XC3090 [XILINX]

Logic Cell Array Families; 逻辑单元阵列家族
XC3090
型号: XC3090
厂家: XILINX, INC    XILINX, INC
描述:

Logic Cell Array Families
逻辑单元阵列家族

文件: 总50页 (文件大小:473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC3000 Logic Cell Array Families  
Table of Contents  
Overview .............................................................. 2-104  
XC3000A Logic Cell Array Familiy ....................... 2-161  
Absolute Maximum Ratings ............................. 2-162  
Operating Conditions ....................................... 2-162  
DC Characteristics ........................................... 2-163  
Switching Characteristic Guidelines  
CLB.............................................................. 2-164  
Buffer ........................................................... 2-164  
IOB .............................................................. 2-166  
Ordering Information ........................................ 2-168  
Component Availability..................................... 2-168  
XC3000, XC3000A, XC3000L, XC3100, XC3100A  
Logic Cell Array Families ................................. 2-105  
Architecture ...................................................... 2-106  
Programmable Interconnect ............................. 2-111  
Crystal Oscillator .............................................. 2-117  
Programming ................................................... 2-118  
Special Configuration Functions ...................... 2-122  
Master Serial Mode .......................................... 2-124  
Master Serial Mode Programming  
Switching Characteristics............................. 2-125  
Master Parallel Mode ....................................... 2-126  
Master Parallel Mode Programming  
Switching Characteristics............................. 2-127  
Peripheral Mode............................................... 2-128  
Peripheral Mode Programming  
Switching Characteristics............................. 2-129  
Slave Serial Mode ............................................ 2-130  
Slave Serial Mode Programming  
Switching Characteristics............................. 2-131  
Program Readback Switching  
XC3000L Low Voltage Logic Cell Array Family .... 2-169  
Absolute Maximum Ratings ............................. 2-170  
Operating Conditions ....................................... 2-170  
DC Characteristics ........................................... 2-171  
Switching Characteristic Guidelines  
CLB.............................................................. 2-172  
Buffer ........................................................... 2-172  
IOB .............................................................. 2-174  
Ordering Information ........................................ 2-176  
Component Availability..................................... 2-176  
Characteristics ............................................. 2-131  
General LCA Switching Characteristics ........... 2-132  
Performance .................................................... 2-133  
Power............................................................... 2-134  
Pin Descriptions ............................................... 2-136  
Pin Functions During Configuration.................. 2-138  
XC3000 Families Pin Assignments .................. 2-139  
XC3000 Families Pinouts ................................. 2-140  
Component Availability..................................... 2-151  
Ordering Information ........................................ 2-152  
XC3100, XC3100A Logic Cell Array Families....... 2-177  
Absolute Maximum Ratings ............................. 2-178  
Operating Conditions ....................................... 2-178  
DC Characteristics ........................................... 2-179  
Switching Characteristic Guidelines  
CLB.............................................................. 2-180  
Buffer ........................................................... 2-180  
IOB .............................................................. 2-182  
Ordering Information ........................................ 2-184  
Component Availability..................................... 2-184  
XC3000 Logic Cell Array Family........................... 2-153  
Absolute Maximum Ratings ............................. 2-154  
Operating Conditions ....................................... 2-154  
DC Characteristics ........................................... 2-155  
Switching Characteristic Guidelines  
CLB.............................................................. 2-156  
Buffer ........................................................... 2-156  
IOB .............................................................. 2-158  
Ordering Information ........................................ 2-160  
Component Availability..................................... 2-160  
2-103  
Overview  
other user-friendly enhancements. The ease-of-use of the  
Introduced in 1987/88, XC3000 is the industry’s most  
successful family of FPGAs, with over 10 million devices  
shipped. In 1992/93, Xilinx introduced three additional  
families, offering more speed, functionality, and a new  
supply-voltage option.  
XC3000A family makes it the obvious choice for all new  
designs that do not require the speed of the XC3100 or the  
3-V operation of the XC3000L.  
XC3000L Family  
The XC3000L is identical in architecture and features to  
the XC3000A family, but operates at a nominal supply  
voltage of 3.3 V. The XC3000L is the right solution for  
battery-operated and low-power applications.  
There are now five distinct family groupings within the  
XC3000 class of LCA devices.  
• XC3000 Family  
• XC3000A Family (use for new designs)  
• XC3000L Family (use for new designs)  
• XC3100 Family  
XC3100 Family  
The XC3100 is a performance-optimized relative of the  
basic XC3000 family. While both families are bitstream  
andfootprintcompatible,theXC3100familyextendstoggle  
rates to 270 MHz and in-system performance to 80 MHz.  
The XC3100 family also offers one additional array size,  
the XC3195. The XC3100 is best suited for designs that  
require the highest clock speed or the shortest net delays.  
• XC3100A Family (use for new designs)  
All five families share a common architecture, develop-  
ment software, design and programming methodology,  
andalsocommonpackagepin-outs. AnextensiveProduct  
Description covers these common aspects. (Page 2-99).  
XC3100A Family  
The much shorter individual Product Specifications then  
provide detailed parametric information for the four indi-  
vidual product families.  
The XC3100A combines the enhanced feature set of the  
XC3000AwiththeperformanceoftheXC3100.Itoffersthe  
highest functionality, speed and capacity of all XC3000  
families.  
Here is a simple overview.  
XC3000 Family  
The figure below illustrates the relationships between the  
families.ComparedtotheoriginalXC3000family,XC3000A  
offersadditionalfunctionalityand,comingsoon,increased  
speed. The XC3000L family offers the same additional  
functionality, but reduced speed due to its lower supply  
voltage of 3.3 V. The XC3100 family offers no additional  
functionality, but substantially higher speed, and higher  
density with its new member, the XC3195.  
The basic XC3000 family forms the cornerstone for the  
rest of the XC3000 class of devices. The basic XC3000  
family offers five different device densities with guaran-  
teed toggle rates from 70 to 125 MHz.  
XC3000A Family  
TheXC3000AisanenhancedversionofthebasicXC3000  
family, featuring additional interconnect resources and  
Functionality  
XC3100A  
XC3000A  
XC3000L  
XC3100  
Speed  
XC3000  
XC3195  
Gate Capacity  
X3447  
2-104  
IMPORTANT NOTICE  
XC3000,XC3000A, XC3000L,  
XC3100, XC3100A  
Logic CellArray Families  
All new designs should use XC3000A or  
XC3100A. Information on XC3000 and  
XC3100 is presented here as reference  
for existing designs.  
Product Description  
Features  
Complete XACT Development System  
– Schematic capture, automatic place and route  
– Logic and timing simulation  
Complete line of five related Field Programmable  
Gate Array product families  
– Interactive design editor for design optimization  
– Timing calculator  
– Interfaces to popular design environments like  
Viewlogic, Cadence, Mentor Graphics, and others  
– XC3000, XC3000A, XC3000L, XC3100, XC3100A  
Ideal for a wide range of custom VLSI design tasks  
– Replaces TTL, MSI, and other PLD logic  
– Integrates complete sub-systems into a single  
package  
Description  
– Avoids the NRE, time delay, and risk of  
conventional masked gate arrays  
The CMOS XC3000 Class of Logic Cell Array (LCA)  
families provide a group of high-performance, high-den-  
sity, digital integrated circuits. Their regular, extendable,  
flexible, user-programmable array architecture is com-  
posed of a configuration program store plus three types of  
configurable elements: a perimeter of I/O Blocks (IOBs), a  
core array of Configurable Logic Bocks (CLBs) and re-  
sources for interconnection. The general structure of an  
LCA device is shown in Figure 1 on the next page. The  
XACT development system provides schematic capture  
and auto place-and-route for design entry. Logic and  
timing simulation, and in-circuit emulation are available as  
design verification alternatives. The design editor is used  
for interactive design optimization, and to compile the data  
pattern that represents the configuration program.  
High-performance CMOS static memory technology  
– Guaranteed toggle rates of 70 to 325 MHz, logic  
delays from 9 to 2.2 ns  
– System clock speeds over 80 MHz  
– Low quiescent and active power consumption  
Flexible FPGA architecture  
– Compatible arrays ranging from 1,000 to 7,500  
gate complexity  
– Extensive register, combinatorial, and I/O  
capabilities  
– High fan-out signal distribution, low-skew clock  
nets  
– Internal 3-state bus capabilities  
– TTL or CMOS input thresholds  
– On-chip crystal oscillator amplifier  
The LCA user logic functions and interconnections are  
determined by the configuration program data stored in  
internalstaticmemorycells. Theprogramcanbeloadedin  
any of several modes to accommodate various system  
requirements. The program data resides externally in an  
EEPROM, EPROM or ROM on the application circuit  
board,oronafloppydiskorharddisk.On-chipinitialization  
logic provides for optional automatic loading of program  
data at power-up. The companion XC17XX Serial  
Configuration PROMs provide a very simple serial config-  
uration program storage in a one-time programmable  
package.  
Unlimited reprogrammability  
– Easy design iteration  
– In-system logic changes  
Extensive Packaging Options  
– Over 20 different packages  
– Plastic and ceramic surface-mount and pin-grid-  
array packages  
– Thin and Very Thin Quad Flat Pack (TQFP and  
VQFP) options  
Ready for volume production  
– Standard, off-the-shelf product availability  
– 100% factory pre-tested devices  
– Excellent reliability record  
User I/Os  
Max  
Horizontal Configuration  
Device  
CLBs  
Array  
Flip-Flops  
Longlines  
Data Bits  
XC3020, 3020A, 3020L, 3120, 3120A  
XC3030, 3030A, 3030L, 3130, 3130A  
XC3042, 3042A, 3042L, 3142, 3142A  
XC3064, 3064A, 3064L, 3164, 3164A  
XC3090, 3090A, 3090L, 3190, 3190A  
XC3195, 3195A  
64  
100  
144  
224  
320  
484  
8 x 8  
64  
80  
96  
120  
144  
176  
256  
360  
480  
688  
928  
16  
20  
24  
32  
40  
44  
14,779  
22,176  
30,784  
46,064  
64,160  
94,984  
10 x 10  
12 x 12  
16 x 14  
16 x 20  
22 x 22  
1,320  
2-105  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
configuration. Programdatamaybeeitherbitserialorbyte  
The XC3000 Logic Cell Array families provide a variety of  
logic capacities, package styles, temperature ranges and  
speed grades.  
parallel. The XACT development system generates the  
configuration program bitstream used to configure the  
LCA device. The memory loading process is independent  
of the user logic functions.  
Architecture  
The perimeter of configurable IOBs provides a pro-  
grammable interface between the internal logic array and  
the device package pins. The array of CLBs performs  
user-specifiedlogicfunctions. Theinterconnectresources  
are programmed to form networks, carrying logic signals  
among blocks, analogous to printed circuit board traces  
connecting MSI/SSI packages.  
Configuration Memory  
The static memory cell used for the configuration memory  
in the Logic Cell Array has been designed specifically for  
high reliability and noise immunity. Integrity of the LCA  
device configuration memory based on this design is  
assured even under adverse conditions. Compared with  
other programming alternatives, static memory provides  
the best combination of high density, high performance,  
high reliability and comprehensive testability. As shown in  
Figure 2, the basic memory cell consists of two CMOS  
inverters plus a pass transistor used for writing and read-  
ing cell data. The cell is only written during configuration  
and only read during readback. During normal operation,  
thecellprovidescontinuouscontrolandthepasstransistor  
is off and does not affect cell stability. This is quite different  
from the operation of conventional memory devices, in  
which the cells are frequently read and rewritten.  
Theblocklogicfunctionsareimplementedbyprogrammed  
look-up tables. Functional options are implemented by  
program-controlledmultiplexers.Interconnectingnetworks  
between blocks are implemented with metal segments  
joined by program-controlled pass transistors.  
These LCA functions are established by a configuration  
program which is loaded into an internal, distributed array  
of configuration memory cells. The configuration program  
is loaded into the LCA device at power-up and may be  
reloadedoncommand. TheLogicCellArrayincludeslogic  
and control signals to implement automatic or passive  
PWR  
DN  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
GND  
I/O Blocks  
P11  
3-State Buffers With Access  
to Horizontal Long Lines  
Configurable Logic  
Blocks  
TCL  
KIN  
AA  
AB  
AC  
AD  
P12  
Interconnect Area  
P13  
U61  
BA  
BB  
Configuration Memory  
X3241  
Figure 1. Logic Cell Array Structure.  
It consists of a perimeter of programmable I/O blocks, a core of configurable logic blocks and their interconnect resources.  
These are all controlled by the distributed array of configuration program memory cells.  
2-106  
The method of loading the configuration data is selectable.  
Two methods use serial data, while three use byte-wide  
data. The internal configuration logic utilizes framing  
information, embedded in the program data by the XACT  
development system, to direct memory-cell loading. The  
serial-data framing and length-count preamble provide  
programming compatibility for mixes of various LCA device  
devices in a synchronous, serial, daisy-chain fashion.  
Q
Q
Configuration  
Control  
Read or  
Write  
Data  
X5382  
I/O Block  
Figure 2. Static Configuration Memory Cell.  
Each user-configurable IOB shown in Figure 3, provides  
an interface between the external package pin of the  
device and the internal user logic. Each IOB includes both  
registered and direct input paths. Each IOB provides a  
programmable 3-state output buffer, which may be driven  
by a registered or direct output signal. Configuration  
options allow each IOB an inversion, a controlled slew rate  
and a high impedance pull-up. Each input circuit also  
provides input clamping diodes to provide electrostatic  
protection, and circuits to inhibit latch-up produced by  
input currents.  
It is loaded with one bit of configuration program and  
controls one program selection in the Logic Cell Array.  
The memory cell outputs Q and Q use ground and VCC  
levels and provide continuous, direct control. The addi-  
tionalcapacitiveloadtogetherwiththeabsenceofaddress  
decoding and sense amplifiers provide high stability to the  
cell. Duetothestructureoftheconfigurationmemorycells,  
they are not affected by extreme power-supply excursions  
or very high levels of alpha particle radiation. In reliability  
testing, no soft errors have been observed even in the  
presence of very high doses of alpha radiation.  
Vcc  
PROGRAM-CONTROLLED MEMORY CELLS  
OUT  
INVERT  
OUTPUT  
SELECT  
SLEW  
RATE  
PASSIVE  
PULL UP  
3-STATE  
INVERT  
T
3- STATE  
(OUTPUT ENABLE)  
O
D
Q
OUTPUT  
BUFFER  
OUT  
FLIP  
FLOP  
I/O PAD  
R
I
DIRECT IN  
Q
REGISTERED IN  
Q
D
FLIP  
FLOP  
or  
TTL or  
CMOS  
INPUT  
LATCH  
THRESHOLD  
R
(GLOBAL RESET)  
OK  
IK  
CK1  
CK2  
PROGRAM  
CONTROLLED  
MULTIPLEXER  
=
PROGRAMMABLE INTERCONNECTION POINT or PIP  
X3029  
Figure 3. Input/Output Block.  
Each IOB includes input and output storage elements and I/O options selected by configuration memory cells. A choice of two  
clocks is available on each die edge. The polarity of each clock line (not each flip-flop or latch) is programmable. A clock line that  
triggers the flip-flop on the rising edge is an active Low Latch Enable (Latch transparent) signal and vice versa. Passive pull-up can  
only be enabled on inputs, not on outputs. All user inputs are programmed for TTL or CMOS thresholds.  
2-107  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
The input-buffer portion of each IOB provides threshold  
detection to translate external signals applied to the  
package pin to internal logic levels. The global input-buffer  
threshold of the IOBs can be programmed to be  
compatible with either TTL or CMOS levels. The buffered  
input signal drives the data input of a storage element,  
whichmaybeconfiguredaseitheraflip-floporalatch. The  
clocking polarity (rising/falling edge-triggered flip-flop,  
High/Low transparent latch) is programmable for each of  
the two clock lines on each of the four die edges. Note that  
a clock line driving a rising edge-triggered flip-flop makes  
any latch driven by the same line on the same edge Low-  
level transparent and vice versa (falling edge, High  
transparent). All Xilinx primitives in the supported  
schematic-entry packages, however, are positive edge-  
triggered flip-flops or High transparent latches. When one  
clock line must drive flip-flops as well as latches, it is  
necessary to compensate for the difference in clocking  
polarities with an additional inverter either in the flip-flop  
clock input or the latch-enable input. I/O storage elements  
are reset during configuration or by the active-Low chip  
RESET input. Both direct input (from IOB pin I) and  
registered input (from IOB pin Q) signals are available for  
interconnect.  
(IOB) pin FT can control output activity. An open-drain  
output may be obtained by using the same signal for  
driving the output and 3-state signal nets so that the buffer  
output is enabled only for a Low.  
Configuration program bits for each IOB control features  
suchasoptionaloutputregister, logicsignalinversion, and  
3-state and slew-rate control of the output.  
The program-controlled memory cells of Figure 3 control  
the following options.  
Logic inversion of the output is controlled by one  
configuration program bit per IOB.  
Logic 3-state control of each IOB output buffer is  
determined by the states of configuration program bits  
which turn the buffer on, or off, or select the output buffer  
3-state control interconnection (IOB pin T). When this  
IOB output control signal is High, a logic one, the buffer  
is disabled and the package pin is high impedance.  
When this IOB output control signal is Low, a logic zero,  
the buffer is enabled and the package pin is active.  
Inversionofthebuffer3-statecontrol-logicsense(output  
enable) is controlled by an additional configuration  
program bit.  
For reliable operation, inputs should have transition times  
of less than 100 ns and should not be left floating. Floating  
CMOSinput-pincircuitsmightbeatthresholdandproduce  
oscillations. Thiscanproduceadditionalpowerdissipation  
and system noise. A typical hysteresis of about 300 mV  
reduces sensitivity to input noise. Each user IOB includes  
a programmable high-impedance pull-up resistor, which  
maybeselectedbytheprogramtoprovideaconstantHigh  
for otherwise undriven package pins. Although the Logic  
Cell Array provides circuitry to provide input protection for  
electrostatic discharge, normal CMOS handling precau-  
tions should be observed.  
Direct or registered output is selectable for each IOB.  
The register uses a positive-edge, clocked flip-flop. The  
clock source may be supplied (IOB pin OK) by either of  
two metal lines available along each die edge. Each of  
these lines is driven by an invertible buffer.  
Increased output transition speed can be selected to  
improve critical timing. Slower transitions reduce  
capacitive-loadpeakcurrentsofnon-criticaloutputsand  
minimize system noise.  
Flip-flop loop delays for the IOB and logic-block flip-flops  
are about 3 ns. This short delay provides good perfor-  
mance under asynchronous clock and data conditions.  
Short loop delays minimize the probability of a metastable  
condition that can result from assertion of the clock during  
data transitions. Because of the short-loop-delay charac-  
teristic in the Logic Cell Array, the IOB flip-flops can be  
usedtosynchronizeexternalsignalsappliedtothedevice.  
Once synchronized in the IOB, the signals can be used  
internally without further consideration of their clock rela-  
tive timing, except as it applies to the internal logic and  
routing-path delays.  
An internal high-impedance pull-up resistor (active by  
default) prevents unconnected inputs from floating.  
Summary of I/O Options  
Inputs  
– Direct  
– Flip-flop/latch  
– CMOS/TTL threshold (chip inputs)  
– Pull-up resistor/open circuit  
Outputs  
– Direct/registered  
– Inverted/not  
– 3-state/on/off  
– Full speed/slew limited  
– 3-state/output enable (inverse)  
IOB output buffers provide CMOS-compatible 4-mA  
source-or-sink drive for high fan-out CMOS or TTL- com-  
patible signal levels (8 mA in the XC3100 family). The  
networkdrivingIOBpinObecomestheregisteredordirect  
datasourcefortheoutputbuffer. The3-statecontrolsignal  
2-108  
Configurable Logic Block  
The array of CLBs provides the functional elements from  
which the user’s logic is constructed. The logic blocks are  
arranged in a matrix within the perimeter of IOBs. The  
XC3020 has 64 such blocks arranged in 8 rows and 8  
columns. The XACT development system is used to com-  
pile the configuration data which is to be loaded into the  
internal configuration memory to define the operation and  
interconnection of each block. User definition of CLBs and  
their interconnecting networks may be done by automatic  
translation from a schematic-capture logic diagram or  
optionally by installing library or user macros.  
Each CLB has a combinatorial logic section, two flip-flops,  
and an internal control section. See Figure 4. There are:  
five logic inputs (A, B, C, D and E); a common clock input  
(K); an asynchronous direct RESET input (RD); and an  
enable clock (EC). All may be driven from the interconnect  
resources adjacent to the blocks. Each CLB also has two  
outputs (X and Y) which may drive interconnect networks.  
Data input for either flip-flop within a CLB is supplied from  
thefunctionForGoutputsofthecombinatoriallogic, orthe  
block input, DI. Both flip-flops in each CLB share the  
DI  
DATA IN  
0
MUX  
1
D
Q
F
DIN  
G
QX  
F
RD  
QX  
X
A
F
B
COMBINATORIAL  
FUNCTION  
C
D
E
LOGIC  
VARIABLES  
CLB OUTPUTS  
G
G
QY  
Y
F
QY  
DIN  
G
0
MUX  
D
Q
1
EC  
ENABLE CLOCK  
RD  
1 (ENABLE)  
K
CLOCK  
RD  
DIRECT  
RESET  
0 (INHIBIT)  
(GLOBAL RESET)  
X3032  
Figure 4. Configurable Logic Block. Each CLB includes a combinatorial logic section, two flip-flops and a program  
memory controlled multiplexer selection of function. It has. five logic variable inputs A, B, C, D, and E  
a direct data in DI  
an enable clock EC  
a clock (invertible) K  
an asynchronous direct RESET RD  
two outputs X and Y  
2-109  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
A
B
Count Enable  
Parallel Enable  
Clock  
Terminal  
Count  
QX  
Any Function  
of Up to 4  
QY  
F
Variables  
Dual Function of 4 Variables  
C
D
E
D
Q
Q
Q
Q0  
D0  
A
B
QX  
FG  
Mode  
Any Function  
of Up to 4  
QY  
G
Variables  
C
D
E
5a  
D
Q1  
D1  
A
B
Function of 5 Variables  
F
QX  
F
Mode  
Any Function  
of 5 Variables  
QY  
G
C
D
E
5b  
D
Q2  
D2  
A
B
QX  
Function of 6 Variables  
FGM  
Mode  
Any Function  
of Up to 4  
QY  
Variables  
X5383  
C
D
F
M
U
X
Figure 6. C8BCP Macro.  
A
B
G
The C8BCP macro (modulo-8 binary counter with parallel  
enable and clock enable) uses one combinatorial logic block  
of each option.  
QX  
Any Function  
of Up to 4  
QY  
Variables  
C
D
FGM  
Mode  
E
5c  
X5442  
Figure 5  
5a. Combinatorial Logic Option FG generates two functions  
of four variables each. One variable, A, must be common  
to both functions. The second and third variable can be  
any choice of of B, C, QX and QY The fourth variable  
can be any choice of D or E.  
5b. Combinatorial Logic Option F generates any function of  
five variables: A, D, E and and two choices out of B, C,  
QX, QY.  
5c. Combinatorial Logic Option FGM allows variable E to  
select between two functions of four variables: Both have  
common inputs A and D and any choice out of B, C, QX  
and QY for the remaining two variables. Option 3 can  
then implement some functions of six or seven variables.  
2-110  
asynchronous RD which, when enabled and High, is  
dominant over clocked inputs. All flip-flops are reset by the  
active-Low chip input, RESET, or during the configuration  
process. The flip-flops share the enable clock (EC) which,  
when Low, recirculates the flip-flops’ present states and  
inhibits response to the data-in or combinatorial function  
inputs on a CLB. The user may enable these control inputs  
and select their sources. The user may also select the  
clock net input (K), as well as its active sense within each  
CLB. This programmable inversion eliminates the need to  
route both phases of a clock signal throughout the device.  
Flexible routing allows use of common or individual CLB  
clocking.  
switch connections to block inputs are unidirec-  
tional, as are block outputs, they are usable only for  
block input connection and not for routing. Figure 8  
illustrates routing access to logic block input variables,  
control inputs and block outputs. Three types of metal  
resourcesareprovidedtoaccommodatevariousnetwork  
interconnect requirements.  
• General Purpose Interconnect  
• Direct Connection  
• Longlines (multiplexed busses and wide AND gates)  
General Purpose Interconnect  
General purpose interconnect, as shown in Figure 9,  
consists of a grid of five horizontal and five vertical metal  
segments located between the rows and columns of logic  
and IOBs. Each segment is the height or width of a logic  
block. Switching matrices join the ends of these segments  
and allow programmed interconnections between the  
metal grid segments of adjoining rows and columns. The  
switches of an unprogrammed device are all non-  
conducting. The connections through the switch matrix  
may be established by the automatic routing or by using  
Editnet to select the desired pairs of matrix pins to be  
connected or disconnected. The legitimate switching  
matrixcombinationsforeachpinareindicatedin Figure10  
and may be highlighted by the use of the Show-Matrix  
command in the XACT system.  
The combinatorial-logic portion of the CLB uses a 32 by 1  
look-up table to implement Boolean functions. Variables  
selected from the five logic inputs and two internal block  
flip-flops are used as table address inputs. The combina-  
torial propagation delay through the network is indepen-  
dent of the logic function generated and is spike free for  
single input variable changes. This technique can gener-  
ate two independent logic functions of up to four variables  
each as shown in Figure 5a, or a single function of five  
variables as shown in Figure 5b, or some functions of  
seven variables as shown in Figure 5c. Figure 6 shows a  
modulo-8 binary counter with parallel enable. It uses one  
CLB of each type. The partial functions of six or seven  
variables are implemented using the input variable (E) to  
dynamically select between two functions of four different  
variables. For the two functions of four variables each, the  
independent results (F and G) may be used as data inputs  
to either flip-flop or either logic block output. For the single  
function of five variables and merged functions of six or  
seven variables, the F and G outputs are identical. Sym-  
metry of the F and G functions and the flip-flops allows the  
interchangeofCLBoutputstooptimizeroutingefficiencies  
of the networks interconnecting the CLBs and IOBs.  
Programmable Interconnect  
Programmable-interconnection resources in the Logic  
Cell Array provide routing paths to connect inputs and  
outputs of the IOBs and CLBs into logic networks. Inter-  
connections between blocks are composed of a two-layer  
grid of metal segments. Specially designed pass transis-  
tors, each controlled by a configuration bit, form program-  
mable interconnect points (PIPs) and switching matrices  
used to implement the necessary connections between  
selected metal segments and block pins. Figure 7 is an  
example of a routed net. The XACT development system  
provides automatic routing of these interconnections. In-  
teractive routing (Editnet) is also available for design  
optimization. TheinputsoftheCLBsorIOBsaremultiplex-  
ers which can be programmed to select an input network  
from the adjacent interconnect segments. Since the  
Figure 7.  
An XACT view of routing resources used to form a typical  
interconnection network from CLB GA.  
2-111  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
X2662  
Figure 8. XACT Development System Locations of interconnect access, CLB control inputs, logic inputs and outputs. The dot  
pattern represents the available programmable interconnection points (PIPs).  
Some of the interconnect PIPs are directional. This is indicated on the XACT design editor status line:  
ND is a nondirectional interconnection.  
D:H->V is a PIP that drives from a horizontal to a vertical line.  
D:V->H is a PIP that drives from a vertical to a horizontal line.  
D:C->T is a “T” PIP that drives from a cross of a T to the tail.  
D:CW is a corner PIP that drives in the clockwise direction.  
P0 indicates the PIP is non-conducting , P1 is on.  
2-112  
Special buffers within the general interconnect areas pro-  
vide periodic signal isolation and restoration for improved  
performance of lengthy nets. The interconnect buffers are  
availabletopropagatesignalsineitherdirectiononagiven  
general interconnect segment. These bidirectional (bidi)  
buffers are found adjacent to the switching matrices,  
above and to the right and may be highlighted by the use  
oftheShowBIDIcommandintheXACTsystem. Theother  
PIPs adjacent to the matrices are accessed to or from  
Longlines. The development system automatically de-  
fines the buffer direction based on the location of the  
interconnection network source. The delay calculator of  
the XACT development system automatically calculates  
and displays the block, interconnect and buffer delays for  
any paths selected. Generation of the simulation netlist  
with a worst-case delay model is provided by an XACT  
option.  
Direct Interconnect  
Direct interconnect, shown in Figure 11, provides the most  
efficient implementation of networks between adjacent  
CLBs or I/O Blocks. Signals routed from block to block  
usingthedirectinterconnectexhibitminimuminterconnect  
propagation and use no general interconnect resources.  
For each CLB, the X output may be connected directly to  
the B input of the CLB immediately to its right and to the C  
input of the CLB to its left. The Y output can use direct  
interconnect to drive the D input of the block immediately  
above and the A input of the block below. Direct intercon-  
Figure 9. LCA General-Purpose Interconnect.  
Composed of a grid of metal segments that may be intercon-  
nected through switch matrices to form networks for CLB and  
X2664  
IOB inputs and outputs.  
1
2
3
4
5
6
7
8
9
10  
15  
11  
12  
13  
14  
16  
17  
18  
19  
20  
X2663  
1105 13  
Figure 11. CLB X and Y Outputs.  
The X and Y outputs of each CLB have single contact, direct  
access to inputs of adjacent CLBs  
Figure 10. Switch Matrix Interconnection Options for Each  
Pin. Switch matrices on the edges are different. Use Show  
Matrix menu option in the XACT system  
2-113  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
X2660  
Figure 12. XC3020 Die-Edge IOBs. The XC3020 die-edge IOBs are provided with direct access to adjacent CLBs.  
2-114  
nect should be used to maximize the speed of high-  
performance portions of logic. Where logic blocks are  
adjacent to IOBs, direct connect is provided alternately to  
the IOB inputs (I) and outputs (O) on all four edges of the  
die. The right edge provides additional direct connects  
from CLB outputs to adjacent IOBs. Direct interconnec-  
tions of IOBs with CLBs are shown in Figure 12.  
A buffer in the upper left corner of the LCA chip drives a  
global net which is available to all K inputs of logic blocks.  
Using the global buffer for a clock signal provides a skew-  
free, high fan-out, synchronized clock for use at any or all  
of the IOBs and CLBs. Configuration bits for the K input to  
each logic block can select this global line or another  
routing resource as the clock source for its flip-flops. This  
net may also be programmed to drive the die edge clock  
lines for IOB use. An enhanced speed, CMOS threshold,  
direct access to this buffer is available at the second pad  
from the top of the left die edge.  
Longlines  
The Longlines bypass the switch matrices and are in-  
tended primarily for signals that must travel a long dis-  
tance, or must have minimum skew among multiple des-  
tinations. Longlines, shown in Figure 13, run vertically and  
horizontally the height or width of the interconnect area.  
Each interconnection column has three vertical Longlines,  
and each interconnection row has two horizontal Lon-  
glines. Two additional Longlines are located adjacent to  
the outer sets of switching matrices. In devices larger than  
the XC3020, two vertical Longlines in each column are  
connectable half-length lines. On the XC3020, only the  
outer Longlines are connectable half-length lines.  
A buffer in the lower right corner of the array drives a  
horizontal Longline that can drive programmed connec-  
tionstoaverticalLonglineineachinterconnectioncolumn.  
This alternate buffer also has low skew and high fan-out.  
The network formed by this alternate buffer’s Longlines  
can be selected to drive the K inputs of the CLBs. CMOS  
threshold,highspeedaccesstothisbufferisavailablefrom  
the third pad from the bottom of the right die edge.  
Internal Busses  
A pair of 3-state buffers, located adjacent to each CLB,  
permits logic to drive the horizontal Longlines. Logic op-  
eration of the 3-state buffer controls allows them to imple-  
ment wide multiplexing functions. Any 3-state buffer input  
can be selected as drive for the horizontal long-line bus by  
applying a Low logic level on its 3-state control line. See  
Figure 15a. The user is required to avoid contention which  
can result from multiple drivers with opposing logic levels.  
Longlines can be driven by a logic block or IOB output on  
a column-by-column basis. This capability provides a  
common low skew control or clock line within each column  
of logic blocks. Interconnections of these Longlines are  
shown in Figure 14. Isolation buffers are provided at each  
input to a Longline and are enabled automatically by the  
development system when a connection is made.  
X1243  
Figure 13. Horizontal and Vertical Longlines. These Longlines provide high fan-out, low-skew signal distribution in each row and  
column. The global buffer in the upper left die corner drives a common line throughout the LCA device.  
2-115  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
Control of the 3-state input by the same signal that drives  
the buffer input, creates an open-drain wired-AND func-  
tion. A logic High on both buffer inputs creates a high  
impedance, which represents no contention. A logic Low  
enables the buffer to drive the Longline Low. See Figure  
15b. Pull-up resistors are available at each end of the  
Longline to provide a High output when all connected  
buffers are non-conducting. This forms fast, wide gating  
functions. When data drives the inputs, and separate  
signals drive the 3-state control lines, these buffers form  
multiplexers (3-state busses). In this case, care must be  
used to prevent contention through multiple active buffers  
X1244  
Figure 14. Programmable Interconnection of Longlines. This is provided at the edges of the routing area. Three-state buffers  
allow the use of horizontal Longlines to form on-chip wired AND and multiplexed buses. The left two non-clock vertical Longlines  
per column (except XC3020) and the outer perimeter Longlines may be programmed as connectible half-length lines.  
V
V
CC  
CC  
Z = D • D • D  
• D  
... N  
A
B
C
(LOW)  
D
D
D
D
N
A
B
C
X3036  
Figure 15a. 3-State Buffers Implement a Wired-AND Function. When all the buffer 3-state  
lines are High, (high impedance), the pull-up resistor(s) provide the High output. The buffer  
inputs are driven by the control signals or a Low.  
T
OE  
Z = DA • A + DB • B + DC • C + … + DN • N  
DA  
A
DB  
B
DC  
C
DN  
N
X1741  
WEAK  
KEEPER  
CIRCUIT  
Figure 15b. 3-State Buffers Implement a Multiplexer. The selection is accomplished by the buffer 3-state signal.  
2-116  
option is available to assure symmetry. The oscillator  
circuitbecomesactiveearlyintheconfigurationprocessto  
allow the oscillator to stabilize. Actual internal connection  
is delayed until completion of configuration. In Figure 17  
the feedback resistor R1, between the output and input,  
biases the amplifier at threshold. The inversion of the  
amplifier, together with the R-C networks and an AT-cut  
series resonant crystal, produce the 360-degree phase  
shift of the Pierce oscillator. A series resistor R2 may be  
included to add to the amplifier output impedance when  
needed for phase-shift control, crystal resistance match-  
ing, or to limit the amplifier input swing to control clipping  
at large amplitudes. Excess feedback voltage may be  
corrected by the ratio of C2/C1. The amplifier is designed  
to be used from 1 MHz to about one-half the specified CLB  
toggle frequency. Use at frequencies below 1 MHz may  
require individual characterization with respect to a series  
of conflicting levels on a common line. Each horizontal  
Longline is also driven by a weak keeper circuit that  
prevents undefined floating levels by maintaining the pre-  
vious logic level when the line is not driven by an active  
buffer or a pull-up resistor. Figure 16 shows 3-state buff-  
ers, Longlines and pull-up resistors.  
Crystal Oscillator  
Figure16alsoshowsthelocationofaninternalhighspeed  
inverting amplifier which may be used to implement an on-  
chip crystal oscillator. It is associated with the auxiliary  
buffer in the lower right corner of the die. When the  
oscillator is configured by MakeBits and connected as a  
signalsource, twospecialuserIOBsarealsoconfiguredto  
connect the oscillator amplifier with external crystal oscil-  
lator components as shown in Figure 17. A divide by two  
X1245  
Figure 16. XACT Development System. An extra large view of possible interconnections in the lower right corner of the XC3020.  
2-117  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
D
Q
Internal  
External  
Alternate  
Clock Buffer  
XTAL1  
XTAL2  
(IN)  
R1  
R2  
Suggested Component Values  
R1 0.5 – 1 MΩ  
R2 0 – 1 kΩ  
Y1  
(may be required for low frequency, phase)t  
(shift and/or compensation level for crystal Q)  
C1, C2 10 – 40 pF  
Y1 1 – 20 MHz AT-cut parallel resonant  
C1  
C2  
100 PIN  
164 PIN 175 PIN 208 PIN  
44 PIN 68 PIN  
84 PIN  
132 PIN 160 PIN  
CQFP PQFP  
CQFP  
105  
PGA  
T14  
P15  
PQFP  
110  
PLCC  
30  
PLCC PLCC  
PGA  
J11  
PGA  
P13  
M13  
PQFP  
82  
XTAL 1 (OUT)  
XTAL 2 (IN)  
67  
61  
82  
76  
47  
43  
57  
53  
26  
99  
100  
L11  
76  
X5302  
Figure 17. Crystal Oscillator Inverter. When activated in the MakeBits program and by selecting an output network for its buffer,  
the crystal oscillator inverter uses two unconfigured package pins and external components to implement an oscillator. An optional  
divide-by-two mode is available to assure symmetry.  
resistance. Crystal oscillators above 20 MHz generally  
require a crystal which operates in a third overtone mode,  
where the fundamental frequency must be suppressed by  
an inductor across C2, turning this parallel resonant circuit  
todoublethefundamentalcrystalfrequency,i.e., 2/3ofthe  
desiredthirdharmonicfrequencynetwork. Whentheoscil-  
lator inverter is not used, these IOBs and their package  
pins are available for general user I/O.  
Initialization Phase  
An internal power-on-reset circuit is triggered when power  
isapplied.WhenVccreachesthevoltageatwhichportions  
of the LCA device begin to operate (nominally 2.5 to 3 V),  
the programmable I/O output buffers are 3-stated and a  
high-impedance pull-up resistor is provided for the user  
I/O pins. A time-out delay is initiated to allow the power  
supply voltage to stabilize. During this time the power-  
down mode is inhibited. The Initialization state time-out  
(about 11 to 33 ms) is determined by a 14-bit counter  
driven by a self-generated internal timer. This nominal 1-  
MHz timer is subject to variations with process, tempera-  
ture and power supply. As shown in Table 1, five configu-  
ration mode choices are available as determined by the  
input levels of three mode pins; M0, M1 and M2.  
Programming  
Table 1  
M0 M1 M2 CCLK  
Mode  
Data  
0
0
0
0
0
0
1
1
0
1
0
1
output Master  
output Master  
Bit Serial  
Byte Wide Addr. = 0000 up  
In Master configuration modes, the LCA device becomes  
the source of the Configuration Clock (CCLK). The begin-  
ning of configuration of devices using Peripheral or Slave  
modes must be delayed long enough for their initialization  
to be completed. An LCA device with mode lines selecting  
a Master configuration mode extends its initialization state  
using four times the delay (43 to 130 ms) to assure that all  
daisy-chained slave devices, which it may be driving, will  
reserved  
output Master  
Byte Wide Addr. = FFFF  
down  
1
1
1
1
0
0
1
1
0
1
0
1
reserved  
output Peripheral Byte Wide  
input  
reserved  
Slave  
Bit Serial  
2-118  
be ready even if the master is very fast, and the slave(s)  
very slow. Figure 18 shows the state sequences. At the  
end of Initialization, the LCA device enters the Clear state  
where it clears the configuration memory. The active Low,  
open-drain initialization signal INIT indicates when the  
Initialization and Clear states are complete. The LCA  
device tests for the absence of an external active Low  
RESET before it makes a final sample of the mode lines  
andenterstheConfigurationstate. Anexternalwired-AND  
of one or more INIT pins can be used to control configura-  
tion by the assertion of the active-Low RESET of a master  
mode device or to signal a processor that the LCA devices  
are not yet initialized.  
Length count control allows a system of multiple Logic Cell  
Arrays, of assorted sizes, to begin operation in a synchro-  
nized fashion. The configuration program generated by  
the MakePROM program of the XACT development sys-  
tem begins with a preamble of 111111110010 followed by  
a 24-bit length count representing the total number of  
configuration clocks needed to complete loading of the  
configuration program(s). The data framing is shown in  
Figure 19. All LCA devices connected in series read and  
shift preamble and length count in on positive and out on  
negative configuration clock edges. An LCA device which  
has received the preamble and length count then presents  
a High Data Out until it has intercepted the appropriate  
number of data frames. When the configuration program  
memory of an LCA device is full and the length count does  
not yet compare, the LCA device shifts any additional data  
through, as it did for preamble and length count.  
If a configuration has begun, a re-assertion of RESET for  
a minimum of three internal timer cycles will be recognized  
and the LCA device will initiate an abort, returning to the  
Clear state to clear the partially loaded configuration  
memory words. The LCA device will then resample RE-  
SET and the mode lines before re-entering the Configura-  
tion state.  
When the LCA device configuration memory is full and the  
length count compares, the LCA device will execute a  
synchronous start-up sequence and become operational.  
See Figure 20. Two CCLK cycles after the completion of  
loading configuration data, the user I/O pins are enabled  
as configured. As selected in MakeBits, the internal user-  
logic RESET is released either one clock cycle before or  
after the I/O pins become active. A similar timing selection  
is programmable for the DONE/PROG output signal.  
DONE/PROG may also be programmed to be an open  
drain or include a pull-up resistor to accommodate wired  
ANDing. The High During Configuration (HDC) and Low  
DuringConfiguration(LDC)aretwouserI/Opinswhichare  
driven active while an LCA device is in its Initialization,  
Are-programisinitiated.whenaconfiguredXC3000family  
device senses a High-to-Low transition and subsequent  
>6 µs Low level on the Done/PROG package pin, or, if this  
pin is externally held permanently Low, a High-to-Low  
transition and subsequent >6 µs Low time on the RESET  
package pin.  
The LCA device returns to the Clear state where the  
configuration memory is cleared and mode lines re-  
sampled, as for an aborted configuration. The complete  
configuration program is cleared and loaded during each  
configuration program cycle.  
All User I/O Pins 3-Stated with High Impedance Pull-Up, HDC=High, LDC=Low  
INIT Output = Low  
Power Down  
No HDC, LDC  
or Pull-Up  
PWRDWN  
Inactive  
Initialization  
Power-On  
Time Delay  
PWRDWN  
Active  
Active RESET  
Clear  
Configuration  
Memory  
Test  
Mode Pins  
Configuration  
Operational  
Start-Up  
RESET  
Active  
Program Mode  
Mode  
No  
Active RESET  
Operates on  
User Logic  
Low on DONE/PROGRAM and RESET  
Clear Is  
~ 200 Cycles for the XC3020—130 to 400 µs  
~ 250 Cycles for the XC3030—165 to 500 µs  
~ 290 Cycles for the XC3042—195 to 580 µs  
~ 330 Cycles for the XC3064—220 to 660 µs  
~ 375 Cycles for the XC3090—250 to 750 µs  
Power-On Delay is  
14  
2
2
Cycles for Non-Master Mode—11 to 33 ms  
Cycles for Master Mode—43 to 130 ms  
16  
X3399  
Figure 18. A State Diagram of the Configuration Process for Power-up and Reprogram.  
2-119  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
ClearorConfigurestates. TheyandDONE/PROGprovide  
signalsforcontrolofexternallogicsignalssuchasRESET,  
bus enable or PROM enable during configuration. For  
parallel Master configuration modes, these signals pro-  
vide PROM enable control and allow the data pins to be  
shared with user logic signals.  
at the completion of configuration if the user has selected  
CMOS thresholds. The threshold of PWRDWN and the  
direct clock inputs are fixed at a CMOS level.  
Ifthecrystaloscillatorisused, itwillbeginoperationbefore  
configuration is complete to allow time for stabilization  
before it is connected to the internal circuitry.  
User I/O inputs can be programmed to be either TTL or  
CMOS compatible thresholds. At power-up, all inputs  
have TTL thresholds and can change to CMOS thresholds  
Configuration Data  
Configuration data to define the function and interconnec-  
tion within a Logic Cell Array is loaded from an external  
11111111  
0010  
—Dummy Bits*  
—Preamble Code  
Header  
< 24-Bit Length Count >  
1111  
—Configuration Program Length  
—Dummy Bits (4 Bits Minimum)  
0 <Data Frame # 001 > 111  
0 <Data Frame # 002 > 111  
0 <Data Frame # 003 > 111  
For XC3120  
197 Configuration Data Frames  
.
.
.
.
.
.
.
.
.
.
.
.
Program Data  
(Each Frame Consists of:  
A Start Bit (0)  
A 71-Bit Data Field  
Three Stop Bits  
Repeated for Each Logic  
Cell Array in a Daisy Chain  
0 <Data Frame # 196 > 111  
0 <Data Frame # 197 > 111  
1111  
Postamble Code (4 Bits Minimum)  
*The LCA Device Require Four Dummy Bits Min; XACT Software Generates Eight Dummy Bits  
X5300  
XC3020  
XC3030  
XC3042  
XC3064  
XC3090  
XC3090A  
XC3090L  
XC3020A  
XC3020L  
XC3120  
XC3030A  
XC3030L  
XC3130  
XC3042A  
XC3042L  
XC3142  
XC3064A  
XC3064L  
XC3164  
XC3190  
XC3195  
XC3195A  
Device  
XC3120A  
XC3130A  
XC3142A  
XC3164A  
XC3190A  
Gates  
1,000 to  
1,500  
1,500 to  
2,000  
2,000 to  
3,000  
3,500 to  
4,500  
5,000 to  
6,000  
6,500 to  
7,500  
CLBs  
Row x Col  
64  
(8 x 8)  
100  
(10 x 10)  
144  
(12 x 12)  
224  
(16 x 14)  
320  
(20 x 16)  
484  
(22 x 22)  
IOBs  
64  
80  
96  
120  
144  
176  
Flip-flops  
256  
360  
20  
480  
24  
688  
32  
928  
40  
1,320  
44  
Horizontal Longlines 16  
TBUFs/Horizontal LL 9  
11  
13  
15  
17  
23  
Bits per Frame  
75  
92  
108  
140  
172  
188  
(including1 start and 3 stop bits)  
Frames  
197  
241  
285  
329  
373  
505  
Program Data =  
14,779  
22,176  
30,784  
46,064  
64,160  
94,944  
Bits x Frames + 4 bits  
(excludes header)  
PROM size (bits) =  
Program Data  
14,819  
22,216  
30,824  
46,104  
64,200  
94,984  
+ 40-bit Header  
Figure 19. Internal Configuration Data Structure for an LCA Device. This shows the preamble, length count and data frames  
generated by the XACT Development System.  
The Length Count produced by the MakeBits program = [(40-bit preamble + sum of program data + 1 per daisy chain device)  
rounded up to multiple of 8] – (2 K 4) where K is a function of DONE and RESET timing selected. An additional 8 is added  
if roundup increment is less than K. K additional clocks are needed to complete start-up after length count is reached.  
2-120  
Postamble  
Last Frame  
Data Frame  
12  
24  
4
3
4
3
STOP  
DIN  
Stop  
Preamble  
Length Count  
Data  
Start  
Bit  
Length Count*  
Start  
Bit  
The configuration data consists of a composite  
40-bit preamble/length count, followed by one or  
more concatenated LCA programs, separated by  
4-bit postambles. An additional final postamble bit  
is added for each slave device and the result rounded  
up to a byte boundary. The length count is two less  
than the number of resulting bits.  
Weak Pull-Up  
*
I/O Active  
DONE  
PROGRAM  
Timing of the assertion of DONE and  
termination of the INTERNAL RESET  
may each be programmed to occur  
one cycle before or after the I/O outputs  
become active.  
Internal Reset  
Heavy lines indicate the default condition  
X5303  
Figure 20. Configuration and Start-up of One or More LCA Devices.  
storageatpower-upandafterare-programsignal.Several  
methods of automatic and controlled loading of the re-  
quired data are available. Logic levels applied to mode  
selection pins at the start of configuration time determine  
the method to be used. See Table 1. The data may be  
either bit-serial or byte-parallel, depending on the configu-  
ration mode. The different LCA devices have different  
sizesandnumbersofdataframes.Tomaintaincompatibil-  
ity between various device types, the Xilinx product fami-  
lies use compatible configuration formats. For the  
XC3020, configuration requires 14779 bits for each de-  
vice, arrangedin197dataframes. Anadditional40bitsare  
used in the header. See Figure 20. The specific data  
format for each device is produced by the MakeBits  
command of the development system and one or more of  
thesefilescanthenbecombinedandappendedtoalength  
count preamble and be transformed into a PROM format  
file by the MakePROM command of the XACT develop-  
ment system. A compatibility exception precludes the use  
of an XC2000-series device as the master for XC3000-  
series devices if their DONE or RESET are programmed  
to occur after their outputs become active.  
Flagnet command of EDITLCA can be used to indicate  
netswhichmustnotbeusedtodrivetheremainingunused  
routing, as that might affect timing of user nets. Norestore  
willretaintheresultsoftiefortiminganalysiswithQuerynet  
before Restore returns the design to the untied condition.  
Tie can be omitted for quick breadboard iterations where  
a few additional milliamps of ICC are acceptable.  
The configuration bitstream begins with eight High pre-  
amblebits, a4-bitpreamblecodeanda24-bitlengthcount.  
When configuration is initiated, a counter in the LCA device  
is set to zero and begins to count the total number of  
configuration clock cycles applied to the device. As each  
configuration data frame is supplied to the LCA device, it is  
internallyassembledintoadataword, whichisthen loaded  
in parallel into one word of the internal configuration  
memory array. The configuration loading process is com-  
plete when the current length count equals the loaded  
length count and the required configuration program data  
frames have been written. Internal user flip-flops are held  
Reset during configuration.  
Two user-programmable pins are defined in the unconfig-  
ured Logic Cell array. High During Configuration (HDC)  
and Low During Configuration (LDC) as well as  
DONE/PROG may be used as external control signals  
during configuration. In Master mode configurations it is  
convenient to use LDC as an active-Low EPROM Chip  
The Tie Option of the MakeBits program defines output  
levels of unused blocks of a design and connects these to  
unused routing resources. This prevents indeterminate  
levels that might produce parasitic supply currents. If  
unused blocks are not sufficient to complete the tie, the  
2-121  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
Daisy Chain  
Enable. After the last configuration data bit is loaded and  
the length count compares, the user I/O pins become  
active. Options in the MakeBits program allow timing  
choices of one clock earlier or later for the timing of the end  
of the internal logic RESET and the assertion of the DONE  
signal. The open-drain DONE/PROG output can be AND-  
tied with multiple LCA devices and used as an active-High  
READY, anactive-LowPROMenableoraRESETtoother  
portions of the system. The state diagram of Figure 18  
illustrates the configuration process.  
The XACT development system is used to create a com-  
posite configuration for selected LCA devices including: a  
preamble, a length count for the total bitstream, multiple  
concatenated data programs and a postamble plus an  
additional fill bit per device in the serial chain. After loading  
and passing-on the preamble and length count to a pos-  
sible daisy-chain, a lead device will load its configuration  
data frames while providing a High DOUT to possible  
down-stream devices as shown in Figure 22. Loading  
continues while the lead device has received its configura-  
tion program and the current length count has not reached  
the full value. The additional data is passed through the  
lead device and appears on the Data Out (DOUT) pin in  
serial form. The lead device also generates the Configura-  
tion Clock (CCLK) to synchronize the serial output data  
and data in of down-stream LCA devices. Data is read in  
on DIN of slave devices by the positive edge of CCLK  
and shifted out the DOUT on the negative edge of CCLK.  
A parallel Master mode device uses its internal timing  
generator to produce an internal CCLK of 8 times its  
EPROM address rate, while a Peripheral mode device  
producesaburstof8CCLKsforeachchipselectandwrite-  
strobe cycle. The internal timing generator continues to  
operate for general timing and synchronization of inputs in  
all modes.  
Master Mode  
In Master mode, the LCA device automatically loads  
configuration data from an external memory device. There  
are three Master modes that use the internal timing source  
to supply the configuration clock (CCLK) to time the  
incoming data. Master Serial mode uses serial configura-  
tion data supplied to Data-in (DIN) from a synchronous  
serialsourcesuchastheXilinxSerialConfigurationPROM  
shown in Figure 21. Master Parallel Low and High modes  
automatically use parallel data supplied to the D0–D7 pins  
in response to the 16-bit address generated by the LCA  
device. Figure 22 shows an example of the parallel Master  
mode connections required. The LCA HEX starting ad-  
dress is 0000 and increments for Master Low mode and it  
isFFFFanddecrementsforMasterHighmode. Thesetwo  
modes provide address compatibility with microproces-  
sorswhichbeginexecutionfromoppositeendsofmemory.  
Special Configuration Functions  
The configuration data includes control over several spe-  
cial functions in addition to the normal user logic functions  
and interconnect.  
Peripheral Mode  
Peripheral mode provides a simplified interface through  
which the device may be loaded byte-wide, as a processor  
peripheral. Figure 23 shows the peripheral mode connec-  
tions. Processor write cycles are decoded from the com-  
monassertionoftheactivelowWriteStrobe(WS), andtwo  
active low and one active high Chip Selects (CS0, CS1,  
CS2). The LCA device generates a configuration clock  
from the internal timing generator and serializes the paral-  
lel input data for internal framing or for succeeding slaves  
on Data Out (DOUT). A output High on READY/BUSY pin  
indicates the completion of loading for each byte when the  
input register is ready for a new byte. As with Master  
modes, Peripheral mode may also be used as a lead  
device for a daisy-chain of slave devices.  
• Input thresholds  
• Readback disable  
• DONE pull-up resistor  
• DONE timing  
• RESET timing  
• Oscillator frequency divided by two  
Each of these functions is controlled by configuration data  
bits which are selected as part of the normal XACT  
development system bitstream generation process.  
Input Thresholds  
Prior to the completion of configuration all LCA device  
input thresholds are TTL compatible. Upon completion of  
configuration, the input thresholds become either TTL or  
CMOS compatible as programmed. The use of the TTL  
threshold option requires some additional supply current  
for threshold shifting. The exception is the threshold of the  
PWRDWN input and direct clocks which always have a  
CMOS input. Prior to the completion of configuration the  
user I/O pins each have a high impedance pull-up. The  
Slave Serial Mode  
Slave Serial mode provides a simple interface for loading  
the Logic Cell Array configuration as shown in Figure 24.  
Serial data is supplied in conjunction with a synchronizing  
input clock. Most Slave mode applications are in daisy-  
chain configurations in which the data input is driven from  
the previous Logic Cell Array’s data out, while the clock is  
supplied by a lead device in Master or Peripheral mode.  
Data may also be supplied by a processor or other special  
circuits.  
2-122  
configuration program can be used to enable the IOB pull-  
up resistors in the Operational mode to act either as an  
input load or to avoid a floating input on an otherwise  
unused pin.  
reducesensitivitytonoise,theinputsignalisfilteredfortwo  
cycles of the LCA device internal timing generator. When  
reprogrambegins,theuser-programmableI/Ooutputbuff-  
ers are disabled and high-impedance pull-ups are pro-  
vided for the package pins. The device returns to the Clear  
state and clears the configuration memory before it indi-  
cates ‘initialized’. Since this Clear operation uses chip-  
individual internal timing, the master might complete the  
Clear operation and then start configuration before the  
slave has completed the Clear operation. To avoid this  
problem, theslaveINITpinsmustbeAND-wiredandused  
to force a RESET on the master (see Figure 22). Repro-  
gram control is often implemented using an external open-  
collector driver which pulls DONE/PROG Low. Once a  
stablerequestisrecognized, the DONE/PROG pinisheld  
Lowuntilthenewconfigurationhasbeencompleted. Even  
ifthere-programrequestisexternallyheldLowbeyondthe  
configuration period, the LCA device will begin operation  
upon completion of configuration.  
Readback  
The contents of a Logic Cell Array may be read back if it  
has been programmed with a bitstream in which the  
Readback option has been enabled. Readback may be  
used for verification of configuration and as a method of  
determining the state of internal logic nodes during debug-  
ging. There are three options in generating the configura-  
tion bitstream.  
• “Never” inhibits the Readback capability.  
• “One-time,” inhibits Readback after one Readback  
has been executed to verify the configuration.  
• “On-command” allows unrestricted use of Readback.  
Readback is accomplished without the use of any of the  
user I/O pins; only M0, M1 and CCLK are used. The  
initiation of Readback is produced by a Low to High  
transition of the M0/RTRIG (Read Trigger) pin. The CCLK  
inputmustthenbedrivenbyexternallogictoreadbackthe  
configuration data. The first three Low-to-High CCLK  
transitions clock out dummy data. The subsequent Low-  
to-High CCLK transitions shift the data frame information  
out on the M1/RDATA (Read Data) pin. Note that the logic  
polarity is always inverted, a zero in configuration be-  
comes a one in Readback, and vice versa. Note also that  
each Readback frame has one Start bit (read back as a  
one) but, unlike in configuration, each Readback frame  
has only one Stop bit (read back as a zero). The third  
leading dummy bit mentioned above can be considered  
the Start bit of the first frame. All data frames must be read  
back to complete the process and return the Mode Select  
and CCLK pins to their normal functions.  
DONE Pull-up  
DONE/PROG is an open-drain I/O pin that indicates the  
LCA device is in the operational state. An optional internal  
pull-up resistor can be enabled by the user of the XACT  
development system when MAKEBITS is executed. The  
DONE/PROG pins of multiple LCA devices in a daisy-  
chain may be connected together to indicate all are DONE  
or to direct them all to reprogram.  
DONE Timing  
The timing of the DONE status signal can be controlled by  
aselectionintheMakeBitsprogramtooccureitheraCCLK  
cycle before, or after, the outputs going active. See Figure  
20. This facilitates control of external functions such as a  
PROM enable or holding a system in a wait state.  
RESET Timing  
As with DONE timing, the timing of the release of the  
internal reset can be controlled by a selection in the  
MakeBits program to occur either a CCLK cycle before, or  
after, the outputs going active. See Figure 20. This reset  
keeps all user programmable flip-flops and latches in a  
zero state during configuration.  
Readback data includes the current state of each CLB  
flip-flop, each input flip-flop or latch, and each device pad.  
These data are imbedded into unused configuration bit  
positions during Readback. This state information is used  
by the XACT development system In-Circuit Verifier to  
provide visibility into the internal operation of the logic  
while the system is operating. To readback a uniform time-  
sample of all storage elements, it may be necessary to  
inhibit the system clock.  
Crystal Oscillator Division  
A selection in the MakeBits program allows the user to  
incorporate a dedicated divide-by-two flip-flop between  
the crystal oscillator and the alternate clock line. This  
guarantees a symmetrical clock signal. Although the fre-  
quency stability of a crystal oscillator is very good, the  
symmetry of its waveform can be affected by bias or  
feedback drive.  
Reprogram  
To initiate a re-programming cycle, the dual-function pin  
DONE/PROG must be given a High-to-Low transition. To  
The following seven pages describe the different configuration modes in detail  
2-123  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
Master Serial Mode  
*
IF READBACK IS  
ACTIVATED, A  
+5 V  
*
5-kRESISTOR IS  
REQUIRED IN  
SERIES WITH M1  
M0  
M1 PWRDWN  
TO DIN OF OPTIONAL  
DAISY-CHAINED LCAs WITH  
DIFFERENT CONFIGURATIONS  
DURING CONFIGURATION  
THE 5 kM2 PULL-DOWN  
RESISTOR OVERCOMES THE  
INTERNAL PULL-UP,  
DOUT  
M2  
TO CCLK OF OPTIONAL  
DAISY-CHAINED LCAs WITH  
DIFFERENT CONFIGURATIONS  
BUT IT ALLOWS M2 TO  
BE USER I/O.  
HDC  
LDC  
INIT  
GENERAL-  
PURPOSE  
USER I/O  
PINS  
OTHER  
I/O PINS  
TO CCLK OF OPTIONAL  
SLAVE LCAs WITH IDENTICAL  
CONFIGURATIONS  
XC3000  
TO DIN OF OPTIONAL  
SLAVE LCAs WITH IDENTICAL  
CONFIGURATIONS  
LCA  
DEVICE  
+5 V  
RESET  
RESET  
V
CC  
V
PP  
DIN  
DATA  
CLK  
CE  
DATA  
CCLK  
CLK  
CE  
CASCADED  
SERIAL  
MEMORY  
SCP  
D/P  
INIT  
CEO  
OE/RESET  
XC17xx  
OE/RESET  
(LOW RESETS THE XC17xx ADDRESS POINTER)  
X6092  
Figure 21. Master Serial Mode  
means that DOUT changes on the falling CCLK edge, and  
the next LCA device in the daisy-chain accepts data on the  
subsequent rising CCLK edge.  
In Master Serial mode, the CCLK output of the lead LCA  
device drives a Xilinx Serial PROM that feeds the LCA DIN  
input. Each rising edge of the CCLK output increments the  
Serial PROM internal address counter. This puts the next  
data bit on the SPROM data output, connected to the LCA  
DIN pin. The lead LCA device accepts this data on the  
subsequent rising CCLK edge.  
The SPROM CE input can be driven from either LDC or  
DONE . Using LDC avoids potential contention on the DIN  
pin, if this pin is configured as user-I/O, but LDC is then  
restricted to be a permanently High user output. Using  
DONE also avoids contention on DIN, provided the early  
DONE option is invoked.  
The lead LCA device then presents the preamble data  
(and all data that overflows the lead device) on its DOUT  
pin. There is an internal delay of 1.5 CCLK periods, which  
2-124  
Master Serial Mode Programming Switching Characteristics  
CCLK  
(Output)  
T
2
CKDS  
T
DSCK  
1
Serial Data In  
n
n + 1  
n + 2  
Serial DOUT  
(Output)  
n – 3  
n – 2  
n – 1  
n
X3223  
Speed Grade  
Min  
Max  
Units  
Description  
Symbol  
CCLK  
Data In setup  
Data In hold  
1 TDSCK  
60  
0
ns  
ns  
2
CKDS  
Notes: 1. At power-up, VCC must rise from 2.0 V to VCC min in less than 25 ms. If this is not possible, configuration can be  
delayed by holding RESET Low until VCC has reached 4.0 V (2.5 V for the XC3000L). A very long VCC rise time of  
>100 ms, or a non-monotonically rising VCC may require >6-µs High level on RESET, followed by a >6-µs Low  
level on RESET and D/P after VCC has reached 4.0 V (2.5 V for the XC3000L).  
2. Configuration can be controlled by holding RESET Low with or until after the INIT of all daisy-chain slave-mode  
devices is High.  
3. Master-serial-mode timing is based on slave-mode testing.  
2-125  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
Master Parallel Mode  
+5 V  
+5 V  
*
*
*
*
If Readback is  
Activated, a  
+5 V  
+5 V  
5-k Resistor is  
Required in  
M0 M1PWRDWN  
M0 M1PWRDWN  
M0 M1PWRDWN  
Series With M1  
CCLK  
5 k  
5 k  
5 k  
CCLK  
DOUT  
CCLK  
DOUT  
DIN  
DOUT  
DIN  
LCA  
Slave #1  
LCA  
Slave #n  
M2  
...  
HDC  
M2  
HDC  
LDC  
M2  
HDC  
LDC  
RCLK  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
General-  
Purpose  
User I/O  
Pins  
General-  
Purpose  
User I/O  
Pins  
General-  
Purpose  
User I/O  
Pins  
EPROM  
Other  
I/O Pins  
Other  
I/O Pins  
Other  
I/O Pins  
INIT  
INIT  
LCA  
Master  
D/P  
D/P  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A8  
RESET  
Reset  
A8  
A7  
D7  
A7  
A6  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A6  
Note: XC2000 Devices Do Not  
Have INIT to Hold Off a Master  
Device. Reset of a Master Device  
Should be Asserted by an External  
Timing Circuit to Allow for LCA CCLK  
Variations in Clear State Time.  
A5  
A5  
A4  
A4  
A3  
A3  
A2  
A2  
A1  
A1  
A0  
A0  
OE  
CE  
D/P  
RESET  
+5 V  
INIT  
N.C.  
5 k Each  
8
Open  
Reprogram  
Collector  
System Reset  
X3159  
Figure 22. Master Parallel Mode  
In Master Parallel mode, the lead LCA device directly  
addresses an industry-standard byte-wide EPROM and  
accepts eight data bits right before incrementing (or  
decrementing) the address outputs.  
internal delay of 1.5 CCLK periods, after the rising CCLK  
edge that accepts a byte of data, and also changes the  
EPROM address, until the falling CCLK edge that makes  
theLSB(D0)ofthisbyteappearatDOUT. Thismeansthat  
DOUT changes on the falling CCLK edge, and the next  
LCA device in the daisy chain accepts data on the subse-  
quent rising CCLK edge.  
The eight data bits are serialized in the lead LCA device,  
which then presents the preamble data (and all data that  
overflows the lead device) on the DOUT pin. There is an  
2-126  
Master Parallel Mode Programming Switching Characteristics  
A0-A15  
Address for Byte n  
(output)  
Address for Byte n + 1  
1
T
RAC  
D0-D7  
Byte  
3
T
2
T
RCD  
DRC  
RCLK  
(output)  
7 CCLKs  
CCLK  
CCLK  
(output)  
DOUT  
(output)  
D6  
D7  
Byte n - 1  
X5380  
Description  
Symbol  
TRAC  
Min  
Max  
Units  
RCLK  
To address valid  
To data setup  
To data hold  
RCLK High  
1
0
60  
0
200  
ns  
ns  
ns  
ns  
µs  
2
3
TDRC  
TRCD  
TRCH  
TRCL  
600  
RCLK Low  
4.0  
Notes: 1. At power-up, VCC must rise from 2.0 V to VCC min in less than 25 ms. If this is not possible, configuration can be  
delayed by holding RESET Low until VCC has reached 4.0 V (2.5 V for the XC3000L). A very long VCC rise time of  
>100 ms, or a non-monotonically rising VCC may require a >6-µs High level on RESET, followed by a >6-µs Low  
level on RESET and D/P after VCC has reached 4.0 V (2.5 V for the XC3000L).  
2. Configuration can be controlled by holding RESET Low with or until after the INIT of all daisy-chain slave-mode  
devices is High.  
This timing diagram shows that the EPROM requirements are extremely relaxed:  
EPROM access time can be longer than 4000 ns. EPROM data output has no hold time requirements.  
2-127  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
Peripheral Mode  
+5 V  
CONTROL ADDRESS  
SIGNALS BUS  
DATA  
BUS  
*
*
IF READBACK IS  
ACTIVATED, A  
5-k RESISTOR IS  
REQUIRED IN SERIES  
WITH M1  
8
5 k  
M0  
M1 PWR  
DWN  
D0–7  
D0–7  
CCLK  
OPTIONAL  
DAISY-CHAINED  
LCAs WITH DIFFERENT  
CONFIGURATIONS  
DOUT  
M2  
ADDRESS  
DECODE  
LOGIC  
CS0  
HDC  
LDC  
GENERAL-  
PURPOSE  
USER I/O  
PINS  
+5 V  
LCA  
CS1  
CS2  
WS  
OTHER  
I/O PINS  
RDY/BUSY  
INIT  
REPROGRAM  
D/P  
OC  
RESET  
Figure 23. Peripheral Mode.  
X3031  
Peripheral mode uses the trailing edge of the logic AND  
condition of the CS0, CS1, CS2, and WS inputs to accept  
byte-widedatafromamicroprocessorbus.IntheleadLCA  
device, this data is loaded into a double-buffered UART-  
like parallel-to-serial converter and is serially shifted into  
the internal logic. The lead LCA device presents the  
preambledata(andalldatathatoverflowstheleaddevice)  
on the DOUT pin.  
again when the byte-wide input buffer has transferred its  
information into the shift register, and the buffer is ready to  
receive new data. The length of the BUSY signal depends  
on the activity in the UART. If the shift register had been  
empty when the new byte was received, the BUSY signal  
lastsforonlytwoCCLKperiods. Iftheshiftregisterwasstill  
full when the new byte was received, the BUSY signal can  
be as long as nine CCLK periods.  
The Ready/Busy output from the lead LCA device acts as  
a handshake signal to the microprocessor. RDY/BUSY  
goes Low when a byte has been received, and goes High  
Note that after the last byte has been entered, only seven  
of its bits are shifted out. CCLK remains High with DOUT  
equal to bit 6 (the next-to-last bit) of the last byte entered.  
2-128  
Peripheral Mode Programming Switching Characteristics  
WRITE TO LCA  
WS, CS0, CS1  
CS2  
1
TCA  
2
TCD  
TDC  
3
D0-D7  
CCLK  
Valid  
4
TWTRB  
TBUSY  
6
RDY/BUSY  
DOUT  
D6  
D7  
Previous Byte  
D0  
D1  
D2  
New Byte  
X3249  
Description  
Symbol  
Min  
Max  
Units  
Write  
Effective Write time required  
1
TCA  
100  
ns  
(Assertion of CS0, CS1, CS2, WS)  
DIN Setup time required  
DIN Hold time required  
2
3
TDC  
TCD  
60  
0
ns  
ns  
RDY/BUSY delay after end of WS  
4
5
6
TWTRB  
TRBWT  
TBUSY  
60  
9
ns  
ns  
RDY  
Earliest next WS after end of BUSY  
BUSY Low time generated  
0
2.5  
CCLK  
Periods  
Notes:  
1. At power-up, VCC must rise from 2.0 V to VCC min in less than 25 ms. If this is not possible, configuration can be  
delayed by holding RESET Low until VCC has reached 4.0 V (2.5 V for the XC3000L). A very long VCC rise time of  
>100 ms, or a non-monotonically rising VCC may require a >6-µs High level on RESET, followed by a >6-µs Low level  
on RESET and D/P after VCC has reached 4.0 V (2.5 V for the XC3000L).  
2. Configuration must be delayed until the INIT of all LCAs is High.  
3. Time from end of WS to CCLK cycle for the new byte of data depends on completion of previous byte processing and  
the phase of the internal timing generator for CCLK.  
4. CCLK and DOUT timing is tested in slave mode.  
5. TBUSY indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data. The shortest  
TBUSY occurs when a byte is loaded into an empty parallel-to-serial converter. The longest TBUSY occurs when a new  
word is loaded into the input register before the second-level buffer has started shifting out data.  
This timing diagram shows very relaxed requirements: Data need not be held beyond the rising edge of WS. BUSY will  
go active within 60 ns after the end of WS. BUSY will stay active for several microseconds. WS may be asserted immedi-  
ately after the end of BUSY.  
2-129  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
Slave Serial Mode  
*
If Readback is  
Activated, a  
+5 V  
*
5-k Resistor is  
Required in  
Series with M1  
M0  
M1  
PWRDWN  
Micro  
Computer  
5 k  
Optional  
Daisy-Chained  
LCAs with  
Different  
Configurations  
STRB  
D0  
CCLK  
DIN  
M2  
DOUT  
HDC  
D1  
General-  
Purpose  
User I/O  
Pins  
I/O  
Port  
D2  
D3  
LDC  
+5 V  
LCA  
D4  
D5  
D6  
D7  
Other  
I/O Pins  
D/P  
INIT  
RESET  
RESET  
X3157  
Figure 24. Slave Serial Mode.  
In Slave Serial mode, an external signal drives the CCLK  
input(s) of the LCA device(s). The serial configuration  
bitstream must be available at the DIN input of the lead  
LCA device a short set-up time before each rising CCLK  
edge. The lead LCA device then presents the preamble  
data (and all data that overflows the lead device) on its  
DOUT pin. There is an internal delay of 0.5 CCLK periods,  
which means that DOUT changes on the falling CCLK  
edge, and the next LCA device in the daisy-chain accepts  
data on the subsequent rising CCLK edge.  
2-130  
Slave Serial Mode Programming Switching Characteristics  
DIN  
Bit n  
Bit n + 1  
1
2
5
T
T
T
CCL  
DCC  
CCD  
CCLK  
4
3
T
T
CCH  
CCO  
DOUT  
(Output)  
Bit n - 1  
Bit n  
X5379  
Description  
To DOUT  
Symbol  
TCCO  
Min  
Max  
Units  
ns  
CCLK  
3
100  
DIN setup  
DIN hold  
High time  
Low time (Note 1)  
Frequency  
1
2
4
5
TDCC  
TCCD  
TCCH  
TCCL  
FCC  
60  
0
0.05  
0.05  
ns  
ns  
µs  
µs  
MHz  
5.0  
10  
Notes: 1. The max limit of CCLK Low time is caused by dynamic circuitry inside the LCA device.  
2. Configuration must be delayed until the INIT of all LCA devices is High.  
3. At power-up, VCC must rise from 2.0 V to VCC min in less than 25 ms. If this is not possible, configuration can be de-  
layed by holding RESET Low until VCC has reached 4.0 V (2.5 V for the XC3000L). A very long VCC rise time of >100  
ms, or a non-monotonically rising VCC may require a >6-µs High level on RESET, followed by a >6-µs Low level on  
RESET and D/P after VCC has reached 4.0 V (2.5 V for the XC3000L).  
Program Readback Switching Characteristics  
DONE/PROG  
(OUTPUT)  
1
T
2
RTH  
RTRIG (M0)  
T
RTCC  
4
T
CCL  
4
T
CCL  
CCLK(1)  
5
3
T
CCRD  
H1-Z  
VALID  
READBACK OUTPUT  
VALID  
READBACK OUTPUT  
M1 Input/  
RDATA Output  
X6116  
Description  
RTRIG High  
Symbol  
Min  
Max  
Units  
ns  
RTRIG  
CCLK  
1
TRTH  
250  
RTRIG setup  
RDATA delay  
High time  
2
3
5
4
TRTCC  
TCCRD  
TCCHR  
TCCLR  
200  
ns  
ns  
µs  
µs  
100  
5
0.5  
0.5  
Low time  
Notes: 1. During Readback, CCLK frequency may not exceed 1 MHz.  
2. RETRIG (M0 positive transition) shall not be done until after one clock following active I/O pins.  
3. Readback should not be initiated until configuration is complete.  
4. TCCLR is 5 µs min to 15 µs max for XC3000L.  
2-131  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
General LCA Switching Characteristics  
4
T
MRW  
RESET  
2
T
MR  
3
T
RM  
M0/M1/M2  
5
T
PGW  
DONE/PROG  
6
T
PGI  
INIT  
(Output)  
User State  
Clear State  
Configuration State  
PWRDWN  
Note 3  
V
CC  
(Valid)  
V
CCPD  
X5387  
Description  
Symbol  
TMR  
Min  
Max  
Units  
RESET (2)  
M0, M1, M2 setup time required  
M0, M1, M2 hold time required  
RESET Width (Low) req. for Abort  
2
3
4
1
3
6
µs  
µs  
µs  
TRM  
TMRW  
DONE/PROG  
PWRDWN (3)  
Width (Low) required for Re-config.  
INIT response after D/P is pulled Low 6  
5
TPGW  
TPGI  
6
µs  
µs  
7
Power Down VCC  
VCCPD  
2.3  
V
Notes: 1. At power-up, Vcc must rise from 2.0 V to VCC min in less than 25 ms. If this is not possible, configuration can be de-  
layed by holding RESET Low until Vcc has reached 4.0 V (2.5 V for XC3000L). A very long Vcc rise time of >100 ms, or  
a non-monotonically rising Vcc may require a >1-µs High level on RESET, followed by a >6-µs Low level on RESET and  
D/P after Vcc has reached 4.0 V (2.5 V for XC3000L).  
2. RESET timing relative to valid mode lines (M0, M1, M2) is relevant when RESET is used to delay configuration. The  
specified hold time is caused by a shift-register filter slowing down the response to RESET during configuration.  
3. PWRDWN transitions must occur while Vcc >4.0 V(2.5 V for XC3000L).  
2-132  
Performance  
block output is limited only by the resulting propagation  
delay of the larger interconnect network. Speed perfor-  
mance of the logic block is a function of supply voltage and  
temperature. See Figure 26.  
Device Performance  
The XC3000 families of FPGAs can achieve very high  
performance. This is the result of  
• A sub-micron manufacturing process, developed and  
continuously being enhanced for the production of  
state-of-the-art CMOS SRAMs.  
Interconnect performance depends on the routing re-  
sources used to implement the signal path. Direct inter-  
connectstotheneighboringCLBprovideanextremelyfast  
path. Local interconnects go through switch matrices  
(magic boxes) and suffer an RC delay, equal to the  
resistance of the pass transistor multiplied by the capaci-  
tance of the driven metal line. Longlines carry the signal  
across the length or breadth of the chip with only one  
access delay. Generous on-chip signal buffering makes  
performance relatively insensitive to signal fan-out; in-  
creasingfan-outfrom1to8changestheCLBdelaybyonly  
10%. Clocks can be distributed with two low-skew clock  
distribution networks.  
• Careful optimization of transistor geometries, circuit  
design, and lay-out, based on years of experience  
with the XC3000 family.  
• A look-up table based, coarse-grained architecture  
that can collapse multiple-layer combinatorial logic  
into a single function generator. One CLB canimple-  
ment up to four layers of conventional logic in as little  
as 2.7 ns.  
Actual system performance is determined by the timing of  
critical paths, including the delay through the combinato-  
rial and sequential logic elements within CLBs and IOBs,  
plus the delay in the interconnect routing. The ac-timing  
specifications state the worst-case timing parameters for  
the various logic resources available in the XC3000-  
families architecture. Figure 25 shows a variety of ele-  
ments involved in determining system performance.  
The tools in the XACT Development System used to place  
and route a design in an XC3000 FPGA (the Automatic  
Place and Route [APR] program and the XACT Design  
Editor)automatically calculate the actual maximum worst-  
case delays along each signal path. This timing informa-  
tion can be back-annotated to the design’s netlist for use  
in timing simulation or examined with X-DELAY, a static  
timing analyzer.  
Logic block performance is expressed as the propagation  
time from the interconnect point at the input to the block to  
the output of the block in the interconnect area. Since  
combinatorial logic is implemented with a memory lookup  
table within a CLB, the combinatorial delay through the  
CLB, called TILO, is always the same, regardless of the  
function being implemented. For the combinatorial logic  
function driving the data input of the storage element, the  
critical timing is data set-up relative to the clock edge  
provided to the flip-flop element. The delay from the clock  
sourcetotheoutputofthelogicblockiscriticalinthetiming  
signals produced by storage elements. Loading of a logic-  
Actual system performance is applications dependent.  
The maximum clock rate that can be used in a system is  
determined by the critical path delays within that system.  
These delays are combinations of incremental logic and  
routing delays, and vary from design to design. In a  
synchronoussystem, themaximumclockratedependson  
the number of combinatorial logic layers between re-  
synchronizing flip-flops. Figure 27 shows the achievable  
clock rate as a function of the number of CLB layers.  
Clock to Output  
Combinatorial  
Setup  
T
CKO  
T
ILO  
T
ICK  
T
OP  
CLB  
CLB  
CLB  
IOB  
Logic  
Logic  
PAD  
(K)  
(K)  
CLOCK  
PAD  
T
CKO  
IOB  
T
OKPO  
T
PID  
X3178  
Figure 25. Primary Block Speed Factors. Actual timing is a function of various block factors combined with routing  
factors. Overall performance can be evaluated with the XACT timing calculator or by an optional simulation.  
2-133  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
SPECIFIED WORST-CASE VALUES  
1.00  
0.80  
TYPICAL COMMERCIAL  
0.60  
0.40  
0.20  
(+ 5.0 V, 25°C)  
TYPICAL MILITARY  
– 55  
– 40  
– 20  
0
25  
40  
70  
80  
100  
125  
TEMPERATURE (°C)  
X6094  
Figure 26. Relative Delay as a Function of Temperature, Supply Voltage and Processing Variations  
300  
Power  
250  
Power Distribution  
200  
Power for the LCA device is distributed through a grid to  
achieve high noise immunity and isolation between logic  
and I/O. Inside the LCA device, a dedicated VCC and  
ground ring surrounding the logic array provides power to  
the I/O drivers. An independent matrix of VCC and  
groundlines supplies the interior logic of the device. This  
powerdistributiongridprovidesastablesupplyandground  
for all internal logic, providing the external package power  
pins are all connected and appropriately decoupled. Typi-  
cally a 0.1-µF capacitor connected near the VCC and  
ground pins will provide adequate decoupling.  
150  
100  
50  
XC3100-3  
XC3000-125  
0
CLB Levels:  
Gate Levels:  
4 CLBs  
(4-16)  
3 CLBs  
(3-12)  
2 CLBs  
(2-8)  
1 CLB  
(1-4)  
Toggle  
Rate  
X3250  
Figure 27. Clock Rate as a Function of Logic Complexity  
(Number of Combinational Levels between  
Flip-Flops)  
Output buffers capable of driving the specified 4- or 8-mA  
loads under worst-case conditions may be capable of  
driving as much as 25 to 30 times that current in a best  
case. Noise can be reduced by minimizing external load  
capacitance and reducing simultaneous output transitions  
in the same direction. It may also be beneficial to locate  
heavily loaded output buffers near the ground pads. The  
I/O Block output buffers have a slew-limited mode which  
should be used where output rise and fall times are not  
speed critical. Slew-limited outputs maintain their dc drive  
capability, but generate less external reflections and inter-  
nal noise.  
2-134  
Dynamic Power Consumption  
XC3042  
0.25  
XC3042A  
0.17  
XC3042L  
0.07  
XC3142A  
0.25  
One CLB driving three local interconnects  
One global clock buffer and clock line  
One device output with a 50 pF load  
mW per MHz  
mW per MHz  
mW per MHz  
2.25  
1.40  
0.50  
1.70  
1.25  
1.25  
0.55  
1.25  
Power Consumption  
power loss. The Logic Cell Array has built in Powerdown  
logic which, when activated, will disable normal operation  
of the device and retain only the configuration data. All  
internal operation is suspended and output buffers are  
placed in their high-impedance state with no pull-ups.  
Different from the XC3000 family which can be powered  
down to a current consumption of a few microamps, the  
XC3100 draws 5 mA, even in power-down. This makes  
power-down operation less meaningful. In contrast, ICCPD  
for the XC3000L is only 10 µA.  
The Logic Cell Array exhibits the low power consumption  
characteristic of CMOS ICs. For any design, the configu-  
rationoptionofTTLchipinputthresholdrequirespowerfor  
the threshold reference. The power required by the static  
memory cells that hold the configuration data is very low  
and may be maintained in a power-down mode.  
Typically, most of power dissipation is produced by exter-  
nal capacitive loads on the output buffers. This load and  
frequency dependent power is 25 µW/pF/MHz per output.  
Another component of I/O power is the external dc loading  
on all output pins.  
ToforcetheLogicCellArrayintothePowerdownstate, the  
user must pull the PWRDWN pin Low and continue to  
supply a retention voltage to the VCC pins. When normal  
power is restored, VCC is elevated to its normal operating  
voltage and PWRDWN is returned to a High. The Logic  
Cell Array resumes operation with the same internal se-  
quence that occurs at the conclusion of configuration.  
Internal-I/Oandlogic-blockstorageelementswillbereset,  
the outputs will become enabled and the DONE/PROG  
pin will be released.  
Internal power dissipation is a function of the number and  
sizeofthenodes, andthefrequencyatwhichtheychange.  
In an LCA device, the fraction of nodes changing on a  
given clock is typically low (10-20%). For example, in a  
longbinarycounter, thetotalactivityofallcounterflip-flops  
is equivalent to that of only two CLB outputs toggling at the  
clock frequency. Typical global clock-buffer power is be-  
tween 2.0 mW/MHz for the XC3020 and 3.5 mW/MHz for  
the XC3090. The internal capacitive load is more a func-  
tion of interconnect than fan-out. With a typical load of  
three general interconnect segments, each CLB output  
requires about 0.25 mW per MHz of its output frequency.  
When VCC is shut down or disconnected, some power  
might unintentionally be supplied from an incoming signal  
driving an I/O pin. The conventional electrostatic input  
protection is implemented with diodes to the supply and  
ground. A positive voltage applied to an input (or output)  
will cause the positive protection diode to conduct and  
drive the VCC connection. This condition can produce  
invalid power conditions and should be avoided. A large  
seriesresistormightbeusedtolimitthecurrentorabipolar  
buffer may be used to isolate the input signal.  
Because the control storage of the Logic Cell Array is  
CMOS static memory, its cells require a very low standby  
current for data retention. In some systems, this low data  
retention current characteristic can be used as a method  
of preserving configurations in the event of a primary  
2-135  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
Pin Descriptions  
DONE/PROG (D/P)  
DONE is an open-drain output, configurable with or without  
an internal pull-up resistor of 2 to 8 k . At the completion of  
configuration, the LCA device circuitry becomes active in a  
synchronous order; DONE is programmed to go active High  
one cycle either before or after the outputs go active.  
Permanently Dedicated Pins.  
VCC  
Two to eight (depending on package type) connections to  
the positive V supply voltage. All must be connected.  
Onceconfigurationisdone,aHigh-to-Lowtransitionofthis  
pin will cause an initialization of the LCA device and start  
a reconfiguration.  
GND  
Two to eight (depending on package type) connections to  
ground. All must be connected.  
M0/RTRIG  
PWRDWN  
AsMode0, thisinputissampledonpower-ontodetermine  
the power-on delay (214 cycles if M0 is High, 216 cycles if  
M0 is Low). Before the start of configuration, this input is  
again sampled together with M1, M2 to determine the  
configuration mode to be used .  
A Low on this CMOS-compatible input stops all internal  
activity, but retains configuration. All flip-flops and latches  
are reset, all outputs are 3-stated, and all inputs are  
interpreted as High, independent of their actual level.  
When PWDWN returns High, the LCA device becomes  
operational with DONE Low for two cycles of the internal  
1-MHz clock.Before and during configuration, PWRDWN  
A Low-to-High input transition, after configuration is com-  
plete, acts as a Read Trigger and initiates a Readback of  
configurationandstorage-elementdataclockedbyCCLK.  
By selecting the appropriate Readback option when gen-  
erating the bitstream, this operation may be limited to a  
single Readback, or be inhibited altogether.  
must be High. If not used, PWRDWN must be tied to VCC  
.
RESET  
This is an active Low input which has three functions.  
Prior to the start of configuration, a Low input will delay the  
start of the configuration process. An internal circuit  
senses the application of power and begins a minimal  
time-out cycle. When the time-out and RESET are com-  
plete, the levels of the M lines are sampled and configura-  
tion begins.  
M1/RDATA  
As Mode 1, this input and M0, M2 are sampled before the  
startofconfigurationtoestablishtheconfigurationmodeto  
beused. IfReadbackisneverused, M1canbetieddirectly  
to ground or VCC. If Readback is ever used, M1 must use  
a 5-kresistor to ground or VCC, to accommodate the  
RDATA output.  
If RESET is asserted during a configuration, the LCA  
device is re-initialized and restarts the configuration at the  
termination of RESET.  
As an active-Low Read Data, after configuration is com-  
plete, this pin is the output of the Readback data.  
If RESET is asserted after configuration is complete, it  
provides a global asynchronous RESET of all IOB and  
CLB storage elements of the LCA device.  
CCLK  
During configuration, Configuration Clock is an output of  
an LCA device in Master mode or Peripheral mode, but an  
input in Slave mode. During Readback, CCLK is a clock  
input for shifting configuration data out of the LCA device  
CCLK drives dynamic circuitry inside the LCA device. The  
Low time may, therefore, not exceed a few microseconds.  
When used as an input, CCLK must be “parked High”. An  
internal pull-up resistor maintains High when the pin is not  
being driven.  
2-136  
User I/O Pins that can have special functions.  
RDY/BUSY  
During Peripheral Parallel mode configuration this pin  
indicates when the chip is ready for another byte of data to  
be written to it. After configuration is complete, this pin  
becomes a user-programmed I/O pin.  
M2  
Duringconfiguration,thisinputhasaweakpull-upresistor.  
Together with M0 and M1, it is sampled before the start of  
configuration to establish the configuration mode to be  
used. After configuration, this pin is a user-programmable  
I/O pin.  
RCLK  
During Master Parallel mode configuration, each change  
on the A0-15 outputs is preceded by a rising edge on  
RCLK, a redundant output signal. After configuration is  
complete, this pin becomes a user-programmed I/O pin.  
HDC  
During configuration, this output is held at a High level to  
indicate that configuration is not yet complete. After con-  
figuration, this pin is a user-programmable I/O pin.  
D0-D7  
This set of eight pins represents the parallel configuration  
byte for the parallel Master and Peripheral modes. After  
configuration is complete, they are user-programmed  
I/O pins.  
LDC  
During Configuration, this output is held at a Low level to  
indicate that the configuration is not yet complete. After  
configuration, this pin is a user-programmable I/O pin.  
LDC is particularly useful in Master mode as a Low enable  
for an EPROM, but it must then be programmed as a High  
after configuration.  
A0-A15  
During Master Parallel mode, these 16 pins present an  
address output for a configuration EPROM. After configu-  
ration, they are user-programmable I/O pins.  
INIT  
This is an active Low open-drain output with a weak pull-  
up and is held Low during the power stabilization and  
internal clearing of the configuration memory. It can be  
used to indicate status to a configuring microprocessor or,  
as a wired AND of several slave mode devices, a hold-off  
signal for a master mode device. After configuration this  
pin becomes a user-programmable I/O pin.  
DIN  
During Slave or Master Serial configuration, this pin is  
used as a serial-data input. In the Master or Peripheral  
configuration, this is the Data 0 input. After configuration is  
complete, this pin becomes a user-programmed I/O pin.  
DOUT  
BCLKIN  
During configuration this pin is used to output serial-  
configuration data to the DIN pin of a daisy-chained slave.  
After configuration is complete, this pin becomes a user-  
programmed I/O pin.  
This is a direct CMOS level input to the alternate clock  
buffer (Auxiliary Buffer) in the lower right corner.  
XTL1  
This user I/O pin can be used to operate as the output of  
an amplifier driving an external crystal and bias circuitry.  
TCLKIN  
This is a direct CMOS-level input to the global clock buffer.  
This pin can also be configured as a user programmable  
I/O pin. However, since TCLKIN is the preferred input to  
the global clock net, and the global clock net should be  
used as the primary clock source, this pin is usually the  
clock input to the chip.  
XTL2  
This user I/O pin can be used as the input of an amplifier  
connected to an external crystal and bias circuitry. The I/  
O Block is left unconfigured. The oscillator configuration is  
activated by routing a net from the oscillator buffer symbol  
output and by the MakeBits program.  
Unrestricted User I/O Pins.  
CS0, CS1, CS2, WS  
These four inputs represent a set of signals, three active  
Low and one active High, that are used to control configu-  
ration-data entry in the Peripheral mode. Simultaneous  
assertion of all four inputs generates a Write to the internal  
data buffer. The removal of any assertion clocks in the D0-  
D7 data. In Master-Parallel mode, WS and CS2 are the A0  
and A1 outputs. After configuration, these pins are user-  
programmable I/O pins.  
I/O  
An I/O pin may be programmed by the user to be an Input  
oranOutputpinfollowingconfiguration.Allunrestricted I/  
O pins, plus the special pins mentioned on the following  
page, have a weak pull-up resistor of 50 kto 100 kthat  
becomes active as soon as the device powers up, and  
stays active until the end of configuration.  
Before and during configuration, all outputs that are not used for the configuration process are 3-stated with  
a 50 kto 100 kpull-up resistor.  
2-137  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
Pin Functions During Configuration  
Configuration Mode <M2:M1:M0>  
***  
****  
208  
PQFP  
44  
68  
84  
84  
100  
100 132 160 175  
User  
Operation  
SLAVE  
<1:1:1>  
MASTER-SER  
<0:0:0>  
PERIPHERAL  
<1:0:1>  
MASTER-HIGH  
<1:1:0>  
MASTER-LOW  
<1:0:0>  
PLCC PLCC PLCC PGA PQFP TQFP PGA PQFP PGA  
7
10  
18  
25  
26  
27  
28  
30  
34  
35  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
1
12  
22  
31  
32  
33  
34  
36  
42  
43  
53  
54  
55  
56  
57  
58  
60  
61  
62  
64  
65  
66  
67  
70  
71  
72  
73  
74  
75  
76  
77  
78  
81  
82  
83  
84  
1
B2  
F3  
J2  
L1  
K2  
K3  
L3  
K6  
J6  
L11  
K10  
J10  
K11  
J11  
H10  
F10  
G10  
G11  
F9  
F11  
E11  
E10  
D10  
C11  
29  
41  
52  
54  
56  
57  
59  
65  
66  
76  
78  
80  
81  
82  
83  
87  
88  
89  
91  
92  
93  
94  
98  
99  
26  
38  
49  
51  
53  
54  
56  
62  
63  
73  
75  
77  
78  
79  
80  
84  
85  
86  
88  
89  
90  
91  
95  
96  
97  
98  
99  
2
A1  
C8  
159  
20  
40  
42  
44  
45  
49  
59  
19  
76  
78  
80  
81  
82  
86  
92  
93  
B2  
D9  
3
PWRDWN (I)  
VCC  
RDATA  
RTRIG (I)  
I/O  
I/O  
I/O  
I/O  
GND  
XTL2 OR I/O  
RESET (I)  
PWRDWN (I)  
VCC  
PWRDWN (I)  
VCC  
PWRDWN (I)  
VCC  
PWRDWN (I)  
VCC  
PWRDWN (I)  
VCC  
12  
16  
17  
18  
19  
20  
22  
23  
26  
27  
28  
26  
48  
50  
56  
57  
61  
77  
79  
B13  
A14  
C13  
B14  
D14  
G14  
H12  
M13  
P14  
N13  
M12  
P13  
N11  
M9  
N9  
B14  
B15  
C15  
E14  
D16  
H15  
J14  
M1 (HIGH) (I)  
M0 (HIGH) (I)  
M2 (HIGH) (I)  
HDC (HIGH)  
LDC (LOW)  
INIT*  
M1 (LOW) (I)  
M0 (HIGH) (I)  
M2 (HIGH) (I)  
HDC (HIGH)  
LDC (LOW)  
INIT*  
M1 (HIGH) (I)  
M0 (LOW) (I)  
M2 (HIGH) (I)  
HDC (HIGH)  
LDC (LOW)  
INIT*  
M1 (LOW) (I)  
M0 (LOW) (I)  
M2 (LOW) (I)  
HDC (HIGH)  
LDC (LOW)  
INIT*  
M1 (LOW) (I)  
M0 (LOW) (I)  
M2 (HIGH) (I)  
HDC (HIGH)  
LDC (LOW)  
INIT*  
GND  
GND  
GND  
GND  
GND  
P15 100  
R15 102  
R14 107  
N13 109  
RESET (I)  
DONE  
RESET (I)  
DONE  
DATA 7 (I)  
RESET (I)  
DONE  
DATA 7 (I)  
RESET (I)  
DONE  
RESET (I)  
DONE  
DATA 7 (I)  
PROGRAM (I)  
I/O  
30  
T14  
P12 115  
T11  
122  
R10 123  
110  
XTL1 OR I/O  
I/O  
I/O  
I/O  
I/O  
Vcc  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CCLK (I)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DATA 6 (I)  
DATA 5 (I)  
CS0 (I)  
DATA 4 (I)  
VCC  
DATA 6 (I)  
DATA 5 (I)  
DATA 6 (I)  
DATA 5 (I)  
N8  
M8  
N7  
98  
R9  
N9  
P8  
R8  
R7  
R5  
P5  
R3  
N4  
R2  
P2  
M3  
P1  
N1  
M1  
L2  
128  
130  
132  
133  
138  
145  
146  
151  
152  
153  
161  
162  
165  
166  
172  
173  
178  
179  
182  
184  
185  
192  
193  
199  
200  
203  
204  
DATA 4 (I)  
VCC  
DATA 3 (I)  
DATA 4 (I)  
VCC  
DATA 3 (I)  
34  
100  
102  
103  
108  
114  
115  
119  
120  
121  
124  
125  
128  
129  
132  
133  
136  
137  
139  
141  
142  
147  
148  
151  
152  
155  
156  
VCC  
VCC  
DATA 3 (I)  
CS1 (I)  
P6  
M6  
M5  
N4  
N2  
M3  
P1  
M2  
N1  
L2  
L1  
K1  
J2  
H1  
H2  
H3  
G2  
G1  
F2  
E1  
D1  
DATA 2 (I)  
DATA 1 (I)  
RDY/BUSY  
DATA 0 (I)  
DOUT  
CCLK(O)  
WS (I)  
CS2 (I)  
DATA 2 (I)  
DATA 1 (I)  
RCLK  
DATA 0 (I)  
DOUT  
CCLK(O)  
A0  
A1  
A2  
A3  
A15  
A4  
A14  
A5  
GND  
A13  
A6  
A12  
A7  
A11  
DATA 2 (I)  
DATA 1 (I)  
RCLK  
DATA 0 (I)  
DOUT  
CCLK(O)  
A0  
A1  
A2  
A3  
A15  
A4  
A14  
A5  
GND  
A13  
A6  
A12  
A7  
A11  
38  
39  
40  
B11 100  
DIN (I)  
DOUT  
CCLK (I)  
DIN (I)  
DOUT  
CCLK(O)  
C10  
A11  
B10  
B9  
A10  
A9  
B6  
B7  
A7  
C7  
C6  
A6  
A5  
B5  
C5  
A3  
A2  
B3  
A1  
1
2
5
6
8
9
12  
13  
14  
15  
16  
17  
18  
19  
20  
23  
24  
25  
26  
3
5
6
9
10  
11  
12  
13  
14  
15  
16  
17  
20  
21  
22  
26  
K2  
K1  
J3  
1
GND  
GND  
GND  
2
3
4
5
6
7
8
9
2
3
4
5
8
9
10  
11  
H2  
H1  
F2  
E1  
D1  
C1  
E3  
C2  
D2  
B1  
C2  
A8  
A10  
A9  
A8  
A10  
A9  
I/O  
All Others  
XC3020 etc.  
XC3030 etc.  
XC3042 etc.  
XC3064 etc.  
XC3090 etc.  
XC3195  
X
X
X
X
X
X**  
X**  
X**  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X5266  
Represents a 50-kto 100-kpull-up before and during configuration  
*
INIT is an open drain output during configuration  
(I) Represents an input  
** Pin assignmnent for the XC3064/XC3090 and XC3195 differ from those shown. See page 2-138.  
*** Peripheral mode and master parallel mode are not supported in the PC44 package. See page 2-135.  
**** Pin assignments for the XC3195 PQ208 differ from those shown. See page 2-146.  
Pin assignments of PGA Footprint PLCC sockets and PGA packages are not electrically identical.  
Generic I/O pins are not shown.  
The information on this page is provided as a convenient summary. For detailed pin descriptions, see the preceding two pages.  
For a detailed description of the configuration modes, see pages 2-190 through 2-200.  
For pinout details, see pages 2-136 through 2-146.  
Before and during configuration, all outputs that are not used for the configuration process are 3-stated with  
a 50 kto 100 kpull-up resistor.  
2-138  
XC3000 Families Pin Assignments  
Note that there is no perfect match between the number of  
bonding pads on the chip and the number of pins on a  
package. In some cases, the chip has more pads than  
therearepinsonthepackage, asindicatedbytheinforma-  
tion (“unused” pads) below the line in the following table.  
The IOBs of the unconnected pads can still be used as  
storage elements if the specified propagation delays and  
set-up times are acceptable.  
Xilinx offers the six different array sizes in the XC3000  
families in a variety of surface-mount and through-hole  
package types, with pin counts from 44 to 223.  
Eachchipisofferedinseveralpackagetypestoaccommo-  
date the available PC board space and manufacturing  
technology. Most package types are also offered with  
different chips to accommodate design changes without  
the need for PC board changes.  
In other cases, the chip has fewer pads than there are  
pins on the package; therefore, some package pins are  
not connected (n.c.), as shown above the line in the  
following table.  
Number of Unbounded or Unconnected Pins  
Number of Package Pins  
44  
64  
68  
6 u  
30 u  
84  
10 n.c. 26 n.c.  
100  
132  
144  
160  
175  
176  
208  
223  
Device Pads  
3020  
3030  
3042  
3064  
3090  
3195  
74  
54 u  
34 u  
14 u  
34 u  
50 u  
82 u  
114 u  
2 n.c.  
98  
18 u 14 n.c. 26 n.c.  
118  
142  
166  
198  
10 u  
2 u  
18 n.c.  
6 u  
9 n.c 10 n.c.  
9 n.c.  
42 n.c.  
10 n.c. 25 n.c.  
32 u  
n.c. = Unconnected package pin  
u = Unbonded device pad  
X6095  
Number of Available I/O Pins  
Number of Package Pins  
44 64 68 84 100 120 132 144 156 160 164 175 176 191 196 208 223 240  
Max I/O  
XC3020/XC3120  
XC3030/XC3130  
XC3042/XC3142  
XC3064/XC3164  
XC3090/XC3190  
XC3195  
64  
80  
96  
120  
144  
176  
58 64 64  
34 54 58 74 80  
74 82  
70  
70  
96  
110  
120  
138 142 144 144  
138  
144  
176 176  
70  
144  
X3478  
2-139  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
XC3000 Family 44-Pin PLCC Pinouts  
XC3000, XC3000A, XC3000L, XC3100 and XC3100A families have identical pinouts  
Pin No.  
XC3030  
Pin No.  
XC3030  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
GND  
1
2
GND  
I/O  
I/O  
I/O  
3
I/O  
XTL2(IN)-I/O  
4
I/O  
RESET  
5
I/O  
DONE-PGM  
6
I/O  
I/O  
7
PWRDWN  
TCLKIN-I/O  
I/O  
XTL1(OUT)-BCLK-I/O  
8
I/O  
I/O  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
DIN-I/O  
DOUT-I/O  
CCLK  
I/O  
M1-RDATA  
M0-RTRIG  
M2-I/O  
HDC-I/O  
LDC-I/O  
I/O  
I/O  
I/O  
I/O  
INIT-I/O  
Peripheral mode and Master Parallel mode are not supported in the PC44 package  
XC3030 Family 64-Pin Plastic VQFP Pinouts  
XC3000, XC3000A, XC3000L and XC3100 families have identical pinouts  
Pin No.  
XC3030  
Pin No.  
XC3030  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
M2-I/O  
HDC-I/O  
I/O  
LDC-I/O  
I/O  
I/O  
I/O  
INIT-I/O  
GND  
1
2
3
4
5
6
7
8
9
A0-WS-I/O  
A1-CS2-I/O  
A2-I/O  
A3-I/O  
A4-I/O  
A14-I/O  
A5-I/O  
GND  
A13-I/O  
A6-I/O  
A12-I/O  
A7-I/O  
A11-I/O  
A8-I/O  
A10-I/O  
A9-I/O  
PWRDN  
TCLKIN-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O  
XTAL2(IN)-I/O  
RESET  
DONE-PG  
D7-I/O  
XTAL1(OUT)-BCLKIN-I/O  
D6-I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
D5-I/O  
CS0-I/O  
D4-I/O  
VCC  
D3-I/O  
CS1-I/O  
D2-I/O  
D1-I/O  
I/O  
I/O  
I/O  
RDY/BUSY-RCLK-I/O  
D0-DIN-I/O  
DOUT-I/O  
CCLK  
M1-RDATA  
M0-RTRIG  
2-140  
XC3000 Families 68-Pin PLCC, 84-Pin PLCC and PGA Pinouts  
XC3000, XC3000A, XC3000L, XC3100 and XC3100A families have identical pinouts  
68 PLCC  
68 PLCC  
XC3020  
XC3030, XC3042  
XC3030  
XC3020  
XC3020  
XC3030, XC3042  
XC3030  
XC3020  
10  
11  
84 PLCC  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
84 PGA  
B2  
C2  
B1  
C1  
D2  
D1  
E3  
E2  
E1  
F2  
F3  
G3  
G1  
G2  
F1  
H1  
H2  
J1  
84 PLCC  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
1
84 PGA  
K10  
J10  
K11  
J11  
H10  
H11  
F10  
G10  
G11  
G9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
PWRDN  
TCLKIN-I/O  
I/O*  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
1
RESET  
DONE-PG  
D7-I/O  
12  
13  
I/O  
XTL1(OUT)-BCLKIN-I/O  
D6-I/O  
I/O  
I/O  
I/O  
14  
15  
16  
17  
18  
19  
I/O  
D5-I/O  
I/O  
CS0-I/O  
D4-I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
F9  
D3-I/O  
F11  
E11  
E10  
E9  
I/O  
CS1-I/O  
D2-I/O  
20  
21  
22  
I/O  
I/O  
I/O  
I/O  
I/O*  
D11  
D10  
C11  
B11  
C10  
A11  
B10  
B9  
I/O  
D1-I/O  
23  
24  
25  
26  
27  
28  
29  
30  
31  
I/O  
RDY/BUSY-RCLK-I/O  
D0-DIN-I/O  
DOUT-I/O  
CCLK  
I/O  
K1  
J2  
M1-RDATA  
M0-RTRIG  
M2-I/O  
HDC-I/O  
I/O  
L1  
K2  
K3  
L2  
A0-WS-I/O  
A1-CS2-I/O  
A2-I/O  
A10  
A9  
LDC-I/O  
I/O  
L3  
A3-I/O  
K4  
L4  
I/O*  
B8  
I/O*  
I/O*  
A8  
32  
33  
I/O  
J5  
A15-I/O  
A4-I/O  
B6  
I/O  
K5  
L5  
B7  
I/O*  
A14-I/O  
A5-I/O  
A7  
34  
35  
36  
37  
38  
39  
40  
41  
INIT-I/O  
GND  
I/O  
K6  
J6  
C7  
GND  
C6  
J7  
2
A13-I/O  
A6-I/O  
2
A6  
I/O  
L7  
3
3
A5  
I/O  
K7  
L6  
4
A12-I/O  
A7-I/O  
4
B5  
I/O  
5
5
C5  
I/O  
L8  
6
I/O*  
6
A4  
I/O  
K8  
L9  
I/O*  
7
B4  
I/O*  
A11-I/O  
A8-I/O  
8
A3  
I/O*  
L10  
K9  
L11  
7
9
A2  
42  
43  
I/O  
8
A10-I/O  
A9-I/O  
10  
11  
B3  
XTL2(IN)-I/O  
9
A1  
Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed  
outputs are default slew-rate limited.  
This table describes the pinouts of three different chips in three different packages. The pin-description column lists 84 of the 118  
pads on the XC3042 (and 84 of the 98 pads on the XC3030) that are connected to the 84 package pins. Ten pads, indicated by an  
asterisk, do not exist on the XC3020, which has 74 pads; therefore the corresponding pins on the 84-pin packages have no  
connections to an XC3020. Six pads on the XC3020 and 16 pads on the XC3030, indicated by a dash (—) in the 68 PLCC column,  
have no connection to the 68 PLCC, but are connected to the 84-pin packages.  
2-141  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
XC3064/XC3090/XC3195 84-Pin PLCC Pinouts  
XC3000, XC3000A, XC3000L, XC3100 and XC3100A families have identical pinouts  
PLCC  
PLCC  
Pin Number  
XC3064, XC3090, XC3195  
Pin Number  
XC3064, XC3090, XC3195  
12  
PWRDN  
54  
55  
RESET  
DONE-PG  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
TCLKIN-I/O  
I/O  
56  
57  
58  
59  
D7-I/O  
I/O  
XTL1(OUT)-BCLKIN-I/O  
I/O  
D6-I/O  
I/O  
I/O  
I/O  
60  
61  
D5-I/O  
CS0-I/O  
I/O  
I/O  
62  
63  
64  
65  
D4-I/O  
I/O  
GND✶  
VCC  
I/O  
VCC  
GND✶  
I/O  
66  
67  
D3-I/O✶  
CS1-I/O✶  
I/O  
I/O  
68  
69  
D2-I/O✶  
I/O  
I/O  
I/O  
70  
71  
D1-I/O  
RDY/BUSY-RCLK-I/O  
I/O  
30  
31  
I/O  
72  
73  
D0-DIN-I/O  
DOUT-I/O  
M1-RDATA  
32  
33  
34  
M0-RTRIG  
M2-I/O  
74  
75  
CCLK  
A0-WS-I/O  
HDC-I/O  
76  
77  
78  
79  
80  
81  
82  
83  
84  
1
A1-CS2-I/O  
A2-I/O  
A3-I/O  
I/O  
35  
36  
I/O  
LDC-I/O  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
I/O  
I/O  
I/O  
I/O  
A15-I/O  
A4-I/O  
A14-I/O  
A5-I/O  
GND  
I/O  
INIT/I/O✶  
VCC✶  
GND  
I/O  
2
VCC✶  
A13-I/O✶  
A6-I/O✶  
A12-I/O✶  
A7-I/O✶  
I/O  
I/O  
3
I/O  
4
I/O  
5
I/O  
6
I/O  
7
I/O  
8
A11-I/O  
A8-I/O  
A10-I/O  
A9-I/O  
I/O  
9
I/O  
10  
11  
XTL2(IN)-I/O  
Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed  
ouptuts are default slew-rate limited.  
In the PC84 package, XC3064, XC3090 and XC3195 have additional VCC and GND pins and thus a different pin definition than  
XC3020/XC3030/XC3042.  
2-142  
XC3000 Families 100-Pin QFP Pinouts  
XC3000, XC3000A, XC3000L, XC3100 and XC3100A families have identical pinouts  
Pin No.  
Pin No.  
Pin No.  
XC3020  
XC3030  
XC3042  
XC3020  
XC3030  
XC3042  
XC3020  
XC3030  
XC3042  
TQFP  
VQFP  
TQFP  
VQFP  
TQFP  
VQFP  
CQFP PQFP  
CQFP PQFP  
CQFP PQFP  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
I/O*  
I/O*  
1
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
GND  
A13-I/O  
A6-I/O  
A12-I/O  
A7-I/O  
I/O*  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
I/O*  
I/O*  
2
I/O  
3
M1-RD  
GND*  
MO-RT  
VCC*  
M2-I/O  
HDC-I/O  
I/O  
D5-I/O  
CS0-I/O  
D4-I/O  
I/O  
4
5
6
7
I/O*  
VCC  
8
A11-I/O  
A8-I/O  
A10-I/O  
A9-I/O  
VCC*  
GND*  
PWRDN  
TCLKIN-I/O  
I/O**  
I/O*  
D3-I/O  
CS1-I/O  
D2-I/O  
I/O  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
LDC-I/O  
I/O*  
I/O*  
I/O*  
I/O  
I/O*  
I/O  
D1-I/O  
RDY/BUSY-RCLK-I/O  
DO-DIN-I/O  
DOUT-I/O  
CCLK  
I/O  
INIT-I/O  
GND  
I/O*  
I/O  
2
I/O  
I/O  
3
VCC*  
I/O  
I/O  
4
GND*  
I/O  
I/O  
5
2
AO-WS-I/O  
A1-CS2-I/O  
I/O**  
I/O  
I/O  
6
3
I/O  
I/O  
7
4
I/O  
I/O  
8
5
A2-I/O  
A3-I/O  
I/O*  
I/O  
I/O*  
9
6
VCC  
I/O  
I/O*  
10  
11  
12  
13  
14  
7
XTL2-I/O  
GND*  
RESET  
VCC*  
DONE-PG  
D7-I/O  
BCLKIN-XTL1-I/O  
D6-I/O  
8
I/O*  
I/O  
9
A15-I/O  
A4-I/O  
A14-I/O  
I/O  
10  
11  
I/O  
I/O  
I/O  
100  
15  
12  
A5-I/O  
I/O  
I/O  
Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs.  
Programmed outputs are default slew-rate limited.  
* This table describes the pinouts of three different chips in three different packges. The pin-description column lists 100 of the 118  
pads on the XC3042 that are connected to the 100 package pins. Two pads, indicated by double asterisks, do not exist on the  
XC3030, which has 98 pads; therefore the corresponding pins have no connections. Twenty-six pads, indicated by single or double  
asterisks, do not exist on the XC3020, which has 74 pads; therefore, the corresponding pins have no connections. (See table on  
page 2-139.)  
2-143  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
XC3000 Families 132-Pin Ceramic and Plastic PGA Pinouts  
XC3000, XC3000A, XC3000L, XC3100 and XC3100A families have identical pinouts  
PGA Pin  
Number  
XC3042  
XC3064  
PGA Pin  
Number  
XC3042  
XC3064  
XC3042  
XC3064  
XC3042  
XC3064  
PGA Pin  
Number  
PGA Pin  
Number  
C4  
A1  
GND  
PWRDN  
I/O-TCLKIN  
I/O  
M3  
P1  
M4  
L3  
DOUT-I/O  
CCLK  
VCC  
B13  
C11  
A14  
D12  
C13  
B14  
M1-RD  
GND  
M0-RT  
VCC  
M2-I/O  
HDC-I/O  
I/O  
P14  
M11  
N13  
M12  
P13  
N12  
P12  
N11  
M10  
RESET  
VCC  
C3  
B2  
DONE-PG  
D7-I/O  
GND  
B3  
I/O  
M2  
N1  
M1  
K3  
L2  
A0-WS-I/O  
A1-CS2-I/O  
I/O  
XTL1-I/O-BCLKIN  
I/O  
A2  
I/O*  
I/O  
B4  
C14  
E12  
D13  
D14  
E13  
F12  
E14  
F13  
F14  
G13  
G14  
I/O  
C5  
A3  
I/O  
I/O  
I/O  
D6-I/O  
I/O*  
I/O  
A2-I/O  
A3-I/O  
I/O  
I/O  
I/O  
A4  
L1  
LDC-I/O  
I/O*  
P11  
N10  
I/O*  
I/O  
B5  
I/O  
K2  
J3  
C6  
A5  
I/O  
I/O  
I/O  
P10  
M9  
N9  
I/O  
D5-I/O  
CS0-I/O  
I/O*  
I/O  
I/O  
K1  
J2  
A15-I/O  
A4-I/O  
B6  
I/O  
I/O  
A6  
I/O  
I/O  
P9  
J1  
H1  
H2  
H3  
G3  
I/O*  
A14-I/O  
A5-I/O  
GND  
B7  
I/O  
I/O  
P8  
N8  
P7  
M8  
M7  
I/O*  
D4-I/O  
I/O  
C7  
C8  
A7  
GND  
VCC  
I/O  
INIT-I/O  
G12  
H12  
VCC  
GND  
I/O  
VCC  
GND  
VCC  
H14  
H13  
J14  
J13  
K14  
J12  
K13  
L14  
L13  
K12  
M14  
N14  
B8  
I/O  
G2  
G1  
F1  
A13-I/O  
A6-I/O  
I/O  
N7  
P6  
N6  
P5  
M6  
N5  
P4  
P3  
M5  
N4  
P2  
N3  
N2  
D3-I/O  
A8  
I/O  
CS1-I/O  
A9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O*  
I/O  
I/O  
I/O  
I/O  
I/O*  
I/O*  
B9  
I/O  
F2  
E1  
F3  
E2  
D1  
D2  
E3  
C1  
B1  
A12-I/O  
A7-I/O  
I/O  
I/O*  
C9  
A10  
B10  
A11  
C10  
B11  
A12  
B12  
A13  
C12  
I/O  
D2-I/O  
I/O  
I/O  
I/O  
I/O  
I/O*  
I/O  
I/O  
A11-I/O  
A8-I/O  
I/O  
I/O  
I/O  
D1-I/O  
I/O*  
I/O  
RDY/BUSY-RCLK-I/O  
I/O  
I/O  
I/O  
A10-I/O  
I/O*  
I/O  
M13  
L12  
XTL2(IN)-I/O  
C2  
D3  
A9-I/O  
D0-DIN-I/O  
GND  
VCC  
Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed  
outputs are default slew-rate limited.  
* Indicates unconnected package pins (14) for the XC3042.  
2-144  
XC3000 Families 144-Pin Plastic TQFP Pinouts  
XC3000, XC3000A, XC3000L, XC3100 and XC3100A families have identical pinouts  
XC3042  
XC3064  
Pin  
Number  
XC3042  
XC3064  
Pin  
Number  
XC3042  
XC3064  
Pin  
Number  
1
PWRDN  
I/O-TCLKIN  
I/O*  
I/O  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
I/O  
97  
I/O  
I/O  
I/O*  
98  
2
I/O  
99  
I/O*  
3
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
I/O  
4
INIT-I/O  
I/O*  
5
I/O  
6
I/O*  
I/O  
VCC  
D1-I/O  
RDY/BUSY-RCLK-I/O  
I/O  
GND  
7
I/O  
8
I/O  
I/O  
I/O  
9
I/O*  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
I/O  
D0-DIN-I/O  
DOUT-I/O  
CCLK  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O*  
A0-WSI/O  
A1-CS2-I/O  
I/O  
I/O*  
I/O  
I/O*  
I/O  
I/O  
I/O  
I/O  
GND  
VCC  
I/O  
I/O  
A2-I/O  
A3-I/O  
I/O  
I/O  
XTL2(IN)-I/O  
I/O  
GND  
I/O  
I/O  
RESET  
A15-I/O  
A4-I/O  
I/O*  
I/O  
VCC  
I/O  
DONE-PG  
I/O  
D7-I/O  
I/O*  
I/O  
XTL1(OUT)-BCLKIN-I/O  
A14-I/O  
A5-I/O  
I/O  
I/O  
I/O  
I/O*  
I/O  
D6-I/O  
I/O  
GND  
I/O  
VCC  
I/O*  
I/O*  
I/O  
I/O*  
A13-I/O  
A6-I/O  
I/O*  
I/O  
I/O  
I/O*  
I/O  
I/O*  
D5-I/O  
CS0-I/O  
I/O*  
I/O*  
M1-RD  
GND  
MO-RT  
VCC  
M2-I/O  
HDC-I/O  
I/O  
A12-I/O  
A7-I/O  
I/O  
I/O*  
D4-I/O  
I/O  
I/O  
A11-I/O  
A8-I/O  
I/O  
VCC  
GND  
D3-I/O  
CS1-I/O  
I/O*  
I/O  
I/O  
I/O  
LDC-I/O  
I/O*  
I/O  
A10-I/O  
A9-I/O  
VCC  
I/O*  
D2-I/O  
GND  
I/O  
Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed  
outputs are default slew-rate limited.  
* Indicates unconnected package pins (24) for the XC3042.  
2-145  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
XC3000 Families160-Pin PQFP Pinouts  
XC3000, XC3000A, XC3000L, XC3100 and XC3100A families have identical pinouts  
PQFP  
Pin Number  
XC3064, XC3090,  
XC3195  
PQFP  
Pin Number  
XC3064, XC3090,  
XC3195  
PQFP  
Pin Number  
XC3064, XC3090,  
XC3195  
PQFP  
Pin Number  
XC3064, XC3090,  
XC3195  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
GND  
M0–RTRIG  
VCC  
1
I/O  
*
81  
82  
D7-I/O  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
CCLK  
VCC  
2
I/O  
*
XTL1-I/O-BCLKIN  
3
I/O  
83  
I/O  
*
GND  
*
M2-I/O  
HDC-I/O  
I/O  
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCC  
84  
I/O  
I/O  
A0-WS-I/O  
A1-CS2-I/O  
I/O  
5
85  
6
86  
D6-I/O  
I/O  
I/O  
7
87  
I/O  
I/O  
8
88  
I/O  
A2-I/O  
A3-I/O  
I/O  
LDC-I/O  
9
89  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
90  
I/O  
*
*
I/O  
91  
I/O  
I/O  
I/O  
I/O  
92  
D5-I/O  
CS0-I/O  
A15-I/O  
A4-I/O  
I/O  
93  
I/O  
94  
I/O  
*
*
I/O  
95  
I/O  
I/O  
I/O  
96  
I/O  
I/O  
A14-I/O  
A5-I/O  
I/O  
97  
I/O  
98  
D4-I/O  
I/O  
I/O  
*
INIT-I/O  
VCC  
GND  
I/O  
99  
GND  
VCC  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
VCC  
GND  
D3-I/O  
CS1-I/O  
I/O  
I/O  
A13-I/O  
A6-I/O  
*
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
*
*
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
*
*
I/O  
I/O  
A12-I/O  
A7-I/O  
I/O  
I/O  
D2-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A11-I/O  
A8-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D1-I/O  
I/O  
I/O  
RDY/BUSY-RCLK-I/O  
*
A10-I/O  
A9-I/O  
VCC  
XTL2-I/O  
GND  
I/O  
I/O  
RESET  
VCC  
I/O  
I/O  
*
*
GND  
*
I/O  
D0-DIN-I/O  
PWRDWN  
TCLKIN-I/O  
DONE/PG  
M1-RDATA  
DOUT-I/O  
Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed  
IOBs are default slew-rate limited.  
*Indicates unconnected package pins (18) for the XC3064.  
2-146  
XC3000 Families 175-Pin Ceramic and Plastic PGA Pinouts  
XC3000, XC3000A, XC3000L, XC3100 and XC3100A families have identical pinouts  
PGA Pin  
Number  
PGA Pin  
Number  
PGA Pin  
Number  
PGA Pin  
Number  
XC3090, XC3195  
XC3090, XC3195  
XC3090, XC3195  
XC3090, XC3195  
B2  
D4  
PWRDN  
TCLKIN-I/O  
I/O  
R14  
N13  
T14  
P13  
R13  
T13  
N12  
P12  
R12  
T12  
P11  
N11  
R11  
T11  
R10  
P10  
N10  
T10  
T9  
DONE-PG  
R3  
N4  
D0-DIN-I/O  
DOUT-I/O  
D13  
I/O  
D7-I/O  
B14  
C14  
M1-RDATA  
GND  
B3  
XTL1(OUT)-BCLKIN-I/O  
R2  
P3  
CCLK  
VCC  
B15  
D14  
C15  
E14  
B16  
D15  
C16  
M0-RTRIG  
VCC  
M2-I/O  
HDC-I/O  
I/O  
C4  
I/O  
I/O  
N3  
P2  
M3  
R1  
N2  
P1  
N1  
L3  
M2  
M1  
L2  
L1  
K3  
K2  
K1  
J1  
GND  
A0-WS-I/O  
A1-CS2-I/O  
I/O  
B4  
I/O  
I/O  
A4  
I/O  
I/O  
D5  
I/O  
I/O  
C5  
I/O  
D6-I/O  
I/O  
I/O  
B5  
I/O  
I/O  
I/O  
A2-I/O  
A3-I/O  
I/O  
A5  
I/O  
I/O  
D16  
F14  
E15  
E16  
F15  
F16  
G14  
G15  
G16  
H16  
H15  
H14  
J14  
LDC-I/O  
I/O  
C6  
I/O  
I/O  
D6  
I/O  
I/O  
I/O  
I/O  
B6  
I/O  
I/O  
I/O  
A15-I/O  
A4-I/O  
I/O  
A6  
I/O  
D5-I/O  
I/O  
B7  
I/O  
CS0-I/O  
I/O  
C7  
I/O  
I/O  
I/O  
I/O  
D7  
I/O  
I/O  
I/O  
A14-I/O  
A5-I/O  
I/O  
A7  
I/O  
I/O  
I/O  
A8  
I/O  
I/O  
I/O  
B8  
I/O  
R9  
D4-I/O  
INIT-I/O  
VCC  
GND  
I/O  
P9  
I/O  
J2  
I/O  
C8  
I/O  
D8  
GND  
VCC  
I/O  
N9  
VCC  
J3  
GND  
VCC  
A13-I/O  
A6-I/O  
I/O  
D9  
N8  
GND  
H3  
C9  
P8  
D3-I/O  
J15  
H2  
H1  
G1  
G2  
G3  
F1  
F2  
E1  
E2  
F3  
D1  
C1  
D2  
B1  
E3  
C2  
D3  
C3  
B9  
I/O  
J16  
I/O  
R8  
CS1-I/O  
A9  
I/O  
T8  
I/O  
K16  
K15  
K14  
L16  
L15  
M16  
M15  
L14  
N16  
P16  
N15  
R16  
M14  
P15  
N14  
R15  
P14  
I/O  
A10  
D10  
C10  
B10  
A11  
B11  
D11  
C11  
A12  
B12  
C12  
D12  
A13  
B13  
C13  
A14  
I/O  
T7  
I/O  
I/O  
I/O  
I/O  
N7  
I/O  
I/O  
I/O  
I/O  
P7  
I/O  
I/O  
I/O  
I/O  
I/O  
R7  
D2-I/O  
A12-I/O  
A7-I/O  
I/O  
I/O  
T6  
I/O  
I/O  
I/O  
R6  
I/O  
I/O  
I/O  
N6  
I/O  
I/O  
I/O  
I/O  
I/O  
P6  
I/O  
A11-I/O  
A8-I/O  
I/O  
I/O  
T5  
I/O  
I/O  
I/O  
R5  
D1-I/O  
I/O  
I/O  
P5  
RDY/BUSY-RCLK-I/O  
I/O  
I/O  
I/O  
I/O  
N5  
I/O  
I/O  
I/O  
I/O  
A10-I/O  
A9-I/O  
VCC  
GND  
I/O  
T4  
XTL2(IN)-I/O  
GND  
RESET  
VCC  
I/O  
R4  
I/O  
P4  
I/O  
Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed  
outputs are default slew-rate limited.  
Pins A2, A3, A15, A16, T1, T2, T3, T15 and T16 are not connected. Pin A1 does not exist.  
2-147  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
XC3090 176-Pin TQFP Pinouts  
XC3000, XC3000A, XC3000L, XC3100 and XC3100A families have identical pinouts  
Pin  
Number  
Pin  
Pin  
Pin  
Number  
XC3090  
Number  
XC3090  
XC3090  
PWRDWN  
TCLKIN-I/O  
I/O  
Number  
XC3090  
VCC  
GND  
A0-WS-I/O  
A1-CS2-I/O  
89  
DONE-PG  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
M1-RDATA  
1
2
90  
D7-I/O  
GND  
M0-RTRIG  
VCC  
M2-I/O  
HDC-I/O  
I/O  
3
91  
XTAL1(OUT)-BCLKIN-I/O  
4
I/O  
92  
I/O  
I/O  
5
I/O  
93  
6
I/O  
94  
I/O  
I/O  
7
I/O  
95  
I/O  
I/O  
8
I/O  
96  
D6-I/O  
I/O  
A2-I/O  
A3-I/O  
I/O  
9
I/O  
97  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
I/O  
98  
I/O  
LDC-I/O  
I/O  
99  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D5-I/O  
CS0-I/O  
I/O  
A15-I/O  
A4-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A14-I/O  
A5-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D4-I/O  
I/O  
I/O  
I/O  
I/O  
INIT-I/O  
VCC  
GND  
I/O  
GND  
VCC  
I/O  
VCC  
GND  
VCC  
A13-I/O  
A6-I/O  
GND  
D3-I/O  
CS1-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D2-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A12-I/O  
A7-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D1-I/O  
RDY/BUSY-RCLK-I/O  
I/O  
I/O  
I/O  
I/O  
A11-I/O  
A8-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
XTAL2(IN)-I/O  
GND  
RESET  
VCC  
A10-I/O  
A9-I/O  
VCC  
GND  
I/O  
D0-DIN-I/O  
DOUT-I/O  
CCLK  
I/O  
Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed  
outputs are default slew-rate limited.  
2-148  
XC3090 208-Pin PQFP Pinouts  
XC3000, XC3000A, XC3000L, XC3100 and XC3100A families have identical pinouts  
Pin  
Number  
Pin  
Pin  
Pin  
Number  
XC3090  
Number  
XC3090  
XC3090  
Number  
XC3090  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
1
GND  
PWRDWN  
TCLKIN-I/O  
I/O  
2
VCC  
3
VCC  
M2-I/O  
HDC-I/O  
I/O  
D/P  
GND  
WS-A0-I/O  
CS2-A1-I/O  
I/O  
4
5
D7-I/O  
6
I/O  
XTL1-BCLKIN-I/O  
7
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
A2-I/O  
A3-I/O  
I/O  
9
I/O  
LDC-I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
I/O  
I/O  
I/O  
I/O  
D6-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A15-I/O  
A4-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D5-I/O  
I/O  
I/O  
I/O  
CS0-I/O  
I/O  
I/O  
I/O  
I/O  
A14-I/O  
A5-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D4-I/O  
I/O  
GND  
VCC  
I/O  
INIT-I/O  
VCC  
GND  
I/O  
I/O  
GND  
VCC  
A13-I/O  
A6-I/O  
I/O  
VCC  
GND  
I/O  
D3-I/O  
I/O  
I/O  
CS1-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D2-I/O  
I/O  
I/O  
I/O  
I/O  
A12-I/O  
A7-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D1-I/O  
I/O  
I/O  
I/O  
RDY/BUSY-RCLK-I/O  
A11-I/O  
A8-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A10-I/O  
A9-I/O  
VCC  
I/O  
I/O  
DIN-D0-I/O  
DOUT-I/O  
CCLK  
VCC  
M1-RDATA  
GND  
M0-RTRIG  
XTL2-I/O  
GND  
RESET  
Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed  
outputs are default slew-rate limited.  
*In PQ208, XC3090 and XC3195 have different pinouts.  
2-149  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
XC3195 PQ208 and PG223 Pinouts  
Pin  
Pin  
Pin  
Description  
PG223  
PQ208  
Description  
PG223  
PQ208  
Description  
PG223  
PQ208  
A9-I/O  
A10-I/O  
I/O  
B1  
E3  
E4  
C2  
C1  
D2  
E2  
F4  
F3  
D1  
F2  
G2  
G4  
G1  
H2  
H3  
H1  
H4  
J3  
206  
205  
204  
203  
202  
201  
200  
199  
198  
197  
196  
194  
193  
192  
191  
190  
189  
188  
187  
186  
185  
184  
183  
182  
181  
180  
179  
178  
177  
176  
175  
174  
173  
172  
171  
169  
168  
167  
166  
165  
164  
163  
162  
161  
160  
159  
158  
157  
156  
155  
I/O  
I/O  
U18  
P15  
T17  
T18  
P16  
R17  
N15  
R18  
P17  
N17  
N16  
M15  
M18  
M17  
L18  
L17  
L15  
L16  
K18  
K17  
K16  
K15  
J15  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
I/O  
I/O  
B16  
A16  
D14  
C15  
B15  
A15  
C14  
D13  
B14  
C13  
B13  
B12  
D12  
A12  
B11  
C11  
A11  
D11  
A10  
B10  
C10  
C9  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
14  
13  
12  
11  
10  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A8-I/O  
A11-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A7-I/O  
A12-I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J2  
I/O  
I/O  
A6-I/O  
A13-I/O  
VCC  
GND  
I/O  
J1  
I/O  
I/O  
K3  
J4  
GND  
VCC  
INIT  
I/O  
I/O  
VCC  
GND  
I/O  
D10  
D9  
K4  
K2  
K1  
L2  
J16  
J17  
B9  
I/O  
I/O  
J18  
I/O  
A9  
A5-I/O  
A14-I/O  
I/O  
I/O  
H16  
H15  
H17  
H18  
G17  
G18  
G15  
F16  
F17  
E17  
C18  
F15  
D17  
E16  
C17  
B18  
E15  
A18  
A17  
D16  
B17  
D15  
C16  
I/O  
C8  
L4  
I/O  
I/O  
D8  
L3  
I/O  
I/O  
B8  
I/O  
L1  
I/O  
I/O  
A8  
I/O  
M1  
M2  
M4  
N2  
N3  
P2  
R1  
N4  
T1  
R2  
P3  
T2  
P4  
U1  
V1  
T3  
R3  
R4  
U2  
V2  
I/O  
I/O  
B7  
I/O  
I/O  
I/O  
A7  
A4-I/O  
A15-I/O  
I/O  
I/O  
I/O  
D7  
I/O  
I/O  
B6  
I/O  
I/O  
C6  
I/O  
I/O  
I/O  
B5  
I/O  
I/O  
I/O  
A4  
I/O  
I/O  
I/O  
D6  
A3-I/O  
A2-I/O  
I/O  
I/O  
I/O  
C5  
LDC-I/O  
I/O  
I/O  
B4  
8
I/O  
B3  
7
I/O  
I/O  
I/O  
C4  
6
I/O  
I/O  
I/O  
D5  
5
I/O  
HDC-I/O  
M2-I/O  
VCC  
M0-RTIG  
GND  
M1/RDATA  
I/O  
C3  
4
A1-CS2-I/O  
A0-WS-I/O  
GND  
VCC  
CCLK  
DOUT-I/O  
I/O  
A3  
3
TCLKIN-I/O  
PWRDN  
GND  
VCC  
A2  
2
B2  
1
D4  
208  
207  
D3  
Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed  
outputs are default slew-rate limited.  
In the PQ208 package, pins 15, 16, 64, 65, 90, 91, 142, 143, 170 and 195 are not connected.  
*In PQ208, XC3090 and XC3195 have different pinouts.  
2-150  
XC3000 Component Availability  
PINS  
44  
64  
68  
84  
100  
132  
144  
160  
164  
175  
176  
208  
223  
TOP-  
TOP-  
TYPE  
PLAST. PLAST. PLAST. PLAST. CERAM PLAST. PLAST. PLAST. BRAZED PLAST. CERAM. PLAST. PLAST. BRAZED PLAST. CERAM. PLAST. PLAST. CERAM.  
PLCC VQFP PLCC PLCC PGA PQFP TQFP VQFP CQFP PGA PGA TQFP PQFP CQFP PGA PGA TQFP PQFP PGA  
CODE  
PC44 VQ64 PC68 PC84 PG84 PQ100 TQ100 VQ100 CB100 PP132 PG132 TQ144 PQ160 CB164 PP175 PG175 TQ176 PQ208 PG223  
XC3020  
-50  
-70  
-100  
-125  
-50  
-70  
-100  
-125  
-50  
-70  
-100  
-125  
-50  
-70  
-100  
-125  
-50  
-70  
-100  
-125  
-7  
M B  
C I M B  
C I M B  
C
M B  
C I  
C I  
C
C I  
C I  
C
C I  
C I  
C
C M B  
C M B  
XC3030  
XC3042  
XC3064  
XC3090  
M
C I  
C I  
C
C I  
C I  
C
C I  
C I  
C
C I M  
C I M  
C
C I  
C I  
C
C
C
C
M B  
M B  
M B  
C I M B  
C I M B  
C
C I  
C I  
C
C I M B  
C I M B  
C
C I  
C I  
C
C
C
C
C M B  
C M B  
C
C
C
M
C I  
C I  
C
C I  
C I  
C
C I M  
C I M  
C
C I  
C I  
C
M B  
M B  
C I M B  
C I M B  
C
C I  
C I  
C
C I  
C I  
C
C I M B  
C I M B  
C I  
C I  
C
C I  
C I  
C
XC3020A  
XC3030A  
XC3042A  
XC3064A  
XC3090A  
XC3020L  
C I  
C
C I  
C
C I  
C
C I  
C
-6  
-7  
C I  
C
C I  
C
C I  
C
C I  
C
C I  
C
C I  
C
C I  
C
-6  
-7  
C I  
C
C I  
C
C I  
C
C I  
C
C I  
C
C I  
C
C I  
C
-6  
-7  
C I  
C
C I  
C
C I  
C
C I  
C
C I  
C
-6  
-7  
C I  
C
C I  
C
C I  
C
C I  
C
C I  
C
C I  
C
-6  
C
C
C
C
C
XC3030L  
XC3042L  
C
C
C
XC3064L  
XC3090L  
C
C
C
-5  
-4  
-3  
-2  
-1  
-5  
-4  
-3  
-2  
-1  
-5  
-4  
-3  
-2  
-1  
-5  
-4  
-3  
-2  
-1  
-5  
-4  
-3  
-2  
-1  
-5  
-4  
-3  
-2  
-1  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C
XC3120A  
XC3130A  
XC3142A  
XC3164A  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
C I  
C
C
C I  
C I  
C I  
C I  
C
C I  
C
C I  
C I  
C I  
C I  
C
C I M B  
C I  
C I  
C I  
C I  
C I  
C
C
MB  
C
C
C I M B  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
C
C I  
C I  
C I  
C
C I  
C I  
C
C I  
C
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
C
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
M B  
M B  
C I  
C I  
C I  
C I  
C
C I M B  
C I  
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
XC3190A  
XC3195A  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
C I M B  
C I  
C I  
C I  
C I  
C I  
C
C I  
C I  
C I  
C I  
C
C I  
C I  
C
C = Commercial = 0° to +85° C  
I = Industrial = -40° to +100° C  
M = Mil Temp = -55° to +125° C  
B = MIL-STD-883C Class B  
Parentheses indicate future product plans  
2-151  
XC3000, XC3000A, XC3000L, XC3100, XC3100A Logic Cell Array Families  
For a detailed description of the device architecture, see pages 2-105 through 2-123.  
For a detailed description of the configuration modes and their timing, see pages 2-124 through 2-132.  
For detailed lists of package pin-outs, see pages 2-140 through 2-150.  
For package physical dimensions and thermal data, see Section 4.  
Ordering Information  
Example:  
XC3130A- 3 PC44C  
Device Type  
Temperature Range  
Number of Pins  
Package Type  
Block Delay  
XC3000/XC3100 device will always start a new frame as  
soon as it finds the first 0 after the end of the previous  
frame, even if the data is completely wrong or out-of-sync.  
Given sufficient zeros in the data stream, the device will  
also go Done, but with incorrect configuration and the  
possibility of internal contention.  
XC3000, XC3000A, XC3000L, XC3100, XC3100A  
The features of the original XC3000 family are described  
on the preceding pages.  
XC3100A is functionally identical with XC3000, but offers  
substantially faster performance. There is also an addi-  
tional high-end family member, the XC3195A.  
An XC3000A/XC3100A/XC3000L device starts any new  
frame only if the three preceding bits are all ones. If this  
check fails, it pullsINIT Low and stops the internal configu-  
ration, althoughtheMasterCCLKkeepsrunning. Theuser  
must then start a new configuration by applying a >6 µs  
Low level on RESET.  
XC3000L uses a 3.3 V supply voltage and has lower  
power-down current.  
The XC3000A, XC3000L and XC3100A families all offer  
identical enhanced functionality. They are thus supersets  
of the XC3000 familiy.  
This simple check does not protect against random bit  
errors, but it offers almost 100 percent protection against  
erroneous configuration files, defective configuration data  
sources, synchronization errors between configuration  
source and FPGA, or PC-board level defects, such as  
broken lines or solder-bridges.  
Additional routing resources provide improved perfor-  
mance and higher density. There is now a direct connec-  
tion from each CLB output to the data input of its nearest  
TBUF. This speeds up the path and preserves general  
routing resources that can be used for other purposes.  
The CLB clock enable and the TBUF output enable are  
now driven by two different vertical Longlines. In the  
XC3000/3100 devices, the CLB clock enable signal and  
theadjacentTBUFoutputenablesignalcanbothbedriven  
only from the same vertical Longline. That makes these  
two functions mutually exclusive, and thus creates place-  
ment constraints. Using separate Longlines for these two  
functions leads to improved density and performance,  
especially in bus-oriented applications.  
A separate modification slows down the RESET input  
before configuration by using a two-stage shift register  
driven from the internal clock. It tolerates submicrosecond  
High spikes on RESET before configuration. The XC3000  
master can be connected like an XC4000 master, but with  
its RESET input used instead of INIT. (On XC3000, INIT is  
output only).  
Soft start-up. After configuration, the outputs of all LCA  
device in a daisy-chain become active simultaneously, as  
a result of the same CCLK edge. In the original XC3000/  
3100 devices, each output becomes active in either fast or  
slew-rate limited mode, depending on the way it is config-  
ured. This can lead to large ground-bounce signals. In the  
new XC3000A/XC3000L/XC31000A devices, all outputs  
become active first in slew-rate limited mode, reducing the  
ground bounce. After this soft start-up, each individual  
output slew rate is again controlled by the respective  
configuration bit.  
The XC3000, XC3000L, ZC3100A are fully supported by  
the XACT Version 5.0, or later, development system.  
XACT 5.0 provides many advanced features not available  
with the XC3000 software such as timing-driven place and  
route (XACT-Performance )and the X-BLOX module  
generator.  
Bitstream error checking protects against erroneous  
configuration.  
Each Xilinx FPGA bitstream consists of a 40-bit preamble,  
followed by a device-specific number of data frames. The  
number of bits per frame is also device-specific; however,  
each frame ends with three stop bits (111) followed by a  
start bit for the next frame (0).  
All devices in all XC3000 families start reading in a new  
framewhentheyfindthefirst0aftertheendoftheprevious  
frame. XC3000/XC3100 devices do not check for the  
correct stop bits, but XC3000A/XC3100A and XC3000L  
devices check that the last three bits of any frame are  
actually 111.  
Under normal circumstances, all these FPGAs behave the  
same way; however, if the bitstream is corrupted, an  
2-152  

相关型号:

XC3090-100CB164B

Field Programmable Gate Array (FPGA)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

XC3090-100CB164BSPC0107

Field Programmable Gate Array, 320 CLBs, 5000 Gates, 100MHz, CMOS, CQFP164, TOP BRAZED, CERAMIC, QFP-164

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3090-100CB164C

Field Programmable Gate Array, 320 CLBs, 5000 Gates, 100MHz, 320-Cell, CMOS, CQFP164, TOP BRAZED, CERAMIC, QFP-164

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3090-100CB164CSPC0107

Field Programmable Gate Array, 320 CLBs, 5000 Gates, 100MHz, CMOS, CQFP164, TOP BRAZED, CERAMIC, QFP-164

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3090-100CB164M

Field Programmable Gate Array, 320 CLBs, 5000 Gates, 100MHz, 320-Cell, CMOS, CQFP164, TOP BRAZED, CERAMIC, QFP-164

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3090-100CB164MSPC0107

Field Programmable Gate Array, 320 CLBs, 5000 Gates, 100MHz, CMOS, CQFP164, TOP BRAZED, CERAMIC, QFP-164

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3090-100CQ164C

Field Programmable Gate Array (FPGA)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

XC3090-100CQ164CSPC0107

Field Programmable Gate Array, 320 CLBs, 9000 Gates, 100MHz, CMOS, CQFP164, CERAMIC, QFP-164

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3090-100CQ164CSPC0109

Field Programmable Gate Array, 320 CLBs, 9000 Gates, 100MHz, CMOS, CQFP164, CERAMIC, QFP-164

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3090-100PC84C

Field Programmable Gate Array, 320 CLBs, 5000 Gates, 100MHz, 320-Cell, CMOS, PQCC84, PLASTIC, LCC-84

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3090-100PC84CSPC0107

Field Programmable Gate Array, 320 CLBs, 5000 Gates, 100MHz, CMOS, PQCC84, PLASTIC, LCC-84

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3090-100PC84CSPC0109

Field Programmable Gate Array, 320 CLBs, 9000 Gates, 100MHz, CMOS, PQCC84, PLASTIC, LCC-84

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX