XA3S700A [XILINX]

XA Spartan-3A Automotive FPGA Family Data Sheet; 了XA Spartan -3A汽车FPGA系列数据手册
XA3S700A
型号: XA3S700A
厂家: XILINX, INC    XILINX, INC
描述:

XA Spartan-3A Automotive FPGA Family Data Sheet
了XA Spartan -3A汽车FPGA系列数据手册

文件: 总56页 (文件大小:1468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
<B  
L
Bl  
ue  
R
XA Spartan-3A Automotive  
FPGA Family Data Sheet  
DS681 (v1.1) February 3, 2009  
Product Specification  
Summary  
®
LVDS, RSDS, mini-LVDS, HSTL/SSTL differential I/O  
with integrated differential termination resistors  
Enhanced Double Data Rate (DDR) support  
DDR/DDR2 SDRAM support up to 266 Mb/s  
Fully compliant 32-/64-bit, 33 MHz PCI™ technology  
support  
The Xilinx Automotive (XA) Spartan -3A family of FPGAs  
solves the design challenges in most high-volume,  
cost-sensitive, I/O-intensive automotive electronics  
applications. The four-member family offers densities  
ranging from 200,000 to 1.4 million system gates, as shown  
in Table 1.  
Abundant, flexible logic resources  
Densities up to 25,344 logic cells, including optional shift  
register or distributed RAM support  
Introduction  
XA devices are available in both extended-temperature  
Efficient wide multiplexers, wide logic  
Fast look-ahead carry logic  
Enhanced 18 x 18 multipliers with optional pipeline  
IEEE 1149.1/1532 JTAG programming/debug port  
Q-Grade (–40°C to +125°C T ) and I-Grade (–40°C to  
J
+100°C T ) and are qualified to the industry recognized  
J
AEC-Q100 standard.  
Hierarchical SelectRAM™ memory architecture  
Up to 576 Kbits of fast block RAM with byte write enables  
for processor applications  
Up to 176 Kbits of efficient distributed RAM  
The XA Spartan-3A family builds on the success of the  
earlier XA Spartan-3E and XA Spartan-3 FPGA families by  
increasing the amount of I/O per logic, significantly reducing  
the cost per I/O. New features improve system performance  
and reduce the cost of configuration. These XA Spartan-3A  
family enhancements, combined with proven 90 nm process  
technology, deliver more functionality and bandwidth per  
dollar than ever before, setting the new standard in the  
programmable logic industry.  
Up to eight Digital Clock Managers (DCMs)  
Clock skew elimination (delay locked loop)  
Frequency synthesis, multiplication, division  
High-resolution phase shifting  
Wide frequency range (5 MHz to over 320 MHz)  
Eight low-skew global clock networks, eight additional  
clocks per half device, plus abundant low-skew routing  
Configuration interface to industry-standard PROMs  
Because of their exceptionally low cost, XA Spartan-3A  
FPGAs are ideally suited to a wide range of automotive  
electronics applications, including infotainment, driver  
information, and driver assistance modules.  
Low-cost, space-saving SPI serial Flash PROM  
x8 or x8/x16 parallel NOR Flash PROM  
Unique Device DNA identifier for design authentication  
®
Complete Xilinx ISE and WebPACK™ software  
support plus Spartan-3A Starter Kit  
The XA Spartan-3A family is a superior alternative to mask  
programmed ASICs. FPGAs avoid the high initial mask set  
costs and lengthy development cycles, while also permitting  
design upgrades in the field with no hardware replacement  
necessary because of its inherent programmability, an  
impossibility with conventional ASICs and ASSPs with their  
inflexible architecture.  
MicroBlaze™ and PicoBlazeembedded processor  
cores  
BGA packaging, Pb-free ONLY  
Common footprints support easy density migration  
Refer to the Spartan-3A FPGA Family Data Sheet (DS529)  
for a full product description, AC and DC specifications, and  
package pinout descriptions. Any values shown specifically  
in this XA Spartan-3A Automotive FPGA Family data sheet  
override those shown in DS529.  
Features  
Very low cost, high-performance logic solution for  
high-volume, cost-conscious applications  
Dual-range V  
supply simplifies 3.3V-only design  
CCAUX  
For information regarding reliability qualification, refer to  
RPT103 (Xilinx Spartan-3A Family Automotive Qualification  
Report) and RPT070 (Spartan-3A Commercial Qualification  
Report).  
Suspend, Hibernate modes reduce system power  
Multi-voltage, multi-standard SelectIO™ interface pins  
Up to 375 I/O pins or 165 differential signal pairs  
LVCMOS, LVTTL, HSTL, and SSTL single-ended I/O  
3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling  
Selectable output drive, up to 24 mA per pin  
QUIETIO standard reduces I/O switching noise  
Full 3.3V ± 10% compatibility and hot swap compliance  
640+ Mb/s data transfer rate per differential I/O  
© 2008–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other  
countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
1
Product Specification  
R
Key Feature Differences from Commercial XC Devices  
AEC-Q100 device qualification and full production part  
approval process (PPAP) documentation support  
available in both extended temperature I- and  
Q-Grades  
PCI-66 is not supported in the XA Spartan-3A FPGA  
product line  
Platform Flash is not supported within the XA family  
XA Spartan-3A devices are available in Pb-Free  
packaging only.  
Guaranteed to meet full electrical specification over the  
T = –40°C to +125°C temperature range (Q-Grade)  
J
MultiBoot is not supported in XA versions of this  
product.  
XA Spartan-3A devices are available in the -4 speed  
grade only  
The XA Spartan-3A device must be power cycled prior  
to reconfiguration.  
Table 1: Summary of XA Spartan-3A FPGA Attributes  
CLB Array  
(One CLB = Four Slices)  
Block  
RAM  
Maximum  
System Equivalent  
Total  
Total  
Distributed  
Dedicated  
Maximum Differential  
Device  
Gates Logic Cells Rows Columns CLBs  
Slices RAM bits(1) bits(1)  
Multipliers DCMs User I/O  
I/O Pairs  
XA3S200A 200K  
XA3S400A 400K  
XA3S700A 700K  
4,032  
8,064  
13,248  
32  
40  
48  
72  
16  
24  
32  
40  
448 1,792  
896 3,584  
1,472 5,888  
2,816 11,264  
28K  
56K  
92K  
288K  
360K  
360K  
576K  
16  
20  
20  
32  
4
4
8
8
195  
311  
372  
375  
90  
142  
165  
165  
XA3S1400A 1400K 25,344  
176K  
Notes:  
1. By convention, one Kb is equivalent to 1,024 bits.  
Architectural Overview  
The XA Spartan-3A family architecture consists of five  
fundamental programmable functional elements:  
Digital Clock Manager (DCM) Blocks provide  
self-calibrating, fully digital solutions for distributing,  
delaying, multiplying, dividing, and phase-shifting clock  
signals.These elements are organized as shown in  
Figure 1. A dual ring of staggered IOBs surrounds a  
regular array of CLBs. Each device has two columns of  
block RAM. Each RAM column consists of several  
18-Kbit RAM blocks. Each block RAM is associated  
with a dedicated multiplier. The DCMs are positioned in  
the center with two at the top and two at the bottom of  
the device. The XA3S700A and XA3S1400A add two  
DCMs in the middle of the two columns of block RAM  
and multipliers. The XA Spartan-3A family features a  
rich network of routing that interconnect all five  
Configurable Logic Blocks (CLBs) contain flexible  
Look-Up Tables (LUTs) that implement logic plus  
storage elements used as flip-flops or latches. CLBs  
perform a wide variety of logical functions as well as  
store data.  
Input/Output Blocks (IOBs) control the flow of data  
between the I/O pins and the internal logic of the  
device. IOBs support bidirectional data flow plus  
3-state operation. Supports a variety of signal  
standards, including several high-performance  
differential standards. Double Data-Rate (DDR)  
registers are included.  
functional elements, transmitting signals among them.  
Each functional element has an associated switch  
matrix that permits multiple connections to the routing.  
Block RAM provides data storage in the form of  
18-Kbit dual-port blocks.  
Multiplier Blocks accept two 18-bit binary numbers as  
inputs and calculate the product.  
2
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
IOBs  
CLB  
DCM  
IOBs  
DCM  
CLBs  
DCM  
IOBs  
DS312-1_01_032606  
Notes:  
1. The XA3S700A and XA3S1400A have two additional DCMs on both the left and right sides as indicated by the  
dashed lines.  
Figure 1: XA Spartan-3A Family Architecture  
Configuration  
XA Spartan-3A FPGAs are programmed by loading  
Byte Peripheral Interface (BPI) Up from an  
configuration data into robust, reprogrammable, static  
CMOS configuration latches (CCLs) that collectively control  
all functional elements and routing resources. The FPGA’s  
configuration data is stored externally in a SPI serial Flash  
or some other non-volatile medium, either on or off the  
board. After applying power, the configuration data is written  
to the FPGA using any of five different modes:  
industry-standard x8 or x8/x16 parallel NOR Flash  
Slave Serial, typically downloaded from a processor  
Slave Parallel, typically downloaded from a processor  
Boundary Scan (JTAG), typically downloaded from a  
processor or system tester  
Additionally, each XA Spartan-3A FPGA contains a unique,  
factory-programmed Device DNA identifier useful for  
tracking purposes, anti-cloning designs, or IP protection.  
Serial Peripheral Interface (SPI) from an  
industry-standard SPI serial Flash  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
3
Product Specification  
R
I/O Capabilities  
The XA Spartan-3A FPGA SelectIO interface supports  
many popular single-ended and differential standards.  
Table 2 shows the number of user I/Os as well as the  
number of differential I/O pairs available for each  
device/package combination. Some of the user I/Os are  
unidirectional input-only pins as indicated in Table 2.  
SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used  
for memory applications  
XA Spartan-3A FPGAs support the following differential  
standards:  
LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or  
3.3V  
XA Spartan-3A FPGAs support the following single-ended  
standards:  
Bus LVDS I/O at 2.5V  
TMDS I/O at 3.3V  
3.3V low-voltage TTL (LVTTL)  
Differential HSTL and SSTL I/O  
LVPECL inputs at 2.5V or 3.3V  
Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V,  
1.5V, or 1.2V  
3.3V PCI at 33 MHz  
HSTL I, II, and III at 1.5V and 1.8V, commonly used in  
memory applications  
Table 2: Available User I/Os and Differential (Diff) I/O Pairs  
FTG256 FGG400 FGG484  
Device  
User  
Diff  
User  
Diff  
User  
Diff  
195  
90  
XA3S200A  
-
-
-
-
-
(35)  
(50)  
195  
(35)  
90  
(50)  
311  
(63)  
142  
(78)  
XA3S400A  
XA3S700A  
-
311  
(63)  
142  
(78)  
372  
(84)  
165  
(93)  
-
-
-
-
375  
(87)  
165  
(93)  
XA3S1400A  
-
-
Notes:  
1. The number shown in bold indicates the maximum number of I/O and input-only  
pins. The number shown in (italics) indicates the number of input-only pins. The  
differential (Diff) input-only pin count includes both differential pairs on input-only  
pins and differential pairs on I/O pins within I/O banks that are restricted to  
differential inputs.  
4
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Production Status  
Table 3 indicates the production status of each XA  
Spartan-3A FPGA by temperature range and speed grade.  
The table also lists the earliest speed file version required  
for creating a production configuration bitstream. Later  
versions are also supported.  
Table 3: XA Spartan-3A FPGA Family Production Status (Production Speed File)  
Temperature Range  
Speed Grade  
I-Grade  
Q-Grade  
Standard (–4)  
Standard (–4)  
Production  
Production  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
(v1.41)  
(v1.41)  
Production  
(v1.41)  
Production  
(v1.41)  
Production  
(v1.41)  
Production  
(v1.41)  
Production  
(v1.41)  
Production  
(v1.41)  
Package Marking  
Figure 2 shows the top marking for Spartan-3A FPGAs in BGA packages. The markings for the BGA packages are nearly  
identical to those for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator.  
Mask Revision Code  
R
BGA Ball A1  
Fabrication Code  
Process Code  
R
SPARTAN  
XA3S200ATM  
Device Type  
Date Code  
Lot Code  
Package  
FTG256AGQ0625  
D1234567A  
4 I  
Speed Grade  
Temperature Range  
DS529-1_02_021206  
Figure 2: XA Spartan-3A FPGA BGA Package Marking Example  
Ordering Information  
XA Spartan-3A FPGAs are available in Pb-free packaging only for all device/package combinations.  
Pb-Free Packaging  
Example:  
XA3S200A -4 FT G 256 I  
Device Type  
Temperature Range:  
Q - Grade (TJ = –40°C to 125°C)  
I - Grade (TJ = –40°C to 100°C)  
Speed Grade  
-4: Standard Performance  
Package Type  
Number of Pins  
Pb-free  
DS529-1_04_012009  
DS681 (v1.1) February 3, 2009  
Product Specification  
www.xilinx.com  
5
R
Device  
Speed Grade  
–4 Standard  
Package Type / Number of Pins  
Temperature Range (TJ)  
XA3S200A  
FTG256  
256-ball Fine-Pitch Thin Ball Grid Array (FTBGA) I I-Grade (–40°C to 100°C)  
Performance  
XA3S400A  
XA3S700A  
XA3S1400A  
FGG400 400-ball Fine-Pitch Ball Grid Array (FBGA)  
FGG484 484-ball Fine-Pitch Ball Grid Array (FBGA)  
Q Q-Grade (–40°C to 125°C)  
Notes:  
1. The XA Spartan-3A FPGA product line is available in -4 Speed Grade only.  
DC Electrical Characteristics  
Absolute Maximum Ratings  
All parameter limits are representative of worst-case supply  
voltage and junction temperature conditions. Unless  
otherwise noted, the published parameter values apply  
to all XA Spartan-3A devices, and AC and DC  
characteristics are specified using the same numbers  
for both I-Grade and Q-Grade.  
Stresses beyond those listed under Table 4: Absolute  
Maximum Ratings may cause permanent damage to the  
device. These are stress ratings only; functional operation  
of the device at these or any other conditions beyond those  
listed under the Recommended Operating Conditions is not  
implied. Exposure to absolute maximum conditions for  
extended periods of time adversely affects device reliability.  
Table 4: Absolute Maximum Ratings  
Symbol  
Description  
Internal supply voltage  
Conditions  
Min  
–0.5  
–0.5  
–0.5  
–0.5  
Max  
1.32  
Units  
VCCINT  
V
V
V
V
VCCAUX Auxiliary supply voltage  
3.75  
VCCO  
VREF  
Output driver supply voltage  
Input reference voltage  
3.75  
VCCO + 0.5  
Voltage applied to all User I/O pins and  
Dual-Purpose pins  
Driver in a high-impedance state  
–0.95  
4.6  
V
VIN  
Voltage applied to all Dedicated pins  
Electrostatic Discharge Voltage  
–0.5  
4.6  
± 2000  
± 500  
± 200  
125  
V
V
Human body model  
Charged device model  
Machine model  
VESD  
V
V
TJ  
Junction temperature  
Storage temperature  
°C  
°C  
TSTG  
–65  
150  
Notes:  
1. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow  
Guidelines for Pb-Free Packages.  
6
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Power Supply Specifications  
Table 5: Supply Voltage Thresholds for Power-On Reset  
Symbol  
VCCINTT  
VCCAUXT  
VCCO2T  
Description  
Threshold for the VCCINT supply  
Min  
0.4  
0.8  
0.8  
Max  
1.0  
2.0  
Units  
V
V
V
Threshold for the VCCAUX supply  
Threshold for the VCCO Bank 2 supply  
2.0  
Notes:  
1.  
V
, V  
, and V  
supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (SPI Flash, parallel  
CCINT CCAUX  
CCO  
NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply V  
for lowest overall power consumption (see UG331 chapter "Powering Spartan-3 Generation FPGAs" for more information).  
last  
CCINT  
2. To ensure successful power-on, V  
no dips at any point.  
, V  
Bank 2, and V  
supplies must rise through their respective threshold-voltage ranges with  
CCINT CCO  
CCAUX  
Table 6: Supply Voltage Ramp Rate  
Symbol  
Description  
Min  
0.2  
0.2  
0.2  
Max  
100  
100  
100  
Units  
ms  
VCCINTR  
VCCAUXR  
VCCO2R  
Ramp rate from GND to valid VCCINT supply level  
Ramp rate from GND to valid VCCAUX supply level  
Ramp rate from GND to valid VCCO Bank 2 supply level  
ms  
ms  
Notes:  
1.  
V
, V  
, and V  
supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (SPI Flash, parallel  
CCINT CCAUX  
CCO  
NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply V  
for lowest overall power consumption (see UG331 chapter "Powering Spartan-3 Generation FPGAs" for more information).  
last  
CCINT  
2. To ensure successful power-on, V  
no dips at any point.  
, V  
Bank 2, and V  
supplies must rise through their respective threshold-voltage ranges with  
CCAUX  
CCINT CCO  
Table 7: Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM  
Data  
Symbol  
VDRINT  
VDRAUX  
Description  
Min  
1.0  
2.0  
Units  
VCCINT level required to retain CMOS Configuration Latch (CCL) and RAM data  
VCCAUX level required to retain CMOS Configuration Latch (CCL) and RAM data  
V
V
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
7
Product Specification  
R
General Recommended Operating Conditions  
Table 8: General Recommended Operating Conditions  
Symbol  
Description  
Min  
-40  
Nominal  
Max  
100  
Units  
°C  
°C  
V
TJ  
Junction temperature  
I-Grade  
Q-Grade  
-40  
125  
VCCINT  
Internal supply voltage  
1.140  
1.100  
2.250  
3.000  
-0.5  
1.200  
1.260  
3.600  
2.750  
3.600  
VCCO+0.5  
(1)  
VCCO  
Output driver supply voltage  
Auxiliary supply voltage  
V
VCCAUX  
VCCAUX = 2.5  
2.500  
3.300  
V
VCCAUX = 3.3  
V
VIN  
Input voltage(2)  
I/O, Input-only and  
Dual-purpose pins  
V
Dedicated pins  
-0.5  
VCCAUX+0.5  
500  
V
TIN  
Input signal transition time(3)  
ns  
Notes:  
1. This V  
range spans the lowest and highest operating voltages for all supported I/O standards. Table 11 lists the recommended V  
CCO  
CCO  
range specific to each of the single-ended I/O standards, and Table 13 lists that specific to the differential standards.  
2. See XAPP459, "Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins."  
3. Measured between 10% and 90% V  
.
CCO  
8
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
General DC Characteristics for I/O Pins  
Table 9: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins  
Symbol  
Description  
Test Conditions  
Min  
Typ  
Max  
Units  
IL  
Leakage current at User I/O,  
Input-only, Dual-Purpose, and  
Dedicated pins, FPGA powered  
Driver is in a high-impedance state,  
VIN = 0V or VCCO max, sample-tested  
–10  
+10  
μA  
All pins except INIT_B, PROG_B, DONE, and JTAG  
pins when PUDC_B = 1.  
–10  
+10  
μA  
μA  
μA  
μA  
Leakage current on pins during  
hot socketing, FPGA unpowered  
I
HS  
INIT_B, PROG_B, DONE, and JTAG pins or other  
pins when PUDC_B = 0.  
Add I + I  
HS  
RPU  
(2)  
IRPU  
Current through pull-up resistor  
at User I/O, Dual-Purpose,  
VIN = GND  
VCCO or VCCAUX  
3.0V to 3.6V  
=
–151  
–315  
–182  
–710  
–437  
Input-only, and Dedicated pins.  
Dedicated pins are powered by  
V
CCO or VCCAUX  
=
–82  
2.3V to 2.7V  
VCCAUX  
.
VCCO = 1.7V to 1.9V  
VCCO = 1.4V to 1.6V  
–36  
–22  
–11  
5.1  
–88  
–56  
–226  
–148  
–83  
μA  
μA  
μA  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
μA  
V
CCO = 1.14V to 1.26V  
VCCO = 3.0V to 3.6V  
VCCO = 2.3V to 2.7V  
–31  
(2)  
RPU  
Equivalent pull-up resistor value  
at User I/O, Dual-Purpose,  
Input-only, and Dedicated pins  
(based on IRPU per Note 2)  
VIN = GND  
11.4  
14.8  
21.6  
28.4  
41.1  
346  
23.9  
33.1  
52.6  
74.0  
119.4  
659  
6.2  
VCCO = 1.7V to 1.9V  
8.4  
VCCO = 1.4V to 1.6V  
VCCO = 1.14V to 1.26V  
VCCAUX = 3.0V to 3.6V  
10.8  
15.3  
167  
(2)  
IRPD  
Current through pull-down  
resistor at User I/O,  
Dual-Purpose, Input-only, and  
Dedicated pins  
V
= V  
CCO  
IN  
VCCAUX = 2.25V to 2.75V  
100  
225  
457  
μA  
(2)  
RPD  
Equivalent pull-down resistor  
value at User I/O, Dual-Purpose,  
Input-only, and Dedicated pins  
(based on IRPD per Note 2)  
VCCAUX = 3.0V to 3.6V  
VIN = 3.0V to 3.6V  
VIN = 2.3V to 2.7V  
5.5  
4.1  
3.0  
2.7  
2.4  
7.9  
5.9  
4.2  
3.6  
3.0  
–10  
3
10.4  
7.8  
5.7  
5.1  
4.5  
16.0  
12.0  
8.5  
7.2  
6.0  
20.8  
15.7  
11.1  
9.6  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
μA  
pF  
Ω
VIN = 1.7V to 1.9V  
VIN = 1.4V to 1.6V  
VIN = 1.14V to 1.26V  
VIN = 3.0V to 3.6V  
VIN = 2.3V to 2.7V  
8.1  
VCCAUX = 2.25V to 2.75V  
35.0  
26.3  
18.6  
15.7  
12.5  
+10  
10  
V
IN = 1.7V to 1.9V  
IN = 1.4V to 1.6V  
V
VIN = 1.14V to 1.26V  
IREF  
VREF current per pin  
Input capacitance  
All VCCO levels  
CIN  
RDT  
Resistance of optional differential  
termination circuit within a  
differential I/O pair. Not available  
on Input-only pairs.  
VCCO = 3.3V ± 10%  
90  
100  
115  
LVDS_33,  
MINI_LVDS_33,  
RSDS_33  
VCCO = 2.5V ± 10%  
90  
110  
Ω
LVDS_25,  
MINI_LVDS_25,  
RSDS_25  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 8.  
2. This parameter is based on characterization. The pull-up resistance R = V  
/ I  
. The pull-down resistance R = V / I  
.
PU  
CCO RPU  
PD  
IN RPD  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
9
Product Specification  
R
Quiescent Current Requirements  
Table 10: Quiescent Supply Current Characteristics  
I-Grade  
Q-Grade  
Symbol  
Description  
Device  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
Typical(2)  
Maximum(2)  
Maximum(2)  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ICCINTQ  
Quiescent VCCINT supply current  
7
10  
13  
24  
0.2  
0.3  
0.3  
0.3  
5
70  
125  
185  
310  
3
110  
230  
330  
580  
4
ICCOQ  
Quiescent VCCO supply current  
4
5
4
5
4
5
ICCAUXQ  
15  
24  
34  
58  
20  
40  
60  
95  
Quiescent VCCAUX supply current  
5
6
10  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 8.  
2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads  
disabled. Typical values are characterized using typical devices at ambient room temperature (T of 25°C at V = 1.2V, V = 3.3V, and  
A
CCINT  
CCO  
V
= 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum  
CCAUX  
voltage limits with V  
= 1.26V, V  
= 3.6V, and V  
= 3.6V. The FPGA is programmed with a “blank” configuration data file (that is,  
CCINT  
CCO  
CCAUX  
a design with no functional elements instantiated). For conditions other than those described above (for example, a design including  
functional elements), measured quiescent current levels will be different than the values in the table.  
3. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The  
Spartan-3A FPGA XPower Estimator provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower  
Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates.  
4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.  
5. For information on the power-saving Suspend mode, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode  
typically saves 40% total power consumption compared to quiescent current.  
10  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Single-Ended I/O Standards  
Table 11: Recommended Operating Conditions for User I/Os Using Single-Ended Standards  
VCCO for Drivers(2)  
VREF  
VIL  
Max (V)  
0.8  
VIH  
Min (V)  
IOSTANDARD  
Attribute  
Min (V) Max (V)  
Nom (V)  
3.3  
3.3  
2.5  
1.8  
1.5  
1.2  
3.3  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
3.3  
3.3  
Min (V)  
Nom (V)  
Max (V)  
LVTTL  
3.0  
3.0  
2.3  
1.65  
1.4  
1.1  
3.0  
1.4  
1.4  
1.7  
1.7  
1.7  
1.7  
1.7  
2.3  
2.3  
3.0  
3.0  
3.6  
3.6  
2.7  
1.95  
1.6  
1.3  
3.6  
1.6  
1.6  
1.9  
1.9  
1.9  
1.9  
1.9  
2.7  
2.7  
3.6  
3.6  
2.0  
LVCMOS33(4)  
LVCMOS25(4,5)  
LVCMOS18(4)  
LVCMOS15(4)  
LVCMOS12(4)  
PCI33_3(6)  
HSTL_I  
0.8  
2.0  
0.7  
1.7  
VREF is not used for  
these I/O standards  
0.4  
0.8  
0.4  
0.8  
0.4  
0.7  
0.3 VCCO  
VREF - 0.1  
VREF - 0.1  
VREF - 0.1  
0.5 VCCO  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.125  
VREF + 0.125  
VREF + 0.150  
VREF + 0.150  
VREF + 0.2  
VREF + 0.2  
0.68  
0.75  
0.9  
0.9  
-
HSTL_III  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
0.8  
0.9  
1.1  
0.9  
VREF - 0.1  
1.1  
VREF - 0.1  
0.833  
0.833  
1.15  
1.15  
1.3  
0.900  
0.900  
1.25  
1.25  
1.5  
0.969  
0.969  
1.38  
1.38  
1.7  
1.7  
VREF - 0.125  
SSTL18_II  
SSTL2_I  
VREF - 0.125  
VREF - 0.150  
VREF - 0.150  
SSTL2_II  
SSTL3_I  
VREF - 0.2  
SSTL3_II  
1.3  
1.5  
VREF - 0.2  
Notes:  
1. Descriptions of the symbols used in this table are as follows:  
V
V
V
V
– the supply voltage for output drivers  
– the reference voltage for setting the input switching threshold  
– the input voltage that indicates a Low logic level  
– the input voltage that indicates a High logic level  
CCO  
REF  
IL  
IH  
2. In general, the V  
rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when V  
= 3.3V range  
CCO  
CCAUX  
and for PCI I/O standards.  
3. For device operation, the maximum signal voltage (V max) can be as high as V max. See Table 8.  
IH  
IN  
4. There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards.  
5. All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the V  
rail and use the LVCMOS25 or  
CCAUX  
LVCMOS33 standard depending on V  
. The Dual-Purpose configuration pins use the LVCMOS25 standard before the User mode.  
CCAUX  
When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V  
well as throughout configuration.  
lines of Banks 0, 1, and 2 at power-on as  
CCO  
6. For information on PCI IP solutions, see http://www.xilinx.com/products/design_resources/conn_central/protocols/pci_pcix.htm. The PCI  
IOSTANDARD is not supported on input-only pins. The PCIX IOSTANDARD is available and has equivalent characteristics, but no PCI-X IP  
is supported.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
11  
Product Specification  
R
Table 12: DC Characteristics of User I/Os Using  
Single-Ended Standards (Continued)  
Table 12: DC Characteristics of User I/Os Using  
Single-Ended Standards  
Test  
Conditions  
Logic Level  
Characteristics  
Test  
Conditions  
Logic Level  
Characteristics  
IOL  
IOH  
VOL  
Max (V)  
VOH  
Min (V)  
IOL  
IOH  
VOL  
Max (V)  
VOH  
Min (V)  
IOSTANDARD  
Attribute  
IOSTANDARD  
Attribute  
(mA) (mA)  
(mA) (mA)  
PCI33_3(5)  
1.5  
8
–0.5 10% VCCO 90% VCCO  
LVTTL(3)  
2
4
6
8
2
4
–2  
–4  
0.4  
0.4  
0.4  
0.4  
2.4  
HSTL_I(4)  
–8  
–8  
0.4  
0.4  
0.4  
0.4  
0.4  
VCCO - 0.4  
VCCO - 0.4  
HSTL_III(4)  
HSTL_I_18  
HSTL_II_18(4)  
HSTL_III_18  
SSTL18_I  
SSTL18_II(4)  
SSTL2_I  
24(6)  
8
6
–6  
–8  
VCCO - 0.4  
8
–8  
16  
–16(6)  
–8  
VCCO - 0.4  
VCCO - 0.4  
12  
16  
24  
2
12  
16  
24(7)  
2
–12  
–16  
–24  
–2  
24(6)  
6.7  
VTT – 0.475 VTT + 0.475  
–6.7  
VTT – 0.475 VTT + 0.475  
13.4 –13.4  
8.1 –8.1 VTT – 0.61 VTT + 0.61  
16.2 –16.2 VTT – 0.80 VTT + 0.80  
LVCMOS33(3)  
LVCMOS25(3)  
LVCMOS18(3)  
VCCO 0.4  
VCCO 0.4  
VCCO 0.4  
4
4
–4  
SSTL2_II(4)  
SSTL3_I  
6
6
–6  
8
–8  
V
TT – 0.6  
TT – 0.8  
VTT + 0.6  
VTT + 0.8  
8
8
–8  
SSTL3_II  
16  
–16  
V
12  
16  
24(4)  
2
12  
16  
24  
2
–12  
–16(7)  
–24(7)  
–2  
Notes:  
1. The numbers in this table are based on the conditions set forth in  
Table 8 and Table 11.  
2. Descriptions of the symbols used in this table are as follows:  
IOL the output current condition under which VOL is tested  
IOH the output current condition under which VOH is tested  
VOL the output voltage that indicates a Low logic level  
VOH the output voltage that indicates a High logic level  
VIL the input voltage that indicates a Low logic level  
VIH the input voltage that indicates a High logic level  
VCCO the supply voltage for output drivers  
4
4
–4  
6
6
–6  
8
8
–8  
12  
16(4)  
12  
16  
–12  
–16(7)  
VREF the reference voltage for setting the input switching threshold  
VTT the voltage applied to a resistor termination  
24(4) 24(7) –24(7)  
3. For the LVCMOS and LVTTL standards: the same V and V  
OL  
OH  
limits apply for both the Fast and Slow slew attributes.  
2
4
2
4
–2  
–4  
4. These higher-drive output standards are supported only on  
FPGA banks 1 and 3. Inputs are unrestricted. See the chapter  
"Using I/O Resources" in UG331.  
6
6
–6(7)  
–8  
5. Tested according to the relevant PCI specifications. For  
information on PCI IP solutions, see  
8
8
http://www.xilinx.com/products/design_resources/conn_central/  
protocols/pci_pcix.htm. The PCI IOSTANDARD is not supported  
on input-only pins. The PCIX IOSTANDARD is available and has  
equivalent characteristics, but no PCI-X IP is supported.  
o
12(4)  
16(4)  
2
12  
16  
2
–12(7)  
–16  
–2  
6. DE-RATE by 5% for T above 100 C  
J
o
7. DE-RATE by 20% for T above 100 C  
LVCMOS15(3)  
0.4  
0.4  
VCCO 0.4  
J
4
4
–4  
6
6
–6  
8(4)  
12(4)  
2
8
–8  
12  
2
–12  
–2  
LVCMOS12(3)  
VCCO 0.4  
4(4)  
6(4)  
4
–4  
6
–6  
12  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Differential I/O Standards  
Differential Input Pairs  
VINP  
VINN  
Differential  
I/O Pair Pins  
P
N
Internal  
Logic  
VINN  
VID  
50%  
VINP  
VICM  
GND level  
V
INP + VINN  
V
ICM = Input common mode voltage =  
2
VINP - VINN  
V
ID = Differential input voltage =  
DS529-3_10_012907  
Figure 3: Differential Input Voltages  
Table 13: Recommended Operating Conditions for User I/Os Using Differential Signal Standards  
VCCO for Drivers(1)  
VID VICM  
Max (V) Min (mV) Nom (mV) Max (mV) Min (V)  
(2)  
IOSTANDARD Attribute  
Min (V)  
2.25  
3.0  
Nom (V)  
2.5  
Nom (V)  
Max (V)  
2.35  
(3)  
LVDS_25  
2.75  
3.6  
100  
100  
100  
200  
200  
100  
100  
100  
100  
150  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
350  
350  
300  
600  
600  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
2.7  
0.2  
0.2  
0.8  
0.8  
0.8  
0.68  
1.25  
1.25  
1.3  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
(3)  
LVDS_33  
3.3  
2.35  
(4)  
BLVDS_25  
2.25  
2.25  
3.0  
2.5  
2.75  
2.75  
3.6  
2.35  
(3)  
MINI_LVDS_25  
2.5  
600  
600  
1000  
1000  
1.95  
(3)  
MINI_LVDS_33  
3.3  
1.95  
(5)  
LVPECL_25  
Inputs Only  
Inputs Only  
2.5  
800  
800  
200  
200  
1.95  
(5)  
(6)  
LVPECL_33  
2.8  
(3)  
RSDS_25  
2.25  
3.0  
3.14  
2.25  
3.0  
1.7  
1.7  
1.7  
1.4  
1.4  
1.7  
1.7  
2.3  
2.3  
3.0  
3.0  
2.75  
3.6  
3.47  
2.75  
3.6  
1.9  
1.9  
1.9  
1.6  
1.6  
1.9  
1.9  
2.7  
2.7  
3.6  
3.6  
1.5  
1.5  
3.23  
2.3  
2.3  
1.1  
1.1  
1.1  
0.9  
(3)  
RSDS_33  
3.3  
(3, 4, 7)  
TMDS_33  
3.3  
1200  
400  
400  
(3)  
PPDS_25  
2.5  
(3)  
PPDS_33  
3.3  
DIFF_HSTL_I_18  
1.8  
(8)  
DIFF_HSTL_II_18  
1.8  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
1.8  
1.5  
DIFF_HSTL_III  
DIFF_SSTL18_I  
1.5  
0.9  
1.8  
0.7  
0.7  
1.0  
1.0  
1.1  
1.1  
1.1  
1.1  
1.5  
1.5  
1.9  
1.9  
(8)  
DIFF_SSTL18_II  
1.8  
DIFF_SSTL2_I  
2.5  
(8)  
DIFF_SSTL2_II  
2.5  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
3.3  
3.3  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
The V  
rails supply only differential output drivers, not input circuits.  
CCO  
V
must be less than V  
.
ICM  
CCAUX  
These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.  
See "External Termination Requirements for Differential I/O," page 15.  
LVPECL is supported on inputs only, not outputs. Requires V  
LVPECL_33 maximum V  
Requires V  
= 3.3V ± 10%.  
CCAUX  
= V  
– (V / 2)  
ICM  
CCAUX ID  
= 3.3V ± 10% for inputs. (V  
– 300 mV) V  
(V  
– 37 mV)  
CCAUX  
CCAUX  
CCAUX  
ICM  
These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.  
V
inputs are used for the DIFF_SSTL and DIFF_HSTL standards. The V settings are the same as for the single-ended versions in Table 11. Other differential  
REF  
REF  
standards do not use V  
.
REF  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
13  
Product Specification  
R
Differential Output Pairs  
VOUTP  
VOUTN  
Differential  
I/O Pair Pins  
P
N
Internal  
Logic  
VOH  
VOUTN  
VOD  
50%  
VOUTP  
VOL  
VOCM  
GND level  
V
OUTP + VOUTN  
V
OCM = Output common mode voltage =  
2
VOUTP - VOUTN  
= Output voltage indicating a High logic level  
= Output voltage indicating a Low logic level  
V
OD = Output differential voltage =  
VOH  
VOL  
DS529-3_11_012907  
Figure 4: Differential Output Voltages  
Table 14: DC Characteristics of User I/Os Using Differential Signal Standards  
VOD  
VOCM  
VOH  
VOL  
Typ  
(mV)  
IOSTANDARD Attribute Min (mV)  
Max (mV)  
Min (V)  
Typ (V)  
Max (V)  
Min (V)  
Max (V)  
LVDS_25  
247  
247  
240  
300  
300  
100  
100  
400  
100  
100  
350  
350  
350  
454  
454  
460  
600  
600  
400  
400  
800  
400  
400  
1.125  
1.375  
LVDS_33  
1.125  
1.375  
BLVDS_25  
1.30  
MINI_LVDS_25  
MINI_LVDS_33  
RSDS_25  
1.0  
1.4  
1.0  
1.4  
1.0  
1.4  
RSDS_33  
1.0  
1.4  
TMDS_33  
VCCO – 0.405  
VCCO – 0.190  
PPDS_25  
0.5  
0.5  
0.8  
0.8  
1.4  
1.4  
PPDS_33  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
VCCO – 0.4  
VCCO – 0.4  
VCCO – 0.4  
VCCO – 0.4  
VCCO – 0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
VTT + 0.475 VTT – 0.475  
VTT + 0.475 VTT – 0.475  
VTT + 0.61  
VTT + 0.81  
VTT + 0.6  
VTT + 0.8  
VTT – 0.61  
VTT – 0.81  
VTT – 0.6  
VTT – 0.8  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 8 and Table 13.  
2. See "External Termination Requirements for Differential I/O," page 15.  
3. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ω across the N and P pins  
of the differential signal pair.  
4. At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25,  
RSDS_25, MINI_LVDS_25, PPDS_25 when VCCO=2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when  
VCCO = 3.3V  
14  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
External Termination Requirements for Differential I/O  
LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards  
Bank 0 and 2  
Any Bank  
Bank 0  
Bank 0  
No VCCO Restrictions  
LVDS_33, LVDS_25,  
MINI_LVDS_33,  
MINI_LVDS_25,  
1
/ th of Bourns  
4
Part Number  
Bank 2  
Bank 2  
CAT16-PT4F4  
Z0 = 50Ω  
RSDS_33, RSDS_25,  
PPDS_33, PPDS_25  
VCCO = 3.3V VCCO = 2.5V  
LVDS_33,  
LVDS_25,  
100Ω  
MINI_LVDS_33,  
RSDS_33,  
PPDS_33  
MINI_LVDS_25,  
RSDS_25,  
PPDS_25  
Z0 = 50Ω  
DIFF_TERM=No  
a) Input-only differential pairs or pairs not using DIFF_TERM=Yes constraint  
VCCO = 3.3V VCCO = 2.5V  
Z0 = 50Ω  
Z0 = 50Ω  
LVDS_33,  
LVDS_25,  
MINI_LVDS_33,  
RSDS_33,  
PPDS_33  
MINI_LVDS_25,  
RSDS_25,  
PPDS_25  
VCCO = 3.3V VCCO = 2.5V  
LVDS_33,  
LVDS_25,  
RDT  
MINI_LVDS_33,  
RSDS_33,  
PPDS_33  
MINI_LVDS_25,  
RSDS_25,  
PPDS_25  
DIFF_TERM=Yes  
b) Differential pairs using DIFF_TERM=Yes constraint  
DS529-3_09_020107  
Figure 5: External Input Termination for LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards  
BLVDS_25 I/O Standard  
Any Bank  
Bank 0  
Any Bank  
Bank 0  
1
1
/ th of Bourns  
4
/ th of Bourns  
4
Part Number  
Part Number  
CAT16-LV4F12  
CAT16-PT4F4  
Bank 2  
Bank 2  
VCCO = 2.5V  
Z0 = 50Ω  
Z0 = 50Ω  
No VCCO Requirement  
165Ω  
140Ω  
165Ω  
100Ω BLVDS_25  
BLVDS_25  
DS529-3_07_020107  
Figure 6: External Termination Resistors for BLVDS_25 I/O Standard  
TMDS_33 I/O Standard  
Any Bank  
Bank 0  
Bank 0 and 2  
Bank 0  
3.3V  
Bank 2  
Bank 2  
50Ω  
50Ω  
VCCAUX = 3.3V  
VCCO = 3.3V  
TMDS_33  
TMDS_33  
DVI/HDMI cable  
DS529-3_08_020107  
Figure 7: External Input Resistors Required for TMDS_33 I/O Standard  
DS681 (v1.1) February 3, 2009  
Product Specification  
www.xilinx.com  
15  
R
Device DNA Data Retention, Read Endurance  
Table 15: Device DNA Identifier Memory Characteristics  
Symbol  
Description  
Minimum  
Units  
Number of READ operations or JTAG ISC_DNA read operations. Unaffected by  
HOLD or SHIFT operations.  
Read  
cycles  
DNA_CYCLES  
30,000,000  
Switching Characteristics  
All XA Spartan-3A FPGAs ship in the -4 speed grade.  
Switching characteristics in this document are designated  
as Production as shown in Table 16.  
To create a Xilinx MySupport user account and sign up for  
automatic E-mail notification whenever this data sheet is  
updated:  
Production: These specifications are approved once  
enough production silicon of a particular device family  
member has been characterized to provide full correlation  
between speed files and devices over numerous production  
lots. There is no under-reporting of delays, and customers  
receive formal notification of any subsequent changes.  
Sign Up for Alerts on Xilinx MySupport  
http://www.xilinx.com/support/answers/19380.htm  
Timing parameters and their representative values are  
selected for inclusion below either because they are  
important as general design requirements or they indicate  
fundamental device performance characteristics. The XA  
Spartan-3A FPGA speed files (v1.41), part of the Xilinx  
Development Software, are the original source for many but  
not all of the values. The speed grade designations for  
these files are shown in Table 16. For more complete, more  
precise, and worst-case data, use the values reported by  
the Xilinx static timing analyzer (TRACE in the Xilinx  
development software) and back-annotated to the  
simulation netlist.  
Software Version Requirements  
Production-quality systems must use FPGA designs  
compiled using a speed file designated as PRODUCTION  
status. FPGA designs using a less mature speed file  
designation should only be used during system prototyping  
or pre-production qualification. FPGA designs with speed  
files designated as Preview, Advance, or Preliminary should  
not be used in a production-quality system.  
Table 16: XA Spartan-3A FPGA v1.41 Speed Grade  
Designations  
Whenever a speed file designation changes, as a device  
matures toward Production status, rerun the latest Xilinx  
ISE software on the FPGA design to ensure that the FPGA  
design incorporates the latest timing information and  
software updates.  
Device  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
Production  
4  
4  
4  
4  
All parameter limits are representative of worst-case supply  
voltage and junction temperature conditions. Unless  
otherwise noted, the published parameter values apply  
to all XA Spartan-3A devices, and AC and DC  
characteristics are specified using the same numbers  
for both I-Grade and Q-Grade.  
Table 17 provides the recent history of the XA Spartan-3A  
FPGA speed files.  
Table 17: XA Spartan-3A FPGA Speed File Version  
History  
ISE  
Version  
1.39  
Release  
10.1.01i  
10.1.02i  
10.1.03i  
Description  
Initial release.  
1.40  
Updated input timing adjustments.  
Updated output timing adjustments.  
1.41  
16  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
I/O Timing  
Pin-to-Pin Clock-to-Output Times  
Table 18: Pin-to-Pin Clock-to-Output Times for the IOB Output Path  
Speed Grade  
-4  
Symbol  
Description  
Conditions  
Device  
Max  
Units  
Clock-to-Output Times  
TICKOFDCM  
When reading from the Output Flip-Flop  
LVCMOS25(2), 12mA  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
3.27  
3.33  
3.50  
3.99  
5.24  
5.12  
5.34  
5.69  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(OFF), the time from the active transition on output drive, Fast slew  
the Global Clock pin to data appearing at the rate, with DCM(3)  
Output pin. The DCM is in use.  
When reading from OFF, the time from the  
active transition on the Global Clock pin to  
data appearing at the Output pin. The DCM is rate, without DCM  
not in use.  
LVCMOS25(2), 12mA  
output drive, Fast slew  
TICKOF  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a  
standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate  
Input adjustment from Table 22. If the latter is true, add the appropriate Output adjustment from Table 25.  
3. DCM output jitter is included in all measurements.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
17  
Product Specification  
R
Pin-to-Pin Setup and Hold Times  
Table 19: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)  
Speed Grade  
-4  
Symbol  
Setup Times  
TPSDCM  
Description  
Conditions  
LVCMOS25(2)  
Device  
Min  
Units  
When writing to the Input Flip-Flop (IFF),  
,
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
2.84  
2.68  
2.57  
2.17  
2.76  
2.60  
2.63  
2.41  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
the time from the setup of data at the Input IFD_DELAY_VALUE = 0,  
pin to the active transition at a Global Clock with DCM(4)  
pin. The DCM is in use. No Input Delay is  
programmed.  
When writing to IFF, the time from the setup LVCMOS25(2)  
of data at the Input pin to an active transition IFD_DELAY_VALUE = 5,  
at the Global Clock pin. The DCM is not in without DCM  
use. The Input Delay is programmed.  
,
TPSFD  
Hold Times  
When writing to IFF, the time from the active LVCMOS25(3)  
,
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
-0.52  
-0.29  
-0.12  
0.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TPHDCM  
transition at the Global Clock pin to the  
point when data must be held at the Input  
pin. The DCM is in use. No Input Delay is  
programmed.  
IFD_DELAY_VALUE = 0,  
with DCM(4)  
When writing to IFF, the time from the active LVCMOS25(3)  
,
-0.56  
-0.42  
-0.75  
-0.69  
TPHFD  
transition at the Global Clock pin to the  
point when data must be held at the Input  
pin. The DCM is not in use. The Input Delay  
is programmed.  
IFD_DELAY_VALUE = 5,  
without DCM  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data  
Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 22. If this is true of the data Input, add the  
appropriate Input adjustment from the same table.  
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input.  
If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 22. If this is true of the data Input, subtract the  
appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s active  
edge.  
4. DCM output jitter is included in all measurements.  
18  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Input Setup and Hold Times  
Table 20: Setup and Hold Times for the IOB Input Path  
Speed Grade  
IFD_  
DELAY_  
VALUE  
-4  
Symbol  
Setup Times  
TIOPICK  
Description  
Conditions  
Device  
Min  
Units  
Time from the setup of data at the Input pin LVCMOS25(2)  
to the active transition at the ICLK input of  
the Input Flip-Flop (IFF). No Input Delay is  
programmed.  
0
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
XA3S200A  
1.81  
1.51  
1.51  
1.74  
2.20  
2.93  
3.78  
4.37  
4.20  
5.23  
6.11  
6.71  
2.02  
2.67  
3.43  
3.96  
3.95  
4.81  
5.66  
6.19  
1.95  
2.83  
3.72  
4.31  
4.14  
5.19  
6.10  
6.73  
2.17  
2.92  
3.76  
4.32  
4.19  
5.09  
5.98  
6.57  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TIOPICKD  
Time from the setup of data at the Input pin LVCMOS25(2)  
to the active transition at the ICLK input of  
the Input Flip-Flop (IFF). The Input Delay is  
programmed.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XA3S400A  
XA3S700A  
XA3S1400A  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
19  
Product Specification  
R
Table 20: Setup and Hold Times for the IOB Input Path (Continued)  
Speed Grade  
IFD_  
DELAY_  
VALUE  
-4  
Symbol  
Hold Times  
TIOICKP  
Description  
Conditions  
Device  
Min  
Units  
Time from the active transition at the ICLK LVCMOS25(2)  
input of the Input Flip-Flop (IFF) to the  
point where data must be held at the Input  
pin. No Input Delay is programmed.  
0
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
XA3S200A  
–0.65  
–0.42  
–0.67  
–0.71  
–1.51  
–2.09  
–2.40  
–2.68  
–2.56  
–2.99  
–3.29  
–3.61  
–1.12  
–1.70  
–2.08  
–2.38  
–2.23  
–2.69  
–3.08  
–3.35  
–1.67  
–2.27  
–2.59  
–2.92  
–2.89  
–3.22  
–3.52  
–3.81  
–1.60  
–2.06  
–2.46  
–2.86  
–2.88  
–3.24  
–3.55  
–3.89  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TIOICKPD  
Time from the active transition at the ICLK LVCMOS25(2)  
input of the Input Flip-Flop (IFF) to the  
point where data must be held at the Input  
pin. The Input Delay is programmed.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XA3S400A  
XA3S700A  
XA3S1400A  
20  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Table 20: Setup and Hold Times for the IOB Input Path (Continued)  
Speed Grade  
IFD_  
DELAY_  
VALUE  
-4  
Symbol  
Description  
Conditions  
Device  
Min  
Units  
Set/Reset Pulse Width  
TRPW_IOB  
Minimum pulse width to SR control input  
on IOB  
All  
1.61  
ns  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the  
appropriate Input adjustment from Table 22.  
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract  
the appropriate Input adjustment from Table 22. When the hold time is negative, it is possible to change the data before the clock’s active  
edge.  
Input Propagation Times  
Table 21: Propagation Times for the IOB Input Path  
Speed Grade  
IFD_  
-4  
DELAY_  
Symbol  
Description  
Conditions  
VALUE  
Device  
Max  
Units  
Propagation Times  
TIOPLI  
The time it takes for data to travel LVCMOS25(2)  
from the Input pin through the IFF  
latch to the I output with no input  
delay programmed  
0
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
2.04  
1.74  
1.74  
1.97  
ns  
ns  
ns  
ns  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
21  
Product Specification  
R
Table 21: Propagation Times for the IOB Input Path (Continued)  
Speed Grade  
-4  
IFD_  
DELAY_  
VALUE  
Symbol  
Description  
Conditions  
Device  
Max  
2.43  
3.16  
4.01  
4.60  
4.43  
5.46  
6.33  
6.94  
2.25  
2.90  
3.66  
4.19  
4.18  
5.03  
5.88  
6.42  
2.18  
3.06  
3.95  
4.54  
4.37  
5.42  
6.33  
6.96  
2.40  
3.15  
3.99  
4.55  
4.42  
5.32  
6.21  
6.80  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TIOPLID  
The time it takes for data to travel LVCMOS25(2)  
from the Input pin through the IFF  
latch to the I output with the input  
delay programmed  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is  
true, add the appropriate Input adjustment from Table 22.  
22  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Input Timing Adjustments  
Table 22: Input Timing Adjustments by  
Table 22: Input Timing Adjustments by IOSTANDARD  
Add the  
Add the  
Adjustment  
Below  
Adjustment  
Below  
Speed Grade  
-4  
Convert Input Time from  
LVCMOS25 to the Following  
Signal Standard  
Convert Input Time from  
LVCMOS25 to the Following  
Signal Standard  
Speed Grade  
-4  
(IOSTANDARD)  
Units  
(IOSTANDARD)  
Units  
Differential Standards  
LVDS_25  
Single-Ended Standards  
LVTTL  
0.79  
0.79  
0.79  
0.84  
0.84  
0.80  
0.80  
0.83  
0.83  
0.80  
0.81  
0.81  
0.80  
0.98  
1.05  
0.77  
1.05  
0.76  
0.76  
0.77  
0.77  
1.06  
1.06  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.62  
0.54  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVDS_33  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3  
BLVDS_25  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
0.83  
0.60  
0.31  
0.45  
0.72  
0.85  
0.69  
0.83  
0.79  
0.71  
0.71  
0.71  
0.71  
0.78  
0.78  
LVPECL_33  
RSDS_25  
HSTL_I  
RSDS_33  
HSTL_III  
TMDS_33  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
PPDS_25  
PPDS_33  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
SSTL18_II  
SSTL2_I  
SSTL2_II  
SSTL3_I  
SSTL3_II  
Notes:  
1. The numbers in this table are tested using the methodology  
presented in Table 26 and are based on the operating  
conditions set forth in Table 8, Table 11, and Table 13.  
2. These adjustments are used to convert input path times  
originally specified for the LVCMOS25 standard to times that  
correspond to other signal standards.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
23  
Product Specification  
R
Output Propagation Times  
Table 23: Timing for the IOB Output Path  
Speed Grade  
-4  
Symbol  
Description  
Conditions  
Device  
All  
Max  
Units  
Clock-to-Output Times  
TIOCKP  
When reading from the Output Flip-Flop  
LVCMOS25(2), 12 mA output  
3.13  
2.91  
ns  
(OFF), the time from the active transition at drive, Fast slew rate  
the OCLK input to data appearing at the  
Output pin  
Propagation Times  
TIOOP  
The time it takes for data to travel from the LVCMOS25(2), 12 mA output  
IOB’s O input to the Output pin drive, Fast slew rate  
All  
All  
ns  
Set/Reset Times  
TIOSRP  
Time from asserting the OFF’s SR input to LVCMOS25(2), 12 mA output  
setting/resetting data at the Output pin  
3.89  
9.65  
ns  
ns  
drive, Fast slew rate  
TIOGSRQ  
Time from asserting the Global Set Reset  
(GSR) input on the  
STARTUP_SPARTAN3A primitive to  
setting/resetting data at the Output pin  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data  
Output. When this is true, add the appropriate Output adjustment from Table 25.  
24  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Three-State Output Propagation Times  
Table 24: Timing for the IOB Three-State Path  
Speed Grade  
-4  
Symbol  
Description  
Conditions  
Device  
Max  
Units  
Synchronous Output Enable/Disable Times  
TIOCKHZ  
Time from the active transition at the OTCLK input LVCMOS25, 12 mA  
All  
0.76  
3.06  
ns  
of the Three-state Flip-Flop (TFF) to when the  
Output pin enters the high-impedance state  
output drive, Fast slew  
rate  
(2)  
TIOCKON  
Time from the active transition at TFF’s OTCLK  
input to when the Output pin drives valid data  
All  
All  
ns  
ns  
Asynchronous Output Enable/Disable Times  
TGTS  
Time from asserting the Global Three State (GTS) LVCMOS25, 12 mA  
input on the STARTUP_SPARTAN3A primitive to output drive, Fast slew  
10.36  
when the Output pin enters the high-impedance  
state  
rate  
Set/Reset Times  
TIOSRHZ  
Time from asserting TFF’s SR input to when the LVCMOS25, 12 mA  
All  
All  
1.86  
3.82  
ns  
ns  
Output pin enters a high-impedance state  
output drive, Fast slew  
rate  
(2)  
TIOSRON  
Time from asserting TFF’s SR input at TFF to  
when the Output pin drives valid data  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the  
data Output. When this is true, add the appropriate Output adjustment from Table 25.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
25  
Product Specification  
R
Output Timing Adjustments  
Table 25: Output Timing Adjustments for IOB (Continued)  
Table 25: Output Timing Adjustments for IOB  
Add the  
Add the  
Adjustment  
Adjustment  
Below  
Speed Grade  
-4  
Below  
Speed Grade  
-4  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Units  
LVCMOS33  
Slow  
2 mA  
4 mA  
5.58  
Single-Ended Standards  
3.30  
LVTTL  
Slow  
2 mA  
4 mA  
5.58  
3.45  
3.45  
2.26  
1.66  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
3.30  
8 mA  
2.26  
6 mA  
12 mA  
16 mA  
24 mA  
2 mA  
1.29  
8 mA  
1.22  
12 mA  
16 mA  
24 mA  
2 mA  
2.79  
1.29  
Fast  
3.72  
2.97  
4 mA  
2.05  
Fast  
3.37  
6 mA  
2.08  
4 mA  
2.27  
2.27  
0.63  
0.61  
8 mA  
0.53  
6 mA  
12 mA  
16 mA  
24 mA  
2 mA  
0.59  
8 mA  
0.59  
12 mA  
16 mA  
24 mA  
2 mA  
0.51  
0.59  
QuietIO  
27.67  
27.67  
27.67  
16.71  
16.29  
16.18  
12.11  
0.60  
4 mA  
QuietIO  
27.67  
27.67  
27.67  
16.71  
16.67  
16.22  
12.11  
6 mA  
4 mA  
8 mA  
6 mA  
12 mA  
16 mA  
24 mA  
8 mA  
12 mA  
16 mA  
24 mA  
26  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Table 25: Output Timing Adjustments for IOB (Continued)  
Table 25: Output Timing Adjustments for IOB (Continued)  
Add the  
Adjustment  
Add the  
Adjustment  
Below  
Speed Grade  
-4  
Below  
Speed Grade  
-4  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVCMOS25  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
5.33  
LVCMOS15  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
6.42  
2.91  
3.97  
2.92  
3.21  
1.23  
2.53  
1.23  
2.06  
0.91  
Fast  
5.83  
2.31  
3.05  
Fast  
4.71  
1.95  
2.20  
1.60  
1.49  
1.30  
0.39  
QuietIO  
34.11  
25.66  
24.64  
22.06  
20.64  
7.14  
0
0.01  
0.01  
QuietIO  
25.92  
25.92  
25.92  
15.57  
15.59  
14.27  
11.37  
5.00  
LVCMOS12  
Slow  
Fast  
4.87  
5.67  
6.77  
5.02  
4.09  
LVCMOS18  
Slow  
Fast  
QuietIO  
50.76  
43.17  
37.31  
0.34  
3.69  
2.91  
2.03  
PCI33_3  
1.57  
HSTL_I  
0.86  
1.19  
HSTL_III  
1.16  
4.12  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
0.35  
2.63  
0.30  
1.91  
0.47  
1.06  
0.40  
0.83  
0.30  
0.63  
0
QuietIO  
24.97  
24.97  
24.08  
16.43  
14.52  
13.41  
SSTL2_II  
SSTL3_I  
0.05  
0
SSTL3_II  
0.17  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
27  
Product Specification  
R
Table 25: Output Timing Adjustments for IOB (Continued)  
Table 25: Output Timing Adjustments for IOB (Continued)  
Add the  
Adjustment  
Add the  
Adjustment  
Below  
Speed Grade  
-4  
Below  
Speed Grade  
-4  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Units  
Units  
ns  
Differential Standards  
LVDS_25  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
0.36  
1.50  
0.47  
0.11  
1.11  
0.41  
ns  
ns  
ns  
ns  
ns  
1.01  
ns  
LVDS_33  
DIFF_HSTL_III  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
1.16  
ns  
BLVDS_25  
0.49  
ns  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
LVPECL_33  
RSDS_25  
0.41  
ns  
0.91  
ns  
0.11  
ns  
Input Only  
1.18  
ns  
1.73  
0.64  
0.07  
1.28  
0.88  
0.43  
0.41  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.28  
ns  
RSDS_33  
Notes:  
TMDS_33  
1. The numbers in this table are tested using the methodology  
presented in Table 26 and are based on the operating  
conditions set forth in Table 8, Table 11, and Table 13.  
2. These adjustments are used to convert output- and  
three-state-path times originally specified for the LVCMOS25  
standard with 12 mA drive and Fast slew rate to times that  
correspond to other signal standards. Do not adjust times that  
measure when outputs go into a high-impedance state.  
PPDS_25  
PPDS_33  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
Timing Measurement Methodology  
When measuring timing parameters at the programmable  
I/Os, different signal standards call for different test  
conditions. Table 26 lists the conditions to use for each  
standard.  
LVCMOS, LVTTL), then R is set to 1 MΩ to indicate an  
T
open connection, and V is set to zero. The same  
T
measurement point (V ) that was used at the Input is also  
M
used at the Output.  
The method for measuring Input timing is as follows: A  
signal that swings between a Low logic level of V and a  
V (V  
)
L
T
REF  
High logic level of V is applied to the Input under test.  
H
Some standards also require the application of a bias  
FPGA Output  
R (R  
T
)
REF  
voltage to the V  
pins of a given bank to properly set the  
REF  
input-switching threshold. The measurement point of the  
Input signal (V ) is commonly located halfway between V  
V
(V  
)
M
MEAS  
)
M
L
and V .  
H
C (C  
L
REF  
The Output test setup is shown in Figure 8. A termination  
DS312-3_04_102406  
voltage V is applied to the termination resistor R , the other  
T
T
Notes:  
end of which is connected to the Output. For each standard,  
R and V generally take on the standard values  
1. The names shown in parentheses are  
used in the IBIS file.  
T
T
recommended for minimizing signal reflections. If the  
standard does not ordinarily use terminations (for example,  
Figure 8: Output Test Setup  
28  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Table 26: Test Methods for Timing Measurement at I/Os  
Inputs and  
Outputs  
Inputs  
Outputs  
Signal Standard  
(IOSTANDARD)  
VREF (V)  
VL (V)  
VH (V)  
RT (Ω)  
VT (V)  
VM (V)  
Single-Ended  
LVTTL  
-
-
-
-
-
-
-
0
3.3  
3.3  
1M  
1M  
1M  
1M  
1M  
1M  
25  
25  
50  
50  
50  
25  
50  
50  
25  
50  
25  
50  
25  
0
0
1.4  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3  
0
1.65  
1.25  
0.9  
0
2.5  
0
0
1.8  
0
0
0
1.5  
0
0.75  
0.6  
1.2  
0
Rising  
Falling  
Note 3  
Note 3  
0
0.94  
2.03  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
3.3  
0.75  
1.5  
0.9  
0.9  
1.8  
0.9  
0.9  
1.25  
1.25  
1.5  
1.5  
HSTL_I  
0.75  
0.9  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.75  
VREF – 0.75  
VREF – 0.75  
VREF – 0.75  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.75  
VREF + 0.75  
VREF + 0.75  
VREF + 0.75  
HSTL_III  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
0.9  
0.9  
1.1  
0.9  
0.9  
1.25  
1.25  
1.5  
SSTL2_II  
SSTL3_I  
SSTL3_II  
Differential  
LVDS_25  
LVDS_33  
BLVDS_25  
1.5  
-
VICM – 0.125  
VICM – 0.125  
VICM – 0.125  
VICM – 0.125  
VICM – 0.125  
VICM – 0.3  
VICM – 0.3  
VICM – 0.1  
VICM – 0.1  
VICM – 0.1  
VICM – 0.1  
VICM – 0.1  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VICM + 0.125  
VICM + 0.125  
VICM + 0.125  
VICM + 0.125  
VICM + 0.125  
VICM + 0.3  
VICM + 0.3  
VICM + 0.1  
VICM + 0.1  
VICM + 0.1  
VICM + 0.1  
VICM + 0.1  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
50  
50  
1M  
50  
50  
N/A  
N/A  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
1.2  
1.2  
0
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VREF  
VREF  
VREF  
VREF  
VREF  
-
-
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
-
1.2  
1.2  
N/A  
N/A  
1.2  
1.2  
3.3  
0.8  
0.8  
0.75  
1.5  
0.9  
0.9  
1.8  
-
-
LVPECL_33  
-
-
RSDS_25  
RSDS_33  
-
TMDS_33  
-
PPDS_25  
-
PPDS_33  
-
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
0.75  
0.9  
0.9  
0.9  
1.1  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
29  
Product Specification  
R
Table 26: Test Methods for Timing Measurement at I/Os (Continued)  
Inputs and  
Outputs  
Inputs  
Outputs  
Signal Standard  
(IOSTANDARD)  
VREF (V)  
0.9  
VL (V)  
VH (V)  
RT (Ω)  
50  
VT (V)  
0.9  
VM (V)  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
DIFF_SSTL18_I  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
0.9  
50  
0.9  
1.25  
1.25  
1.5  
50  
1.25  
1.25  
1.5  
50  
50  
1.5  
50  
1.5  
Notes:  
1. Descriptions of the relevant symbols are as follows:  
V
V
V
– The reference voltage for setting the input switching threshold  
– The common mode input voltage  
– Voltage of measurement point on signal transition  
REF  
ICM  
M
V – Low-level test voltage at Input pin  
L
V
– High-level test voltage at Input pin  
H
R – Effective termination resistance, which takes on a value of 1 MΩ when no parallel termination is required  
T
V – Termination voltage  
T
2. The load capacitance (C ) at the Output pin is 0 pF for all signal standards.  
L
3. According to the PCI specification.  
The capacitive load (C ) is connected between the output  
and GND. The Output timing for all standards, as published  
Delays for a given application are simulated according to its  
specific load conditions as follows:  
L
in the speed files and the data sheet, is always based on a  
1. Simulate the desired signal standard with the output  
driver connected to the test setup shown in Figure 8.  
C value of zero. High-impedance probes (less than 1 pF)  
L
are used for all measurements. Any delay that the test  
fixture might contribute to test measurements is subtracted  
from those measurements to produce the final timing  
numbers as published in the speed files and data sheet.  
Use parameter values V , R , and V from Table 26.  
T
T
M
C
is zero.  
REF  
2. Record the time to V .  
M
3. Simulate the same signal standard with the output  
driver connected to the PCB trace with load. Use the  
Using IBIS Models to Simulate Load  
Conditions in Application  
appropriate IBIS model (including V , R , C  
,
REF REF REF  
and V  
load.  
values) or capacitive value to represent the  
MEAS  
IBIS models permit the most accurate prediction of timing  
delays for a given application. The parameters found in the  
4. Record the time to V  
.
MEAS  
IBIS model (V , R , and V  
) correspond directly  
REF REF  
MEAS  
5. Compare the results of steps 2 and 4. Add (or subtract)  
the increase (or decrease) in delay to (or from) the  
appropriate Output standard adjustment (Table 25) to  
yield the worst-case delay of the PCB trace.  
with the parameters used in Table 26 (V , R , and V ). Do  
T
T
M
not confuse V  
(the termination voltage) from the IBIS  
REF  
model with V  
(the input-switching threshold) from the  
REF  
table. A fourth parameter, C , is always zero. The four  
REF  
parameters describe all relevant output test conditions. IBIS  
models are found in the Xilinx development software as well  
as at the following link:  
http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp  
30  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Simultaneously Switching Output Guidelines  
This section provides guidelines for the recommended  
maximum allowable number of Simultaneous Switching  
Outputs (SSOs). These guidelines describe the maximum  
number of user I/O pins of a given output signal standard  
that should simultaneously switch in the same direction,  
while maintaining a safe level of switching noise. Meeting  
these guidelines for the stated test conditions ensures that  
the FPGA operates free from the adverse effects of ground  
and power bounce.  
Table 27 and Table 28 provide the essential SSO  
guidelines. For each device/package combination, Table 27  
provides the number of equivalent V  
/GND pairs. For  
CCO  
each output signal standard and drive strength, Table 28  
recommends the maximum number of SSOs, switching in  
the same direction, allowed per V  
/GND pair within an  
CCO  
I/O bank. The guidelines in Table 28 are categorized by  
package style, slew rate, and output drive current.  
Furthermore, the number of SSOs is specified by I/O bank.  
Generally, the left and right I/O banks (Banks 1 and 3)  
support higher output drive current.  
Ground or power bounce occurs when a large number of  
outputs simultaneously switch in the same direction. The  
output drive transistors all conduct current to a common  
Multiply the appropriate numbers from Table 27 and  
Table 28 to calculate the maximum number of SSOs  
allowed within an I/O bank. Exceeding these SSO  
guidelines might result in increased power or ground  
bounce, degraded signal integrity, or increased system jitter.  
voltage rail. Low-to-High transitions conduct to the V  
CCO  
rail; High-to-Low transitions conduct to the GND rail. The  
resulting cumulative current transient induces a voltage  
difference across the inductance that exists between the die  
pad and the power supply or ground return. The inductance  
is associated with bonding wires, the package lead frame,  
and any other signal routing inside the package. Other  
variables contribute to SSO noise levels, including stray  
inductance on the PCB as well as capacitive loading at  
receivers. Any SSO-induced voltage consequently affects  
internal switching noise margins and ultimately signal  
quality.  
SSO  
/IO Bank = Table 27 x Table 28  
MAX  
The recommended maximum SSO values assumes that the  
FPGA is soldered on the printed circuit board and that the  
board uses sound design practices. The SSO values do not  
apply for FPGAs mounted in sockets, due to the lead  
inductance introduced by the socket.  
Ball grid array packages are recommended for applications  
with a large number of simultaneously switching outputs.  
Table 27: Equivalent V  
/GND Pairs per Bank  
CCO  
Package Style (Pb-free)  
Device  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
FTG256  
FGG400  
FGG484  
4
4
5
5
5
6
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
31  
Product Specification  
R
Table 28: Recommended Number of Simultaneously  
Switching Outputs per V -GND Pair  
Table 28: Recommended Number of Simultaneously  
Switching Outputs per V -GND Pair  
CCO  
CCO  
(V  
=3.3V)(Continued)  
(V  
=3.3V)  
CCAUX  
CCAUX  
Package Type  
FTG256, FGG400, FGG484  
Package Type  
FTG256, FGG400, FGG484  
Signal Standard  
(IOSTANDARD)  
Top, Bottom  
(Banks 0,2)  
Left, Right  
(Banks 1,3)  
Signal Standard  
(IOSTANDARD)  
Top, Bottom  
(Banks 0,2)  
Left, Right  
(Banks 1,3)  
LVCMOS33  
Slow  
2
4
76  
46  
27  
20  
13  
10  
76  
46  
27  
20  
13  
10  
9
Single-Ended Standards  
LVTTL Slow  
2
60  
41  
29  
22  
13  
11  
9
60  
41  
29  
22  
13  
11  
9
6
4
6
8
12  
16  
24  
2
8
12  
16  
24  
2
Fast  
10  
8
10  
8
4
Fast  
10  
6
10  
6
6
5
5
4
8
4
4
6
5
5
12  
16  
24  
2
4
4
8
3
3
2
2
12  
16  
24  
2
3
3
2
3
3
QuietIO  
76  
46  
32  
26  
18  
14  
76  
46  
32  
26  
18  
14  
10  
2
2
4
QuietIO  
80  
48  
36  
27  
16  
13  
12  
80  
48  
36  
27  
16  
13  
12  
6
4
8
6
12  
16  
24  
8
12  
16  
24  
32  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Table 28: Recommended Number of Simultaneously  
Table 28: Recommended Number of Simultaneously  
Switching Outputs per V -GND Pair  
Switching Outputs per V  
-GND Pair  
CCO  
CCO  
(V  
=3.3V)(Continued)  
(V  
=3.3V)(Continued)  
CCAUX  
CCAUX  
Package Type  
FTG256, FGG400, FGG484  
Package Type  
FTG256, FGG400, FGG484  
Signal Standard  
(IOSTANDARD)  
Top, Bottom  
(Banks 0,2)  
Left, Right  
(Banks 1,3)  
Signal Standard  
(IOSTANDARD)  
Top, Bottom  
(Banks 0,2)  
Left, Right  
(Banks 1,3)  
LVCMOS25  
Slow  
2
4
76  
46  
33  
24  
18  
76  
46  
33  
24  
18  
11  
7
LVCMOS15  
Slow  
2
4
55  
31  
18  
55  
31  
18  
15  
10  
25  
10  
6
6
6
8
8
12  
16  
24  
2
12  
2
Fast  
25  
10  
6
4
Fast  
18  
14  
6
18  
14  
6
6
4
8
4
6
12  
2
3
8
6
6
QuietIO  
70  
40  
31  
70  
40  
31  
31  
20  
40  
25  
18  
31  
13  
9
12  
16  
24  
2
3
3
4
3
6
2
8
QuietIO  
76  
60  
48  
36  
36  
76  
60  
48  
36  
36  
36  
8
12  
2
4
LVCMOS12  
Slow  
Fast  
40  
6
4
8
6
12  
16  
24  
2
2
31  
4
6
LVCMOS18  
Slow  
Fast  
64  
34  
22  
18  
64  
34  
22  
18  
13  
10  
18  
9
QuietIO  
2
55  
55  
36  
36  
16  
20  
8
4
4
6
6
8
PCI33_3  
16  
12  
16  
2
HSTL_I  
HSTL_III  
18  
9
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
17  
17  
5
4
6
7
7
10  
7
8
8
4
4
15  
9
12  
16  
2
4
3
18  
18  
9
QuietIO  
64  
64  
48  
36  
64  
64  
48  
36  
36  
24  
SSTL2_II  
SSTL3_I  
4
8
10  
7
6
SSTL3_II  
6
8
12  
16  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
33  
Product Specification  
R
Table 28: Recommended Number of Simultaneously  
Switching Outputs per V -GND Pair  
Table 28: Recommended Number of Simultaneously  
Switching Outputs per V -GND Pair  
CCO  
CCO  
(V  
=3.3V)(Continued)  
(V  
=3.3V)(Continued)  
CCAUX  
CCAUX  
Package Type  
FTG256, FGG400, FGG484  
Package Type  
FTG256, FGG400, FGG484  
Signal Standard  
(IOSTANDARD)  
Top, Bottom  
(Banks 0,2)  
Left, Right  
(Banks 1,3)  
Signal Standard  
(IOSTANDARD)  
Top, Bottom  
(Banks 0,2)  
Left, Right  
(Banks 1,3)  
Differential Standards (Number of I/O Pairs or Channels)  
DIFF_HSTL_I  
8
5
3
9
4
3
10  
4
8
2
4
7
4
9
4
5
3
LVDS_25  
22  
27  
4
4
DIFF_HSTL_III  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
LVDS_33  
BLVDS_25  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
LVPECL_33  
RSDS_25  
22  
27  
22  
27  
27  
22  
27  
RSDS_33  
TMDS_33  
PPDS_25  
Notes:  
PPDS_33  
1. Not all I/O standards are supported on all I/O banks. The left and  
right banks (I/O banks 1 and 3) support higher output drive  
current than the top and bottom banks (I/O banks 0 and 2).  
Similarly, true differential output standards, such as LVDS, RSDS,  
PPDS, miniLVDS, and TMDS, are only supported in top or bottom  
banks (I/O banks 0 and 2). Refer to UG331: Spartan-3  
Generation FPGA User Guide for additional information.  
2. The numbers in this table are recommendations that assume  
sound board lay out practice. Test limits are the V /V voltage  
IL IH  
limits for the respective I/O standard.  
3. If more than one signal standard is assigned to the I/Os of a given  
bank, refer to XAPP689: Managing Ground Bounce in Large  
FPGAs for information on how to perform weighted average SSO  
calculations.  
34  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Configurable Logic Block (CLB) Timing  
Table 29: CLB (SLICEM) Timing  
Speed Grade  
-4  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
TCKO  
When reading from the FFX (FFY) Flip-Flop, the time from the active  
transition at the CLK input to data appearing at the XQ (YQ) output  
0.68  
ns  
Setup Times  
TAS  
Time from the setup of data at the F or G input to the active transition at  
the CLK input of the CLB  
0.36  
1.88  
ns  
ns  
TDICK  
Time from the setup of data at the BX or BY input to the active transition  
at the CLK input of the CLB  
Hold Times  
TAH  
Time from the active transition at the CLK input to the point where data  
is last held at the F or G input  
0
0
ns  
ns  
TCKDI  
Time from the active transition at the CLK input to the point where data  
is last held at the BX or BY input  
Clock Timing  
TCH  
The High pulse width of the CLB’s CLK signal  
The Low pulse width of the CLK signal  
Toggle frequency (for export control)  
0.75  
0.75  
0
ns  
ns  
TCL  
FTOG  
667  
MHz  
Propagation Times  
TILO  
The time it takes for data to travel from the CLB’s F (G) input to the X (Y)  
output  
0.71  
ns  
ns  
Set/Reset Pulse Width  
TRPW_CLB  
The minimum allowable pulse width, High or Low, to the CLB’s SR input  
1.61  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
35  
Product Specification  
R
Table 30: CLB Distributed RAM Switching Characteristics  
Speed Grade  
-4  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
TSHCKO  
Time from the active edge at the CLK input to data appearing on the  
distributed RAM output  
2.01  
ns  
Setup Times  
TDS  
Setup time of data at the BX or BY input before the active transition at the CLK  
input of the distributed RAM  
0.02  
0.36  
0.59  
ns  
ns  
ns  
TAS  
Setup time of the F/G address inputs before the active transition at the CLK  
input of the distributed RAM  
TWS  
Setup time of the write enable input before the active transition at the CLK  
input of the distributed RAM  
Hold Times  
TDH  
Hold time of the BX and BY data inputs after the active transition at the CLK  
input of the distributed RAM  
0.13  
0.01  
ns  
ns  
TAH, TWH  
Hold time of the F/G address inputs or the write enable input after the active  
transition at the CLK input of the distributed RAM  
Clock Pulse Width  
TWPH, TWPL  
Minimum High or Low pulse width at CLK input  
1.01  
ns  
Table 31: CLB Shift Register Switching Characteristics  
Speed Grade  
-4  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
TREG  
Time from the active edge at the CLK input to data appearing on the shift  
register output  
4.82  
ns  
Setup Times  
TSRLDS  
Setup time of data at the BX or BY input before the active transition at the CLK  
input of the shift register  
0.18  
ns  
Hold Times  
TSRLDH  
Hold time of the BX or BY data input after the active transition at the CLK input  
of the shift register  
0.16  
1.01  
ns  
ns  
Clock Pulse Width  
TWPH, TWPL  
Minimum High or Low pulse width at CLK input  
36  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Clock Buffer/Multiplexer Switching Characteristics  
Table 32: Clock Distribution Switching Characteristics  
Maximum  
Speed Grade  
-4  
Description  
Symbol  
Minimum  
Units  
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay  
TGIO  
0.23  
ns  
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1  
inputs. Same as BUFGCE enable CE-input  
TGSI  
0
0.63  
333  
ns  
Frequency of signals distributed on global buffers (all sides)  
FBUFG  
MHz  
Notes:  
The numbers in this table are based on the operating conditions set forth in Table 8.  
18 x 18 Embedded Multiplier Timing  
Table 33: 18 x 18 Embedded Multiplier Timing  
Speed Grade  
-4  
Symbol  
Description  
Min  
Max  
Units  
Combinatorial Delay  
TMULT  
Combinational multiplier propagation delay from the A and B inputs to the P outputs,  
assuming 18-bit inputs and a 36-bit product (AREG, BREG, and PREG registers  
unused)  
4.88  
ns  
Clock-to-Output Times  
TMSCKP_P  
Clock-to-output delay from the active transition of the CLK input to valid data appearing  
1.30  
4.97  
ns  
ns  
on the P outputs when using the PREG register(2,3)  
TMSCKP_A  
TMSCKP_B  
Clock-to-output delay from the active transition of the CLK input to valid data appearing  
on the P outputs when using either the AREG or BREG register(2,4)  
Setup Times  
TMSDCK_P  
Data setup time at the A or B input before the active transition at the CLK when using  
only the PREG output register (AREG, BREG registers unused)(3)  
3.98  
0.00  
0.00  
ns  
ns  
ns  
TMSDCK_A  
TMSDCK_B  
Data setup time at the A input before the active transition at the CLK when using the  
AREG input register(4)  
Data setup time at the B input before the active transition at the CLK when using the  
BREG input register(4)  
Hold Times  
TMSCKD_P  
Data hold time at the A or B input after the active transition at the CLK when using only  
the PREG output register (AREG, BREG registers unused)(3)  
0.00  
0.45  
0.45  
ns  
ns  
ns  
TMSCKD_A  
TMSCKD_B  
Data hold time at the A input after the active transition at the CLK when using the AREG  
input register(4)  
Data hold time at the B input after the active transition at the CLK when using the BREG  
input register(4)  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
37  
Product Specification  
R
Table 33: 18 x 18 Embedded Multiplier Timing (Continued)  
Speed Grade  
-4  
Symbol  
Description  
Min  
Max  
Units  
Clock Frequency  
FMULT  
Internal operating frequency for a two-stage 18x18 multiplier using the AREG and BREG  
input registers and the PREG output register(1)  
0
250  
MHz  
Notes:  
1. Combinational delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.  
2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.  
3. The PREG register is typically used when inferring a single-stage multiplier.  
4. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.  
5. The numbers in this table are based on the operating conditions set forth in Table 8.  
Block RAM Timing  
Table 34: Block RAM Timing  
Speed Grade  
-4  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
TRCKO  
When reading from block RAM, the delay from the active transition at the CLK input  
to data appearing at the DOUT output  
2.49  
ns  
Setup Times  
TRCCK_ADDR Setup time for the ADDR inputs before the active transition at the CLK input of the  
block RAM  
0.36  
0.31  
0.77  
1.26  
ns  
ns  
ns  
ns  
TRDCK_DIB  
Setup time for data at the DIN inputs before the active transition at the CLK input of  
the block RAM  
TRCCK_ENB Setup time for the EN input before the active transition at the CLK input of the block  
RAM  
TRCCK_WEB Setup time for the WE input before the active transition at the CLK input of the block  
RAM  
Hold Times  
TRCKC_ADDR Hold time on the ADDR inputs after the active transition at the CLK input  
0
0
0
0
ns  
ns  
ns  
ns  
TRCKD_DIB  
Hold time on the DIN inputs after the active transition at the CLK input  
TRCKC_ENB Hold time on the EN input after the active transition at the CLK input  
TRCKC_WEB Hold time on the WE input after the active transition at the CLK input  
Clock Timing  
TBPWH  
TBPWL  
Clock Frequency  
High pulse width of the CLK signal  
1.79  
1.79  
ns  
ns  
Low pulse width of the CLK signal  
FBRAM  
Block RAM clock frequency  
0
280  
MHz  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
38  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Digital Clock Manager Timing  
For specification purposes, the DCM consists of three key  
components: the Delay-Locked Loop (DLL), the Digital  
Frequency Synthesizer (DFS), and the Phase Shifter (PS).  
change with the addition of DFS or PS functions are  
presented in Table 35 and Table 36.  
Period jitter and cycle-cycle jitter are two of many different  
ways of specifying clock jitter. Both specifications describe  
statistical variation from a mean value.  
Aspects of DLL operation play a role in all DCM  
applications. All such applications inevitably use the CLKIN  
and the CLKFB inputs connected to either the CLK0 or the  
CLK2X feedback, respectively. Thus, specifications in the  
DLL tables (Table 35 and Table 36) apply to any application  
that only employs the DLL component. When the DFS  
and/or the PS components are used together with the DLL,  
then the specifications listed in the DFS and PS tables  
(Table 37 through Table 40) supersede any corresponding  
ones in the DLL tables. DLL specifications that do not  
Period jitter is the worst-case deviation from the ideal clock  
period over a collection of millions of samples. In a  
histogram of period jitter, the mean value is the clock period.  
Cycle-cycle jitter is the worst-case difference in clock period  
between adjacent clock cycles in the collection of clock  
periods sampled. In a histogram of cycle-cycle jitter, the  
mean value is zero.  
Delay-Locked Loop  
Table 35: Recommended Operating Conditions for the DLL  
Speed Grade  
-4  
Symbol  
Description  
Min  
Max  
Units  
Input Frequency Ranges  
FCLKIN  
CLKIN_FREQ_DLL  
Frequency of the CLKIN clock input  
5(2)  
250(3)  
MHz  
Input Pulse Requirements  
CLKIN_PULSE  
CLKIN pulse width as a percentage  
of the CLKIN period  
FCLKIN < 150 MHz  
CLKIN > 150 MHz  
40%  
45%  
60%  
55%  
F
Input Clock Jitter Tolerance and Delay Path Variation(4)  
CLKIN_CYC_JITT_DLL_LF  
CLKIN_CYC_JITT_DLL_HF  
CLKIN_PER_JITT_DLL  
Cycle-to-cycle jitter at the CLKIN  
FCLKIN < 150 MHz  
CLKIN > 150 MHz  
± 300  
± 150  
± 1  
ps  
ps  
ns  
ns  
input  
F
Period jitter at the CLKIN input  
CLKFB_DELAY_VAR_EXT  
Allowable variation of off-chip feedback delay from the DCM  
output to the CLKFB input  
± 1  
Notes:  
1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.  
2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 37.  
3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the  
incoming clock period by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.  
4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.  
5. The DCM specifications are guaranteed when both adjacent DCMs are locked.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
39  
Product Specification  
R
Table 36: Switching Characteristics for the DLL  
Speed Grade  
-4  
Symbol  
Description  
Device  
Min  
Max  
Units  
Output Frequency Ranges  
CLKOUT_FREQ_CLK0  
CLKOUT_FREQ_CLK90  
CLKOUT_FREQ_2X  
Frequency for the CLK0 and CLK180 outputs  
Frequency for the CLK90 and CLK270 outputs  
Frequency for the CLK2X and CLK2X180 outputs  
Frequency for the CLKDV output  
All  
5
5
250  
200  
334  
166  
MHz  
MHz  
MHz  
MHz  
10  
CLKOUT_FREQ_DV  
0.3125  
Output Clock Jitter(2,3,4)  
CLKOUT_PER_JITT_0  
CLKOUT_PER_JITT_90  
CLKOUT_PER_JITT_180  
CLKOUT_PER_JITT_270  
CLKOUT_PER_JITT_2X  
Period jitter at the CLK0 output  
All  
± 100  
± 150  
± 150  
± 150  
ps  
ps  
ps  
ps  
ps  
Period jitter at the CLK90 output  
Period jitter at the CLK180 output  
Period jitter at the CLK270 output  
Period jitter at the CLK2X and CLK2X180 outputs  
± ±0.5%  
ofCLKIN  
period  
+ 100]  
CLKOUT_PER_JITT_DV1  
CLKOUT_PER_JITT_DV2  
Period jitter at the CLKDV output when performing integer division  
Period jitter at the CLKDV output when performing non-integer division  
± 150  
ps  
ps  
± ±0.5%  
ofCLKIN  
period  
+ 100]  
Duty Cycle(4)  
CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0, CLK90, CLK180, CLK270, CLK2X,  
CLK2X180, and CLKDV outputs, including the BUFGMUX and clock tree  
duty-cycle distortion  
All  
All  
± ±1% of  
CLKIN  
period  
+ 350]  
ps  
Phase Alignment(4)  
CLKIN_CLKFB_PHASE  
CLKOUT_PHASE_DLL  
Phase offset between the CLKIN and CLKFB inputs  
± 150  
ps  
ps  
Phase offset between DLL outputs  
± ±1% of  
CLKIN  
period  
+ 100]  
CLK0 to CLK2X  
(not CLK2X180)  
± ±1% of  
CLKIN  
period  
+ 150]  
ps  
All others  
Lock Time  
LOCK_DLL(3)  
When using the DLL alone: The time  
from deassertion at the DCM’s Reset  
input to the rising transition at its  
LOCKED output. When the DCM is  
locked, the CLKIN and CLKFB signals  
are in phase  
5 MHz < FCLKIN < 15 MHz  
FCLKIN > 15 MHz  
All  
All  
5
ms  
600  
μs  
Delay Lines  
DCM_DELAY_STEP(5)  
Finest delay resolution, averaged over all steps  
15  
35  
ps  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 35.  
2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.  
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.  
4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum  
jitter of “± ±1% of CLKIN period + 150]”. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns  
is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ± ±100 ps + 150 ps] = ± 250ps.  
5. The typical delay step size is 23 ps.  
40  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Digital Frequency Synthesizer  
Table 37: Recommended Operating Conditions for the DFS  
Speed Grade  
-4  
Symbol  
Description  
Frequency for the CLKIN input  
Min  
Max  
Units  
(2)  
Input Frequency Ranges  
F
CLKIN_FREQ_FX  
0.200  
333  
MHz  
CLKIN  
(3)  
Input Clock Jitter Tolerance  
CLKIN_CYC_JITT_FX_LF  
CLKIN_CYC_JITT_FX_HF  
Cycle-to-cycle jitter at the CLKIN  
input, based on CLKFX output  
frequency  
F
F
< 150 MHz  
> 150 MHz  
± 300  
± 150  
ps  
ps  
CLKFX  
CLKFX  
CLKIN_PER_JITT_FX  
Period jitter at the CLKIN input  
± 1  
ns  
Notes:  
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.  
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications  
in Table 35.  
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.  
Table 38: Switching Characteristics for the DFS  
Speed Grade  
-4  
Symbol  
Description  
Device  
All  
Min  
Max  
Units  
Output Frequency Ranges  
CLKOUT_FREQ_FX(2)  
Output Clock Jitter(3,4)  
CLKOUT_PER_JITT_FX  
Frequency for the CLKFX and CLKFX180 outputs  
5
320  
MHz  
Period jitter at the CLKFX and CLKFX180  
outputs.  
All  
Typ  
Max  
Use the  
Spartan-3A Jitter  
Calculator:  
ps  
CLKIN  
20 MHz  
www.xilinx.com/s  
upport/document  
ation/data_sheets  
/s3a_jitter_calc.zi  
p
± ±1% of ± ±1% of  
CLKFX CLKFX  
ps  
ps  
CLKIN  
> 20 MHz  
period  
+ 100]  
period  
+ 200]  
Duty Cycle(5,6)  
CLKOUT_DUTY_CYCLE_FX Duty cycle precision for the CLKFX and CLKFX180 outputs,  
including the BUFGMUX and clock tree duty-cycle distortion  
All  
± ±1% of  
CLKFX  
period  
+ 350]  
Phase Alignment(6)  
CLKOUT_PHASE_FX  
Phase offset between the DFS CLKFX output and the DLL CLK0  
output when both the DFS and DLL are used  
All  
All  
± 200  
ps  
ps  
CLKOUT_PHASE_FX180  
Phase offset between the DFS CLKFX180 output and the DLL  
CLK0 output when both the DFS and DLL are used  
± ±1% of  
CLKFX  
period  
+ 200]  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
41  
Product Specification  
R
Table 38: Switching Characteristics for the DFS (Continued)  
Speed Grade  
-4  
Symbol  
Lock Time  
Description  
Device  
Min  
Max  
Units  
LOCK_FX(2, 3)  
The time from deassertion at the DCM’s  
Reset input to the rising transition at its  
LOCKED output. The DFS asserts LOCKED  
when the CLKFX and CLKFX180 signals are  
valid. If using both the DLL and the DFS, use  
the longer locking time.  
5 MHz < FCLKIN  
< 15 MHz  
All  
5
ms  
FCLKIN > 15 MHz  
450  
μs  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 37.  
2. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions.  
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.  
4. Maximum output jitter is characterized within a reasonable noise environment (40 SSOs and 25% CLB switching) on an  
XC3S1400A FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive  
strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual  
maximum output jitter depends on the system application.  
5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.  
6. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data  
sheet specifies a maximum CLKFX jitter of “± ±1% of CLKFX period + 200]”. Assume the CLKFX output frequency is 100  
MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the  
maximum jitter is ± ±100 ps + 200 ps] = ± 300 ps.  
Phase Shifter  
Table 39: Recommended Operating Conditions for the PS in Variable Phase Mode  
Speed Grade  
-4  
Symbol  
Description  
Min  
Max  
Units  
Operating Frequency Ranges  
PSCLK_FREQ  
(FPSCLK  
Frequency for the PSCLK input  
1
167  
MHz  
)
Input Pulse Requirements  
PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period  
40%  
60%  
Table 40: Switching Characteristics for the PS in Variable Phase Mode  
Symbol  
Phase Shifting Range  
MAX_STEPS(2)  
Description  
Phase Shift Amount  
Units  
Maximum allowed number of  
±±INTEGER(10 (TCLKIN – 3 ns))]  
±±INTEGER(15 (TCLKIN – 3 ns))]  
steps  
CLKIN < 60 MHz  
DCM_DELAY_STEP steps for a given  
CLKIN clock period, where T = CLKIN  
clock period in ns. If using  
CLKIN_DIVIDE_BY_2 = TRUE,  
double the clock effective clock  
period.  
CLKIN 60 MHz  
FINE_SHIFT_RANGE_MIN  
Minimum guaranteed delay for variable phase shifting  
±±MAX_STEPS •  
ns  
ns  
DCM_DELAY_STEP_MIN]  
FINE_SHIFT_RANGE_MAX Maximum guaranteed delay for variable phase shifting  
±±MAX_STEPS •  
DCM_DELAY_STEP_MAX]  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 39.  
2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the  
PHASE_SHIFT attribute is set to 0.  
3. The DCM_DELAY_STEP values are provided at the bottom of Table 36.  
42  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Miscellaneous DCM Timing  
Table 41: Miscellaneous DCM Timing  
Symbol  
Description  
Min  
Max  
Units  
DCM_RST_PW_MIN  
Minimum duration of a RST pulse width  
3
CLKIN  
cycles  
DCM_RST_PW_MAX(2)  
Maximum duration of a RST pulse width  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
seconds  
seconds  
minutes  
minutes  
DCM_CONFIG_LAG_TIME(3)  
Maximum duration from VCCINT applied to FPGA  
configuration successfully completed (DONE pin goes High)  
and clocks applied to DCM DLL  
Notes:  
1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV).  
The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.  
®
2. This specification is equivalent to the Virtex -4 DCM_RESET specification. This specification does not apply for Spartan-3A FPGAs.  
3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3A FPGAs.  
DNA Port Timing  
Table 42: DNA_PORT Interface Timing  
Symbol  
TDNASSU  
TDNASH  
Description  
Setup time on SHIFT before the rising edge of CLK  
Hold time on SHIFT after the rising edge of CLK  
Setup time on DIN before the rising edge of CLK  
Hold time on DIN after the rising edge of CLK  
Setup time on READ before the rising edge of CLK  
Hold time on READ after the rising edge of CLK  
Clock-to-output delay on DOUT after rising edge of CLK  
CLK frequency  
Min  
1.0  
0.5  
1.0  
0.5  
5.0  
0
Max  
Units  
ns  
ns  
TDNADSU  
TDNADH  
TDNARSU  
TDNARH  
ns  
ns  
10,000  
ns  
ns  
TDNADCKO  
TDNACLKF  
TDNACLKL  
TDNACLKH  
0.5  
0
1.5  
100  
ns  
MHz  
ns  
CLK High time  
1.0  
1.0  
CLK Low time  
ns  
Notes:  
1. The minimum READ pulse width is 5 ns, the maximum READ pulse width is 10 μs.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
43  
Product Specification  
R
Suspend Mode Timing  
Entering Suspend Mode  
Exiting Suspend Mode  
sw_gwe_cycle  
sw_gts_cycle  
SUSPEND Input  
AWAKE Output  
tSUSPENDHIGH_AWAKE  
tSUSPENDLOW_AWAKE  
tAWAKE_GWE  
tSUSPEND_GWE  
Flip-Flops, Block RAM,  
Distributed RAM  
Write Protected  
tAWAKE_GTS  
tSUSPEND_GTS  
FPGA Outputs  
Defined by SUSPEND constraint  
tSUSPEND_DISABLE tSUSPEND_ENABLE  
FPGA Inputs,  
Interconnect  
Blocked  
DS610-3_08_061207  
Figure 9: Suspend Mode Timing  
Table 43: Suspend Mode Timing Parameters  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Entering Suspend Mode  
TSUSPENDHIGH_AWAKE Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter  
7
ns  
ns  
ns  
ns  
ns  
(suspend_filter:No)  
TSUSPENDFILTER  
Adjustment to SUSPEND pin rising edge parameters when glitch filter  
enabled (suspend_filter:Yes)  
+160 +300 +600  
TSUSPEND_GWE  
Rising edge of SUSPEND pin until FPGA output pins drive their defined  
SUSPEND constraint behavior  
10  
<5  
TSUSPEND_GTS  
Rising edge of SUSPEND pin to write-protect lock on all writable clocked  
elements  
TSUSPEND_DISABLE  
Rising edge of the SUSPEND pin to FPGA input pins and interconnect  
disabled  
340  
Exiting Suspend Mode  
TSUSPENDLOW_AWAKE Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not  
include DCM lock time.  
4 to 108  
μs  
μs  
ns  
μs  
ns  
μs  
TSUSPEND_ENABLE  
TAWAKE_GWE1  
TAWAKE_GWE512  
TAWAKE_GTS1  
Falling edge of the SUSPEND pin to FPGA input pins and interconnect  
re-enabled  
3.7 to  
109  
Rising edge of the AWAKE pin until write-protect lock released on all writable  
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:1.  
67  
14  
57  
14  
Rising edge of the AWAKE pin until write-protect lock released on all writable  
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:512.  
Rising edge of the AWAKE pin until outputs return to the behavior described  
in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:1.  
TAWAKE_GTS512  
Rising edge of the AWAKE pin until outputs return to the behavior described  
in the FPGA application, using sw_clk:InternalClock and  
sw_gts_cycle:512.  
Notes:  
1. These parameters based on characterization.  
2. For information on using the Spartan-3A Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs.  
44  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Configuration and JTAG Timing  
General Configuration Power-On/Reconfigure Timing  
1.2V  
V
CCINT  
1.0V  
2.0V  
1.0V  
(Supply)  
2.5V  
or  
V
CCAUX  
(Supply)  
3.3V  
V
Bank 2  
(Supply)  
CCO  
TPOR  
PROG_B  
(Input)  
TPL  
TPROG  
INIT_B  
(Open-Drain)  
TICCK  
CCLK  
(Output)  
DS529-3_01_112906  
Notes:  
1. The V  
, V  
, and V  
supplies can be applied in any order.  
CCO  
CCINT CCAUX  
2. The Low-going pulse on PROG_B is optional after power-on.  
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).  
Figure 10: Waveforms for Power-On and the Beginning of Configuration  
Table 44: Power-On Timing and the Beginning of Configuration  
-4 Speed Grade  
Symbol  
Description  
Device  
Min  
Max  
Units  
(2)  
TPOR  
The time from the application of VCCINT, VCCAUX, and VCCO All  
Bank 2 supply voltage ramps (whichever occurs last) to the  
rising transition of the INIT_B pin  
18  
ms  
TPROG  
The width of the low-going pulse on the PROG_B pin  
All  
0.5  
-
μs  
(2)  
TPL  
The time from the rising edge of the PROG_B pin to the  
rising transition on the INIT_B pin  
XA3S200A  
XA3S400A  
XA3S700A  
XA3S1400A  
All  
0.5  
1
ms  
ms  
ms  
ms  
ns  
2
2
TINIT  
Minimum Low pulse width on INIT_B output  
250  
0.5  
(3)  
TICCK  
The time from the rising edge of the INIT_B pin to the  
generation of the configuration clock signal at the CCLK  
output pin  
All  
4
μs  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8. This means power must be applied to all V  
, V  
,
CCINT CCO  
and V  
lines.  
CCAUX  
2. Power-on reset and the clearing of configuration memory occurs during this period.  
3. This specification applies only to the Master Serial, SPI, and BPI modes.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
45  
Product Specification  
R
Configuration Clock (CCLK) Characteristics  
Table 45: Master Mode CCLK Output Period by ConfigRate Option Setting  
ConfigRate  
Temperature  
Range  
Symbol  
TCCLK1  
Description  
Setting  
Minimum  
Maximum  
Units  
CCLK clock period by  
ConfigRate setting  
1
I-Grade &  
Q-Grade  
1,053  
2,500  
ns  
(power-on value)  
I-Grade &  
Q-Grade  
TCCLK3  
3
6
351  
174  
148  
132  
104  
87  
833  
417  
357  
313  
250  
208  
192  
147  
114  
100  
93  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
I-Grade &  
Q-Grade  
TCCLK6  
I-Grade &  
Q-Grade  
TCCLK7  
7
I-Grade &  
Q-Grade  
TCCLK8  
8
I-Grade &  
Q-Grade  
TCCLK10  
TCCLK12  
TCCLK13  
TCCLK17  
TCCLK22  
TCCLK25  
TCCLK27  
TCCLK33  
TCCLK44  
TCCLK50  
10  
12  
13  
17  
22  
25  
27  
33  
44  
50  
100  
I-Grade &  
Q-Grade  
I-Grade &  
Q-Grade  
80  
I-Grade &  
Q-Grade  
61  
I-Grade &  
Q-Grade  
47  
I-Grade &  
Q-Grade  
42  
I-Grade &  
Q-Grade  
35  
I-Grade &  
Q-Grade  
31  
76  
I-Grade &  
Q-Grade  
24  
57  
I-Grade &  
Q-Grade  
19  
50  
I-Grade &  
Q-Grade  
TCCLK100  
9.4  
25  
Notes:  
1. Set the ConfigRate option value when generating a configuration bitstream.  
46  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Table 46: Master Mode CCLK Output Frequency by ConfigRate Option Setting  
ConfigRate  
Temperature  
Range  
Symbol  
FCCLK1  
Description  
Setting  
Minimum  
Maximum  
Units  
Equivalent CCLK clock frequency  
by ConfigRate setting  
1
I-Grade &  
Q-Grade  
0.40  
0.95  
MHz  
(power-on value)  
I-Grade &  
Q-Grade  
FCCLK3  
3
6
1.20  
2.40  
2.85  
5.74  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
I-Grade &  
Q-Grade  
FCCLK6  
I-Grade &  
Q-Grade  
FCCLK7  
7
2.80  
6.74  
I-Grade &  
Q-Grade  
FCCLK8  
8
3.20  
7.58  
I-Grade &  
Q-Grade  
FCCLK10  
FCCLK12  
FCCLK13  
FCCLK17  
FCCLK22  
FCCLK25  
FCCLK27  
FCCLK33  
FCCLK44  
FCCLK50  
FCCLK100  
10  
12  
13  
17  
22  
25  
27  
33  
44  
50  
100  
4.00  
9.65  
I-Grade &  
Q-Grade  
4.80  
11.48  
12.49  
16.33  
21.23  
23.59  
28.31  
32.67  
42.47  
53.08  
106.16  
I-Grade &  
Q-Grade  
5.20  
I-Grade &  
Q-Grade  
6.80  
I-Grade &  
Q-Grade  
8.80  
I-Grade &  
Q-Grade  
10.00  
10.80  
13.20  
17.60  
20.00  
40.00  
I-Grade &  
Q-Grade  
I-Grade &  
Q-Grade  
I-Grade &  
Q-Grade  
I-Grade &  
Q-Grade  
I-Grade &  
Q-Grade  
Table 47: Master Mode CCLK Output Minimum Low and High Time  
ConfigRate Setting  
12 13 17 22  
Symbol  
Description  
Master Mode  
1
3
6
7
8
10  
25  
27  
33  
44  
50 100 Units  
TMCCL,  
TMCCH  
CCLK  
Minimum Low  
and High Time  
I-Grade &  
Q-Grade  
474 158 78.4 66.8 59.3 46.6 39.2 36.0 27.6 21.2 19.1 15.9 13.8 10.6 8.5 4.2  
ns  
Table 48: Slave Mode CCLK Input Low and High Time  
Symbol  
Description  
Min  
Max  
Units  
ns  
TSCCL,  
TSCCH  
CCLK Low and High time  
5
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
47  
Product Specification  
R
Master Serial and Slave Serial Mode Timing  
PROG_B  
(Input)  
INIT_B  
(Open-Drain)  
TMCCH  
TSCCH  
TMCCL  
TSCCL  
CCLK  
(Input/Output)  
TDCC  
1/FCCSER  
TCCD  
DIN  
(Input)  
Bit n+1  
TCCO  
Bit n  
Bit 0  
Bit 1  
DOUT  
(Output)  
Bit n-63  
Bit n-64  
DS312-3_05_103105  
Figure 11: Waveforms for Master Serial and Slave Serial Configuration  
Table 49: Timing for the Master Serial and Slave Serial Configuration Modes  
-4 Speed Grade  
Slave/  
Master  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
TCCO  
The time from the falling transition on the CCLK pin to data appearing at the  
DOUT pin  
Both  
Both  
1.5  
10  
ns  
Setup Times  
TDCC  
The time from the setup of data at the DIN pin to the rising transition at the  
CCLK pin  
7
ns  
ns  
Hold Times  
TCCD  
The time from the rising transition at the CCLK pin to the point when data is  
last held at the DIN pin  
Master  
Slave  
0
1.0  
Clock Timing  
TCCH  
High pulse width at the CCLK input pin  
Master  
Slave  
Master  
Slave  
Slave  
See Table 47  
See Table 48  
See Table 47  
See Table 48  
100  
TCCL  
Low pulse width at the CCLK input pin  
FCCSER  
Frequency of the clock signal at the  
CCLK input pin  
No bitstream compression  
With bitstream compression  
0
0
MHz  
MHz  
100  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.  
48  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Slave Parallel Mode Timing  
PROG_B  
(Input)  
INIT_B  
(Open-Drain)  
TSMCSCC  
TSMCCCS  
CSI_B  
(Input)  
TSMCCW  
TSMWCC  
RDWR_B  
(Input)  
TMCCH  
TSCCH  
TMCCL  
TSCCL  
CCLK  
(Input)  
1/FCCPAR  
TSMDCC  
TSMCCD  
D0 - D7  
(Inputs)  
Byte 0  
Byte 1  
Byte n  
Byte n+1  
DS529-3_02_051607  
Notes:  
1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent  
cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 - D7 bus. When RDWR_B  
switches High, be careful to avoid contention on the D0 - D7 bus.  
Figure 12: Waveforms for Slave Parallel Configuration  
Table 50: Timing for the Slave Parallel Configuration Mode  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
Units  
Setup Times  
(2)  
TSMDCC  
The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin  
Setup time on the CSI_B pin before the rising transition at the CCLK pin  
Setup time on the RDWR_B pin before the rising transition at the CCLK pin  
7
7
ns  
ns  
ns  
TSMCSCC  
TSMCCW  
15  
Hold Times  
TSMCCD  
The time from the rising transition at the CCLK pin to the point when data is last held at  
the D0-D7 pins  
1.0  
0
ns  
ns  
ns  
TSMCCCS  
TSMWCC  
The time from the rising transition at the CCLK pin to the point when a logic level is last  
held at the CSO_B pin  
The time from the rising transition at the CCLK pin to the point when a logic level is last  
held at the RDWR_B pin  
0
Clock Timing  
TCCH  
The High pulse width at the CCLK input pin  
5
5
0
0
ns  
ns  
TCCL  
The Low pulse width at the CCLK input pin  
FCCPAR  
Frequency of the clock signal No bitstream compression  
80  
80  
MHz  
MHz  
at the CCLK input pin  
With bitstream compression  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
2. Some Xilinx documents refer to Parallel modes as “SelectMAP” modes.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
49  
Product Specification  
R
Serial Peripheral Interface Configuration Timing  
PROG_B  
(Input)  
PUDC_B  
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.  
(Input)  
VS[2:0]  
(Input)  
<1:1:1>  
Mode input pins M[2:0] and variant select input pins VS[2:0] are sampled when INIT_B  
goes High. After this point, input values do not matter until DONE goes High, at which  
point these pins become user-I/O pins.  
<0:0:1>  
M[2:0]  
(Input)  
TMINIT  
TINITM  
INIT_B  
(Open-Drain)  
New ConfigRate active  
TCCLK  
TMCCH  
T
n
MCCL  
n
TMCCL1 TMCCH1  
T
TCCLK1  
CCLK1  
n
CCLK  
TV  
DIN  
Data  
Data  
TDCC  
Data  
Data  
(Input)  
TCSS  
TCCD  
CSO_B  
MOSI  
TCCO  
Command Command  
(msb) (msb-1)  
TDSU  
TDH  
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.  
Pin initially high-impedance (Hi-Z) if PUDC_B input is High. External pull-up resistor required on CSO_B.  
DS529-3_06_102506  
Shaded values indicate specifications on attached SPI Flash PROM.  
Figure 13: Waveforms for SPI Configuration  
Table 51: Timing for SPI Configuration Mode  
Symbol Description  
TCCLK1  
TCCLKn  
TMINIT  
Minimum  
Maximum  
See Table 45  
See Table 45  
Units  
Initial CCLK clock period  
CCLK clock period after FPGA loads ConfigRate bitstream option setting  
Setup time on VS±2:0] variant-select pins and M±2:0] mode pins before the  
rising edge of INIT_B  
50  
0
ns  
ns  
TINITM  
Hold time on VS±2:0] variant-select pins and M±2:0] mode pins after the  
rising edge of INIT_B  
TCCO  
TDCC  
TCCD  
MOSI output valid delay after CCLK falling clock edge  
See Table 49  
See Table 49  
See Table 49  
Setup time on the DIN data input before CCLK rising clock edge  
Hold time on the DIN data input after CCLK rising clock edge  
50  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Table 52: Configuration Timing Requirements for Attached SPI Serial Flash  
Symbol  
TCCS  
Description  
SPI serial Flash PROM chip-select time  
Requirement  
Units  
ns  
T
T
T  
T  
T  
CCS  
MCCL1  
MCCL1  
CCO  
CCO  
TDSU  
TDH  
SPI serial Flash PROM data input setup time  
SPI serial Flash PROM data input hold time  
SPI serial Flash PROM data clock-to-output time  
ns  
ns  
T  
DSU  
T
T  
DH  
MCCH1  
TV  
ns  
T T  
T  
DCC  
V
MCCLn  
fC or fR  
Maximum SPI serial Flash PROM clock frequency (also depends on  
specific read command used)  
MHz  
1
--------------------------------  
f ≥  
C
T
CCLKn(min)  
Notes:  
1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The  
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.  
2. Subtract additional printed circuit board routing delay as required by the application.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
51  
Product Specification  
R
Byte Peripheral Interface Configuration Timing  
PROG_B  
(Input)  
PUDC_B  
(Input)  
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.  
Mode input pins M[2:0] are sampled when INIT_B goes High. After this point,  
input values do not matter until DONE goes High, at which point the mode pins  
become user-I/O pins.  
M[2:0]  
(Input)  
<0:1:0>  
TMINIT  
TINITM  
INIT_B  
(Open-Drain)  
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.  
Pin initially high-impedance (Hi-Z) if PUDC_B input is High.  
LDC[2:0]  
HDC  
CSO_B  
New ConfigRate active  
TCCLK1  
TCCLKn  
TINITADDR  
TCCLK1  
CCLK  
TCCO  
000_0000  
Address  
Address Address  
A[25:0]  
000_0001  
TDCC  
TAVQV  
Data  
TCCD  
Data  
D[7:0]  
(Input)  
Byte 0  
Data  
Byte 1  
Data  
Shaded values indicate specifications on attached parallel NOR Flash PROM.  
DS529-3_05_121107  
Figure 14: Waveforms for BPI Configuration  
Table 53: Timing for BPI Configuration Mode  
Symbol Description  
TCCLK1  
TCCLKn  
TMINIT  
Minimum  
Maximum  
Units  
Initial CCLK clock period  
See Table 45  
CCLK clock period after FPGA loads ConfigRate setting  
Setup time on M±2:0] mode pins before the rising edge of INIT_B  
Hold time on M±2:0] mode pins after the rising edge of INIT_B  
See Table 45  
50  
0
5
ns  
ns  
TINITM  
TINITADDR  
Minimum period of initial A±25:0] address cycle; LDC±2:0] and HDC are asserted  
and valid  
5
TCCLK1  
cycles  
TCCO  
TDCC  
TCCD  
Address A±25:0] outputs valid after CCLK falling edge  
Setup time on D±7:0] data inputs before CCLK rising edge  
Hold time on D±7:0] data inputs after CCLK rising edge  
See Table 49  
See TSMDCC in Table 50  
0
ns  
52  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Table 54: Configuration Timing Requirements for Attached Parallel NOR Flash  
Symbol  
TCE  
(tELQV  
TOE  
(tGLQV  
TACC  
(tAVQV  
TBYTE  
(tFLQV, FHQV  
Notes:  
Description  
Requirement  
Units  
Parallel NOR Flash PROM chip-select time  
ns  
T
T
T  
CE  
INITADDR  
)
Parallel NOR Flash PROM output-enable time  
Parallel NOR Flash PROM read access time  
For x8/x16 PROMs only: BYTE# to output valid time(3)  
ns  
ns  
ns  
T  
OE  
INITADDR  
)
T
50%T  
T  
T  
PCB  
DCC  
ACC  
CCLKn(min)  
CCO  
)
T
T  
INITADDR  
BYTE  
t
)
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The  
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.  
2. Subtract additional printed circuit board routing delay as required by the application.  
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor  
value also depends on whether the FPGA’s PUDC_B pin is High or Low.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
53  
Product Specification  
R
IEEE 1149.1/1553 JTAG Test Access Port Timing  
TCCH  
TCCL  
TCK  
(Input)  
1/FTCK  
TTCKTMS  
TTMSTCK  
TMS  
(Input)  
TTDITCK  
TTCKTDI  
TDI  
(Input)  
TTCKTDO  
TDO  
(Output)  
DS099_06_040703  
Figure 15: JTAG Waveforms  
Table 55: Timing for the JTAG Test Access Port  
-4 Speed Grade  
Symbol  
Description  
Min  
Max  
11.0  
Units  
ns  
Clock-to-Output Times  
TTCKTDO The time from the falling transition on the TCK pin to data appearing at the TDO pin  
1.0  
Setup Times  
TTDITCK The time from the setup of data at the All devices and functions except those shown below  
TDI pin to the rising transition at the  
7.0  
ns  
Boundary scan commands (INTEST, EXTEST,  
SAMPLE) on XA3S700A and XA3S1400A FPGAs  
11.0  
TCK pin  
TTMSTCK The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin  
7.0  
ns  
ns  
Hold Times  
TTCKTDI The time from the rising transition at  
the TCK pin to the point when data is  
last held at the TDI pin  
All functions except those shown below  
0
Configuration commands (CFG_IN, ISC_PROGRAM)  
2.0  
TTCKTMS The time from the rising transition at the TCK pin to the point when a logic level is last held at the  
TMS pin  
0
ns  
Clock Timing  
TCCH  
TCCL  
The High pulse width at the TCK pin All functions except ISC_DNA command  
The Low pulse width at the TCK pin  
5
5
ns  
ns  
TCCHDNA The High pulse width at the TCK pin During ISC_DNA command  
TCCLDNA The Low pulse width at the TCK pin  
10  
10  
0
10,000  
10,000  
33  
ns  
ns  
FTCK  
Frequency of the TCK signal  
All operations on XA3S200A and XA3S400A FPGAs  
and for BYPASS or HIGHZ instructions on all FPGAs  
MHz  
All operations on XA3S700A and XA3S1400A FPGAs,  
except for BYPASS or HIGHZ instructions  
20  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
54  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  
R
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.0  
Revision  
04/30/08  
05/07/08  
02/03/09  
Initial release.  
1.0.1  
1.1  
Updated Figure 14, minor edits under Features and Package Marking, Table 20 and 21.  
Updated "Key Feature Differences from Commercial XC Devices," page 2.  
Removed MultiBoot description from "Configuration," page 3.  
Updated to v1.41 in Table 3 and Table 16.  
Removed -5 high performance (commercial only) speed grade from "Ordering Information," page 5.  
Replaced VICM with VCCAUX in Note 7 of Table 13.  
Added versions 1.40 and 1.41 to Table 17.  
Updated Note 2 in Figure 10.  
Removed TIOOLP from Table 23.  
Updated TIOCKHZ and TIOCKON in Table 24.  
Updated Table 22 and Table 25.  
Updated SSO number for left and right I/O banks of DIFF_SSTL18_II standard in Table 28.  
Updated TACC requirement in Table 54.  
Notice of Disclaimer  
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND  
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED  
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE  
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.  
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE  
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES  
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO  
APPLICABLE LAWS AND REGULATIONS.  
Automotive Applications Disclaimer  
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING  
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A  
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN  
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III)  
USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY  
USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.  
DS681 (v1.1) February 3, 2009  
www.xilinx.com  
55  
Product Specification  
R
56  
www.xilinx.com  
DS681 (v1.1) February 3, 2009  
Product Specification  

相关型号:

XA3S700A-4FGG484I

Field Programmable Gate Array, 1472 CLBs, 700000 Gates, 667MHz, 13248-Cell, CMOS, PBGA484, LEAD FREE, MS-034, FGBGA-484

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S700A-4FTG256I

Field Programmable Gate Array, 1472 CLBs, 700000 Gates, 667MHz, CMOS, PBGA256, LEAD FREE, MS-034, FTBGA-256

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3S700A-4FTG256Q

Field Programmable Gate Array, 1472 CLBs, 700000 Gates, 667MHz, CMOS, PBGA256, LEAD FREE, MS-034, FTBGA-256

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3SD1800A

XA Spartan-3A DSP Automotive FPGA Family Data Sheet

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3SD1800A-4CSG484I

Field Programmable Gate Array, 4160 CLBs, 37440 Gates, 667MHz, 37440-Cell, CMOS, PBGA484, LEAD FREE, CSBGA-484

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3SD1800A-4CSG484Q

Field Programmable Gate Array, 4160 CLBs, 37440 Gates, 667MHz, 37440-Cell, CMOS, PBGA484, LEAD FREE, CSBGA-484

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3SD1800A-4FGG676I

Field Programmable Gate Array, 4160 CLBs, 37440 Gates, 667MHz, 37440-Cell, CMOS, PBGA676, LEAD FREE, FBBGA-676

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3SD1800A-4FGG676Q

Field Programmable Gate Array, 4160 CLBs, 37440 Gates, 667MHz, 37440-Cell, CMOS, PBGA676, LEAD FREE, FBBGA-676

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3SD3400A

XA Spartan-3A DSP Automotive FPGA Family Data Sheet

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3SD3400A-4CSG484I

Field Programmable Gate Array, 5968 CLBs, 53712 Gates, 667MHz, 53712-Cell, CMOS, PBGA484, LEAD FREE, CSBGA-484

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3SD3400A-4FGG676I

Field Programmable Gate Array, 5968 CLBs, 53712 Gates, 667MHz, 53712-Cell, CMOS, PBGA676, LEAD FREE, FBBGA-676

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA3SD3400A-FGG676I

Field Programmable Gate Array, PBGA676, LEAD FREE, FBBGA-676

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX