X9251TS24-2.7T1 [XICOR]

Digital Potentiometer, 4 Func, 100000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PDSO24, PLASTIC, SOIC-24;
X9251TS24-2.7T1
型号: X9251TS24-2.7T1
厂家: XICOR INC.    XICOR INC.
描述:

Digital Potentiometer, 4 Func, 100000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PDSO24, PLASTIC, SOIC-24

光电二极管
文件: 总25页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APPLICATION NOTES AND DEVELOPMENT SYSTEM  
A V A I L A B L E  
AN99 • AN115 • AN124 •AN133 • AN134 • AN135  
Single Supply / Low Power / 256-tap / SPI bus  
X9251  
Quad Digitally-Controlled (XDCPTM) Potentiometer  
FEATURES  
DESCRIPTION  
• Four potentiometers in one package  
• 256 resistor taps–0.4% resolution  
• SPI Serial Interface for write, read, and transfer  
operations of the potentiometer  
The X9251 integrates four digitally controlled potentio-  
meters (XDCP) on a monolithic CMOS integrated  
circuit.  
The digitally controlled potentiometers are imple-  
mented with a combination of resistor elements and  
CMOS switches. The position of the wipers are  
controlled by the user through the SPI bus interface.  
Each potentiometer has associated with it a volatile  
Wiper Counter Register (WCR) and four non-volatile  
Data Registers that can be directly written to and read  
by the user. The content of the WCR controls the  
position of the wiper. At power-up, the device recalls  
the content of the default Data Registers of each DCP  
(DR00, DR10, DR20, and DR30) to the corresponding  
WCR.  
• Wiper resistance: 100typical @ V  
= 5V  
CC  
• 4 Non-volatile data registers for each  
potentiometer  
• Non-volatile storage of multiple wiper positions  
• Standby current < 5µA max  
• V : 2.7V to 5.5V Operation  
CC  
• 50K, 100Kversions of total resistance  
• 100 yr. data retention  
• Single supply version of X9250  
• Endurance: 100,000 data changes per bit per  
register  
• 24-lead SOIC, 24-lead TSSOP, 24-lead CSP  
(Chip Scale Package)  
The XDCP can be used as  
a three-terminal  
• Low power CMOS  
potentiometer or as a two terminal variable resistor in  
a wide variety of applications including control,  
parameter adjustments, and signal processing.  
FUNCTIONAL DIAGRAM  
R
R
H3  
R
R
V
H1  
H2  
H0  
CC  
HOLD  
DCP1  
DCP3  
DCP2  
DCP0  
WCR1  
DR10  
DR11  
DR12  
DR13  
WCR3  
DR30  
DR31  
DR32  
DR33  
WCR2  
DR20  
DR21  
DR22  
DR23  
WCR0  
DR00  
DR01  
DR02  
DR03  
A1  
A0  
SO  
SI  
SPI  
Interface  
POWER UP,  
INTERFACE  
CONTROL  
AND  
STATUS  
SCK  
CS  
V
R
R
L3  
R
R
SS  
R
R
R
W3  
WP  
R
W0  
L1  
L2  
L0  
W1  
W2  
Characteristics subject to change without notice. 1 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
ORDERING INFO  
Operating  
Temperature  
Range  
Ordering  
Number  
Potentiomenter  
Organization  
V
CC  
Limits  
Package  
X9251US24  
X9251US24-2.7  
X9251US24I  
50kΩ  
50kΩ  
24-lead SOIC  
24-lead SOIC  
24-lead SOIC  
24-lead SOIC  
24-lead TSSOP  
24-lead TSSOP  
24-lead TSSOP  
24-lead TSSOP  
24-lead CSP  
24-lead CSP  
24-lead CSP  
24-lead CSP  
24-lead SOIC  
24-lead SOIC  
24-lead SOIC  
24-lead SOIC  
24-lead TSSOP  
24-lead TSSOP  
24-lead TSSOP  
24-lead TSSOP  
24-lead CSP  
24-lead CSP  
24-lead CSP  
24-lead CSP  
0°C to 70°C  
0°C to 70°C  
5V 10ꢀ  
2.7 to 5.5V  
5V 10ꢀ  
50kΩ  
-40°C to +85°C  
-40°C to +85°C  
0°C to 70°C  
X9251US24I-2.7  
X9251UV24  
50kΩ  
2.7 to 5.5V  
5V 10ꢀ  
50kΩ  
X9251UV24-2.7  
X9251UV24I  
50kΩ  
0°C to 70°C  
2.7 to 5.5V  
5V 10ꢀ  
50kΩ  
-40°C to +85°C  
-40°C to +85°C  
0°C to 70°C  
X9251UV24I-2.7  
X9251UB24  
50kΩ  
2.7 to 5.5V  
5V 10ꢀ  
50kΩ  
X9251UB24-2.7  
X9251UB24I  
50kΩ  
0°C to 70°C  
2.7 to 5.5V  
5V 10ꢀ  
50kΩ  
-40°C to +85°C  
-40°C to +85°C  
0°C to 70°C  
X9251UB24I-2.7  
X9251TS24  
50kΩ  
2.7 to 5.5V  
5V 10ꢀ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
X9251TS24-2.7  
X9251TS24I  
0°C to 70°C  
2.7 to 5.5V  
5V 10ꢀ  
-40°C to +85°C  
-40°C to +85°C  
0°C to 70°C  
X9251TS24I-2.7  
X9251TV24  
2.7 to 5.5V  
5V 10ꢀ  
X9251TV24-2.7  
X9251TV24I  
0°C to 70°C  
2.7 to 5.5V  
5V 10ꢀ  
-40°C to +85°C  
-40°C to +85°C  
0°C to 70°C  
X9251TV24I-2.7  
X9251TB24  
2.7 to 5.5V  
5V 10ꢀ  
X9251TB24-2.7  
X9251TB24I  
0°C to 70°C  
2.7 to 5.5V  
5V 10ꢀ  
-40°C to +85°C  
-40°C to +85°C  
X9251TB24I-2.7  
2.7 to 5.5V  
Characteristics subject to change without notice. 2 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
CIRCUIT LEVEL APPLICATIONS  
SYSTEM LEVEL APPLICATIONS  
• Vary the gain of a voltage amplifier  
• Adjust the contrast in LCD displays  
• Provide programmable dc reference voltages for  
comparators and detectors  
• Control the power level of LED transmitters in  
communication systems  
• Control the volume in audio circuits  
• Set and regulate the DC biasing point in an RF power  
amplifier in wireless systems  
Trim out the offset voltage error in a voltage amplifier  
circuit  
• Control the gain in audio and home entertainment  
systems  
• Set the output voltage of a voltage regulator  
• Provide the variable DC bias for tuners in RF wireless  
systems  
Trim the resistance in Wheatstone bridge circuits  
• Control the gain, characteristic frequency and  
Q-factor in filter circuits  
• Set the operating points in temperature control  
systems  
• Set the scale factor and zero point in sensor signal  
conditioning circuits  
• Control the operating point for sensors in industrial  
systems  
• Vary the frequency and duty cycle of timer ICs  
Trim offset and gain errors in artificial intelligent  
systems  
• Vary the dc biasing of a pin diode attenuator in RF  
circuits  
• Provide a control variable (I, V, or R) in feedback  
circuits  
Characteristics subject to change without notice. 3 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
PIN CONFIGURATION  
CSP  
1
2
3
4
SOIC/TSSOP  
HOLD  
SCK  
A
SO  
A0  
R
CS  
R
R
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
1
W0  
L0  
L1  
A
B
R
WP  
SI  
R
R
W3  
W1  
3
L2  
R
R
H3  
4
H2  
V
R
R
V
SS  
R
R
5
CC  
H0  
H1  
H2  
L3  
W2  
C
D
NC  
NC  
6
X9251  
R
V
R
V
7
NC  
NC  
CC  
H3  
SS  
R
R
8
W1  
L0  
R
R
H0  
9
R
R
HOLD  
SCK  
R
W2  
SO  
H1  
L3  
E
F
R
R
W0  
10  
11  
12  
15  
14  
L1  
A1  
SI  
CS  
A
0
R
L2  
W3  
WP  
13  
Top View–Bumps Down  
PIN ASSIGNMENTS  
Pin  
Pin  
(SOIC)  
(CSP)  
Symbol  
SO  
Function  
1
2
E2  
Serial Data Output for SPI bus  
Device Address for SPI bus. (See Note 1)  
Wiper Terminal of DCP3  
High Terminal of DCP3  
F2  
A0  
3
F1  
R
W3  
4
D2  
E1  
R
H3  
5
R
Low Terminal of DCP3  
L3  
7
C1  
B1  
V
System Supply Voltage  
CC  
8
R
Low Terminal of DCP0  
L0  
H0  
W0  
9
C2  
A1  
R
High Terminal of DCP0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
20  
21  
22  
23  
24  
6, 19  
R
Wiper Terminal of DCP0  
SPI bus. Chip Select active low input  
Hardware Write Protect – active low  
Serial Data Input for SPI bus  
Device Address for SPI bus. (See Note 1)  
Low Terminal of DCP1  
A2  
CS  
WP  
SI  
B2  
B3  
A3  
A1  
A4  
R
L1  
H1  
W1  
C3  
B4  
R
High Terminal of DCP1  
R
Wiper Terminal of DCP1  
System Ground  
C4  
E4  
V
SS  
R
Wiper Terminal of DCP2  
High Terminal of DCP2  
W2  
D3  
F4  
R
H2  
R
Low Terminal of DCP2  
L2  
F3  
SCK  
HOLD  
NC  
Serial Clock for SPI bus  
E3  
Device select. Pauses the SPI serial bus.  
No Connect  
D1, D4  
Note 1: A0–A1 device address pins must be tied to a logic level.  
Characteristics subject to change without notice. 4 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
PIN DESCRIPTIONS  
Bus Interface Pins  
SERIAL OUTPUT (SO)  
Potentiometer Pins  
R , R  
H
L
The R and R pins are equivalent to the terminal  
H
L
connections on a mechanical potentiometer. Since  
there are 4 potentiometers, there are 4 sets of R and  
SO is a serial data output pin. During a read cycle,  
data is shifted out on this pin. Data is clocked out by  
the falling edge of the serial clock.  
H
R such that R and R are the terminals of DCP0  
L
H0  
L0  
and so on.  
SERIAL INPUT (SI)  
R
W
SI is the serial data input pin. All opcodes, byte  
addresses and data to be written to the device  
registers are input on this pin. Data is latched by the  
rising edge of the serial clock.  
The wiper pin are equivalent to the wiper terminal of a  
mechanical potentiometer. Since there are  
4
potentiometers, there are 4 sets of R such that R  
W
W0  
is the terminals of DCP0 and so on.  
SERIAL CLOCK (SCK)  
Supply Pins  
The SCK input is used to clock data into and out of the  
X9251.  
SYSTEM SUPPLY VOLTAGE (V  
) AND SUPPLY GROUND (V )  
SS  
CC  
The V pin is the system supply voltage. The V pin  
CC  
SS  
HOLD (HOLD)  
is the system ground.  
HOLD is used in conjunction with the CS pin to select  
the device. Once the part is selected and a serial  
sequence is underway, HOLD may be used to pause  
the serial communication with the controller without  
resetting the serial sequence. To pause, HOLD must  
be brought LOW while SCK is LOW. To resume  
communication, HOLD is brought HIGH, again while  
SCK is LOW. If the pause feature is not used, HOLD  
should be held HIGH at all times.  
Other Pins  
NO CONNECT  
No connect pins should be left floating. This pins are  
used for Xicor manufacturing and testing purposes.  
HARDWARE WRITE PROTECT INPUT (WP)  
The WP pin when LOW prevents non-volatile writes to  
the Data Registers.  
DEVICE ADDRESS (A1–A0)  
The address inputs are used to set the two least  
significant bits of the slave address. A match in the  
slave address serial data stream must be made with  
the address input in order to initiate communication  
with the X9251. Device pins A1-A0 must be tie to a  
logic level which specify the internal address of the  
device, see Figures 2, 3, 4, 5 and 6.  
CHIP SELECT (CS)  
When CS is HIGH, the X9251 is deselected and the  
SO pin is at high impedance, and (unless an internal  
write cycle is underway) the device is in the standby  
state. CS LOW enables the X9251, placing it in the  
active power mode. It should be noted that after a  
power-up, a HIGH to LOW transition on CS is required  
prior to the start of any operation.  
Characteristics subject to change without notice. 5 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
PRINCIPLES OF OPERATION  
The position of the wiper terminal within the DCP is  
controlled by an 8-bit volatile Wiper Counter Register  
(WCR).  
The X9251 is an integrated circuit incorporating four  
DCPs and their associated registers and counters, and  
a serial interface providing direct communication  
between a host and the potentiometers.  
Power Up and Down Recommendations.  
There are no restrictions on the power-up or power-  
down conditions of V and the voltages applied to the  
CC  
DCP Description  
potentiometer pins provided that V  
is always more  
CC  
Each DCP is implemented with a combination of  
resistor elements and CMOS switches. The physical  
ends of each DCP are equivalent to the fixed terminals  
positive than or equal to V , V , and V , i.e., V V ,  
H
L
W
CC  
H
V , V . The V  
ramp rate specification is always in  
L
W
CC  
effect.  
of a mechanical potentiometer (R and R pins). The  
H
L
RW pin is an intermediate node, equivalent to the  
wiper terminal of a mechanical potentiometer.  
Figure 1. Detailed Potentiometer Block Diagram  
One of Four Potentiometers  
R
H
#: 0, 1, 2, or 3  
SERIAL  
BUS  
INPUT  
SERIAL DATA PATH  
FROM INTERFACE  
CIRCUITRY  
DR#0  
DR#1  
8
8
PARALLEL  
BUS  
INPUT  
COUNTER  
- - -  
DECODE  
DCP  
CORE  
R
W
WIPER  
DR#2  
DR#3  
COUNTER  
REGISTER  
(WCR#)  
INC/DEC  
LOGIC  
IF WCR = 00[H] then R is closet to R  
W
L
UP/DN  
IF WCR = FF[H] then R is closet to R  
UP/DN  
CLK  
W
H
MODIFIED SCK  
R
L
Characteristics subject to change without notice. 6 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
Wiper Counter Register (WCR)  
Data Registers (DR)  
The X9251 contains four Wiper Counter Registers, one  
for each potentiometer. The Wiper Counter Register  
can be envisioned as a 8-bit parallel and serial load  
counter with its outputs decoded to select one of 256  
wiper positions along its resistor array. The contents of  
the WCR can be altered in four ways: it may be written  
directly by the host via the Write Wiper Counter  
Register instruction (serial load); it may be written  
indirectly by transferring the contents of one of four  
associated data registers via the XFR Data Register  
instruction (parallel load); it can be modified one step  
at a time by the Increment/Decrement instruction (see  
Instruction section for more details). Finally, it is loaded  
with the contents of its Data Register zero (DR#0)  
upon power-up. (See Figure 1.)  
Each of the four DCPs has four 8-bit non-volatile Data  
Registers. These can be read or written directly by the  
host. Data can also be transferred between any of the  
four Data Registers and the associated Wiper Counter  
Register. All operations changing data in one of the  
Data Registers is a non-volatile operation and takes a  
maximum of 10ms.  
If the application does not require storage of multiple  
settings for the potentiometer, the Data Registers can  
be used as regular memory locations for system  
parameters or user preference data.  
Bits [7:0] are used to store one of the 256 wiper  
positions or data (0~255).  
Status Register (SR)  
This 1-bit Status Register is used to store the system  
status.  
The wiper counter register is a volatile register; that is,  
its contents are lost when the X9251 is powered-down.  
Although the register is automatically loaded with the  
value in DR#0 upon power-up, this may be different  
from the value present at power-down. Power-up  
guidelines are recommended to ensure proper  
loadings of the DR#0 value into the WCR#.  
WIP:Write In Progress status bit, read only.  
– When WIP=1, indicates that high-voltage write cycle  
is in progress.  
– When WIP=0, indicates that no high-voltage write  
cycle is in progress.  
Table 1. Wiper counter Register, WCR (8-bit), WCR[7:0]: Used to store the current wiper position (Volatile).  
WCR7  
(MSB)  
WCR6  
WCR5  
WCR4  
WCR3  
WCR2  
WCR1  
WCR0  
(LSB)  
Table 2. Data Register, DR (8-bit), DR[7:0]: Used to store wiper positions or data (Non-volatile).  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(MSB)  
(LSB)  
Characteristics subject to change without notice. 7 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
SERIAL INTERFACE  
The least significant four bits of the Identification Byte  
are the Slave Address bits, AD[3:0]. For the X9251, A3  
is 0, A2 is 0, A1 is the logic value at the input pin A1,  
and A0 is the logic value at the input pin A0. Only the  
device which Slave Address matches the incoming  
bits sent by the master executes the instruction. The  
A1 and A0 inputs can be actively driven by CMOS  
The X9251 supports the SPI interface hardware  
conventions. The device is accessed via the SI input  
with data clocked in, on the rising SCK. CS must be  
LOW and the HOLD and WP pins must be HIGH  
during the entire operation.  
input signals or tied to V  
or V  
.
CC  
SS  
The SO and SI pins can be connected together, since  
they have three state outputs. This can help to reduce  
system pin count.  
INSTRUCTION BYTE  
The next byte sent to the X9251 contains the  
instruction and register pointer information. The four  
most significant bits are used provide the instruction  
opcode (I[3:0]). The RB and RA bits point to one of the  
four Data Registers of each associated XDCP. The  
least two significant bits point to one of four Wiper  
Counter Registers or DCPs.The format is shown below  
in Table 4.  
IDENTIFICATION BYTE  
The first byte sent to the X9251 from the host, following  
a CS going HIGH to LOW, is called the Identification  
Byte. The most significant four bits of the Identification  
Byte are a Device Type Identifier, ID[3:0]. For the  
X9251, this is fixed as 0101 (refer to Table 3).  
Table 3. Identification Byte Format  
Device Type  
Identifier  
Slave Address  
ID3  
0
ID2  
1
ID1  
0
ID0  
1
A3  
0
A2  
0
A1  
A0  
Pin A1  
Pin A0  
Logic Value Logic Value  
(MSB)  
(LSB)  
Table 4. Instruction Byte Format  
Register  
Selection  
Instruction  
Opcode  
DCP Selection  
(WCR Selection)  
I3  
I2  
I1  
I0  
RB  
RA  
P1  
P0  
(MSB)  
(LSB)  
Data Register Selection  
Register  
DR#0  
RB  
0
RA  
0
DR#1  
0
1
DR#2  
1
0
DR#3  
1
1
#: 0, 1, 2, or 3  
Characteristics subject to change without notice. 8 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
Table 5. Instruction Set  
Instruction Set  
Instruction  
I3 I2 I1 I0 RB RA P1 P0  
Operation  
Read Wiper Counter  
Register  
1
1
1
1
1
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
0
1/0 1/0 Read the contents of the Wiper Counter  
Register pointed to by P1-P0  
Write Wiper Counter  
Register  
0
0
1/0 1/0 Write new value to the Wiper Counter  
Register pointed to by P1-P0  
Read Data Register  
1/0 1/0 1/0 1/0 Read the contents of the Data Register  
pointed to by P1-P0 and RB-RA  
Write Data Register  
1/0 1/0 1/0 1/0 Write new value to the Data Register  
pointed to by P1-P0 and RB-RA  
XFR Data Register to  
Wiper Counter Register  
1/0 1/0 1/0 1/0 Transfer the contents of the Data Register  
pointed to by P1-P0 and RB-RA to its  
associated Wiper Counter Register  
XFR Wiper Counter  
Register to Data Register  
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
0
1/0 1/0 1/0 1/0 Transfer the contents of the Wiper Counter  
Register pointed to by P1-P0 to the Data  
Register pointed to by RB-RA  
Global XFR Data Registers  
to Wiper Counter Registers  
1/0 1/0  
1/0 1/0  
0
0
0
0
Transfer the contents of the Data Registers  
pointed to by RB-RA of all four pots to their  
respective Wiper Counter Registers  
Global XFR Wiper Counter  
Registers to Data Register  
Transfer the contents of both Wiper Counter  
Registers to their respective data Registers  
pointed to by RB-RA of all four pots  
Increment/Decrement  
Wiper Counter Register  
0
0
1/0 1/0 Enable Increment/decrement of the Control  
Latch pointed to by P1-P0  
Note: 1/0 = data is one or zero  
Characteristics subject to change without notice. 9 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
Instructions  
XFR Data Register to Wiper Counter Register –  
This transfers the contents of one specified Data  
Register to the associated Wiper Counter Register.  
Four of the nine instructions are three bytes in length.  
These instructions are:  
XFR Wiper Counter Register to Data Register –  
This transfers the contents of the specified Wiper  
Counter Register to the specified associated Data  
Register.  
Read Wiper Counter Register – read the current  
wiper position of the selected potentiometer,  
Write Wiper Counter Register – change current  
wiper position of the selected potentiometer,  
Global XFR Data Register to Wiper Counter  
Register – This transfers the contents of all specified  
Data Registers to the associated Wiper Counter  
Registers.  
Read Data Register – read the contents of the  
selected Data Register,  
Write Data Register – write a new value to the  
selected Data Register,  
Global XFR Wiper Counter Register to Data  
Register – This transfers the contents of all Wiper  
Counter Registers to the specified associated Data  
Registers.  
Read Status – this command returns the contents of  
the WIP bit which indicates if the internal write cycle  
is in progress.  
The basic sequence of the three byte instructions is  
illustrated in Figure 3. These three-byte instructions  
exchange data between the WCR and one of the Data  
Registers. A transfer from a Data Register to a WCR is  
essentially a write to a static RAM, with the static RAM  
controlling the wiper position. The response of the  
INCREMENT/DECREMENT COMMAND  
The final command is Increment/Decrement (see  
Figures 6 and 7). The Increment/Decrement command  
is different from the other commands. Once the  
command is issued and the X9251 has responded with  
an Acknowledge, the master can clock the selected  
wiper up and/or down in one segment steps; thereby,  
providing a fine tuning capability to the host. For each  
wiper to this action is delayed by t  
. A transfer from  
WRL  
the WCR (current wiper position), to a Data Register is  
a write to non-volatile memory and takes a minimum of  
t
to complete. The transfer can occur between one  
SCK clock pulse (t  
) while SI is HIGH, the selected  
WR  
HIGH  
of the four potentiometer’s WCR, and one of its  
associated registers, DRs; or it may occur globally,  
where the transfer occurs between all potentiometers  
and one associated register. The Read Status Register  
instruction is the only unique format (see Figure 5).  
wiper moves one wiper position towards the R  
terminal. Similarly, for each SCK clock pulse while SI is  
LOW, the selected wiper moves one wiper position  
H
towards the R terminal. A detailed illustration of the  
L
sequence and timing for this operation are shown. See  
Instruction format for more details.  
Four instructions require a two-byte sequence to  
complete. These instructions transfer data between the  
host and the X9251; either between the host and one  
of the data registers or directly between the host and  
the Wiper Counter Register.These instructions are:  
Characteristics subject to change without notice. 10 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
Figure 2. Two-Byte Instruction Sequence  
CS  
SCK  
SI  
0
0
0
0
0
1
0
1
A1 A0  
ID3 ID2 ID1 ID0  
Device ID  
RB RA  
P0  
I3  
I2  
I1 I0  
P1  
Register  
Address  
Instruction  
Opcode  
DCP/WCR  
Address  
Internal  
Address  
Figure 3. Three-Byte Instruction Sequence SPI Interface; Write Case  
CS  
SCK  
SI  
0
0
0
0
0
1
0
1
ID3 ID2 ID1 ID0  
P1  
P0  
A1 A0  
RB RA  
I3 I2  
I0  
D7 D6 D5 D4 D3 D2 D1 D0  
Data for WCR[7:0] or DR[7:0]  
I1  
Internal  
Address  
Instruction  
Opcode  
Register  
Address  
DCP/WCR  
Address  
Device ID  
Figure 4. Three-Byte Instruction Sequence SPI Interface, Read Case  
CS  
SCK  
SI  
0
0
0
0
0
1
0
1
X
X
X
X
X
X
X
X
ID3 ID2 ID1 ID0  
Device ID  
A1 A0  
I2 I1  
RB RA P1 P0  
I3  
I0  
Don’t Care  
Internal  
Address  
DCP/WCR  
Instruction  
Opcode  
Register  
Address  
Address  
S0  
D7 D6 D5 D4 D3 D2 D1 D0  
WCR[7:0]  
or  
Data Register Bit [7:0]  
Characteristics subject to change without notice. 11 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
Figure 5. Three-Byte Instruction Sequence (Read Status Register)  
CS  
SCK  
SI  
1
0
0
0
0
0
1
0
1
0
0
0
0
1
0
1
0
0
0
ID3 ID2 ID1 ID0  
I3  
A1 A0  
I2 I1 I0 RB RA  
P1 P0  
WIP  
Internal  
Address  
Instruction  
Opcode  
Register  
Address  
Pot/WCR  
Address  
Status  
Bit  
Device ID  
Figure 6. Increment/Decrement Instruction Sequence  
CS  
SCK  
SI  
0
0
0
0
0
1
0
1
ID3 ID2 ID1 ID0  
Device ID  
I2 I3  
I0  
P1  
RB RA P0  
A1 A0  
I1  
I
I
D
E
C
1
I
D
E
C
n
N
C
1
N
C
2
N
C
n
Internal  
Address  
Instruction  
Opcode  
Pot/WCR  
Address  
Register  
Address  
Figure 7. Increment/Decrement Timing Spec  
t
WRID  
SCK  
SI  
VOLTAGE OUT  
R
W
INC/DEC CMD ISSUED  
Characteristics subject to change without notice. 12 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
INSTRUCTION FORMAT  
Read Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Wiper Position  
(Sent by X9251 on SO)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
W
C
R
W
C
R
7
W W W W W W  
C C C C C C  
R R R R R R  
0
1
0
1
0
0 A1 A0 1  
0
0
1
0
0
0
0
5
4
3
2
1
0
6
Write Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Data Byte  
(Sent by Host on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
W
C
R
W
C
R
7
W W W W W W  
C C C C C C  
R R R R R R  
0
1
0
1
0
0 A1 A0 1  
0
1
0
0
0
0
0
5
4 3 2 1 0  
6
Read Data Register (DR)  
Device Type  
CS  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
Data Byte  
(Sent by X9271 on SO)  
CS  
Rising  
Edge  
Identifier  
Falling  
Edge  
D
D D D D D D D  
0
1
0
1
0
0 A1 A0 1  
0
1
1 RB RA P1 P0  
6
5 4 3 2 1 0  
7
Write Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
Data Byte  
(Sent by Host on SI)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
D
7
D D D D D D D  
6 5 4 3 2 1 0  
0
1 0 1 0 0 A1 A0 1 1 0 0 RB RA P1 P0  
Global Transfer Data Register (DR) to Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0 A1 A0 0 0 0 1 RB RA 0 0  
Notes: (1) “A1 ~ A0”: stands for the device addresses sent by the master.  
(2) WPx refers to wiper position data in the Counter Register  
(2) “I”: stands for the increment operation, SI held HIGH during active SCK phase (high).  
(3) “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
Characteristics subject to change without notice. 13 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
Global Transfer Wiper Counter Register (WCR) to Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
0
1
0
1 0 0 A1 A0 1 0 0 0 RB RA 0 0  
Transfer Wiper Counter Register (WCR) to Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction DR and WCR  
Opcode Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
0
1
0
1
0 0 A1 A0 1 1 1 0 RB RA  
0
0
Transfer Data Register (DR) to Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0 0 A1 A0 1 1 0 1 RB RA  
0
0
Increment/Decrement Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
X X  
Increment/Decrement  
(Sent by Master on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0 A1 A0 0  
0
1
0
0
0
I/D I/D  
.
.
.
. I/D I/D  
Read Status Register (SR)  
Device Type  
Identifier  
Device  
Addresses  
0 A1 A0 0  
Instruction  
Opcode  
WCR  
Addresses  
Data Byte  
(Sent by X9251 on SO)  
WIP  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
Notes: (1) “A1 ~ A0”: stands for the device addresses sent by the master.  
(2) WPx refers to wiper position data in the Counter Register  
(2) “I”: stands for the increment operation, SI held HIGH during active SCK phase (high).  
(3) “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
Characteristics subject to change without notice. 14 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias ....................–65°C to +135°C  
Storage temperature .........................–65°C to +150°C  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; the functional operation of  
the device (at these or any other conditions above  
those listed in the operational sections of this  
specification) is not implied. Exposure to absolute  
maximum rating conditions for extended periods may  
affect device reliability.  
Voltage on SCK, any address input, V  
CC  
with respect to V ..................................1V to +7V  
SS  
V = | (V –VL) | ................................................... 5.5V  
H
Lead temperature (soldering, 10 seconds).........300°C  
I
(10 seconds) ................................................. 6mA  
W
RECOMMENDED OPERATING CONDITIONS  
Temp  
Min.  
0°C  
Max.  
+70°C  
+85°C  
Device  
X9251  
Supply Voltage (V  
)
(4) Limits  
CC  
Commercial  
Industrial  
5V 10ꢀ  
–40°C  
X9251-2.7  
2.7V to 5.5V  
ANALOG CHARACTERISTICS (Over recommended industrial operating conditions unless otherwise stated.)  
Parameter  
Limits  
Symbol  
Min.  
Typ.  
Max. Units  
Test Conditions  
T version  
R
End to End Resistance  
End to End Resistance  
End to End Resistance Tolerance  
Power Rating  
100  
50  
kΩ  
kΩ  
TOTAL  
R
U version  
TOTAL  
20  
50  
mW  
mA  
25°C, each pot  
I
Wiper Current  
3
W
R
Wiper Resistance  
300  
V(V  
)
W
CC  
I
I
=
@ V  
@ V  
= 3V  
= 5V  
W
CC  
R
TOTAL  
150  
V(V  
)
CC  
TOTAL  
=
W
CC  
R
V
Voltage on any R or R Pin  
V
V
V
V
= 0V  
TERM  
H
L
SS  
CC  
SS  
Noise  
-120  
0.4  
dBV/ Hz Ref: 1V  
Resolution  
(5)  
Absolute Linearity (1)  
-1  
+1  
+0.6  
MI(3)  
R
– R  
w(n)(actual) w(n)(expected)  
Relative Linearity (2)  
-0.6  
MI(3)  
R
– [R  
]
(5)  
w(n + 1)  
w(n) + MI  
Temperature Coefficient of R  
300  
ppm/°C  
TOTAL  
Ratiometric Temp. Coefficient  
Potentiometer Capacitances  
-20  
+20 ppm/°C  
pF See Macro model  
C /C /C  
W
10/10/25  
H
L
Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used  
as a potentiometer.  
(2) Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a  
potentiometer. It is a measure of the error in step size.  
(3) MI = RTOT / 255 or (R – R ) / 255, single pot  
H
L
(4) During power up V > V , V , and V .  
CC  
H
L
W
(5) n = 0, 1, 2, …,255; m =0, 1, 2, …, 254.  
Characteristics subject to change without notice. 15 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
= 2.5 MHz, SO = Open, V =6V  
I
I
I
V
supply current  
(active)  
400  
µA  
f
SCK  
CC1  
CC2  
SB  
CC  
CC  
Other Inputs = V  
SS  
V
supply current  
(non-volatile write)  
1
5
3
mA  
f
= 2.5MHz, SO = Open, V =6V  
SCK CC  
CC  
Other Inputs = V  
SS  
V
current (standby)  
µA  
SCK = SI = V , Addr. = V  
,
CC  
SS  
SS  
CS = V  
= 6V  
CC  
I
I
Input leakage current  
Output leakage current  
Input HIGH voltage  
Input LOW voltage  
10  
10  
µA  
µA  
V
V
V
= V to V  
SS CC  
LI  
IN  
= V to V  
CC  
LO  
OUT  
SS  
V
V
V
V
V
V
x 0.7  
V
+ 1  
CC  
IH  
CC  
–1  
V
x 0.3  
V
IL  
CC  
Output LOW voltage  
Output HIGH voltage  
Output HIGH voltage  
0.4  
V
I
I
I
= 3mA  
OL  
OH  
OH  
OL  
OH  
OH  
V
V
- 0.8  
V
= -1mA, V +3V  
CC  
CC  
- 0.4  
V
= -0.4mA, V +3V  
CC  
CC  
ENDURANCE AND DATA RETENTION  
Parameter  
Minimum endurance  
Data retention  
Min.  
Units  
100,000  
100  
Data changes per bit per register  
years  
CAPACITANCE  
Symbol  
Test  
Max.  
Units  
pF  
Test Conditions  
(6)  
C
Input / Output capacitance (SI)  
Output capacitance (SO)  
8
8
6
V
V
V
= 0V  
= 0V  
IN/OUT  
OUT  
OUT  
(6)  
C
C
pF  
OUT  
(6)  
Input capacitance (A0, A1, CS, WP, HOLD, and SCK)  
pF  
= 0V  
IN  
IN  
POWER-UP TIMING  
Symbol  
Parameter  
V Power-up rate  
CC  
Min.  
Max.  
50  
Units  
(6)  
t V  
0.2  
V/ms  
ms  
r
CC  
(7)  
t
t
Power-up to initiation of read operation  
Power-up to initiation of write operation  
1
PUR  
(7)  
50  
ms  
PUW  
A.C. TEST CONDITIONS  
Input Pulse Levels  
Input rise and fall times  
Input and output timing level  
V
x 0.1 to V x 0.9  
CC  
CC  
10ns  
V
x 0.5  
CC  
Notes: (6) This parameter is not 100ꢀ tested  
(7) t and t are the delays required from the time the (last) power supply (V -) is stable until the specific instruction can be  
PUR  
PUW  
CC  
issued.These parameters are periodically sampled and not 100ꢀ tested.  
Characteristics subject to change without notice. 16 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
EQUIVALENT A.C. LOAD CIRCUIT  
V
CC  
SPICE Macromodel  
2kΩ  
R
TOTAL  
R
R
L
H
SO pin  
C
C
W
C
L
L
10pF  
2kΩ  
10pF  
25pF  
10pF  
R
W
AC TIMING  
Symbol  
Parameter  
Min.  
Max.  
Units  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
SPI clock frequency  
SPI clock cycle rime  
SPI clock high rime  
SPI clock low time  
Lead time  
2
SCK  
CYC  
WH  
WL  
LEAD  
LAG  
SU  
500  
200  
200  
250  
250  
50  
Lag time  
SI, SCK, HOLD and CS input setup time  
SI, SCK, HOLD and CS input hold time  
SI, SCK, HOLD and CS input rise time  
SI, SCK, HOLD and CS input fall time  
SO output disable time  
50  
H
2
RI  
2
FI  
0
0
250  
200  
DIS  
V
SO output valid time  
SO output hold time  
HO  
RO  
FO  
SO output rise time  
100  
100  
SO output fall time  
HOLD time  
400  
100  
100  
HOLD  
HSU  
HH  
HZ  
HOLD setup time  
HOLD hold time  
HOLD low to output in high Z  
HOLD high to output in low Z  
100  
100  
10  
LZ  
T
Noise suppression time constant at SI, SCK, HOLD and CS inputs  
I
t
t
t
CS deselect time  
WP, A0 setup time  
WP, A0 hold time  
2
0
0
CS  
WPASU  
WPAH  
Characteristics subject to change without notice. 17 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
HIGH-VOLTAGE WRITE CYCLE TIMING  
Symbol  
Parameter  
Typ.  
Max.  
Units  
t
High-voltage write cycle time (store instructions)  
5
10  
ms  
WR  
XDCP TIMING  
Symbol  
Parameter  
Min. Max. Units  
t
t
Wiper response time after the third (last) power supply is stable  
Wiper response time after instruction issued (all load instructions)  
5
5
10  
10  
µs  
µs  
WRPO  
WRL  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from Low to  
High  
Will change  
from Low to  
High  
May change  
from High to  
Low  
Will change  
from High to  
Low  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
.
Characteristics subject to change without notice. 18 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
TIMING DIAGRAMS  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
CYC  
SCK  
...  
WH  
t
t
FI  
t
RI  
t
t
t
WL  
SU  
H
...  
MSB  
LSB  
SI  
High Impedance  
SO  
Output Timing  
CS  
SCK  
SO  
...  
...  
t
t
t
DIS  
V
HO  
MSB  
LSB  
ADDR  
SI  
Hold Timing  
CS  
t
t
HH  
HSU  
SCK  
...  
t
t
FO  
RO  
SO  
t
t
LZ  
HZ  
SI  
t
HOLD  
HOLD  
Characteristics subject to change without notice. 19 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
XDCP Timing (for All Load Instructions)  
CS  
SCK  
...  
...  
t
WRL  
LSB  
MSB  
SI  
VWx  
High Impedance  
SO  
Write Protect and Device Address Pins Timing  
(Any Instruction)  
CS  
t
t
WPAH  
WPASU  
WP  
A0  
A1  
Characteristics subject to change without notice. 20 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
APPLICATIONS INFORMATION  
Basic Configurations of Electronic Potentiometers  
+V  
R
V
R
RW  
I
Three terminal Potentiometer;  
Variable voltage divider  
Two terminal Variable Resistor;  
Variable current  
Application Circuits  
Noninverting Amplifier  
Voltage Regulator  
V
+
S
V
V
V (REG)  
O
317  
O
IN  
R
1
R
2
I
adj  
R
R
1
2
V
= (1+R /R )V  
V
(REG) = 1.25V (1+R /R )+I  
R
O
2
1
S
O
2
1
adj 2  
Offset Voltage Adjustment  
Comparator with Hysterisis  
R
R
2
1
V
+
S
V
V
S
O
100KΩ  
+
V
O
TL072  
R
R
1
2
10KΩ  
10KΩ  
+12V  
V
= {R /(R +R )} V (max)  
1 1 2 O  
UL  
10KΩ  
-12V  
RL = {R /(R +R )} V (min)  
L
1
1
2
O
Characteristics subject to change without notice. 21 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
Application Circuits (continued)  
Attenuator  
Filter  
C
V
+
S
R
V
R
R
2
O
1
3
+
R
V
O
V
S
R
2
R
4
R = R = R = R = 10kΩ  
1
2
3
4
R
1
G
= 1 + R /R  
2 1  
V
= G V  
S
O
O
fc = 1/(2πRC)  
-1/2 G +1/2  
Inverting Amplifier  
Equivalent L-R Circuit  
R
R
2
1
V
S
R
2
C
1
+
V
+
S
V
O
R
R
1
3
Z
IN  
V
= G V  
S
O
G = - R /R  
2
1
Z
= R + s R (R + R ) C = R + s Leq  
2 2 1 3 1 2  
IN  
(R + R ) >> R  
1
3
2
Function Generator  
C
R
R
1
2
+
+
R
R
}
A
}
B
frequency R , R , C  
1
2
amplitude R , R  
A
B
Characteristics subject to change without notice. 22 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
PACKAGING INFORMATION  
24-Bump Chip Scale Package (CSP B24)  
Package Outline Drawing  
a
d
A4  
A4  
A4  
A3  
A3  
A3  
A2 A1  
A2 A1  
A2 A1  
b
k
A4  
A4  
A4  
A3  
A3  
A3  
A2 A1  
A2 A1  
A2 A1  
f
m
e
l
j
Bottom View (Bumped Side)  
Top View (Marking Side)  
Side View  
e
e
Side View  
Ball Matrix  
4
3
2
1
R
R
W0  
A
B
C
D
E
F
A1  
SI  
CS  
WP  
L1  
R
R
W1  
L0  
R
R
VSS  
VCC  
NC  
H1  
H2  
H0  
R
R
NC  
H3  
R
R
HOLD SO  
SCK A0  
W2  
L3  
R
R
L2  
W3  
Millimeters  
Nom.  
2.785  
4.537  
0.677  
0.457  
0.240  
0.330  
0.5  
Inches  
Nom.  
Symbol  
Min  
Max  
2.815  
4.567  
0.710  
0.470  
0.260  
0.350  
Min  
Max  
Package Width  
A
B
C
D
E
F
J
2.755  
4.507  
0.644  
0.444  
0.220  
0.310  
Package Length  
Package Height  
Body Thickness  
Ball Height  
Ball Diameter  
Ball Pitch – Width  
Ball Pitch – Length  
Ball to Edge Spacing – Width  
Ball to Edge Spacing – Length  
K
L
0.5  
0.618  
1.056  
0.643  
1.081  
0.668  
1.106  
M
Characteristics subject to change without notice. 23 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
PACKAGING INFORMATION  
24-Lead Plastic, TSSOP, Package Code V24  
.026 (.65) BSC  
.169 (4.3)  
.177 (4.5)  
.252 (6.4) BSC  
.303 (7.70)  
.311 (7.90)  
.047 (1.20)  
.0075 (.19)  
.0118 (.30)  
.002 (.06)  
.005 (.15)  
.010 (.25)  
Gage Plane  
(7.72)  
(4.16)  
0°–8°  
Seating Plane  
.020 (.50)  
.030 (.75)  
(1.78)  
(0.42)  
Detail A (20X)  
(0.65)  
ALL MEASUREMENTS ARE TYPICAL  
.031 (.80)  
.041 (1.05)  
See Detail “A”  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
Characteristics subject to change without notice. 24 of 25  
REV 1.4 4/13/04  
www.xicor.com  
X9251  
PACKAGING INFORMATION  
24-Lead Plastic, SOIC, Package Code S24  
0.393 (10.00)  
0.290 (7.37)  
0.299 (7.60)  
0.420 (10.65)  
Pin 1 Index  
Pin 1  
0.014 (0.35)  
0.020 (0.50)  
0.598 (15.20)  
0.610 (15.49)  
(4X) 7°  
0.092 (2.35)  
0.105 (2.65)  
0.003 (0.10)  
0.012 (0.30)  
0.050 (1.27)  
0.050"Typical  
0.010 (0.25)  
0.020 (0.50)  
X 45°  
0.050"  
Typical  
0° – 8°  
0.009 (0.22)  
0.013 (0.33)  
0.420"  
0.015 (0.40)  
0.050 (1.27)  
0.030" Typical  
24 Places  
FOOTPRINT  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
©Xicor, Inc. 2004 Patents Pending  
LIMITED WARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty,  
express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement.  
Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices  
at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, or licenses are implied.  
TRADEMARK DISCLAIMER:  
Xicor and the Xicor logo are registered trademarks of Xicor, Inc. AutoStore, Direct Write, Block Lock, SerialFlash, MPS, and XDCP are also trademarks of Xicor, Inc. All  
others belong to their respective owners.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846;  
4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967; 4,883,976; 4,980,859; 5,012,132; 5,003,197; 5,023,694; 5,084,667; 5,153,880; 5,153,691;  
5,161,137; 5,219,774; 5,270,927; 5,324,676; 5,434,396; 5,544,103; 5,587,573; 5,835,409; 5,977,585. Foreign patents and additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection  
and correction, redundancy and back-up features to prevent such an occurrence.  
Xicor’s products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to  
perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
Characteristics subject to change without notice. 25 of 25  
REV 1.4 4/13/04  
www.xicor.com  

相关型号:

X9251TS24I

Single Supply/Low Power/256-Tap/SPI Bus
INTERSIL

X9251TS24I

Quad Digitally-Controlled (XDCP) Potentiometer
XICOR

X9251TS24I-2.7

Single Supply/Low Power/256-Tap/SPI Bus
INTERSIL

X9251TS24I-2.7

Quad Digitally-Controlled (XDCP) Potentiometer
XICOR

X9251TS24I-2.7T1

QUAD 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO24, PLASTIC, SOIC-24
RENESAS

X9251TS24IT1

QUAD 100K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 256 POSITIONS, PDSO24, 0.300 INCH, PLASTIC, MS-013AD, SOIC-24
RENESAS

X9251TS24IT1

Digital Potentiometer, 4 Func, 100000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PDSO24, PLASTIC, SOIC-24
XICOR

X9251TS24IZ

Single Supply/Low Power/256-Tap/SPI Bus
INTERSIL

X9251TS24IZ-2.7

Single Supply/Low Power/256-Tap/SPI Bus
INTERSIL

X9251TS24IZ-2.7T1

QUAD 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO24, 0.300 INCH, ROHS COMPLIANT, PLASTIC, SOIC-24
RENESAS

X9251TS24T1

QUAD 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO24, PLASTIC, SOIC-24
XICOR

X9251TS24Z

Single Supply/Low Power/256-Tap/SPI Bus
INTERSIL