X9400YS24M-2.7 [XICOR]

Digital Potentiometer, 4 Func, 2500ohm, 3-wire Serial Control Interface, 64 Positions, PDSO24, PLASTIC, SOIC-24;
X9400YS24M-2.7
型号: X9400YS24M-2.7
厂家: XICOR INC.    XICOR INC.
描述:

Digital Potentiometer, 4 Func, 2500ohm, 3-wire Serial Control Interface, 64 Positions, PDSO24, PLASTIC, SOIC-24

光电二极管 转换器 电阻器
文件: 总22页 (文件大小:116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise/Low Power  
X9400  
Quad Nonvolatile Digitally Controlled Potentiometer  
FEATURES  
DESCRIPTION  
• Quad – Four Separate Pots  
• 64 Resistor Taps/Pot  
• SPI Serial Interface  
• Wiper Resistance, 150Typical  
• Four Non-Volatile Data Registers for Each Pot  
• Non-Volatile Storage of Wiper Position  
• Standby Current < 1µA Max (Total Package)  
The X9400 digital potentiometer contains 4 separate  
10Kpotentiometers with a digitally programmable  
wiper position to one of 64 taps on each pot. The wiper  
position is determined by a serial digital code that is  
received on the SPI serial port that is common to all four  
ports.The 63 individual resistors in each pot are all equal  
creating a linear taper from one end of the pot to the  
other. There are also four 6 bit non-volatile data registers  
associated with each pot for storing system data and the  
most recent wiper position. Powering up the device  
• V  
= 2.7V to 5.5V Operation  
CC  
V+ = 2.7V to 5.5V  
V– = –2.7V to –5.5V  
• 10K, 2.5KTotal Pot Resistance  
• 100 yr. Data Retention  
• 24-Lead SOIC, 24-Lead TSSOP, and 24-Lead  
XBGA Packages  
causes the contents of R register of each pot to be  
loaded into the Wiper Counter register restoring the last  
known wiper position for each pot.  
0
FUNCTIONAL DIAGRAM  
POT 0  
R0 R1  
R2 R3  
VH0  
R0 R1  
R2 R3  
WIPER  
VH2  
WIPER  
COUNTER  
REGISTER  
(WCR)  
RESISTOR  
ARRAY  
POT2  
COUNTER  
REGISTER  
(WCR)  
VL0  
HOLD  
VL2  
CS  
SCK  
SO  
VW0  
VW2  
INTERFACE  
AND  
CONTROL  
SI  
8
CIRCUITRY  
A0  
A1  
VW1  
VH1  
DATA  
VW3  
VH3  
WP  
R0 R1  
R2 R3  
R0 R1  
R2 R3  
WIPER  
COUNTER  
REGISTER  
(WCR)  
WIPER  
COUNTER  
REGISTER  
(WCR)  
RESISTOR  
ARRAY  
POT1  
RESISTOR  
ARRAY  
POT3  
VL1  
VL3  
Xicor, Inc. 2000 Patents Pending  
7061-1.1 2/28/00 EP  
Characteristics subject to change without notice 1 of 22  
X9400  
PIN DESCRIPTIONS  
serial sequence. To pause, HOLD must be brought LOW  
while SCK is LOW. To resume communication, HOLD is  
brought HIGH, again while SCK is LOW. If the pause  
feature is not used, HOLD should be held HIGH at all  
times.  
Host Interface Pins  
Serial Output (SO)  
SO is a push/pull serial data output pin. During a read  
cycle, data is shifted out on this pin. Data is clocked out  
by the falling edge of the serial clock.  
Device Address (A A )  
0
1
The address inputs are used to set the least significant 2  
bits of the 8-bit slave address. A match in the slave  
address serial data stream must be made with the  
address input in order to initiate communication with the  
X9400. A maximum of 4 devices may occupy the SPI  
serial bus.  
Serial Input  
SI is the serial data input pin. All opcodes, byte  
addresses and data to be written to the pots and pot  
registers are input on this pin. Data is latched by the  
rising edge of the serial clock.  
Serial Clock (SCK)  
Potentiometer Pins  
The SCK input is used to clock data into and out of the  
X9400.  
V (V – V ), V (V – V )  
H H0 H3 L L0 L3  
The VH and VL inputs are equivalent to the terminal  
connections on either end of  
potentiometer.  
a
mechanical  
Chip Select (CS)  
When CS is HIGH, the X9400 is deselected and the SO  
pin is at high impedance, and (unless an internal write  
cycle is underway) the device will be in the standby state.  
CS LOW enables the X9400, placing it in the active  
power mode. It should be noted that after a power-up, a  
HIGH to LOW transition on CS is required prior to the  
start of any operation.  
V
(V  
– V  
)
W
W0  
W3  
The wiper outputs are equivalent to the wiper output of a  
mechanical potentiometer.  
Hardware Write Protect Input (WP)  
The WP pin when LOW prevents nonvolatile writes to the  
Wiper Counter Registers.  
Hold (HOLD)  
Analog Supplies (V+, V-)  
HOLD is used in conjunction with the CS pin to select the  
device. Once the part is selected and a serial sequence  
is underway, HOLD may be used to pause the serial  
communication with the controller without resetting the  
The analog Supplies V+, V- are the supply voltages for  
the EEPot analog section.  
PIN CONFIGURATION  
TSSOP  
DIP/SOIC  
XBGA  
VCC  
VL0  
VH0  
VW0  
CS  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V+  
SI  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
WP  
CS  
V
1
2
3
4
VL3  
VH3  
VW3  
A
A
V
V
V
L1  
CS  
1
W0  
1
A
B
C
D
E
F
3
V
3
L1  
W0  
V
SI  
W1  
WP  
L0  
V
4
4
V
V
H1  
H0  
L0  
A
0
5
5
V
V
W1  
V
CC  
V
V V  
H1 SS  
H0  
SO  
WP  
SI  
6
V
6
SS  
CC  
X9400  
X9400  
V
V
H2  
V+  
V
V-  
H3  
7
HOLD  
SCK  
VL2  
V–  
W2  
7
V+  
V
A
1
V
8
8
L3  
SO HOLD V  
L3  
W2  
VL1  
VH1  
VW1  
9
V
V
V
9
H3  
W3  
0
H2  
10  
V
L2  
VH2  
V
W3  
A SCK V  
0
10  
L2  
SCK  
11  
12  
14  
13  
11  
12  
VW2  
V-  
14  
13  
A
Top View–Bumps Down  
V
HOLD  
SO  
SS  
Characteristics subject to change without notice 2 of 22  
X9400  
PIN NAMES  
These switches are controlled by a wiper counter register  
(WCR). The six bits of the WCR are decoded to select,  
and enable, one of sixty-four switches.  
Symbol  
SCK  
Description  
Serial Clock  
Wiper Counter Register (WCR)  
SI, SO  
A -A  
Serial Data  
The X9400 contains four wiper counter registers, one for  
each EEPOT potentiometer. The WCR is equivalent to a  
serial-in, parallel-out register/counter with its outputs  
decoded to select one of sixty-four switches along its  
resistor array. The contents of the WCR can be altered in  
four ways: it may be written directly by the host via the  
write wiper counter register instruction (serial load); it  
may be written indirectly by transferring the contents of  
one of four associated data registers via the XFR data  
register or global XFR data register instructions (parallel  
load); it can be modified one step at a time by the  
increment/decrement instruction. Finally, it is loaded with  
the contents of its data register zero (R0) upon power-up.  
Device Address  
0
1
V
V
V
,
Potentiometers  
(terminal equivalent)  
H0– H3  
V
L0– L3  
Potentiometers  
(wiper equivalent)  
V
V
W0– W1  
WP  
Hardware Write Protection  
Analog and Voltage Follower  
Supplies  
V+,V-  
V
System Supply Voltage  
System Ground  
CC  
Vss  
NC  
No Connection  
The wiper counter register is a volatile register; that is, its  
contents are lost when the X9400 is powered-down.  
Although the register is automatically loaded with the  
value in R0 upon power-up, this may be different from the  
value present at power-down.  
DEVICE DESCRIPTION  
The X9400 is  
a
highly integrated microcircuit  
incorporating four resistor arrays and their associated  
registers and counters and the serial interface logic  
providing direct communication between the host and the  
EEPOT potentiometers.  
Data Registers  
Each potentiometer has four 6-bit nonvolatile data  
registers. These can be read or written directly by the  
host. Data can also be transferred between any of the  
four data registers and the associated Wiper Counter  
Register. All operations changing data in one of the data  
registers is a nonvolatile operation and will take a  
maximum of 10ms.  
Serial Interface  
The X9400 supports the SPI interface hardware  
conventions. The device is accessed via the SI input with  
data clocked in on the rising SCK. CS must be LOW and  
the HOLD and WP pins must be HIGH during the entire  
operation.  
If the application does not require storage of multiple  
settings for the potentiometer, the data registers can be  
used as regular memory locations for system parameters  
or user preference data.  
The SO and SI pins can be connected together, since  
they have three state outputs. This can help to reduce  
system pin count.  
Array Description  
Table 1. Data Register Detail  
The X9400 is comprised of four resistor arrays. Each  
array contains 63 discrete resistive segments that are  
connected in series. The physical ends of each array are  
equivalent to the fixed terminals of a mechanical  
(MSB)  
D5  
(LSB)  
D0  
D4  
NV  
D3  
NV  
D2  
NV  
D1  
NV  
NV  
NV  
potentiometer (V and V inputs).  
H
L
At both ends of each array and between each resistor  
segment is a CMOS switch connected to the wiper (V )  
W
output. Within each individual array only one switch may  
be turned on at a time.  
Characteristics subject to change without notice 3 of 22  
X9400  
Figure 1. Detailed Potentiometer Block Diagram  
(One of Four Arrays)  
SERIAL DATA PATH  
V
H
SERIAL  
BUS  
INPUT  
FROM INTERF ACE  
CIRCUITR Y  
C
O
U
N
T
REGISTER 0  
REGISTER 2  
REGISTER 1  
8
6
PARALLEL  
BUS  
INPUT  
E
R
WIPER  
COUNTER  
REGISTER  
(WCR)  
D
E
C
O
D
E
REGISTER 3  
INC/DEC  
LOGIC  
IF WCR = 00[H] THEN VW = VL  
UP/DN  
UP/DN  
IF WCR = 3F[H] THEN VW = VH  
V
L
MODIFIED SCK  
CLK  
V
W
Write in Process  
Figure 2. Identification Byte Format  
The contents of the data registers are saved to  
nonvolatile memory when the CS pin goes from LOW to  
HIGH after a complete write sequence is received by the  
device. The progress of this internal write operation can  
be monitored by a write in process bit (WIP). The WIP bit  
is read with a read status command.  
DEVICE TYPE  
IDENTIFIER  
0
1
0
1
0
0
A1  
A0  
DEVICEADDRESS  
INSTRUCTIONS  
Identification (ID) Byte  
Instruction Byte  
The first byte sent to the X9400 from the host, following a  
CS going HIGH to LOW, is called the Identification byte.  
The most significant four bits of the slave address are a  
device type identifier, for the X9400 this is fixed as  
0101[B] (refer to Figure 2).  
The next byte sent to the X9400 contains the instruction  
and register pointer information.The four most significant  
bits are the instruction. The next four bits point to one of  
the four pots and, when applicable, they point to one of  
four associated registers. The format is shown below in  
Figure 3.  
The two least significant bits in the ID byte select one of  
four devices on the bus. The physical device address is  
Figure 3. Instruction Byte Format  
defined by the state of the A -A input pins. The X9400  
0
1
compares the serial data stream with the address input  
state; a successful compare of both address bits is  
required for the X9400 to successfully continue the  
REGISTER  
SELECT  
command sequence. The A –A inputs can be actively  
0
1
I3  
I2  
I1  
I0  
R1 R0  
P1  
P0  
driven by CMOS input signals or tied to V or V  
.
CC  
SS  
The remaining two bits in the slave byte must be set to 0.  
INSTRUCTIONS  
POT SELECT  
Characteristics subject to change without notice 4 of 22  
X9400  
The four high order bits of the instruction byte specify the  
Five instructions require a three-byte sequence to  
complete. These instructions transfer data between the  
host and the X9400; either between the host and one of  
the data registers or directly between the host and the  
Wiper Counter Register.These instructions are:  
operation. The next two bits (R and R ) select one of the  
1
0
four registers that is to be acted upon when a register  
oriented instruction is issued.The last two bits (P1 and P )  
0
selects which one of the four potentiometers is to be  
affected by the instruction.  
• Read Wiper Counter Register - read the current wiper  
position of the selected pot,  
Four of the ten instructions are two bytes in length and  
end with the transmission of the instruction byte. These  
instructions are:  
• Write Wiper Counter Register - change current wiper  
position of the selected pot,  
• XFR Data Register to Wiper Counter Register - This  
transfers the contents of one specified Data Register to  
the associated Wiper Counter Register.  
• Read Data Register - read the contents of the selected  
data register;  
• Write Data Register - write a new value to the selected  
data register.  
• XFR Wiper Counter Register to Data Register - This  
transfers the contents of the specified Wiper Counter  
Register to the specified associated Data Register.  
• Read Status -This command returns the contents of the  
WIP bit which indicates if the internal write cycle is in  
progress.  
• Global XFR Data Register to Wiper Counter Register -  
This transfers the contents of all specified Data  
Registers to the associated Wiper Counter Registers.  
The sequence of these operations is shown in Figure 5  
and Figure 6.  
• Global XFR Wiper Counter Register to Data Register -  
This transfers the contents of all Wiper Counter  
Registers to the specified associated Data Registers.  
The final command is Increment/Decrement. It is different  
from the other commands, because it’s length is  
indeterminate. Once the command is issued, the master  
can clock the selected wiper up and/or down in one  
resistor segment steps; thereby, providing a fine tuning  
The basic sequence of the two byte instructions is  
illustrated in Figure 4. These two-byte instructions  
exchange data between the WCR and one of the data  
registers. A transfer from a data register to a WCR is  
essentially a write to a static RAM, with the static RAM  
controlling the wiper position.The response of the wiper to  
capability to the host. For each SCK clock pulse (t  
)
HIGH  
while SI is HIGH, the selected wiper will move one resistor  
segment towards the V terminal. Similarly, for each SCK  
H
clock pulse while SI is LOW, the selected wiper will move  
this action will be delayed by t  
. A transfer from the  
WRL  
one resistor segment towards the V terminal. A detailed  
L
WCR (current wiper position), to a data register is a write  
to nonvolatile memory and takes a minimum of t to  
illustration of the sequence and timing for this operation  
are shown in Figure 7 and Figure 8.  
WR  
complete. The transfer can occur between one of the four  
potentiometers and one of its associated registers; or it  
may occur globally, where the transfer occurs between all  
potentiometers and one associated register.  
Characteristics subject to change without notice 5 of 22  
X9400  
Figure 4. Two-Byte Command Sequence  
CS  
SCK  
SI  
0
1
0
1
0
0
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
Figure 5. Three-Byte Command Sequence (Write)  
CS  
SCL  
SI  
0
0
0
1
0
1
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
0
0
D5 D4 D3 D2 D1 D0  
Figure 6. Three-Byte Command Sequence (Read)  
CS  
SCL  
SI  
Don’t Care  
0
0
0
1
0
1
A1 A0  
I3 I2  
I1 I0  
R1 R0 P1 P0  
S0  
0
0
D5 D4 D3 D2 D1 D0  
Figure 7. Increment/Decrement Command Squence  
CS  
SCK  
SI  
P1  
0
1
0
1
0
0
A1 A0  
I3 I2  
I1 I0  
0
0
P0  
I
I
D
E
C
1
I
D
E
C
n
N
C
1
N
C
2
N
C
n
Characteristics subject to change without notice 6 of 22  
X9400  
Figure 8. Increment/Decrement Timing Limits  
t
WRID  
SCK  
SI  
VOLTAGE OUT  
V
W
INC/DEC CMD ISSUED  
Table 1. Instruction Set  
Instruction  
Instruction Set  
I
I
I
I
R
R
P
P
Operation  
3
2
1
0
1
0
1
0
Read the contents of the Wiper Counter  
Register pointed to by P -P  
Read Wiper Counter  
Register  
P
P
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
0
0
1
0
1
0
Write new value to the Wiper Counter  
Register pointed to by P -P  
Write Wiper Counter  
Register  
P
P
P
P
P
P
0
0
1
1
1
0
0
0
1
0
Read the contents of the Data Register  
pointed to by P -P and R –R  
R
R
Read Data Register  
Write Data Register  
1
1
0
0
1
0
1
0
Write new value to the Data Register  
pointed to by P -P and R –R  
R
R
1
0
1
0
Transfer the contents of the Data Register  
pointed to by R –R to the Wiper Counter  
XFR Data Register to  
Wiper Counter Register  
R
R
P
P
1
1
0
1
1
0
1
0
1
1
0
0
Register pointed to by P -P  
1
0
Transfer the contents of the Wiper Counter  
Register pointed to by P -P to the  
XFR Wiper Counter  
Register to Data Register  
R
R
R
R
R
R
P
P
1
0
1
1
0
0
1
0
0
0
1
0
1
0
1
1
1
0
0
0
Register pointed to by R –R  
1
0
Transfer the contents of all four Data  
Registers pointed to by R –R to their  
Global XFR Data Register  
to Wiper Counter Register  
0
0
1
0
respective Wiper Counter Register  
Transfer the contents of all Wiper Counter  
Registers to their respective data Registers  
Global XFR WiperCounter  
Register to Data Register  
0
0
pointed to by R –R  
1
0
Enable Increment/decrement of the Wiper  
Counter Register pointed to by P -P  
Increment/Decrement  
Wiper Counter Register  
P
P
0
0
0
0
1
1
0
0
1
0
0
1
1
0
Read the status of the internal write cycle,  
by checking the WIP bit.  
Read Status (WIP bit)  
0
0
0
1
Characteristics subject to change without notice 7 of 22  
X9400  
Instruction Format  
Notes: (1) “A1 ~ A0”: stands for the device addresses sent by the master.  
(2) WPx refers to wiper position data in the Counter Register  
(2) “I”: stands for the increment operation, SI held HIGH during active SCK phase (high).  
(3) “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
Read Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
addresses  
wiper position  
(sent by X9400 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W  
0 0 P P P P P P  
A A  
P P  
0
1
0
1
0
0
1
0
0
1
0
0
1
0
1
0
5
4 3 2 1 0  
Write Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
addresses  
Data Byte  
(sent by Host on SI)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W  
0 P P P P P P  
A A  
P P  
0
1
0
1
0
0
1
0
1
0
0
0
0
1
0
1
0
5
4 3 2 1 0  
Read Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
opcode addresses  
Data Byte  
(sent by X9400 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W  
0 0 P P P P P P  
A A  
R
1
R
0
P
1
P
0
0
1
0
1
0
0
1
0
1
1
1
0
5
4 3 2 1 0  
Write Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
Data Byte  
(sent by host on SI)  
opcode  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
W W W W W W  
0 0 P P P P P P  
5 4 3 2 1 0  
A A  
1 0  
R
1
R
0
P
1
P
0
0 1 0 1 0 0  
1 1 0 0  
Transfer Data Register (DR) to Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
opcode  
addresses  
A A  
1 0  
R
1
R
0
P
1
P
0
0 1 0 1 0 0  
1 1 0 1  
Characteristics subject to change without notice 8 of 22  
X9400  
Transfer Wiper Counter Register (WCR) to Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
opcode  
addresses  
HIGH-VOLTAGE  
WRITE CYCLE  
A A  
1 0  
R
1
R
0
P
1
P
0
0 1 0 1 0 0  
1 1 1 0  
Increment/Decrement Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
increment/decrement  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
addresses (sent by master on SDA)  
A A  
1
P P I/ I/  
1 0 D D  
I/ I/  
D D  
0
1
0
1
0
0
0
0
1
0
X X  
.
.
.
.
0
Global Transfer Data Register (DR) to Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
DR  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
A A  
1
R R  
1 0  
0
1
0
1
0
0
0
0
0
1
0 0  
0
Global Transfer Wiper Counter Register (WCR) to Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
DR  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
A A  
1 0  
R R  
0 0  
1 0  
0 1 0 1 0 0  
1 0 0 0  
Read Status  
device type  
identifier  
device  
addresses  
instruction  
opcode  
wiper  
addresses  
Data Byte  
(sent by X9400 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W
I
P
A A  
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
Characteristics subject to change without notice 9 of 22  
X9400  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device (at these or any other conditions above those listed  
in the operational sections of this specification) is not  
implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
Temperature under bias.......................... –65°C to +135°C  
Storage temperature............................... –65°C to +150°C  
Voltage on SCK, SCL or any address input  
with respect to V ....................................1V to +7V  
SS  
Voltage on V+ (referenced to V )................................10V  
SS  
Voltage on V- (referenced to V )............................... -10V  
SS  
(V+) – (V-)......................................................................12V  
Any V .............................................................................V+  
H
Any V ...............................................................................V-  
L
Lead temperature (soldering, 10 seconds) ..............300°C  
RECOMMENDED OPERATING CONDITIONS  
Temp  
Commercial  
Industrial  
Min.  
0°C  
Max.  
+70°C  
+85°C  
Device  
X9400  
Supply Voltage (V ) Limits  
CC  
5V ±10%  
–40°C  
X9400-2.7  
2.7V to 5.5V  
ANALOG CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.)  
Limits  
Symbol  
R
Parameter  
End to end resistance  
Power rating  
Min. Typ. Max. Units  
Test Conditions  
25°C, each pot  
–20  
+20  
50  
%
mW  
mA  
TOTAL  
I
Wiper current  
–3  
+3  
W
R
Wiper resistance  
150  
250  
+5.5  
+5.5  
-4.5  
-2.7  
V+  
Wiper Current = ± 1mA  
W
X9400  
+4.5  
+2.7  
-5.5  
-5.5  
V-  
Vv+  
Voltage on V+ Pin  
Voltage on V- Pin  
V
V
X9400-2.7  
X9400  
Vv-  
X9400-2.7  
V
Voltage on any V or V Pin  
V
dBV  
%
TERM  
H
L
Noise  
-120  
1.6  
Ref: 1kHz  
Resolution  
Absolute linearity (1)  
Relative linearity (2)  
MI(3)  
MI(3)  
–1  
+1  
V
– V  
w(n)(actual)  
w(n)(expected)  
]
–0.2  
+0.2  
V – [V  
w(n + 1) w(n) + MI  
Temperature coefficient  
±300  
ppm/°C  
Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a  
potentiometer.  
(2) Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a  
potentiometer. It is a measure of the error in step size.  
(3) MI = RTOT/63 or (V – V )/63, single pot  
H
L
Characteristics subject to change without notice 10 of 22  
X9400  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
V
supply current  
f
= 2MHz, SO = Open,  
CC  
SCK  
I
400  
µA  
CC1  
(Active)  
Other Inputs = V  
SS  
V
supply current  
f
= 2MHz, SO = Open,  
CC  
SCK  
I
1
mA  
CC2  
(Nonvolatile Write)  
Other Inputs = V  
SS  
I
I
I
V
current (standby)  
1
µA  
µA  
µA  
V
SCK = SI = V , Addr. = V  
SS SS  
SB  
CC  
Input leakage current  
Output leakage current  
Input HIGH voltage  
Input LOW voltage  
Output LOW voltage  
10  
10  
V
V
= V to V  
SS CC  
LI  
IN  
= V to V  
CC  
LO  
OUT  
SS  
V
V
V
V
x 0.7  
V
+ 0.5  
IH  
IL  
CC  
CC  
–0.5  
V
x 0.1  
V
CC  
0.4  
V
I
= 3mA  
OL  
OL  
ENDURANCE AND DATA RETENTION  
Parameter  
Minimum endurance  
Data retention  
Min.  
Units  
100,000  
100  
Data changes per register  
years  
CAPACITANCE  
Symbol  
Test  
Max.  
Units  
pF  
Test Conditions  
(4)  
OUT  
Output capacitance (SO)  
8
6
V
= 0V  
C
OUT  
(4)  
IN  
Input capacitance (A0, A1, SI, and SCK)  
pF  
V
= 0V  
C
IN  
POWER-UP TIMING  
Symbol  
Parameter  
Min.  
1
Max.  
1
Units  
ms  
(5)  
PUR  
Power-up to initiation of read operation  
Power-up to initiation of write operation  
t
t
(5)  
PUW  
5
5
ms  
(7)  
CC  
V
Power up ramp  
0.2  
50  
V/msec  
t V  
CC  
R
A.C. TEST CONDITIONS  
EQUIVALENT A.C. LOAD CIRCUIT  
V
x 0.1 to V x 0.9  
CC  
5V  
2.7V  
Input Pulse Levels  
CC  
Input rise and fall times  
Input and output timing level  
10ns  
1533Ω  
V
x 0.5  
CC  
SDA OUTPUT  
Notes: (4) This parameter is periodically sampled and not 100%  
tested  
(5) t  
and t  
are the delays required from the time the  
100pF  
100pF  
PUR  
PUW  
third (last) power supply (Vcc, V+ or V-) is stable until the  
specific instruction can be issued. These parameters are  
periodically sampled and not 100% tested.  
(6) The power supply sequence should be V , V-, V , V+  
SS  
CC  
with no slope reversals on V  
,
CC  
(7) This is not a tested or guaranteed parameter and should be  
used as a guideline.  
Characteristics subject to change without notice 11 of 22  
X9400  
AC TIMING  
Symbol  
Parameter  
Min.  
Max.  
Units  
MHz  
ns  
f
SSI/SPI clock frequency  
SSI/SPI clock cycle time  
SSI/SPI clock high time  
SSI/SPI clock low time  
Lead time  
2.0  
SCK  
t
500  
200  
200  
250  
250  
50  
CYC  
t
ns  
WH  
t
ns  
WL  
t
ns  
LEAD  
t
Lag time  
ns  
LAG  
t
SI, SCK, HOLD and CS input setup time  
SI, SCK, HOLD and CS input hold time  
SI, SCK, HOLD and CS input rise time  
SI, SCK, HOLD and CS input fall time  
SO output disable time  
ns  
SU  
t
50  
ns  
H
t
2
µs  
µs  
ns  
RI  
t
2
FI  
t
0
0
500  
100  
DIS  
t
SO output valid time  
ns  
V
t
SO output hold time  
ns  
HO  
t
SO output rise time  
50  
50  
ns  
RO  
t
SO output fall time  
ns  
FO  
t
HOLD time  
400  
100  
100  
ns  
HOLD  
t
HOLD setup time  
ns  
HSU  
t
HOLD hold time  
ns  
HH  
t
HOLD low to output in High Z  
HOLD high to output in Low Z  
100  
100  
ns  
HZ  
t
ns  
LZ  
Noise suppression time constant at  
SI, SCK, HOLD and CS inputs  
T
I
20  
ns  
t
CS deselect time  
2
0
0
µs  
ns  
ns  
CS  
t
WP, A0 and A1 setup time  
WP, A0 and A1 hold time  
WPASU  
t
WPAH  
HIGH-VOLTAGE WRITE CYCLE TIMING  
Symbol  
Parameter  
Typ.  
Max.  
Units  
t
High-voltage write cycle time (store instructions)  
5
10  
ms  
WR  
Characteristics subject to change without notice 12 of 22  
X9400  
EEPOT TIMING  
Symbol  
Parameter  
Min. Max. Units  
t
t
Wiper response time after the third (last) power supply is stable  
Wiper response time after instruction issued (all load instructions)  
10  
10  
µs  
µs  
WRPO  
WRL  
Wiper response time from an active SCL/SCK edge (increment/decrement  
instruction)  
t
450  
ns  
WRID  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from Low to  
High  
Will change  
from Low to  
High  
May change  
from High to  
Low  
Will change  
from High to  
Low  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
.
Characteristics subject to change without notice 13 of 22  
X9400  
TIMING DIAGRAMS  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
CYC  
SCK  
...  
WH  
t
RI  
t
t
t
t
t
FI  
WL  
SU  
H
...  
MSB  
LSB  
SI  
High Impedance  
SO  
Output Timing  
CS  
SCK  
SO  
...  
...  
t
t
t
DIS  
V
HO  
MSB  
LSB  
ADDR  
SI  
Hold Timing  
CS  
t
t
HH  
HSU  
SCK  
...  
t
t
FO  
RO  
SO  
t
t
LZ  
HZ  
SI  
t
HOLD  
HOLD  
Characteristics subject to change without notice 14 of 22  
X9400  
EEPOT Timing (for All Load Instructions)  
CS  
SCK  
...  
...  
t
WRL  
MSB  
LSB  
SI  
VWx  
High Impedance  
SO  
EEPOT Timing (for Increment/Decrement Instruction)  
CS  
SCK  
VWx  
...  
t
WRID  
...  
ADDR  
Inc/Dec  
...  
SI  
Inc/Dec  
High Impedance  
SO  
Write Protect and Device Address Pins Timing  
(Any Instruction)  
CS  
t
t
WPAH  
WPASU  
WP  
A0  
A1  
Characteristics subject to change without notice 15 of 22  
X9400  
APPLICATIONS INFORMATION  
Basic Configurations of Electronic Potentiometers  
+V  
R
V
R
V
W
I
Three terminal Potentiometer;  
Variable voltage divider  
Two terminal Variable Resistor;  
Variable current  
Application Circuits  
Noninverting Amplifier  
Voltage Regulator  
V
+
S
V
V
V (REG)  
O
317  
O
IN  
R
1
R
2
I
adj  
R
R
1
2
V
= (1+R /R )V  
V
(REG) = 1.25V (1+R /R )+I  
R
O
2
1
S
O
2
1
adj  
2
Offset Voltage Adjustment  
Comparator with Hysterisis  
R
R
2
1
V
+
S
V
V
S
O
100KΩ  
+
V
O
TL072  
R
R
1
2
10KΩ  
10KΩ  
+12V  
V
V
= {R /(R +R )} V (max)  
1 1 2 O  
UL  
10KΩ  
-12V  
= {R /(R +R )} V (min)  
LL  
1 1 2 O  
Characteristics subject to change without notice 16 of 22  
X9400  
Application Circuits (continued)  
Attenuator  
Filter  
C
V
+
S
R
V
R
2
O
1
3
+
R
V
O
V
S
R
R
2
R
4
All R = 10kΩ  
S
R
1
G
= 1 + R /R  
2 1  
V
= G V  
S
O
O
fc = 1/(2πRC)  
-1/2 G +1/2  
Inverting Amplifier  
Equivalent L-R Circuit  
R
R
2
1
V
S
R
2
C
1
+
V
+
S
V
O
R
R
1
Z
IN  
V
= G V  
S
O
G = - R /R  
2
1
3
Z
= R + s R (R + R ) C = R + s Leq  
2 2 1 3 1 2  
IN  
(R + R ) >> R  
1
3
2
Function Generator  
C
R
R
1
2
+
+
R
R
}
}
A
B
frequency R , R , C  
1
2
amplitude R , R  
A
B
Characteristics subject to change without notice 17 of 22  
X9400  
PACKAGING INFORMATION  
24-Lead Plastic Dual In-Line Package Type P  
1.265 (32.13)  
1.230 (31.24)  
0.557 (14.15)  
0.530 (13.46)  
PIN 1 INDEX  
PIN 1  
0.080 (2.03)  
0.065 (1.65)  
1.100 (27.94)  
REF.  
0.162 (4.11)  
0.140 (3.56)  
SEATING  
PLANE  
0.030 (0.76)  
0.015 (0.38)  
0.150 (3.81)  
0.125 (3.18)  
0.110 (2.79)  
0.090 (2.29)  
0.065 (1.65)  
0.040 (1.02)  
0.022 (0.56)  
0.014 (0.36)  
0.625 (15.87)  
0.600 (15.24)  
0°  
TYP.0.010 (0.25)  
15°  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH  
Characteristics subject to change without notice 18 of 22  
X9400  
PACKAGING INFORMATION  
24-Lead Plastic Small Outline Gull Wing Package Type S  
0.290 (7.37)  
0.299 (7.60)  
0.393 (10.00)  
0.420 (10.65)  
PIN 1 INDEX  
PIN 1  
0.014 (0.35)  
0.020 (0.50)  
0.598 (15.20)  
0.610 (15.49)  
(4X) 7°  
0.092 (2.35)  
0.105 (2.65)  
0.003 (0.10)  
0.012 (0.30)  
0.050 (1.27)  
0.050" TYPICAL  
0.010 (0.25)  
0.020 (0.50)  
X 45°  
0.050"  
TYPICAL  
0° – 8°  
0.009 (0.22)  
0.013 (0.33)  
0.420"  
0.015 (0.40)  
0.050 (1.27)  
0.030" TYPICAL  
24 PLACES  
FOOTPRINT  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
Characteristics subject to change without notice 19 of 22  
X9400  
PACKAGING INFORMATION  
24-Lead Plastic, TSSOP Package Type V  
.026 (.65) BSC  
.169 (4.3)  
.252 (6.4) BSC  
.177 (4.5)  
.303 (7.70)  
.311 (7.90)  
.047 (1.20)  
.0075 (.19)  
.002 (.06)  
.0118 (.30)  
.005 (.15)  
.010 (.25)  
Gage Plane  
0° – 8°  
Seating Plane  
.020 (.50)  
.030 (.75)  
DetailA (20X)  
.031 (.80)  
.041 (1.05)  
See Detail “A”  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
Characteristics subject to change without notice 20 of 22  
X9400  
24-ball BGA (X9400WC)  
a
a
l
j
m
1
2
3
4
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
k
b
b
f
Top View (Bump Side Down)  
Bottom View (Bump Side Up)  
Note: Drawing not to scale  
d
= Die Oridentation mark  
c
e
Side View (Bump Side Down)  
Millimeters  
Nom.  
Inches  
Symbol  
Min  
Max  
2.635  
3.854  
0.763  
0.470  
0.293  
0.388  
Min  
Nom.  
Max  
Package Body Dimension X  
Package Body Dimension Y  
Package Height  
a
b
c
d
e
f
2.575  
3.794  
0.697  
0.444  
0.253  
0.360  
2.605  
3.824  
0.750  
0.457  
0.273  
0.374  
0.10138  
0.14937  
0.02744  
0.01748  
0.00996  
0.01417  
0.10256  
0.15055  
0.02674  
0.01799  
0.01075  
0.01472  
0.10374  
0.15173  
0.03004  
0.01850  
0.01154  
0.01528  
Package Body Thickness  
Ball Height  
Ball Diameter  
Total Ball Count  
g
h
i
24  
4
Ball Count X Axis  
Ball Count Y Axis  
Pins Pitch XAxis  
6
j
0.5  
0.5  
Pins Pitch Y Axis  
k
Edge to Ball Center (Corner)  
Distance Along X  
l
0.523  
0.632  
0.553  
0.662  
0.583  
0.692  
0.02057  
0.02488  
0.02175  
0.02606  
0.02293  
0.02724  
Edge to Ball Center (Corner)  
Distance Along Y  
m
Characteristics subject to change without notice 21 of 22  
X9400  
ORDERING INFORMATION  
X9400  
Y
P
T
V
V
Limits  
CC  
Device  
Blank = 5V ±10%  
–2.7 = 2.7 to 5.5V  
Temperature Range  
Blank = Commercial = 0°C to +70°C  
I = Industrial = –40°C to +85°C  
M = Military = –55°C to +125°C  
Package  
S24 = 24-Lead SOIC  
V24 = 24-Lead TSSOP  
Z24 = 24-Lead XBGA  
Potentiometer Organization  
Pot 0 Pot 1 Pot 2 Pot 3  
W =  
Y =  
10K10K10K10KΩ  
2.5K2.5K2.5K2.5KΩ  
PART MARK CONVENTION  
24 Lead XBGA  
X9400WZ24I-2.7  
X9400WZ24  
Top Mark  
XABM  
XABN  
X9400YZ24  
XABZ  
X9400YZ24I-2.7  
XABY  
LIMITED WARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty,  
express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement.  
Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and  
prices at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, or licenses are implied.  
TRADEMARK DISCLAIMER:  
Xicor and the Xicor logo are registered trademarks of Xicor, Inc. AutoStore, Direct Write, Block Lock, SerialFlash, MPS, and XDCP are also trademarks of Xicor, Inc.  
All others belong to their respective owners.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461;  
4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967; 4,883,976; 4,980,859; 5,012,132; 5,003,197; 5,023,694; 5,084,667; 5,153,880;  
5,153,691; 5,161,137; 5,219,774; 5,270,927; 5,324,676; 5,434,396; 5,544,103; 5,587,573; 5,835,409; 5,977,585. Foreign patents and additional patents  
pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error  
detection and correction, redundancy and back-up features to prevent such an occurence.  
Xicor’s products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure  
to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the  
user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
Characteristics subject to change without notice 22 of 22  

相关型号:

X9400YS24T1

Digital Potentiometer, 4 Func, 2500ohm, 3-wire Serial Control Interface, 64 Positions, CMOS, PDSO24, PLASTIC, SOIC-24
RENESAS

X9400YV24

Low Noise/Low Power/SPI Bus
INTERSIL

X9400YV24

QUAD 2.5K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, 4.40 MM, TSSOP-24
RENESAS

X9400YV24

Digital Potentiometer, 4 Func, 2500ohm, 3-wire Serial Control Interface, 64 Positions, CMOS, PDSO24, PLASTIC, TSSOP-24
XICOR

X9400YV24-2.7

Low Noise/Low Power/SPI Bus
INTERSIL

X9400YV24-2.7

QUAD 2.5K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, 4.40 MM, TSSOP-24
RENESAS

X9400YV24-2.7T1

Digital Potentiometer, 4 Func, 2500ohm, 3-wire Serial Control Interface, 64 Positions, CMOS, PDSO24, PLASTIC, TSSOP-24
RENESAS

X9400YV24-2.7T1

Digital Potentiometer, 4 Func, 2500ohm, 3-wire Serial Control Interface, 64 Positions, CMOS, PDSO24, PLASTIC, TSSOP-24
XICOR

X9400YV24I

Low Noise/Low Power/SPI Bus
INTERSIL

X9400YV24I

QUAD 2.5K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, 4.40 MM, TSSOP-24
RENESAS

X9400YV24I-2.7

Low Noise/Low Power/SPI Bus
INTERSIL

X9400YV24I-2.7

QUAD 2.5K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, 4.40 MM, TSSOP-24
RENESAS