upon power-up.  
Symbol  
Description  
Serial Clock  
SCK  
SI, SO  
Serial Data  
A -A  
Device Address  
0
1
V
V
/R  
/R  
V
/R  
,
Potentiometer Pins  
(terminal equivalent)  
H0 H0– H3 H3  
V /R  
L0 L0– L3 L3  
V
/R  
V
/R  
Potentiometer Pins  
(wiper equivalent)  
W0 W0– W3 W3  
WP  
Hardware Write Protection  
Analog Supplies  
V+,V-  
V
System Supply Voltage  
System Ground  
CC  
V
SS  
The Wiper Counter Register is a volatile register; that  
is, its contents are lost when the X9250 is powered-  
down. Although the register is automatically loaded  
with the value in R0 upon power-up, this may be  
different from the value present at power-down.  
NC  
No Connection  
DEVICE DESCRIPTION  
Serial Interface  
Data Registers  
The X9250 supports the SPI interface hardware  
conventions. The device is accessed via the SI input  
with data clocked in on the rising SCK. CS must be  
LOW and the HOLD and WP pins must be HIGH  
during the entire operation.  
Each potentiometer has four 8-bit nonvolatile Data  
Registers. These can be read or written directly by the  
host. Data can also be transferred between any of the  
four Data Registers and the associated Wiper Counter  
Register. All operations changing data in one of the  
Data Registers is a nonvolatile operation and will take  
a maximum of 10ms.  
The SO and SI pins can be connected together, since  
they have three state outputs. This can help to reduce  
system pin count.  
If the application does not require storage of multiple  
settings for the potentiometer, the Data Registers can  
be used as regular memory locations for system  
parameters or user preference data.  
Array Description  
The X9250 is comprised of four resistor arrays. Each  
array contains 255 discrete resistive segments that are  
connected in series. The physical ends of each array  
are equivalent to the fixed terminals of a mechanical  
Data Register Detail  
potentiometer (V /R and V /R inputs).  
H
H
L
L
(MSB)  
D7  
(LSB)  
D0  
D6  
D5  
D4  
NV  
D3  
NV  
D2  
NV  
D1  
NV  
At both ends of each array and between each resistor  
segment is a CMOS switch connected to the wiper  
NV  
NV NV  
NV  
(V /R ) output. Within each individual array only one  
W
W
switch may be turned on at a time.  
These switches are controlled by a Wiper Counter  
Register (WCR). The 8 bits of the WCR are decoded  
to select, and enable, one of 256 switches.  
Characteristics subject to change without notice. 3 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
Figure 1. Detailed Potentiometer Block Diagram  
(One of Four Arrays)  
Serial Data Path  
V /R  
H H  
Serial  
Bus  
Input  
From Interface  
Circuitry  
C
o
u
n
t
Register 0  
Register 2  
Register 1  
8
8
Parallel  
Bus  
Input  
e
r
Wiper  
Counter  
Register  
(WCR)  
D
e
c
o
d
e
Register 3  
Inc/Dec  
Logic  
If WCR = 00[H] then V /R = V /R  
L
W
W
L
UP/DN  
UP/DN  
If WCR = FF[H] then V /R = V /R  
H
W
W
H
V /R  
L
L
Modified SCK  
CLK  
V
/R  
W
W
Write in Process  
Figure 2. Identification Byte Format  
The contents of the Data Registers are saved to  
nonvolatile memory when the CS pin goes from LOW  
to HIGH after a complete write sequence is received  
by the device. The progress of this internal write  
operation can be monitored by a write in process bit  
(WIP). The WIP bit is read with a read status  
command.  
Device Type  
Identifier  
0
1
0
1
0
0
A1  
A0  
Device Address  
INSTRUCTIONS  
Instruction Byte  
The next byte sent to the X9250 contains the  
instruction and register pointer information. The four  
most significant bits are the instruction. The next four  
bits point to one of the four pots and, when applicable,  
they point to one of four associated registers. The  
format is shown below in Figure 3.  
Identification (ID) Byte  
The first byte sent to the X9250 from the host,  
following a CS going HIGH to LOW, is called the  
Identification byte. The most significant four bits of the  
slave address are a device type identifier, for the  
X9250 this is fixed as 0101[B] (refer to Figure 2).  
Figure 3. Instruction Byte Format  
The two least significant bits in the ID byte select one  
of four devices on the bus. The physical device  
address is defined by the state of the A -A input pins.  
Register  
Select  
0
1
The X9250 compares the serial data stream with the  
address input state; a successful compare of both  
address bits is required for the X9250 to successfully  
I3  
I2  
I1  
I0  
R1 R0  
P1  
P0  
continue the command sequence. The A –A inputs  
0
1
can be actively driven by CMOS input signals or tied to  
or V  
Instructions  
Pot Select  
V
.
SS  
CC  
The remaining two bits in the slave byte must be set to 0.  
Characteristics subject to change without notice. 4 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
The four high order bits of the instruction byte specify  
Five instructions require a three-byte sequence to  
complete. These instructions transfer data between the  
host and the X9250; either between the host and one of  
the data registers or directly between the host and the  
Wiper Counter Register.These instructions are:  
the operation. The next two bits (R and R ) select one  
1
0
of the four registers that is to be acted upon when a  
register oriented instruction is issued. The last two bits  
(P1 and P ) selects which one of the four  
0
potentiometers is to be affected by the instruction.  
– Read Wiper Counter Register—read the current  
wiper position of the selected pot,  
Four of the ten instructions are two bytes in length and  
end with the transmission of the instruction byte. These  
instructions are:  
– Write Wiper Counter Register—change current wiper  
position of the selected pot,  
– XFR Data Register to Wiper Counter Register—This  
transfers the contents of one specified Data Register  
to the associated Wiper Counter Register.  
– Read Data Register—read the contents of the  
selected data register;  
– Write Data Register—write a new value to the  
selected data register.  
– XFR Wiper Counter Register to Data Register—This  
transfers the contents of the specified Wiper Counter  
Register to the specified associated Data Register.  
– Read Status—This command returns the contents of  
the WIP bit which indicates if the internal write cycle  
is in progress.  
– Global XFR Data Register to Wiper Counter Register—  
This transfers the contents of all specified Data Reg-  
isters to the associated Wiper Counter Registers.  
The sequence of these operations is shown in Figure 5  
and Figure 6.  
– Global XFR Wiper Counter Register to Data Register—  
This transfers the contents of all Wiper Counter Reg-  
isters to the specified associated Data Registers.  
The final command is Increment/Decrement. It is  
different from the other commands, because it’s length  
is indeterminate. Once the command is issued, the  
master can clock the selected wiper up and/or down in  
one resistor segment steps; thereby, providing a fine  
tuning capability to the host. For each SCK clock pulse  
The basic sequence of the two byte instructions is  
illustrated in Figure 4. These two-byte instructions  
exchange data between the WCR and one of the Data  
Registers. A transfer from a Data Register to a WCR is  
essentially a write to a static RAM, with the static RAM  
controlling the wiper position.The response of the wiper  
(t  
) while SI is HIGH, the selected wiper will move  
HIGH  
one resistor segment towards the V /R terminal.  
H
H
Similarly, for each SCK clock pulse while SI is LOW, the  
selected wiper will move one resistor segment towards  
to this action will be delayed by t  
. A transfer from  
WRL  
the WCR (current wiper position), to a Data Register is  
a write to nonvolatile memory and takes a minimum of  
the V /R terminal. A detailed illustration of the sequence  
L
L
and timing for this operation are shown in Figure 7 and  
Figure 8.  
t
to complete.The transfer can occur between one of  
WR  
the four potentiometers and one of its associated  
registers; or it may occur globally, where the transfer  
occurs between all potentiometers and one associated  
register.  
Characteristics subject to change without notice. 5 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
Figure 4. Two-Byte Instruction Sequence  
CS  
SCK  
SI  
0
1
0
1
0
0
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
Figure 5. Three-Byte Instruction Sequence (Write)  
CS  
SCL  
SI  
0
0
0
1
0
1
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 6. Three-Byte Instruction Sequence (Read)  
CS  
SCL  
SI  
Don’t Care  
0
0
0
1
0
1
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
S0  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 7. Increment/Decrement Instruction Sequence  
CS  
SCK  
SI  
P1  
0
1
0
1
0
0
A1 A0  
I3 I2  
I1 I0  
0
0
P0  
I
I
D
E
C
1
I
D
E
C
n
N
C
1
N
C
2
N
C
n
Characteristics subject to change without notice. 6 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
Figure 8. Increment/Decrement Timing Limits  
t
WRID  
SCK  
SI  
Voltage Out  
V
/R  
W
W
INC/DEC CMD Issued  
Table 1. Instruction Set  
Instruction  
Read Wiper Counter  
Register  
Instruction Set  
I
I
I
I
R
R
P
P
Operation  
Read the contents of the Wiper Counter  
Register pointed to by P -P  
3
2
1
0
1
0
1
0
1
1
1
1
1
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
0
P
P
1
0
1
0
Write Wiper Counter  
Register  
0
0
P
P
P
P
P
P
P
P
Write new value to the Wiper Counter  
Register pointed to by P -P  
1
1
1
1
0
0
0
0
1
0
Read Data Register  
R
R
Read the contents of the Data Register  
pointed to by P -P and R –R  
1
1
1
0
0
0
1
0
1
0
Write Data Register  
R
R
R
R
Write new value to the Data Register pointed  
to by P -P and R –R  
1
0
1
0
XFR Data Register to  
Wiper Counter Register  
Transfer the contents of the Data Register  
pointed to by R –R to the Wiper Counter  
1
0
Register pointed to by P -P  
1
0
XFR Wiper Counter  
Register to Data Register  
1
0
1
1
0
0
1
0
0
0
1
0
R
R
R
R
R
R
P
P
Transfer the contents of the Wiper Counter  
Register pointed to by P -P to the Register  
1
1
1
0
0
0
1
0
1
0
pointed to by R –R  
1
0
Global XFR Data Register  
to Wiper Counter Register  
0
0
Transfer the contents of the Data Registers  
pointed to by R –R of all four pots to their  
1
0
respective Wiper Counter Register  
Global XFR Wiper Counter  
Register to Data Register  
0
0
Transfer the contents of all Wiper Counter  
Registers to their respective data Registers  
pointed to by R –R of all four pots  
1
0
Increment/Decrement  
Wiper Counter Register  
0
0
0
1
1
0
0
1
0
0
P
P
Enable Increment/decrement of the Wiper  
Counter Register pointed to by P -P  
1
0
1
0
Read Status (WIP bit)  
0
0
0
1
Read the status of the internal write cycle,  
by checking the WIP bit.  
Characteristics subject to change without notice. 7 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
Instruction Format  
Notes: (1) “A1 ~ A0”: stands for the device addresses sent by the master.  
(2) WPx refers to wiper position data in the Counter Register  
(2) “I”: stands for the increment operation, SI held HIGH during active SCK phase (high).  
(3) “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
Read Wiper Counter Register(WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
addresses  
wiper position  
(sent by X9250 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W W W  
P P P P P P P P  
A A  
P P  
0
1
0
1
0
0
1
0
0
1
0
0
1
0
1
0
7
6 5 4 3 2 1 0  
Write Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
addresses  
Data Byte  
(sent by Host on SI)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W W W  
P P P P P P P P  
A A  
P P  
0
1
0
1
0
0
1
0
1
0
0
0
1
0
1
0
7
6 5 4 3 2 1 0  
Read Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
opcode addresses  
Data Byte  
(sent by X9250 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W W W  
P P P P P P P P  
A A  
R
1
R
0
P
1
P
0
0
1
0
1
0
0
1 0 1 1  
1
0
7
6 5 4 3 2 1 0  
Write Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
Data Byte  
(sent by host on SI)  
opcode  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
W W W W W W W W  
P P P P P P P P  
7 6 5 4 3 2 1 0  
A A  
1 0  
R
1
R
0
P
1
P
0
0 1 0 1 0 0  
1 1 0 0  
Transfer Data Register (DR) to Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
opcode  
addresses  
A A  
1 0  
R
1
R
0
P
1
P
0
0 1 0 1 0 0  
1 1 0 1  
Characteristics subject to change without notice. 8 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
Transfer Wiper Counter Register (WCR) to Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
opcode  
addresses  
HIGH-VOLTAGE  
WRITE CYCLE  
A A  
1 0  
R
1
R
0
P
1
P
0
0 1 0 1 0 0  
1 1 1 0  
Increment/Decrement Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
addresses  
increment/decrement  
(sent by master on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
A A  
1
P P  
X X  
0
1
0
1
0
0
0
0
1
0
I/D I/D  
.
.
.
. I/D I/D  
0
1 0  
Global Transfer Data Register (DR) to Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
DR  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
A A  
1
R R  
1 0  
0
1
0
1
0
0
0
0
0
1
0 0  
0
Global Transfer Wiper Counter Register (WCR) to Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
DR  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
A A  
1 0  
R R  
0 0  
1 0  
0 1 0 1 0 0  
1 0 0 0  
Read Status  
device type  
identifier  
device  
addresses  
instruction  
opcode  
Data Byte  
(sent by X9250 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W
I
P
A A  
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
Characteristics subject to change without notice. 9 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias........................ –65 to +135°C  
Storage temperature............................. –65 to +150°C  
Voltage on SCK, SCL or any address input  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device (at these or any other conditions above those  
listed in the operational sections of this specification) is  
not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
with respect to V ................................. –1V to +7V  
SS  
Voltage on V+ (referenced to V ).........................10V  
SS  
Voltage on V- (referenced to V ) ........................ -10V  
SS  
(V+) – (V-)..............................................................12V  
Any V /R ...............................................................V+  
H
H
Any V /R .................................................................V-  
L
L
Lead temperature (soldering, 10 seconds)........ 300°C  
I
(10 seconds)................................................ 15mA  
W
RECOMMENDED OPERATING CONDITIONS  
Temperature  
Commercial  
Industrial  
Min.  
0°C  
Max.  
+70°C  
+85°C  
Device  
X9250  
Supply Voltage (V ) Limits  
CC  
5V 10%  
–40°C  
X9250-2.7  
2.7V to 5.5V  
POTENTIOMETER CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.)  
Limits  
Symbol  
Parameter  
End to end resistance tolerance  
Power rating  
Min.  
Typ.  
Max.  
20  
Unit  
%
Test Conditions  
25°C, each pot  
50  
mW  
mA  
I
Wiper current  
7.5  
W
R
Wiper resistance  
150  
250  
+5.5  
+5.5  
-4.5  
-2.7  
V+  
Wiper current = 1mA  
W
Vv+  
Voltage on V+ pin  
Voltage on V- pin  
X9250  
+4.5  
+2.7  
-5.5  
-5.5  
V-  
V
X9250-2.7  
X9250  
Vv-  
V
X9250-2.7  
V
Voltage on any V /R or V /R pin  
V
dBV  
TERM  
H
H
L
L
Noise  
Resolution (4)  
-120  
0.6  
Ref: 1kHz  
%
Absolute linearity (1)  
Relative linearity (2)  
1
MI(3)  
MI(3)  
V
V
–V  
w(n)(actual) w(n)(expected)  
0.6  
–[V  
]
w(n + 1)  
w(n) + MI  
Temperature coefficient of R  
300  
ppm/°C  
ppm/°C  
TOTAL  
Ratiometric Temperature  
Coefficient  
20  
C /C /C  
W
Potentiometer Capacitances  
10/10/25  
pF  
See Circuit #3  
H
L
Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used  
as a potentiometer.  
(2) Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potenti-  
ometer. It is a measure of the error in step size.  
(3) MI = RTOT/255 or (V /R –V /R )/255, single pot  
H
H
L
L
(4) Individual array resolutions.  
Characteristics subject to change without notice. 10 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
I
V
supply current  
400  
µA  
f = 2MHz, SO = Open,  
SCK  
Other Inputs = V  
SS  
CC1  
CC  
(active)  
I
V
supply current  
1
mA  
f
= 2MHz, SO = Open,  
CC2  
CC  
SCK  
(nonvolatile write)  
Other Inputs = V  
SS  
I
V
current (standby)  
5
µA  
µA  
µA  
V
SCK = SI = V , Addr. = V  
SS SS  
SB  
CC  
I
Input leakage current  
Output leakage current  
Input HIGH voltage  
Input LOW voltage  
Output LOW voltage  
10  
10  
V
V
= V to V  
SS CC  
LI  
IN  
I
= V to V  
SS CC  
LO  
OUT  
V
V
x 0.7  
V
+ 0.1  
CC  
IH  
CC  
V
–0.5  
V
x 0.3  
V
IL  
CC  
V
0.4  
V
I
= 3mA  
OL  
OL  
ENDURANCE AND DATA RETENTION  
Parameter  
Minimum endurance  
Data retention  
Min.  
100,000  
100  
Unit  
Data changes per bit per register  
Years  
CAPACITANCE  
Symbol  
Test  
Max.  
Unit  
pF  
Test Conditions  
= 0V  
(5)  
C
Output capacitance (SO)  
8
6
V
OUT  
OUT  
(5)  
C
Input capacitance (A0, A1, SI, and SCK, CS)  
pF  
V
= 0V  
IN  
IN  
POWER-UP TIMING  
Symbol  
Parameter  
Min.  
Max.  
Unit  
ms  
(6)  
t
Power-up to initiation of read operation  
Power-up to initiation of write operation  
1
5
PUR  
(6)  
t
ms  
PUW  
(7)  
t V  
V power up ramp rate  
CC  
0.2  
50  
V/msec  
R
CC  
POWER UP AND DOWN REQUIREMENT  
The are no restrictions on the sequencing of the bias supplies V , V+, and V- provided that all three supplies reach  
CC  
their final values within 1msec of each other. At all times, the voltages on the potentiometer pins must be less than  
V+ and more than V-. The recall of the wiper position from nonvolatile memory is not in effect until all supplies reach  
their final value.The V ramp rate spec is always in effect.  
CC  
Notes: (5) This parameter is periodically sampled and not 100% tested  
(6) t  
and t  
are the delays required from the time the third (last) power supply (V , V+ or V-) is stable until the specific instruction can  
PUR  
PUW CC  
be issued.These parameters are periodically sampled and not 100% tested.  
(7) Sample tested only.  
A.C. TEST CONDITIONS  
Input pulse levels  
V
x 0.1 to V x 0.9  
CC  
CC  
Input rise and fall times  
Input and output timing level  
10ns  
V
x 0.5  
CC  
Characteristics subject to change without notice. 11 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
Circuit #3 SPICE Macro Model  
EQUIVALENT A.C. LOAD CIRCUIT  
5V  
2.7V  
R
TOTAL  
R
R
L
1533Ω  
H
C
L
C
H
C
W
10pF  
SDA Output  
10pF  
25pF  
100pF  
100pF  
R
W
AC TIMING  
Symbol  
Parameter  
Min.  
Max.  
Unit  
f
SSI/SPI clock frequency  
SSI/SPI clock cycle time  
SSI/SPI clock high time  
SSI/SPI clock low time  
Lead time  
2.0  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
SCK  
CYC  
t
500  
200  
200  
250  
250  
50  
t
WH  
t
WL  
t
LEAD  
t
Lag time  
LAG  
t
SI, SCK, HOLD and CS input setup time  
SI, SCK, HOLD and CS input hold time  
SI, SCK, HOLD and CS input rise time  
SI, SCK, HOLD and CS input fall time  
SO output disable Time  
SU  
t
75  
H
t
2
RI  
t
2
FI  
t
0
0
500  
100  
DIS  
t
SO output valid time  
V
t
SO output hold time  
HO  
t
SO output rise time  
50  
50  
RO  
t
SO output fall time  
FO  
t
HOLD time  
400  
100  
100  
HOLD  
t
HOLD setup time  
HSU  
t
HOLD hold time  
HH  
t
HOLD low to output in high Z  
HOLD high to output in low Z  
Noise suppression time constant at SI, SCK, HOLD and CS inputs  
CS deselect time  
100  
100  
TBD  
HZ  
t
LZ  
T
I
t
2
0
0
CS  
t
WP, A0 and A1 setup time  
WP, A0 and A1 hold time  
WPASU  
t
WPAH  
Characteristics subject to change without notice. 12 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
HIGH-VOLTAGE WRITE CYCLE TIMING  
Symbol  
Parameter  
Typ.  
Max.  
Unit  
t
High-voltage write cycle time (store instructions)  
5
10  
ms  
WR  
XDCP TIMING  
Symbol  
Parameter  
Min. Max. Unit  
t
Wiper response time after the third (last) power supply is stable  
Wiper response time after instruction issued (all load instructions)  
10  
10  
40  
µs  
µs  
µs  
WRPO  
t
WRL  
t
Wiper response time from an active SCL/SCK edge (increment/decrement instruc-  
tion)  
WRID  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from Low to  
High  
Will change  
from Low to  
High  
May change  
from High to  
Low  
Will change  
from High to  
Low  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
TIMING DIAGRAMS  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
CYC  
SCK  
...  
WH  
t
t
FI  
t
RI  
t
t
t
WL  
SU  
H
...  
MSB  
LSB  
SI  
High Impedance  
SO  
Characteristics subject to change without notice. 13 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
Output Timing  
CS  
SCK  
SO  
...  
...  
t
t
t
DIS  
V
HO  
MSB  
LSB  
ADDR  
SI  
Hold Timing  
CS  
t
t
HH  
HSU  
SCK  
SO  
...  
t
t
FO  
RO  
t
t
LZ  
HZ  
SI  
t
HOLD  
HOLD  
XDCP Timing (for all Load Instructions)  
CS  
SCK  
...  
...  
t
WRL  
MSB  
LSB  
SI  
VWx  
High Impedance  
SO  
Characteristics subject to change without notice. 14 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
XDCP Timing (for Increment/Decrement Instruction)  
CS  
SCK  
VWx  
...  
t
WRID  
...  
...  
ADDR  
Inc/Dec  
SI  
Inc/Dec  
High Impedance  
SO  
Write Protect and Device Address Pins Timing  
(Any Instruction)  
CS  
t
t
WPAH  
WPASU  
WP  
A0  
A1  
Characteristics subject to change without notice. 15 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
APPLICATIONS INFORMATION  
Basic Configurations of Electronic Potentiometers  
+V  
R
V
R
V
/R  
W
W
I
Three terminal Potentiometer;  
Variable voltage divider  
Two terminal Variable Resistor;  
Variable current  
Application Circuits  
Noninverting Amplifier  
Voltage Regulator  
V
+
S
V
V
V (REG)  
O
317  
O
IN  
R
1
R
2
I
adj  
R
R
1
2
V
= (1+R /R )V  
V
(REG) = 1.25V (1+R /R )+I  
R
O
2
1
S
O
2
1
adj  
2
Offset Voltage Adjustment  
Comparator with Hysterisis  
R
R
2
1
V
+
S
V
V
S
O
100KΩ  
+
V
O
TL072  
R
R
1
2
10KΩ  
10KΩ  
+12V  
V
V
= {R /(R +R ) V (max)  
1 1 2 O  
UL  
LL  
10KΩ  
-12V  
= {R /(R +R ) V (min)  
1
1
2
O
Characteristics subject to change without notice. 16 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
Application Circuits (continued)  
Attenuator  
Filter  
C
V
+
S
R
V
R
R
2
O
1
3
+
R
V
O
V
S
R
2
R
4
R = R = R = R = 10kΩ  
1
2
3
4
R
1
G
= 1 + R /R  
2 1  
V
= G V  
S
O
O
fc = 1/(2πRC)  
-1/2 G +1/2  
Inverting Amplifier  
Equivalent L-R Circuit  
R
R
2
1
V
S
R
2
C
1
+
V
+
S
V
O
R
R
1
3
Z
IN  
V
= G V  
S
O
G = - R /R  
2
1
Z
= R + s R (R + R ) C = R + s Leq  
2 2 1 3 1 2  
IN  
(R + R ) >> R  
1
3
2
C
R
R
1
2
+
+
R
}
}
A
B
R
frequency R , R , C  
1
2
amplitude R , R  
A
B
Characteristics subject to change without notice. 17 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
PACKAGING INFORMATION  
24-Bump Chip Scale Package (CSP B24)  
Package Outline Drawing  
a
d
f
A4  
B4  
C4  
D4  
E4  
F4  
A3  
A2 A1  
B2 B1  
C2 C1  
D2 D1  
E2 E1  
B3  
C3  
D3  
E3  
F3  
j
b
F2 F1  
k
m
e
l
Top View (Sample Marking)  
Bottom View (Bumped Side)  
Side View  
e
c
Side View  
Package Dimensions  
Ball Matrix:  
Millimeters  
4
3
2
1
Symbol  
Min  
Nominal  
2.801  
4.579  
0.677  
0.457  
0.240  
0.330  
0.5  
Max  
R
R
R
W0  
A
B
C
D
E
F
A1  
SI  
CS  
WP  
L1  
Package Width  
a
b
c
d
e
f
2.771  
4.549  
0.644  
0.444  
0.220  
0.310  
2.831  
4.609  
0.710  
0.470  
0.260  
0.350  
R
W1  
L0  
Package Length  
R
R
VSS  
VCC  
V+  
H1  
H0  
Package Height  
R
V-  
RH2  
HOLD  
SCK  
H3  
Body Thickness  
R
R
SO  
A0  
W2  
L3  
Ball Height  
R
R
L2  
W3  
Ball Diameter  
Ball Pitch – Width  
Ball Pitch – Length  
Ball to Edge Spacing – Width  
Ball to Edge Spacing – Length  
j
k
l
0.5  
0.626  
1.015  
0.651  
1.040  
0.676  
1.065  
m
Characteristics subject to change without notice. 18 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
PACKAGING INFORMATION  
24-Lead Plastic, TSSOP, Package Code V24  
.026 (.65) BSC  
.169 (4.3)  
.177 (4.5)  
.252 (6.4) BSC  
.303 (7.70)  
.311 (7.90)  
.047 (1.20)  
.0075 (.19)  
.0118 (.30)  
.002 (.06)  
.005 (.15)  
.010 (.25)  
Gage Plane  
(7.72)  
(4.16)  
0°–8°  
Seating Plane  
.020 (.50)  
.030 (.75)  
(1.78)  
(0.42)  
Detail A (20X)  
(0.65)  
ALL MEASUREMENTS ARE TYPICAL  
.031 (.80)  
.041 (1.05)  
See Detail “A”  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
Characteristics subject to change without notice. 19 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
PACKAGING INFORMATION  
24-Lead Plastic, SOIC, Package Code S24  
0.393 (10.00)  
0.420 (10.65)  
0.290 (7.37)  
0.299 (7.60)  
Pin 1 Index  
Pin 1  
0.014 (0.35)  
0.020 (0.50)  
0.598 (15.20)  
0.610 (15.49)  
(4X) 7°  
0.092 (2.35)  
0.105 (2.65)  
0.003 (0.10)  
0.012 (0.30)  
0.050 (1.27)  
0.050"Typical  
0.010 (0.25)  
0.020 (0.50)  
X 45°  
0.050"  
Typical  
0° – 8°  
0.009 (0.22)  
0.013 (0.33)  
0.420"  
0.015 (0.40)  
0.050 (1.27)  
0.030" Typical  
24 Places  
FOOTPRINT  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
Characteristics subject to change without notice. 20 of 21  
REV 1.2 4/13/04  
www.xicor.com  
X9250  
Ordering Information  
X9250  
Y
P
T
V
V
Limits  
CC  
Device  
Blank = 5V 10%  
–2.7 = 2.7 to 5.5V  
Temperature Range  
Blank = Commercial =0°C to +70°C  
I = Industrial = –40°C to +85°C  
Package  
S24 = 24-Lead SOIC  
V24 = 24-Lead TSSOP  
B24 = 24-Lead CSP  
Potentiometer Organization  
T = 100KΩ  
U= 50KΩ  
S & V Package Marking  
Line #1  
Line #2  
Line #3  
Line #4  
(Blank)  
(Part Number)  
(Date Code) (*)  
(Blank)  
= F 2.7V 0 to 70°C  
G 2.7V -40 to +85°C  
I
5V  
-40 to +85°C  
LIMITED WARRANTY  
©Xicor, Inc. 2003 Patents Pending  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty,  
express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement.  
Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices  
at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, or licenses are implied.  
COPYRIGHTS ANDTRADEMARKS  
Xicor, Inc., the Xicor logo, E2POT, XDCP, XBGA, AUTOSTORE, Direct Write cell, Concurrent Read-Write, PASS, MPS, PushPOT, Block Lock, IdentiPROM,  
E2KEY, X24C16, SecureFlash, and SerialFlash are all trademarks or registered trademarks of Xicor, Inc. All other brand and product names mentioned herein are  
used for identification purposes only, and are trademarks or registered trademarks of their respective holders.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846;  
4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967; 4,883,976; 4,980,859; 5,012,132; 5,003,197; 5,023,694; 5,084,667; 5,153,880; 5,153,691;  
5,161,137; 5,219,774; 5,270,927; 5,324,676; 5,434,396; 5,544,103; 5,587,573; 5,835,409; 5,977,585. Foreign patents and additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection  
and correction, redundancy and back-up features to prevent such an occurrence.  
Xicor’s products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to  
perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
Characteristics subject to change without notice. 21 of 21  
REV 1.2 4/13/04  
www.xicor.com  

相关型号:

X9250US24IT1

Digital Potentiometer, 4 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PDSO24, PLASTIC, SOIC-24
XICOR

X9250US24IZ

Quad Digitally Controlled Potentiometers
INTERSIL

X9250US24IZ-2.7

Quad Digitally Controlled Potentiometers
INTERSIL

X9250US24IZ-2.7

Quad Digitally Controlled Potentiometer (XDCP&trade;); SOIC24, TSSOP24; Temp Range: See Datasheet
RENESAS

X9250US24IZ-2.7T2

QUAD 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO24, 0.300 INCH, ROHS COMPLIANT, PLASTIC, MS-013AD, SOIC-24
RENESAS

X9250US24T1

QUAD 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO24, 0.300 INCH, PLASTIC, MS-013AD, SOIC-24
RENESAS

X9250US24Z

Quad Digitally Controlled Potentiometers
INTERSIL

X9250US24Z

Quad Digitally Controlled Potentiometer (XDCP&trade;); SOIC24, TSSOP24; Temp Range: See Datasheet
RENESAS

X9250US24Z-2.7

Quad Digitally Controlled Potentiometers
INTERSIL

X9250US24Z-2.7

Quad Digitally Controlled Potentiometer (XDCP&trade;); SOIC24, TSSOP24; Temp Range: See Datasheet
RENESAS

X9250US24Z-2.7T1

Quad Digitally Controlled Potentiometer (XDCP&trade;); SOIC24, TSSOP24; Temp Range: See Datasheet
RENESAS

X9250US24ZT1

Quad Digitally Controlled Potentiometer (XDCP&trade;); SOIC24, TSSOP24; Temp Range: See Datasheet
RENESAS