XA3S1200E-4TQG144Q [XILINX]

Field Programmable Gate Array, 2168 CLBs, 1200000 Gates, 572MHz, CMOS, PQFP144, 22 X 22 MM, LEAD FREE, TQFP-144;
XA3S1200E-4TQG144Q
型号: XA3S1200E-4TQG144Q
厂家: XILINX, INC    XILINX, INC
描述:

Field Programmable Gate Array, 2168 CLBs, 1200000 Gates, 572MHz, CMOS, PQFP144, 22 X 22 MM, LEAD FREE, TQFP-144

时钟 栅 可编程逻辑
文件: 总37页 (文件大小:723K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
37  
R
XA Spartan-3E Automotive  
FPGA Family Data Sheet  
0
DS635 (v2.0) September 9, 2009  
Product Specification  
Summary  
The Xilinx® Automotive (XA) Spartan®-3E family of FPGAs  
is specifically designed to meet the needs of high-volume,  
cost-sensitive automotive electronics applications. The  
five-member family offers densities ranging from 100,000 to  
1.6 million system gates, as shown in Table 1.  
-
-
Enhanced Double Data Rate (DDR) support  
DDR SDRAM support up to 266 Mb/s  
Abundant, flexible logic resources  
-
Densities up to 33,192 logic cells, including  
optional shift register or distributed RAM support  
Efficient wide multiplexers, wide logic  
Fast look-ahead carry logic  
Enhanced 18 x 18 multipliers with optional pipeline  
IEEE 1149.1/1532 JTAG programming/debug port  
-
-
-
-
Introduction  
XA devices are available in both extended-temperature  
Q-Grade (–40°C to +125°C T ) and I-Grade (–40°C to  
J
+100°C T ) and are qualified to the industry recognized  
J
Hierarchical SelectRAM™ memory architecture  
-
-
AEC-Q100 standard.  
Up to 648 Kbits of fast block RAM  
Up to 231 Kbits of efficient distributed RAM  
The XA Spartan-3E family builds on the success of the ear-  
lier XA Spartan-3 family by increasing the amount of logic  
per I/O, significantly reducing the cost per logic cell. New  
features improve system performance and reduce the cost  
of configuration. These XA Spartan-3E FPGA enhance-  
ments, combined with advanced 90 nm process technology,  
deliver more functionality and bandwidth per dollar than was  
previously possible, setting new standards in the program-  
mable logic industry.  
Up to eight Digital Clock Managers (DCMs)  
-
-
-
-
Clock skew elimination (delay locked loop)  
Frequency synthesis, multiplication, division  
High-resolution phase shifting  
Wide frequency range (5 MHz to over 300 MHz)  
Eight global clocks plus eight additional clocks per  
each half of device, plus abundant low-skew routing  
Configuration interface to industry-standard PROMs  
-
-
Complete Xilinx ISE® and WebPACK™ software  
support  
MicroBlaze™ and PicoBlazeembedded processor  
cores  
Because of their exceptionally low cost, XA Spartan-3E  
FPGAs are ideally suited to a wide range of automotive  
applications, including infotainment, driver information, and  
driver assistance modules.  
Low-cost, space-saving SPI serial Flash PROM  
x8 or x8/x16 parallel NOR Flash PROM  
The XA Spartan-3E family is a superior alternative to mask  
programmed ASICs and ASSPs. FPGAs avoid the high ini-  
tial mask set costs and lengthy development cycles, while  
also permitting design upgrades in the field with no hard-  
ware replacement necessary because of its inherent pro-  
grammability, an impossibility with conventional ASICs and  
ASSPs with their inflexible hardware architecture.  
Fully compliant 32-/64-bit 33 MHz PCI™ technology  
support  
Low-cost QFP and BGA packaging options  
-
Common footprints support easy density migration  
Refer to Spartan-3E FPGA Family: Complete Data Sheet  
(DS312) for a full product description, AC and DC specifica-  
tions, and package pinout descriptions. Any values shown  
specifically in this XA Spartan-3E Automotive FPGA Family  
data sheet override those shown in DS312.  
Features  
Very low-cost, high-performance logic solution for  
high-volume automotive applications  
Proven advanced 90-nanometer process technology  
Multi-voltage, multi-standard SelectIO™ interface pins  
For information regarding reliability qualification, refer to  
RPT081 (Xilinx Spartan-3E Family Automotive Qualification  
Report) and RPT012 (Spartan-3/3E UMC-12A 90 nm Qual-  
ification Report).  
-
-
Up to 376 I/O pins or 156 differential signal pairs  
LVCMOS, LVTTL, HSTL, and SSTL single-ended  
signal standards  
-
-
-
3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling  
622+ Mb/s data transfer rate per I/O  
True LVDS, RSDS, mini-LVDS, differential  
HSTL/SSTL differential I/O  
© 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other  
countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
1
R
Key Feature Differences from Commercial XC Devices  
AEC-Q100 device qualification and full production part  
approval process (PPAP) documentation support  
available in both extended temperature I- and  
Q-Grades  
Spartan-3E FPGA product line.  
XA Spartan-3E devices are available in Step 1 only.  
JTAG configuration frequency reduced from 30 MHz to  
25 MHz.  
Guaranteed to meet full electrical specification over the  
Platform Flash is not supported within the XA family.  
XA Spartan-3E devices are available in Pb-free  
packaging only.  
MultiBoot is not supported in XA versions of this  
product.  
T = –40°C to +125°C temperature range (Q-Grade)  
J
XA Spartan-3E devices are available in the -4 speed  
grade only.  
PCI-66 is not supported in the XA Spartan-3E FPGA  
product line.  
The XA Spartan-3E device must be power cycled prior  
to reconfiguration.  
The readback feature is not supported in the XA  
Table 1: Summary of XA Spartan-3E FPGA Attributes  
CLB Array  
(One CLB = Four Slices)  
Equivalent  
Logic  
Block  
RAM  
bits(1)  
Maximum  
Maximum Differential  
System  
Gates  
Total  
Total  
Distributed  
RAM bits(1)  
Dedicated  
Multipliers DCMs User I/O  
Device  
Cells  
Rows Columns CLBs  
Slices  
I/O Pairs  
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
100K  
250K  
2,160  
5,508  
22  
34  
16  
26  
240  
612  
960  
15K  
38K  
72K  
4
2
4
108  
172  
40  
68  
2,448  
216K  
12  
500K  
10,476  
19,512  
33,192  
46  
60  
76  
34  
46  
58  
1,164  
2,168  
3,688  
4,656  
8,672  
73K  
136K  
231K  
360K  
504K  
648K  
20  
28  
36  
4
8
8
190  
304  
376  
77  
1200K  
124  
156  
XA3S1600E 1600K  
14,752  
Notes:  
1. By convention, one Kb is equivalent to 1,024 bits.  
Architectural Overview  
The XA Spartan-3E family architecture consists of five fun-  
damental programmable functional elements:  
Digital Clock Manager (DCM) Blocks provide  
self-calibrating, fully digital solutions for distributing,  
delaying, multiplying, dividing, and phase-shifting clock  
signals.  
Configurable Logic Blocks (CLBs) contain flexible  
Look-Up Tables (LUTs) that implement logic plus  
storage elements used as flip-flops or latches. CLBs  
perform a wide variety of logical functions as well as  
store data.  
These elements are organized as shown in Figure 1. A ring  
of IOBs surrounds a regular array of CLBs. Each device has  
two columns of block RAM except for the XA3S100E, which  
has one column. Each RAM column consists of several  
18-Kbit RAM blocks. Each block RAM is associated with a  
dedicated multiplier. The DCMs are positioned in the center  
with two at the top and two at the bottom of the device. The  
XA3S100E has only one DCM at the top and bottom, while  
the XA3S1200E and XA3S1600E add two DCMs in the mid-  
dle of the left and right sides.  
Input/Output Blocks (IOBs) control the flow of data  
between the I/O pins and the internal logic of the  
device. Each IOB supports bidirectional data flow plus  
3-state operation. Supports a variety of signal  
standards, including four high-performance differential  
standards. Double Data-Rate (DDR) registers are  
included.  
Block RAM provides data storage in the form of  
18-Kbit dual-port blocks.  
Multiplier Blocks accept two 18-bit binary numbers as  
inputs and calculate the product.  
The XA Spartan-3E family features a rich network of traces  
that interconnect all five functional elements, transmitting  
signals among them. Each functional element has an asso-  
ciated switch matrix that permits multiple connections to the  
routing.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
2
R
Notes:  
1. The XA3S1200E and XA3S1600E have two additional DCMs on both the left and right sides as  
indicated by the dashed lines. The XA3S100E has only one DCM at the top and one at the bottom.  
Figure 1: XA Spartan-3E Family Architecture  
Configuration  
I/O Capabilities  
XA Spartan-3E FPGAs are programmed by loading config-  
uration data into robust, reprogrammable, static CMOS con-  
figuration latches (CCLs) that collectively control all  
functional elements and routing resources. The FPGA’s  
configuration data is stored externally in a PROM or some  
other non-volatile medium, either on or off the board. After  
applying power, the configuration data is written to the  
FPGA using any of five different modes:  
The XA Spartan-3E FPGA SelectIO interface supports  
many popular single-ended and differential standards.  
Table 2 shows the number of user I/Os as well as the num-  
ber of differential I/O pairs available for each device/pack-  
age combination.  
XA Spartan-3E FPGAs support the following single-ended  
standards:  
3.3V low-voltage TTL (LVTTL)  
Serial Peripheral Interface (SPI) from an  
industry-standard SPI serial Flash  
Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V,  
1.5V, or 1.2V  
Byte Peripheral Interface (BPI) Up or Down from an  
industry-standard x8 or x8/x16 parallel NOR Flash  
3V PCI at 33 MHz  
HSTL I and III at 1.8V, commonly used in memory  
applications  
Slave Serial, typically downloaded from a processor  
Slave Parallel, typically downloaded from a processor  
Boundary Scan (JTAG), typically downloaded from a  
processor or system tester.  
SSTL I at 1.8V and 2.5V, commonly used for memory  
applications  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
3
R
XA Spartan-3E FPGAs support the following differential  
standards:  
Differential HSTL (1.8V, Types I and III)  
Differential SSTL (2.5V and 1.8V, Type I)  
2.5V LVPECL inputs  
LVDS  
Bus LVDS  
mini-LVDS  
RSDS  
Table 2: Available User I/Os and Differential (Diff) I/O Pairs  
Package  
VQG100  
16 x 16  
CPG132  
8 x 8  
TQG144  
22 x 22  
PQG208  
28 x 28  
FTG256  
17 x 17  
FGG400  
21 x 21  
FGG484  
23 x 23  
Size (mm)  
Device  
User  
Diff  
User  
Diff  
User  
Diff  
User  
Diff  
User  
Diff  
User  
Diff  
User  
Diff  
66  
(7)  
30  
(2)  
83  
(11)  
35  
(2)  
108  
(28)  
40  
(4)  
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
66  
(7)  
30  
(2)  
92  
(7)  
41  
(2)  
108  
(28)  
40  
(4)  
158  
(32)  
65  
(5)  
172  
(40)  
68  
(8)  
-
-
92  
(7)  
41  
(2)  
158  
(32)  
65  
(5)  
190  
(41)  
77  
(8)  
-
-
-
-
-
-
-
-
-
-
-
-
190  
(40)  
77  
(8)  
304  
(72)  
124  
(20)  
-
-
-
-
-
-
-
-
304  
(72)  
124  
(20)  
376  
(82)  
156  
(21)  
XA3S1600E  
Notes:  
-
-
1. All XA Spartan-3E devices provided in the same package are pin-compatible as further described in Module 4: Pinout Descriptions of  
DS312.  
2. The number shown in bold indicates the maximum number of I/O and input-only pins. The number shown in (italics) indicates the number  
of input-only pins.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
4
R
Package Marking  
Figure 2 provides a top marking example for XA Spartan-3E  
FPGAs in the quad-flat packages. Figure 3 shows the top  
marking for XA Spartan-3E FPGAs in BGA packages  
except the 132-ball chip-scale package (CPG132). The  
markings for the BGA packages are nearly identical to those  
for the quad-flat packages, except that the marking is  
rotated with respect to the ball A1 indicator. Figure 4 shows  
the top marking for XA Spartan-3E FPGAs in the CPG132  
package.  
Note: No marking is shown for stepping.  
Mask Revision Code  
Fabrication Code  
R
R
Process Technology  
SPARTAN  
Device Type  
XA3S250ETM  
Date Code  
Lot Code  
Package  
PQG208AGQ0525  
D1234567A  
Speed Grade  
4I  
Temperature Range  
Pin P1  
DS635-1_02_082807  
Figure 2: XA Spartan-3E FPGA QFP Package Marking Example  
Mask Revision Code  
R
BGA Ball A1  
Fabrication Code  
Process Code  
R
SPARTAN  
Device Type  
XA3S250ETM  
FTG256AGQ0525  
D1234567A  
D1234567A  
4I  
Date Code  
Lot Code  
Package  
FTG256AGQ0525  
Speed Grade  
Temperature Range  
DS635_03_082807  
Figure 3: XA Spartan-3E FPGA BGA Package Marking Example  
Ball A1  
Device Type  
3S250E  
F1234567-0525  
PHILIPPINES  
Lot Code  
Date Code  
Temperature Range  
Package  
C6 = CPG132  
C6AGQ  
4I  
Speed Grade  
Process Code  
Mask Revision Code  
Fabrication Code  
DS635_04_082807  
Figure 4: XA Spartan-3E FPGA CPG132 Package Marking Example  
DS635 (v2.0) September 9, 2009  
Product Specification  
www.xilinx.com  
5
R
Ordering Information  
XA Spartan-3E FPGAs are available in Pb-free packaging  
options for all device/package combinations. All devices are  
in Pb-free packages only, with a “G” character to the order-  
ing code. All devices are available in either I-Grade or  
Q-Grade temperature ranges. Only the -4 speed grade is  
available for the XA Spartan-3E family. See Table 2 for valid  
device/package combinations.  
Pb-Free Packaging  
Example: XA3S250E -4 FT G 256  
I
Device Type  
Temperature Range:  
I = I-Grade (TJ = –40oC to 100oC)  
Q = Q-Grade (TJ = –40oC to 125oC)  
Number of Pins  
Speed Grade  
Package Type  
Pb-free  
DS635_06_121608  
Device  
Speed Grade  
-4 Only  
Package Type / Number of Pins  
Temperature Range (TJ)  
I-Grade (–40°C to 100°C)  
Q-Grade (–40°C to 125°C)  
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
VQG100 100-pin Very Thin Quad Flat Pack (VQFP)  
CPG132 132-ball Chip-Scale Package (CSP)  
TQG144 144-pin Thin Quad Flat Pack (TQFP)  
PQG208 208-pin Plastic Quad Flat Pack (PQFP)  
I
Q
FTG256  
256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)  
FGG400 400-ball Fine-Pitch Ball Grid Array (FBGA)  
FGG484 484-ball Fine-Pitch Ball Grid Array (FBGA)  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
6
R
Power Supply Specifications  
Table 3: Supply Voltage Thresholds for Power-On Reset  
Symbol  
Description  
Min  
0.4  
0.8  
0.4  
Max  
1.0  
Units  
V
Threshold for the V  
Threshold for the V  
Threshold for the V  
supply  
supply  
V
V
V
CCINTT  
CCINT  
V
2.0  
1.0  
CCAUXT  
CCAUX  
V
Bank 2 supply  
CCO  
CCO2T  
Notes:  
1.  
V
, V  
, and V  
supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (SPI Flash, parallel  
CCINT CCAUX  
CCO  
NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.  
2. To ensure successful power-on, V  
no dips at any point.  
, V  
Bank 2, and V  
supplies must rise through their respective threshold-voltage ranges with  
CCINT CCO  
CCAUX  
Table 4: Supply Voltage Ramp Rate  
Symbol  
Description  
Min  
0.2  
0.2  
0.2  
Max  
50  
Units  
ms  
V
Ramp rate from GND to valid V  
Ramp rate from GND to valid V  
Ramp rate from GND to valid V  
supply level  
supply level  
CCINTR  
CCINT  
V
50  
ms  
CCAUXR  
CCAUX  
V
Bank 2 supply level  
CCO  
50  
ms  
CCO2R  
Notes:  
1.  
V
, V  
, and V  
supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (SPI Flash, parallel  
CCINT CCAUX  
CCO  
NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.  
2. To ensure successful power-on, V  
no dips at any point.  
, V  
Bank 2, and V  
supplies must rise through their respective threshold-voltage ranges with  
CCINT CCO  
CCAUX  
Table 5: Supply Voltage Levels Necessary for Preserving RAM Contents  
Symbol Description  
level required to retain RAM data  
Min  
1.0  
2.0  
Units  
V
V
V
V
V
DRINT  
CCINT  
V
level required to retain RAM data  
DRAUX  
CCAUX  
Notes:  
1. RAM contents include configuration data.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
7
R
DC Specifications  
Table 6: General Recommended Operating Conditions  
Symbol  
Description  
Min  
–40  
Nominal  
Max  
100  
Units  
T
Junction temperature  
I-Grade  
25  
° C  
J
Q-Grade  
–40  
25  
125  
° C  
V
Internal supply voltage  
Output driver supply voltage  
Auxiliary supply voltage  
1.140  
1.100  
2.375  
-
1.200  
1.260  
3.465  
2.625  
10  
V
CCINT  
(1)  
V
V
-
V
V
CCO  
2.500  
CCAUX  
(2)  
ΔV  
Voltage variance on V  
when using a DCM  
-
mV/ms  
V
CCAUX  
(3,4,5,6)  
CCAUX  
V
Input voltage extremes to avoid I/O, Input-only, and  
turning on I/O protection diodes Dual-Purpose pins  
–0.5  
V
+ 0.5  
CCO  
IN  
(3)  
(4)  
Dedicated pins  
–0.5  
V
+ 0.5  
V
CCAUX  
(7)  
T
Input signal transition time  
500  
ns  
IN  
Notes:  
1. This V  
range spans the lowest and highest operating voltages for all supported I/O standards. Table 9 lists the recommended V  
CCO  
CCO  
range specific to each of the single-ended I/O standards, and Table 11 lists that specific to the differential standards.  
2. Only during DCM operation is it recommended that the rate of change of V not exceed 10 mV/ms.  
CCAUX  
3. Each of the User I/O and Dual-Purpose pins is associated with one of the four banks’ V  
rails. Meeting the V limit ensures that the  
IN  
CCO  
internal diode junctions that exist between these pins and their associated V  
Ratings in DS312).  
and GND rails do not turn on. See Absolute Maximum  
CCO  
4. All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the V  
rail (2.5V). Meeting the V max limit ensures  
IN  
CCAUX  
that the internal diode junctions that exist between each of these pins and the V  
and GND rails do not turn on.  
CCAUX  
5. Input voltages outside the recommended range is permissible provided that the I input clamp diode rating is met and no more than 100 pins  
IK  
exceed the range simultaneously. See Absolute Maximum Ratings in DS312).  
6. See XAPP459, "Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins."  
7. Measured between 10% and 90% V  
. Follow Signal Integrity recommendations.  
CCO  
General DC Characteristics for I/O Pins  
Table 7: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins  
Symbol  
Description  
Test Conditions  
Min  
Typ  
Max Units  
I
Leakage current at User I/O,  
Input-only, Dual-Purpose, and  
Dedicated pins  
Driver is in a high-impedance state,  
–10  
+10  
μA  
L
V
= 0V or V  
max, sample-tested  
IN  
CCO  
(2)  
I
Current through pull-up resistor at  
User I/O, Dual-Purpose, Input-only,  
and Dedicated pins  
V
V
V
V
V
= 0V, V  
= 0V, V  
= 0V, V  
= 0V, V  
= 0V, V  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
–0.36  
–0.22  
–0.10  
–0.06  
–0.04  
2.4  
–1.24  
–0.80  
–0.42  
–0.27  
–0.22  
10.8  
mA  
mA  
mA  
mA  
mA  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
RPU  
IN  
IN  
IN  
IN  
IN  
CCO  
CCO  
CCO  
CCO  
CCO  
(2)  
PU  
R
Equivalent pull-up resistor value at  
User I/O, Dual-Purpose, Input-only,  
V
= 0V, V  
= 3.0V to 3.465V  
= 2.3V to 2.7V  
CCO  
IN  
CCO  
V
V
= 0V, V  
= 0V, V  
2.7  
11.8  
IN  
IN  
and Dedicated pins (based on I  
per Note 2)  
RPU  
= 1.7V to 1.9V  
=1.4V to 1.6V  
CCO  
4.3  
20.2  
CCO  
V
= 0V, V  
5.0  
25.9  
IN  
V
= 0V, V  
= 1.14V to 1.26V  
CCO  
5.5  
32.0  
IN  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
8
R
Table 7: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (Continued)  
Symbol  
Description  
Test Conditions  
= V  
Min  
Typ  
Max Units  
(2)  
I
Current through pull-down resistor at  
User I/O, Dual-Purpose, Input-only,  
and Dedicated pins  
V
0.10  
0.75  
mA  
RPD  
IN  
CCO  
(2)  
PD  
R
Equivalent pull-down resistor value at  
User I/O, Dual-Purpose, Input-only,  
V
= V  
= 3.0V to 3.45V  
= 2.3V to 2.7V  
= 1.7V to 1.9V  
= 1.4V to 1.6V  
4.0  
3.0  
2.3  
1.8  
1.5  
–10  
34.5  
27.0  
19.0  
16.0  
12.6  
+10  
10  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
μA  
pF  
Ω
IN  
CCO  
V
= V  
= V  
= V  
IN  
IN  
IN  
CCO  
CCO  
CCO  
and Dedicated pins (based on I  
per Note 2)  
RPD  
V
V
V
= V  
= 1.14V to 1.26V  
CCO  
IN  
I
V
current per pin  
All V  
levels  
REF  
REF  
CCO  
C
R
Input capacitance  
-
IN  
Resistance of optional differential  
termination circuit within a differential  
I/O pair. Not available on Input-only  
pairs.  
V
Min VICM V  
Max  
120  
DT  
OCM  
OCM  
V
Min V V Max  
OD  
ID  
OD  
V
= 2.5V  
CCO  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 6.  
2. This parameter is based on characterization. The pull-up resistance R = V  
/ I  
. The pull-down resistance R = V / I  
.
PU  
CCO RPU  
PD  
IN RPD  
Table 8: Quiescent Supply Current Characteristics  
Q-Grade  
Symbol  
Description  
Quiescent V  
Device  
XA3S100E  
I-Grade Maximum  
Maximum  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
36  
104  
145  
324  
457  
1.5  
1.5  
1.5  
2.5  
2.5  
58  
158  
300  
500  
750  
2.0  
3.0  
3.0  
4.0  
4.0  
CCINTQ  
CCINT  
supply current  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
I
Quiescent V  
CCO  
supply current  
CCOQ  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
9
R
Table 8: Quiescent Supply Current Characteristics (Continued)  
Q-Grade  
Symbol  
Description  
Quiescent V  
Device  
XA3S100E  
I-Grade Maximum  
Maximum  
Units  
mA  
I
13  
26  
34  
59  
86  
22  
43  
CCAUXQ  
CCAUX  
supply current  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
mA  
63  
mA  
100  
150  
mA  
mA  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 6.  
2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads  
disabled. Typical values are characterized using typical devices at room temperature (T of 25°C at V = 1.2 V, V = 3.3V, and  
J
CCINT  
CCO  
V
= 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum  
CCAUX  
voltage limits with V  
= 1.26V, V  
= 3.465V, and V  
= 2.625V. The FPGA is programmed with a “blank” configuration data file  
CCINT  
CCO  
CCAUX  
(i.e., a design with no functional elements instantiated). For conditions other than those described above, (e.g., a design including functional  
elements), measured quiescent current levels may be different than the values in the table. For more accurate estimates for a specific  
design, use the Xilinx XPower tools.  
3. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The  
Spartan-3E XPower Estimator provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower  
Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates.  
4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
10  
R
Single-Ended I/O Standards  
Table 9: Recommended Operating Conditions for User I/Os Using Single-Ended Standards  
(2)  
V
for Drivers  
V
V
V
IH  
CCO  
REF  
IL  
IOSTANDARD  
Attribute  
Min (V) Nom (V) Max (V) Min (V)  
Nom (V)  
Max (V)  
Max (V)  
0.8  
Min (V)  
2.0  
LVTTL  
3.0  
3.0  
2.3  
1.65  
1.4  
1.1  
3.0  
1.7  
1.7  
1.7  
2.3  
3.3  
3.3  
2.5  
1.8  
1.5  
1.2  
3.3  
1.8  
1.8  
1.8  
2.5  
3.465  
3.465  
2.7  
(4)  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3  
0.8  
2.0  
(4,5)  
0.7  
1.7  
V
is not used for  
REF  
1.95  
1.6  
0.4  
0.8  
these I/O standards  
0.4  
0.8  
1.3  
0.4  
0.7  
3.465  
1.9  
0.3 * V  
0.5 * V  
CCO  
CCO  
HSTL_I_18  
0.8  
-
0.9  
1.1  
1.1  
-
V
V
- 0.1  
- 0.1  
V
V
+ 0.1  
+ 0.1  
REF  
REF  
REF  
REF  
HSTL_III_18  
SSTL18_I  
SSTL2_I  
1.9  
1.9  
0.833  
1.15  
0.900  
1.25  
0.969  
1.35  
V
- 0.125  
- 0.125  
V
+ 0.125  
+ 0.125  
REF  
REF  
REF  
REF  
2.7  
V
V
Notes:  
1. Descriptions of the symbols used in this table are as follows:  
V
V
V
V
– the supply voltage for output drivers  
– the reference voltage for setting the input switching threshold  
– the input voltage that indicates a Low logic level  
– the input voltage that indicates a High logic level  
CCO  
REF  
IL  
IH  
2. The V  
rails supply only output drivers, not input circuits.  
CCO  
3. For device operation, the maximum signal voltage (V max) may be as high as V max. See Table 72 in DS312.  
IH  
IN  
4. There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards.  
5. All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the V  
rail (2.5V).  
CCAUX  
The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a standard 2.5V  
configuration interface, apply 2.5V to the V lines of Banks 0, 1, and 2 at power-on as well as throughout configuration.  
CCO  
6. For information on PCI IP solutions, see www.xilinx.com/pci.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
11  
R
Table 10: DC Characteristics of User I/Os Using  
Single-Ended Standards (Continued)  
Table 10: DC Characteristics of User I/Os Using  
Single-Ended Standards  
Test  
Conditions  
Logic Level  
Characteristics  
Test  
Conditions  
Logic Level  
Characteristics  
VOL  
Max (V)  
VOH  
Min (V)  
VOL  
Max (V)  
VOH  
Min (V)  
IOSTANDARD  
Attribute  
IOL  
(mA) (mA)  
IOH  
IOSTANDARD  
Attribute  
IOL  
(mA) (mA)  
IOH  
LVCMOS12(3)  
PCI33_3(4)  
HSTL_I_18  
HSTL_III_18  
SSTL18_I  
2
2
–2  
0.4  
VCCO - 0.4  
90% VCCO  
VCCO - 0.4  
VCCO - 0.4  
VTT + 0.475  
LVTTL(3)  
2
4
6
8
2
4
–2  
–4  
0.4  
2.4  
1.5  
8
–0.5 10% VCCO  
–8  
–8  
0.4  
0.4  
6
–6  
24  
6.7  
8.1  
8
–8  
VTT – 0.475  
–6.7  
12  
16  
2
12  
16  
2
–12  
–16  
–2  
SSTL2_I  
–8.1 VTT – 0.61  
VTT + 0.61  
LVCMOS33(3)  
0.4  
VCCO 0.4  
Notes:  
1. The numbers in this table are based on the conditions set forth in  
Table 6 and Table 9.  
4
4
–4  
2. Descriptions of the symbols used in this table are as follows:  
6
6
–6  
IOL the output current condition under which VOL is tested  
IOH the output current condition under which VOH is tested  
VOL the output voltage that indicates a Low logic level  
VOH the output voltage that indicates a High logic level  
VCCO the supply voltage for output drivers  
8
8
–8  
12  
16  
2
12  
16  
2
–12  
–16  
–2  
VTT the voltage applied to a resistor termination  
LVCMOS25(3)  
0.4  
VCCO 0.4  
3. For the LVCMOS and LVTTL standards: the same V and V  
OL  
OH  
limits apply for both the Fast and Slow slew attributes.  
4
4
–4  
4. Tested according to the relevant PCI specifications. For  
information on PCI IP solutions, see www.xilinx.com/pci.  
6
6
–6  
8
8
–8  
12  
2
12  
2
–12  
–2  
LVCMOS18(3)  
LVCMOS15(3)  
0.4  
0.4  
VCCO 0.4  
4
4
–4  
6
6
–6  
8
8
–8  
2
2
–2  
VCCO 0.4  
4
4
–4  
6
6
–6  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
12  
R
Differential I/O Standards  
Table 11: Recommended Operating Conditions for User I/Os Using Differential Signal Standards  
VCCO for Drivers(1)  
VID  
VICM  
IOSTANDARD  
Attribute  
Min  
(mV)  
Nom  
(mV)  
Max  
(mV)  
Min (V)  
Nom (V)  
2.50  
Max (V)  
Min (V)  
0.30  
0.30  
0.30  
0.5  
Nom (V)  
Max (V)  
2.20  
2.20  
2.2  
LVDS_25  
2.375  
2.375  
2.375  
2.625  
2.625  
2.625  
100  
100  
200  
100  
100  
100  
100  
100  
100  
350  
600  
1.25  
BLVDS_25  
2.50  
350  
600  
1.25  
MINI_LVDS_25  
LVPECL_25(2)  
RSDS_25  
2.50  
-
600  
-
Inputs Only  
2.50  
800  
1000  
1.2  
2.0  
2.375  
1.7  
2.625  
1.9  
200  
-
-
-
-
-
0.3  
1.20  
1.4  
DIFF_HSTL_I_18  
DIFF_HSTL_III_18  
DIFF_SSTL18_I  
DIFF_SSTL2_I  
1.8  
-
-
-
-
0.8  
-
-
-
-
1.1  
1.7  
1.8  
1.9  
0.8  
1.1  
1.7  
1.8  
1.9  
0.7  
1.1  
2.3  
2.5  
2.7  
1.0  
1.5  
Notes:  
1. The V  
rails supply only differential output drivers, not input circuits.  
CCO  
2.  
V
inputs are not used for any of the differential I/O standards.  
REF  
Table 12: DC Characteristics of User I/Os Using Differential Signal Standards  
VOD  
ΔVOD  
Min Max  
(mV) (mV)  
VOCM  
ΔVOCM  
VOH  
VOL  
IOSTANDARD  
Attribute  
Min  
(mV)  
Typ  
(mV)  
Max  
(mV)  
Min  
(V)  
Typ  
(V)  
Max  
(V)  
Min  
Max  
Min  
(V)  
Max  
(V)  
(mV)  
(mV)  
LVDS_25  
250  
250  
300  
100  
350  
350  
450  
450  
600  
400  
1.125  
1.20  
1.375  
BLVDS_25  
1.0  
1.1  
1.4  
1.4  
MINI_LVDS_25  
RSDS_25  
50  
50  
DIFF_HSTL_I_18  
DIFF_HSTL_III_18  
DIFF_SSTL18_I  
DIFF_SSTL2_I  
VCCO – 0.4  
VCCO – 0.4  
0.4  
0.4  
VTT + 0.475 VTT – 0.475  
VTT + 0.61 VTT – 0.61  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 6, and Table 11.  
2. Output voltage measurements for all differential standards are made with a termination resistor (R ) of 100Ωacross the N and P pins of the  
T
differential signal pair. The exception is for BLVDS, shown in Figure 5 below.  
3. At any given time, no more than two of the following differential output standards may be assigned to an I/O bank: LVDS_25, RSDS_25,  
MINI_LVDS_25  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
13  
R
1/4th of Bourns  
Part Number  
CAT16-LV4F12  
1/4th of Bourns  
Part Number  
CAT16-PT4F4  
VCCO = 2.5V  
VCCO = 2.5V  
Z
0
0
= 50Ω  
= 50Ω  
165Ω  
140Ω  
100Ω  
Z
165Ω  
DS635_05_082807  
Figure 5: External Termination Resistors for BLVDS Transmitter and BLVDS Receiver  
Switching Characteristics  
I/O Timing  
Table 13: Pin-to-Pin Clock-to-Output Times for the IOB Output Path  
-4 Speed  
Grade  
Symbol  
Description  
Conditions  
Device  
Max  
Units  
Clock-to-Output Times  
(2)  
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
T
When reading from the Output  
Flip-Flop (OFF), the time from  
the active transition on the  
Global Clock pin to data  
appearing at the Output pin. The  
DCM is used.  
LVCMOS25 , 12mA  
2.79  
3.45  
3.46  
3.46  
3.45  
5.92  
5.43  
5.51  
5.94  
6.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ICKOFDCM  
output drive, Fast slew rate,  
(3)  
with DCM  
(2)  
T
When reading from OFF, the  
LVCMOS25 , 12mA  
ICKOF  
time from the active transition on output drive, Fast slew rate,  
the Global Clock pin to data  
appearing at the Output pin. The  
DCM is not used.  
without DCM  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in  
Table 6 and Table 9.  
2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a  
standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate  
Input adjustment from Table 17. If the latter is true, add the appropriate Output adjustment from Table 18.  
3. DCM output jitter is included in all measurements.  
4. For minimums, use the values reported by the Xilinx timing analyzer.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
14  
R
Table 14: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)  
-4 Speed  
Grade  
IFD_  
DELAY_  
Symbol  
Setup Times  
TPSDCM  
Description  
Conditions  
VALUE=  
Device  
Min  
Units  
When writing to the Input Flip-Flop LVCMOS25(2)  
,
0
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
2.98  
2.59  
2.59  
2.58  
2.59  
3.58  
3.91  
4.02  
5.52  
4.46  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(IFF), the time from the setup of  
data at the Input pin to the active  
transition at a Global Clock pin.  
The DCM is used. No Input Delay  
is programmed.  
IFD_DELAY_VALUE = 0,  
with DCM(4)  
When writing to IFF, the time from LVCMOS25(2)  
the setup of data at the Input pin to IFD_DELAY_VALUE =  
an active transition at the Global  
Clock pin. The DCM is not used.  
The Input Delay is programmed.  
,
2
3
2
5
4
TPSFD  
default software setting  
Hold Times  
When writing to IFF, the time from LVCMOS25(3)  
,
0
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
–0.52  
0.14  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TPHDCM  
the active transition at the Global  
Clock pin to the point when data  
must be held at the Input pin. The  
DCM is used. No Input Delay is  
programmed.  
IFD_DELAY_VALUE = 0,  
with DCM(4)  
0.14  
0.15  
0.14  
When writing to IFF, the time from LVCMOS25(3)  
,
2
3
2
5
4
–0.24  
–0.32  
–0.49  
–0.63  
–0.39  
TPHFD  
the active transition at the Global  
Clock pin to the point when data  
must be held at the Input pin. The  
DCM is not used. The Input Delay  
is programmed.  
IFD_DELAY_VALUE =  
default software setting  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in  
Table 6 and Table 9.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data  
Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 17. If this is true of the data Input, add the  
appropriate Input adjustment from the same table.  
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data  
Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 17. If this is true of the data Input, subtract  
the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s  
active edge.  
4. DCM output jitter is included in all measurements.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
15  
R
Table 15: Setup and Hold Times for the IOB Input Path  
-4  
Speed  
Grade  
IFD_  
DELAY_  
VALUE  
Symbol  
Description  
Conditions  
Device  
Min  
Units  
Setup Times  
TIOPICK  
Time from the setup of data at the Input  
LVCMOS25(2)  
,
0
All  
2.12  
ns  
pin to the active transition at the ICLK input IFD_DELAY_VALUE = 0  
of the Input Flip-Flop (IFF). No Input Delay  
is programmed.  
TIOPICKD  
Time from the setup of data at the Input  
pin to the active transition at the IFF’s ICLK IFD_DELAY_VALUE =  
input. The Input Delay is programmed. default software setting  
LVCMOS25(2)  
,
2
3
2
5
4
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
6.49  
6.85  
7.01  
8.67  
7.69  
ns  
ns  
ns  
ns  
ns  
Hold Times  
TIOICKP  
Time from the active transition at the IFF’s LVCMOS25(2)  
,
0
All  
–0.76  
ns  
ICLK input to the point where data must be IFD_DELAY_VALUE = 0  
held at the Input pin. No Input Delay is  
programmed.  
TIOICKPD  
Time from the active transition at the IFF’s LVCMOS25(2)  
ICLK input to the point where data must be IFD_DELAY_VALUE =  
,
2
3
2
5
4
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
–3.93  
–3.51  
–3.74  
–4.30  
–4.14  
ns  
ns  
ns  
ns  
ns  
held at the Input pin. The Input Delay is  
programmed.  
default software setting  
Set/Reset Pulse Width  
TRPW_IOB Minimum pulse width to SR control input  
on IOB  
All  
1.80  
ns  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in  
Table 6 and Table 9.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the  
appropriate Input adjustment from Table 17.  
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract  
the appropriate Input adjustment from Table 17. When the hold time is negative, it is possible to change the data before the clock’s active  
edge.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
16  
R
Table 16: Propagation Times for the IOB Input Path  
-4Speed  
Grade  
IFD_  
DELAY_  
VALUE  
Symbol  
Description  
Conditions  
Device  
Max  
Units  
Propagation Times  
(2)  
T
The time it takes for data to  
LVCMOS25  
,
0
All  
2.25  
ns  
IOPLI  
travel from the Input pin through IFD_DELAY_VALUE = 0  
the IFF latch to the I output with  
no input delay programmed  
(2)  
2
3
2
5
4
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
5.97  
6.33  
6.49  
8.15  
7.16  
ns  
ns  
ns  
ns  
ns  
T
The time it takes for data to  
LVCMOS25 ,  
IOPLID  
travel from the Input pin through IFD_DELAY_VALUE =  
the IFF latch to the I output with default software setting  
the input delay programmed  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in  
Table 6 and Table 9.  
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is  
true, add the appropriate Input adjustment from Table 17.  
Table 17: Input Timing Adjustments by IOSTANDARD  
Table 17: Input Timing Adjustments by IOSTANDARD  
Convert Input Time from  
LVCMOS25 to the Following  
Signal Standard  
Add the  
Adjustment Below  
Convert Input Time from  
LVCMOS25 to the Following  
Signal Standard  
Add the  
Adjustment Below  
(IOSTANDARD)  
-4 Speed Grade  
Units  
(IOSTANDARD)  
-4 Speed Grade  
Units  
Single-Ended Standards  
LVTTL  
Differential Standards  
LVDS_25  
0.43  
0.43  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.49  
0.39  
0.49  
0.27  
0.49  
0.49  
0.49  
0.30  
0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3  
BLVDS_25  
MINI_LVDS_25  
LVPECL_25  
0.98  
0.63  
0.27  
0.42  
0.12  
0.17  
0.30  
0.15  
RSDS_25  
DIFF_HSTL_I_18  
DIFF_HSTL_III_18  
DIFF_SSTL18_I  
DIFF_SSTL2_I  
HSTL_I_18  
HSTL_III_18  
SSTL18_I  
Notes:  
1. The numbers in this table are tested using the methodology  
presented in Table 19 and are based on the operating conditions  
set forth in Table 6, Table 9, and Table 11.  
SSTL2_I  
2. These adjustments are used to convert input path times originally  
specified for the LVCMOS25 standard to times that correspond to  
other signal standards.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
17  
R
Table 18: Output Timing Adjustments for IOB (Continued)  
Table 18: Output Timing Adjustments for IOB  
Add the  
Add the  
Adjustment  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Adjustment  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
-4 Speed  
Grade  
-4 Speed  
Grade  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Units  
LVCMOS18  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
2 mA  
4 mA  
6 mA  
8 mA  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
2 mA  
2 mA  
5.24  
3.21  
2.49  
1.90  
4.15  
2.13  
1.14  
0.75  
4.68  
3.97  
3.11  
3.38  
2.70  
1.53  
6.63  
4.44  
0.34  
0.55  
0.46  
0.25  
–0.20  
Single-Ended Standards  
LVTTL  
Slow  
Fast  
Slow  
Fast  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
5.41  
2.41  
1.90  
0.67  
0.70  
0.43  
5.00  
1.96  
1.45  
0.34  
0.30  
0.30  
5.29  
1.89  
1.04  
0.69  
0.42  
0.43  
4.87  
1.52  
0.39  
0.34  
0.30  
0.30  
4.21  
2.26  
1.52  
1.08  
0.68  
3.67  
1.72  
0.46  
0.21  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Fast  
LVCMOS15  
LVCMOS12  
Slow  
Fast  
LVCMOS33  
Slow  
Fast  
HSTL_I_18  
HSTL_III_18  
PCI33_3  
SSTL18_I  
SSTL2_I  
Differential Standards  
LVDS_25  
–0.55  
0.04  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BLVDS_25  
MINI_LVDS_25  
LVPECL_25  
–0.56  
Input Only  
–0.48  
0.42  
LVCMOS25  
Slow  
Fast  
RSDS_25  
DIFF_HSTL_I_18  
DIFF_HSTL_III_18  
DIFF_SSTL18_I  
DIFF_SSTL2_I  
0.55  
0.40  
0.44  
Notes:  
1. The numbers in this table are tested using the methodology  
presented in Table 19 and are based on the operating conditions  
set forth in Table 6, Table 9, and Table 11.  
2. These adjustments are used to convert output- and  
three-state-path times originally specified for the LVCMOS25  
standard with 12 mA drive and Fast slew rate to times that  
correspond to other signal standards. Do not adjust times that  
measure when outputs go into a high-impedance state.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
18  
R
Table 19: Test Methods for Timing Measurement at I/Os  
Inputs and  
Outputs  
Inputs  
Outputs  
Signal Standard  
(IOSTANDARD)  
VREF (V)  
VL (V)  
VH (V)  
RT (Ω)  
VT (V)  
VM (V)  
Single-Ended  
LVTTL  
-
-
-
-
-
-
-
0
3.3  
3.3  
1M  
1M  
1M  
1M  
1M  
1M  
25  
0
0
1.4  
1.65  
1.25  
0.9  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3  
0
0
2.5  
0
0
1.8  
0
0
0
1.5  
0
0.75  
0.6  
1.2  
0
Rising  
Falling  
Note 3  
Note 3  
0
0.94  
2.03  
VREF  
VREF  
VREF  
VREF  
25  
3.3  
0.9  
1.8  
0.9  
1.25  
HSTL_I_18  
HSTL_III_18  
SSTL18_I  
SSTL2_I  
0.9  
1.1  
V
REF – 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.75  
50  
VREF – 0.5  
VREF – 0.5  
VREF – 0.75  
50  
0.9  
50  
1.25  
50  
Differential  
LVDS_25  
-
-
-
-
-
-
-
-
-
VICM – 0.125  
VICM – 0.125  
VICM – 0.125  
VICM – 0.3  
VICM – 0.1  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VICM + 0.125  
VICM + 0.125  
VICM + 0.125  
VICM + 0.3  
VICM + 0.1  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
50  
1M  
50  
1M  
50  
50  
50  
50  
50  
1.2  
0
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
BLVDS_25  
MINI_LVDS_25  
LVPECL_25  
1.2  
0
RSDS_25  
1.2  
0.9  
1.8  
0.9  
1.25  
DIFF_HSTL_I_18  
DIFF_HSTL_III_18  
DIFF_SSTL18_I  
DIFF_SSTL2_I  
Notes:  
1. Descriptions of the relevant symbols are as follows:  
V
V
V
– The reference voltage for setting the input switching threshold  
– The common mode input voltage  
– Voltage of measurement point on signal transition  
REF  
ICM  
M
V – Low-level test voltage at Input pin  
L
V
– High-level test voltage at Input pin  
H
R – Effective termination resistance, which takes on a value of 1MΩ when no parallel termination is required  
T
V – Termination voltage  
T
2. The load capacitance (C ) at the Output pin is 0 pF for all signal standards.  
L
3. According to the PCI specification.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
19  
R
Configurable Logic Block Timing  
Table 20: CLB (SLICEM) Timing  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
T
When reading from the FFX (FFY) Flip-Flop, the time from the active  
transition at the CLK input to data appearing at the XQ (YQ) output  
CKO  
-
0.60  
ns  
Setup Times  
T
Time from the setup of data at the F or G input to the active transition  
at the CLK input of the CLB  
AS  
0.52  
1.81  
-
-
ns  
ns  
T
Time from the setup of data at the BX or BY input to the active  
transition at the CLK input of the CLB  
DICK  
Hold Times  
T
Time from the active transition at the CLK input to the point where  
data is last held at the F or G input  
AH  
0
0
-
-
ns  
ns  
T
Time from the active transition at the CLK input to the point where  
data is last held at the BX or BY input  
CKDI  
Clock Timing  
T
T
F
The High pulse width of the CLB’s CLK signal  
The Low pulse width of the CLK signal  
Toggle frequency (for export control)  
0.80  
0.80  
0
-
-
ns  
ns  
CH  
CL  
572  
MHz  
TOG  
Propagation Times  
T
The time it takes for data to travel from the CLB’s F (G) input to the X  
(Y) output  
ILO  
-
0.76  
-
ns  
ns  
Set/Reset Pulse Width  
T
The minimum allowable pulse width, High or Low, to the CLB’s SR  
input  
RPW_CLB  
1.80  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 6.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
20  
R
Table 21: CLB Distributed RAM Switching Characteristics  
-4  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
T
Time from the active edge at the CLK input to data appearing on the  
distributed RAM output  
SHCKO  
-
2.35  
ns  
Setup Times  
T
Setup time of data at the BX or BY input before the active transition at the  
CLK input of the distributed RAM  
DS  
0.46  
0.52  
0.40  
-
-
-
ns  
ns  
ns  
T
Setup time of the F/G address inputs before the active transition at the CLK  
input of the distributed RAM  
AS  
T
Setup time of the write enable input before the active transition at the CLK  
input of the distributed RAM  
WS  
Hold Times  
T
Hold time of the BX, BY data inputs after the active transition at the CLK  
input of the distributed RAM  
DH  
0.15  
0
-
-
ns  
ns  
T
T
Hold time of the F/G address inputs or the write enable input after the active  
transition at the CLK input of the distributed RAM  
AH, WH  
Clock Pulse Width  
, T Minimum High or Low pulse width at CLK input  
T
1.01  
-
ns  
WPH WPL  
Table 22: CLB Shift Register Switching Characteristics  
-4  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
T
Time from the active edge at the CLK input to data appearing on the shift  
register output  
REG  
-
4.16  
ns  
Setup Times  
T
Setup time of data at the BX or BY input before the active transition at the  
CLK input of the shift register  
SRLDS  
0.46  
-
ns  
Hold Times  
T
Hold time of the BX or BY data input after the active transition at the CLK  
input of the shift register  
SRLDH  
0.16  
1.01  
-
-
ns  
ns  
Clock Pulse Width  
, T Minimum High or Low pulse width at CLK input  
T
WPH WPL  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
21  
R
Clock Buffer/Multiplexer Switching Characteristics  
Table 23: Clock Distribution Switching Characteristics  
Maximum  
Description  
Symbol  
-4 Speed Grade  
Units  
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output  
delay  
T
1.46  
ns  
GIO  
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1  
inputs. Same as BUFGCE enable CE-input  
T
0.63  
311  
ns  
GSI  
Frequency of signals distributed on global buffers (all sides)  
F
MHz  
BUFG  
18 x 18 Embedded Multiplier Timing  
Table 24: 18 x 18 Embedded Multiplier Timing  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Combinatorial Delay  
T
Combinatorial multiplier propagation delay from the A and B inputs to  
the P outputs, assuming 18-bit inputs and a 36-bit product (AREG,  
BREG, and PREG registers unused)  
MULT  
(1)  
-
4.88  
ns  
Clock-to-Output Times  
T
Clock-to-output delay from the active transition of the CLK input to valid  
data appearing on the P outputs when using the PREG register  
MSCKP_P  
-
-
1.10  
ns  
ns  
(2)  
T
T
Clock-to-output delay from the active transition of the CLK input to valid  
data appearing on the P outputs when using either the AREG or BREG  
MSCKP_A  
MSCKP_B  
4.97  
(3)  
register  
Setup Times  
T
Data setup time at the A or B input before the active transition at the  
CLK when using only the PREG output register (AREG, BREG  
registers unused)  
MSDCK_P  
3.98  
-
ns  
(2)  
T
T
Data setup time at the A input before the active transition at the CLK  
when using the AREG input register  
MSDCK_A  
MSDCK_B  
0.23  
0.39  
-
-
ns  
ns  
(3)  
Data setup time at the B input before the active transition at the CLK  
(3)  
when using the BREG input register  
Hold Times  
T
Data hold time at the A or B input before the active transition at the CLK  
when using only the PREG output register (AREG, BREG registers  
unused)  
MSCKD_P  
-0.97  
(2)  
T
T
Data hold time at the A input before the active transition at the CLK  
when using the AREG input register  
MSCKD_A  
MSCKD_B  
0.04  
0.05  
(3)  
Data hold time at the B input before the active transition at the CLK  
(3)  
when using the BREG input register  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
22  
R
Table 24: 18 x 18 Embedded Multiplier Timing (Continued)  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Clock Frequency  
F
Internal operating frequency for a two-stage 18x18 multiplier using the  
AREG and BREG input registers and the PREG output register  
MULT  
0
240  
MHz  
(1)  
Notes:  
1. Combinatorial delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.  
2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.  
3. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.  
Block RAM Timing  
Table 25: Block RAM Timing  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
T
When reading from block RAM, the delay from the active transition  
at the CLK input to data appearing at the DOUT output  
BCKO  
-
2.82  
ns  
Setup Times  
T
T
T
T
Setup time for the ADDR inputs before the active transition at the  
CLK input of the block RAM  
BACK  
BDCK  
BECK  
BWCK  
0.38  
0.23  
0.77  
1.26  
-
-
-
-
ns  
ns  
ns  
ns  
Setup time for data at the DIN inputs before the active transition at  
the CLK input of the block RAM  
Setup time for the EN input before the active transition at the CLK  
input of the block RAM  
Setup time for the WE input before the active transition at the CLK  
input of the block RAM  
Hold Times  
T
Hold time on the ADDR inputs after the active transition at the CLK  
input  
BCKA  
0.14  
0.13  
-
-
ns  
ns  
T
Hold time on the DIN inputs after the active transition at the CLK  
input  
BCKD  
T
T
Hold time on the EN input after the active transition at the CLK input  
Hold time on the WE input after the active transition at the CLK input  
0
0
-
-
ns  
ns  
BCKE  
BCKW  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
23  
R
Table 25: Block RAM Timing (Continued)  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Clock Timing  
T
T
High pulse width of the CLK signal  
Low pulse width of the CLK signal  
1.59  
1.59  
-
-
ns  
ns  
BPWH  
BPWL  
Clock Frequency  
F
Block RAM clock frequency. RAM read output value written back  
into RAM, for shift registers and circular buffers. Write-only or  
read-only performance is faster.  
BRAM  
0
230  
MHz  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 6.  
Digital Clock Manager Timing  
For specification purposes, the DCM consists of three key  
components: the Delay-Locked Loop (DLL), the Digital Fre-  
quency Synthesizer (DFS), and the Phase Shifter (PS).  
Aspects of DLL operation play a role in all DCM applica-  
tions. All such applications inevitably use the CLKIN and the  
CLKFB inputs connected to either the CLK0 or the CLK2X  
feedback, respectively. Thus, specifications in the DLL  
tables (Table 26 and Table 27) apply to any application that  
only employs the DLL component. When the DFS and/or  
the PS components are used together with the DLL, then  
the specifications listed in the DFS and PS tables (Table 28  
through Table 31) supersede any corresponding ones in the  
DLL tables. DLL specifications that do not change with the  
addition of DFS or PS functions are presented in Table 26  
and Table 27.  
Period jitter and cycle-cycle jitter are two of many different  
ways of specifying clock jitter. Both specifications describe  
statistical variation from a mean value.  
Period jitter is the worst-case deviation from the ideal clock  
period over a collection of millions of samples. In a histo-  
gram of period jitter, the mean value is the clock period.  
Cycle-cycle jitter is the worst-case difference in clock period  
between adjacent clock cycles in the collection of clock peri-  
ods sampled. In a histogram of cycle-cycle jitter, the mean  
value is zero.  
Spread Spectrum  
DCMs accept typical spread spectrum clocks as long as  
they meet the input requirements. The DLL will track the fre-  
quency changes created by the spread spectrum clock to  
drive the global clocks to the FPGA logic. See XAPP469,  
Spread-Spectrum Clocking Reception for Displays  
for details.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
24  
R
Delay-Locked Loop  
Table 26: Recommended Operating Conditions for the DLL  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Input Frequency Ranges  
FCLKIN  
CLKIN_FREQ_DLL  
Frequency of the CLKIN clock input  
5(2)  
240(3)  
MHz  
Input Pulse Requirements  
CLKIN_PULSE  
CLKIN pulse width as a  
percentage of the CLKIN  
period  
FCLKIN < 150 MHz  
FCLKIN > 150 MHz  
40%  
45%  
60%  
55%  
-
-
Input Clock Jitter Tolerance and Delay Path Variation(4)  
CLKIN_CYC_JITT_DLL_LF  
CLKIN_CYC_JITT_DLL_HF  
CLKIN_PER_JITT_DLL  
Cycle-to-cycle jitter at the  
CLKIN input  
FCLKIN < 150 MHz  
FCLKIN > 150 MHz  
-
-
-
-
300  
150  
1
ps  
ps  
ns  
ns  
Period jitter at the CLKIN input  
CLKFB_DELAY_VAR_EXT  
Allowable variation of off-chip feedback delay from the DCM output to  
the CLKFB input  
1
Notes:  
1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.  
2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 28.  
3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming  
clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.  
4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.  
Table 27: Switching Characteristics for the DLL  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Output Frequency Ranges  
CLKOUT_FREQ_CLK0  
CLKOUT_FREQ_CLK90  
CLKOUT_FREQ_2X  
Frequency for the CLK0 and CLK180 outputs  
Frequency for the CLK90 and CLK270 outputs  
Frequency for the CLK2X and CLK2X180 outputs  
Frequency for the CLKDV output  
5
5
240  
200  
311  
160  
MHz  
MHz  
MHz  
MHz  
10  
CLKOUT_FREQ_DV  
0.3125  
Output Clock Jitter(2,3,4)  
CLKOUT_PER_JITT_0  
CLKOUT_PER_JITT_90  
CLKOUT_PER_JITT_180  
CLKOUT_PER_JITT_270  
CLKOUT_PER_JITT_2X  
Period jitter at the CLK0 output  
-
-
-
-
-
100  
150  
150  
150  
ps  
ps  
ps  
ps  
ps  
Period jitter at the CLK90 output  
Period jitter at the CLK180 output  
Period jitter at the CLK270 output  
Period jitter at the CLK2X and CLK2X180 outputs  
[1% of  
CLKIN period  
+ 150]  
CLKOUT_PER_JITT_DV1  
CLKOUT_PER_JITT_DV2  
Period jitter at the CLKDV output when performing integer  
division  
-
-
150  
ps  
ps  
Period jitter at the CLKDV output when performing  
non-integer division  
[1% of  
CLKIN period  
+ 200]  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
25  
R
Table 27: Switching Characteristics for the DLL (Continued)  
-4 Speed Grade  
Min Max  
Symbol  
Duty Cycle(4)  
Description  
Units  
CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0, CLK90, CLK180,  
CLK270, CLK2X, CLK2X180, and CLKDV outputs,  
including the BUFGMUX and clock tree duty-cycle  
distortion  
-
[1% of  
CLKIN period  
+ 400]  
ps  
Phase Alignment(4)  
CLKIN_CLKFB_PHASE  
CLKOUT_PHASE_DLL  
Phase offset between the CLKIN and CLKFB inputs  
-
-
200  
ps  
ps  
Phase offset between DLL outputs  
CLK0 to CLK2X  
(not CLK2X180)  
[1% of  
CLKIN period  
+ 100]  
All others  
-
[1% of  
CLKIN period  
+ 200]  
ps  
Lock Time  
LOCK_DLL(3)  
When using the DLL alone: The time 5 MHz < FCLKIN  
<
-
-
5
ms  
from deassertion at the DCM’s Reset  
input to the rising transition at its  
LOCKED output. When the DCM is  
locked, the CLKIN and CLKFB  
signals are in phase  
15 MHz  
F
CLKIN > 15 MHz  
600  
μs  
Delay Lines  
DCM_DELAY_STEP  
Finest delay resolution  
20  
40  
ps  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 26.  
2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.  
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.  
4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. Example: The data sheet specifies a maximum  
jitter of “ [1% of CLKIN period + 150]”. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of  
10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is [100 ps + 150 ps] = 250ps.  
Digital Frequency Synthesizer  
Table 28: Recommended Operating Conditions for the DFS  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
(2)  
Input Frequency Ranges  
333(4)  
FCLKIN  
CLKIN_FREQ_FX  
Frequency for the CLKIN input  
0.200  
MHz  
(3)  
Input Clock Jitter Tolerance  
CLKIN_CYC_JITT_FX_LF  
CLKIN_CYC_JITT_FX_HF  
Cycle-to-cycle jitter at the CLKIN  
input, based on CLKFX output  
frequency  
F
CLKFX < 150 MHz  
-
-
300  
150  
ps  
ps  
FCLKFX > 150 MHz  
CLKIN_PER_JITT_FX  
Period jitter at the CLKIN input  
-
1
ns  
Notes:  
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.  
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 26.  
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.  
4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming  
clock frequency by two as it enters the DCM.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
26  
R
Table 29: Switching Characteristics for the DFS  
-4 Speed Grade  
Symbol  
Description  
Device  
All  
Min  
Max  
Units  
Output Frequency Ranges  
CLKOUT_FREQ_FX  
Frequency for the CLKFX and CLKFX180 outputs  
5
311  
MHz  
Output Clock Jitter(2,3)  
CLKOUT_PER_JITT_FX  
Period jitter at the CLKFX and CLKFX180  
outputs  
All  
Typ  
Max  
[1% of  
CLKIN <20 MHz  
See Note 4  
ps  
ps  
[1% of  
CLKIN > 20 MHz  
CLKFX CLKFX  
period  
+ 100]  
period  
+ 200]  
Duty Cycle(5,6)  
CLKOUT_DUTY_CYCLE_FX  
Duty cycle precision for the CLKFX and CLKFX180 outputs,  
including the BUFGMUX and clock tree duty-cycle distortion  
All  
-
[1% of  
CLKFX  
period  
+ 400]  
ps  
Phase Alignment(6)  
CLKOUT_PHASE_FX  
Phase offset between the DFS CLKFX output and the DLL CLK0  
output when both the DFS and DLL are used  
All  
All  
-
-
200  
ps  
ps  
CLKOUT_PHASE_FX180  
Phase offset between the DFS CLKFX180 output and the DLL  
CLK0 output when both the DFS and DLL are used  
[1% of  
CLKFX  
period  
+ 300]  
Lock Time  
LOCK_FX(2)  
The time from deassertion at the DCM’s  
Reset input to the rising transition at its  
LOCKED output. The DFS asserts LOCKED  
when the CLKFX and CLKFX180 signals  
are valid. If using both the DLL and the DFS,  
use the longer locking time.  
5 MHz < FCLKIN  
15 MHz  
<
All  
-
-
5
ms  
FCLKIN > 15 MHz  
450  
μs  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 28.  
2. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.  
3. Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching). Output  
jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching  
frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.  
4. Use the Spartan-3A Jitter Calculator (www.xilinx.com/support/documentation/data_sheets/s3a_jitter_calc.zip) to estimate DFS output jitter. Use the  
Clocking Wizard to determine jitter for a specific design.  
5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.  
6. Some duty-cycle and alignment specifications include 1% of the CLKFX output period or 0.01 UI. Example: The data sheet specifies a maximum jitter  
of “ [1% of CLKFX period + 300]”. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns  
or 100 ps. According to the data sheet, the maximum jitter is [100 ps + 300 ps] = 400 ps.  
Phase Shifter  
Table 30: Recommended Operating Conditions for the PS in Variable Phase Mode  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Operating Frequency Ranges  
PSCLK_FREQ  
(F  
Frequency for the PSCLK input  
1
167  
MHz  
)
PSCLK  
Input Pulse Requirements  
PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period  
40%  
60%  
-
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
27  
R
Table 31: Switching Characteristics for the PS in Variable Phase Mode  
Symbol  
Phase Shifting Range  
MAX_STEPS(2)  
Description  
Units  
Maximum allowed number of DCM_DELAY_STEP  
steps for a given CLKIN clock period, where T = CLKIN  
clock period in ns. If using  
CLKIN_DIVIDE_BY_2 = TRUE, double the clock  
effective clock period.  
CLKIN < 60 MHz  
CLKIN > 60 MHz  
[INTEGER(10 steps  
(TCLKIN – 3 ns))]  
[INTEGER(15 steps  
(TCLKIN – 3 ns))]  
FINE_SHIFT_RANGE_MIN  
Minimum guaranteed delay for variable phase shifting  
[MAX_STEPS •  
DCM_DELAY_STEP_MIN]  
ns  
ns  
FINE_SHIFT_RANGE_MAX Maximum guaranteed delay for variable phase shifting  
[MAX_STEPS •  
DCM_DELAY_STEP_MAX]  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 30.  
2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, i.e., the PHASE_SHIFT  
attribute is set to 0.  
3. The DCM_DELAY_STEP values are provided at the bottom of Table 27.  
Miscellaneous DCM Timing  
Table 32: Miscellaneous DCM Timing  
Symbol  
Description  
Min  
Max  
Units  
(1)  
DCM_RST_PW_MIN  
Minimum duration of a RST pulse width  
3
-
CLKIN  
cycles  
(2)  
DCM_RST_PW_MAX  
Maximum duration of a RST pulse width  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
seconds  
seconds  
minutes  
minutes  
(3)  
DCM_CONFIG_LAG_TIME  
Maximum duration from V  
applied to FPGA  
CCINT  
configuration successfully completed (DONE pin goes  
High) and clocks applied to DCM DLL  
Notes:  
1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV).  
The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.  
2. This specification is equivalent to the Virtex-4 DCM_RESET specification. This specification does not apply for Spartan-3E FPGAs.  
3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3E FPGAs.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
28  
R
Configuration and JTAG Timing  
Table 33: Power-On Timing and the Beginning of Configuration  
-4 Speed Grade  
Symbol  
(2)  
Description  
Device  
Min  
Max  
5
Units  
ms  
ms  
ms  
ms  
ms  
μs  
TPOR  
The time from the application of VCCINT, VCCAUX, and VCCO XA3S100E  
Bank 2 supply voltage ramps (whichever occurs last) to the  
rising transition of the INIT_B pin  
XA3S500E  
-
XA3S250E  
-
5
-
5
XA3S1200E  
XA3S1600E  
-
5
-
7
TPROG  
The width of the low-going pulse on the PROG_B pin  
All  
0.5  
-
(2)  
TPL  
The time from the rising edge of the PROG_B pin to the  
rising transition on the INIT_B pin  
XA3S100E  
XA3S250E  
XA3S500E  
XA3S1200E  
XA3S1600E  
All  
-
0.5  
0.5  
1
ms  
ms  
ms  
ms  
ms  
ns  
-
-
-
2
-
2
TINIT  
Minimum Low pulse width on INIT_B output  
250  
0.5  
-
(3)  
TICCK  
The time from the rising edge of the INIT_B pin to the  
generation of the configuration clock signal at the CCLK  
output pin  
All  
4.0  
μs  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 6. This means power must be applied to all V  
, V  
,
CCINT CCO  
and V  
lines.  
CCAUX  
2. Power-on reset and the clearing of configuration memory occurs during this period.  
3. This specification applies only to the Master Serial, SPI, BPI-Up, and BPI-Down modes.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
29  
R
Configuration Clock (CCLK) Characteristics  
Table 34: Master Mode CCLK Output Period by ConfigRate Option Setting  
ConfigRate  
Setting  
Temperature  
Range  
Symbol  
Description  
Minimum  
Maximum  
Units  
CCLK clock period by  
ConfigRate setting  
1
I-Grade  
Q-Grade  
T
(power-on value  
and default value)  
485  
1,250  
ns  
CCLK1  
I-Grade  
Q-Grade  
T
T
T
T
T
3
242  
121  
625  
313  
157  
78.2  
39.1  
ns  
ns  
ns  
ns  
ns  
CCLK3  
I-Grade  
Q-Grade  
6
CCLK6  
I-Grade  
Q-Grade  
12  
25  
50  
60.6  
30.3  
15.1  
CCLK12  
CCLK25  
CCLK50  
I-Grade  
Q-Grade  
I-Grade  
Q-Grade  
Notes:  
1. Set the ConfigRate option value when generating a configuration bitstream. See Bitstream Generator (BitGen) Options in DS312, Module 2.  
Table 35: Master Mode CCLK Output Frequency by ConfigRate Option Setting  
ConfigRate  
Setting  
Temperature  
Range  
Symbol  
Description  
Minimum  
Maximum  
Units  
Equivalent CCLK clock  
frequency by ConfigRate  
setting  
1
I-Grade  
Q-Grade  
F
(power-on value  
and default value)  
0.8  
2.1  
MHz  
CCLK1  
I-Grade  
Q-Grade  
F
F
F
F
F
3
1.6  
3.2  
4.2  
8.3  
MHz  
MHz  
MHz  
MHz  
MHz  
CCLK3  
I-Grade  
Q-Grade  
6
CCLK6  
I-Grade  
Q-Grade  
12  
25  
50  
6.4  
16.5  
33.0  
66.0  
CCLK12  
CCLK25  
CCLK50  
I-Grade  
Q-Grade  
12.8  
25.6  
I-Grade  
Q-Grade  
Table 36: Master Mode CCLK Output Minimum Low and High Time  
ConfigRate Setting  
Symbol  
Description  
Units  
1
3
6
12  
25  
50  
7.3  
T
MastermodeCCLKminimum  
Low and High time  
I-Grade  
Q-Grade  
MCCL,  
MCCH  
235  
117  
58  
29.3  
14.5  
ns  
T
Table 37: Slave Mode CCLK Input Low and High Time  
Symbol Description  
Min  
Max  
Units  
T
T
SCCL,  
SCCH  
CCLK Low and High time  
5
ns  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
30  
R
Master Serial and Slave Serial Mode Timing  
Table 38: Timing for the Master Serial and Slave Serial Configuration Modes  
-4 Speed Grade  
Slave/  
Symbol  
Description  
Master  
Min  
Max  
Units  
Clock-to-Output Times  
T
The time from the falling transition on the CCLK pin to data  
appearing at the DOUT pin  
Both  
Both  
Both  
1.5  
10.0  
ns  
CCO  
Setup Times  
T
The time from the setup of data at the DIN pin to the active edge of  
the CCLK pin  
11.0  
0
-
-
ns  
ns  
DCC  
Hold Times  
T
The time from the active edge of the CCLK pin to the point when  
data is last held at the DIN pin  
CCD  
Clock Timing  
T
T
F
High pulse width at the CCLK input pin  
Master  
Slave  
Master  
Slave  
Slave  
See Table 36  
See Table 37  
See Table 36  
See Table 37  
CCH  
Low pulse width at the CCLK input pin  
CCL  
(2)  
Frequency of the clock signal at  
the CCLK input pin  
No bitstream compression  
With bitstream compression  
0
0
66  
MHz  
MHz  
CCSER  
20  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 6.  
2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
31  
R
Slave Parallel Mode Timing  
Table 39: Timing for the Slave Parallel Configuration Mode  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
T
The time from the rising transition on the CCLK pin to a signal transition at the  
BUSY pin  
-
12.0  
ns  
SMCKBY  
Setup Times  
T
The time from the setup of data at the D0-D7 pins to the active edge the CCLK  
pin  
11.0  
-
ns  
SMDCC  
T
T
Setup time on the CSI_B pin before the active edge of the CCLK pin  
Setup time on the RDWR_B pin before active edge of the CCLK pin  
10.0  
23.0  
-
-
ns  
ns  
SMCSCC  
(2)  
SMCCW  
Hold Times  
T
T
T
The time from the active edge of the CCLK pin to the point when data is last  
held at the D0-D7 pins  
1.0  
0
-
-
-
ns  
ns  
ns  
SMCCD  
SMCCCS  
SMWCC  
The time from the active edge of the CCLK pin to the point when a logic level  
is last held at the CSO_B pin  
The time from the active edge of the CCLK pin to the point when a logic level  
is last held at the RDWR_B pin  
0
Clock Timing  
T
T
F
The High pulse width at the CCLK input pin  
5
5
0
0
0
-
ns  
CCH  
The Low pulse width at the CCLK input pin  
-
ns  
CCL  
(2)  
Frequency of the clock  
signal at the CCLK input  
pin  
No bitstream  
compression  
Not using the BUSY pin  
Using the BUSY pin  
50  
66  
20  
MHz  
MHz  
MHz  
CCPAR  
With bitstream compression  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 6.  
2. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.  
3. Some Xilinx documents refer to Parallel modes as “SelectMAP” modes.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
32  
R
Serial Peripheral Interface Configuration Timing  
Table 40: Timing for SPI Configuration Mode  
Symbol  
Description  
Minimum  
Maximum  
(see Table 34)  
(see Table 34)  
-
Units  
T
T
T
Initial CCLK clock period  
CCLK1  
CCLKn  
MINIT  
CCLK clock period after FPGA loads ConfigRate setting  
Setup time on VS[2:0] and M[2:0] mode pins before the rising  
edge of INIT_B  
50  
0
ns  
ns  
T
Hold time on VS[2:0] and M[2:0]mode pins after the rising edge of  
INIT_B  
-
INITM  
T
T
T
MOSI output valid after CCLK edge  
See Table 38  
See Table 38  
See Table 38  
CCO  
DCC  
CCD  
Setup time on DIN data input before CCLK edge  
Hold time on DIN data input after CCLK edge  
Table 41: Configuration Timing Requirements for Attached SPI Serial Flash  
Symbol  
Description  
SPI serial Flash PROM chip-select time  
SPI serial Flash PROM data input setup time  
Requirement  
Units  
ns  
T
TCCS TMCCL1 TCCO  
TDSU TMCCL1 TCCO  
CCS  
DSU  
T
ns  
T
SPI serial Flash PROM data input hold time  
ns  
ns  
DH  
V
TDH TMCCH1  
T
SPI serial Flash PROM data clock-to-output time  
TV TMCCLn TDCC  
f or f  
Maximum SPI serial Flash PROM clock frequency (also depends  
on specific read command used)  
MHz  
C
R
1
------------------------------  
fC ≥  
TCCLKn(min)  
Notes:  
1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA provides the CCLK frequency. The post  
configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.  
2. Subtract additional printed circuit board routing delay as required by the application.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
33  
R
Byte Peripheral Interface Configuration Timing  
Table 42: Timing for BPI Configuration Mode  
Symbol  
Description  
Minimum Maximum  
(see Table 34)  
Units  
T
Initial CCLK clock period  
CCLK1  
CCLKn  
MINIT  
T
T
CCLK clock period after FPGA loads ConfigRate setting  
(see Table 34)  
Setup time on CSI_B, RDWR_B, and M[2:0] mode pins before the rising  
edge of INIT_B  
50  
0
-
ns  
ns  
T
T
Hold time on CSI_B, RDWR_B, and M[2:0] mode pins after the rising  
edge of INIT_B  
-
INITM  
BPI-UP:  
(M[2:0]=<0:1:0>)  
Minimum period of initial A[23:0] address cycle;  
LDC[2:0] and HDC are asserted and valid  
5
2
5
2
T
CCLK1  
cycles  
INITADDR  
BPI-DN:  
(M[2:0]=<0:1:1>)  
T
T
T
Address A[23:0] outputs valid after CCLK falling edge  
See Table 38  
See Table 38  
See Table 38  
CCO  
DCC  
CCD  
Setup time on D[7:0] data inputs before CCLK rising edge  
Hold time on D[7:0] data inputs after CCLK rising edge  
Table 43: Configuration Timing Requirements for Attached Parallel NOR Flash  
Symbol  
Description  
Requirement  
Units  
T
Parallel NOR Flash PROM chip-select  
time  
CE  
TCE TINITADDR  
TOE TINITADDR  
TACC 0.5TCCLKn(min) TCCO TDCC PCB  
ns  
(t  
)
ELQV  
T
Parallel NOR Flash PROM  
output-enable time  
OE  
ns  
ns  
(t  
)
)
GLQV  
T
Parallel NOR Flash PROM read access  
time  
ACC  
(t  
AVQV  
T
(t  
BYTE  
For x8/x16 PROMs only: BYTE# to  
output valid time  
TBYTE TINITADDR  
ns  
(3)  
FLQV,  
t
)
FHQV  
Notes:  
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA provides the CCLK frequency. The post  
configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.  
2. Subtract additional printed circuit board routing delay as required by the application.  
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor  
value also depends on whether the FPGA’s HSWAP pin is High or Low.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
34  
R
IEEE 1149.1/1553 JTAG Test Access Port Timing  
Table 44: Timing for the JTAG Test Access Port  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
T
The time from the falling transition on the TCK pin  
to data appearing at the TDO pin  
1.0  
11.0  
ns  
TCKTDO  
Setup Times  
T
The time from the setup of data at the TDI pin to  
the rising transition at the TCK pin  
7.0  
7.0  
-
-
ns  
ns  
TDITCK  
T
The time from the setup of a logic level at the TMS  
pin to the rising transition at the TCK pin  
TMSTCK  
Hold Times  
T
The time from the rising transition at the TCK pin  
to the point when data is last held at the TDI pin  
0
0
-
-
ns  
ns  
TCKTDI  
T
The time from the rising transition at the TCK pin  
to the point when a logic level is last held at the  
TMS pin  
TCKTMS  
Clock Timing  
T
T
F
The High pulse width at the TCK pin  
The Low pulse width at the TCK pin  
Frequency of the TCK signal  
5
5
-
-
-
ns  
ns  
CCH  
CCL  
TCK  
25  
MHz  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 6.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
35  
R
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.0  
Revision  
08/31/07  
01/20/09  
Initial Xilinx release.  
Updated "Key Feature Differences from Commercial XC Devices."  
Updated T requirement in Table 43.  
1.1  
ACC  
Updated description of T  
and T  
in Table 42.  
DCC  
CCD  
Removed Table 45: MultiBoot Trigger Timing.  
09/09/09  
2.0  
Added package sizes to Table 2, page 4.  
Removed Genealogy Viewer Link from "Package Marking," page 5.  
Updated data and notes for Table 6, page 8.  
Updated test conditions for R and maximum value for C in Table 7, page 8.  
PU  
IN  
Updated notes for Table 8, page 9.  
Updated Max V  
for LVTTL and LVCMOS33, removed PCIX data, updated V Max for  
CCO  
IL  
LVCMOS18, LVCMOS15, and LVCMOS12, updated V Min for LVCMOS12, and added  
IH  
note 6 in Table 9, page 11.  
Removed PCIX data, revised note 2, and added note 4 in Table 10, page 12.  
Updated figure description of Figure 5, page 14.  
Added note 4 to Table 13, page 14.  
Removed PC166_3 and PCIX adjustment values from Table 17, page 17.  
Deleted Table 18 (duplicate of Table 17, page 17). Subsequent tables renumbered.  
Removed PCIX data Table 18, page 18.  
Removed PCIX data and removed V  
values for DIFF_HSTL_I_18,  
DIFF_HSTL_III_18, DIFF_SSTL18_I, and DIFF_SSTL2_I from Table 19, page 19.  
REF  
Updated T minimum setup time in Table 20, page 20.  
DICK  
Updated notes, references to notes, and revised the maximum clock-to-output times for  
Table 24, page 22.  
T
MSCKP_P  
Added "Spread Spectrum," page 24.  
Updated note 3 in Table 26, page 25.  
Added note 4 Table 28, page 26.  
Updated notes, references to notes, and CLKOUT_PER_JITT_FX data in Table 29,  
page 27.  
Updated MAX_STEPS data in Table 31, page 28.  
Updated ConfigRate Setting for T  
to indicate 1 is the default value in Table 34,  
CCLK1  
page 30.  
Updated ConfigRate Setting for F  
to indicate 1 is the default value in Table 35,  
CCLK1  
page 30.  
Notice of Disclaimer  
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND  
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED  
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE  
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.  
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE  
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES  
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO  
APPLICABLE LAWS AND REGULATIONS.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
36  
R
Automotive Applications Disclaimer  
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING  
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A  
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN  
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III)  
USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY  
USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.  
DS635 (v2.0) September 9, 2009  
www.xilinx.com  
Product Specification  
37  

相关型号:

XA3S1200E-4VQG100I

Field Programmable Gate Array, 2168 CLBs, 1200000 Gates, 572MHz, CMOS, PQFP100, 16 X 16 MM, LEAD FREE, VQFP-100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1200E-4VQG100Q

Field Programmable Gate Array, 2168 CLBs, 1200000 Gates, 572MHz, CMOS, PQFP100, 16 X 16 MM, LEAD FREE, VQFP-100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1400A

XA Spartan-3A Automotive FPGA Family Data Sheet

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1400A-4FGG400I

Field Programmable Gate Array, 2816 CLBs, 1400000 Gates, 667MHz, CMOS, PBGA400, LEAD FREE, MS-034, FGBGA-400

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1400A-4FGG400Q

Field Programmable Gate Array, 2816 CLBs, 1400000 Gates, 667MHz, CMOS, PBGA400, LEAD FREE, MS-034, FGBGA-400

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1400A-4FGG484I

Field Programmable Gate Array, 2816 CLBs, 1400000 Gates, 667MHz, 25344-Cell, CMOS, PBGA484, LEAD FREE, MS-034, FGBGA-484

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1400A-4FGG484Q

Field Programmable Gate Array, 2816 CLBs, 1400000 Gates, 667MHz, 25344-Cell, CMOS, PBGA484, LEAD FREE, MS-034, FGBGA-484

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1400A-4FTG256I

Field Programmable Gate Array, 2816 CLBs, 1400000 Gates, 667MHz, CMOS, PBGA256, LEAD FREE, MS-034, FTBGA-256

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1500-4FG456I

Field Programmable Gate Array, 125MHz, 29952-Cell, PBGA456,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1500-4FG456Q

Field Programmable Gate Array, 125MHz, 29952-Cell, PBGA456,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1500-4FG676I

Field Programmable Gate Array, 125MHz, 29952-Cell, PBGA676,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S1500-4FG676Q

Field Programmable Gate Array, 125MHz, 29952-Cell, PBGA676,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX