XC3S50-4FTG256C [XILINX]

Field Programmable Gate Array, 192 CLBs, 50000 Gates, PBGA256, LEAD FREE, FTBGA-256;
XC3S50-4FTG256C
型号: XC3S50-4FTG256C
厂家: XILINX, INC    XILINX, INC
描述:

Field Programmable Gate Array, 192 CLBs, 50000 Gates, PBGA256, LEAD FREE, FTBGA-256

文件: 总272页 (文件大小:5986K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1
Spartan-3 FPGA Family  
Data Sheet  
DS099 June 27, 2013  
Product Specification  
Module 1:  
Introduction and Ordering Information  
Module 4: Pinout Descriptions  
DS099 (v3.1) June 27, 2013  
DS099 (v3.1) June 27, 2013  
Pin Descriptions  
Pin Behavior During Configuration  
Introduction  
Features  
Package Overview  
Pinout Tables  
Architectural Overview  
Array Sizes and Resources  
User I/O Chart  
Footprints  
Ordering Information  
Module 2: Functional Description  
DS099 (v3.1) June 27, 2013  
Input/Output Blocks (IOBs)  
IOB Overview  
SelectIO™ Interface I/O Standards  
Configurable Logic Blocks (CLBs)  
Block RAM  
Dedicated Multipliers  
Digital Clock Manager (DCM)  
Clock Network  
Configuration  
Module 3:  
DC and Switching Characteristics  
DS099 (v3.1) June 27, 2013  
DC Electrical Characteristics  
Absolute Maximum Ratings  
Supply Voltage Specifications  
Recommended Operating Conditions  
DC Characteristics  
Switching Characteristics  
I/O Timing  
Internal Logic Timing  
DCM Timing  
Configuration and JTAG Timing  
© Copyright 2003–2013 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado, and other designated brands included herein are trademarks of Xilinx  
in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.  
DS099 June 27, 2013  
www.xilinx.com  
Product Specification  
1
8
Spartan-3 FPGA Family:  
Introduction and Ordering Information  
DS099 (v3.1) June 27, 2013  
Product Specification  
Introduction  
Features  
Low-cost, high-performance logic solution for high-volume,  
consumer-oriented applications  
The Spartan®-3 family of Field-Programmable Gate Arrays  
is specifically designed to meet the needs of high volume,  
cost-sensitive consumer electronic applications. The  
eight-member family offers densities ranging from 50,000 to  
5,000,000 system gates, as shown in Table 1.  
Densities up to 74,880 logic cells  
SelectIO™ interface signaling  
Up to 633 I/O pins  
622+ Mb/s data transfer rate per I/O  
18 single-ended signal standards  
8 differential I/O standards including LVDS, RSDS  
Termination by Digitally Controlled Impedance  
Signal swing ranging from 1.14V to 3.465V  
Double Data Rate (DDR) support  
The Spartan-3 family builds on the success of the earlier  
Spartan-IIE family by increasing the amount of logic  
resources, the capacity of internal RAM, the total number of  
I/Os, and the overall level of performance as well as by  
improving clock management functions. Numerous  
enhancements derive from the Virtex®-II platform  
technology. These Spartan-3 FPGA enhancements,  
combined with advanced process technology, deliver more  
functionality and bandwidth per dollar than was previously  
possible, setting new standards in the programmable logic  
industry.  
DDR, DDR2 SDRAM support up to 333 Mb/s  
Logic resources  
Abundant logic cells with shift register capability  
Wide, fast multiplexers  
Fast look-ahead carry logic  
Dedicated 18 x 18 multipliers  
JTAG logic compatible with IEEE 1149.1/1532  
SelectRAM™ hierarchical memory  
Up to 1,872 Kbits of total block RAM  
Up to 520 Kbits of total distributed RAM  
Because of their exceptionally low cost, Spartan-3 FPGAs  
are ideally suited to a wide range of consumer electronics  
applications, including broadband access, home  
networking, display/projection and digital television  
equipment.  
Digital Clock Manager (up to four DCMs)  
Clock skew elimination  
Frequency synthesis  
High resolution phase shifting  
Eight global clock lines and abundant routing  
Fully supported by Xilinx ISE® and WebPACK™ software  
development systems  
The Spartan-3 family is a superior alternative to mask  
programmed ASICs. FPGAs avoid the high initial cost, the  
lengthy development cycles, and the inherent inflexibility of  
conventional ASICs. Also, FPGA programmability permits  
design upgrades in the field with no hardware replacement  
necessary, an impossibility with ASICs.  
MicroBlaze™ and PicoBlaze™ processor, PCI®,  
PCI Express® PIPE Endpoint, and other IP cores  
Pb-free packaging options  
Automotive Spartan-3 XA Family variant  
Table 1: Summary of Spartan-3 FPGA Attributes  
CLB Array  
Distributed  
Block  
Maximum  
Differential  
I/O Pairs  
(One CLB = Four Slices)  
System  
Equivalent  
Dedicated  
Multipliers  
Max.  
User I/O  
Device  
RAM Bits RAM Bits  
DCMs  
(1)  
Gates Logic Cells  
Total  
Rows Columns  
CLBs  
(K=1024)  
(K=1024)  
(2)  
XC3S50  
50K  
200K  
400K  
1M  
1,728  
4,320  
16  
24  
32  
48  
64  
80  
96  
104  
12  
20  
28  
40  
52  
64  
72  
80  
192  
480  
12K  
30K  
72K  
216K  
288K  
432K  
576K  
720K  
1,728K  
1,872K  
4
12  
16  
24  
32  
40  
96  
104  
2
4
4
4
4
4
4
4
124  
173  
264  
391  
487  
565  
633  
633  
56  
(2)  
XC3S200  
XC3S400  
76  
(2)  
(2)  
8,064  
896  
56K  
116  
175  
221  
270  
300  
300  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
17,280  
29,952  
46,080  
62,208  
74,880  
1,920  
3,328  
5,120  
6,912  
8,320  
120K  
208K  
320K  
432K  
520K  
1.5M  
2M  
4M  
5M  
Notes:  
1. Logic Cell = 4-input Look-Up Table (LUT) plus a ‘D’ flip-flop. "Equivalent Logic Cells" equals "Total CLBs" x 8 Logic Cells/CLB x 1.125 effectiveness.  
2. These devices are available in Xilinx Automotive versions as described in DS314: Spartan-3 Automotive XA FPGA Family.  
© Copyright 2003–2013 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado, and other designated brands included herein are trademarks of Xilinx  
in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
2
Spartan-3 FPGA Family: Introduction and Ordering Information  
Architectural Overview  
The Spartan-3 family architecture consists of five fundamental programmable functional elements:  
Configurable Logic Blocks (CLBs) contain RAM-based Look-Up Tables (LUTs) to implement logic and storage  
elements that can be used as flip-flops or latches. CLBs can be programmed to perform a wide variety of logical  
functions as well as to store data.  
Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB  
supports bidirectional data flow plus 3-state operation. Twenty-six different signal standards, including eight  
high-performance differential standards, are available as shown in Table 2. Double Data-Rate (DDR) registers are  
included. The Digitally Controlled Impedance (DCI) feature provides automatic on-chip terminations, simplifying board  
designs.  
Block RAM provides data storage in the form of 18-Kbit dual-port blocks.  
Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the product.  
Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying,  
dividing, and phase shifting clock signals.  
These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. The XC3S50 has a  
single column of block RAM embedded in the array. Those devices ranging from the XC3S200 to the XC3S2000 have two  
columns of block RAM. The XC3S4000 and XC3S5000 devices have four RAM columns. Each column is made up of several  
18-Kbit RAM blocks; each block is associated with a dedicated multiplier. The DCMs are positioned at the ends of the outer  
block RAM columns.  
The Spartan-3 family features a rich network of traces and switches that interconnect all five functional elements,  
transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections  
to the routing.  
X-Ref Target - Figure 1  
DS099-1_01_032703  
Notes:  
1. The two additional block RAM columns of the XC3S4000 and XC3S5000 devices  
are shown with dashed lines. The XC3S50 has only the block RAM column on the  
far left.  
Figure 1: Spartan-3 Family Architecture  
Configuration  
Spartan-3 FPGAs are programmed by loading configuration data into robust reprogrammable static CMOS configuration  
latches (CCLs) that collectively control all functional elements and routing resources. Before powering on the FPGA,  
configuration data is stored externally in a PROM or some other nonvolatile medium either on or off the board. After applying  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
3
Spartan-3 FPGA Family: Introduction and Ordering Information  
power, the configuration data is written to the FPGA using any of five different modes: Master Parallel, Slave Parallel, Master  
Serial, Slave Serial, and Boundary Scan (JTAG). The Master and Slave Parallel modes use an 8-bit-wide SelectMAP port.  
The recommended memory for storing the configuration data is the low-cost Xilinx Platform Flash PROM family, which  
includes the XCF00S PROMs for serial configuration and the higher density XCF00P PROMs for parallel or serial  
configuration.  
I/O Capabilities  
The SelectIO feature of Spartan-3 devices supports eighteen single-ended standards and eight differential standards as  
listed in Table 2. Many standards support the DCI feature, which uses integrated terminations to eliminate unwanted signal  
reflections.  
Table 2: Signal Standards Supported by the Spartan-3 Family  
Standard  
Category  
Symbol  
(IOSTANDARD)  
DCI  
Option  
Description  
VCCO (V)  
Class  
Single-Ended  
GTL  
Gunning Transceiver Logic  
N/A  
1.5  
1.8  
Terminated  
GTL  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Plus  
GTLP  
HSTL  
High-Speed Transceiver Logic  
I
HSTL_I  
III  
HSTL_III  
I
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
LVCMOS12  
LVCMOS15  
LVCMOS18  
LVCMOS25  
LVCMOS33  
LVTTL  
II  
III  
LVCMOS  
Low-Voltage CMOS  
1.2  
1.5  
1.8  
2.5  
3.3  
3.3  
3.0  
1.8  
N/A  
N/A  
Yes  
Yes  
Yes  
Yes  
No  
N/A  
N/A  
N/A  
LVTTL  
PCI  
Low-Voltage Transistor-Transistor Logic  
Peripheral Component Interconnect  
Stub Series Terminated Logic  
N/A  
33 MHz(1)  
PCI33_3  
No  
SSTL  
N/A ( 6.7 mA)  
SSTL18_I  
SSTL18_II  
SSTL2_I  
Yes  
No  
N/A ( 13.4 mA)  
2.5  
2.5  
I
Yes  
Yes  
II  
SSTL2_II  
Differential  
LDT  
(ULVDS)  
Lightning Data Transport (HyperTransport™)  
Logic  
N/A  
LDT_25  
No  
LVDS  
Low-Voltage Differential Signaling  
Standard  
LVDS_25  
Yes  
No  
Bus  
BLVDS_25  
Extended Mode  
LVDSEXT_25  
LVPECL_25  
RSDS_25  
Yes  
No  
LVPECL  
RSDS  
HSTL  
Low-Voltage Positive Emitter-Coupled Logic  
Reduced-Swing Differential Signaling  
Differential High-Speed Transceiver Logic  
Differential Stub Series Terminated Logic  
2.5  
2.5  
1.8  
2.5  
N/A  
N/A  
II  
No  
DIFF_HSTL_II_18  
DIFF_SSTL2_II  
Yes  
Yes  
SSTL  
II  
Notes:  
1. 66 MHz PCI is not supported by the Xilinx IP core although PCI66_3 is an available I/O standard.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
4
Spartan-3 FPGA Family: Introduction and Ordering Information  
Table 3 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package  
combination.  
Table 3: Spartan-3 Device I/O Chart  
Available User I/Os and Differential (Diff) I/O Pairs by Package Type  
(1)  
(1)  
VQ100  
VQG100  
CP132  
TQ144  
TQG144  
PQ208  
PQG208  
FT256  
FTG256  
FG320  
FGG320  
FG456  
FGG456  
FG676  
FGG676  
FG900  
FGG900  
FG1156  
Package  
CPG132  
FGG1156  
Footprint  
(mm)  
16 x 16  
8 x 8  
22 x 22 30.6 x 30.6 17 x 17  
19 x 19  
23 x 23  
27 x 27  
31 x 31  
35 x 35  
Device  
XC3S50  
User Diff User Diff User Diff User Diff User Diff User Diff User Diff User Diff User Diff User  
Diff  
(1)  
(1)  
63  
63  
29  
29  
97  
97  
97  
46  
46  
46  
124  
141  
141  
56  
62  
62  
173  
173  
173  
76  
76  
76  
89  
44  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
221 100 264 116  
221 100 333 149 391 175  
221 100 333 149 487 221  
333 149 489 221 565 270  
(1)  
(1)  
(1)  
489 221 633 300  
489 221 633 300  
712  
784  
312  
344  
(1)  
Notes:  
1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See  
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.  
2. All device options listed in a given package column are pin-compatible.  
3. User = Single-ended user I/O pins. Diff = Differential I/O pairs.  
Package Marking  
Figure 2 shows the top marking for Spartan-3 FPGAs in the quad-flat packages. Figure 3 shows the top marking for  
Spartan-3 FPGAs in BGA packages except the 132-ball chip-scale package (CP132 and CPG132). The markings for the  
BGA packages are nearly identical to those for the quad-flat packages, except that the marking is rotated with respect to the  
ball A1 indicator. Figure 4 shows the top marking for Spartan-3 FPGAs in the CP132 and CPG132 packages.  
The “5C” and “4I” part combinations may be dual marked as “5C/4I”. Devices with the dual mark can be used as either -5C  
or -4I devices. Devices with a single mark are only guaranteed for the marked speed grade and temperature range. Some  
specifications vary according to mask revision. Mask revision E devices are errata-free. All shipments since 2006 have been  
mask revision E.  
X-Ref Target - Figure 2  
Mask Revision Code  
Fabrication Code  
R
R
Process Technology  
SPARTAN  
XC3S400  
TM  
Device Type  
Date Code  
Lot Code  
Package  
PQ208EGQ0525  
D1234567A  
Speed Grade  
4C  
Temperature Range  
Pin P1  
DS099-1_03_050305  
Figure 2: Spartan-3 FPGA QFP Package Marking Example for Part Number XC3S400-4PQ208C  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
5
Spartan-3 FPGA Family: Introduction and Ordering Information  
X-Ref Target - Figure 3  
Mask Revision Code  
R
BGA Ball A1  
Fabrication Code  
Process Code  
R
SPARTAN  
Device Type  
XC3S1000TM  
Date Code  
Lot Code  
Package  
FT256EGQ0525  
D1234567A  
4C  
Speed Grade  
Temperature Range  
DS099-1_04_050305  
Figure 3: Spartan-3 FPGA BGA Package Marking Example for Part Number XC3S1000-4FT256C  
X-Ref Target - Figure 4  
Ball A1  
Device Type  
3S50  
F12345 -0525  
PHILIPPINES  
Lot Code  
Date Code  
Temperature Range  
Package  
C5 = CP132  
C6 = CPG132  
C5-EGQ  
4C  
Speed Grade  
Process Code  
Mask Revision Code  
Fabrication Code  
DS099-1_05_092712  
Figure 4: Spartan-3 FPGA CP132 and CPG132 Package Marking Example for XC3S50-4CP132C  
Ordering Information  
Spartan-3 FPGAs are available in both standard (Figure 5) and Pb-free (Figure 6) packaging options for all device/package  
combinations. The Pb-free packages include a special ‘G’ character in the ordering code.  
X-Ref Target - Figure 5  
Example: XC3S50 -4 PQ 208 C  
Device Type  
Temperature Range:  
C = Commercial (Tj = 0°C to 85°C)  
I = Industrial (Tj = –40°C to +100°C)  
Speed Grade  
Package Type  
Number of Pins  
DS099_1_05_020711  
Figure 5: Standard Packaging  
For additional information on Pb-free packaging, see XAPP427: Implementation and Solder Reflow Guidelines for Pb-Free  
Packages.  
X-Ref Target - Figure 6  
Example: XC3S50 -4 PQ G 208 C  
Device Type  
Temperature Range:  
C = Commercial (Tj = 0°C to 85°C)  
I = Industrial (Tj = –40°C to +100°C)  
Speed Grade  
Package Type  
Number of Pins  
Pb-free  
DS099_1_06_020711  
Figure 6: Pb-Free Packaging  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
6
Spartan-3 FPGA Family: Introduction and Ordering Information  
Table 4: Example Ordering Information  
Device  
XC3S50  
Speed Grade  
Package Type/Number of Pins  
Temperature Range (Tj)  
-4 Standard Performance  
VQ(G)100  
100-pin Very Thin Quad Flat Pack (VQFP)  
132-pin Chip-Scale Package (CSP)  
C Commercial (0°C to 85°C)  
(1)  
(2)  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
-5 High Performance  
CP(G)132  
TQ(G)144  
PQ(G)208  
FT(G)256  
FG(G)320  
FG(G)456  
FG(G)676  
FG(G)900  
I
Industrial (–40°C to 100°C)  
144-pin Thin Quad Flat Pack (TQFP)  
208-pin Plastic Quad Flat Pack (PQFP)  
256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)  
320-ball Fine-Pitch Ball Grid Array (FBGA)  
456-ball Fine-Pitch Ball Grid Array (FBGA)  
676-ball Fine-Pitch Ball Grid Array (FBGA)  
900-ball Fine-Pitch Ball Grid Array (FBGA)  
1156-ball Fine-Pitch Ball Grid Array (FBGA)  
(2)  
FG(G)1156  
Notes:  
1. The -5 speed grade is exclusively available in the Commercial temperature range.  
2. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See  
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.  
Revision History  
Date  
Version  
1.0  
Description  
04/11/2003  
04/24/2003  
12/24/2003  
07/13/2004  
01/17/2005  
Initial Xilinx release.  
1.1  
Updated block RAM, DCM, and multiplier counts for the XC3S50.  
Added the FG320 package.  
1.2  
1.3  
Added information on Pb-free packaging options.  
1.4  
Referenced Spartan-3 XA Automotive FPGA families in Table 1. Added XC3S50CP132,  
XC3S2000FG456, XC3S4000FG676 options to Table 3. Updated Package Marking to show mask  
revision code, fabrication facility code, and process technology code.  
08/19/2005  
1.5  
Added package markings for BGA packages (Figure 3) and CP132/CPG132 packages (Figure 4).  
Added differential (complementary single-ended) HSTL and SSTL I/O standards.  
04/03/2006  
04/26/2006  
05/25/2007  
11/30/2007  
2.0  
2.1  
2.2  
2.3  
Increased number of supported single-ended and differential I/O standards.  
Updated document links.  
Updated Package Marking to allow for dual-marking.  
Added XC3S5000 FG(G)676 to Table 3. Noted that FG(G)1156 package is being discontinued and  
updated max I/O count.  
06/25/2008  
12/04/2009  
10/29/2012  
2.4  
2.5  
3.0  
Updated max I/O counts based on FG1156 discontinuation. Clarified dual mark in Package Marking.  
Updated formatting and links.  
CP132 and CPG132 packages are being discontinued. Added link to Spartan-3 FPGA customer  
notices. Updated Table 3 with package footprint dimensions.  
Added Notice of Disclaimer section. Per XCN07022, updated the discontinued FG1156 and FGG1156  
package discussion throughout document. Per XCN08011, updated the discontinued CP132 and  
CPG132 package discussion throughout document. Although the package is discontinued, updated  
the marking on Figure 4. This product is not recommended for new designs.  
06/27/2013  
3.1  
Removed banner. This product IS recommended for new designs.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
7
Spartan-3 FPGA Family: Introduction and Ordering Information  
Notice of Disclaimer  
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND  
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED  
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE  
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.  
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE  
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES  
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO  
APPLICABLE LAWS AND REGULATIONS.  
CRITICAL APPLICATIONS DISCLAIMER  
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE  
FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR  
SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE  
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE  
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, CRITICAL APPLICATIONS”). FURTHERMORE,  
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A  
VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF  
SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE  
OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX  
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY  
APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL  
APPLICATIONS.  
AUTOMOTIVE APPLICATIONS DISCLAIMER  
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING  
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A  
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN  
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III)  
USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY  
USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
8
57  
Spartan-3 FPGA Family:  
Functional Description  
DS099 (v3.1) June 27, 2013  
Product Specification  
Spartan-3 FPGA Design Documentation  
The functionality of the Spartan®-3 FPGA family is described in the following documents. The topics covered in each guide  
are listed.  
UG331: Spartan-3 Generation FPGA User Guide  
Create a Xilinx user account and sign up to receive  
automatic e-mail notification whenever this data sheet or  
the associated user guides are updated.  
Clocking Resources  
Digital Clock Managers (DCMs)  
Block RAM  
Sign Up for Alerts on Xilinx.com  
https://secure.xilinx.com/webreg/register.do  
?group=myprofile&languageID=1  
Configurable Logic Blocks (CLBs)  
-
-
-
Distributed RAM  
For specific hardware examples, see the Spartan-3 FPGA  
Starter Kit board web page, which has links to various  
design examples and the user guide.  
SRL16 Shift Registers  
Carry and Arithmetic Logic  
Spartan-3 FPGA Starter Kit Board page  
http://www.xilinx.com/s3starter  
I/O Resources  
Embedded Multiplier Blocks  
Programmable Interconnect  
ISE® Software Design Tools  
IP Cores  
UG130: Spartan-3 FPGA Starter Kit User Guide  
Embedded Processing and Control Solutions  
Pin Types and Package Overview  
Package Drawings  
Powering FPGAs  
UG332: Spartan-3 Generation Configuration User  
Guide  
Configuration Overview  
-
-
Configuration Pins and Behavior  
Bitstream Sizes  
Detailed Descriptions by Mode  
-
Master Serial Mode using Xilinx Platform Flash  
PROM  
-
-
-
Slave Parallel (SelectMAP) using a Processor  
Slave Serial using a Processor  
JTAG Mode  
ISE iMPACT Programming Examples  
© Copyright 2003–2013 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado, and other designated brands included herein are trademarks of Xilinx  
in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
9
Spartan-3 FPGA Family: Functional Description  
IOBs  
For additional information, refer to the chapter entitled “Using I/O Resources” in UG331: Spartan-3 Generation FPGA User  
Guide.  
IOB Overview  
The Input/Output Block (IOB) provides a programmable, bidirectional interface between an I/O pin and the FPGA’s internal  
logic.  
A simplified diagram of the IOB’s internal structure appears in Figure 7. There are three main signal paths within the IOB: the  
output path, input path, and 3-state path. Each path has its own pair of storage elements that can act as either registers or  
latches. For more information, see the Storage Element Functions section. The three main signal paths are as follows:  
The input path carries data from the pad, which is bonded to a package pin, through an optional programmable delay  
element directly to the I line. There are alternate routes through a pair of storage elements to the IQ1 and IQ2 lines.  
The IOB outputs I, IQ1, and IQ2 all lead to the FPGA’s internal logic. The delay element can be set to ensure a hold  
time of zero.  
The output path, starting with the O1 and O2 lines, carries data from the FPGA’s internal logic through a multiplexer  
and then a three-state driver to the IOB pad. In addition to this direct path, the multiplexer provides the option to insert  
a pair of storage elements.  
The 3-state path determines when the output driver is high impedance. The T1 and T2 lines carry data from the  
FPGA’s internal logic through a multiplexer to the output driver. In addition to this direct path, the multiplexer provides  
the option to insert a pair of storage elements. When the T1 or T2 lines are asserted High, the output driver is  
high-impedance (floating, hi-Z). The output driver is active-Low enabled.  
All signal paths entering the IOB, including those associated with the storage elements, have an inverter option. Any  
inverter placed on these paths is automatically absorbed into the IOB.  
Storage Element Functions  
There are three pairs of storage elements in each IOB, one pair for each of the three paths. It is possible to configure each  
of these storage elements as an edge-triggered D-type flip-flop (FD) or a level-sensitive latch (LD).  
The storage-element-pair on either the Output path or the Three-State path can be used together with a special multiplexer  
to produce Double-Data-Rate (DDR) transmission. This is accomplished by taking data synchronized to the clock signal’s  
rising edge and converting them to bits synchronized on both the rising and the falling edge. The combination of two  
registers and a multiplexer is referred to as a Double-Data-Rate D-type flip-flop (FDDR). See Double-Data-Rate  
Transmission, page 12 for more information.  
The signal paths associated with the storage element are described in Table 5.  
Table 5: Storage Element Signal Description  
Storage  
Element  
Signal  
Description  
Data input  
Function  
D
Data at this input is stored on the active edge of CK enabled by CE. For latch operation when the  
input is enabled, data passes directly to the output Q.  
Q
Data output  
The data on this output reflects the state of the storage element. For operation as a latch in  
transparent mode, Q will mirror the data at D.  
CK  
CE  
SR  
Clock input  
A signal’s active edge on this input with CE asserted, loads data into the storage element.  
When asserted, this input enables CK. If not connected, CE defaults to the asserted state.  
Clock Enable input  
Set/Reset  
Forces storage element into the state specified by the SRHIGH/SRLOW attributes. The  
SYNC/ASYNC attribute setting determines if the SR input is synchronized to the clock or not.  
REV  
Reverse  
Used together with SR. Forces storage element into the state opposite from what SR does.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
10  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 7  
T
TFF1  
T1  
D
Q
CE  
CK  
SR  
REV  
Q
DDR  
MUX  
TCE  
T2  
D
TFF2  
CE  
CK  
SR  
REV  
Three-state Path  
V
CCO  
OFF1  
O1  
D
Q
CE  
CK  
Pull-Up  
ESD  
ESD  
OTCLK1  
SR  
REV  
Q
DDR  
MUX  
I/O  
Pin  
OCE  
O2  
Program-  
mable  
Output  
Driver  
Pull-  
Down  
D
DCI  
OFF2  
CE  
OTCLK2  
CK  
SR  
REV  
Keeper  
Latch  
Output Path  
I
Fixed  
LVCMOS, LVTTL, PCI  
Single-ended Standards  
IQ1  
Delay  
D
Q
Fixed  
Delay  
IFF1  
using V  
REF  
CE  
CK  
V
REF  
Pin  
ICLK1  
ICE  
SR  
REV  
Q
Differential Standards  
IQ2  
I/O Pin  
from  
D
Adjacent  
IOB  
IFF2  
CE  
ICLK2  
CK  
SR  
REV  
SR  
REV  
Input Path  
Note: All IOB signals originating from the FPGA's internal logic have an optional polarity inverter.  
DS099-2_01_091410  
Figure 7: Simplified IOB Diagram  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
11  
Spartan-3 FPGA Family: Functional Description  
According to Figure 7, the clock line OTCLK1 connects the CK inputs of the upper registers on the output and three-state  
paths. Similarly, OTCLK2 connects the CK inputs for the lower registers on the output and three-state paths. The upper and  
lower registers on the input path have independent clock lines: ICLK1 and ICLK2. The enable line OCE connects the CE  
inputs of the upper and lower registers on the output path. Similarly, TCE connects the CE inputs for the register pair on the  
three-state path and ICE does the same for the register pair on the input path. The Set/Reset (SR) line entering the IOB is  
common to all six registers, as is the Reverse (REV) line.  
Each storage element supports numerous options in addition to the control over signal polarity described in the IOB  
Overview section. These are described in Table 6.  
Table 6: Storage Element Options  
Option Switch  
Function  
Specificity  
FF/Latch  
Chooses between an edge-sensitive flip-flop or a  
level-sensitive latch  
Independent for each storage element.  
SYNC/ASYNC  
Determines whether SR is synchronous or  
asynchronous  
Independent for each storage element.  
SRHIGH/SRLOW Determines whether SR acts as a Set, which forces the Independent for each storage element, except when using  
storage element to a logic “1" (SRHIGH) or a Reset,  
which forces a logic “0” (SRLOW).  
FDDR. In the latter case, the selection for the upper  
element (OFF1 or TFF2) applies to both elements.  
INIT1/INIT0  
In the event of a Global Set/Reset, after configuration Independent for each storage element, except when using  
or upon activation of the GSR net, this switch decides FDDR. In the latter case, selecting INIT0 for one element  
whether to set or reset a storage element. By default, applies to both elements (even though INIT1 is selected  
choosing SRLOW also selects INIT0; choosing  
SRHIGH also selects INIT1.  
for the other).  
Double-Data-Rate Transmission  
Double-Data-Rate (DDR) transmission describes the technique of synchronizing signals to both the rising and falling edges  
of the clock signal. Spartan-3 devices use register-pairs in all three IOB paths to perform DDR operations.  
The pair of storage elements on the IOB’s Output path (OFF1 and OFF2), used as registers, combine with a special  
multiplexer to form a DDR D-type flip-flop (FDDR). This primitive permits DDR transmission where output data bits are  
synchronized to both the rising and falling edges of a clock. It is possible to access this function by placing either an  
FDDRRSE or an FDDRCPE component or symbol into the design. DDR operation requires two clock signals (50% duty  
cycle), one the inverted form of the other. These signals trigger the two registers in alternating fashion, as shown in Figure 8.  
Commonly, the Digital Clock Manager (DCM) generates the two clock signals by mirroring an incoming signal, then shifting  
it 180 degrees. This approach ensures minimal skew between the two signals.  
The storage-element-pair on the Three-State path (TFF1 and TFF2) can also be combined with a local multiplexer to form  
an FDDR primitive. This permits synchronizing the output enable to both the rising and falling edges of a clock. This DDR  
operation is realized in the same way as for the output path.  
The storage-element-pair on the input path (IFF1 and IFF2) allows an I/O to receive a DDR signal. An incoming DDR clock  
signal triggers one register and the inverted clock signal triggers the other register. In this way, the registers take turns  
capturing bits of the incoming DDR data signal.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
12  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 8  
DCM  
180˚ 0˚  
FDDR  
D1  
Q1  
CLK1  
DDR MUX  
Q
D2  
Q2  
CLK2  
DS099-2_02_070303  
Figure 8: Clocking the DDR Register  
Aside from high bandwidth data transfers, DDR can also be used to reproduce, or “mirror”, a clock signal on the output. This  
approach is used to transmit clock and data signals together. A similar approach is used to reproduce a clock signal at  
multiple outputs. The advantage for both approaches is that skew across the outputs will be minimal.  
Some adjacent I/O blocks (IOBs) share common routing connecting the ICLK1, ICLK2, OTCLK1, and OTCLK2 clock inputs  
of both IOBs. These IOB pairs are identified by their differential pair names IO_LxxN_# and IO_LxxP_#, where "xx" is an I/O  
pair number and ‘#’ is an I/O bank number. Two adjacent IOBs containing DDR registers must share common clock inputs,  
otherwise one or more of the clock signals will be unroutable.  
Pull-Up and Pull-Down Resistors  
The optional pull-up and pull-down resistors are intended to establish High and Low levels, respectively, at unused I/Os. The  
pull-up resistor optionally connects each IOB pad to V  
. A pull-down resistor optionally connects each pad to GND. These  
CCO  
resistors are placed in a design using the PULLUP and PULLDOWN symbols in a schematic, respectively. They can also be  
instantiated as components, set as constraints or passed as attributes in HDL code. These resistors can also be selected for  
all unused I/O using the Bitstream Generator (BitGen) option UnusedPin. A Low logic level on HSWAP_EN activates the  
pull-up resistors on all I/Os during configuration (see The I/Os During Power-On, Configuration, and User Mode, page 21).  
The Spartan-3 FPGAs I/O pull-up and pull-down resistors are significantly stronger than the "weak" pull-up/pull-down  
resistors used in previous Xilinx FPGA families. See Table 33, page 61 for equivalent resistor strengths.  
Keeper Circuit  
Each I/O has an optional keeper circuit that retains the last logic level on a line after all drivers have been turned off. This is  
useful to keep bus lines from floating when all connected drivers are in a high-impedance state. This function is placed in a  
design using the KEEPER symbol. Pull-up and pull-down resistors override the keeper circuit.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
13  
Spartan-3 FPGA Family: Functional Description  
ESD Protection  
Clamp diodes protect all device pads against damage from Electro-Static Discharge (ESD) as well as excessive voltage  
transients. Each I/O has two clamp diodes: One diode extends P-to-N from the pad to V and a second diode extends  
CCO  
N-to-P from the pad to GND. During operation, these diodes are normally biased in the off state. These clamp diodes are  
always connected to the pad, regardless of the signal standard selected. The presence of diodes limits the ability of  
Spartan-3 FPGA I/Os to tolerate high signal voltages. The V absolute maximum rating in Table 28, page 58 specifies the  
IN  
voltage range that I/Os can tolerate.  
Slew Rate Control and Drive Strength  
Two options, FAST and SLOW, control the output slew rate. The FAST option supports output switching at a high rate. The  
SLOW option reduces bus transients. These options are only available when using one of the LVCMOS or LVTTL standards,  
which also provide up to seven different levels of current drive strength: 2, 4, 6, 8, 12, 16, and 24 mA. Choosing the  
appropriate drive strength level is yet another means to minimize bus transients.  
Table 7 shows the drive strengths that the LVCMOS and LVTTL standards support.  
Table 7: Programmable Output Drive Current  
Current Drive (mA)  
Signal Standard  
(IOSTANDARD)  
2
4
6
8
12  
16  
24  
LVTTL  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
Boundary-Scan Capability  
All Spartan-3 FPGA IOBs support boundary-scan testing compatible with IEEE 1149.1 standards. During boundary- scan  
operations such as EXTEST and HIGHZ the I/O pull-down resistor is active. For more information, see Boundary-Scan  
(JTAG) Mode, page 50, and refer to the “Using Boundary-Scan and BSDL Files” chapter in UG331.  
SelectIO Interface Signal Standards  
The IOBs support 18 different single-ended signal standards, as listed in Table 8. Furthermore, the majority of IOBs can be  
used in specific pairs supporting any of eight differential signal standards, as shown in Table 9.  
To define the SelectIO interface signaling standard in a design, set the IOSTANDARD attribute to the appropriate setting.  
Xilinx provides a variety of different methods for applying the IOSTANDARD for maximum flexibility. For a full description of  
different methods of applying attributes to control IOSTANDARD, refer to the “Using I/O Resources” chapter in UG331.  
Together with placing the appropriate I/O symbol, two externally applied voltage levels, V  
and V  
, select the desired  
REF  
CCO  
signal standard. The V  
lines provide current to the output driver. The voltage on these lines determines the output  
CCO  
voltage swing for all standards except GTL and GTLP.  
All single-ended standards except the LVCMOS, LVTTL, and PCI varieties require a Reference Voltage (V  
) to bias the  
REF  
input-switching threshold. Once a configuration data file is loaded into the FPGA that calls for the I/Os of a given bank to use  
such a signal standard, a few specifically reserved I/O pins on the same bank automatically convert to V inputs. When  
REF  
using one of the LVCMOS standards, these pins remain I/Os because the V  
voltage biases the input-switching  
CCO  
threshold, so there is no need for V . Select the V  
and V  
levels to suit the desired single-ended standard according  
REF  
CCO  
REF  
to Table 8.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
14  
Spartan-3 FPGA Family: Functional Description  
Table 8: Single-Ended I/O Standards  
V
CCO (Volts)  
Signal Standard  
(IOSTANDARD)  
VREF for Inputs  
(Volts)(1)  
Board Termination  
Voltage (VTT) in Volts  
For Outputs  
Note 2  
Note 2  
1.5  
For Inputs  
GTL  
Note 2  
0.8  
1
1.2  
1.5  
0.75  
1.5  
0.9  
0.9  
1.8  
GTLP  
Note 2  
HSTL_I  
0.75  
0.9  
0.9  
0.9  
1.1  
HSTL_III  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
LVCMOS12  
LVCMOS15  
LVCMOS18  
LVCMOS25  
LVCMOS33  
LVTTL  
1.5  
1.8  
1.8  
1.8  
1.2  
1.2  
1.5  
1.8  
2.5  
3.3  
3.3  
3.0  
1.5  
1.8  
2.5  
3.3  
3.3  
PCI33_3  
3.0  
SSTL18_I  
SSTL18_II  
SSTL2_I  
1.8  
0.9  
0.9  
1.25  
1.25  
0.9  
0.9  
1.25  
1.25  
1.8  
2.5  
SSTL2_II  
2.5  
Notes:  
1. Banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using V  
.
REF  
2. The V  
level used for the GTL and GTLP standards must be no lower than the termination voltage (V ), nor can it be lower than the  
CCO  
TT  
voltage at the I/O pad.  
3. See Table 10 for a listing of the single-ended DCI standards.  
Differential standards employ a pair of signals, one the opposite polarity of the other. The noise canceling (e.g.,  
Common-Mode Rejection) properties of these standards permit exceptionally high data transfer rates. This section  
introduces the differential signaling capabilities of Spartan-3 devices.  
Each device-package combination designates specific I/O pairs that are specially optimized to support differential  
standards. A unique “L-number”, part of the pin name, identifies the line-pairs associated with each bank (see Figure 40,  
page 112). For each pair, the letters ‘P’ and ‘N’ designate the true and inverted lines, respectively. For example, the pin  
names IO_L43P_7 and IO_L43N_7 indicate the true and inverted lines comprising the line pair L43 on Bank 7. The V  
CCO  
lines provide current to the outputs. The V  
lines supply power to the differential inputs, making them independent of  
CCAUX  
the V  
voltage for an I/O bank. The V  
lines are not used. Select the V  
level to suit the desired differential standard  
CCO  
REF  
CCO  
according to Table 9.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
15  
Spartan-3 FPGA Family: Functional Description  
Table 9: Differential I/O Standards  
VCCO (Volts)  
Signal Standard  
(IOSTANDARD)  
VREF for Inputs (Volts)  
For Inputs  
For Outputs  
LDT_25 (ULVDS_25)  
LVDS_25  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1.8  
2.5  
BLVDS_25  
LVDSEXT_25  
LVPECL_25  
RSDS_25  
DIFF_HSTL_II_18  
DIFF_SSTL2_II  
Notes:  
1. See Table 10 for a listing of the differential DCI standards.  
The need to supply V  
and V  
imposes constraints on which standards can be used in the same bank. See The  
CCO  
REF  
Organization of IOBs into Banks section for additional guidelines concerning the use of the V  
and V  
lines.  
CCO  
REF  
Digitally Controlled Impedance (DCI)  
When the round-trip delay of an output signal—i.e., from output to input and back again—exceeds rise and fall times, it is  
common practice to add termination resistors to the line carrying the signal. These resistors effectively match the impedance  
of a device’s I/O to the characteristic impedance of the transmission line, thereby preventing reflections that adversely affect  
signal integrity. However, with the high I/O counts supported by modern devices, adding resistors requires significantly more  
components and board area. Furthermore, for some packages—e.g., ball grid arrays—it may not always be possible to  
place resistors close to pins.  
DCI answers these concerns by providing two kinds of on-chip terminations: Parallel terminations make use of an integrated  
resistor network. Series terminations result from controlling the impedance of output drivers. DCI actively adjusts both  
parallel and series terminations to accurately match the characteristic impedance of the transmission line. This adjustment  
process compensates for differences in I/O impedance that can result from normal variation in the ambient temperature, the  
supply voltage and the manufacturing process. When the output driver turns off, the series termination, by definition,  
approaches a very high impedance; in contrast, parallel termination resistors remain at the targeted values.  
DCI is available only for certain I/O standards, as listed in Table 10. DCI is selected by applying the appropriate I/O standard  
extensions to symbols or components. There are five basic ways to configure terminations, as shown in Table 11. The DCI  
I/O standard determines which of these terminations is put into effect.  
HSTL_I_DCI-, HSTL_III_DCI-, and SSTL2_I_DCI-type outputs do not require the VRN and VRP reference resistors.  
Likewise, LVDCI-type inputs do not require the VRN and VRP reference resistors. In a bank without any DCI I/O or a bank  
containing non-DCI I/O and purely HSTL_I_DCI- or HSTL_III_DCI-type outputs, or SSTL2_I_DCI-type outputs or  
LVDCI-type inputs, the associated VRN and VRP pins can be used as general-purpose I/O pins.  
The HSLVDCI (High-Speed LVDCI) standard is intended for bidirectional use. The driver is identical to LVDCI, while the input  
is identical to HSTL. By using a V  
-referenced input, HSLVDCI allows greater input sensitivity at the receiver than when  
REF  
using a single-ended LVCMOS-type receiver.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
16  
Spartan-3 FPGA Family: Functional Description  
Table 10: DCI I/O Standards  
V
CCO (V)  
Termination Type  
VREF for  
Category of Signal  
Standard  
Signal Standard  
(IOSTANDARD)  
Inputs (V)  
For Outputs For Inputs  
At Output  
At Input  
Single-Ended  
Gunning  
Transceiver Logic  
GTL_DCI  
1.2  
1.5  
1.5  
1.5  
1.8  
1.2  
1.5  
1.5  
1.5  
1.8  
0.8  
1.0  
Single  
Single  
GTLP_DCI  
High-Speed  
Transceiver Logic  
HSTL_I_DCI  
HSTL_III_DCI  
HSTL_I_DCI_18  
0.75  
0.9  
None  
None  
None  
Split  
Single  
0.9  
Split  
HSTL_II_DCI_18  
DIFF_HSTL_II_18_DCI  
1.8  
1.8  
0.9  
Split  
HSTL_III_DCI_18  
LVDCI_15  
1.8  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
1.8  
2.5  
1.8  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
1.8  
2.5  
1.1  
None  
Single  
Low-Voltage CMOS  
LVDCI_18  
Controlled  
impedance driver  
LVDCI_25  
LVDCI_33(2)  
None  
LVDCI_DV2_15  
LVDCI_DV2_18  
LVDCI_DV2_25  
LVDCI_DV2_33  
HSLVDCI_15  
HSLVDCI_18  
HSLVDCI_25  
HSLVDCI_33  
SSTL18_I_DCI  
SSTL2_I_DCI  
Controlled driver  
with  
half-impedance  
Hybrid HSTL Input  
and LVCMOS Output  
0.75  
0.9  
1.25  
1.65  
0.9  
1.25  
Controlled  
impedance driver  
None  
Split  
Stub Series  
25Ω driver  
25Ω driver  
Terminated Logic(3)  
SSTL2_II_DCI  
DIFF_SSTL2_II_DCI  
2.5  
2.5  
1.25  
Split with 25Ω driver  
Differential  
Low-Voltage  
Differential Signaling  
LVDS_25_DCI  
N/A  
N/A  
2.5  
2.5  
Split on each  
line of pair  
None  
LVDSEXT_25_DCI  
Notes:  
1. DCI signal standards are not supported in Bank 5 of any Spartan-3 FPGA packaged in a VQ100, CP132, or TQ144 package.  
2. Equivalent to LVTTL DCI.  
3. The SSTL18_II signal standard does not have a DCI equivalent.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
17  
Spartan-3 FPGA Family: Functional Description  
Signal Standards  
Table 11: DCI Terminations  
Termination  
Schematic(1)  
(IOSTANDARD)  
Controlled impedance output driver  
LVDCI_15  
LVDCI_18  
LVDCI_25  
IOB  
R
LVDCI_33  
Z
0
HSLVDCI_15  
HSLVDCI_18  
HSLVDCI_25  
HSLVDCI_33  
ds099_06a_070903  
Controlled output driver with half impedance  
LVDCI_DV2_15  
LVDCI_DV2_18  
LVDCI_DV2_25  
LVDCI_DV2_33  
IOB  
R/2  
Z
0
ds099_06b_070903  
Single resistor  
GTL_DCI  
GTLP_DCI  
HSTL_III_DCI(2)  
HSTL_III_DCI_18(2)  
V
V
V
CCO  
IOB  
R
Z
0
ds099_06c_070903  
Split resistors  
HSTL_I_DCI(2)  
CCO  
IOB  
HSTL_I_DCI_18(2)  
HSTL_II_DCI_18  
DIFF_HSTL_II_18_DCI  
DIFF_SSTL2_II_DCI  
LVDS_25_DCI  
2R  
Z
0
2R  
LVDSEXT_25_DCI  
ds099_06d_070903  
Split resistors with output driver impedance fixed  
to 25Ω  
SSTL18_I_DCI(3)  
SSTL2_I_DCI(3)  
SSTL2_II_DCI  
CCO  
IOB  
25Ω  
2R  
Z
0
2R  
ds099_06e_070903  
Notes:  
1. The value of R is equivalent to the characteristic impedance of the line connected to the I/O. It is also equal to half the value of RREF for the  
DV2 standards and RREF for all other DCI standards.  
2. For DCI using HSTL Classes I and III, terminations only go into effect at inputs (not at outputs).  
3. For DCI using SSTL Class I, the split termination only goes into effect at inputs (not at outputs).  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
18  
Spartan-3 FPGA Family: Functional Description  
The DCI feature operates independently for each of the device’s eight banks. Each bank has an ‘N’ reference pin (VRN) and  
a ‘P’ reference pin, (VRP), to calibrate driver and termination resistance. Only when using a DCI standard on a given bank  
do these two pins function as VRN and VRP. When not using a DCI standard, the two pins function as user I/Os. As shown  
in Figure 9, add an external reference resistor to pull the VRN pin up to V  
and another reference resistor to pull the VRP  
CCO  
pin down to GND. Also see Figure 42, page 116. Both resistors have the same value—commonly 50Ω—with one-percent  
tolerance, which is either the characteristic impedance of the line or twice that, depending on the DCI standard in use.  
Standards having a symbol name that contains the letters “DV2” use a reference resistor value that is twice the line  
impedance. DCI adjusts the output driver impedance to match the reference resistors’ value or half that, according to the  
standard. DCI always adjusts the on-chip termination resistors to directly match the reference resistors’ value.  
X-Ref Target - Figure 9  
One of eight  
I/O Banks  
V
CCO  
R
(1%)  
(1%)  
REF  
VRN  
VRP  
R
REF  
DS099-2_04_082104  
Figure 9: Connection of Reference Resistors (R  
)
REF  
The rules guiding the use of DCI standards on banks are as follows:  
No more than one DCI I/O standard with a Single Termination is allowed per bank.  
No more than one DCI I/O standard with a Split Termination is allowed per bank.  
Single Termination, Split Termination, Controlled- Impedance Driver, and Controlled-Impedance Driver with Half  
Impedance can co-exist in the same bank.  
See also The Organization of IOBs into Banks, immediately below, and DCI: User I/O or Digitally Controlled Impedance  
Resistor Reference Input, page 115.  
The Organization of IOBs into Banks  
IOBs are allocated among eight banks, so that each side of the device has two banks, as shown in Figure 10. For all  
packages, each bank has independent V  
to all other banks.  
lines. For example, V  
Bank 3 lines are separate from the V  
lines going  
REF  
REF  
REF  
For the Very Thin Quad Flat Pack (VQ), Plastic Quad Flat Pack (PQ), Fine Pitch Thin Ball Grid Array (FT), and Fine Pitch Ball  
Grid Array (FG) packages, each bank has dedicated V  
lines. For example, the V  
Bank 7 lines are separate from the  
CCO  
CCO  
V
lines going to all other banks. Thus, Spartan-3 devices in these packages support eight independent V  
supplies.  
CCO  
CCO  
X-Ref Target - Figure 10  
Bank 0  
Bank 1  
Bank 5  
Bank 4  
DS099-2_03_082104  
Figure 10: Spartan-3 FPGA I/O Banks (Top View)  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
19  
Spartan-3 FPGA Family: Functional Description  
In contrast, the 144-pin Thin Quad Flat Pack (TQ144) package and the 132-pin Chip-Scale Package (CP132) tie V  
CCO  
together internally for the pair of banks on each side of the device. For example, the V  
Bank 0 and the V  
Bank 1 lines  
CCO  
CCO  
are tied together. The interconnected bank-pairs are 0/1, 2/3, 4/5, and 6/7. As a result, Spartan-3 devices in the CP132 and  
TQ144 packages support four independent V supplies.  
CCO  
Note: The CP132 package is discontinued. See http://www.xilinx.com/support/documentation /spartan-3_customer_notices.htm.  
Spartan-3 FPGA Compatibility  
Within the Spartan-3 family, all devices are pin-compatible by package. When the need for future logic resources outgrows  
the capacity of the Spartan-3 device in current use, a larger device in the same package can serve as a direct replacement.  
Larger devices may add extra V  
and V  
lines to support a greater number of I/Os. In the larger device, more pins can  
REF  
CCO  
convert from user I/Os to V  
lines. Also, additional V  
lines are bonded out to pins that were “not connected” in the  
REF  
CCO  
smaller device. Thus, it is important to plan for future upgrades at the time of the board’s initial design by laying out  
connections to the extra pins.  
The Spartan-3 family is not pin-compatible with any previous Xilinx FPGA family or with other platforms among the  
Spartan-3 Generation FPGAs.  
Rules Concerning Banks  
When assigning I/Os to banks, it is important to follow the following V  
rules:  
CCO  
Leave no V  
pins unconnected on the FPGA.  
CCO  
Set all V  
lines associated with the (interconnected) bank to the same voltage level.  
CCO  
The V  
levels used by all standards assigned to the I/Os of the (interconnected) bank(s) must agree. The Xilinx  
CCO  
development software checks for this. Tables 8, 9, and 10 describe how different standards use the V  
supply.  
CCO  
Only one of the following standards is allowed on outputs per bank: LVDS, LDT, LVDS_EXT, or RSDS. This restriction is  
for the eight banks in each device, even if the V  
packages.  
levels are shared across banks, as in the CP132 and TQ144  
CCO  
If none of the standards assigned to the I/Os of the (interconnected) bank(s) uses V  
2.5V.  
, tie all associated V  
lines to  
CCO  
CCO  
In general, apply 2.5V to V  
Bank 4 from power-on to the end of configuration. Apply the same voltage to V  
Bank  
CCO  
CCO  
5 during parallel configuration or a Readback operation. For information on how to program the FPGA using 3.3V  
signals and power, see the 3.3V-Tolerant Configuration Interface section.  
If any of the standards assigned to the Inputs of the bank use V , then observe the following additional rules:  
REF  
Connect all V  
pins within the bank to the same voltage level.  
REF  
The V  
levels used by all standards assigned to the Inputs of the bank must agree. The Xilinx development software  
REF  
checks for this. Tables 8 and 10 describe how different standards use the V  
supply.  
REF  
If none of the standards assigned to the Inputs of a bank use V  
pins function as User I/Os.  
for biasing input switching thresholds, all associated V  
REF  
REF  
Exceptions to Banks Supporting I/O Standards  
Bank 5 of any Spartan-3 device in a VQ100, CP132, or TQ144 package does not support DCI signal standards. In this case,  
bank 5 has neither VRN nor VRP pins.  
Furthermore, banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using V  
(see  
REF  
Table 8). In this case, the two banks do not have any V  
pins.  
REF  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
20  
Spartan-3 FPGA Family: Functional Description  
Supply Voltages for the IOBs  
Three different supplies power the IOBs:  
The V  
supplies, one for each of the FPGA’s I/O banks, power the output drivers, except when using the GTL and  
CCO  
GTLP signal standards. The voltage on the V  
pins determines the voltage swing of the output signal.  
CCO  
V
is the main power supply for the FPGA’s internal logic.  
CCINT  
The V  
is an auxiliary source of power, primarily to optimize the performance of various FPGA functions such as  
CCAUX  
I/O switching.  
The I/Os During Power-On, Configuration, and User Mode  
With no power applied to the FPGA, all I/Os are in a high-impedance state. The V  
(1.2V), V  
(2.5V), and V  
CCAUX CCO  
CCINT  
supplies may be applied in any order. Before power-on can finish, V  
, V  
Bank 4, and V  
must have reached  
CCINT CCO  
CCAUX  
their respective minimum recommended operating levels (see Table 29, page 59). At this time, all I/O drivers also will be in  
a high-impedance state. V Bank 4, V , and V serve as inputs to the internal Power-On Reset circuit (POR).  
CCO  
CCINT  
CCAUX  
A Low level applied to the HSWAP_EN input enables pull-up resistors on User I/Os from power-on throughout configuration.  
A High level on HSWAP_EN disables the pull-up resistors, allowing the I/Os to float. If the HSWAP_EN pin is floating, then  
an internal pull-up resistor pulls HSWAP_EN High. As soon as power is applied, the FPGA begins initializing its  
configuration memory. At the same time, the FPGA internally asserts the Global Set-Reset (GSR), which asynchronously  
resets all IOB storage elements to a Low state.  
Upon the completion of initialization, INIT_B goes High, sampling the M0, M1, and M2 inputs to determine the configuration  
mode. At this point, the configuration data is loaded into the FPGA. The I/O drivers remain in a high-impedance state (with  
or without pull-up resistors, as determined by the HSWAP_EN input) throughout configuration.  
The Global Three State (GTS) net is released during Start-Up, marking the end of configuration and the beginning of design  
operation in the User mode. At this point, those I/Os to which signals have been assigned go active while all unused I/Os  
remain in a high-impedance state. The release of the GSR net, also part of Start-up, leaves the IOB registers in a Low state  
by default, unless the loaded design reverses the polarity of their respective RS inputs.  
In User mode, all internal pull-up resistors on the I/Os are disabled and HSWAP_EN becomes a “don’t care” input. If it is  
desirable to have pull-up or pull-down resistors on I/Os carrying signals, the appropriate symbol—e.g., PULLUP,  
PULLDOWN—must be placed at the appropriate pads in the design. The Bitstream Generator (Bitgen) option UnusedPin  
available in the Xilinx development software determines whether unused I/Os collectively have pull-up resistors, pull-down  
resistors, or no resistors in User mode.  
CLB Overview  
For more details on the CLBs, refer to the chapter entitled “Using Configurable Logic Blocks” in UG331.  
The Configurable Logic Blocks (CLBs) constitute the main logic resource for implementing synchronous as well as  
combinatorial circuits. Each CLB comprises four interconnected slices, as shown in Figure 11. These slices are grouped in  
pairs. Each pair is organized as a column with an independent carry chain.  
The nomenclature that the FPGA Editor—part of the Xilinx development software—uses to designate slices is as follows:  
The letter ‘X’ followed by a number identifies columns of slices. The ‘X’ number counts up in sequence from the left side of  
the die to the right. The letter ‘Y’ followed by a number identifies the position of each slice in a pair as well as indicating the  
CLB row. The ‘Y’ number counts slices starting from the bottom of the die according to the sequence: 0, 1, 0, 1 (the first CLB  
row); 2, 3, 2, 3 (the second CLB row); etc. Figure 11 shows the CLB located in the lower left-hand corner of the die. Slices  
X0Y0 and X0Y1 make up the column-pair on the left where as slices X1Y0 and X1Y1 make up the column-pair on the right.  
For each CLB, the term “left-hand” (or SLICEM) indicates the pair of slices labeled with an even ‘X’ number, such as X0, and  
the term “right-hand” (or SLICEL) designates the pair of slices with an odd ‘X’ number, e.g., X1.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
21  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 11  
Left-Hand SLICEM  
(Logic or Distributed RAM  
or Shift Register)  
Right-Hand SLICEL  
(Logic Only)  
COUT  
CLB  
SLICE  
X1Y1  
SLICE  
X1Y0  
COUT  
Switch  
Matrix  
Interconnect  
to Neighbors  
CIN  
SLICE  
X0Y1  
SHIFTOUT  
SHIFTIN  
SLICE  
X0Y0  
CIN  
DS099-2_05_082104  
Figure 11: Arrangement of Slices within the CLB  
Elements Within a Slice  
All four slices have the following elements in common: two logic function generators, two storage elements, wide-function  
multiplexers, carry logic, and arithmetic gates, as shown in Figure 12, page 24. Both the left-hand and right-hand slice pairs  
use these elements to provide logic, arithmetic, and ROM functions. Besides these, the left-hand pair supports two  
additional functions: storing data using Distributed RAM and shifting data with 16-bit registers. Figure 12 is a diagram of the  
left-hand slice; therefore, it represents a superset of the elements and connections to be found in all slices. See Function  
Generator, page 25 for more information.  
The RAM-based function generator—also known as a Look-Up Table or LUT—is the main resource for implementing logic  
functions. Furthermore, the LUTs in each left-hand slice pair can be configured as Distributed RAM or a 16-bit shift register.  
For information on the former, refer to the chapter entitled “Using Look-Up Tables as Distributed RAM” in UG331; for  
information on the latter, refer to the chapter entitled “Using Look-Up Tables as Shift Registers” in UG331. The function  
generators located in the upper and lower portions of the slice are referred to as the "G" and "F", respectively.  
The storage element, which is programmable as either a D-type flip-flop or a level-sensitive latch, provides a means for  
synchronizing data to a clock signal, among other uses. The storage elements in the upper and lower portions of the slice  
are called FFY and FFX, respectively.  
Wide-function multiplexers effectively combine LUTs in order to permit more complex logic operations. Each slice has two of  
these multiplexers with F5MUX in the lower portion of the slice and FiMUX in the upper portion. Depending on the slice,  
FiMUX takes on the name F6MUX, F7MUX, or F8MUX. For more details on the multiplexers, refer to the chapter entitled  
“Using Dedicated Multiplexers” in UG331.  
The carry chain, together with various dedicated arithmetic logic gates, support fast and efficient implementations of math  
operations. The carry chain enters the slice as CIN and exits as COUT. Five multiplexers control the chain: CYINIT, CY0F,  
and CYMUXF in the lower portion as well as CY0G and CYMUXG in the upper portion. The dedicated arithmetic logic  
includes the exclusive-OR gates XORG and XORF (upper and lower portions of the slice, respectively) as well as the AND  
gates GAND and FAND (upper and lower portions, respectively). For more details on the carry logic, refer to the chapter  
entitled “Using Carry and Arithmetic Logic” in UG331.  
Main Logic Paths  
Central to the operation of each slice are two nearly identical data paths, distinguished using the terms top and bottom. The  
description that follows uses names associated with the bottom path. (The top path names appear in parentheses.) The  
basic path originates at an interconnect-switch matrix outside the CLB. Four lines, F1 through F4 (or G1 through G4 on the  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
22  
Spartan-3 FPGA Family: Functional Description  
upper path), enter the slice and connect directly to the LUT. Once inside the slice, the lower 4-bit path passes through a  
function generator ‘F’ (or ‘G’) that performs logic operations. The function generator’s Data output, ‘D’, offers five possible  
paths:  
Exit the slice via line ‘X’ (or ‘Y’) and return to interconnect.  
Inside the slice, ‘X’ (or ‘Y’) serves as an input to the DXMUX (DYMUX) which feeds the data input, ‘D’, of the FFX (FFY)  
storage element. The ‘Q’ output of the storage element drives the line XQ (or YQ) which exits the slice.  
Control the CYMUXF (or CYMUXG) multiplexer on the carry chain.  
With the carry chain, serve as an input to the XORF (or XORG) exclusive-OR gate that performs arithmetic operations,  
producing a result on ‘X’ (or ‘Y’).  
Drive the multiplexer F5MUX to implement logic functions wider than four bits. The ‘D’ outputs of both the F-LUT and  
G-LUT serve as data inputs to this multiplexer.  
In addition to the main logic paths described above, there are two bypass paths that enter the slice as BX and BY. Once  
inside the FPGA, BX in the bottom half of the slice (or BY in the top half) can take any of several possible branches:  
Bypass both the LUT and the storage element, then exit the slice as BXOUT (or BYOUT) and return to interconnect.  
Bypass the LUT, then pass through a storage element via the D input before exiting as XQ (or YQ).  
Control the wide function multiplexer F5MUX (or F6MUX).  
Via multiplexers, serve as an input to the carry chain.  
Drives the DI input of the LUT.  
BY can control the REV inputs of both the FFY and FFX storage elements.  
Finally, the DIG_MUX multiplexer can switch BY onto the DIG line, which exits the slice.  
Other slice signals shown in Figure 12 are discussed in the sections that follow.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
23  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 12  
WS DI  
DI  
D
WF[4:1]  
DS312-2_32_042007  
Notes:  
1. Options to invert signal polarity as well as other options that enable lines for various functions are not shown.  
2. The index i can be 6, 7, or 8, depending on the slice. In this position, the upper right-hand slice has an F8MUX, and the  
upper left-hand slice has an F7MUX. The lower right-hand and left-hand slices both have an F6MUX.  
Figure 12: Simplified Diagram of the Left-Hand SLICEM  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
24  
Spartan-3 FPGA Family: Functional Description  
Function Generator  
Each of the two LUTs (F and G) in a slice have four logic inputs (A1-A4) and a single output (D). This permits any  
four-variable Boolean logic operation to be programmed into them. Furthermore, wide function multiplexers can be used to  
effectively combine LUTs within the same CLB or across different CLBs, making logic functions with still more input variables  
possible.  
The LUTs in both the right-hand and left-hand slice-pairs not only support the logic functions described above, but also can  
function as ROM that is initialized with data at the time of configuration.  
The LUTs in the left-hand slice-pair (even-numbered columns such as X0 in Figure 11) of each CLB support two additional  
functions that the right-hand slice-pair (odd-numbered columns such as X1) do not.  
First, it is possible to program the “left-hand LUTs” as distributed RAM. This type of memory affords moderate amounts of  
data buffering anywhere along a data path. One left-hand LUT stores 16 bits. Multiple left-hand LUTs can be combined in  
various ways to store larger amounts of data. A dual port option combines two LUTs so that memory access is possible from  
two independent data lines. A Distributed ROM option permits pre-loading the memory with data during FPGA configuration.  
Second, it is possible to program each left-hand LUT as a 16-bit shift register. Used in this way, each LUT can delay serial  
data anywhere from one to 16 clock cycles. The four left-hand LUTs of a single CLB can be combined to produce delays up  
to 64 clock cycles. The SHIFTIN and SHIFTOUT lines cascade LUTs to form larger shift registers. It is also possible to  
combine shift registers across more than one CLB. The resulting programmable delays can be used to balance the timing  
of data pipelines.  
Block RAM Overview  
All Spartan-3 devices support block RAM, which is organized as configurable, synchronous 18Kbit blocks. Block RAM stores  
relatively large amounts of data more efficiently than the distributed RAM feature described earlier. (The latter is better  
suited for buffering small amounts of data anywhere along signal paths.) This section describes basic Block RAM functions.  
For more information, refer to the chapter entitled “Using Block RAM” in UG331.  
The aspect ratio—i.e., width vs. depth—of each block RAM is configurable. Furthermore, multiple blocks can be cascaded  
to create still wider and/or deeper memories.  
A choice among primitives determines whether the block RAM functions as dual- or single-port memory. A name of the form  
RAMB16_S[w ]_S[w ] calls out the dual-port primitive, where the integers w and w specify the total data path width at  
A
B
A
B
ports w and w , respectively. Thus, a RAMB16_S9_S18 is a dual-port RAM with a 9-bit-wide Port A and an 18-bit-wide Port  
A
B
B. A name of the form RAMB16_S[w] identifies the single-port primitive, where the integer w specifies the total data path  
width of the lone port. A RAMB16_S18 is a single-port RAM with an 18-bit-wide port. Other memory functions—e.g., FIFOs,  
data path width conversion, ROM, etc.—are readily available using the CORE Generator™ software, part of the Xilinx  
development software.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
25  
Spartan-3 FPGA Family: Functional Description  
Arrangement of RAM Blocks on Die  
The XC3S50 has one column of block RAM. The Spartan-3 devices ranging from the XC3S200 to XC3S2000 have two  
columns of block RAM. The XC3S4000 and XC3S5000 have four columns. The position of the columns on the die is shown  
in Figure 1, page 3. For a given device, the total available RAM blocks are distributed equally among the columns. Table 12  
shows the number of RAM blocks, the data storage capacity, and the number of columns for each device.  
Table 12: Number of RAM Blocks by Device  
Total Number TotalAddressable Numberof  
Device  
of RAM Blocks Locations (Bits)  
Columns  
XC3S50  
4
12  
16  
24  
32  
40  
96  
104  
73,728  
221,184  
294,912  
442,368  
589,824  
737,280  
1,769,472  
1,916,928  
1
2
2
2
2
2
4
4
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Block RAM and multipliers have interconnects between them that permit simultaneous operation; however, since the  
multiplier shares inputs with the upper data bits of block RAM, the maximum data path width of the block RAM is 18 bits in  
this case.  
The Internal Structure of the Block RAM  
The block RAM has a dual port structure. The two identical data ports called A and B permit independent access to the  
common RAM block, which has a maximum capacity of 18,432 bits—or 16,384 bits when no parity lines are used. Each port  
has its own dedicated set of data, control and clock lines for synchronous read and write operations. There are four basic  
data paths, as shown in Figure 13: (1) write to and read from Port A, (2) write to and read from Port B, (3) data transfer from  
Port A to Port B, and (4) data transfer from Port B to Port A.  
X-Ref Target - Figure 13  
3
Write  
Read  
Read  
Write  
4
Spartan-3  
Dual Port  
Block RAM  
Write  
Write  
2
1
Read  
Read  
DS099-2_12_030703  
Figure 13: Block RAM Data Paths  
Block RAM Port Signal Definitions  
Representations of the dual-port primitive RAMB16_S[w ]_S[w ] and the single-port primitive RAMB16_S[w] with their  
A
B
associated signals are shown in Figure 14. These signals are defined in Table 13.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
26  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 14  
RAMB16_SwA_SwB  
WEA  
ENA  
SSRA  
DOPA[pA–1:0]  
DOA[wA–1:0]  
CLKA  
ADDRA[rA–1:0]  
DIA[wA–1:0]  
DIPA[3:0]  
RAMB16_Sw  
WE  
WEB  
ENB  
EN  
SSRB  
SSR  
DOPB[pB–1:0]  
DOB[wB–1:0]  
DOP[p–1:0]  
CLK  
CLKB  
DO[w–1:0]  
ADDRB[rB–1:0]  
DIB[wB–1:0]  
DIPB[3:0]  
ADDR[r–1:0]  
DI[w–1:0]  
DIP[p–1:0]  
(a) Dual-Port  
(b) Single-Port  
DS099-2_13_112905  
Notes:  
1. w and w are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively.  
A
B
2. p and p are integers that indicate the number of data path lines serving as parity bits.  
A
B
3. r and r are integers representing the address bus width at ports A and B, respectively.  
A
B
4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.  
Figure 14: Block RAM Primitives  
Table 13: Block RAM Port Signals  
Signal  
Description  
Port A  
Port B  
Direction  
Function  
Signal Name Signal Name  
Address Bus  
ADDRA ADDRB  
Input  
The Address Bus selects a memory location for read or write  
operations. The width (w) of the port’s associated data path determines  
the number of available address lines (r).  
Whenever a port is enabled (ENA or ENB = High), address transitions  
must meet the data sheet setup and hold times with respect to the port  
clock (CLKA or CLKB). This requirement must be met, even if the RAM  
read output is of no interest.  
Data Input Bus  
DIA  
DIB  
Input  
Data at the DI input bus is written to the addressed memory location  
addressed on an enabled active CLK edge.  
It is possible to configure a port’s total data path width (w) to be 1, 2, 4,  
9, 18, or 36 bits. This selection applies to both the DI and DO paths of  
a given port. Each port is independent. For a port assigned a width (w),  
the number of addressable locations is 16,384/(w-p) where "p" is the  
number of parity bits. Each memory location has a width of "w"  
(including parity bits). See the DIP signal description for more  
information of parity.  
Parity Data  
Input(s)  
DIPA  
DIPB  
Input  
Parity inputs represent additional bits included in the data input path to  
support error detection. The number of parity bits "p" included in the DI  
(same as for the DO bus) depends on a port’s total data path width (w).  
See Table 14.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
27  
Spartan-3 FPGA Family: Functional Description  
Function  
Table 13: Block RAM Port Signals (Cont’d)  
Signal  
Port A  
Port B  
Direction  
Description  
Signal Name Signal Name  
Data Output Bus  
DOA  
DOB  
Output  
Basic data access occurs whenever WE is inactive. The DO outputs  
mirror the data stored in the addressed memory location.  
Data access with WE asserted is also possible if one of the following two  
attributes is chosen: WRITE_FIRST and READ_FIRST. WRITE_FIRST  
simultaneously presents the new input data on the DO output port and  
writes the data to the address RAM location. READ_FIRST presents the  
previously stored RAM data on the DO output port while writing new  
data to RAM.  
A third attribute, NO_CHANGE, latches the DO outputs upon the  
assertion of WE.  
It is possible to configure a port’s total data path width (w) to be 1, 2, 4,  
9, 18, or 36 bits. This selection applies to both the DI and DO paths. See  
the DI signal description.  
Parity Data  
Output(s)  
DOPA  
WEA  
DOPB  
WEB  
Output  
Input  
Parity inputs represent additional bits included in the data input path to  
support error detection. The number of parity bits "p" included in the DI  
(same as for the DO bus) depends on a port’s total data path width (w).  
See Table 14.  
Write Enable  
When asserted together with EN, this input enables the writing of data  
to the RAM. In this case, the data access attributes WRITE_FIRST,  
READ_FIRST or NO_CHANGE determines if and how data is updated  
on the DO outputs. See the DO signal description.  
When WE is inactive with EN asserted, read operations are still  
possible. In this case, a transparent latch passes data from the  
addressed memory location to the DO outputs.  
Clock Enable  
ENA  
ENB  
Input  
When asserted, this input enables the CLK signal to synchronize Block  
RAM functions as follows: the writing of data to the DI inputs (when WE  
is also asserted), the updating of data at the DO outputs as well as the  
setting/resetting of the DO output latches.  
When de-asserted, the above functions are disabled.  
Set/Reset  
Clock  
SSRA  
CLKA  
SSRB  
CLKB  
Input  
Input  
When asserted, this pin forces the DO output latch to the value that the  
SRVAL attribute is set to. A Set/Reset operation on one port has no  
effect on the other ports functioning, nor does it disturb the memory’s  
data contents. It is synchronized to the CLK signal.  
This input accepts the clock signal to which read and write operations  
are synchronized. All associated port inputs are required to meet setup  
times with respect to the clock signal’s active edge. The data output bus  
responds after a clock-to-out delay referenced to the clock signal’s  
active edge.  
Port Aspect Ratios  
On a given port, it is possible to select a number of different possible widths (w p) for the DI/DO buses as shown in  
Table 14. These two buses always have the same width. This data bus width selection is independent for each port. If the  
data bus width of Port A differs from that of Port B, the Block RAM automatically performs a bus-matching function. When  
data are written to a port with a narrow bus, then read from a port with a wide bus, the latter port will effectively combine  
“narrow” words to form “wide” words. Similarly, when data are written into a port with a wide bus, then read from a port with  
a narrow bus, the latter port will divide “wide” words to form “narrow” words. When the data bus width is eight bits or greater,  
extra parity bits become available. The width of the total data path (w) is the sum of the DI/DO bus width and any parity bits  
(p).  
The width selection made for the DI/DO bus determines the number of address lines according to the relationship expressed  
below:  
r = 14 – [log(wp)/log(2)]  
Equation 1  
In turn, the number of address lines delimits the total number (n) of addressable locations or depth according to the following  
equation:  
r
n = 2  
Equation 2  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
28  
Spartan-3 FPGA Family: Functional Description  
The product of w and n yields the total block RAM capacity. Equation 1 and Equation 2 show that as the data bus width  
increases, the number of address lines along with the number of addressable memory locations decreases. Using the  
permissible DI/DO bus widths as inputs to these equations provides the bus width and memory capacity measures shown  
in Table 14.  
Table 14: Port Aspect Ratios for Port A or B  
DI/DO Bus Width  
(w – p Bits)  
DIP/DOP  
Total Data Path  
Width (w Bits)  
ADDR Bus Width No. of Addressable  
Block RAM  
Bus Width (p Bits)  
(r Bits)  
Locations (n)  
16,384  
8,192  
Capacity (Bits)  
1
2
0
0
0
1
2
4
1
2
14  
16,384  
16,384  
16,384  
18,432  
18,432  
18,432  
13  
4
4
12  
4,096  
8
9
11  
2,048  
16  
32  
18  
36  
10  
1,024  
9
512  
Block RAM Data Operations  
Writing data to and accessing data from the block RAM are synchronous operations that take place independently on each  
of the two ports.  
The waveforms for the write operation are shown in the top half of the Figure 15, Figure 16, and Figure 17. When the WE  
and EN signals enable the active edge of CLK, data at the DI input bus is written to the block RAM location addressed by the  
ADDR lines.  
There are a number of different conditions under which data can be accessed at the DO outputs. Basic data access always  
occurs when the WE input is inactive. Under this condition, data stored in the memory location addressed by the ADDR lines  
passes through a transparent output latch to the DO outputs. The timing for basic data access is shown in the portions of  
Figure 15, Figure 16, and Figure 17 during which WE is Low.  
X-Ref Target - Figure 15  
CLK  
WE  
DI  
XXXX  
1111  
2222  
cc  
XXXX  
ADDR  
DO  
aa  
bb  
dd  
0000  
MEM(aa)  
1111  
2222  
MEM(dd)  
EN  
WRITE  
MEM(bb)=1111  
WRITE  
MEM(cc)=2222  
READ  
DISABLED  
READ  
DS099-2_14_091410  
Figure 15: Waveforms of Block RAM Data Operations with WRITE_FIRST Selected  
Data can also be accessed on the DO outputs when asserting the WE input. This is accomplished using two different  
attributes:  
Choosing the WRITE_FIRST attribute, data is written to the addressed memory location on an enabled active CLK edge and  
is also passed to the DO outputs. WRITE_FIRST timing is shown in the portion of Figure 15 during which WE is High.  
Choosing the READ_FIRST attribute, data already stored in the addressed location pass to the DO outputs before that  
location is overwritten with new data from the DI inputs on an enabled active CLK edge. READ_FIRST timing is shown in the  
portion of Figure 16 during which WE is High.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
29  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 16  
CLK  
WE  
DI  
XXXX  
aa  
1111  
bb  
2222  
cc  
XXXX  
ADDR  
DO  
dd  
0000  
MEM(aa)  
old MEM(bb)  
old MEM(cc)  
MEM(dd)  
EN  
DISABLED  
READ  
WRITE  
MEM(bb)=1111  
WRITE  
MEM(cc)=2222  
READ  
DS099-2_15_030403  
Figure 16: Waveforms of Block RAM Data Operations with READ_FIRST Selected  
Choosing a third attribute called NO_CHANGE puts the DO outputs in a latched state when asserting WE. Under this  
condition, the DO outputs will retain the data driven just before WE was asserted. NO_CHANGE timing is shown in the  
portion of Figure 17 during which WE is High.  
X-Ref Target - Figure 17  
CLK  
WE  
DI  
XXXX  
aa  
1111  
bb  
2222  
cc  
XXXX  
ADDR  
DO  
dd  
0000  
MEM(aa)  
MEM(dd)  
EN  
DISABLED  
READ  
WRITE  
MEM(bb)=1111  
WRITE  
MEM(cc)=2222  
READ  
DS099-2_16_030403  
Figure 17: Waveforms of Block RAM Data Operations with NO_CHANGE Selected  
Dedicated Multipliers  
All Spartan-3 devices provide embedded multipliers that accept two 18-bit words as inputs to produce a 36-bit product. This  
section provides an introduction to multipliers. For further details, refer to the chapter entitled “Using Embedded Multipliers”  
in UG331.  
The input buses to the multiplier accept data in two’s-complement form (either 18-bit signed or 17-bit unsigned). One such  
multiplier is matched to each block RAM on the die. The close physical proximity of the two ensures efficient data handling.  
Cascading multipliers permits multiplicands more than three in number as well as wider than 18-bits. The multiplier is placed  
in a design using one of two primitives: an asynchronous version called MULT18X18 and a version with a register called  
MULT18X18S, as shown in Figure 18. The signals for these primitives are defined in Table 15.  
The CORE Generator system produces multipliers based on these primitives that can be configured to suit a wide range of  
requirements.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
30  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 18  
MULT18X18S  
A[17:0]  
B[17:0]  
CLK  
P[35:0]  
MULT18X18  
A[17:0]  
B[17:0]  
P[35:0]  
CE  
RST  
(a) Asynchronous 18-bit Multiplier  
(b) 18-bit Multiplier with Register  
DS099-2_17_091510  
Figure 18: Embedded Multiplier Primitives  
Table 15: Embedded Multiplier Primitives Descriptions  
Signal  
Direction  
Name  
Function  
Apply one 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time before the  
enabled rising edge of CLK.  
A[17:0]  
B[17:0]  
P[35:0]  
CLK  
Input  
Input  
Apply the other 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time before  
the enabled rising edge of CLK.  
The output on the P bus is a 36-bit product of the multiplicands A and B. In the case of the MULT18X18S  
primitive, an enabled rising CLK edge updates the P bus.  
Output  
Input(1)  
Input(1)  
Input(1)  
CLK is only an input to the MULT18X18S primitive. The clock signal applied to this input, when enabled by  
CE, updates the output register that drives the P bus.  
CE is only an input to the MULT18X18S primitive. Enable for the CLK signal. Asserting this input enables the  
CLK signal to update the P bus.  
CE  
RST is only an input to the MULT18X18S primitive. Asserting this input resets the output register on an  
enabled, rising CLK edge, forcing the P bus to all zeroes.  
RST  
Notes:  
1. The control signals CLK, CE and RST have the option of inverted polarity.  
Digital Clock Manager (DCM)  
Spartan-3 devices provide flexible, complete control over clock frequency, phase shift and skew through the use of the DCM  
feature. To accomplish this, the DCM employs a Delay-Locked Loop (DLL), a fully digital control system that uses feedback  
to maintain clock signal characteristics with a high degree of precision despite normal variations in operating temperature  
and voltage. This section provides a fundamental description of the DCM. For further information, refer to the chapter  
entitled “Using Digital Clock Managers” in UG331.  
Each member of the Spartan-3 family has four DCMs, except the smallest, the XC3S50, which has two DCMs. The DCMs  
are located at the ends of the outermost Block RAM column(s). See Figure 1, page 3. The Digital Clock Manager is placed  
in a design as the “DCM” primitive.  
The DCM supports three major functions:  
Clock-skew Elimination: Clock skew describes the extent to which clock signals may, under normal circumstances,  
deviate from zero-phase alignment. It occurs when slight differences in path delays cause the clock signal to arrive at  
different points on the die at different times. This clock skew can increase set-up and hold time requirements as well as  
clock-to-out time, which may be undesirable in applications operating at a high frequency, when timing is critical. The  
DCM eliminates clock skew by aligning the output clock signal it generates with another version of the clock signal that  
is fed back. As a result, the two clock signals establish a zero-phase relationship. This effectively cancels out clock  
distribution delays that may lie in the signal path leading from the clock output of the DCM to its feedback input.  
Frequency Synthesis: Provided with an input clock signal, the DCM can generate a wide range of different output  
clock frequencies. This is accomplished by either multiplying and/or dividing the frequency of the input clock signal by  
any of several different factors.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
31  
Spartan-3 FPGA Family: Functional Description  
Phase Shifting: The DCM provides the ability to shift the phase of all its output clock signals with respect to its input  
clock signal.  
The DCM has four functional components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), the  
Phase Shifter (PS), and the Status Logic. Each component has its associated signals, as shown in Figure 19.  
X-Ref Target - Figure 19  
DCM  
PSINCDEC  
PSEN  
Phase  
Shifter  
PSDONE  
CLK0  
PSCLK  
Clock  
Distribution  
Delay  
CLKIN  
CLKFB  
CLK90  
CLK180  
CLK270  
CLK2X  
CLK2X180  
CLKDV  
CLKFX  
DFS  
CLKFX180  
DLL  
LOCKED  
Status  
Logic  
RST  
8
STATUS [7:0]  
DS099-2_07_040103  
Figure 19: DCM Functional Blocks and Associated Signals  
Delay-Locked Loop (DLL)  
The most basic function of the DLL component is to eliminate clock skew. The main signal path of the DLL consists of an  
input stage, followed by a series of discrete delay elements or taps, which in turn leads to an output stage. This path together  
with logic for phase detection and control forms a system complete with feedback as shown in Figure 20.  
X-Ref Target - Figure 20  
CLK0  
CLK90  
CLK180  
CLK270  
CLK2X  
CLK2X180  
CLKDV  
Delay  
1
Delay  
2
Delay  
n-1  
Delay  
n
CLKIN  
Control  
LOCKED  
Phase  
Detection  
CLKFB  
RST  
DS099-2_08_041103  
Figure 20: Simplified Functional Diagram of DLL  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
32  
Spartan-3 FPGA Family: Functional Description  
The DLL component has two clock inputs, CLKIN and CLKFB, as well as seven clock outputs, CLK0, CLK90, CLK180,  
CLK270, CLK2X, CLK2X180, and CLKDV as described in Table 16. The clock outputs drive simultaneously; however, the  
High Frequency mode only supports a subset of the outputs available in the Low Frequency mode. See DLL Frequency  
Modes, page 35. Signals that initialize and report the state of the DLL are discussed in The Status Logic Component,  
page 41.  
Table 16: DLL Signals  
Mode Support  
Signal  
Direction  
Description  
Low  
High  
Frequency Frequency  
CLKIN  
Input  
Input  
Accepts original clock signal.  
Yes  
Yes  
Yes  
Yes  
Accepts either CLK0 or CLK2X as feed back signal. (Set CLK_FEEDBACK  
attribute accordingly).  
CLKFB  
CLK0  
Output  
Output  
Output  
Output  
Output  
Generates clock signal with same frequency and phase as CLKIN.  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
No  
CLK90  
CLK180  
CLK270  
CLK2X  
Generates clock signal with same frequency as CLKIN, only phase-shifted 90°.  
Generates clock signal with same frequency as CLKIN, only phase-shifted 180°.  
Generates clock signal with same frequency as CLKIN, only phase-shifted 270°.  
Generates clock signal with same phase as CLKIN, only twice the frequency.  
Generates clock signal with twice the frequency of CLKIN, phase-shifted 180°  
with respect to CLKIN.  
CLK2X180  
CLKDV  
Output  
Output  
Yes  
Yes  
No  
Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower  
frequency clock signal that is phase-aligned to CLKIN.  
Yes  
The clock signal supplied to the CLKIN input serves as a reference waveform, with which the DLL seeks to align the  
feedback signal at the CLKFB input. When eliminating clock skew, the common approach to using the DLL is as follows: The  
CLK0 signal is passed through the clock distribution network to all the registers it synchronizes. These registers are either  
internal or external to the FPGA. After passing through the clock distribution network, the clock signal returns to the DLL via  
a feedback line called CLKFB. The control block inside the DLL measures the phase error between CLKFB and CLKIN. This  
phase error is a measure of the clock skew that the clock distribution network introduces. The control block activates the  
appropriate number of delay elements to cancel out the clock skew. Once the DLL has brought the CLK0 signal in phase with  
the CLKIN signal, it asserts the LOCKED output, indicating a “lock” on to the CLKIN signal.  
DLL Attributes and Related Functions  
A number of different functional options can be set for the DLL component through the use of the attributes described in  
Table 17. Each attribute is described in detail in the sections that follow:  
Table 17: DLL Attributes  
Attribute  
CLK_FEEDBACK  
Description  
Chooses either the CLK0 or CLK2X output to drive the CLKFB input NONE, 1X, 2X  
Chooses between High Frequency and Low Frequency modes LOW, HIGH  
Halves the frequency of the CLKIN signal just as it enters the DCM TRUE, FALSE  
1.5, 2, 2.5, 3, 3.5, 4, 4.5,  
Values  
DLL_FREQUENCY_MODE  
CLKIN_DIVIDE_BY_2  
Selects constant used to divide the CLKIN input frequency to  
generate the CLKDV output frequency  
5, 5.5, 6.0, 6.5, 7.0, 7.5,  
8, 9, 10, 11, 12, 13, 14,  
15, and 16.  
CLKDV_DIVIDE  
Enables 50% duty cycle correction for the CLK0, CLK90, CLK180,  
and CLK270 outputs  
DUTY_CYCLE_CORRECTION  
TRUE, FALSE  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
33  
Spartan-3 FPGA Family: Functional Description  
DLL Clock Input Connections  
An external clock source enters the FPGA using a Global Clock Input Buffer (IBUFG), which directly accesses the global  
clock network or an Input Buffer (IBUF). Clock signals within the FPGA drive a global clock net using a Global Clock  
Multiplexer Buffer (BUFGMUX). The global clock net connects directly to the CLKIN input. The internal and external  
connections are shown in the [a] and [c] sections, respectively, of Figure 21. A differential clock (e.g., LVDS) can serve as an  
input to CLKIN.  
DLL Clock Output and Feedback Connections  
As many as four of the nine DCM clock outputs can simultaneously drive the four BUFGMUX buffers on the same die edge  
(top or bottom). All DCM clock outputs can simultaneously drive general routing resources, including interconnect leading to  
OBUF buffers.  
The feedback loop is essential for DLL operation and is established by driving the CLKFB input with either the CLK0 or the  
CLK2X signal so that any undesirable clock distribution delay is included in the loop. It is possible to use either of these two  
signals for synchronizing any of the seven DLL outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X, or CLK2X180.  
The value assigned to the CLK_FEEDBACK attribute must agree with the physical feedback connection: a value of 1X for  
the CLK0 case, 2X for the CLK2X case. If the DCM is used in an application that does not require the DLL—i.e., only the  
DFS is used—then there is no feedback loop so CLK_FEEDBACK is set to NONE.  
CLK2X feedback is only supported on all mask revision ‘E’ and later devices (see Mask and Fab Revisions, page 58), on  
devices with the "GQ" fabrication code, and on all versions of the XC3S50 and XC3S1000.  
There are two basic cases that determine how to connect the DLL clock outputs and feedback connections: on-chip  
synchronization and off-chip synchronization, which are illustrated in Figure 21.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
34  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 21  
FPGA  
FPGA  
BUFGMUX  
CLK0  
BUFGMUX  
CLK90  
CLK180  
CLK270  
CLKDV  
CLK2X  
CLK2X180  
BUFG  
BUFG  
CLK90  
CLK180  
CLK270  
CLKDV  
CLK2X180  
CLKIN  
CLKIN  
Clock  
Net Delay  
Clock  
Net Delay  
DCM  
DCM  
CLK2X  
CLKFB  
CLKFB  
CLK0  
BUFGMUX  
BUFGMUX  
CLK0  
CLK2X  
(a) On-Chip with CLK0 Feedback  
FPGA  
(b) On-Chip with CLK2X Feedback  
FPGA  
OBUF  
CLK0  
CLK90  
CLK180  
CLK270  
CLKDV  
CLK90  
CLK180  
CLK270  
CLKDV  
CLK2X  
CLK2X180  
OBUF  
IBUFG  
IBUFG  
CLKIN  
CLKIN  
Clock  
Net Delay  
Clock  
Net Delay  
DCM  
DCM  
CLK2X180  
CLKFB  
CLK0  
CLKFB  
CLK2X  
OBUF  
IBUFG  
IBUFG  
OBUF  
CLK0  
CLK2X  
(c) Off-Chip with CLK0 Feedback  
(d) Off-Chip with CLK2X Feedback  
DS099-2_09_082104  
Notes:  
1. In the Low Frequency mode, all seven DLL outputs are available. In the High Frequency mode, only the CLK0, CLK180, and  
CLKDV outputs are available.  
Figure 21: Input Clock, Output Clock, and Feedback Connections for the DLL  
In the on-chip synchronization case (the [a] and [b] sections of Figure 21), it is possible to connect any of the DLLs seven  
output clock signals through general routing resources to the FPGA’s internal registers. Either a Global Clock Buffer (BUFG)  
or a BUFGMUX affords access to the global clock network. As shown in the [a] section of Figure 21, the feedback loop is  
created by routing CLK0 (or CLK2X, in the [b] section) to a global clock net, which in turn drives the CLKFB input.  
In the off-chip synchronization case (the [c] and [d] sections of Figure 21), CLK0 (or CLK2X) plus any of the DLLs other  
output clock signals exit the FPGA using output buffers (OBUF) to drive an external clock network plus registers on the  
board. As shown in the [c] section of Figure 21, the feedback loop is formed by feeding CLK0 (or CLK2X, in the [d] section)  
back into the FPGA using an IBUFG, which directly accesses the global clock network, or an IBUF. Then, the global clock net  
is connected directly to the CLKFB input.  
DLL Frequency Modes  
The DLL supports two distinct operating modes, High Frequency and Low Frequency, with each specified over a different  
clock frequency range. The DLL_FREQUENCY_MODE attribute chooses between the two modes. When the attribute is set  
to LOW, the Low Frequency mode permits all seven DLL clock outputs to operate over a low-to-moderate frequency range.  
When the attribute is set to HIGH, the High Frequency mode allows the CLK0, CLK180 and CLKDV outputs to operate at the  
highest possible frequencies. The remaining DLL clock outputs are not available for use in High Frequency mode.  
Accommodating High Input Frequencies  
If the frequency of the CLKIN signal is high such that it exceeds the maximum permitted, divide it down to an acceptable  
value using the CLKIN_DIVIDE_BY_2 attribute. When this attribute is set to TRUE, the CLKIN frequency is divided by a  
factor of two just as it enters the DCM.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
35  
Spartan-3 FPGA Family: Functional Description  
Coarse Phase Shift Outputs of the DLL Component  
In addition to CLK0 for zero-phase alignment to the CLKIN signal, the DLL also provides the CLK90, CLK180 and CLK270  
outputs for 90°, 180° and 270° phase-shifted signals, respectively. These signals are described in Table 16, page 33. Their  
relative timing in the Low Frequency Mode is shown in Figure 22, page 37. The CLK90, CLK180 and CLK270 outputs are  
not available when operating in the High Frequency mode. (See the description of the DLL_FREQUENCY_MODE attribute  
in Table 17, page 33.) For control in finer increments than 90°, see Phase Shifter (PS), page 39.  
Basic Frequency Synthesis Outputs of the DLL Component  
The DLL component provides basic options for frequency multiplication and division in addition to the more flexible synthesis  
capability of the DFS component, described in a later section. These operations result in output clock signals with  
frequencies that are either a fraction (for division) or a multiple (for multiplication) of the incoming clock frequency. The  
CLK2X output produces an in-phase signal that is twice the frequency of CLKIN. The CLK2X180 output also doubles the  
frequency, but is 180° out-of-phase with respect to CLKIN. The CLKDIV output generates a clock frequency that is a  
predetermined fraction of the CLKIN frequency. The CLKDV_DIVIDE attribute determines the factor used to divide the  
CLKIN frequency. The attribute can be set to various values as described in Table 17. The basic frequency synthesis outputs  
are described in Table 16. Their relative timing in the Low Frequency Mode is shown in Figure 22.  
The CLK2X and CLK2X180 outputs are not available when operating in the High Frequency mode. See the description of  
the DLL_FREQUENCY_MODE attribute in Table 18.  
Duty Cycle Correction of DLL Clock Outputs  
(1)  
(2)  
The CLK2X , CLK2X180, and CLKDV output signals ordinarily exhibit a 50% duty cycle—even if the incoming CLKIN  
signal has a different duty cycle. A 50% duty cycle means that the High and Low times of each clock cycle are equal. The  
DUTY_CYCLE_CORRECTION attribute determines whether or not duty cycle correction is applied to the CLK0, CLK90,  
CLK180 and CLK270 outputs. If DUTY_CYCLE_CORRECTION is set to TRUE, then the duty cycle of these four outputs is  
corrected to 50%. If DUTY_CYCLE_CORRECTION is set to FALSE, then these outputs exhibit the same duty cycle as the  
CLKIN signal. Figure 22 compares the characteristics of the DLLs output signals to those of the CLKIN signal.  
1. The CLK2X output generates a 25% duty cycle clock at the same frequency as the CLKIN signal until the DLL has achieved lock.  
2. The duty cycle of the CLKDV outputs may differ somewhat from 50% (i.e., the signal will be High for less than 50% of the period) when the  
CLKDV_DIVIDE attribute is set to a non-integer value and the DLL is operating in the High Frequency mode.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
36  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 22  
0o 90o 180o 270o 0o 90o 180o 270o 0o  
Phase:  
Input Signal (40% Duty Cycle)  
t
CLKIN  
Output Signal - Duty Cycle is Always Corrected  
CLK2X  
CLK2X180  
(1)  
CLKDV  
Output Signal - Attribute Corrects Duty Cycle  
DUTY_CYCLE_CORRECTION = FALSE  
CLK0  
CLK90  
CLK180  
CLK270  
DUTY_CYCLE_CORRECTION = TRUE  
CLK0  
CLK90  
CLK180  
CLK270  
DS099-2_10_051907  
Figure 22: Characteristics of the DLL Clock Outputs  
Digital Frequency Synthesizer (DFS)  
The DFS component generates clock signals the frequency of which is a product of the clock frequency at the CLKIN input  
and a ratio of two user-determined integers. Because of the wide range of possible output frequencies such a ratio permits,  
the DFS feature provides still further flexibility than the DLLs basic synthesis options as described in the preceding section.  
The DFS component’s two dedicated outputs, CLKFX and CLKFX180, are defined in Table 19.  
The signal at the CLKFX180 output is essentially an inversion of the CLKFX signal. These two outputs always exhibit a 50%  
duty cycle. This is true even when the CLKIN signal does not. These DFS clock outputs are driven at the same time as the  
DLLs seven clock outputs.  
The numerator of the ratio is the integer value assigned to the attribute CLKFX_MULTIPLY and the denominator is the  
integer value assigned to the attribute CLKFX_DIVIDE. These attributes are described in Table 18.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
37  
Spartan-3 FPGA Family: Functional Description  
The output frequency (f  
) can be expressed as a function of the incoming clock frequency (f  
fCLKFX = fCLKIN(CLKFX_MULTIPLY/CLKFX_DIVIDE)  
) as follows:  
CLKIN  
CLKFX  
Equation 3  
Regarding the two attributes, it is possible to assign any combination of integer values, provided that two conditions are met:  
The two values fall within their corresponding ranges, as specified in Table 18.  
The f frequency calculated from the above expression accords with the DCM’s operating frequency  
CLKFX  
specifications.  
For example, if CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, then the frequency of the output clock signal would be 5/3  
that of the input clock signal.  
DFS Frequency Modes  
The DFS supports two operating modes, High Frequency and Low Frequency, with each specified over a different clock  
frequency range. The DFS_FREQUENCY_MODE attribute chooses between the two modes. When the attribute is set to  
LOW, the Low Frequency mode permits the two DFS outputs to operate over a low-to-moderate frequency range. When the  
attribute is set to HIGH, the High Frequency mode allows both these outputs to operate at the highest possible frequencies.  
DFS With or Without the DLL  
The DFS component can be used with or without the DLL component:  
Without the DLL, the DFS component multiplies or divides the CLKIN signal frequency according to the respective  
CLKFX_MULTIPLY and CLKFX_DIVIDE values, generating a clock with the new target frequency on the CLKFX and  
CLKFX180 outputs. Though classified as belonging to the DLL component, the CLKIN input is shared with the DFS  
component. This case does not employ feedback loop; therefore, it cannot correct for clock distribution delay.  
With the DLL, the DFS operates as described in the preceding case, only with the additional benefit of eliminating the clock  
distribution delay. In this case, a feedback loop from the CLK0 output to the CLKFB input must be present.  
The DLL and DFS components work together to achieve this phase correction as follows: Given values for the  
CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, the DLL selects the delay element for which the output clock edge  
coincides with the input clock edge whenever mathematically possible. For example, when CLKFX_MULTIPLY = 5 and  
CLKFX_DIVIDE = 3, the input and output clock edges will coincide every three input periods, which is equivalent in time to  
five output periods.  
Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values achieve faster lock times. With no factors common to the two  
attributes, alignment will occur once with every number of cycles equal to the CLKFX_DIVIDE value. Therefore, it is  
recommended that the user reduce these values by factoring wherever possible. For example, given CLKFX_MULTIPLY = 9  
and CLKFX_DIVIDE = 6, removing a factor of three yields CLKFX_MULTIPLY = 3 and CLKFX_DIVIDE = 2. While both  
value-pairs will result in the multiplication of clock frequency by 3/2, the latter value-pair will enable the DLL to lock more  
quickly.  
Table 18: DFS Attributes  
Attribute  
DFS_FREQUENCY_MODE  
CLKFX_MULTIPLY  
Description  
Chooses between High Frequency and Low Frequency modes  
Frequency multiplier constant  
Values  
Low, High  
Integer from 2 to 32  
Integer from 1 to 32  
CLKFX_DIVIDE  
Frequency divisor constant  
Table 19: DFS Signals  
Signal  
CLKFX  
CLKFX180  
Direction  
Description  
Multiplies the CLKIN frequency by the attribute-value ratio (CLKFX_MULTIPLY/CLKFX_DIVIDE) to  
generate a clock signal with a new target frequency.  
Output  
Output  
Generates a clock signal with same frequency as CLKFX, only shifted 180° out-of-phase.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
38  
Spartan-3 FPGA Family: Functional Description  
DFS Clock Output Connections  
There are two basic cases that determine how to connect the DFS clock outputs: on-chip and off-chip, which are illustrated  
in sections [a] and [c], respectively, of Figure 21. This is similar to what has already been described for the DLL component.  
See DLL Clock Output and Feedback Connections, page 34.  
In the on-chip case, it is possible to connect either of the DFS’s two output clock signals through general routing resources  
to the FPGA’s internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock  
network. The optional feedback loop is formed in this way, routing CLK0 to a global clock net, which in turn drives the CLKFB  
input.  
In the off-chip case, the DFS’s two output clock signals, plus CLK0 for an optional feedback loop, can exit the FPGA using  
output buffers (OBUF) to drive a clock network plus registers on the board. The feedback loop is formed by feeding the CLK0  
signal back into the FPGA using an IBUFG, which directly accesses the global clock network, or an IBUF. Then, the global  
clock net is connected directly to the CLKFB input.  
Phase Shifter (PS)  
The DCM provides two approaches to controlling the phase of a DCM clock output signal relative to the CLKIN signal: First,  
there are nine clock outputs that employ the DLL to achieve a desired phase relationship: CLK0, CLK90, CLK180, CLK270,  
CLK2X, CLK2X180, CLKDV CLKFX, and CLKFX180. These outputs afford “coarse” phase control.  
The second approach uses the PS component described in this section to provide a still finer degree of control. The PS  
component is only available when the DLL is operating in its low-frequency mode. The PS component phase shifts the DCM  
output clocks by introducing a "fine phase shift" (T ) between the CLKFB and CLKIN signals inside the DLL component.  
PS  
The user can control this fine phase shift down to a resolution of 1/256 of a CLKIN cycle or one tap delay (DCM_TAP),  
whichever is greater. When in use, the PS component shifts the phase of all nine DCM clock output signals together. If the  
PS component is used together with a DCM clock output such as the CLK90, CLK180, CLK270, CLK2X180 and CLKFX180,  
then the fine phase shift of the former gets added to the coarse phase shift of the latter.  
PS Component Enabling and Mode Selection  
The CLKOUT_PHASE_SHIFT attribute enables the PS component for use in addition to selecting between two operating  
modes. As described in Table 20, this attribute has three possible values: NONE, FIXED and VARIABLE. When  
CLKOUT_PHASE_SHIFT is set to NONE, the PS component is disabled and its inputs, PSEN, PSCLK, and PSINCDEC,  
must be tied to GND. The set of waveforms in section [a] of Figure 22 shows the disabled case, where the DLL maintains a  
zero-phase alignment of signals CLKFB and CLKIN upon which the PS component has no effect. The PS component is  
enabled by setting the attribute to either the FIXED or VARIABLE values, which select the Fixed Phase mode and the  
Variable Phase mode, respectively. These two modes are described in the sections that follow  
Determining the Fine Phase Shift  
The user controls the phase shift of CLKFB relative to CLKIN by setting and/or adjusting the value of the PHASE_SHIFT  
attribute. This value must be an integer ranging from –255 to +255. The PS component uses this value to calculate the  
desired fine phase shift (T ) as a fraction of the CLKIN period (T  
). Given values for PHASE-SHIFT and T  
, it is  
PS  
CLKIN  
CLKIN  
possible to calculate T as follows:  
PS  
T
= T  
(PHASE_SHIFT/256)  
CLKIN  
Equation 4  
PS  
Both the Fixed Phase and Variable Phase operating modes employ this calculation. If the PHASE_SHIFT value is zero, then  
CLKFB and CLKIN will be in phase, the same as when the PS component is disabled. When the PHASE_SHIFT value is  
positive, the CLKFB signal will be shifted later in time with respect to CLKIN. If the attribute value is negative, the CLKFB  
signal will be shifted earlier in time with respect to CLKIN.  
The Fixed Phase Mode  
This mode fixes the desired fine phase shift to a fraction of the T  
, as determined by Equation 4 and its user-selected  
CLKIN  
PHASE_SHIFT value P. The set of waveforms insection [b] of Figure 22 illustrates the relationship between CLKFB and  
CLKIN in the Fixed Phase mode. In the Fixed Phase mode, the PSEN, PSCLK and PSINCDEC inputs are not used and  
must be tied to GND. Fixed phase shift requires ISE software version 10.1.03 or later.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
39  
Spartan-3 FPGA Family: Functional Description  
Values  
Table 20: PS Attributes  
Attribute  
Description  
Disables PS component or chooses between Fixed Phase and  
Variable Phase modes.  
CLKOUT_PHASE_SHIFT  
NONE, FIXED, VARIABLE  
PHASE_SHIFT  
Determines size and direction of initial fine phase shift.  
Integers from –255 to +255(1)  
Notes:  
1. The practical range of values will be less when T  
> FINE_SHIFT_RANGE in the Fixed Phase mode, also when T  
>
CLKIN  
CLKIN  
(FINE_SHIFT_RANGE)/2 in the Variable Phase mode. the FINE_SHIFT_RANGE represents the sum total delay of all taps.  
The Variable Phase Mode  
The “Variable Phase” mode dynamically adjusts the fine phase shift over time using three inputs to the PS component,  
namely PSEN, PSCLK and PSINCDEC, as defined in Table 21.  
After device configuration, the PS component initially determines T by evaluating Equation (4) for the value assigned to  
PS  
the PHASE_SHIFT attribute. Then to dynamically adjust that phase shift, use the three PS inputs to increase or decrease  
the fine phase shift.  
PSINCDEC is synchronized to the PSCLK clock signal, which is enabled by asserting PSEN. It is possible to drive the  
PSCLK input with the CLKIN signal or any other clock signal. A request for phase adjustment is entered as follows: For each  
PSCLK cycle that PSINCDEC is High, the PS component adds 1/256 of a CLKIN cycle to T . Similarly, for each enabled  
PS  
PSCLK cycle that PSINCDEC is Low, the PS component subtracts 1/256 of a CLKIN cycle from T . The phase adjustment  
PS  
may require as many as 100 CLKIN cycles plus three PSCLK cycles to take effect, at which point the output PSDONE goes  
High for one PSCLK cycle. This pulse indicates that the PS component has finished the present adjustment and is now  
ready for the next request. Asserting the Reset (RST) input, returns T to its original shift time, as determined by the  
PS  
PHASE_SHIFT attribute value. The set of waveforms in section [c] of Figure 23, page 41 illustrates the relationship between  
CLKFB and CLKIN in the Variable Phase mode.  
Table 21: Signals for Variable Phase Mode  
Signal  
PSEN(1)  
Direction  
Input  
Description  
Enables PSCLK for variable phase adjustment.  
PSCLK(1)  
Input  
Clock to synchronize phase shift adjustment.  
Chooses between increment and decrement for phase adjustment. It is synchronized to the PSCLK  
signal.  
PSINCDEC(1)  
Input  
Goes High to indicate that present phase adjustment is complete and PS component is ready for next  
phase adjustment request. It is synchronized to the PSCLK signal.  
PSDONE  
Output  
Notes:  
1. It is possible to program this input for either a true or inverted polarity  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
40  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 23  
a. CLKOUT_PHASE_SHIFT = NONE  
CLKIN  
CLKFB  
b. CLKOUT_PHASE_SHIFT = FIXED  
CLKIN  
0
–255  
+255  
Shift Range over all P Values:  
P
256  
* T  
CLKIN  
CLKFB  
c. CLKOUT_PHASE_SHIFT = VARIABLE  
CLKIN  
–255  
+255  
0
Shift Range over all P Values:  
P
256  
* T  
CLKIN  
CLKFB before  
Decrement  
–255  
0
+255  
Shift Range over all N Values:  
N
256  
* T  
CLKIN  
CLKFB after  
Decrement  
DS099-2_11_031303  
Notes:  
1. P represents the integer value ranging from –255 to +255 to which the PHASE_SHIFT attribute is assigned.  
2. N is an integer value ranging from –255 to +255 that represents the net phase shift effect from a series of increment  
and/or decrement operations.  
N = {Total number of increments} – {Total number of decrements}  
A positive value for N indicates a net increment; a negative value indicates a net decrement.  
Figure 23: Phase Shifter Waveforms  
The Status Logic Component  
The Status Logic component not only reports on the state of the DCM but also provides a means of resetting the DCM to an  
initial known state. The signals associated with the Status Logic component are described in Table 22.  
As a rule, the Reset (RST) input is asserted only upon configuring the device or changing the CLKIN frequency. A DCM reset  
does not affect attribute values (e.g., CLKFX_MULTIPLY and CLKFX_DIVIDE). If not used, RST must be tied to GND.  
The eight bits of the STATUS bus are defined in Table 23.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
41  
Spartan-3 FPGA Family: Functional Description  
Description  
Table 22: Status Logic Signals  
Signal  
Direction  
A High resets the entire DCM to its initial power-on state. Initializes the DLL taps for a delay of zero.  
Sets the LOCKED output Low. This input is asynchronous.  
RST  
Input  
STATUS[7:0]  
LOCKED  
Output  
Output  
The bit values on the STATUS bus provide information regarding the state of DLL and PS operation  
Indicates that the CLKIN and CLKFB signals are in phase by going High. The two signals are  
out-of-phase when Low.  
Table 23: DCM STATUS Bus  
Bit  
Name  
Description  
A value of 1 indicates a phase shift overflow when one of two conditions occurs:  
0
Phase Shift Overflow Incrementing (or decrementing) TPS beyond 255/256 of a CLKIN cycle.  
The DLL is producing its maximum possible phase shift (i.e., all delay taps are active).(1)  
CLKIN Input Stopped A value of 1 indicates that the CLKIN input signal is not toggling. A value of 0 indicates toggling. This  
Toggling  
1
2
bit functions only when the CLKFB input is connected.(2)  
CLKFX/CLKFX180  
Output Stopped  
Toggling  
A value of 1 indicates that the CLKFX or CLKFX180 output signals are not toggling. A value of 0  
indicates toggling. This bit functions only when using the Digital Frequency Synthesizer (DFS).  
3:7  
Reserved  
Notes:  
1. The DLL phase shift with all delay taps active is specified as the parameter FINE_SHIFT_RANGE.  
2. If only the DFS clock outputs are used, but none of the DLL clock outputs, this bit will not go High when the CLKIN signal stops.  
Table 24: Status Attributes  
Attribute  
Description  
Values  
STARTUP_WAIT  
Delays transition from configuration to user mode until lock condition is achieved.  
TRUE, FALSE  
Stabilizing DCM Clocks Before User Mode  
It is possible to delay the completion of device configuration until after the DLL has achieved a lock condition using the  
STARTUP_WAIT attribute described in Table 24. This option ensures that the FPGA does not enter user mode—i.e., begin  
functional operation—until all system clocks generated by the DCM are stable. In order to achieve the delay, it is necessary  
to set the attribute to TRUE as well as set the BitGen option LCK_cycle to one of the six cycles making up the Startup phase  
of configuration. The selected cycle defines the point at which configuration will halt until the LOCKED output goes High.  
Global Clock Network  
Spartan-3 devices have eight Global Clock inputs called GCLK0 - GCLK7. These inputs provide access to a  
low-capacitance, low-skew network that is well-suited to carrying high-frequency signals. The Spartan-3 FPGAs clock  
network is shown in Figure 23. GCLK0 through GCLK3 are located in the center of the bottom edge. GCLK4 through GCLK7  
are located in the center of the top edge.  
Eight Global Clock Multiplexers (also called BUFGMUX elements) are provided that accept signals from Global Clock inputs  
and route them to the internal clock network as well as DCMs. Four BUFGMUX elements are located in the center of the  
bottom edge, just above the GCLK0 - GCLK3 inputs. The remaining four BUFGMUX elements are located in the center of  
the top edge, just below the GCLK4 - GCLK7 inputs.  
Pairs of BUFGMUX elements share global inputs, as shown in Figure 24. For example, the GCLK4 and GCLK5 inputs both  
potentially connect to BUFGMUX4 and BUFGMUX5 located in the upper right center. A differential clock input uses a pair of  
GCLK inputs to connect to a single BUFGMUX element.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
42  
Spartan-3 FPGA Family: Functional Description  
Each BUFGMUX element, shown in Figure 24, is a 2-to-1 multiplexer that can receive signals from any of the four following  
sources:  
One of the four Global Clock inputs on the same side of the die—top or bottom—as the BUFGMUX element in use.  
Any of four nearby horizontal Double lines.  
Any of four outputs from the DCM in the right-hand quadrant that is on the same side of the die as the BUFGMUX  
element in use.  
Any of four outputs from the DCM in the left-hand quadrant that is on the same side of the die as the BUFGMUX  
element in use.  
The multiplexer select line, S, chooses which of the two inputs, I0 or I1, drives the BUFGMUX’s output signal, O, as  
described in Table 25. The switching from one clock to the other is glitchless, and done in such a way that the output High  
and Low times are never shorter than the shortest High or Low time of either input clock.  
Table 25: BUFGMUX Select Mechanism  
S Input  
O Output  
I0 Input  
0
1
I1 Input  
The two clock inputs can be asynchronous with regard to each other, and the S input can change at any time, except for a  
short setup time prior to the rising edge of the presently selected clock (I0 or I1). Violating this setup time requirement can  
result in an undefined runt pulse output.  
The BUFG clock buffer primitive drives a single clock signal onto the clock network and is essentially the same element as  
a BUFGMUX, just without the clock select mechanism. Similarly, the BUFGCE primitive creates an enabled clock buffer  
using the BUFGMUX select mechanism.  
Each BUFGMUX buffers incoming clock signals to two possible destinations:  
The vertical spine belonging to the same side of the die—top or bottom—as the BUFGMUX element in use. The two  
spines—top and bottom—each comprise four vertical clock lines, each running from one of the BUFGMUX elements  
on the same side towards the center of the die. At the center of the die, clock signals reach the eight-line horizontal  
spine, which spans the width of the die. In turn, the horizontal spine branches out into a subsidiary clock interconnect  
that accesses the CLBs.  
The clock input of either DCM on the same side of the die—top or bottom—as the BUFGMUX element in use.  
Use either a BUFGMUX element or a BUFG (Global Clock Buffer) element to place a Global input in the design. For the  
purpose of minimizing the dynamic power dissipation of the clock network, the Xilinx development software automatically  
disables all clock line segments that a design does not use.  
A global clock line ideally drives clock inputs on the various clocked elements within the FPGA, such as CLB or IOB flip-flops  
or block RAMs. A global clock line also optionally drives combinatorial inputs. However, doing so provides additional loading  
on the clock line that might also affect clock jitter. Ideally, drive combinatorial inputs using the signal that also drives the input  
to the BUFGMUX or BUFG element.  
For more details, refer to the chapter entitled “Using Global Clock Resources” in UG331.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
43  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 24  
GCLK4  
GCLK6  
GCLK5  
GCLK7  
4
4
4
4
DCM  
DCM  
4 BUFGMUX  
4
8
Array Dependent  
8
8
8
Horizontal Spine  
Array Dependent  
4
4
4
4 BUFGMUX  
4
4
DCM  
DCM  
GCLK1  
GCLK3  
GCLK0  
GCLK2  
DS099-2_18_091510  
Figure 24: Spartan-3 FPGAs Clock Network (Top View)  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
44  
Spartan-3 FPGA Family: Functional Description  
Interconnect  
Interconnect (or routing) passes signals among the various functional elements of Spartan-3 devices. There are four kinds  
of interconnect: Long lines, Hex lines, Double lines, and Direct lines.  
Long lines connect to one out of every six CLBs (see section [a] of Figure 25). Because of their low capacitance, these lines  
are well-suited for carrying high-frequency signals with minimal loading effects (e.g. skew). If all eight Global Clock Inputs  
are already committed and there remain additional clock signals to be assigned, Long lines serve as a good alternative.  
Hex lines connect one out of every three CLBs (see section [b] of Figure 25). These lines fall between Long lines and Double  
lines in terms of capability: Hex lines approach the high-frequency characteristics of Long lines at the same time, offering  
greater connectivity.  
Double lines connect to every other CLB (see section [c] of Figure 25). Compared to the types of lines already discussed,  
Double lines provide a higher degree of flexibility when making connections.  
Direct lines afford any CLB direct access to neighboring CLBs (see section [d] of Figure 25). These lines are most often used  
to conduct a signal from a "source" CLB to a Double, Hex, or Long line and then from the longer interconnect back to a Direct  
line accessing a "destination" CLB.  
For more details, refer to the “Using Interconnect” chapter in UG331.  
X-Ref Target - Figure 25  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
6
6
6
6
6
DS099-2_19_040103  
(a) Long Lines  
8
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
DS099-2_20_040103  
(b) Hex Lines  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
2
CLB  
CLB  
CLB  
CLB  
DS099-2_21_040103  
(c) Double Lines  
CLB  
DS099-2_22_040103  
(d) Direct Lines  
Figure 25: Types of Interconnect  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
45  
Spartan-3 FPGA Family: Functional Description  
Configuration  
Spartan-3 devices are configured by loading application specific configuration data into the internal configuration memory.  
Configuration is carried out using a subset of the device pins, some of which are "Dedicated" to one function only, while  
others, indicated by the term "Dual-Purpose", can be re-used as general-purpose User I/Os once configuration is complete.  
Depending on the system design, several configuration modes are supported, selectable via mode pins. The mode pins M0,  
M1, and M2 are Dedicated pins. The mode pin settings are shown in Table 26.  
Table 26: Spartan-3 FPGAs Configuration Mode Pin Settings  
Configuration Mode(1)  
M0  
0
M1  
0
M2  
0
Synchronizing Clock  
CCLK Output  
CCLK Input  
Data Width  
Serial DOUT(2)  
Master Serial  
1
1
8
8
1
Yes  
Yes  
No  
No  
No  
Slave Serial  
Master Parallel  
Slave Parallel  
JTAG  
1
1
1
1
1
0
CCLK Output  
CCLK Input  
0
1
1
1
0
1
TCK Input  
Notes:  
1. The voltage levels on the M0, M1, and M2 pins select the configuration mode.  
2. The daisy chain is possible only in the Serial modes when DOUT is used.  
The HSWAP_EN input pin defines whether the I/O pins that are not actively used during configuration have pull-up resistors  
during configuration. By default, HSWAP_EN is tied High (via an internal pull-up resistor if left floating) which shuts off the  
pull-up resistors on the user I/O pins during configuration. When HSWAP_EN is tied Low, user I/Os have pull-ups during  
configuration. The Dedicated configuration pins (CCLK, DONE, PROG_B, M2, M1, M0, HSWAP_EN) and the JTAG pins  
(TDI, TMS, TCK, and TDO) always have a pull-up resistor to VCCAUX during configuration, regardless of the value on the  
HSWAP_EN pin. Similarly, the dual-purpose INIT_B pin has an internal pull-up resistor to VCCO_4 or VCCO_BOTTOM,  
depending on the package style.  
Depending on the chosen configuration mode, the FPGA either generates a CCLK output, or CCLK is an input accepting an  
externally generated clock.  
A persist option is available which can be used to force the configuration pins to retain their configuration function even after  
device configuration is complete. If the persist option is not selected then the configuration pins with the exception of CCLK,  
PROG_B, and DONE can be used as user I/O in normal operation. The persist option does not apply to the boundary-scan  
related pins. The persist feature is valuable in applications that readback configuration data after entering the User mode.  
Table 27 lists the total number of bits required to configure each FPGA as well as the PROMs suitable for storing those bits.  
See DS123: Platform Flash In-System Programmable Configuration PROMs data sheet for more information.  
Table 27: Spartan-3 FPGA Configuration Data  
Xilinx Platform Flash PROM  
Device  
File Sizes  
Serial Configuration  
XCF01S  
Parallel Configuration  
XCF08P  
XC3S50  
439,264  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
1,047,616  
1,699,136  
3,223,488  
5,214,784  
7,673,024  
11,316,864  
13,271,936  
XCF01S  
XCF08P  
XCF02S  
XCF08P  
XCF04S  
XCF08P  
XCF08P  
XCF08P  
XCF08P  
XCF08P  
XCF16P  
XCF16P  
XCF16P  
XCF16P  
The maximum bitstream length that Spartan-3 FPGAs support in serial daisy-chains is 4,294,967,264 bits (4 Gbits), roughly  
equivalent to a daisy-chain with 323 XC3S5000 FPGAs. This is a limit only for serial daisy-chains where configuration data  
is passed via the FPGA’s DOUT pin. There is no such limit for JTAG chains.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
46  
Spartan-3 FPGA Family: Functional Description  
The Standard Configuration Interface  
Configuration signals belong to one of two different categories: Dedicated or Dual-Purpose. Which category determines  
which of the FPGA’s power rails supplies the signal’s driver and, thus, helps describe the electrical characteristics at the pin.  
The Dedicated configuration pins include PROG_B, HSWAP_EN, TDI, TMS, TCK, TDO, CCLK, DONE, and M0-M2. These  
pins are powered by the V  
supply.  
CCAUX  
The Dual-Purpose configuration pins comprise INIT_B, DOUT, BUSY, RDWR_B, CS_B, and DIN/D0-D7. Each of these pins,  
according to its bank placement, uses the V lines for either Bank 4 (VCCO_4 on most packages, VCCO_BOTTOM on  
CCO  
TQ144 and CP132 packages) or Bank 5 (VCCO_5). All the signals used in the serial configuration modes rely on VCCO_4  
power. Signals used in the parallel configuration modes and Readback require from VCCO_5 as well as from VCCO_4.  
Both the Dedicated signals described above and the Dual-Purpose signals constitute the configuration interface. The  
Dedicated pins, powered by the 2.5V V  
supply, always use the LVCMOS25 I/O standard. The Dual-Purpose signals,  
CCAUX  
however, are powered by the VCCO_4 supply and also by the VCCO_5 supply in the Parallel configuration modes. The  
simplest configuration interface uses 2.5V for VCCO_4 and VCCO_5, if required. However, VCCO_4 and, if needed,  
VCCO_5 can be voltages other than 2.5V but then the configuration interface will have two voltage levels: 2.5V for V  
CCAUX  
and a separate V  
supply. The Dual-Purpose signals default to the LVCMOS input and output levels for the associated  
CCO  
V
voltage supply.  
CCO  
3.3V-Tolerant Configuration Interface  
A 3.3V-tolerant configuration interface simply requires adding a few external resistors as described in detail in XAPP453:  
The 3.3V Configuration of Spartan-3 FPGAs.  
The 3.3V-tolerance is implemented as follows (a similar approach can be used for other supply voltage levels):  
Apply 3.3V to VCCO_4 and, in some configuration modes, to VCCO_5 to power the Dual-Purpose configuration pins. This  
scales the output voltages and input thresholds associated with these pins so that they become 3.3V-compatible.  
Apply 2.5V to V  
to power the Dedicated configuration pins. For 3.3V-tolerance, the Dedicated inputs require series  
CCAUX  
resistors to limit the incoming current to 10 mA or less. The Dedicated outputs have reduced noise margin when the FPGA  
drives a High logic level into another device’s 3.3V receiver. Choose a power regulator or supply that can tolerate reverse  
current on the V  
lines.  
CCAUX  
Configuration Modes  
Spartan-3 FPGAs support the following five configuration modes:  
Slave Serial mode  
Master Serial mode  
Slave Parallel (SelectMAP) mode  
Master Parallel (SelectMAP) mode  
Boundary-Scan (JTAG) mode (IEEE 1532/IEEE 1149.1)  
Slave Serial Mode  
In Slave Serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other serial source of  
configuration data. The FPGA on the far right of Figure 26 is set for the Slave Serial mode. The CCLK pin on the FPGA is  
an input in this mode. The serial bitstream must be set up at the DIN input pin a short time before each rising edge of the  
externally generated CCLK.  
Multiple FPGAs can be daisy-chained for configuration from a single source. After a particular FPGA has been configured,  
the data for the next device is routed internally to the DOUT pin. The data on the DOUT pin changes on the falling edge of  
CCLK.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
47  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 26  
3.3V: XCF0xS  
1.8V: XCFxxP  
2.5V  
2.5V  
2.5V  
1.2V  
1.2V  
V
Bank 4  
V
Bank 4  
CCO  
CCO  
V
CCO  
V
V
V
V
CCINT  
CCAUX  
CCINT  
CCAUX  
V
V
CCINT  
CCJ  
D0  
DIN  
DOUT  
DIN  
Spartan-3  
FPGA  
Spartan-3  
FPGA  
Platform  
Flash PROM  
2.5V  
2.5V  
Master  
Slave  
M0  
M1  
M2  
M0  
M1  
M2  
XCF0xS  
or  
All  
4.7KΩ  
XCFxxP  
CE  
DONE  
DONE  
OE/RESET  
CF  
INIT_B  
PROG_B  
CCLK  
INIT_B  
PROG_B  
CCLK  
CLK  
GND  
GND  
GND  
DS099_23_112905  
Notes:  
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last  
FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE  
pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain.  
Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up  
resistor shown in grey. In most cases, a value between 3.3KΩ to 4.7KΩ is sufficient. However, when using DONE  
synchronously with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down  
to 330Ω) in order to ensure a rise time within one clock cycle.  
2. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration Interface.  
Figure 26: Connection Diagram for Master and Slave Serial Configuration  
Slave Serial mode is selected by applying <111> to the mode pins (M0, M1, and M2). A pull-up on the mode pins makes  
slave serial the default mode if the pins are left unconnected.  
Master Serial Mode  
In Master Serial mode, the FPGA drives CCLK pin, which behaves as a bidirectional I/O pin. The FPGA in the center of  
Figure 26 is set for Master Serial mode and connects to the serial configuration PROM and to the CCLK inputs of any slave  
FPGAs in a configuration daisy-chain. The master FPGA drives the configuration clock on the CCLK pin to the Xilinx Serial  
PROM, which, in response, provides bit-serial data to the FPGA’s DIN input. The FPGA accepts this data on each rising  
CCLK edge. After the master FPGA finishes configuring, it passes data on its DOUT pin to the next FPGA device in a  
daisy-chain. The DOUT data appears after the falling CCLK clock edge.  
The Master Serial mode interface is identical to Slave Serial except that an internal oscillator generates the configuration  
clock (CCLK). A wide range of frequencies can be selected for CCLK, which always starts at a default frequency of 6 MHz.  
Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration.  
Slave Parallel Mode (SelectMAP)  
The Parallel or SelectMAP modes support the fastest configuration. Byte-wide data is written into the FPGA with a BUSY  
flag controlling the flow of data. An external source provides 8-bit-wide data, CCLK, an active-Low Chip Select (CS_B) signal  
and an active-Low Write signal (RDWR_B). If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes  
Low. Data can also be read using the Slave Parallel mode. If RDWR_B is asserted, configuration data is read out of the  
FPGA as part of a readback operation.  
After configuration, it is possible to use any of the Multipurpose pins (DIN/D0-D7, DOUT/BUSY, INIT_B, CS_B, and  
RDWR_B) as User I/Os. To do this, simply set the BitGen option Persist to No and assign the desired signals to multipurpose  
configuration pins using the Xilinx development software. Alternatively, it is possible to continue using the configuration port  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
48  
Spartan-3 FPGA Family: Functional Description  
(e.g. all configuration pins taken together) when operating in the User mode. This is accomplished by setting the Persist  
option to Yes.  
Multiple FPGAs can be configured using the Slave Parallel mode and can be made to start-up simultaneously. Figure 27  
shows the device connections. To configure multiple devices in this way, wire the individual CCLK, Data, RDWR_B, and  
BUSY pins of all the devices in parallel. The individual devices are loaded separately by deasserting the CS_B pin of each  
device in turn and writing the appropriate data.  
X-Ref Target - Figure 27  
D[0:7]  
CCLK  
RDWR_B  
BUSY  
2.5V  
2.5V  
1.2V  
1.2V  
V
Banks 4 & 5  
V
Banks 4 & 5  
CCO  
CCO  
V
V
V
V
CCINT  
CCAUX  
CCINT  
CCAUX  
Spartan-3  
Slave  
Spartan-3  
Slave  
D[0:7]  
D[0:7]  
CCLK  
CCLK  
RDWR_B  
BUSY  
RDWR_B  
BUSY  
2.5V  
2.5V  
CS_B  
CS_B  
CS_B  
CS_B  
M1  
M2  
M0  
M1  
M2  
M0  
PROG_B  
DONE  
PROG_B  
DONE  
2.5V  
INIT_B  
INIT_B  
GND  
GND  
4.7KΩ  
4.7KΩ  
DONE  
INIT_B  
PROG_B  
DS099_24_041103  
Notes:  
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA to be  
configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive High; thus,  
no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to  
"No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most cases, a value  
between 3.3KΩ to 4.7KΩ is sufficient. However, when using DONE synchronously with a long chain of FPGAs, cumulative  
capacitance may necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise time within one clock cycle.  
2. If the FPGAs use different configuration data files, configure them in sequence by first asserting the CS_B of one FPGA then  
asserting the CS_B of the other FPGA.  
3. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration Interface.  
Figure 27: Connection Diagram for Slave Parallel Configuration  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
49  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 28  
2.5V  
1.8V  
2.5V  
1.2V  
V
Banks 4 & 5  
CCO  
V
V
CCINT  
CCAUX  
V
CCO  
Spartan-3  
Master  
V
V
CCJ  
CCINT  
DATA[0:7]  
CCLK  
D[0:7]  
CCLK  
2.5V  
Platform Flash  
PROM  
All  
4.7KΩ  
XCFxxP  
CF  
PROG_B  
DONE  
CE  
OE/RESET  
INIT_B  
GND  
RDWR_B  
CS_B  
GND  
DS099_25_112905  
Notes:  
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for  
the last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This  
enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the  
remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines  
are open-drain and require the pull-up resistor shown in grey. In most cases, a value between 3.3KΩ to  
4.7KΩ is sufficient. However, when using DONE synchronously with a long chain of FPGAs, cumulative  
capacitance may necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise time within  
one clock cycle.  
Figure 28: Connection Diagram for Master Parallel Configuration  
Master Parallel Mode  
In this mode, the FPGA configures from byte-wide data, and the FPGA supplies the CCLK configuration clock. In Master  
configuration modes, CCLK behaves as a bidirectional I/O pin. Timing is similar to the Slave Parallel mode except that CCLK  
is supplied by the FPGA. The device connections are shown in Figure 28.  
Boundary-Scan (JTAG) Mode  
In Boundary-Scan mode, dedicated pins are used for configuring the FPGA. The configuration is done entirely through the  
IEEE 1149.1 Test Access Port (TAP). FPGA configuration using the Boundary-Scan mode is compatible with the IEEE Std  
1149.1-1993 standard and IEEE Std 1532 for In-System Configurable (ISC) devices.  
Configuration through the boundary-scan port is always available, regardless of the selected configuration mode. In some  
cases, however, the mode pin setting may affect proper programming of the device due to various interactions. For example,  
if the mode pins are set to Master Serial or Master Parallel mode, and the associated PROM is already programmed with a  
valid configuration image, then there is potential for configuration interference between the JTAG and PROM data. Selecting  
the Boundary-Scan mode disables the other modes and is the most reliable mode when programming via JTAG.  
Configuration Sequence  
The configuration of Spartan-3 devices is a three-stage process that occurs after Power-On Reset or the assertion of  
PROG_B. POR occurs after the V  
, V  
, and V  
Bank 4 supplies have reached their respective maximum input  
CCINT CCAUX  
CCO  
threshold levels (see Table 29, page 59). After POR, the three-stage process begins.  
First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is  
activated by a start-up process. A flow diagram for the configuration sequence of the Serial and Parallel modes is shown in  
Figure 29. The flow diagram for the Boundary-Scan configuration sequence appears in Figure 30.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
50  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 29  
Set PROG_B Low  
after Power-On  
Power-On  
VCCINT >1V  
and VCCAUX > 2V  
No  
and VCCO Bank 4 > 1V  
Yes  
Yes  
Clear configuration  
memory  
PROG_B = Low  
No  
No  
INIT_ B = High?  
Yes  
Sample mode pins  
Load configuration  
data frames  
No  
INIT_B goes Low.  
Abort Start-Up  
CRC  
correct?  
Yes  
Start-Up  
sequence  
User mode  
No  
Yes  
Reconfigure?  
DS099_26_041103  
Figure 29: Configuration Flow Diagram for the Serial and Parallel Modes  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
51  
Spartan-3 FPGA Family: Functional Description  
X-Ref Target - Figure 30  
Set PROG_B Low  
after Power-On  
Power-On  
VCCINT >1V  
and VCCAUX > 2V  
No  
and VCCO Bank 4 > 1V  
Yes  
Clear  
configuration  
memory  
Yes  
PROG_B = Low  
No  
No  
INIT_B = High?  
Yes  
Sample  
mode pins  
(JTAG port becomes  
available)  
Load  
JShutdown  
instruction  
Shutdown  
sequence  
Load CFG_IN  
instruction  
Load configuration  
data frames  
No  
CRC  
correct?  
INIT_B goes Low.  
Abort Start-Up  
Yes  
Synchronous  
TAP reset  
(Clock five 1's  
on TMS)  
Load JSTART  
instruction  
Start-Up  
sequence  
User mode  
Yes  
No  
Reconfigure?  
DS099_27_041103  
Figure 30: Boundary-Scan Configuration Flow Diagram  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
52  
Spartan-3 FPGA Family: Functional Description  
Configuration is automatically initiated after power-on unless it is delayed by the user. INIT_B is an open-drain line that the  
FPGA holds Low during the clearing of the configuration memory. Extending the time that the pin is Low causes the  
configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded.  
The configuration process can also be initiated by asserting the PROG_B pin. The end of the memory-clearing phase is  
signaled by the INIT_B pin going High. At this point, the configuration data is written to the FPGA. The FPGA pulses the  
Global Set/Reset (GSR) signal at the end of configuration, resetting all flip-flops. The completion of the entire process is  
signaled by the DONE pin going High.  
X-Ref Target - Figure 31  
Default Cycles  
Start-Up Clock  
Phase  
0
1
2
3
4
5
6 7  
DONE  
GTS  
GWE  
Sync-to-DONE  
Start-Up Clock  
Phase  
0
1
2
3
4
5
6 7  
DONE High  
DONE  
GTS  
GWE  
DS099_028_060905  
Figure 31: Default Start-Up Sequence  
The default start-up sequence, shown in Figure 31, serves as a transition to the User mode. The default start-up sequence  
is that one CCLK cycle after DONE goes High, the Global Three-State signal (GTS) is released. This permits device outputs  
to which signals have been assigned to become active. One CCLK cycle later, the Global Write Enable (GWE) signal is  
released. This permits the internal storage elements to begin changing state in response to the design logic and the user  
clock.  
The relative timing of configuration events can be changed via the BitGen options in the Xilinx development software. In  
addition, the GTS and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the  
devices to start synchronously. The sequence can also be paused at any stage, until lock has been achieved on any DCM.  
Readback  
Using Slave Parallel mode, configuration data from the FPGA can be read back. Readback is supported only in the Slave  
Parallel and Boundary-Scan modes.  
Along with the configuration data, it is possible to read back the contents of all registers, distributed RAM, and block RAM  
resources. This capability is used for real-time debugging.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
53  
Spartan-3 FPGA Family: Functional Description  
Additional Configuration Details  
Additional details about the Spartan-3 FPGA configuration architecture and command set are available in UG332: Spartan-3  
Generation Configuration User Guide and in application note XAPP452: Spartan-3 Advanced Configuration Architecture.  
Powering Spartan-3 FPGAs  
Voltage Regulators  
Various power supply manufacturers offer complete power solutions for Xilinx FPGAs, including some with integrated  
multi-rail regulators specifically designed for Spartan-3 FPGAs. The Xilinx Power Corner web page provides links to vendor  
solution guides as well as Xilinx power estimation and analysis tools.  
Power Distribution System (PDS) Design and Bypass/Decoupling Capacitors  
Good power distribution system (PDS) design is important for all FPGA designs, especially for high-performance  
applications. Proper design results in better overall performance, lower clock and DCM jitter, and a generally more robust  
system. Before designing the printed circuit board (PCB) for the FPGA design, review application note XAPP623: Power  
Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors.  
Power-On Behavior  
Spartan-3 FPGAs have a built-in Power-On Reset (POR) circuit that monitors the three power rails required to successfully  
configure the FPGA. At power-up, the POR circuit holds the FPGA in a reset state until the V  
, V  
, and V  
Bank  
CCINT CCAUX  
CCO  
4 supplies reach their respective input threshold levels (see Table 29, page 59). After all three supplies reach their respective  
threshold, the POR reset is released and the FPGA begins its configuration process.  
Because the three supply inputs must be valid to release the POR reset and can be supplied in any order, there are no  
specific voltage sequencing requirements. However, applying the FPGA’s V  
supply before the V  
supply uses the  
CCAUX  
CCINT  
least I  
current.  
CCINT  
Once all three supplies are valid, the minimum current required to power-on the FPGA is equal to the worst-case quiescent  
current, as specified in Table 34, page 62. Spartan-3 FPGAs do not require Power-On Surge (POS) current to successfully  
configure.  
Surplus ICCINT if VCCINT Applied before VCCAUX  
If the V  
supply is applied before the V  
supply, the FPGA may draw a surplus I  
current in addition to the  
CCINT  
CCINT  
CCAUX  
I
quiescent current levels specified in Table 34. The momentary additional I  
surplus current might be a few  
CCINT  
CCINT  
hundred milliamperes under nominal conditions, significantly less than the instantaneous current consumed by the bypass  
capacitors at power-on. However, the surplus current immediately disappears when the V supply is applied, and, in  
CCAUX  
response, the FPGA’s I  
quiescent current demand drops to the levels specified in Table 34. The FPGA does not use  
CCINT  
nor does it require the surplus current to successfully power-on and configure. If applying V  
- before V  
, ensure  
CCINT  
CCAUX  
that the regulator does not have a foldback feature that could inadvertently shut down in the presence of the surplus current.  
Maximum Allowed VCCINT Ramp Rate on Early Devices, if VVCCINTSupply is Last in Sequence  
All devices with a mask revision code ‘E’ or later do not have a V  
page 58.  
ramp rate requirement. See Mask and Fab Revisions,  
CCINT  
Early Spartan-3 FPGAs were produced at a 200 mm wafer production facility and are identified by a fabrication/process  
code of "FQ" on the device top marking, as shown in Package Marking, page 5. These "FQ" devices have a maximum  
V
ramp rate requirement if and only if V  
is the last supply to ramp, after the V  
and V  
Bank 4 supplies.  
CCINT  
CCINT  
CCAUX  
CCO  
This maximum ramp rate appears as T  
in Table 30, page 60.  
CCINT  
Minimum Allowed VCCO Ramp Rate on Early Devices  
Devices shipped since 2006 essentially have no V  
ramp rate limits, shown in Table 30, page 60. Similarly, all devices  
CCO  
with a mask revision code ‘E’ or later do not have a V  
ramp rate limit. See Mask and Fab Revisions, page 58.  
CCO  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
54  
Spartan-3 FPGA Family: Functional Description  
Initial Spartan-3 FPGA mask revisions have a limit on how fast the V  
supply can ramp. The minimum allowed V  
ramp  
CCO  
CCO  
rate appears as T  
in Table 30, page 60. The minimum rate is affected by the package inductance. Consequently, the ball  
CCO  
grid array and chip-scale packages (CP132, FT256, FG456, FG676, and FG900) allow a faster ramp rate than the quad-flat  
packages (VQ100, TQ144, and PQ208).  
Configuration Data Retention, Brown-Out  
The FPGA’s configuration data is stored in robust CMOS configuration latches. The data in these latches is retained even  
when the voltages drop to the minimum levels necessary to preserve RAM contents. This is specified in Table 31, page 60.  
If, after configuration, the V  
or V  
supply drops below its data retention voltage, clear the current device  
CCINT  
CCAUX  
configuration using one of the following methods:  
Force the V  
page 59).  
or V  
supply voltage below the minimum Power On Reset (POR) voltage threshold Table 29,  
CCINT  
CCAUX  
Assert PROG_B Low.  
The POR circuit does not monitor the VCCO_4 supply after configuration. Consequently, dropping the VCCO_4 voltage  
does not reset the device by triggering a Power-On Reset (POR) event.  
No Internal Charge Pumps or Free-Running Oscillators  
Some system applications are sensitive to sources of analog noise. Spartan-3 FPGA circuitry is fully static and does not  
employ internal charge pumps.  
The CCLK configuration clock is active during the FPGA configuration process. After configuration completes, the CCLK  
oscillator is automatically disabled unless the Bitstream Generator (BitGen) option Persist=Yes. See Module 4: Table 80,  
page 125.  
Spartan-3 FPGAs optionally support a featured called Digitally Controlled Impedance (DCI). When used in an application,  
the DCI logic uses an internal oscillator. The DCI logic is only enabled if the FPGA application specifies an I/O standard that  
requires DCI (LVDCI_33, LVDCI_25, etc.). If DCI is not used, the associated internal oscillator is also disabled.  
In summary, unless an application uses the Persist=Yes option or specifies a DCI I/O standard, an FPGA with no external  
switching remains fully static.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
55  
Spartan-3 FPGA Family: Functional Description  
Revision History  
Date  
Version No.  
Description  
04/11/2003  
05/19/2003  
07/11/2003  
1.0  
1.1  
1.2  
Initial Xilinx release  
Added Block RAM column, DCMs, and multipliers to XC3S50 descriptions.  
Explained the configuration port Persist option in Slave Parallel Mode (SelectMAP) section. Updated  
Figure 8 and Double-Data-Rate Transmission section to indicate that DDR clocking for the XC3S50 is the  
same as that for all other Spartan-3 devices. Updated description of I/O voltage tolerance in ESD  
Protection section. In Table 10, changed input termination type for DCI version of the LVCMOS standard  
to None. Added additional flexibility for making DLL connections in Figure 21 and accompanying text. In  
the Configuration section, inserted an explanation of how to choose power supplies for the configuration  
interface, including guidelines for achieving 3.3V-tolerance.  
08/24/2004  
08/19/2005  
1.3  
1.4  
Showed inversion of 3-state signal (Figure 7). Clarified description of pull-up and pull-down resistors  
(Table 6 and page 13). Added information on operating block RAM with multipliers to page 26. Corrected  
output buffer name in Figure 21. Corrected description of how DOUT is synchronized to CCLK (page 47).  
Corrected description of WRITE_FIRST and READ_FIRST in Table 13. Added note regarding address  
setup and hold time requirements whenever a block RAM port is enabled (Table 13). Added information  
in the maximum length of a Configuration daisy-chain. Added reference to XAPP453 in 3.3V-Tolerant  
Configuration Interface section. Added information on the STATUS[2] DCM output (Table 23). Added  
information on CCLK behavior and termination recommendations to Configuration. Added Additional  
Configuration Details section. Added Powering Spartan-3 FPGAs section. Removed GSR from Figure 31  
because its timing is not programmable.  
04/03/2006  
04/26/2006  
05/25/2007  
2.0  
2.1  
2.2  
Updated Figure 7. Updated Figure 14. Updated Table 10. Updated Figure 22. Corrected Platform Flash  
supply voltage name and value in Figure 26 and Figure 28. Added No Internal Charge Pumps or  
Free-Running Oscillators. Corrected a few minor typographical errors.  
Added more information on the pull-up resistors that are active during configuration to Configuration.  
Added information to Boundary-Scan (JTAG) Mode about potential interactions when configuring via  
JTAG if the mode select pins are set for other than JTAG.  
Added Spartan-3 FPGA Design Documentation. Noted SSTL2_I_DCI 25-Ohm driver in Table 10 and  
Table 11. Added note that pull-down is active during boundary scan tests.  
11/30/2007  
06/25/2008  
12/04/2009  
2.3  
2.4  
2.5  
Updated links to documentation on xilinx.com.  
Added HSLVDCI to Table 10. Updated formatting and links.  
Updated HSLVDCI description in Digitally Controlled Impedance (DCI). Updated the low-voltage  
differential signaling VCCO values in Table 10. Noted that the CP132 package is being discontinued in The  
Organization of IOBs into Banks. Updated rule 4 in Rules Concerning Banks. Added software version  
requirement in The Fixed Phase Mode.  
10/29/2012  
06/27/2013  
3.0  
3.1  
Added Notice of Disclaimer. Per XCN07022, updated the discontinued FG1156 and FGG1156 package  
discussion throughout document. Per XCN08011, updated the discontinued CP132 and CPG132  
package discussion throughout document. This product is not recommended for new designs.  
Removed banner. This product IS recommended for new designs.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
56  
Spartan-3 FPGA Family: Functional Description  
Notice of Disclaimer  
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND  
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED  
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE  
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.  
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE  
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES  
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO  
APPLICABLE LAWS AND REGULATIONS.  
CRITICAL APPLICATIONS DISCLAIMER  
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE  
FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR  
SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE  
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE  
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, CRITICAL APPLICATIONS”). FURTHERMORE,  
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A  
VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF  
SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE  
OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX  
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY  
APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL  
APPLICATIONS.  
AUTOMOTIVE APPLICATIONS DISCLAIMER  
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING  
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A  
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN  
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III)  
USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY  
USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
57  
106  
Spartan-3 FPGA Family:  
DC and Switching Characteristics  
DS099 (v3.1) June 27, 2013  
Product Specification  
DC Electrical Characteristics  
In this section, specifications may be designated as Advance, Preliminary, or Production. These terms are defined as  
follows:  
Advance: Initial estimates are based on simulation, early characterization, and/or extrapolation from the characteristics  
of other families. Values are subject to change. Although speed grades with this designation are considered relatively  
stable and conservative, some under-reporting might still occur. Use as estimates, not for production.  
Preliminary: Based on complete early silicon characterization. Devices and speed grades with this designation are  
intended to give a better indication of the expected performance of production silicon. The probability of under-reported  
delays is greatly reduced compared to Advance data. Use as estimates, not for production.  
Production: These specifications are approved only after silicon has been characterized over numerous production  
lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes.  
Parameter values are considered stable with no future changes expected.  
Production-quality systems must only use FPGA designs compiled with a Production status speed file. FPGA designs  
using a less mature speed file designation should only be used during system prototyping or preproduction qualification.  
FPGA designs with speed files designated as Advance or Preliminary should not be used in a production-quality  
system.  
Whenever a speed file designation changes, as a device matures toward Production status, rerun the latest Xilinx ISE®  
software on the FPGA design to ensure that the FPGA design incorporates the latest timing information and software  
updates.  
All parameter limits are representative of worst-case supply voltage and junction temperature conditions. The following  
applies unless otherwise noted: The parameter values published in this module apply to all Spartan®-3 devices. AC  
and DC characteristics are specified using the same numbers for both commercial and industrial grades. All  
parameters representing voltages are measured with respect to GND.  
Mask and Fab Revisions  
Some specifications list different values for one or more mask or fab revisions, indicated by the device top marking (see  
Package Marking, page 5). The revision differences involve the power ramp rates, differential DC specifications, and DCM  
characteristics. The most recent revision (mask rev E and GQ fab/geometry code) is errata-free with improved specifications  
than earlier revisions.  
Mask rev E with fab rev GQ has been shipping since 2005 (see XCN05009) and has been 100% of Xilinx Spartan-3 device  
shipments since 2006. SCD 0974 was provided to ensure the receipt of the rev E silicon, but it is no longer needed. Parts  
ordered under the SCD appended “0974” to the standard part number. For example, “XC3S50-4VQ100C” became  
“XC3S50-4VQ100C0974”.  
Table 28: Absolute Maximum Ratings  
Symbol  
Description  
Conditions  
Min  
–0.5  
–0.5  
–0.5  
–0.5  
–0.95  
–0.85  
–0.5  
Max  
1.32  
Units  
VCCINT  
Internal supply voltage relative to GND  
V
V
V
V
V
VCCAUX Auxiliary supply voltage relative to GND  
3.00  
VCCO  
VREF  
VIN  
Output driver supply voltage relative to GND  
Input reference voltage relative to GND  
3.75  
VCCO +0.5  
4.4  
Voltage applied to all User I/O pins and  
Dual-Purpose pins relative to GND(2,4)  
Driver in a  
Commercial  
Industrial  
high-impedance  
state  
4.3  
Voltage applied to all Dedicated pins relative  
to GND(3)  
All temp. ranges  
VCCAUX + 0.5  
V
© Copyright 2003–2013 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado and other designated brands included herein are trademarks of Xilinx  
in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
58  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 28: Absolute Maximum Ratings (Cont’d)  
Symbol  
IIK  
Description  
Conditions  
Min  
Max  
100  
2000  
500  
200  
125  
220  
150  
Units  
mA  
V
Input clamp current per I/O pin  
–0.5 V < VIN < (VCCO + 0.5 V)  
VESD  
Electrostatic Discharge Voltage pins relative Human body model  
to GND  
Charged device model  
V
Machine model  
Junction temperature  
V
TJ  
°C  
°C  
°C  
TSOL  
TSTG  
Soldering temperature(4)  
Storage temperature  
–65  
Notes:  
1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only;  
functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not  
implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time adversely affects device reliability.  
2. All User I/O and Dual-Purpose pins (DIN/D0, D1–D7, CS_B, RDWR_B, BUSY/DOUT, and INIT_B) draw power from the V  
power rail of  
CCO  
the associated bank. Keeping VIN within 500 mV of the associated V  
rails or ground rail ensures that the internal diode junctions that  
CCO  
exist between each of these pins and the V  
limit. Input voltages outside the –0.5V to V  
and GND rails do not turn on. Table 32 specifies the V  
range used to determine the max  
CCO  
CCO  
+0.5V voltage range are permissible provided that the I input clamp diode rating is met and  
CCO  
IK  
no more than 100 pins exceed the range simultaneously. Prolonged exposure to such current may compromise device reliability. A sustained  
current of 10 mA will not compromise device reliability. See XAPP459, Eliminating I/O Coupling Effects when Interfacing Large-Swing  
Single-Ended Signals to User I/O Pins on Spartan-3 Generation FPGAs for more details. The VIN limits apply to both the DC and AC  
components of signals. Simple application solutions are available that show how to handle overshoot/undershoot as well as achieve PCI  
compliance. Refer to the following application notes: XAPP457, Powering and Configuring Spartan-3 Generation FPGAs in Compliant PCI  
Applications and XAPP659, Virtex®-II Pro / Virtex-II Pro X 3.3V I/O Design Guidelines.  
3. All Dedicated pins (M0–M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) draw power from the V  
rail (2.5V).  
CCAUX  
Meeting the V max limit ensures that the internal diode junctions that exist between each of these pins and the V  
rail do not turn on.  
IN  
CCAUX  
Table 32 specifies the V  
range used to determine the max limit. When V  
is at its maximum recommended operating level  
CCAUX  
CCAUX  
(2.625V), V max < 3.125V. As long as the V max specification is met, oxide stress is not possible. For information concerning the use of  
IN  
IN  
3.3V signals, see the 3.3V-Tolerant Configuration Interface, page 47. See also XAPP459.  
4. For soldering guidelines, see UG112, Device Packaging and Thermal Characteristics and XAPP427, Implementation and Solder Reflow  
Guidelines for Pb-Free Packages.  
Table 29: Supply Voltage Thresholds for Power-On Reset  
Symbol  
VCCINTT  
VCCAUXT  
VCCO4T  
Description  
Threshold for the VCCINT supply  
Min  
0.4  
0.8  
0.4  
Max  
1.0  
Units  
V
V
V
Threshold for the VCCAUX supply  
2.0  
Threshold for the VCCO Bank 4 supply  
1.0  
Notes:  
1.  
V
, V  
, and V  
supplies may be applied in any order. When applying V  
power before V  
CCAUX  
power, the FPGA may draw  
CCAUX  
CCINT CCAUX  
CCO  
CCINT  
a surplus current in addition to the quiescent current levels specified in Table 34. Applying V  
eliminates the surplus current. The FPGA  
does not use any of the surplus current for the power-on process. For this power sequence, make sure that regulators with foldback features  
will not shut down inadvertently.  
2. To ensure successful power-on, V  
with no dips at any point.  
, V  
Bank 4, and V  
supplies must rise through their respective threshold-voltage ranges  
CCAUX  
CCINT CCO  
3. If a brown-out condition occurs where V  
or V  
drops below the retention voltage indicated in Table 31, then V  
or V  
CCAUX CCINT  
CCAUX  
CCINT  
must drop below the minimum power-on reset voltage in order to clear out the device configuration content.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
59  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 30: Power Voltage Ramp Time Requirements  
Symbol  
TCCO  
Description  
Device  
All  
Package  
Min  
No limit(4)  
Max  
No limit(5)  
Units  
N/A  
VCCO ramp time for all eight banks  
All  
All  
TCCINT  
VCCINT ramp time, only if VCCINT is last in  
three-rail power-on sequence  
All  
No limit  
N/A  
Notes:  
1. If a limit exists, this specification is based on characterization.  
2. The ramp time is measured from 10% to 90% of the full nominal voltage swing for all I/O standards.  
3. For information on power-on current needs, see Power-On Behavior, page 54  
4. For mask revisions earlier than revision E (see Mask and Fab Revisions, page 58), T  
min is limited to 2.0 ms for the XC3S200 and  
CCO  
XC3S400 devices in QFP packages, and limited to 0.6 ms for the XC3S200, XC3S400, XC3S1500, and XC3S4000 devices in the FT and  
FG packages.  
5. For earlier device versions with the FQ fabrication/process code (see Mask and Fab Revisions, page 58), T  
max is limited to 500 µs.  
CCINT  
Table 31: Power Voltage Levels Necessary for Preserving RAM Contents  
Symbol  
VDRINT  
VDRAUX  
Description  
VCCINT level required to retain RAM data  
VCCAUX level required to retain RAM data  
Min  
1.0  
2.0  
Units  
V
V
Notes:  
1. RAM contents include data stored in CMOS configuration latches.  
2. The level of the V supply has no effect on data retention.  
CCO  
3. If a brown-out condition occurs where V  
or V  
drops below the retention voltage, then V  
or V  
must drop below the  
CCAUX  
CCINT  
CCAUX  
CCINT  
minimum power-on reset voltage indicated in Table 29 in order to clear out the device configuration content.  
Table 32: General Recommended Operating Conditions  
Symbol  
Description  
Min  
0
Nom  
Max  
85  
Units  
TJ  
Junction temperature  
Commercial  
Industrial  
25  
°C  
–40  
25  
100  
°C  
VCCINT  
Internal supply voltage  
Output driver supply voltage  
Auxiliary supply voltage  
1.140  
1.140  
2.375  
1.200  
1.260  
3.465  
2.625  
10  
V
(1)  
VCCO  
V
VCCAUX  
2.500  
V
(2)  
ΔVCCAUX  
Voltage variance on VCCAUX when using a DCM  
mV/ms  
(3)  
VIN  
Voltage applied to all User I/O pins and  
Dual-Purpose pins relative to GND(4)(6)  
VCCO = 3.3V, IO  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
3.75  
3.75  
V
V
V
V
V
VCCO = 3.3V, IO_Lxxy(7)  
VCCO 2.5V, IO  
VCCO 2.5V, IO_Lxxy(7)  
VCCO + 0.3(4)  
VCCO + 0.3(4)  
VCCAUX+0.3(5)  
Voltage applied to all Dedicated pins relative to GND(5)  
Notes:  
1. The V  
range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended V  
range  
CCO  
CCO  
specific to each of the single-ended I/O standards is given in Table 35, and that specific to the differential standards is given in Table 37.  
not exceed 10 mV/ms.  
2. Only during DCM operation is it recommended that the rate of change of V  
CCAUX  
3. Input voltages outside the recommended range are permissible provided that the I input diode clamp diode rating is met. Refer to Table 28.  
IK  
4. Each of the User I/O and Dual-Purpose pins is associated with one of the V  
rails. Meeting the V limit ensures that the internal diode  
CCO  
IN  
junctions that exist between these pins and their associated V  
in Table 28.  
and GND rails do not turn on. The absolute maximum rating is provided  
CCO  
5. All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the V  
rail (2.5V). Meeting the V max limit ensures  
IN  
CCAUX  
that the internal diode junctions that exist between each of these pins and the V  
and GND rails do not turn on.  
CCAUX  
6. See XAPP459, Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3  
Generation FPGAs.  
7. For single-ended signals that are placed on a differential-capable I/O, V of –0.2V to –0.3V is supported but can cause increased leakage  
IN  
between the two pins. See the Parasitic Leakage section in UG331, Spartan-3 Generation FPGA User Guide.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
60  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 33: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins  
Symbol  
Description  
Test Conditions  
Min  
Typ  
Max  
25  
Units  
μA  
(2)(4)  
IL  
Leakage current at User I/O,  
Dual-Purpose, and Dedicated pins  
Driver is Hi-Z, VIN VCCO 3.0V  
=
-
-
0V or VCCO max,  
VCCO < 3.0V  
sample-tested  
10  
μA  
(3)  
IRPU  
Current through pull-up resistor at User I/O,  
Dual-Purpose, and Dedicated pins  
VIN = 0V, VCCO = 3.3V  
IN = 0V, VCCO = 3.0V  
VIN = 0V, VCCO = 2.5V  
IN = 0V, VCCO = 1.8V  
–0.84  
–0.69  
–0.47  
–0.21  
–0.13  
–0.06  
1.27  
-
-
-
-
-
-
-
-
-
-
-
-
–2.35  
–1.99  
–1.41  
–0.69  
–0.43  
–0.22  
4.11  
mA  
mA  
mA  
mA  
mA  
mA  
kΩ  
V
V
VIN = 0V, VCCO = 1.5V  
VIN = 0V, VCCO = 1.2V  
VCCO = 3.0V to 3.465V  
VCCO = 2.3V to 2.7V  
VCCO = 1.7V to 1.9V  
(3)  
RPU  
Equivalent resistance of pull-up resistor at  
User I/O, Dual-Purpose, and Dedicated  
pins, derived from IRPU  
1.15  
3.25  
kΩ  
kΩ  
kΩ  
2.45  
9.10  
VCCO = 1.4V to 1.6V  
3.25  
12.10  
21.00  
1.67  
VCCO = 1.14 to 1.26V  
5.15  
kΩ  
(3)  
IRPD  
Current through pull-down resistor at User  
I/O, Dual-Purpose, and Dedicated pins  
VIN = VCCO  
0.37  
mA  
(3)  
RPD  
Equivalent resistance of pull-down resistor  
at User I/O, Dual-Purpose, and Dedicated  
pins, driven from IRPD  
VIN = VCCO = 3.0V to 3.465V  
VIN = VCCO = 2.3V to 2.7V  
1.75  
1.35  
1.00  
0.85  
0.68  
20  
-
-
-
-
-
-
-
-
-
9.35  
7.30  
5.15  
4.35  
3.465  
100  
25  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
Ω
V
IN = VCCO = 1.7V to 1.9V  
IN = VCCO = 1.4V to 1.6V  
V
VIN = VCCO = 1.14 to 1.26V  
Value of external reference resistor to support DCI I/O standards  
RDCI  
IREF  
VREF current per pin  
VCCO 3.0V  
VCCO < 3.0V  
μA  
μA  
pF  
10  
CIN  
Input capacitance  
3
10  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 32.  
2. The I specification applies to every I/O pin throughout power-on as long as the voltage on that pin stays between the absolute V minimum  
L
IN  
and maximum values (Table 28). For hot-swap applications, at the time of card connection, be sure to keep all I/O voltages within this range  
before applying V power. Consider applying V power before connecting the signal lines, to avoid turning on the ESD protection  
CCO  
CCO  
diodes, shown in Module 2: Figure 7, page 11. When the FPGA is completely unpowered, the I/O pins are high impedance, but there is a  
path through the upper and lower ESD protection diodes.  
3. This parameter is based on characterization. The pull-up resistance R = V  
/ I  
. The pull-down resistance R = V / I  
.
PU  
CCO RPU  
PD  
IN RPD  
Spartan-3 family values for both resistances are stronger than they have been for previous FPGA families.  
4. For single-ended signals that are placed on a differential-capable I/O, V of –0.2V to –0.3V is supported but can cause increased leakage  
IN  
between the two pins. See the Parasitic Leakage section in UG331, Spartan-3 Generation FPGA User Guide.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
61  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 34: Quiescent Supply Current Characteristics  
Commercial  
Maximum(1)  
Industrial  
Symbol  
Description  
Device  
XC3S50  
Typical(1)  
Units  
Maximum(1)  
ICCINTQ  
Quiescent VCCINT supply current  
5
24  
54  
31  
80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S50  
10  
15  
110  
160  
260  
360  
450  
600  
2.0  
3.0  
3.0  
4.0  
4.0  
5.0  
5.0  
5.0  
20  
157  
262  
332  
470  
810  
870  
2.5  
3.5  
3.5  
5.0  
5.0  
6.0  
6.0  
6.0  
22  
35  
45  
60  
100  
120  
1.5  
1.5  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
7
ICCOQ  
Quiescent VCCO supply current  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S50  
ICCAUXQ  
Quiescent VCCAUX supply current  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
10  
30  
33  
15  
40  
44  
20  
50  
55  
35  
75  
85  
45  
90  
100  
125  
145  
55  
110  
130  
70  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 32. Quiescent supply current is measured with all I/O drivers in a  
high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using devices with  
typical processing at room temperature (T of 25°C at V  
= 1.2V, V  
= 3.3V, and V  
= 2.5V). Maximum values are the  
J
CCINT  
CCO  
CCAUX  
production test limits measured for each device at the maximum specified junction temperature and at maximum voltage limits with  
= 1.26V, V = 3.465V, and V = 2.625V. The FPGA is programmed with a "blank" configuration data file (i.e., a design with  
V
CCINT  
CCO  
CCAUX  
no functional elements instantiated). For conditions other than those described above, (e.g., a design including functional elements, the use  
of DCI standards, etc.), measured quiescent current levels may be different than the values in the table. Use the XPower Estimator or  
XPower Analyzer for more accurate estimates. See Note 2.  
2. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The Spartan-3  
XPower Estimator provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower Analyzer, part of  
the Xilinx ISE development software, uses the FPGA netlist as input to provide more accurate maximum and typical estimates.  
3. The maximum numbers in this table also indicate the minimum current each power rail requires in order for the FPGA to power-on  
successfully, once all three rails are supplied. If V  
is applied before V  
, there may be temporary additional I  
current until  
CCINT  
CCAUX  
CCINT  
V
is applied. See Surplus I  
if V  
Applied before V  
, page 54  
CCAUX  
CCINT  
CCINT  
CCAUX  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
62  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 35: Recommended Operating Conditions for User I/Os Using Single-Ended Standards  
VCCO  
Nom (V)  
VREF  
Nom (V)  
0.8  
VIL  
VIH  
Signal Standard  
(IOSTANDARD)  
Min (V)  
Max (V)  
Min (V)  
0.74  
0.74  
0.88  
0.88  
Max (V)  
0.86  
0.86  
1.12  
1.12  
Max (V)  
Min (V)  
(3)  
GTL  
V
V
– 0.05  
V
V
+ 0.05  
REF  
REF  
REF  
REF  
GTL_DCI  
1.2  
0.8  
– 0.05  
– 0.1  
– 0.1  
– 0.1  
– 0.1  
– 0.1  
– 0.1  
– 0.1  
+ 0.05  
+ 0.1  
+ 0.1  
+ 0.1  
+ 0.1  
+ 0.1  
+ 0.1  
+ 0.1  
(3)  
GTLP  
1
V
V
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
GTLP_DCI  
1.5  
1
V
V
HSLVDCI_15  
HSLVDCI_18  
HSLVDCI_25  
HSLVDCI_33  
HSTL_I, HSTL_I_DCI  
1.4  
1.7  
2.3  
3.0  
1.4  
1.5  
1.6  
1.9  
2.7  
3.465  
1.6  
0.75  
0.9  
V
V
V
V
V
V
V
V
V
V
1.8  
2.5  
1.25  
1.65  
0.75  
3.3  
1.5  
0.68  
0.9  
HSTL_III,  
1.4  
1.7  
1.7  
1.5  
1.8  
1.8  
1.6  
1.9  
1.9  
0.8  
0.9  
0.9  
0.9  
1.1  
V
V
V
V
– 0.1  
– 0.1  
– 0.1  
– 0.1  
V
V
V
V
+ 0.1  
+ 0.1  
+ 0.1  
+ 0.1  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
HSTL_III_DCI  
HSTL_I_18,  
HSTL_I_DCI_18  
HSTL_II_18,  
HSTL_II_DCI_18  
HSTL_III_18,  
HSTL_III_DCI_18  
1.7  
1.8  
1.2  
1.9  
1.3  
1.1  
LVCMOS12  
1.14  
0.37V  
0.30V  
0.58V  
0.70V  
CCO  
CCO  
CCO  
CCO  
LVCMOS15,  
LVDCI_15,  
LVDCI_DV2_15  
1.4  
1.7  
2.3  
3.0  
1.5  
1.8  
2.5  
3.3  
1.6  
1.9  
LVCMOS18,  
LVDCI_18,  
LVDCI_DV2_18  
0.30V  
0.70V  
CCO  
CCO  
(4,5)  
LVCMOS25  
LVDCI_25,  
LVDCI_DV2_25  
,
2.7  
0.7  
1.7  
(4)  
LVCMOS33,  
LVDCI_33,  
LVDCI_DV2_33  
3.465  
0.8  
0.8  
2.0  
2.0  
(4)  
LVTTL  
3.0  
3.0  
3.3  
3.3  
3.465  
3.465  
(7)  
PCI33_3  
0.30V  
0.50V  
CCO  
CCO  
SSTL18_I,  
1.7  
1.7  
2.3  
1.8  
1.8  
2.5  
1.9  
1.9  
2.7  
0.833  
0.833  
1.15  
0.900  
0.900  
1.25  
0.969  
0.969  
1.35  
V
V
– 0.125  
– 0.125  
– 0.15  
V
V
+ 0.125  
+ 0.125  
+ 0.15  
REF  
REF  
REF  
REF  
SSTL18_I_DCI  
SSTL18_II  
SSTL2_I,  
SSTL2_I_DCI  
V
V
REF  
REF  
REF  
SSTL2_II,  
SSTL2_II_DCI  
2.3  
2.5  
2.7  
1.15  
1.25  
1.35  
V
– 0.15  
V
+ 0.15  
REF  
Notes:  
1. Descriptions of the symbols used in this table are as follows:  
VCCO – the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs  
V
V
REF – the reference voltage for setting the input switching threshold  
IL – the input voltage that indicates a Low logic level  
VIH – the input voltage that indicates a High logic level  
2. For device operation, the maximum signal voltage (VIH max) may be as high as VIN max. See Table 28.  
3. Because the GTL and GTLP standards employ open-drain output buffers, VCCO lines do not supply current to the I/O circuit, rather this current is  
provided using an external pull-up resistor connected from the I/O pin to a termination voltage (VTT). Nevertheless, the voltage applied to the  
associated VCCO lines must always be at or above VTT and I/O pad voltages.  
4. There is approximately 100 mV of hysteresis on inputs using LVCMOS25 or LVCMOS33 standards.  
5. All dedicated pins (M0-M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) use the LVCMOS standard and draw power from the  
V
CCAUX rail (2.5V). The dual-purpose configuration pins (DIN/D0, D1-D7, CS_B, RDWR_B, BUSY/DOUT, and INIT_B) use the LVCMOS standard  
before the user mode. For these pins, apply 2.5V to the VCCO Bank 4 and VCCO Bank 5 rails at power-on and throughout configuration. For information  
concerning the use of 3.3V signals, see 3.3V-Tolerant Configuration Interface, page 47.  
6. The Global Clock Inputs (GCLK0-GCLK7) are dual-purpose pins to which any signal standard can be assigned.  
7. For more information, see XAPP457.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
63  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 36: DC Characteristics of User I/Os Using Single-Ended Standards  
Test Conditions  
Logic Level Characteristics  
Signal Standard  
(IOSTANDARD) and Current  
Drive Attribute (mA)  
IOL  
(mA)  
IOH  
(mA)  
VOL  
VOH  
Min (V)  
Max (V)  
GTL  
32  
0.4  
0.6  
0.4  
GTL_DCI  
Note 3  
36  
Note 3  
GTLP  
GTLP_DCI  
Note 3  
Note 3  
Note 3  
Note 3  
HSLVDCI_15  
HSLVDCI_18  
HSLVDCI_25  
HSLVDCI_33  
HSTL_I  
V
– 0.4  
CCO  
8
–8  
Note 3  
–8  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
V
V
– 0.4  
– 0.4  
– 0.4  
– 0.4  
– 0.4  
– 0.4  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
HSTL_I_DCI  
HSTL_III  
Note 3  
24  
HSTL_III_DCI  
HSTL_I_18  
HSTL_I_DCI_18  
HSTL_II_18  
HSTL_II_DCI_18  
HSTL_III_18  
HSTL_III_DCI_18  
Note 3  
Note 3  
–8  
8
Note 3  
Note 3  
–16  
Note 3  
–8  
16  
Note 3  
24  
Note 3  
Note 3  
–2  
(4)  
LVCMOS12  
2
4
2
4
–4  
6
6
–6  
(4)  
LVCMOS15  
2
2
–2  
0.4  
V
– 0.4  
CCO  
4
4
6
–4  
6
–6  
8
8
–8  
12  
12  
–12  
Note 3  
LVDCI_15,  
LVDCI_DV2_15  
Note 3  
(4)  
LVCMOS18  
2
4
2
–2  
–4  
0.4  
V
– 0.4  
CCO  
4
6
6
–6  
8
8
–8  
12  
16  
12  
–12  
–16  
Note 3  
16  
LVDCI_18,  
LVDCI_DV2_18  
Note 3  
(4,5)  
LVCMOS25  
2
4
2
4
–2  
–4  
0.4  
V
– 0.4  
CCO  
6
6
–6  
8
8
–8  
12  
16  
24  
12  
16  
24  
Note 3  
–12  
–16  
–24  
Note 3  
LVDCI_25,  
LVDCI_DV2_25  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
64  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 36: DC Characteristics of User I/Os Using Single-Ended Standards (Cont’d)  
Test Conditions  
Logic Level Characteristics  
Signal Standard  
(IOSTANDARD) and Current  
Drive Attribute (mA)  
IOL  
(mA)  
IOH  
(mA)  
VOL  
VOH  
Min (V)  
Max (V)  
(4)  
LVCMOS33  
2
4
–2  
–4  
0.4  
V
– 0.4  
2
4
CCO  
6
–6  
6
8
–8  
8
12  
16  
24  
Note 3  
–12  
–16  
–24  
Note 3  
12  
16  
24  
LVDCI_33,  
LVDCI_DV2_33  
(4)  
LVTTL  
2
4
–2  
–4  
0.4  
2.4  
2
4
6
–6  
6
8
–8  
8
12  
–12  
12  
16  
24  
16  
–16  
24  
–24  
PCI33_3  
Note 6  
6.7  
Note 6  
–6.7  
Note 3  
–13.4  
–8.1  
Note 3  
–16.2  
Note 3  
0.10V  
0.90V  
CCO  
CCO  
SSTL18_I  
V
– 0.475  
V
+ 0.475  
TT  
TT  
SSTL18_I_DCI  
SSTL18_II  
SSTL2_I  
Note 3  
13.4  
8.1  
V
– 0.475  
– 0.61  
V
+ 0.475  
+ 0.61  
TT  
TT  
V
V
TT  
TT  
SSTL2_I_DCI  
Note 3  
16.2  
Note 3  
(7)  
SSTL2_II  
V
– 0.81  
V
+ 0.81  
TT  
TT  
(7)  
SSTL2_II_DCI  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 32 and Table 35.  
2. Descriptions of the symbols used in this table are as follows:  
I
OL – the output current condition under which VOL is tested  
IOH – the output current condition under which VOH is tested  
VOL – the output voltage that indicates a Low logic level  
V
OH – the output voltage that indicates a High logic level  
VIL – the input voltage that indicates a Low logic level  
VIH – the input voltage that indicates a High logic level  
V
V
CCO – the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs  
REF – the reference voltage for setting the input switching threshold  
VTT – the voltage applied to a resistor termination  
3. Tested according to the standard’s relevant specifications. When using the DCI version of a standard on a given I/O bank, that bank will consume  
more power than if the non-DCI version had been used instead. The additional power is drawn for the purpose of impedance-matching at the I/O pins.  
A portion of this power is dissipated in the two RREF resistors.  
4. For the LVCMOS and LVTTL standards: the same VOL and VOH limits apply for both the Fast and Slow slew attributes.  
5. All dedicated output pins (CCLK, DONE, and TDO) and dual-purpose totem-pole output pins (D0-D7 and BUSY/DOUT) exhibit the characteristics of  
LVCMOS25 with 12 mA drive and slow slew rate. For information concerning the use of 3.3V signals, see 3.3V-Tolerant Configuration Interface,  
page 47.  
6. Tested according to the relevant PCI specifications. For more information, see XAPP457.  
7. The minimum usable VTT voltage is 1.25V.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
65  
Spartan-3 FPGA Family: DC and Switching Characteristics  
X-Ref Target - Figure 32  
VINP  
Differential  
I/O Pair Pins  
P
N
Internal  
Logic  
VINN  
VINN  
VID  
50%  
VINP  
VICM  
GND level  
VINP + VINN  
V
ICM = Input common mode voltage =  
2
V
VINP - VINN  
ID = Differential input voltage =  
DS099-3_01_012304  
Figure 32: Differential Input Voltages  
Table 37: Recommended Operating Conditions for User I/Os Using Differential Signal Standards  
(1)  
(3)  
VCCO  
VID  
VICM  
Signal Standard  
(IOSTANDARD)  
Min (V) Nom (V) Max (V) Min (mV) Nom (mV) Max (mV) Min (V) Nom (V) Max (V)  
LDT_25 (ULVDS_25)  
LVDS_25, LVDS_25_DCI  
BLVDS_25  
2.375  
2.375  
2.375  
2.375  
2.50  
2.50  
2.50  
2.50  
2.625  
2.625  
2.625  
2.625  
200  
100  
-
600  
350  
350  
540  
1000  
600  
-
0.44  
0.30  
-
0.60  
1.25  
1.25  
1.20  
0.78  
2.20  
-
LVDSEXT_25,  
100  
1000  
0.30  
2.20  
LVDSEXT_25_DCI  
LVPECL_25  
RSDS_25  
2.375  
2.375  
1.70  
2.50  
2.50  
1.80  
2.625  
2.625  
1.90  
100  
100  
200  
-
200  
-
-
-
-
0.30  
-
1.20  
1.20  
-
2.00  
-
DIFF_HSTL_II_18,  
0.80  
1.00  
DIFF_HSTL_II_18_DCI  
DIFF_SSTL2_II,  
2.375  
2.50  
2.625  
300  
-
-
1.05  
-
1.45  
DIFF_SSTL2_II_DCI  
Notes:  
1.  
2.  
3.  
V
V
V
only supplies differential output drivers, not input circuits.  
inputs are not used for any of the differential I/O standards.  
is a differential measurement.  
CCO  
REF  
ID  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
66  
Spartan-3 FPGA Family: DC and Switching Characteristics  
X-Ref Target - Figure 33  
VOUTP  
Differential  
I/O Pair Pins  
P
N
Internal  
Logic  
VOUTN  
VOH  
VOUTN  
VOD  
50%  
VOUTP  
VOL  
VOCM  
GND level  
VOUTP + VOUTN  
V
OCM = Output common mode voltage =  
2
VOUTP - VOUTN  
= Output voltage indicating a High logic level  
= Output voltage indicating a Low logic level  
V
OD = Output differential voltage =  
VOH  
VOL  
DS099-3_02_091710  
Figure 33: Differential Output Voltages  
Table 38: DC Characteristics of User I/Os Using Differential Signal Standards  
Mask(3)  
VOD  
VOCM  
VOH  
Min (V)  
0.71  
VOL  
Max (V)  
0.50  
Signal Standard  
Revision  
Min (mV) Typ (mV) Max (mV) Min (V) Typ (V) Max (V)  
LDT_25 (ULVDS_25)  
LVDS_25  
All  
All  
‘E’  
All  
All  
‘E’  
All  
All  
‘E’  
All  
All  
430(4)  
100  
200  
250  
100  
300  
600  
670  
600  
500  
450  
600  
700  
-
0.495  
0.80  
1.0  
0.600  
0.715  
1.6  
1.5  
0.85  
1.55  
1.10  
1.40  
BLVDS_25(5)  
LVDSEXT_25  
350  
1.20  
0.80  
1.0  
1.6  
1.5  
-
0.85  
1.55  
1.15  
1.35  
LVPECL_25(5)  
RSDS_25(6)  
1.35  
1.005  
1.55  
100  
200  
600  
500  
0.80  
1.0  
1.6  
1.5  
0.85  
1.10  
1.40  
DIFF_HSTL_II_18  
DIFF_SSTL2_II  
VCCO 0.40  
VTT + 0.80  
0.40  
VTT – 0.80  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 32 and Table 37.  
2. Output voltage measurements for all differential standards are made with a termination resistor (R ) of 100Ω across the N and P pins of the  
T
differential signal pair.  
3. Mask revision E devices have tighter output ranges but can be used in any design that was in a previous revision. See Mask and Fab  
Revisions, page 58.  
4. This value must be compatible with the receiver to which the FPGA’s output pair is connected.  
5. Each LVPECL_25 or BLVDS_25 output-pair requires three external resistors for proper output operation as shown in Figure 34. Each  
LVPECL_25 or BLVDS_25 input-pair uses a 100W termination resistor at the receiver.  
6. Only one of the differential standards RSDS_25, LDT_25, LVDS_25, and LVDSEXT_25 may be used for outputs within a bank.  
Each differential standard input-pair requires an external 100Ω termination resistor.  
X-Ref Target - Figure 34  
BLVDS  
LVPECL 70Ω  
BLVDS  
LVPECL  
165Ω  
Z0=50Ω  
140Ω  
Z0=50Ω  
Z0=50Ω  
240Ω  
Z0=50Ω  
100Ω  
100Ω  
165Ω  
70Ω  
ds099-3_08_112105  
Figure 34: External Termination Required for LVPECL and BLVDS Output and Input  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
67  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Switching Characteristics  
All Spartan-3 devices are available in two speed grades: –4 and the higher performance –5. Switching characteristics in this  
document may be designated as Advance, Preliminary, or Production. Each category is defined as follows:  
Advance: These specifications are based on simulations only and are typically available soon after establishing FPGA  
specifications. Although speed grades with this designation are considered relatively stable and conservative, some  
under-reported delays may still occur.  
Preliminary: These specifications are based on complete early silicon characterization. Devices and speed grades with this  
designation are intended to give a better indication of the expected performance of production silicon. The probability of  
under-reporting preliminary delays is greatly reduced compared to Advance data.  
Production: These specifications are approved once enough production silicon of a particular device family member has  
been characterized to provide full correlation between speed files and devices over numerous production lots. There is no  
under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest  
speed grades transition to Production before faster speed grades.  
Production-quality systems must use FPGA designs compiled using a Production status speed file. FPGAs designs using a  
less mature speed file designation may only be used during system prototyping or preproduction qualification. FPGA  
designs using Advance or Preliminary status speed files should never be used in a production-quality system.  
Whenever a speed file designation changes, as a device matures toward Production status, rerun the Xilinx ISE software on  
the FPGA design to ensure that the FPGA design incorporates the latest timing information and software updates.  
Xilinx ISE Software Updates: http://www.xilinx.com/support/download/index.htm  
All specified limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise  
noted, the following applies: Parameter values apply to all Spartan-3 devices. All parameters representing voltages are  
measured with respect to GND.  
Selected timing parameters and their representative values are included below either because they are important as general  
design requirements or they indicate fundamental device performance characteristics. The Spartan-3 FPGA v1.38 speed  
files are the original source for many but not all of the values. The v1.38 speed files are available in Xilinx Integrated Software  
Environment (ISE) software version 8.2i.  
The speed grade designations for these files are shown in Table 39. For more complete, more precise, and worst-case data,  
use the values reported by the Xilinx static timing analyzer (TRACE in the Xilinx development software) and back-annotated  
to the simulation netlist.  
Table 39: Spartan-3 FPGA Speed Grade Designations (ISE v8.2i or Later)  
Device  
XC3S50  
Advance  
Preliminary  
Production  
-4, -5 (v1.37 and later)  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
-4, -5 (v1.38 and later)  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
68  
Spartan-3 FPGA Family: DC and Switching Characteristics  
I/O Timing  
Table 40: Pin-to-Pin Clock-to-Output Times for the IOB Output Path  
Speed Grade  
Symbol  
Description  
Conditions  
Device  
-5  
-4  
Units  
Max(2)  
Max(2)  
Clock-to-Output Times  
TICKOFDCM  
When reading from the Output  
LVCMOS25(3), 12 mA  
output drive, Fast slew rate,  
XC3S50  
2.04  
1.45  
1.45  
2.07  
2.05  
2.03  
1.94  
2.00  
3.70  
3.89  
3.91  
4.00  
4.07  
4.19  
4.44  
4.38  
2.35  
1.75  
1.75  
2.39  
2.36  
2.34  
2.24  
2.30  
4.24  
4.46  
4.48  
4.59  
4.66  
4.80  
5.09  
5.02  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Flip-Flop (OFF), the time from the  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S50  
active transition on the Global Clock pin with DCM(4)  
to data appearing at the Output pin.  
The DCM is in use.  
TICKOF  
When reading from OFF, the time from LVCMOS25(3), 12 mA  
the active transition on the Global Clock output drive, Fast slew rate,  
pin to data appearing at the Output pin. without DCM  
The DCM is not in use.  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in  
Table 32 and Table 35.  
2. For minimums, use the values reported by the Xilinx timing analyzer.  
3. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a  
standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate  
Input adjustment from Table 44. If the latter is true, add the appropriate Output adjustment from Table 47.  
4. DCM output jitter is included in all measurements.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
69  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 41: System-Synchronous Pin-to-Pin Setup and Hold Times for the IOB Input Path  
Speed Grade  
Symbol  
Description  
Conditions  
Device  
-5  
-4  
Units  
Min  
Min  
Setup Times  
TPSDCM  
When writing to the Input  
Flip-Flop (IFF), the time from the IOBDELAY = NONE,  
setup of data at the Input pin to  
the active transition at a Global  
Clock pin. The DCM is in use. No  
Input Delay is programmed.  
LVCMOS25(2)  
,
XC3S50  
2.37  
2.13  
2.15  
2.58  
2.55  
2.59  
2.76  
2.69  
3.00  
2.63  
2.50  
3.50  
3.78  
4.98  
5.25  
5.37  
2.71  
2.35  
2.36  
2.95  
2.91  
2.96  
3.15  
3.08  
3.46  
3.02  
2.87  
4.03  
4.35  
5.73  
6.05  
6.18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S50  
with DCM(4)  
TPSFD  
When writing to IFF, the time from LVCMOS25(2)  
the setup of data at the Input pin IOBDELAY = IFD,  
to an active transition at the  
Global Clock pin. The DCM is not  
in use. The Input Delay is  
programmed.  
,
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
without DCM  
Hold Times  
TPHDCM  
When writing to IFF, the time from LVCMOS25(3)  
the active transition at the Global IOBDELAY = NONE,  
Clock pin to the point when data with DCM(4)  
must be held at the Input pin. The  
DCM is in use. No Input Delay is  
programmed.  
,
XC3S50  
–0.45  
–0.12  
–0.12  
–0.43  
–0.45  
–0.47  
–0.61  
–0.62  
–0.40  
–0.05  
–0.05  
–0.38  
–0.40  
–0.42  
–0.56  
–0.57  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
70  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 41: System-Synchronous Pin-to-Pin Setup and Hold Times for the IOB Input Path (Cont’d)  
Speed Grade  
Symbol  
Description  
Conditions  
Device  
-5  
-4  
Units  
Min  
Min  
TPHFD  
When writing to IFF, the time from LVCMOS25(3)  
the active transition at the Global IOBDELAY = IFD,  
Clock pin to the point when data without DCM  
must be held at the Input pin. The  
DCM is not in use. The Input  
Delay is programmed.  
,
XC3S50  
–0.98  
–0.40  
–0.27  
–1.19  
–1.43  
–2.33  
–2.47  
–2.66  
–0.93  
–0.35  
–0.22  
–1.14  
–1.38  
–2.28  
–2.42  
–2.61  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in  
Table 32 and Table 35.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data  
Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 44. If this is true of the data Input, add the  
appropriate Input adjustment from the same table.  
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data  
Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 44. If this is true of the data Input, subtract the  
appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s active  
edge.  
4. DCM output jitter is included in all measurements.  
Table 42: Setup and Hold Times for the IOB Input Path  
Speed Grade  
Symbol  
Description  
Conditions  
Device  
-5  
-4  
Units  
Min  
Min  
Setup Times  
(2)  
T
Time from the setup of data at the Input pin LVCMOS25  
,
XC3S50  
1.65  
1.37  
1.37  
1.65  
1.65  
1.65  
1.73  
1.82  
4.39  
4.76  
4.63  
5.02  
5.40  
6.68  
7.16  
7.33  
1.89  
1.57  
1.57  
1.89  
1.89  
1.89  
1.99  
2.09  
5.04  
5.47  
5.32  
5.76  
6.20  
7.68  
8.24  
8.42  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IOPICK  
to the active transition at the ICLK input of IOBDELAY = NONE  
the Input Flip-Flop (IFF). No Input Delay is  
programmed.  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S50  
(2)  
T
Time from the setup of data at the Input pin LVCMOS25  
to the active transition at the IFF’s ICLK  
input. The Input Delay is programmed.  
,
IOPICKD  
IOBDELAY = IFD  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
71  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 42: Setup and Hold Times for the IOB Input Path (Cont’d)  
Speed Grade  
Symbol  
Description  
Conditions  
Device  
-5  
-4  
Units  
Min  
Min  
Hold Times  
(3)  
T
Time from the active transition at the IFF’s LVCMOS25  
,
XC3S50  
-0.55  
-0.29  
-0.29  
-0.55  
-0.55  
-0.55  
-0.61  
-0.68  
-2.74  
-3.00  
-2.90  
-3.24  
-3.55  
-4.57  
-4.96  
-5.09  
-0.55  
-0.29  
-0.29  
-0.55  
-0.55  
-0.55  
-0.61  
-0.68  
-2.74  
-3.00  
-2.90  
-3.24  
-3.55  
-4.57  
-4.96  
-5.09  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IOICKP  
ICLK input to the point where data must be IOBDELAY = NONE  
held at the Input pin. No Input Delay is  
programmed.  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S50  
(3)  
T
Time from the active transition at the IFF’s LVCMOS25  
,
IOICKPD  
ICLK input to the point where data must be IOBDELAY = IFD  
held at the Input pin. The Input Delay is  
programmed.  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Set/Reset Pulse Width  
T
Minimum pulse width to SR control input  
on IOB  
All  
0.66  
0.76  
ns  
RPW_IOB  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in  
Table 32 and Table 35.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the  
appropriate Input adjustment from Table 44.  
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract  
the appropriate Input adjustment from Table 44. When the hold time is negative, it is possible to change the data before the clock’s active  
edge.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
72  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Speed Grade  
Table 43: Propagation Times for the IOB Input Path  
Symbol  
Description  
Conditions  
Device  
-5  
-4  
Units  
Max  
Max  
Propagation Times  
TIOPLI  
The time it takes for data to travel LVCMOS25(2)  
,
XC3S50  
2.01  
1.50  
1.50  
2.01  
2.01  
2.01  
2.09  
2.18  
4.75  
4.89  
4.76  
5.38  
5.76  
7.04  
7.52  
7.69  
2.31  
1.72  
1.72  
2.31  
2.31  
2.31  
2.41  
2.51  
5.46  
5.62  
5.48  
6.18  
6.62  
8.09  
8.65  
8.84  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
from the Input pin through the  
IFF latch to the I output with no  
input delay programmed  
IOBDELAY = NONE  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S50  
TIOPLID  
The time it takes for data to travel LVCMOS25(2)  
,
from the Input pin through the  
IFF latch to the I output with the  
input delay programmed  
IOBDELAY = IFD  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in  
Table 32 and Table 35.  
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is  
true, add the appropriate Input adjustment from Table 44.  
Table 44: Input Timing Adjustments for IOB  
Add the Adjustment Below  
Convert Input Time from LVCMOS25 to the  
Following Signal Standard (IOSTANDARD)  
Speed Grade  
Units  
-5  
-4  
Single-Ended Standards  
GTL, GTL_DCI  
0.44  
0.36  
0.51  
0.29  
0.51  
0.51  
0.51  
0.37  
0.36  
0.39  
0.45  
0.63  
0.50  
0.42  
0.59  
0.33  
0.59  
0.59  
0.59  
0.42  
0.41  
0.45  
0.52  
0.72  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
GTLP, GTLP_DCI  
HSLVDCI_15  
HSLVDCI_18  
HSLVDCI_25  
HSLVDCI_33  
HSTL_I, HSTL_I_DCI  
HSTL_III, HSTL_III_DCI  
HSTL_I_18, HSTL_I_DCI_18  
HSTL_II_18, HSTL_II_DCI_18  
HSTL_III_18, HSTL_III_DCI_18  
LVCMOS12  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
73  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 44: Input Timing Adjustments for IOB (Cont’d)  
Add the Adjustment Below  
Speed Grade  
-5  
Convert Input Time from LVCMOS25 to the  
Following Signal Standard (IOSTANDARD)  
Units  
-4  
0.49  
0.43  
0.44  
0.28  
0.33  
0.33  
0
LVCMOS15  
0.42  
0.38  
0.38  
0.24  
0.29  
0.28  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVDCI_15  
LVDCI_DV2_15  
LVCMOS18  
LVDCI_18  
LVDCI_DV2_18  
LVCMOS25  
LVDCI_25  
0.05  
0.04  
–0.05  
0.18  
0.20  
0.39  
0.39  
0.40  
0.36  
0.05  
0.04  
–0.02  
0.21  
0.22  
0.45  
0.45  
0.46  
0.41  
LVDCI_DV2_25  
LVCMOS33, LVDCI_33, LVDCI_DV2_33  
LVTTL  
PCI33_3  
SSTL18_I, SSTL18_I_DCI  
SSTL18_II  
SSTL2_I, SSTL2_I_DCI  
SSTL2_II, SSTL2_II_DCI  
Differential Standards  
LDT_25 (ULVDS_25)  
LVDS_25, LVDS_25_DCI  
BLVDS_25  
0.76  
0.65  
0.34  
0.80  
0.18  
0.43  
0.34  
0.65  
0.88  
0.75  
0.39  
0.92  
0.21  
0.50  
0.39  
0.75  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVDSEXT_25, LVDSEXT_25_DCI  
LVPECL_25  
RSDS_25  
DIFF_HSTL_II_18, DIFF_HSTL_II_18_DCI  
DIFF_SSTL2_II, DIFF_SSTL2_II_DCI  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 48 and are based on  
the operating conditions set forth in Table 32, Table 35, and Table 37.  
2. These adjustments are used to convert input path times originally specified for the LVCMOS25  
standard to times that correspond to other signal standards.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
74  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Speed Grade  
Table 45: Timing for the IOB Output Path  
Symbol  
Description  
Conditions  
Device  
-5  
-4  
Units  
Max(3)  
Max(3)  
Clock-to-Output Times  
TIOCKP  
When reading from the Output  
LVCMOS25(2), 12 mA output  
drive, Fast slew rate  
XC3S200  
XC3S400  
1.28  
1.95  
1.47  
2.24  
ns  
ns  
Flip-Flop (OFF), the time from the  
active transition at the OTCLK input to  
data appearing at the Output pin  
XC3S50  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Propagation Times  
TIOOP  
The time it takes for data to travel from LVCMOS25(2), 12 mA output  
XC3S200  
XC3S400  
1.28  
1.94  
1.46  
2.23  
ns  
ns  
the IOB’s O input to the Output pin  
drive, Fast slew rate  
XC3S50  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
TIOOLP  
The time it takes for data to travel from  
the O input through the OFF latch to  
the Output pin  
XC3S200  
XC3S400  
1.28  
1.95  
1.47  
2.24  
ns  
ns  
XC3S50  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Set/Reset Times  
TIOSRP  
Time from asserting the OFF’s SR  
input to setting/resetting data at the  
Output pin  
LVCMOS25(2), 12 mA output  
drive, Fast slew rate  
XC3S200  
XC3S400  
2.10  
2.77  
2.41  
3.18  
ns  
ns  
XC3S50  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
TIOGSRQ  
Time from asserting the Global Set  
Reset (GSR) net to setting/resetting  
data at the Output pin  
All  
8.07  
9.28  
ns  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in  
Table 32 and Table 35.  
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data  
Output. When this is true, add the appropriate Output adjustment from Table 47.  
3. For minimums, use the values reported by the Xilinx timing analyzer.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
75  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Speed Grade  
Table 46: Timing for the IOB Three-State Path  
Symbol  
Description  
Conditions  
Device  
-5  
-4  
Units  
Max(3)  
Max(3)  
Synchronous Output Enable/Disable Times  
TIOCKHZ  
Time from the active transition at the  
OTCLK input of the Three-state Flip-Flop  
(TFF) to when the Output pin enters the  
high-impedance state  
LVCMOS25, 12 mA  
output drive, Fast slew  
rate  
All  
All  
0.74  
0.72  
0.85  
0.82  
ns  
ns  
(2)  
TIOCKON  
Time from the active transition at TFF’s  
OTCLK input to when the Output pin drives  
valid data  
Asynchronous Output Enable/Disable Times  
TGTS  
Time from asserting the Global Three State LVCMOS25, 12 mA  
(GTS) net to when the Output pin enters the output drive, Fast slew  
XC3S200  
XC3S400  
7.71  
8.38  
8.87  
9.63  
ns  
ns  
high-impedance state  
rate  
XC3S50  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Set/Reset Times  
TIOSRHZ  
Time from asserting TFF’s SR input to when LVCMOS25, 12 mA  
All  
1.55  
1.78  
ns  
the Output pin enters a high-impedance  
state  
output drive, Fast slew  
rate  
(2)  
TIOSRON  
Time from asserting TFF’s SR input at TFF  
to when the Output pin drives valid data  
XC3S200  
XC3S400  
2.24  
2.91  
2.57  
3.34  
ns  
ns  
XC3S50  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in  
Table 32 and Table 35.  
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data  
Output. When this is true, add the appropriate Output adjustment from Table 47.  
3. For minimums, use the values reported by the Xilinx timing analyzer.  
Table 47: Output Timing Adjustments for IOB  
Add the Adjustment Below  
Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the  
Speed Grade  
Units  
Following Signal Standard (IOSTANDARD)  
-5  
-4  
Single-Ended Standards  
GTL  
0
0.02  
0.15  
0.04  
0.27  
1.74  
0.94  
ns  
ns  
ns  
ns  
ns  
ns  
GTL_DCI  
GTLP  
0.13  
0.03  
0.23  
1.51  
0.81  
GTLP_DCI  
HSLVDCI_15  
HSLVDCI_18  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
76  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Add the Adjustment Below  
Table 47: Output Timing Adjustments for IOB (Cont’d)  
Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the  
Speed Grade  
Units  
Following Signal Standard (IOSTANDARD)  
-5  
-4  
HSLVDCI_25  
HSLVDCI_33  
HSTL_I  
0.27  
0.28  
0.60  
0.59  
0.19  
0.20  
0.18  
0.17  
–0.02  
0.75  
0.28  
0.28  
7.60  
7.42  
6.67  
3.16  
2.70  
2.41  
4.55  
3.76  
3.57  
3.55  
3.00  
3.11  
1.71  
1.44  
1.26  
1.11  
1.51  
1.32  
0.31  
0.32  
0.69  
0.68  
0.22  
0.23  
0.21  
0.19  
–0.01  
0.86  
0.32  
0.32  
8.73  
8.53  
7.67  
3.63  
3.10  
2.77  
5.23  
4.32  
4.11  
4.09  
3.45  
3.57  
1.96  
1.66  
1.44  
1.27  
1.74  
1.52  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HSTL_I_DCI  
HSTL_III  
HSTL_III_DCI  
HSTL_I_18  
HSTL_I_DCI_18  
HSTL_II_18  
HSTL_II_DCI_18  
HSTL_III_18  
HSTL_III_DCI_18  
LVCMOS12  
Slow  
Fast  
Slow  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
LVCMOS15  
Fast  
LVDCI_15  
LVDCI_DV2_15  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
77  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Add the Adjustment Below  
Table 47: Output Timing Adjustments for IOB (Cont’d)  
Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the  
Speed Grade  
Units  
Following Signal Standard (IOSTANDARD)  
-5  
-4  
LVCMOS18  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
5.49  
3.45  
2.84  
2.62  
2.11  
2.07  
2.50  
1.15  
0.96  
0.87  
0.79  
0.76  
0.81  
0.67  
6.43  
4.15  
3.38  
2.99  
2.53  
2.50  
2.22  
3.27  
1.87  
0.32  
0.19  
0
6.31  
3.97  
3.26  
3.01  
2.43  
2.38  
2.88  
1.32  
1.10  
1.01  
0.91  
0.87  
0.94  
0.77  
7.39  
4.77  
3.89  
3.44  
2.91  
2.87  
2.55  
3.76  
2.15  
0.37  
0.22  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Fast  
LVDCI_18  
LVDCI_DV2_18  
LVCMOS25  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
Fast  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
–0.02  
–0.04  
0.27  
0.16  
–0.01  
–0.02  
0.31  
0.19  
LVDCI_25  
LVDCI_DV2_25  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
78  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Add the Adjustment Below  
Table 47: Output Timing Adjustments for IOB (Cont’d)  
Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the  
Speed Grade  
Units  
Following Signal Standard (IOSTANDARD)  
-5  
-4  
LVCMOS33  
Slow  
2 mA  
4 mA  
6.38  
4.83  
4.01  
3.92  
2.91  
2.81  
2.49  
3.86  
1.87  
0.62  
0.61  
0.16  
0.14  
0.06  
0.28  
0.26  
7.27  
4.94  
3.98  
3.98  
2.97  
2.84  
2.65  
4.32  
1.87  
1.27  
1.19  
0.42  
0.27  
0.16  
7.34  
5.55  
4.61  
4.51  
3.35  
3.23  
2.86  
4.44  
2.15  
0.71  
0.70  
0.19  
0.16  
0.07  
0.32  
0.30  
8.36  
5.69  
4.58  
4.58  
3.42  
3.26  
3.04  
4.97  
2.15  
1.47  
1.37  
0.48  
0.32  
0.18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
Fast  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
LVDCI_33  
LVDCI_DV2_33  
LVTTL  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
Fast  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
79  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Add the Adjustment Below  
Table 47: Output Timing Adjustments for IOB (Cont’d)  
Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the  
Speed Grade  
Units  
Following Signal Standard (IOSTANDARD)  
-5  
-4  
PCI33_3  
0.74  
0.07  
0.22  
0.30  
0.23  
0.19  
0.13  
0.10  
0.85  
0.07  
0.25  
0.34  
0.26  
0.22  
0.15  
0.11  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SSTL18_I  
SSTL18_I_DCI  
SSTL18_II  
SSTL2_I  
SSTL2_I_DCI  
SSTL2_II  
SSTL2_II_DCI  
Differential Standards  
LDT_25 (ULVDS_25)  
LVDS_25  
–0.06  
–0.09  
0.02  
–0.05  
–0.07  
0.04  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BLVDS_25  
LVDSEXT_25  
LVPECL_25  
–0.15  
0.16  
–0.13  
0.18  
RSDS_25  
0.05  
0.06  
DIFF_HSTL_II_18  
DIFF_HSTL_II_18_DCI  
DIFF_SSTL2_II  
DIFF_SSTL2_II_DCI  
–0.02  
0.75  
–0.01  
0.86  
0.13  
0.15  
0.10  
0.11  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth  
in Table 32, Table 35, and Table 37.  
2. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with  
12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs  
go into a high-impedance state.  
3. For minimums, use the values reported by the Xilinx timing analyzer.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
80  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Timing Measurement Methodology  
When measuring timing parameters at the programmable I/Os, different signal standards call for different test conditions.  
Table 48 presents the conditions to use for each standard.  
The method for measuring Input timing is as follows: A signal that swings between a Low logic level of VL and a High logic  
level of VH is applied to the Input under test. Some standards also require the application of a bias voltage to the V  
pins  
REF  
of a given bank to properly set the input-switching threshold. The measurement point of the Input signal (VM) is commonly  
located halfway between VL and VH.  
The Output test setup is shown in Figure 35. A termination voltage VT is applied to the termination resistor RT, the other end  
of which is connected to the Output. For each standard, RT and VT generally take on the standard values recommended for  
minimizing signal reflections. If the standard does not ordinarily use terminations (e.g., LVCMOS, LVTTL), then RT is set to  
1MΩ to indicate an open connection, and VT is set to zero. The same measurement point (VM) that was used at the Input is  
also used at the Output.  
X-Ref Target - Figure 35  
V (V  
)
REF  
T
FPGA Output  
R (R  
T
)
REF  
V
(V  
)
M
MEAS  
)
C (C  
L
REF  
ds099-3_07_012004  
Notes:  
1. The names shown in parentheses are  
used in the IBIS file.  
Figure 35: Output Test Setup  
Table 48: Test Methods for Timing Measurement at I/Os  
Inputs and  
Outputs  
Inputs  
VL (V)  
Outputs  
Signal Standard  
(IOSTANDARD)  
VREF (V)  
0.8  
VH (V)  
RT (Ω)  
VT (V)  
VM (V)  
VREF  
VREF  
Single-Ended  
GTL  
VREF – 0.2  
VREF – 0.2  
VREF + 0.2  
VREF + 0.2  
VREF + 0.5  
25  
50  
25  
50  
1M  
1.2  
1.2  
1.5  
1.5  
0
GTL_DCI  
GTLP  
1.0  
GTLP_DCI  
HSLVDCI_15  
HSLVDCI_18  
HSLVDCI_25  
HSLVDCI_33  
HSTL_I  
0.9  
V
REF – 0.5  
0.75  
0.90  
1.25  
1.65  
VREF  
0.75  
0.90  
0.90  
0.90  
V
V
V
REF – 0.5  
REF – 0.5  
REF – 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
50  
50  
50  
50  
0.75  
1.5  
0.9  
0.9  
HSTL_I_DCI  
HSTL_III  
VREF  
VREF  
VREF  
HSTL_III_DCI  
HSTL_I_18  
HSTL_I_DCI_18  
HSTL_II_18  
HSTL_II_DCI_18  
VREF – 0.5  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
81  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 48: Test Methods for Timing Measurement at I/Os (Cont’d)  
Inputs and  
Outputs  
Inputs  
Outputs  
Signal Standard  
(IOSTANDARD)  
VREF (V)  
VL (V)  
VH (V)  
RT (Ω)  
VT (V)  
VM (V)  
HSTL_III_18  
1.1  
VREF – 0.5  
VREF + 0.5  
50  
1.8  
VREF  
HSTL_III_DCI_18  
LVCMOS12  
LVCMOS15  
LVDCI_15  
-
-
0
0
1.2  
1.5  
1M  
1M  
0
0
0.6  
0.75  
LVDCI_DV2_15  
HSLVDCI_15  
LVCMOS18  
LVDCI_18  
-
-
-
0
0
0
1.8  
2.5  
3.3  
1M  
1M  
1M  
0
0
0
0.9  
LVDCI_DV2_18  
HSLVDCI_18  
LVCMOS25  
LVDCI_25  
1.25  
1.65  
LVDCI_DV2_25  
HSLVDCI_25  
LVCMOS33  
LVDCI_33  
LVDCI_DV2_33  
HSLVDCI_33  
LVTTL  
-
-
0
3.3  
1M  
25  
25  
50  
0
1.4  
0.94  
2.03  
VREF  
PCI33_3  
Rising  
Falling  
Note 3  
Note 3  
0
3.3  
0.9  
SSTL18_I  
0.9  
V
REF – 0.5  
REF – 0.5  
VREF + 0.5  
SSTL18_I_DCI  
SSTL18_II  
0.9  
V
VREF + 0.5  
50  
50  
0.9  
VREF  
VREF  
SSTL2_I  
1.25  
VREF – 0.75  
VREF + 0.75  
1.25  
SSTL2_I_DCI  
SSTL2_II  
1.25  
V
REF – 0.75  
VREF + 0.75  
25  
50  
1.25  
1.25  
VREF  
SSTL2_II_DCI  
Differential  
LDT_25 (ULVDS_25)  
LVDS_25  
-
-
VICM – 0.125  
VICM – 0.125  
VICM + 0.125  
VICM + 0.125  
60  
50  
0.6  
1.2  
N/A  
0
VICM  
VICM  
LVDS_25_DCI  
BLVDS_25  
N/A  
1M  
50  
-
-
V
ICM – 0.125  
VICM + 0.125  
VICM + 0.125  
VICM  
VICM  
LVDSEXT_25  
VICM – 0.125  
1.2  
N/A  
0
LVDSEXT_25_DCI  
LVPECL_25  
N/A  
1M  
50  
-
-
-
V
ICM – 0.3  
VICM + 0.3  
VICM + 0.1  
VICM + 0.5  
VICM  
VICM  
VICM  
RSDS_25  
VICM – 0.1  
VICM – 0.5  
1.2  
1.8  
DIFF_HSTL_II_18  
DIFF_HSTL_II_18_DCI  
50  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
82  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 48: Test Methods for Timing Measurement at I/Os (Cont’d)  
Inputs and  
Outputs  
Inputs  
Outputs  
Signal Standard  
(IOSTANDARD)  
VREF (V)  
VL (V)  
VH (V)  
RT (Ω)  
VT (V)  
VM (V)  
DIFF_SSTL2_II  
-
VICM – 0.75  
VICM + 0.75  
50  
1.25  
VICM  
DIFF_SSTL2_II_DCI  
Notes:  
1. Descriptions of the relevant symbols are as follows:  
VREF – The reference voltage for setting the input switching threshold  
VICM – The common mode input voltage  
VM – Voltage of measurement point on signal transition  
VL – Low-level test voltage at Input pin  
VH – High-level test voltage at Input pin  
RT – Effective termination resistance, which takes on a value of 1MW when no parallel termination is required  
VT – Termination voltage  
2. The load capacitance (CL) at the Output pin is 0 pF for all signal standards.  
3. According to the PCI specification.  
The capacitive load (CL) is connected between the output and GND. The Output timing for all standards, as published in the speed files  
and the data sheet, is always based on a C value of zero. High-impedance probes (less than 1 pF) are used for all measurements.  
L
Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the  
final timing numbers as published in the speed files and data sheet.  
Using IBIS Models to Simulate Load Conditions in Application  
IBIS Models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS  
model (VREF, RREF, and VMEAS) correspond directly with the parameters used in Table 48, VT, RT, and VM. Do not confuse  
V
REF (the termination voltage) from the IBIS model with VREF (the input-switching threshold) from the table. A fourth  
parameter, CREF, is always zero. The four parameters describe all relevant output test conditions. IBIS models are found in  
the Xilinx development software as well as at the following link.  
http://www.xilinx.com/support/download/index.htm  
Simulate delays for a given application according to its specific load conditions as follows:  
1. Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 35. Use  
parameter values VT, RT, and VM from Table 48. CREF is zero.  
2. Record the time to VM.  
3. Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS  
model (including V , RREF, CREF, and VMEAS values) or capacitive value to represent the load.  
REF  
4. Record the time to VMEAS  
.
5. Compare the results of steps 2 and 4. The increase (or decrease) in delay should be added to (or subtracted from) the  
appropriate Output standard adjustment (Table 47) to yield the worst-case delay of the PCB trace.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
83  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Simultaneously Switching Output Guidelines  
This section provides guidelines for the maximum allowable number of Simultaneous Switching Outputs (SSOs). These  
guidelines describe the maximum number of user I/O pins, of a given output signal standard, that should simultaneously  
switch in the same direction, while maintaining a safe level of switching noise. Meeting these guidelines for the stated test  
conditions ensures that the FPGA operates free from the adverse effects of ground and power bounce.  
Ground or power bounce occurs when a large number of outputs simultaneously switch in the same direction. The output  
drive transistors all conduct current to a common voltage rail. Low-to-High transitions conduct to the V  
rail; High-to-Low  
CCO  
transitions conduct to the GND rail. The resulting cumulative current transient induces a voltage difference across the  
inductance that exists between the die pad and the power supply or ground return. The inductance is associated with  
bonding wires, the package lead frame, and any other signal routing inside the package. Other variables contribute to SSO  
noise levels, including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-induced voltage  
consequently affects internal switching noise margins and ultimately signal quality.  
Table 49 and Table 50 provide the essential SSO guidelines. For each device/package combination, Table 49 provides the  
number of equivalent V  
/GND pairs. The equivalent number of pairs is based on characterization and will possibly not  
CCO  
match the physical number of pairs. For each output signal standard and drive strength, Table 50 recommends the maximum  
number of SSOs, switching in the same direction, allowed per V /GND pair within an I/O bank. The Table 50 guidelines  
CCO  
are categorized by package style. Multiply the appropriate numbers from Table 49 and Table 50 to calculate the maximum  
number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines may result in increased power or ground  
bounce, degraded signal integrity, or increased system jitter.  
SSO  
/IO Bank = Table 49 x Table 50  
MAX  
The recommended maximum SSO values assume that the FPGA is soldered on the printed circuit board and that the board  
uses sound design practices. The SSO values do not apply for FPGAs mounted in sockets, due to the lead inductance  
introduced by the socket.  
The number of SSOs allowed for quad-flat packages (VQ, TQ, PQ) is lower than for ball grid array packages (FG) due to the  
larger lead inductance of the quad-flat packages. Ball grid array packages are recommended for applications with a large  
number of simultaneously switching outputs.  
Table 49: Equivalent V  
/GND Pairs per Bank  
CCO  
Device  
XC3S50  
VQ100  
CP132(1)(2)  
TQ144(1)  
PQ208  
FT256  
FG320  
FG456  
FG676  
FG900  
FG1156(2)  
1
1
1.5  
1.5  
1.5  
1.5  
2
2
2
3
3
3
3
3
3
5
5
5
5
5
6
6
6
6
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
9
10  
10  
12  
12  
Notes:  
1. The V  
lines for the pair of banks on each side of the CP132 and TQ144 packages are internally tied together. Each pair of interconnected  
CCO  
banks shares three V  
/GND pairs. Consequently, the per bank number is 1.5.  
CCO  
2. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See  
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.  
3. The information in this table also applies to Pb-free packages.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
84  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 50: Recommended Number of Simultaneously Switching Outputs per V  
/GND Pair  
CCO  
Package  
Signal Standard  
(IOSTANDARD)  
FT256, FG320, FG456,  
FG676, FG900, FG1156  
VQ100  
TQ144  
PQ208  
CP132  
Single-Ended Standards  
GTL  
0
0
0
0
0
0
1
1
14  
14  
19  
19  
14  
10  
11  
10  
17  
17  
7
GTL_DCI  
GTLP  
0
0
0
1
GTLP_DCI  
HSLVDCI_15  
HSLVDCI_18  
HSLVDCI_25  
HSLVDCI_33  
HSTL_I  
0
0
0
1
6
6
6
6
7
7
7
7
7
7
7
7
10  
11  
11  
7
10  
11  
11  
7
10  
11  
11  
7
10  
11  
11  
7
HSTL_I_DCI  
HSTL_III  
HSTL_III_DCI  
HSTL_I_18  
HSTL_I_DCI_18  
HSTL_II_18  
HSTL_II_DCI_18  
HSTL_III_18  
HSTL_III_DCI_18  
LVCMOS12  
7
7
7
7
7
13  
13  
9
13  
13  
9
13  
13  
9
13  
13  
9
17  
17  
9
9
9
9
9
9
8
8
8
8
8
8
8
8
8
8
Slow  
Fast  
Slow  
2
4
17  
13  
10  
12  
11  
9
17  
13  
10  
12  
11  
9
17  
13  
10  
12  
11  
9
17  
13  
10  
12  
11  
9
55  
32  
18  
31  
13  
9
6
2
4
6
LVCMOS15  
2
16  
8
12  
7
12  
7
19  
9
55  
31  
18  
15  
10  
25  
16  
13  
11  
7
4
6
7
7
7
9
8
6
6
6
6
12  
2
5
5
5
5
Fast  
10  
6
10  
7
10  
7
13  
7
4
6
7
7
7
7
8
6
6
6
6
12  
6
6
6
6
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
85  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 50: Recommended Number of Simultaneously Switching Outputs per V  
/GND Pair (Cont’d)  
CCO  
Package  
Signal Standard  
(IOSTANDARD)  
FT256, FG320, FG456,  
FG676, FG900, FG1156  
VQ100  
TQ144  
PQ208  
CP132  
LVDCI_15  
6
6
6
6
6
6
6
6
14  
14  
14  
64  
34  
22  
18  
13  
10  
36  
21  
13  
10  
9
LVDCI_DV2_15  
HSLVDCI_15  
LVCMOS18  
6
6
6
6
Slow  
2
4
19  
13  
8
13  
8
13  
8
29  
19  
9
6
8
8
8
7
7
7
9
12  
16  
2
5
5
5
5
5
5
5
5
Fast  
13  
8
13  
8
13  
8
19  
13  
8
4
6
8
8
8
8
7
7
7
7
12  
16  
5
5
5
5
5
5
5
5
6
LVDCI_18  
7
7
7
7
10  
10  
10  
76  
46  
33  
24  
18  
11  
7
LVDCI_DV2_18  
HSLVDCI_18  
LVCMOS25  
7
7
7
7
7
7
7
7
Slow  
2
4
28  
13  
13  
7
16  
10  
8
12  
10  
8
42  
19  
19  
9
6
8
7
7
12  
16  
24  
2
6
6
6
9
6
6
6
6
5
5
5
5
Fast  
17  
10  
8
12  
10  
8
12  
10  
8
26  
13  
13  
7
42  
20  
15  
13  
11  
8
4
6
8
7
7
7
12  
16  
24  
6
6
6
6
6
6
6
6
5
5
5
5
5
LVDCI_25  
7
7
7
7
11  
11  
11  
LVDCI_DV2_25  
HSLVDCI_25  
7
7
7
7
7
7
7
7
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
86  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 50: Recommended Number of Simultaneously Switching Outputs per V  
/GND Pair (Cont’d)  
CCO  
Package  
Signal Standard  
(IOSTANDARD)  
FT256, FG320, FG456,  
FG676, FG900, FG1156  
VQ100  
TQ144  
PQ208  
CP132  
LVCMOS33  
Slow  
2
4
34  
17  
17  
10  
9
24  
14  
11  
10  
9
24  
14  
11  
10  
9
52  
26  
26  
13  
13  
8
76  
46  
27  
20  
13  
10  
9
6
8
12  
16  
24  
2
8
8
8
8
8
8
8
Fast  
20  
15  
11  
10  
8
20  
15  
11  
10  
8
20  
15  
11  
10  
8
26  
15  
13  
10  
8
44  
26  
16  
12  
10  
8
4
6
8
12  
16  
24  
8
8
8
8
7
7
7
7
7
LVDCI_33  
10  
10  
10  
34  
17  
17  
12  
10  
10  
8
10  
10  
10  
25  
16  
15  
12  
10  
10  
8
10  
10  
10  
25  
16  
15  
12  
10  
10  
8
10  
10  
10  
52  
26  
26  
13  
13  
10  
8
10  
10  
10  
60  
41  
29  
22  
13  
11  
9
LVDCI_DV2_33  
HSLVDCI_33  
LVTTL  
Slow  
2
4
6
8
12  
16  
24  
2
Fast  
20  
13  
11  
10  
9
20  
13  
11  
10  
9
20  
13  
11  
10  
9
26  
13  
13  
10  
9
34  
20  
15  
12  
10  
9
4
6
8
12  
16  
24  
8
8
8
8
7
7
7
7
7
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
87  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 50: Recommended Number of Simultaneously Switching Outputs per V  
/GND Pair (Cont’d)  
CCO  
Package  
Signal Standard  
(IOSTANDARD)  
FT256, FG320, FG456,  
FG676, FG900, FG1156  
VQ100  
TQ144  
PQ208  
CP132  
PCI33_3  
9
13  
13  
8
9
13  
13  
8
9
13  
13  
8
9
13  
13  
8
9
17  
17  
9
SSTL18_I  
SSTL18_I_DCI  
SSTL18_II  
SSTL2_I  
10  
10  
6
10  
10  
6
10  
10  
6
10  
10  
6
13  
13  
9
SSTL2_I_DCI  
SSTL2_II  
SSTL2_II_DCI  
6
6
6
6
9
Differential Standards (Number of I/O Pairs or Channels)  
LDT_25 (ULVDS_25)  
LVDS_25  
5
7
2
5
2
7
4
4
3
3
5
5
1
5
1
5
4
4
3
3
5
5
1
5
1
5
4
4
3
3
5
5
20  
4
12  
BLVDS_25  
LVDSEXT_25  
5
5
LVPECL_25  
4
RSDS_25  
12  
4
20  
4
DIFF_HSTL_II_18  
DIFF_HSTL_II_18_DCI  
DIFF_SSTL2_II  
DIFF_SSTL2_II_DCI  
4
4
3
4
3
4
Notes:  
1. The numbers in this table are recommendations that assume the FPGA is soldered on a printed circuit board using sound practices. This  
table assumes the following parasitic factors: combined PCB trace and land inductance per V and GND pin of 1.0 nH, receiver capacitive  
CCO  
load of 15 pF. Test limits are the V /V voltage limits for the respective I/O standard.  
IL IH  
2. Regarding the SSO numbers for all DCI standards, the R  
resistors connected to the VRN and VRP pins of the FPGA are 50W..  
REF  
3. If more than one signal standard is assigned to the I/Os of a given bank, refer to XAPP689: Managing Ground Bounce in Large FPGAs for  
information on how to perform weighted average SSO calculations.  
4. Results are based on actual silicon testing using an FPGA soldered on a typical printed-circuit board.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
88  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Internal Logic Timing  
Table 51: CLB Timing  
Speed Grade  
Symbol  
Description  
-5  
-4  
Units  
Min  
Max  
Min  
Max  
Clock-to-Output Times  
TCKO  
When reading from the FFX (FFY) Flip-Flop, the time  
from the active transition at the CLK input to data  
appearing at the XQ (YQ) output  
0.63  
0.72  
ns  
Setup Times  
TAS  
Time from the setup of data at the F or G input to the  
active transition at the CLK input of the CLB  
0.46  
1.27  
0.53  
1.57  
ns  
ns  
TDICK  
Time from the setup of data at the BX or BY input to  
the active transition at the CLK input of the CLB  
Hold Times  
TAH  
Time from the active transition at the CLK input to  
the point where data is last held at the F or G input  
0
0
ns  
ns  
TCKDI  
Time from the active transition at the CLK input to  
the point where data is last held at the BX or BY input  
0.25  
0.29  
Clock Timing  
TCH  
CLB CLK signal High pulse width  
0.69  
0.69  
0.79  
0.79  
ns  
ns  
TCL  
CLB CLK signal Low pulse width  
FTOG  
Maximum toggle frequency (for export control)  
725  
630  
MHz  
Propagation Times  
TILO  
The time it takes for data to travel from the CLB’s  
F (G) input to the X (Y) output  
0.53  
0.61  
ns  
ns  
Set/Reset Pulse Width  
TRPW_CLB  
The minimum allowable pulse width, High or Low, to  
the CLB’s SR input  
0.76  
0.87  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 32.  
2. The timing shown is for SLICEM.  
3. For minimums, use the values reported by the Xilinx timing analyzer.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
89  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 52: CLB Distributed RAM Switching Characteristics  
-5  
-4  
Symbol  
Description  
Units  
Min  
Max  
Min  
Max  
Clock-to-Output Times  
TSHCKO  
Time from the active edge at the CLK input to data appearing on  
the distributed RAM output  
1.87  
2.15  
ns  
Setup Times  
TDS  
Setup time of data at the BX or BY input before the active  
transition at the CLK input of the distributed RAM  
0.46  
0.46  
0.33  
0.52  
0.53  
0.37  
ns  
ns  
ns  
TAS  
Setup time of the F/G address inputs before the active transition  
at the CLK input of the distributed RAM  
TWS  
Setup time of the write enable input before the active transition at  
the CLK input of the distributed RAM  
Hold Times  
TDH, TAH, TWH  
Hold time of the BX, BY data inputs, the F/G address inputs, or  
the write enable input after the active transition at the CLK input  
of the distributed RAM  
0
0
ns  
ns  
Clock Pulse Width  
TWPH, TWPL  
Minimum High or Low pulse width at CLK input  
0.85  
0.97  
Table 53: CLB Shift Register Switching Characteristics  
-5  
-4  
Symbol  
Description  
Units  
Min  
Max  
Min  
Max  
Clock-to-Output Times  
TREG  
Time from the active edge at the CLK input to data appearing on  
the shift register output  
3.30  
3.79  
ns  
Setup Times  
TSRLDS  
Setup time of data at the BX or BY input before the active  
transition at the CLK input of the shift register  
0.46  
0
0.52  
0
ns  
ns  
ns  
Hold Times  
TSRLDH  
Hold time of the BX or BY data input after the active transition at  
the CLK input of the shift register  
Clock Pulse Width  
TWPH, TWPL  
Minimum High or Low pulse width at CLK input  
0.85  
0.97  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
90  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Speed Grade  
Table 54: Synchronous 18 x 18 Multiplier Timing  
Symbol  
Description  
P Outputs  
-5  
-4  
Units  
Min  
Max  
Min  
Max  
Clock-to-Output Times  
TMULTCK  
When reading from the  
Multiplier, the time from the  
active transition at the C clock  
input to data appearing at the P  
outputs  
P[0]  
1.00  
1.15  
1.30  
1.45  
1.76  
2.37  
2.67  
1.15  
1.32  
1.50  
1.67  
2.02  
2.72  
3.07  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
P[15]  
P[17]  
P[19]  
P[23]  
P[31]  
P[35]  
Setup Times  
TMULIDCK  
Time from the setup of data at  
the A and B inputs to the active  
transition at the C input of the  
Multiplier  
-
1.84  
2.11  
ns  
Hold Times  
TMULCKID  
Time from the active transition  
at the Multiplier’s C input to the  
point where data is last held at  
the A and B inputs  
-
0
0
ns  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 32.  
Table 55: Asynchronous 18 x 18 Multiplier Timing  
Speed Grade  
Symbol  
Description  
P Outputs  
-5  
-4  
Units  
Max  
Max  
Propagation Times  
TMULT  
The time it takes for data to travel from the A and B inputs  
to the P outputs  
P[0]  
1.55  
3.15  
3.36  
3.49  
3.73  
4.23  
4.47  
1.78  
3.62  
3.86  
4.01  
4.29  
4.86  
5.14  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
P[15]  
P[17]  
P[19]  
P[23]  
P[31]  
P[35]  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 32.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
91  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Speed Grade  
Table 56: Block RAM Timing  
Symbol  
Description  
-5  
-4  
Units  
Min  
Max  
Min  
Max  
Clock-to-Output Times  
TBCKO  
When reading from the Block RAM,  
the time from the active transition at  
the CLK input to data appearing at  
the DOUT output  
2.09  
2.40  
ns  
Setup Times  
TBDCK  
Time from the setup of data at the  
DIN inputs to the active transition at  
the CLK input of the Block RAM  
0.43  
0
0.49  
0
ns  
ns  
Hold Times  
TBCKD  
Time from the active transition at the  
Block RAM’s CLK input to the point  
where data is last held at the DIN  
inputs  
Clock Timing  
TBPWH  
Block RAM CLK signal High pulse  
width  
1.19  
1.19  
1.37  
1.37  
ns  
ns  
TBPWL  
Block RAM CLK signal Low pulse  
width  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 32.  
2. For minimums, use the values reported by the Xilinx timing analyzer.  
Clock Distribution Switching Characteristics  
Table 57: Clock Distribution Switching Characteristics  
Maximum  
Description  
Symbol  
Speed Grade  
Units  
-5  
-4  
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I-input to O-output delay  
TGIO  
TGSI  
0.36  
0.53  
0.41  
0.60  
ns  
ns  
Global clock multiplexer (BUFGMUX) select S-input setup to I0- and I1-inputs. Same  
as BUFGCE enable CE-input  
Notes:  
1. For minimums, use the values reported by the Xilinx timing analyzer.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
92  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Digital Clock Manager (DCM) Timing  
For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency  
Synthesizer (DFS), and the Phase Shifter (PS).  
Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB  
inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 58  
and Table 59) apply to any application that only employs the DLL component. When the DFS and/or the PS components are  
used together with the DLL, then the specifications listed in the DFS and PS tables (Table 60 through Table 63) supersede  
any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions  
are presented in Table 58 and Table 59.  
Period jitter and cycle-cycle jitter are two (of many) different ways of characterizing clock jitter. Both specifications describe  
statistical variation from a mean value.  
Period jitter is the worst-case deviation from the average clock period of all clock cycles in the collection of clock periods  
sampled (usually from 100,000 to more than a million samples for specification purposes). In a histogram of period jitter, the  
mean value is the clock period.  
Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods  
sampled. In a histogram of cycle-cycle jitter, the mean value is zero.  
Delay-Locked Loop (DLL)  
Table 58: Recommended Operating Conditions for the DLL  
Speed Grade  
Frequency Mode/  
FCLKIN Range  
Symbol  
Description  
-5  
-4  
Units  
Min  
Max  
Min  
Max  
Input Frequency Ranges  
(2)  
18  
(3)  
(2)  
18  
(3)  
FCLKIN CLKIN_FREQ_DLL_LF Frequency for the CLKIN input  
CLKIN_FREQ_DLL_HF  
Low  
167  
280  
167  
MHz  
MHz  
(3)  
(3)(4)  
High  
48  
48  
280  
Input Pulse Requirements  
CLKIN_PULSE  
CLKIN pulse width as a  
percentage of the CLKIN period  
FCLKIN 100 MHz  
FCLKIN > 100 MHz  
40%  
45%  
60%  
55%  
40%  
45%  
60%  
55%  
-
-
(5)  
Input Clock Jitter Tolerance and Delay Path Variation  
CLKIN_CYC_JITT_DLL_LF  
CLKIN_CYC_JITT_DLL_HF  
CLKIN_PER_JITT_DLL_LF  
CLKIN_PER_JITT_DLL_HF  
CLKFB_DELAY_VAR_EXT  
Cycle-to-cycle jitter at the CLKIN  
input  
Low  
High  
All  
300  
150  
1
300  
150  
1
ps  
ps  
ns  
Period jitter at the CLKIN input  
Allowable variation of off-chip  
feedback delay from the DCM  
output to the CLKFB input  
All  
1
1
ns  
Notes:  
1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.  
2. The DFS, when operating independently of the DLL, supports lower F frequencies. See Table 60.  
CLKIN  
3. The CLKIN_DIVIDE_BY_2 attribute can be used to increase the effective input frequency range up to F  
CLKIN_DIVIDE_BY_2 divides the incoming clock frequency by two as it enters the DCM.  
. When set to TRUE,  
BUFG  
4. Industrial temperature range devices have additional requirements for continuous clocking, as specified in Table 64.  
5. CLKIN input jitter beyond these limits may cause the DCM to lose lock. See UG331 for more details.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
93  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 59: Switching Characteristics for the DLL  
Speed Grade  
Frequency Mode /  
FCLKIN Range  
Symbol  
Description  
Device  
-5  
-4  
Units  
Min Max Min Max  
Output Frequency Ranges  
CLKOUT_FREQ_1X_LF  
Frequency for the CLK0,  
CLK90, CLK180, and CLK270  
outputs  
Low  
All  
18  
167  
18  
167  
MHz  
CLKOUT_FREQ_1X_HF  
Frequency for the CLK0 and  
CLK180 outputs  
High  
Low  
48  
36  
280  
334  
48  
36  
280  
334  
MHz  
MHz  
(3)  
CLKOUT_FREQ_2X_LF  
Frequency for the CLK2X and  
CLK2X180 outputs  
1.125  
3
1.125  
3
CLKOUT_FREQ_DV_LF  
CLKOUT_FREQ_DV_HF  
Output Clock Jitter(4)  
CLKOUT_PER_JITT_0  
Frequency for the CLKDV  
output  
Low  
110  
185  
110  
185  
MHz  
MHz  
High  
Period jitter at the CLK0  
output  
All  
All  
100  
150  
150  
150  
200  
150  
100  
150  
150  
150  
200  
150  
ps  
ps  
ps  
ps  
ps  
ps  
CLKOUT_PER_JITT_90  
CLKOUT_PER_JITT_180  
CLKOUT_PER_JITT_270  
CLKOUT_PER_JITT_2X  
CLKOUT_PER_JITT_DV1  
Period jitter at the CLK90  
output  
Period jitter at the CLK180  
output  
Period jitter at the CLK270  
output  
Period jitter at the CLK2X and  
CLK2X180 outputs  
Period jitter at the CLKDV  
output when performing  
integer division  
CLKOUT_PER_JITT_DV2  
Period jitter at the CLKDV  
output when performing  
non-integer division  
300  
300  
ps  
Duty Cycle  
(5)  
CLKOUT_DUTY_CYCLE_DLL  
Duty cycle variation for the  
CLK0, CLK90, CLK180,  
CLK270, CLK2X, CLK2X180,  
and CLKDV outputs  
All  
150  
150  
250  
400  
400  
400  
400  
400  
150  
150  
250  
400  
400  
400  
400  
400  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
XC3S50  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Phase Alignment  
CLKIN_CLKFB_PHASE  
Phase offset between the  
CLKIN and CLKFB inputs  
All  
All  
150  
140  
150  
140  
ps  
ps  
CLKOUT_PHASE  
Phase offset between any two  
DLL outputs (except CLK2X  
and CLK0)  
Phase offset between the  
CLK2X and CLK0 outputs  
250  
250  
ps  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
94  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 59: Switching Characteristics for the DLL (Cont’d)  
Speed Grade  
Frequency Mode /  
FCLKIN Range  
Symbol  
Description  
Device  
-5  
-4  
Units  
Min Max Min Max  
Lock Time  
18 MHz FCLKIN 30 MHz  
30 MHz < FCLKIN 40 MHz  
40 MHz < FCLKIN 50 MHz  
50 MHz < FCLKIN 60 MHz  
FCLKIN > 60 MHz  
LOCK_DLL  
When using the DLL alone:  
The time from deassertion at  
the DCM’s Reset input to the  
rising transition at its  
LOCKED output. When the  
DCM is locked, the CLKIN and  
CLKFB signals are in phase  
All  
2.88  
2.16  
1.20  
0.60  
0.48  
2.88  
2.16  
1.20  
0.60  
0.48  
ms  
ms  
ms  
ms  
ms  
Delay Lines  
DCM_TAP  
Delay tap resolution  
All  
All  
30.0 60.0 30.0 60.0  
ps  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 32 and Table 58.  
2. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.  
3. Only mask revision ‘E’ and later devices (see Mask and Fab Revisions, page 58) and all revisions of the XC3S50 and the XC3S1000 support  
DLL feedback using the CLK2X output. For all other Spartan-3 devices, use feedback from the CLK0 output (instead of the CLK2X output)  
and set the CLK_FEEDBACK attribute to 1X.  
4. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.  
5. This specification only applies if the attribute DUTY_CYCLE_CORRECTION = TRUE.  
Digital Frequency Synthesizer (DFS)  
Table 60: Recommended Operating Conditions for the DFS  
Speed Grade  
Frequency  
Symbol  
Description  
-5  
-4  
Units  
Mode  
Min  
Max  
Min  
Max  
Input Frequency Ranges(2)  
FCLKIN  
CLKIN_FREQ_FX  
Frequency for the CLKIN input  
All  
1
280  
1
280  
MHz  
Input Clock Jitter Tolerance(3)  
CLKIN_CYC_JITT_FX_LF  
CLKIN_CYC_JITT_FX_HF  
CLKIN_PER_JITT_FX  
Cycle-to-cycle jitter at the CLKIN  
input  
Low  
High  
All  
300  
150  
1
300  
150  
1
ps  
ps  
ns  
Period jitter at the CLKIN input  
Notes:  
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.  
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 58.  
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
95  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 61: Switching Characteristics for the DFS  
Speed Grade  
Frequency  
Symbol  
Description  
Device  
-5  
-4  
Units  
Mode  
Min  
Max  
Min  
Max  
Output Frequency Ranges  
CLKOUT_FREQ_FX_LF  
CLKOUT_FREQ_FX_HF  
Output Clock Jitter  
Frequency for the CLKFX and  
CLKFX180 outputs  
Low  
All  
All  
18  
210  
18  
210  
MHz  
High  
210  
326(2)  
210  
307(2) MHz  
CLKOUT_PER_JITT_FX  
Period jitter at the CLKFX and  
CLKFX180 outputs  
All  
All  
All  
Note 3 Note 3 Note 3 Note 3  
ps  
Duty Cycle(4)  
CLKOUT_DUTY_CYCLE_FX Duty cycle precision for the CLKFX  
and CLKFX180 outputs  
XC3S50  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
100  
100  
250  
400  
400  
400  
400  
400  
100  
100  
250  
400  
400  
400  
400  
400  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Phase Alignment  
CLKOUT_PHASE  
Phase offset between the DFS  
output and the CLK0 output  
All  
All  
All  
All  
300  
300  
ps  
Lock Time  
LOCK_DLL_FX  
When using the DFS in conjunction  
with the DLL: The time from  
deassertion at the DCM’s Reset  
input to the rising transition at its  
LOCKED output. When the DCM is  
locked, the CLKIN and CLKFB  
signals are in phase.  
10.0  
10.0  
ms  
LOCK_FX  
When using the DFS without the  
DLL: The time from deassertion at  
the DCM’s Reset input to the rising  
transition at its LOCKED output. By  
asserting the LOCKED signal, the  
DFS indicates valid CLKFX and  
CLKFX180 signals.  
All  
All  
10.0  
10.0  
ms  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 32 and Table 60.  
2. Mask revisions prior to the E mask revision have a CLKOUT_FREQ_FX_HF max of 280 MHz. See Mask and Fab Revisions, page 58.  
3. Use the DCM Clocking Wizard in the ISE software for a Spartan-3 device specific number. Jitter number assumes 150 ps of input clock jitter.  
4. The CLKFX and CLKFX180 outputs always approximate 50% duty cycles.  
5. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) is in use.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
96  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Phase Shifter (PS)  
Phase shifter operation is only supported if the DLL is in low-frequency mode, see Table 58. Fixed phase shift requires ISE  
software version 10.1.03 (or later).  
Table 62: Recommended Operating Conditions for the PS in Variable Phase Mode  
Speed Grade  
Frequency Mode/  
FCLKIN Range  
Symbol  
Description  
-5  
-4  
Units  
Min  
Max  
Min  
Max  
Operating Frequency Ranges  
PSCLK_FREQ Frequency for the  
Low  
1
167  
1
167  
MHz  
(FPSCLK PSCLK input  
)
Input Pulse Requirements  
PSCLK_PULSE PSCLK pulse width  
Low  
FCLKIN 100 MHz  
FCLKIN > 100 MHz  
40%  
45%  
60%  
55%  
40%  
45%  
60%  
55%  
-
-
as a percentage of  
the PSCLK period  
Table 63: Switching Characteristics for the PS in Variable or Fixed Phase Shift Mode  
Speed Grade  
Frequency Mode/  
FCLKIN Range  
Symbol  
Description  
-5  
-4  
Units  
Min  
Max  
Min  
Max  
Phase Shifting Range  
FINE_SHIFT_RANGE Phase shift range  
Low  
10.0  
10.0  
ns  
Lock Time  
LOCK_DLL_PS  
LOCK_DLL_PS_FX  
Notes:  
When using the PS in conjunction 18 MHz FCLKIN 30 MHz  
3.28  
2.56  
1.60  
1.00  
0.88  
10.40  
3.28  
2.56  
1.60  
1.00  
0.88  
10.40  
ms  
ms  
ms  
ms  
ms  
ms  
with the DLL: The time from  
30 MHz < FCLKIN 40 MHz  
deassertion at the DCM’s Reset  
input to the rising transition at its  
LOCKED output. When the DCM  
is locked, the CLKIN and CLKFB  
signals are in phase.  
40 MHz < FCLKIN 50 MHz  
50 MHz < FCLKIN 60 MHz  
60 MHz < FCLKIN 165 MHz  
Low  
When using the PS in conjunction  
with the DLL and DFS: The time  
from deassertion at the DCM’s  
Reset input to the rising transition  
at its LOCKED output. When the  
DCM is locked, the CLKIN and  
CLKFB signals are in phase.  
1. The numbers in this table are based on the operating conditions set forth in Table 32 and Table 62.  
2. The PS specifications in this table apply when the PS attribute CLKOUT_PHASE_SHIFT= VARIABLE or FIXED.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
97  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Miscellaneous DCM Timing  
Table 64: Miscellaneous DCM Timing  
DLL  
Frequency  
Mode  
Temperature Range  
Symbol  
Description  
Units  
Commercial Industrial  
DCM_INPUT_CLOCK_STOP Maximum duration that the CLKIN and  
CLKFB signals can be stopped(1,2)  
Any  
100  
100  
ms  
DCM_RST_PW_MIN  
Minimum duration of a RST pulse width  
Any  
3
3
CLKIN  
cycles  
DCM_RST_PW_MAX(3)  
Maximum duration of a RST pulse width(1,2)  
Low  
High  
Low  
N/A  
N/A  
N/A  
N/A  
10  
seconds  
seconds  
minutes  
DCM_CONFIG_LAG_TIME(4) Maximum duration from VCCINT applied to  
FPGA configuration successfully completed  
(DONE pin goes High) and clocks applied to  
DCM DLL(1,2)  
N/A  
High  
N/A  
10  
minutes  
Notes:  
1. These limits only apply to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV).  
The DCM DFS outputs (CLKFX, CLKFX180) are unaffected. Required due to effects of device cooling: see “Momentarily Stopping CLKIN”  
in Chapter 3 of UG331.  
2. Industrial-temperature applications that use the DLL in High-Frequency mode must use a continuous or increasing operating frequency. The  
DLL under these conditions does not support reducing the operating frequency once establishing an initial operating frequency.  
3. This specification is equivalent to the Virtex-4 FPGA DCM_RESET specification.  
4. This specification is equivalent to the Virtex-4 FPGA TCONFIG specification.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
98  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Configuration and JTAG Timing  
X-Ref Target - Figure 36  
1.2V  
2.5V  
V
CCINT  
1.0V  
2.0V  
1.0V  
(Supply)  
V
CCAUX  
(Supply)  
V
Bank 4  
CCO  
(Supply)  
TPOR  
PROG_B  
(Input)  
TPL  
TPROG  
INIT_B  
(Open-Drain)  
TICCK  
CCLK  
(Output)  
DS099-3_03_120604  
Notes:  
1. The V  
, V  
, and V  
supplies may be applied in any order.  
CCO  
CCINT CCAUX  
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.  
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).  
Figure 36: Waveforms for Power-On and the Beginning of Configuration  
Table 65: Power-On Timing and the Beginning of Configuration  
All Speed Grades  
Symbol  
Description  
Device  
Units  
Min  
Max  
5
(2)  
TPOR  
The time from the application of VCCINT, VCCAUX, and VCCO XC3S50  
Bank 4 supply voltage ramps (whichever occurs last) to the  
rising transition of the INIT_B pin  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
μs  
XC3S200  
5
XC3S400  
5
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
5
7
7
7
7
TPROG  
The width of the low-going pulse on the PROG_B pin  
All  
0.3  
(2)  
TPL  
The time from the rising edge of the PROG_B pin to the  
rising transition on the INIT_B pin  
XC3S50  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
All  
2
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
2
2
2
3
3
3
3
TINIT  
Minimum Low pulse width on INIT_B output  
250  
0.25  
(3)  
TICCK  
The time from the rising edge of the INIT_B pin to the  
generation of the configuration clock signal at the CCLK  
output pin  
All  
4.0  
μs  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 32. This means power must be applied to all V  
, V  
,
CCINT CCO  
and V  
lines.  
CCAUX  
2. Power-on reset and the clearing of configuration memory occurs during this period.  
3. This specification applies only for the Master Serial and Master Parallel modes.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
99  
Spartan-3 FPGA Family: DC and Switching Characteristics  
X-Ref Target - Figure 37  
PROG_B  
(Input)  
INIT_B  
(Open-Drain)  
TCCL  
TCCH  
CCLK  
(Input/Output)  
TDCC  
1/FCCSER  
TCCD  
DIN  
(Input)  
Bit n+1  
TCCO  
Bit n  
Bit 0  
Bit 1  
DOUT  
(Output)  
Bit n-63  
Bit n-64  
DS099-3_04_071604  
Figure 37: Waveforms for Master and Slave Serial Configuration  
Table 66: Timing for the Master and Slave Serial Configuration Modes  
All Speed Grades  
Slave/  
Master  
Symbol  
Description  
Units  
Min  
Max  
Clock-to-Output Times  
TCCO  
The time from the falling transition on the CCLK pin to data appearing at the  
DOUT pin  
Both  
Both  
Both  
Slave  
1.5  
12.0  
ns  
Setup Times  
TDCC  
The time from the setup of data at the DIN pin to the rising transition at the  
CCLK pin  
10.0  
0
ns  
ns  
Hold Times  
TCCD  
The time from the rising transition at the CCLK pin to the point when data is  
last held at the DIN pin  
Clock Timing  
TCCH  
CCLK input pin High pulse width  
5.0  
5.0  
0
66(2)  
ns  
ns  
TCCL  
CCLK input pin Low pulse width  
FCCSER  
Frequency of the clock signal at the  
CCLK input pin  
No bitstream compression  
With bitstream compression  
During STARTUP phase  
MHz  
MHz  
MHz  
0
20  
0
50  
ΔFCCSER  
Variation from the CCLK output frequency set using the ConfigRate BitGen  
option  
Master  
–50%  
+50%  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 32.  
2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
100  
Spartan-3 FPGA Family: DC and Switching Characteristics  
X-Ref Target - Figure 38  
PROG_B  
(Input)  
INIT_B  
(Open-Drain)  
TSMCSCC  
TSMCCCS  
CS_B  
(Input)  
TSMCCW  
TSMWCC  
RDWR_B  
(Input)  
TCCH  
TCCL  
CCLK  
(Input/Output)  
1/FCCPAR  
Byte n  
TSMDCC  
TSMCCD  
D0 - D7  
(Inputs)  
Byte 0  
Byte 1  
Byte n+1  
TSMCKBY  
TSMCKBY  
High-Z  
High-Z  
BUSY  
(Output)  
BUSY  
DS099-3_05_041103  
Figure 38: Waveforms for Master and Slave Parallel Configuration  
Table 67: Timing for the Master and Slave Parallel Configuration Modes  
All Speed Grades  
Slave/  
Master  
Symbol  
Description  
Units  
Min  
Max  
Clock-to-Output Times  
TSMCKBY  
The time from the rising transition on the CCLK pin to a signal transition at  
the BUSY pin  
Slave  
Both  
12.0  
ns  
Setup Times  
TSMDCC  
The time from the setup of data at the D0-D7 pins to the rising transition at  
the CCLK pin  
10.0  
10.0  
10.0  
ns  
ns  
ns  
TSMCSCC  
The time from the setup of a logic level at the CS_B pin to the rising  
transition at the CCLK pin  
(3)  
TSMCCW  
The time from the setup of a logic level at the RDWR_B pin to the rising  
transition at the CCLK pin  
Hold Times  
TSMCCD  
The time from the rising transition at the CCLK pin to the point when data  
is last held at the D0-D7 pins  
Both  
0
0
0
ns  
ns  
ns  
TSMCCCS  
The time from the rising transition at the CCLK pin to the point when a logic  
level is last held at the CS_B pin  
(3)  
TSMWCC  
The time from the rising transition at the CCLK pin to the point when a logic  
level is last held at the RDWR_B pin  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
101  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 67: Timing for the Master and Slave Parallel Configuration Modes (Cont’d)  
All Speed Grades  
Slave/  
Master  
Symbol  
Description  
Units  
Min  
Max  
Clock Timing  
TCCH  
CCLK input pin High pulse width  
CCLK input pin Low pulse width  
Slave  
5
ns  
ns  
TCCL  
5
FCCPAR  
Frequency of the clock  
signal at the CCLK input compression  
pin  
No bitstream  
Not using the BUSY pin(4)  
Using the BUSY pin  
0
50  
MHz  
MHz  
MHz  
MHz  
0
0
66  
With bitstream compression  
20  
During STARTUP phase  
0
50  
ΔFCCPAR  
Variation from the CCLK output frequency set using the BitGen option  
ConfigRate  
Master  
–50%  
+50%  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 32.  
2. Some Xilinx documents may refer to Parallel modes as "SelectMAP" modes.  
3. RDWR_B is synchronized to CCLK for the purpose of performing the Abort operation. The same pin asynchronously controls the driver  
impedance of the D0 - D7 pins. To avoid contention when writing configuration data to the D0 - D7 bus, do not bring RDWR_B High when  
CS_B is Low.  
4. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
102  
Spartan-3 FPGA Family: DC and Switching Characteristics  
X-Ref Target - Figure 39  
TCCH  
TCCL  
TCK  
(Input)  
1/FTCK  
TTCKTMS  
TTMSTCK  
TMS  
(Input)  
TTDITCK  
TTCKTDI  
TDI  
(Input)  
TTCKTDO  
TDO  
(Output)  
DS099_06_102909  
Figure 39: JTAG Waveforms  
Table 68: Timing for the JTAG Test Access Port  
All Speed Grades  
Symbol  
Description  
Units  
Min  
Max  
Clock-to-Output Times  
TTCKTDO  
The time from the falling transition on the TCK pin to data appearing at  
the TDO pin  
1.0  
11.0  
ns  
Setup Times  
TTDITCK  
The time from the setup of data at the TDI pin to the rising transition at  
the TCK pin  
7.0  
7.0  
ns  
ns  
TTMSTCK  
The time from the setup of a logic level at the TMS pin to the rising  
transition at the TCK pin  
Hold Times  
TTCKTDI  
The time from the rising transition at the TCK pin to the point when data  
is last held at the TDI pin  
0
0
ns  
ns  
TTCKTMS  
The time from the rising transition at the TCK pin to the point when a logic  
level is last held at the TMS pin  
Clock Timing  
TTCKH  
TCK pin High pulse width  
TCK pin Low pulse width  
5
5
0
0
ns  
ns  
TTCKL  
FTCK  
Frequency of the TCK signal  
JTAG Configuration  
Boundary-Scan  
33  
25  
MHz  
MHz  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 32.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
103  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Revision History  
Date  
Version  
Description  
04/11/2003  
07/11/2003  
1.0  
Initial Xilinx release.  
1.1  
Extended Absolute Maximum Rating for junction temperature in Table 28. Added numbers for typical  
quiescent supply current (Table 34) and DLL timing.  
02/06/2004  
1.2  
Revised VIN maximum rating (Table 28). Added power-on requirements (Table 30), leakage current  
number (Table 33), and differential output voltage levels (Table 38) for Rev. 0. Published new quiescent  
current numbers (Table 34). Updated pull-up and pull-down resistor strengths (Table 33). Added  
LVDCI_DV2 and LVPECL standards (Table 37 and Table 38). Changed CCLK setup time (Table 66 and  
Table 67).  
03/04/2004  
08/24/2004  
1.3  
1.4  
Added timing numbers from v1.29 speed files as well as DCM timing (Table 58 through Table 63).  
Added reference to errata documents on page 49. Clarified Absolute Maximum Ratings and added ESD  
information (Table 28). Explained VCCO ramp time measurement (Table 30). Clarified IL specification  
(Table 33). Updated quiescent current numbers and added information on power-on and surplus current  
(Table 34). Adjusted VREF range for HSTL_III and HSTL_I_18 and changed VIH min for LVCMOS12  
(Table 35). Added note limiting VTT range for SSTL2_II signal standards (Table 36). Calculated VOH and  
VOL levels for differential standards (Table 38). Updated Switching Characteristics with speed file v1.32  
(Table 40 through Table 48 and Table 51 through Table 56). Corrected IOB test conditions (Table 41).  
Updated DCM timing with latest characterization data (Table 58 through Table 62). Improved DCM CLKIN  
pulse width specification (Table 58). Recommended use of Virtex-II FPGA Jitter calculator (Table 61).  
Improved DCM PSCLK pulse width specification (Table 62). Changed Phase Shifter lock time parameter  
(Table 63). Because the BitGen option Centered_x#_y# is not necessary for Variable Phase Shift mode,  
removed BitGen command table and referring text. Adjusted maximum CCLK frequency for the slave  
serial and parallel configuration modes (Table 66). Inverted CCLK waveform (Figure 37). Adjusted JTAG  
setup times (Table 68).  
12/17/2004  
08/19/2005  
1.5  
1.6  
Updated timing parameters to match v1.35 speed file. Improved VCCO ramp time specification (Table 30).  
Added a note limiting the rate of change of VCCAUX (Table 32). Added typical quiescent current values for  
the XC3S2000, XC3S4000, and XC3S5000 (Table 34). Increased IOH and IOL for SSTL2-I and SSTL2-II  
standards (Table 36). Added SSO guidelines for the VQ, TQ, and PQ packages as well as edited SSO  
guidelines for the FT and FG packages (Table 50). Added maximum CCLK frequencies for configuration  
using compressed bitstreams (Table 66 and Table 67). Added specifications for the HSLVDCI standards  
(Table 35, Table 36, Table 44, Table 47, Table 48, and Table 50).  
Updated timing parameters to match v1.37 speed file. All Spartan-3 FPGA part types, except XC3S5000,  
promoted to Production status. Removed VCCO ramp rate restriction from all mask revision ‘E’ and later  
devices (Table 30). Added equivalent resistance values for internal pull-up and pull-down resistors  
(Table 33). Added worst-case quiescent current values for XC3S2000, XC3S4000, XC3S5000 (Table 34).  
Added industrial temperature range specification and improved typical quiescent current values  
(Table 34). Improved the DLL minimum clock input frequency specification from 24 MHz down to 18 MHz  
(Table 58). Improved the DFS minimum and maximum clock output frequency specifications (Table 60,  
Table 61). Added new miscellaneous DCM specifications (Table 64), primarily affecting Industrial  
temperature range applications. Updated Simultaneously Switching Output Guidelines and Table 50 for  
QFP packages. Added information on SSTL18_II I/O standard and timing to support DDR2 SDRAM  
interfaces. Added differential (or complementary single-ended) DIFF_HSTL_II_18 and DIFF_SSTL2_II  
I/O standards, including DCI terminated versions. Added electro-static discharge (ESD) data for the  
XC3S2000 and larger FPGAs (Table 28). Added link to Spartan-3 FPGA errata notices and how to  
receive automatic notifications of data sheet or errata changes.  
04/03/2006  
04/26/2006  
2.0  
2.1  
Upgraded Module 3, removing Preliminary status. Moved XC3S5000 to Production status in Table 39.  
Finalized I/O timing on XC3S5000 for v1.38 speed files. Added minimum timing values for various logic  
and I/O paths. Corrected labels for RPU and RPD and updated RPD conditions for in Table 33. Added final  
mask revision ‘E’ specifications for LVDS_25, RSDS_25, LVDSEXT_25 differential outputs to Table 38.  
Added BLVDS termination requirements to Figure 34. Improved recommended Simultaneous Switching  
Outputs (SSOs) limits in Table 50 for quad-flat packaged based on silicon testing using devices soldered  
on a printed circuit board. Updated Note 2 in Table 63. Updated Note 6 in Table 30. Added INIT_B  
minimum pulse width specification, TINIT, to Table 65.  
Updated document links.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
104  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Description  
Date  
Version  
05/25/2007  
2.2  
Improved absolute maximum voltage specifications in Table 28, providing additional overshoot allowance.  
Improved XC3S50 HBM ESD to 2000V in Table 28. Based on extensive 90 nm production data, improved  
(reduced) the maximum quiescent current limits for the ICCINTQ and ICCOQ specifications in Table 34.  
Widened the recommended voltage range for the PCI standard and clarified the hysteresis footnote in  
Table 35. Noted restriction on combining differential outputs in Table 38. Updated footnote 1 in Table 64.  
11/30/2007  
06/25/2008  
2.3  
2.4  
Updated 3.3V VCCO max from 3.45V to 3.465V in Table 32 and elsewhere. Reduced tICCK minimum from  
0.50μs to 0.25μs in Table 65. Updated links to technical documentation.  
Clarified dual marking. Added Mask and Fab Revisions. Added references to XAPP459 in Table 28 and  
Table 32. Removed absolute minimum and added footnote referring to timing analyzer for minimum delay  
values. Added HSLVDCI to Table 48 and Table 50. Updated tDICK in Table 51 to match largest possible  
value in speed file. Updated formatting and links.  
12/04/2009  
2.5  
Updated notes 2 and 3 in Table 28. Removed silicon process specific information and revised notes in  
Table 30. Updated note 3 in Table 32. Updated note 3 in Table 34. Updated note 5 in Table 35. Updated  
VOL max and VOH min for SSTL2_II in Table 36. Updated note 5 in Table 36. Updated JTAG Waveforms  
in Figure 39. Updated VICM max for LVPECL_25 in Table 37. Updated RT and VT for LVDS_25_DCI in  
Table 48. Updated Simultaneously Switching Output Guidelines. Noted that the CP132 package is being  
discontinued in Table 49. Removed minimum values for TMULTCK clock-to-output times in Table 54.  
Updated footnote 3 in Table 58. Removed minimum values for TMULT propagation times in Table 55.  
Removed silicon process specific information and revised notes in Table 61. Updated Phase Shifter (PS).  
10/29/2012  
06/27/2013  
3.0  
3.1  
Added Notice of Disclaimer. Per XCN07022, updated the discontinued FG1156 and FGG1156 package  
discussion throughout document. Per XCN08011, updated the discontinued CP132 and CPG132  
package discussion throughout document. Revised description of VIN in Table 32 and added note 7.  
Added note 4 to Table 33. This product is not recommended for new designs.  
Removed banner. This product IS recommended for new designs.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
105  
Spartan-3 FPGA Family: DC and Switching Characteristics  
Notice of Disclaimer  
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND  
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED  
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE  
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.  
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE  
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES  
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO  
APPLICABLE LAWS AND REGULATIONS.  
CRITICAL APPLICATIONS DISCLAIMER  
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE  
FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR  
SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE  
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE  
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, CRITICAL APPLICATIONS”). FURTHERMORE,  
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A  
VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF  
SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE  
OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX  
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY  
APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL  
APPLICATIONS.  
AUTOMOTIVE APPLICATIONS DISCLAIMER  
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING  
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A  
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN  
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III)  
USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY  
USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
106  
272  
Spartan-3 FPGA Family:  
Pinout Descriptions  
DS099 (v3.1) June 27, 2013  
Product Specification  
Introduction  
This data sheet module describes the various pins on a Spartan®-3 FPGA and how they connect to the supported  
component packages.  
The Pin Types section categorizes all of the FPGA pins by their function type.  
The Pin Definitions section provides a top-level description for each pin on the device.  
The Detailed, Functional Pin Descriptions section offers significantly more detail about each pin, especially for the dual-  
or special-function pins used during device configuration.  
Some pins have associated behavior that is controlled by settings in the configuration bitstream. These options are  
described in the Bitstream Options section.  
The Package Overview section describes the various packaging options available for Spartan-3 FPGAs. Detailed pin  
list tables and footprint diagrams are provided for each package solution.  
Pin Descriptions  
Pin Types  
A majority of the pins on a Spartan-3 FPGA are general-purpose, user-defined I/O pins. There are, however, up to 12  
different functional types of pins on Spartan-3 device packages, as outlined in Table 69. In the package footprint drawings  
that follow, the individual pins are color-coded according to pin type as in the table.  
Table 69: Types of Pins on Spartan-3 FPGAs  
Pin Type/  
Color Code  
Description  
Pin Name  
I/O  
Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to  
form differential I/Os.  
IO,  
IO_Lxxy_#  
DUAL  
Dual-purpose pin used in some configuration modes during the configuration  
IO_Lxxy_#/DIN/D0, IO_Lxxy_#/D1,  
process and then usually available as a user I/O after configuration. If the pin is not IO_Lxxy_#/D2, IO_Lxxy_#/D3,  
used during configuration, this pin behaves as an I/O-type pin. There are 12 IO_Lxxy_#/D4, IO_Lxxy_#/D5,  
dual-purpose configuration pins on every package. The INIT_B pin has an internal IO_Lxxy_#/D6, IO_Lxxy_#/D7,  
pull-up resistor to VCCO_4 or VCCO_BOTTOM during configuration.  
IO_Lxxy_#/CS_B,  
IO_Lxxy_#/RDWR_B,  
IO_Lxxy_#/BUSY/DOUT,  
IO_Lxxy_#/INIT_B  
CONFIG  
JTAG  
Dedicated configuration pin. Not available as a user-I/O pin. Every package has  
seven dedicated configuration pins. These pins are powered by VCCAUX and have PROG_B, HSWAP_EN  
a dedicated internal pull-up resistor to VCCAUX during configuration.  
CCLK, DONE, M2, M1, M0,  
Dedicated JTAG pin. Not available as a user-I/O pin. Every package has four  
dedicated JTAG pins. These pins are powered by VCCAUX and have a dedicated  
internal pull-up resistor to VCCAUX during configuration.  
TDI, TMS, TCK, TDO  
DCI  
Dual-purpose pin that is either a user-I/O pin or used to calibrate output buffer  
impedance for a specific bank using Digital Controlled Impedance (DCI). There are IO_Lxxy_#/VRN_#  
IO/VRN_#  
two DCI pins per I/O bank.  
IO/VRP_#  
IO_Lxxy_#/VRP_#  
© Copyright 2003–2013 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado, and other designated brands included herein are trademarks of Xilinx  
in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
107  
Spartan-3 FPGA Family: Pinout Descriptions  
Pin Name  
Table 69: Types of Pins on Spartan-3 FPGAs (Cont’d)  
Pin Type/  
Description  
Color Code  
VREF  
Dual-purpose pin that is either a user-I/O pin or, along with all other VREF pins in IO/VREF_#  
the same bank, provides a reference voltage input for certain I/O standards. If used IO_Lxxy_#/VREF_#  
for a reference voltage within a bank, all VREF pins within the bank must be  
connected.  
GND  
Dedicated ground pin. The number of GND pins depends on the package used. All GND  
must be connected.  
VCCAUX Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the VCCAUX  
package used. All must be connected to +2.5V.  
VCCINT  
Dedicated internal core logic power supply pin. The number of VCCINT pins  
depends on the package used. All must be connected to +1.2V.  
VCCINT  
VCCO  
Dedicated I/O bank, output buffer power supply pin. Along with other VCCO pins in VCCO_#  
the same bank, this pin supplies power to the output buffers within the I/O bank and CP132 and TQ144 Packages Only:  
sets the input threshold voltage for some I/O standards.  
VCCO_LEFT, VCCO_TOP,  
VCCO_RIGHT, VCCO_BOTTOM  
GCLK  
Dual-purpose pin that is either a user-I/O pin or an input to a specific global buffer IO_Lxxy_#/GCLK0,  
input. Every package has eight dedicated GCLK pins.  
IO_Lxxy_#/GCLK1,  
IO_Lxxy_#/GCLK2,  
IO_Lxxy_#/GCLK3,  
IO_Lxxy_#/GCLK4,  
IO_Lxxy_#/GCLK5,  
IO_Lxxy_#/GCLK6,  
IO_Lxxy_#/GCLK7  
N.C.  
This package pin is not connected in this specific device/package combination but N.C.  
may be connected in larger devices in the same package.  
Notes:  
1. # = I/O bank number, an integer between 0 and 7.  
I/Os with Lxxy_# are part of a differential output pair. ‘Lindicates differential output capability. The “xx” field is a two-digit  
integer, unique to each bank that identifies a differential pin-pair. The ‘y’ field is either ‘P’ for the true signal or ‘N’ for the  
inverted signal in the differential pair. The ‘#’ field is the I/O bank number.  
Pin Definitions  
Table 70 provides a brief description of each pin listed in the Spartan-3 FPGA pinout tables and package footprint diagrams.  
Pins are categorized by their pin type, as listed in Table 69. See Detailed, Functional Pin Descriptions for more information.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
108  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 70: Spartan-3 FPGA Pin Definitions  
Pin Name  
Direction  
Description  
I/O: General-purpose I/O pins  
I/O  
User-defined as input, output,  
bidirectional, three-state output,  
open-drain output, open-source  
output  
User I/O:  
Unrestricted single-ended user-I/O pin. Supports all I/O standards except  
the differential standards.  
I/O_Lxxy_#  
User-defined as input, output,  
bidirectional, three-state output,  
open-drain output, open-source  
output  
User I/O, Half of Differential Pair:  
Unrestricted single-ended user-I/O pin or half of a differential pair.  
Supports all I/O standards including the differential standards.  
DUAL: Dual-purpose configuration pins  
IO_Lxxy_#/DIN/D0,  
IO_Lxxy_#/D1,  
IO_Lxxy_#/D2,  
IO_Lxxy_#/D3,  
IO_Lxxy_#/D4,  
IO_Lxxy_#/D5,  
IO_Lxxy_#/D6,  
IO_Lxxy_#/D7  
Input during configuration  
Configuration Data Port:  
Possible bidirectional I/O after  
configuration if SelectMap port is  
retained  
Otherwise, user I/O after  
configuration  
In Parallel (SelectMAP) modes, D0-D7 are byte-wide configuration data  
pins. These pins become user I/Os after configuration unless the  
SelectMAP port is retained via the Persist bitstream option.  
In Serial modes, DIN (D0) serves as the single configuration data input.  
This pin becomes a user I/O after configuration unless retained by the  
Persist bitstream option.  
IO_Lxxy_#/CS_B  
Input during Parallel mode  
configuration  
Chip Select for Parallel Mode Configuration:  
Possible input after configuration  
if SelectMap port is retained  
Otherwise, user I/O after  
configuration  
In Parallel (SelectMAP) modes, this is the active-Low Chip Select signal.  
This pin becomes a user I/O after configuration unless the SelectMAP port  
is retained via the Persist bitstream option.  
IO_Lxxy_#/RDWR_B  
Input during Parallel mode  
configuration  
Possible input after configuration  
if SelectMap port is retained  
Otherwise, user I/O after  
configuration  
Read/Write Control for Parallel Mode Configuration:  
In Parallel (SelectMAP) modes, this is the active-Low Write Enable,  
active-High Read Enable signal. This pin becomes a user I/O after  
configuration unless the SelectMAP port is retained via the Persist  
bitstream option.  
IO_Lxxy_#/  
BUSY/DOUT  
Output during configuration  
Possible output after  
Configuration Data Rate Control for Parallel Mode, Serial Data  
Output for Serial Mode:  
configuration if SelectMap port is In Parallel (SelectMAP) modes, BUSY throttles the rate at which  
retained  
Otherwise, user I/O after  
configuration  
configuration data is loaded. This pin becomes a user I/O after  
configuration unless the SelectMAP port is retained via the Persist  
bitstream option.  
In Serial modes, DOUT provides preamble and configuration data to  
downstream devices in a multi-FPGA daisy-chain. This pin becomes a  
user I/O after configuration.  
IO_Lxxy_#/INIT_B  
Bidirectional (open-drain) during  
configuration  
User I/O after configuration  
Initializing Configuration Memory/Detected Configuration Error:  
When Low, this pin indicates that configuration memory is being cleared.  
When held Low, this pin delays the start of configuration. After this pin is  
released or configuration memory is cleared, the pin goes High. During  
configuration, a Low on this output indicates that a configuration data error  
occurred. This pin always has an internal pull-up resistor to VCCO_4 or  
VCCO_BOTTOM during configuration, regardless of the HSWAP_EN pin.  
This pin becomes a user I/O after configuration.  
DCI: Digitally Controlled Impedance reference resistor input pins  
IO_Lxxy_#/VRN_# or  
IO/VRN_#  
Input when using DCI  
Otherwise, same as I/O  
DCI Reference Resistor for NMOS I/O Transistor (per bank):  
If using DCI, a 1% precision impedance-matching resistor is connected  
between this pin and the VCCO supply for this bank. Otherwise, this pin is  
a user I/O.  
IO_Lxxy_#/VRP_# or  
IO/VRP_#  
Input when using DCI  
Otherwise, same as I/O  
DCI Reference Resistor for PMOS I/O Transistor (per bank):  
If using DCI, a 1% precision impedance-matching resistor is connected  
between this pin and the ground supply. Otherwise, this pin is a user I/O.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
109  
Spartan-3 FPGA Family: Pinout Descriptions  
Description  
Table 70: Spartan-3 FPGA Pin Definitions (Cont’d)  
Pin Name  
Direction  
GCLK: Global clock buffer inputs  
IO_Lxxy_#/GCLK0,  
IO_Lxxy_#/GCLK1,  
IO_Lxxy_#/GCLK2,  
IO_Lxxy_#/GCLK3,  
IO_Lxxy_#/GCLK4,  
IO_Lxxy_#/GCLK5,  
IO_Lxxy_#/GCLK6,  
IO_Lxxy_#/GCLK7  
Input if connected to global clock  
buffers  
Otherwise, same as I/O  
Global Buffer Input:  
Direct input to a low-skew global clock buffer. If not connected to a global  
clock buffer, this pin is a user I/O.  
VREF: I/O bank input reference voltage pins  
IO_Lxxy_#/VREF_# or  
IO/VREF_#  
Voltage supply input when VREF Input Buffer Reference Voltage for Special I/O Standards (per  
pins are used within a bank.  
Otherwise, same as I/O  
bank):  
If required to support special I/O standards, all the VREF pins within a bank  
connect to a input threshold voltage source.  
If not used as input reference voltage pins, these pins are available as  
individual user-I/O pins.  
CONFIG: Dedicated configuration pins (pull-up resistor to VCCAUX always active during configuration, regardless of  
HSWAP_EN pin)  
CCLK  
Input in Slave configuration  
modes  
Output in Master configuration  
modes  
Configuration Clock:  
The configuration clock signal synchronizes configuration data. This pin  
has an internal pull-up resistor to VCCAUX during configuration.  
PROG_B  
DONE  
Input  
Program/Configure Device:  
Active Low asynchronous reset to configuration logic. Asserting PROG_B  
Low for an extended period delays the configuration process. This pin has  
an internal pull-up resistor to VCCAUX during configuration.  
Bidirectional with open-drain or  
totem-pole Output  
Configuration Done, Delay Start-up Sequence:  
A Low-to-High output transition on this bidirectional pin signals the end of  
the configuration process.  
The FPGA produces a Low-to-High transition on this pin to indicate that the  
configuration process is complete. The DriveDone bitstream generation  
option defines whether this pin functions as a totem-pole output that  
actively drives High or as an open-drain output. An open-drain output  
requires a pull-up resistor to produce a High logic level. The open-drain  
option permits the DONE lines of multiple FPGAs to be tied together, so  
that the common node transitions High only after all of the FPGAs have  
completed configuration. Externally holding the open-drain output Low  
delays the start-up sequence, which marks the transition to user mode.  
M0, M1, M2  
HSWAP_EN  
Input  
Input  
Configuration Mode Selection:  
These inputs select the configuration mode. The logic levels applied to the  
mode pins are sampled on the rising edge of INIT_B. See Table 75. These  
pins have an internal pull-up resistor to VCCAUX during configuration,  
making Slave Serial the default configuration mode.  
Disable Pull-up Resistors During Configuration:  
A Low on this pin enables pull-up resistors on all pins that are not actively  
involved in the configuration process. A High value disables all pull-ups,  
allowing the non-configuration pins to float.  
JTAG: JTAG interface pins (pull-up resistor to VCCAUX always active during configuration, regardless of HSWAP_EN  
pin)  
TCK  
Input  
JTAG Test Clock:  
The TCK clock signal synchronizes all JTAG port operations. This pin has  
an internal pull-up resistor to VCCAUX during configuration.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
110  
Spartan-3 FPGA Family: Pinout Descriptions  
Description  
Table 70: Spartan-3 FPGA Pin Definitions (Cont’d)  
Pin Name Direction  
TDI  
Input  
JTAG Test Data Input:  
TDI is the serial data input for all JTAG instruction and data registers. This  
pin has an internal pull-up resistor to VCCAUX during configuration.  
TMS  
TDO  
Input  
JTAG Test Mode Select:  
The serial TMS input controls the operation of the JTAG port. This pin has  
an internal pull-up resistor to VCCAUX during configuration.  
Output  
JTAG Test Data Output:  
TDO is the serial data output for all JTAG instruction and data registers.  
This pin has an internal pull-up resistor to VCCAUX during configuration.  
VCCO: I/O bank output voltage supply pins  
VCCO_# Supply  
Power Supply for Output Buffer Drivers (per bank):  
These pins power the output drivers within a specific I/O bank.  
VCCAUX: Auxiliary voltage supply pins  
VCCAUX Supply  
Power Supply for Auxiliary Circuits:  
+2.5V power pins for auxiliary circuits, including the Digital Clock  
Managers (DCMs), the dedicated configuration pins (CONFIG), and the  
dedicated JTAG pins. All VCCAUX pins must be connected.  
VCCINT: Internal core voltage supply pins  
VCCINT Supply  
Power Supply for Internal Core Logic:  
+1.2V power pins for the internal logic. All pins must be connected.  
GND: Ground supply pins  
GND  
Supply  
Ground:  
Ground pins, which are connected to the power supply’s return path. All  
pins must be connected.  
N.C.: Unconnected package pins  
N.C.  
Unconnected Package Pin:  
These package pins are unconnected.  
Notes:  
1. All unused inputs and bidirectional pins must be tied either High or Low. For unused enable inputs, apply the level that disables the  
associated function. One common approach is to activate internal pull-up or pull-down resistors. An alternative approach is to externally  
connect the pin to either VCCO or GND.  
2. All outputs are of the totem-pole type — i.e., they can drive High as well as Low logic levels — except for the cases where “Open Drain” is  
indicated. The latter can only drive a Low logic level and require a pull-up resistor to produce a High logic level.  
Detailed, Functional Pin Descriptions  
I/O Type: Unrestricted, General-purpose I/O Pins  
After configuration, I/O-type pins are inputs, outputs, bidirectional I/O, three-state outputs, open-drain outputs, or  
open-source outputs, as defined in the application  
Pins labeled "IO" support all SelectIO™ interface signal standards except differential standards. A given device at most only  
has a few of these pins.  
A majority of the general-purpose I/O pins are labeled in the format “IO_Lxxy_#”. These pins support all SelectIO signal  
standards, including the differential standards such as LVDS, ULVDS, BLVDS, RSDS, or LDT.  
For additional information, see IOBs, page 10  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
111  
Spartan-3 FPGA Family: Pinout Descriptions  
Differential Pair Labeling  
A pin supports differential standards if the pin is labeled in the format “Lxxy_#”. The pin name suffix has the following  
significance. Figure 40 provides a specific example showing a differential input to and a differential output from Bank 2.  
Lindicates differential capability.  
"xx" is a two-digit integer, unique for each bank, that identifies a differential pin-pair.  
‘y’ is replaced by ‘P’ for the true signal or ‘N’ for the inverted. These two pins form one differential pin-pair.  
‘#’ is an integer, 0 through 7, indicating the associated I/O bank.  
If unused, these pins are in a high impedance state. The Bitstream generator option UnusedPin enables a pull-up or  
pull-down resistor on all unused I/O pins.  
Behavior from Power-On through End of Configuration  
During the configuration process, all pins that are not actively involved in the configuration process are in a high-impedance  
state. The CONFIG- and JTAG-type pins have an internal pull-up resistor to VCCAUX during configuration. For all other I/O  
pins, the HSWAP_EN input determines whether or not pull-up resistors are activated during configuration. HSWAP_EN = 0  
enables the pull-up resistors. HSWAP_EN = 1 disables the pull-up resistors allowing the pins to float, which is the desired  
state for hot-swap applications.  
X-Ref Target - Figure 40  
Pair Number  
Bank Number  
Bank 0  
Bank 1  
IO_L38P_2  
IO_L38N_2  
Positive Polarity,  
True Receiver  
IO_L39P_2  
IO_L39N_2  
Negative Polarity,  
Inverted Receiver  
Bank 5  
Bank 4  
DS099-4_01_091710  
Figure 40: Differential Pair Labelling  
DUAL Type: Dual-Purpose Configuration and I/O Pins  
These pins serve dual purposes. The user-I/O pins are temporarily borrowed during the configuration process to load  
configuration data into the FPGA. After configuration, these pins are then usually available as a user I/O in the application.  
If a pin is not applicable to the specific configuration mode—controlled by the mode select pins M2, M1, and M0—then the  
pin behaves as an I/O-type pin.  
There are 12 dual-purpose configuration pins on every package, six of which are part of I/O Bank 4, the other six part of I/O  
Bank 5. Only a few of the pins in Bank 4 are used in the Serial configuration modes.  
See Pin Behavior During Configuration, page 122.  
Serial Configuration Modes  
This section describes the dual-purpose pins used during either Master or Slave Serial mode. See Table 75 for Mode Select  
pin settings required for Serial modes. All such pins are in Bank 4 and powered by VCCO_4.  
In both the Master and Slave Serial modes, DIN is the serial configuration data input. The D1-D7 inputs are unused in serial  
mode and behave like general-purpose I/O pins.  
In all the cases, the configuration data is synchronized to the rising edge of the CCLK clock signal.  
The DIN, DOUT, and INIT_B pins can be retained in the application to support reconfiguration by setting the Persist  
bitstream generation option. However, the serial modes do not support device readback.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
112  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 71: Dual-Purpose Pins Used in Master or Slave Serial Mode  
Pin Name  
DIN  
Direction  
Description  
Input  
Serial Data Input:  
During the Master or Slave Serial configuration modes, DIN is the serial configuration data input, and  
all data is synchronized to the rising CCLK edge. After configuration, this pin is available as a user I/O.  
This signal is located in Bank 4 and its output voltage determined by VCCO_4.  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
DOUT  
INIT_B  
Output  
Serial Data Output:  
In a multi-FPGA design where all the FPGAs use serial mode, connect the DOUT output of one  
FPGA—in either Master or Slave Serial mode—to the DIN input of the next FPGA—in Slave Serial  
mode—so that configuration data passes from one to the next, in daisy-chain fashion. This “daisy  
chain” permits sequential configuration of multiple FPGAs.  
This signal is located in Bank 4 and its output voltage determined by VCCO_4.  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
Bidirectional Initializing Configuration Memory/Configuration Error:  
(open-drain)  
Just after power is applied, the FPGA produces a Low-to-High transition on this pin indicating that  
initialization (i.e., clearing) of the configuration memory has finished. Before entering the User mode,  
this pin functions as an open-drain output, which requires a pull-up resistor in order to produce a High  
logic level. In a multi-FPGA design, tie (wire AND) the INIT_B pins from all FPGAs together so that the  
common node transitions High only after all of the FPGAs have been successfully initialized.  
Externally holding this pin Low beyond the initialization phase delays the start of configuration. This  
action stalls the FPGA at the configuration step just before the mode select pins are sampled.  
During configuration, the FPGA indicates the occurrence of a data (i.e., CRC) error by asserting  
INIT_B Low.  
This signal is located in Bank 4 and its output voltage determined by VCCO_4.  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
X-Ref Target - Figure 41  
I/O Bank 4 (VCCO_4)  
High Nibble  
I/O Bank 5 (VCCO_5)  
Low Nibble  
Configuration Data Byte  
D0  
1
D1  
D2  
D3  
D4  
D5  
D6  
D7  
0
0xFC =  
1
1
1
1
1
0
(MSB)  
(LSB)  
Figure 41: Configuration Data Byte Mapping to D0-D7 Bits  
Parallel Configuration Modes (SelectMAP)  
This section describes the dual-purpose configuration pins used during the Master and Slave Parallel configuration modes,  
sometimes also called the SelectMAP modes. In both Master and Slave Parallel configuration modes, D0-D7 form the  
byte-wide configuration data input. See Table 75 for Mode Select pin settings required for Parallel modes.  
As shown in Figure 41, D0 is the most-significant bit while D7 is the least-significant bit. Bits D0-D3 form the high nibble of  
the byte and bits D4-D7 form the low nibble.  
In the Parallel configuration modes, both the VCCO_4 and VCCO_5 voltage supplies are required and must both equal the  
voltage of the attached configuration device, typically either 2.5V or 3.3V.  
Assert Low both the chip-select pin, CS_B, and the read/write control pin, RDWR_B, to write the configuration data byte  
presented on the D0-D7 pins to the FPGA on a rising-edge of the configuration clock, CCLK. The order of CS_B and  
RDWR_B does not matter, although RDWR_B must be asserted throughout the configuration process. If RDWR_B is  
de-asserted during configuration, the FPGA aborts the configuration operation.  
After configuration, these pins are available as general-purpose user I/O. However, the SelectMAP configuration interface is  
optionally available for debugging and dynamic reconfiguration. To use these SelectMAP pins after configuration, set the  
Persist bitstream generation option.  
The Readback debugging option, for example, requires the Persist bitstream generation option. During Readback mode,  
assert CS_B Low, along with RDWR_B High, to read a configuration data byte from the FPGA to the D0-D7 bus on a rising  
CCLK edge. During Readback mode, D0-D7 are output pins.  
In all the cases, the configuration data and control signals are synchronized to the rising edge of the CCLK clock signal.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
113  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 72: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes  
Pin Name  
Direction  
Description  
D0,  
D1,  
D2,  
D3  
Input during  
configuration  
Configuration Data Port (high nibble):  
Collectively, the D0-D7 pins are the byte-wide configuration data port for the Parallel (SelectMAP)  
Outputduring configuration modes. Configuration data is synchronized to the rising edge of CCLK clock signal.  
readback  
The D0-D3 pins are the high nibble of the configuration data byte and located in Bank 4 and powered by  
VCCO_4.  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
D4,  
D5,  
D6,  
D7  
Input during  
configuration  
Outputduring Bank 5 and powered by VCCO_5.  
Configuration Data Port (low nibble):  
The D4-D7 pins are the low nibble of the configuration data byte. However, these signals are located in  
readback  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
CS_B  
Input  
Chip Select for Parallel Mode Configuration:  
Assert this pin Low, together with RDWR_B to write a configuration data byte from the D0-D7 bus to the  
FPGA on a rising CCLK edge.  
During Readback, assert this pin Low, along with RDWR_B High, to read a configuration data byte from  
the FPGA to the D0-D7 bus on a rising CCLK edge.  
This signal is located in Bank 5 and powered by VCCO_5.  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
CS_B  
Function  
0
1
FPGA selected. SelectMAP inputs are valid on the next rising edge of CCLK.  
FPGA deselected. All SelectMAP inputs are ignored.  
RDWR_B  
Input  
Read/Write Control for Parallel Mode Configuration:  
In Master and Slave Parallel modes, assert this pin Low together with CS_B to write a configuration data  
byte from the D0-D7 bus to the FPGA on a rising CCLK edge. Once asserted during configuration,  
RDWR_B must remain asserted until configuration is complete.  
During Readback, assert this pin High with CS_B Low to read a configuration data byte from the FPGA  
to the D0-D7 bus on a rising CCLK edge.  
This signal is located in Bank 5 and powered by VCCO_5.  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
RDWR_B  
Function  
0
1
If CS_B is Low, then load (write) configuration data to the FPGA.  
This option is valid only if the Persist bitstream option is set to Yes. If CS_B is  
Low, then read configuration data from the FPGA.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
114  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 72: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes (Cont’d)  
Pin Name  
Direction  
Description  
BUSY  
Output  
Configuration Data Rate Control for Parallel Mode:  
In the Slave and Master Parallel modes, BUSY throttles the rate at which configuration data is loaded.  
BUSY is only necessary if CCLK operates at greater than 50 MHz. Ignore BUSY for frequencies of 50  
MHz and below.  
When BUSY is Low, the FPGA accepts the next configuration data byte on the next rising CCLK edge for  
which CS_B and RDWR_B are Low. When BUSY is High, the FPGA ignores the next configuration data  
byte. The next configuration data value must be held or reloaded until the next rising CCLK edge when  
BUSY is Low. When CS_B is High, BUSY is in a high impedance state.  
BUSY  
Function  
0
1
The FPGA is ready to accept the next configuration data byte.  
The FPGA is busy processing the current configuration data byte and is not  
ready to accept the next byte.  
Hi-Z  
If CS_B is High, then BUSY is high impedance.  
This signal is located in Bank 4 and its output voltage is determined by VCCO_4. The BitGen option  
Persist permits this pin to retain its configuration function in the User mode.  
INIT_B  
Bidirectional  
(open-drain)  
Initializing Configuration Memory/Configuration Error (active-Low):  
See description under Serial Configuration Modes, page 112.  
JTAG Configuration Mode  
In the JTAG configuration mode all dual-purpose configuration pins are unused and behave exactly like user-I/O pins, as  
shown in Table 79. See Table 75 for Mode Select pin settings required for JTAG mode.  
Dual-Purpose Pin I/O Standard During Configuration  
During configuration, the dual-purpose pins default to CMOS input and output levels for the associated VCCO voltage  
supply pins. For example, in the Parallel configuration modes, both VCCO_4 and VCCO_5 are required. If connected to  
+2.5V, then the associated pins conform to the LVCMOS25 I/O standard. If connected to +3.3V, then the pins drive LVCMOS  
output levels and accept either LVTTL or LVCMOS input levels.  
Dual-Purpose Pin Behavior After Configuration  
After the configuration process completes, these pins, if they were borrowed during configuration, become user-I/O pins  
available to the application. If a dual-purpose configuration pin is not used during the configuration process—i.e., the parallel  
configuration pins when using serial mode—then the pin behaves exactly like a general-purpose I/O. See I/O Type:  
Unrestricted, General-purpose I/O Pins section.  
DCI: User I/O or Digitally Controlled Impedance Resistor Reference Input  
These pins are individual user-I/O pins unless one of the I/O standards used in the bank requires the Digitally Controlled  
Impedance (DCI) feature. If DCI is used, then 1% precision resistors connected to the VRP_# and VRN_# pins match the  
impedance on the input or output buffers of the I/O standards that use DCI within the bank. The ‘#’ character in the pin name  
indicates the associated I/O bank and is an integer, 0 through 7.  
There are two DCI pins per I/O bank, except in the CP132 and TQ144 packages, which do not have any DCI inputs for  
Bank 5.  
VRP and VRN Impedance Resistor Reference Inputs  
The 1% precision impedance-matching resistor attached to the VRP_# pin controls the pull-up impedance of PMOS  
transistor in the input or output buffer. Consequently, the VRP_# pin must connect to ground. The ‘P’ character in “VRP”  
indicates that this pin controls the I/O buffer’s PMOS transistor impedance. The VRP_# pin is used for both single and split  
termination.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
115  
Spartan-3 FPGA Family: Pinout Descriptions  
The 1% precision impedance-matching resistor attached to the VRN_# pin controls the pull-down impedance of NMOS  
transistor in the input or output buffer. Consequently, the VRN_# pin must connect to VCCO. The ‘N’ character in “VRN”  
indicates that this pin controls the I/O buffer’s NMOS transistor impedance. The VRN_# pin is only used for split termination.  
Each VRN or VRP reference input requires its own resistor. A single resistor cannot be shared between VRN or VRP pins  
associated with different banks.  
During configuration, these pins behave exactly like user-I/O pins. The associated DCI behavior is not active or valid until  
after configuration completes.  
Also see Digitally Controlled Impedance (DCI), page 16.  
DCI Termination Types  
If the I/O in an I/O bank do not use the DCI feature, then no external resistors are required and both the VRP_# and VRN_#  
pins are available for user I/O, as shown in section [a] of Figure 42.  
If the I/O standards within the associated I/O bank require single termination—such as GTL_DCI, GTLP_DCI, or  
HSTL_III_DCI—then only the VRP_# signal connects to a 1% precision impedance-matching resistor, as shown in section  
[b] of Figure 42. A resistor is not required for the VRN_# pin.  
Finally, if the I/O standards with the associated I/O bank require split termination—such as HSTL_I_DCI, SSTL2_I_DCI,  
SSTL2_II_DCI, or LVDS_25_DCI and LVDSEXT_25_DCI receivers—then both the VRP_# and VRN_# pins connect to  
separate 1% precision impedance-matching resistors, as shown in section [c] of Figure 42. Neither pin is available for user  
I/O.  
X-Ref Target - Figure 42  
One of eight  
I/O Banks  
One of eight  
I/O Banks  
One of eight  
I/O Banks  
V
CCO  
R
(1%)  
(1%)  
REF  
User I/O  
VRN  
VRN  
User I/O  
VRP  
VRP  
R
(1%)  
R
REF  
REF  
(a) No termination  
(b) Single termination  
(c) Split termination  
DS099-4_03_091910  
Figure 42: DCI Termination Types  
GCLK: Global Clock Buffer Inputs or General-Purpose I/O Pins  
These pins are user-I/O pins unless they specifically connect to one of the eight low-skew global clock buffers on the device,  
specified using the IBUFG primitive.  
There are eight GCLK pins per device and two each appear in the top-edge banks, Bank 0 and 1, and the bottom-edge  
banks, Banks 4 and 5. See Figure 40 for a picture of bank labeling.  
During configuration, these pins behave exactly like user-I/O pins.  
Also see Global Clock Network, page 42.  
CONFIG: Dedicated Configuration Pins  
The dedicated configuration pins control the configuration process and are not available as user-I/O pins. Every package  
has seven dedicated configuration pins. All CONFIG-type pins are powered by the +2.5V VCCAUX supply.  
Also see Configuration, page 46.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
116  
Spartan-3 FPGA Family: Pinout Descriptions  
CCLK: Configuration Clock  
The configuration clock signal on this pin synchronizes the reading or writing of configuration data. The CCLK pin is an  
input-only pin for the Slave Serial and Slave Parallel configuration modes. In the Master Serial and Master Parallel  
configuration modes, the FPGA drives the CCLK pin and CCLK should be treated as a full bidirectional I/O pin for signal  
integrity analysis.  
Although the CCLK frequency is relatively low, Spartan-3 FPGA output edge rates are fast. Any potential signal integrity  
problems on the CCLK board trace can cause FPGA configuration to fail. Therefore, pay careful attention to the CCLK signal  
integrity on the printed circuit board. Signal integrity simulation with IBIS is recommended. For all configuration modes  
except JTAG, consider the signal integrity at every CCLK trace destination, including the FPGA’s CCLK pin. For more details  
on CCLK design considerations, see Chapter 2 of UG332, Spartan-3 Generation Configuration User Guide.  
During configuration, the CCLK pin has a pull-up resistor to VCCAUX, regardless of the HSWAP_EN pin. After configuration,  
the CCLK pin is pulled High to VCCAUX by default as defined by the CclkPin bitstream selection, although this behavior is  
programmable. Any clocks applied to CCLK after configuration are ignored unless the bitstream option Persist is set to Yes,  
which retains the configuration interface. Persist is set to No by default. However, if Persist is set to Yes, then all clock  
edges are potentially active events, depending on the other configuration control signals.  
The bitstream generator option ConfigRate determines the frequency of the internally-generated CCLK oscillator required  
for the Master configuration modes. The actual frequency is approximate due to the characteristics of the silicon oscillator  
and varies by up to 50% over the temperature and voltage range. By default, CCLK operates at approximately 6 MHz. Via  
the ConfigRate option, the oscillator frequency is set at approximately 3, 6, 12, 25, or 50 MHz. At power-on, CCLK always  
starts operation at its lowest frequency. The device does not start operating at the higher frequency until the ConfigRate  
control bits are loaded during the configuration process.  
PROG_B: Program/Configure Device  
This asynchronous pin initiates the configuration or re-configuration processes. A Low-going pulse resets the configuration  
logic, initializing the configuration memory. This initialization process cannot finish until PROG_B returns High. Asserting  
PROG_B Low for an extended period delays the configuration process. At power-up, there is always a pull-up resistor to  
VCCAUX on this pin, regardless of the HSWAP_EN input. After configuration, the bitstream generator option ProgPin  
determines whether or not the pull-up resistor is present. By default, the ProgPin option retains the pull-up resistor.  
After configuration, hold the PROG_B input High. Any Low-going pulse on PROG_B lasting 300 ns or longer restarts the  
configuration process.  
Table 73: PROG_B Operation  
PROG_B Input  
Power-up  
Response  
Automatically initiates configuration process.  
Low-going pulse  
Initiate (re-)configuration process and continue to completion.  
Extended Low  
1
Initiate (re-)configuration process and stall process at step where configuration memory is cleared. Process is  
stalled until PROG_B returns High.  
If the configuration process is started, continue to completion. If configuration process is complete, stay in User  
mode.  
DONE: Configuration Done, Delay Start-Up Sequence  
The FPGA produces a Low-to-High transition on this pin indicating that the configuration process is complete. The bitstream  
generator option DriveDone determines whether this pin functions as a totem-pole output that can drive High or as an  
open-drain output. If configured as an open-drain output—which is the default behavior—then a pull-up resistor is required  
to produce a High logic level. There is a bitstream option that provides an internal pull-up resistor, otherwise an external  
pull-up resistor is required.  
The open-drain option permits the DONE lines of multiple FPGAs to be tied together, so that the common node transitions  
High only after all of the FPGAs have completed configuration. Externally holding the open-drain DONE pin Low delays the  
start-up sequence, which marks the transition to user mode.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
117  
Spartan-3 FPGA Family: Pinout Descriptions  
Once the FPGA enters User mode after completing configuration, the DONE pin no longer drives the DONE pin Low. The  
bitstream generator option DonePin determines whether or not a pull-up resistor is present on the DONE pin to pull the pin  
to VCCAUX. If the pull-up resistor is eliminated, then the DONE pin must be pulled High using an external pull-up resistor or  
one of the FPGAs in the design must actively drive the DONE pin High via the DriveDone bitstream generator option.  
The bitstream generator option DriveDone causes the FPGA to actively drive the DONE output High after configuration. This  
option should only be used in single-FPGA designs or on the last FPGA in a multi-FPGA daisy-chain.  
By default, the bitstream generator software retains the pull-up resistor and does not actively drive the DONE pin as  
highlighted in Table 74, which shows the interaction of these bitstream options in single- and multi-FPGA designs.  
Table 74: DonePin and DriveDone Bitstream Option Interaction  
Single- or Multi-  
FPGA Design  
DonePin  
DriveDone  
Comments  
Pullnone  
Pullnone  
No  
No  
Single  
External pull-up resistor, with value between 330Ω to 3.3kΩ, required on DONE.  
Multi  
External pull-up resistor, with value between 330Ω to 3.3kΩ, required on common  
node connecting to all DONE pins.  
Pullnone  
Pullnone  
Pullup  
Yes  
Yes  
No  
Single  
Multi  
OK, no external requirements.  
DriveDone on last device in daisy-chain only. No external requirements.  
Single  
OK, but pull-up on DONE pin has slow rise time. May require 330Ω pull-up resistor  
for high CCLK frequencies.  
Pullup  
No  
Multi  
External pull-up resistor, with value between 330Ω to 3.3kΩ, required on common  
node connecting to all DONE pins.  
Pullup  
Pullup  
Yes  
Yes  
Single  
Multi  
OK, no external requirements.  
DriveDone on last device in daisy-chain only. No external requirements.  
M2, M1, M0: Configuration Mode Selection  
The M2, M1, and M0 inputs select the FPGA configuration mode, as described in Table 75. The logic levels applied to the  
mode pins are sampled on the rising edge of INIT_B.  
Table 75: Spartan-3 FPGA Mode Select Settings  
Configuration Mode  
Master Serial  
M2  
0
M1  
0
M0  
0
Slave Serial  
Master Parallel  
Slave Parallel  
JTAG  
1
1
1
0
1
1
1
1
0
1
0
1
Reserved  
0
0
1
Reserved  
0
1
0
Reserved  
1
0
0
After Configuration  
X
X
X
Notes:  
1. X = don’t care, either 0 or 1.  
Before and during configuration, the mode pins have an internal pull-up resistor to VCCAUX, regardless of the HSWAP_EN  
pin. If the mode pins are unconnected, then the FPGA defaults to the Slave Serial configuration mode. After configuration  
successfully completes, any levels applied to these input are ignored. Furthermore, the bitstream generator options M0Pin,  
M1Pin, and M2Pin determines whether a pull-up resistor, pull-down resistor, or no resistor is present on its respective mode  
pin, M0, M1, or M2.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
118  
Spartan-3 FPGA Family: Pinout Descriptions  
HSWAP_EN: Disable Pull-up Resistors During Configuration  
As shown in Table 76, a Low on this asynchronous pin enables pull-up resistors on all user I/Os not actively involved in the  
configuration process, although only until device configuration completes. A High disables the pull-up resistors during  
configuration, which is the desired state for some applications.  
The dedicated configuration CONFIG pins (CCLK, DONE, PROG_B, HSWAP_EN, M2, M1, M0), the JTAG pins (TDI, TMS,  
TCK, TDO) and the INIT_B always have active pull-up resistors during configuration, regardless of the value on  
HSWAP_EN.  
After configuration, HSWAP_EN becomes a "don’t care" input and any pull-up resistors previously enabled by HSWAP_EN  
are disabled. If a user I/O in the application requires a pull-up resistor after configuration, place a PULLUP primitive on the  
associated I/O pin or, for some pins, set the associated bitstream generator option.  
Table 76: HSWAP_EN Encoding  
HSWAP_EN  
Function  
During Configuration  
0
Enable pull-up resistors on all pins not actively involved in the configuration process. Pull-ups are only active until  
configuration completes. See Table 79.  
1
No pull-up resistors during configuration.  
After Configuration, User Mode  
This pin has no function except during device configuration.  
X
Notes:  
1. X = don’t care, either 0 or 1.  
The Bitstream generator option HswapenPin determines whether a pull-up resistor to VCCAUX, a pull-down resistor, or no  
resistor is present on HSWAP_EN after configuration.  
JTAG: Dedicated JTAG Port Pins  
Table 77: JTAG Pin Descriptions  
Pin Name  
TCK  
Direction  
Description  
Bitstream Generation Option  
Input  
Test Clock: The TCK clock signal synchronizes all boundary The BitGen option TckPin determines  
scan operations on its rising edge.  
whether a pull-up resistor, pull-down  
resistor or no resistor is present.  
TDI  
Input  
Test Data Input: TDI is the serial data input for all JTAG  
instruction and data registers. This input is sampled on the  
rising edge of TCK.  
The BitGen option TdiPin determines  
whether a pull-up resistor, pull-down  
resistor or no resistor is present.  
TMS  
TDO  
Input  
Test Mode Select: The TMS input controls the sequence of  
states through which the JTAG TAP state machine passes.  
This input is sampled on the rising edge of TCK.  
The BitGen option TmsPin determines  
whether a pull-up resistor, pull-down  
resistor or no resistor is present.  
Output  
Test Data Output: The TDO pin is the data output for all JTAG The BitGen option TdoPin determines  
instruction and data registers. This output is sampled on the  
rising edge of TCK. The TDO output is an active totem-pole  
driver and is not like the open-collector TDO output on  
Virtex®-II Pro FPGAs.  
whether a pull-up resistor, pull-down  
resistor or no resistor is present.  
These pins are dedicated connections to the four-wire IEEE 1532/IEEE 1149.1 JTAG port, shown in Figure 43 and  
described in Table 77. The JTAG port is used for boundary-scan testing, device configuration, application debugging, and  
possibly an additional serial port for the application. These pins are dedicated and are not available as user-I/O pins. Every  
package has four dedicated JTAG pins and these pins are powered by the +2.5V VCCAUX supply.  
For additional information on JTAG configuration, see Boundary-Scan (JTAG) Mode, page 50.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
119  
Spartan-3 FPGA Family: Pinout Descriptions  
X-Ref Target - Figure 43  
JTAG Port  
TDI  
Data In  
TDO  
Data Out  
TMS  
TCK  
Mode Select  
Clock  
DS099_4_04_020811  
Figure 43: JTAG Port  
IDCODE Register  
Spartan-3 FPGAs contain a 32-bit identification register called the IDCODE register, as defined in the IEEE 1149.1 JTAG  
standard. The fixed value electrically identifies the manufacture (Xilinx) and the type of device being addressed over a JTAG  
chain. This register allows the JTAG host to identify the device being tested or programmed via JTAG. See Table 78.  
Using JTAG Port After Configuration  
The JTAG port is always active and available before, during, and after FPGA configuration. Add the BSCAN_SPARTAN3  
primitive to the design to create user-defined JTAG instructions and JTAG chains to communicate with internal logic.  
Furthermore, the contents of the User ID register within the JTAG port can be specified as a Bitstream Generation option.  
By default, the 32-bit User ID register contains 0xFFFFFFFF.  
Table 78: Spartan-3 JTAG IDCODE Register Values (hexadecimal)  
Part Number  
IDCODE Register  
0x0140C093  
0x01414093  
0x0141C093  
0x01428093  
0x01434093  
0x01440093  
0x01448093  
0x01450093  
XC3S50  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Precautions When Using the JTAG Port in 3.3V Environments  
The JTAG port is powered by the +2.5V VCCAUX power supply. When connecting to a 3.3V interface, the JTAG input pins  
must be current-limited using a series resistor. Similarly, the TDO pin is a CMOS output powered from +2.5V. The TDO  
output can directly drive a 3.3V input but with reduced noise immunity. See 3.3V-Tolerant Configuration Interface, page 47.  
See also XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional details.  
The following interface precautions are recommended when connecting the JTAG port to a 3.3V interface.  
Avoid actively driving the JTAG input signals High with 3.3V signal levels. If required in the application, use series  
current-limiting resistors to keep the current below 10 mA per pin.  
If possible, drive the FPGA JTAG inputs with drivers that can be placed in high-impedance (Hi-Z) after using the JTAG  
port. Alternatively, drive the FPGA JTAG inputs with open-drain outputs, which only drive Low. In both cases, pull-up  
resistors are required. The FPGA JTAG pins have pull-up resistors to VCCAUX before configuration and optional  
pull-up resistors after configuration, controlled by Bitstream Options, page 125.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
120  
Spartan-3 FPGA Family: Pinout Descriptions  
VREF: User I/O or Input Buffer Reference Voltage for Special Interface Standards  
These pins are individual user-I/O pins unless collectively they supply an input reference voltage, VREF_#, for any SSTL,  
HSTL, GTL, or GTLP I/Os implemented in the associated I/O bank. The ‘#’ character in the pin name represents an integer,  
0 through 7, that indicates the associated I/O bank.  
The VREF function becomes active for this pin whenever a signal standard requiring a reference voltage is used in the  
associated bank. If used as a user I/O, then each pin behaves as an independent I/O described in the I/O type section. If  
used for a reference voltage within a bank, then all VREF pins within the bank must be connected to the same reference  
voltage.  
Spartan-3 devices are designed and characterized to support certain I/O standards when VREF is connected to +1.25V,  
+1.10V, +1.00V, +0.90V, +0.80V, and +0.75V. During configuration, the VREF pins behave exactly like user-I/O pins.  
If designing for footprint compatibility across the range of devices in a specific package, and if the VREF_# pins within a bank  
connect to an input reference voltage, then also connect any N.C. (not connected) pins on the smaller devices in that  
package to the input reference voltage. More details are provided later for each package type.  
N.C. Type: Unconnected Package Pins  
Pins marked as “N.C.are unconnected for the specific device/package combination. For other devices in this same  
package, this pin may be used as an I/O or VREF connection. In both the pinout tables and the footprint diagrams,  
unconnected pins are noted with either a black diamond symbol () or a black square symbol ().  
If designing for footprint compatibility across multiple device densities, check the pin types of the other Spartan-3 devices  
available in the same footprint. If the N.C. pin matches to VREF pins in other devices, and the VREF pins are used in the  
associated I/O bank, then connect the N.C. to the VREF voltage source.  
VCCO Type: Output Voltage Supply for I/O Bank  
Each I/O bank has its own set of voltage supply pins that determines the output voltage for the output buffers in the I/O bank.  
Furthermore, for some I/O standards such as LVCMOS, LVCMOS25, LVTTL, etc., VCCO sets the input threshold voltage on  
the associated input buffers.  
Spartan-3 devices are designed and characterized to support various I/O standards for VCCO values of +1.2V, +1.5V, +1.8V,  
+2.5V, and +3.3V.  
Most VCCO pins are labeled as VCCO_# where the ‘#’ symbol represents the associated I/O bank number, an integer  
ranging from 0 to 7. In the 144-pin TQFP package (TQ144) however, the VCCO pins along an edge of the device are  
combined into a single VCCO input. For example, the VCCO inputs for Bank 0 and Bank 1 along the top edge of the package  
are combined and relabeled VCCO_TOP. The bottom, left, and right edges are similarly combined.  
In Serial configuration mode, VCCO_4 must be at a level compatible with the attached configuration memory or data source.  
In Parallel configuration mode, both VCCO_4 and VCCO_5 must be at the same compatible voltage level.  
All VCCO inputs to a bank must be connected together and to the voltage supply. Furthermore, there must be sufficient  
supply decoupling to guarantee problem-free operation, as described in XAPP623: Power Distribution System (PDS)  
Design: Using Bypass/Decoupling Capacitors.  
VCCINT Type: Voltage Supply for Internal Core Logic  
Internal core logic circuits such as the configurable logic blocks (CLBs) and programmable interconnect operate from the  
VCCINT voltage supply inputs. VCCINT must be +1.2V.  
All VCCINT inputs must be connected together and to the +1.2V voltage supply. Furthermore, there must be sufficient  
supply decoupling to guarantee problem-free operation, as described in XAPP623.  
VCCAUX Type: Voltage Supply for Auxiliary Logic  
The VCCAUX pins supply power to various auxiliary circuits, such as to the Digital Clock Managers (DCMs), the JTAG pins,  
and to the dedicated configuration pins (CONFIG type). VCCAUX must be +2.5V.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
121  
Spartan-3 FPGA Family: Pinout Descriptions  
All VCCAUX inputs must be connected together and to the +2.5V voltage supply. Furthermore, there must be sufficient  
supply decoupling to guarantee problem-free operation, as described in XAPP623.  
Because VCCAUX connects to the DCMs and the DCMs are sensitive to voltage changes, be sure that the VCCAUX supply  
and the ground return paths are designed for low noise and low voltage drop, especially that caused by a large number of  
simultaneous switching I/Os.  
GND Type: Ground  
All GND pins must be connected and have a low resistance path back to the various VCCO, VCCINT, and VCCAUX  
supplies.  
Pin Behavior During Configuration  
Table 79 shows how various pins behave during the FPGA configuration process. The actual behavior depends on the  
values applied to the M2, M1, and M0 mode select pins and the HSWAP_EN pin. The mode select pins determine which of  
the DUAL type pins are active during configuration. In JTAG configuration mode, none of the DUAL-type pins are used for  
configuration and all behave as user-I/O pins.  
All DUAL-type pins not actively used during configuration and all I/O-type, DCI-type, VREF-type, GCLK-type pins are high  
impedance (floating, three-stated, Hi-Z) during the configuration process. These pins are indicated in Table 79 as shaded  
table entries or cells. These pins have a pull-up resistor to their associated VCCO if the HSWAP_EN pin is Low. When  
HSWAP_EN is High, these pull-up resistors are disabled during configuration.  
Some pins always have an active pull-up resistor during configuration, regardless of the value applied to the HSWAP_EN  
pin. After configuration, these pull-up resistors are controlled by Bitstream Options.  
All the dedicated CONFIG-type configuration pins (CCLK, PROG_B, DONE, M2, M1, M0, and HSWAP_EN) have a  
pull-up resistor to VCCAUX.  
All JTAG-type pins (TCK, TDI, TMS, TDO) have a pull-up resistor to VCCAUX.  
The INIT_B DUAL-purpose pin has a pull-up resistor to VCCO_4 or VCCO_BOTTOM, depending on package style.  
After configuration completes, some pins have optional behavior controlled by the configuration bitstream loaded into the  
part. For example, via the bitstream, all unused I/O pins can be collectively configured as input pins with either a pull-up  
resistor, a pull-down resistor, or be left in a high-impedance state.  
Table 79: Pin Behavior After Power-Up, During Configuration  
Configuration Mode Settings <M2:M1:M0>  
Bitstream  
Pin Name  
Serial Modes  
SelectMap Parallel Modes  
Configuration  
Option  
JTAG Mode  
<1:0:1>  
Master <0:0:0> Slave <1:1:1>  
Master <0:1:1>  
Slave <1:1:0>  
I/O: General-purpose I/O pins  
IO  
UnusedPin  
UnusedPin  
IO_Lxxy_#  
DUAL: Dual-purpose configuration pins  
IO_Lxxy_#/  
DIN/D0  
DIN (I)  
DIN (I)  
D0 (I/O)  
D1 (I/O)  
D2 (I/O)  
D3 (I/O)  
D4 (I/O)  
D0 (I/O)  
D1 (I/O)  
D2 (I/O)  
D3 (I/O)  
D4 (I/O)  
Persist UnusedPin  
Persist UnusedPin  
Persist UnusedPin  
Persist UnusedPin  
Persist UnusedPin  
IO_Lxxy_#/  
D1  
IO_Lxxy_#/  
D2  
IO_Lxxy_#/  
D3  
IO_Lxxy_#/  
D4  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
122  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 79: Pin Behavior After Power-Up, During Configuration (Cont’d)  
Configuration Mode Settings <M2:M1:M0>  
Serial Modes SelectMap Parallel Modes  
Bitstream  
Configuration  
Option  
Pin Name  
JTAG Mode  
<1:0:1>  
Master <0:0:0>  
Slave <1:1:1>  
Master <0:1:1>  
Slave <1:1:0>  
IO_Lxxy_#/  
D5  
D5 (I/O)  
D5 (I/O)  
Persist UnusedPin  
Persist UnusedPin  
Persist UnusedPin  
Persist UnusedPin  
Persist UnusedPin  
Persist UnusedPin  
IO_Lxxy_#/  
D6  
D6 (I/O)  
D7 (I/O)  
D6 (I/O)  
D7 (I/O)  
IO_Lxxy_#/  
D7  
IO_Lxxy_#/  
CS_B  
CS_B (I)  
CS_B (I)  
IO_Lxxy_#/  
RDWR_B  
RDWR_B (I)  
BUSY (O)  
RDWR_B (I)  
BUSY (O)  
IO_Lxxy_#/  
DOUT (O)  
DOUT (O)  
BUSY/DOUT  
DUAL: Dual-purpose configuration pins (INIT_B has a pull-up resistor to VCCO_4 or VCCO_BOTTOM always active during  
configuration, regardless of HSWAP_EN pin)  
IO_Lxxy_#/  
INIT_B  
INIT_B (I/OD)  
INIT_B (I/OD)  
INIT_B (I/OD)  
INIT_B (I/OD)  
UnusedPin  
DCI: Digitally Controlled Impedance reference resistor input pins  
IO_Lxxy_#/  
VRN_#  
UnusedPin  
IO/VRN_#  
UnusedPin  
UnusedPin  
IO_Lxxy_#/  
VRP_#  
IO/VRP_#  
UnusedPin  
UnusedPin  
GCLK: Global clock buffer inputs  
IO_Lxxy_#/  
GCLK0 through  
GCLK7  
VREF: I/O bank input reference voltage pins  
IO_Lxxy_#/  
VREF_#  
UnusedPin  
UnusedPin  
IO/VREF_#  
CONFIG: Dedicated configuration pins (pull-up resistor to VCCAUX always active during configuration, regardless of  
HSWAP_EN pin)  
CCLK  
CCLK (I/O)  
CCLK (I)  
CCLK (I/O)  
CCLK (I)  
CclkPin ConfigRate  
ProgPin  
PROG_B  
PROG_B (I)  
(pull-up)  
PROG_B (I)  
(pull-up)  
PROG_B (I)  
(pull-up)  
PROG_B (I)  
(pull-up)  
PROG_B (I), Via  
JPROG_B  
instruction  
DONE  
DONE (I/OD)  
DONE (I/OD)  
DONE (I/OD)  
DONE (I/OD)  
DONE (I/OD)  
DriveDone  
DonePin DonePipe  
M2  
M2=0 (I)  
M1=0 (I)  
M2=1 (I)  
M1=1 (I)  
M2=0 (I)  
M1=1 (I)  
M2=1 (I)  
M1=1 (I)  
M2=1 (I)  
M1=0 (I)  
M2Pin  
M1Pin  
M1  
M0  
M0=0 (I)  
M0=1 (I)  
M0=1 (I)  
M0=0 (I)  
M0=1 (I)  
M0Pin  
HSWAP_EN  
HSWAP_EN (I)  
HSWAP_EN (I)  
HSWAP_EN (I)  
HSWAP_EN (I)  
HSWAP_EN (I)  
HswapenPin  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
123  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 79: Pin Behavior After Power-Up, During Configuration (Cont’d)  
Configuration Mode Settings <M2:M1:M0>  
Serial Modes SelectMap Parallel Modes  
Master <0:0:0> Slave <1:1:1> Master <0:1:1> Slave <1:1:0>  
Bitstream  
Configuration  
Option  
Pin Name  
JTAG Mode  
<1:0:1>  
JTAG: JTAG interface pins (pull-up resistor to VCCAUX always active during configuration, regardless of HSWAP_EN pin)  
TDI  
TDI (I)  
TMS (I)  
TCK (I)  
TDO (O)  
TDI (I)  
TMS (I)  
TCK (I)  
TDO (O)  
TDI (I)  
TMS (I)  
TCK (I)  
TDO (O)  
TDI (I)  
TMS (I)  
TCK (I)  
TDO (O)  
TDI (I)  
TMS (I)  
TCK (I)  
TDO (O)  
TdiPin  
TmsPin  
TckPin  
TdoPin  
TMS  
TCK  
TDO  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
124  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 79: Pin Behavior After Power-Up, During Configuration (Cont’d)  
Configuration Mode Settings <M2:M1:M0>  
Serial Modes SelectMap Parallel Modes  
Master <0:0:0> Slave <1:1:1> Master <0:1:1> Slave <1:1:0>  
VCCO: I/O bank output voltage supply pins  
Bitstream  
Configuration  
Option  
Pin Name  
JTAG Mode  
<1:0:1>  
VCCO_4  
(for DUAL pins)  
Same voltage as Same voltage as Same voltage as Same voltage as  
external interface external interface external interface external interface  
VCCO_4  
VCCO_5  
VCCO_#  
N/A  
N/A  
N/A  
VCCO_5  
(for DUAL pins)  
VCCO_5  
VCCO_5  
Same voltage as Same voltage as  
external interface external interface  
VCCO_#  
VCCO_#  
VCCO_#  
VCCO_#  
+2.5V  
+1.2V  
GND  
VCCO_#  
+2.5V  
+1.2V  
GND  
VCCAUX: Auxiliary voltage supply pins  
VCCAUX +2.5V  
+2.5V  
+2.5V  
+1.2V  
GND  
N/A  
N/A  
N/A  
VCCINT: Internal core voltage supply pins  
VCCINT  
+1.2V  
+1.2V  
GND: Ground supply pins  
GND  
GND  
GND  
Notes:  
1. #= I/O bank number, an integer from 0 to 7.  
2. (I) = input, (O) = output, (OD) = open-drain output, (I/O) = bidirectional, (I/OD) = bidirectional with open-drain output. Open-drain output  
requires pull-up to create logic High level.  
3.  
Shaded cell indicates that the pin is high-impedance during configuration. To enable a soft pull-up resistor during configuration, drive or  
tie HSWAP_EN Low.  
Bitstream Options  
Table 80 lists the various bitstream options that affect pins on a Spartan-3 FPGA. The table shows the names of the affected  
pins, describes the function of the bitstream option, the name of the bitstream generator option variable, and the legal values  
for each variable. The default option setting for each variable is indicated with bold, underlined text.  
Table 80: Bitstream Options Affecting Spartan-3 Device Pins  
Option  
Values  
Affected Pin Name(s)  
Bitstream Generation Function  
Variable  
Name  
(Default)  
All unused I/O pins of  
type I/O, DUAL, GCLK,  
DCI, VREF  
For all I/O pins that are unused in the application after configuration, this  
option defines whether the I/Os are individually tied to VCCO via a pull-up  
resistor, tied ground via a pull-down resistor, or left floating. If left floating,  
the unused pins should be connected to a defined logic level, either from  
a source internal to the FPGA or external.  
UnusedPin  
Pulldown  
Pullup  
Pullnone  
IO_Lxxy_#/DIN,  
IO_Lxxy_#/DOUT,  
IO_Lxxy_#/INIT_B  
Serial configuration mode: If set to Yes, then these pins retain their  
functionality after configuration completes, allowing for device  
(re-)configuration. Readback is not supported in with serial mode.  
Persist  
Persist  
No  
Yes  
IO_Lxxy_#/D0,  
IO_Lxxy_#/D1,  
IO_Lxxy_#/D2,  
IO_Lxxy_#/D3,  
IO_Lxxy_#/D4,  
IO_Lxxy_#/D5,  
IO_Lxxy_#/D6,  
IO_Lxxy_#/D7,  
IO_Lxxy_#/CS_B,  
IO_Lxxy_#/RDWR_B,  
IO_Lxxy_#/BUSY,  
IO_Lxxy_#/INIT_B  
Parallel configuration mode (also called SelectMAP): If set to Yes, then  
these pins retain their SelectMAP functionality after configuration  
completes, allowing for device readback and for partial or complete  
(re-)configuration.  
No  
Yes  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
125  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 80: Bitstream Options Affecting Spartan-3 Device Pins (Cont’d)  
Option  
Values  
Variable  
(Default)  
Name  
Affected Pin Name(s)  
Bitstream Generation Function  
CCLK  
After configuration, this bitstream option either pulls CCLK to VCCAUX via  
a pull-up resistor, or allows CCLK to float.  
CclkPin  
Pullup  
Pullnone  
CCLK  
For Master configuration modes, this option sets the approximate  
frequency, in MHz, for the internal silicon oscillator.  
ConfigRate  
ProgPin  
3, 6, 12, 25,  
50  
PROG_B  
A pull-up resistor to VCCAUX exists on PROG_B during configuration.  
After configuration, this bitstream option either pulls PROG_B to VCCAUX  
via a pull-up resistor, or allows PROG_B to float.  
Pullup  
Pullnone  
DONE  
DONE  
After configuration, this bitstream option either pulls DONE to VCCAUX via  
a pull-up resistor, or allows DONE to float. See also DriveDone option.  
DonePin  
Pullup  
Pullnone  
If set to Yes, this option allows the FPGA’s DONE pin to drive High when  
configuration completes. By default, the DONE is an open-drain output  
and can only drive Low. Only single FPGAs and the last FPGA in a  
multi-FPGA daisy-chain should use this option.  
DriveDone  
No  
Yes  
M2  
After configuration, this bitstream option either pulls M2 to VCCAUX via a  
pull-up resistor, to ground via a pull-down resistor, or allows M2 to float.  
M2Pin  
M1Pin  
Pullup  
Pulldown  
Pullnone  
M1  
After configuration, this bitstream option either pulls M1 to VCCAUX via a  
pull-up resistor, to ground via a pull-down resistor, or allows M1 to float.  
Pullup  
Pulldown  
Pullnone  
M0  
After configuration, this bitstream option either pulls M0 to VCCAUX via a  
pull-up resistor, to ground via a pull-down resistor, or allows M0 to float.  
M0Pin  
Pullup  
Pulldown  
Pullnone  
HSWAP_EN  
TDI  
After configuration, this bitstream option either pulls HSWAP_EN to  
VCCAUX via a pull-up resistor, to ground via a pull-down resistor, or allows  
HSWAP_EN to float.  
HswapenPin  
TdiPin  
Pullup  
Pulldown  
Pullnone  
After configuration, this bitstream option either pulls TDI to VCCAUX via a  
pull-up resistor, to ground via a pull-down resistor, or allows TDI to float.  
Pullup  
Pulldown  
Pullnone  
TMS  
TCK  
TDO  
After configuration, this bitstream option either pulls TMS to VCCAUX via  
a pull-up resistor, to ground via a pull-down resistor, or allows TMS to float.  
TmsPin  
TckPin  
Pullup  
Pulldown  
Pullnone  
After configuration, this bitstream option either pulls TCK to VCCAUX via  
a pull-up resistor, to ground via a pull-down resistor, or allows TCK to float.  
Pullup  
Pulldown  
Pullnone  
After configuration, this bitstream option either pulls TDO to VCCAUX via  
a pull-up resistor, to ground via a pull-down resistor, or allows TDO to float.  
TdoPin  
Pullup  
Pulldown  
Pullnone  
Setting Bitstream Generator Options  
®
Refer to the “BitGen” chapter in the Xilinx ISE software documentation.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
126  
Spartan-3 FPGA Family: Pinout Descriptions  
Package Overview  
Table 81 shows the 10 low-cost, space-saving production package styles for the Spartan-3 family. Each package style is  
available as a standard and an environmentally-friendly lead-free (Pb-free) option. The Pb-free packages include an extra  
‘G’ in the package style name. For example, the standard "VQ100" package becomes "VQG100" when ordered as the  
Pb-free option. The mechanical dimensions of the standard and Pb-free packages are similar, as shown in the mechanical  
drawings provided in Table 83.  
Not all Spartan-3 device densities are available in all packages. However, for a specific package there is a common footprint  
that supports the various devices available in that package. See the footprint diagrams that follow.  
Table 81: Spartan-3 Family Package Options  
Maximum  
I/O  
Pitch  
(mm)  
Footprint  
(mm)  
Height  
(mm)  
Package  
Leads  
Type  
VQ100 / VQG100  
CP132 / CPG132(1)  
TQ144 / TQG144  
PQ208 / PQG208  
FT256 / FTG256  
FG320 / FGG320  
FG456 / FGG456  
FG676 / FGG676  
FG900 / FGG900  
FG1156 / FGG1156(1)  
100  
132  
144  
208  
256  
320  
456  
676  
900  
1156  
Very-thin Quad Flat Pack  
Chip-Scale Package  
63  
89  
0.5  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
16 x 16  
8 x 8  
1.20  
1.10  
1.60  
4.10  
1.55  
2.00  
2.60  
2.60  
2.60  
2.60  
Thin Quad Flat Pack  
97  
22 x 22  
30.6 x 30.6  
17 x 17  
19 x 19  
23 x 23  
27 x 27  
31 x 31  
35 x 35  
Quad Flat Pack  
141  
173  
221  
333  
489  
633  
784  
Fine-pitch, Thin Ball Grid Array  
Fine-pitch Ball Grid Array  
Fine-pitch Ball Grid Array  
Fine-pitch Ball Grid Array  
Fine-pitch Ball Grid Array  
Fine-pitch Ball Grid Array  
Notes:  
1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See  
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.  
Selecting the Right Package Option  
Spartan-3 FPGAs are available in both quad-flat pack (QFP) and ball grid array (BGA) packaging options. While QFP  
packaging offers the lowest absolute cost, the BGA packages are superior in almost every other aspect, as summarized in  
Table 82. Consequently, Xilinx recommends using BGA packaging whenever possible.  
Table 82: Comparing Spartan-3 Device Packaging Options  
Characteristic  
Quad Flat-Pack (QFP)  
Ball Grid Array (BGA)  
Maximum User I/O  
141  
Good  
Fair  
633  
Better  
Better  
Better  
Better  
6
Packing Density (Logic/Area)  
Signal Integrity  
Simultaneous Switching Output (SSO) Support  
Thermal Dissipation  
Limited  
Fair  
Minimum Printed Circuit Board (PCB) Layers  
Hand Assembly/Rework  
4
Possible  
Very Difficult  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
127  
Spartan-3 FPGA Family: Pinout Descriptions  
Mechanical Drawings  
Detailed mechanical drawings for each package type are available from the Xilinx website at the specified location in  
Table 83.  
Material Declaration Data Sheets (MDDS) are also available on the Xilinx website for each package.  
Table 83: Xilinx Package Mechanical Drawings  
Package  
VQ100 and VQG100  
Web Link (URL)  
http://www.xilinx.com/support/documentation/package_specs/vq100.pdf  
http://www.xilinx.com/support/documentation/package_specs/cp132.pdf  
http://www.xilinx.com/support/documentation/package_specs/tq144.pdf  
http://www.xilinx.com/support/documentation/package_specs/pq208.pdf  
http://www.xilinx.com/support/documentation/package_specs/ft256.pdf  
http://www.xilinx.com/support/documentation/package_specs/fg320.pdf  
http://www.xilinx.com/support/documentation/package_specs/fg456.pdf  
http://www.xilinx.com/support/documentation/package_specs/fg676.pdf  
http://www.xilinx.com/support/documentation/package_specs/fg900.pdf  
http://www.xilinx.com/support/documentation/package_specs/fg1156.pdf  
CP132 and CPG132(1)  
TQ144 and TQG144  
PQ208 and PQG208  
FT256 and FTG256  
FG320 and FGG320  
FG456 and FGG456  
FG676 and FGG676  
FG900 and FGG900  
FG1156 and FGG1156(1)  
Notes:  
1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See  
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.  
Power, Ground, and I/O by Package  
Each package has three separate voltage supply inputs—VCCINT, VCCAUX, and VCCO—and a common ground return,  
GND. The numbers of pins dedicated to these functions varies by package, as shown in Table 84.  
Table 84: Power and Ground Supply Pins by Package  
Package  
VQ100  
VCCINT  
VCCAUX  
VCCO  
8
GND  
10  
4
4
4
4
CP132(1)  
TQ144  
PQ208  
FT256  
12  
12  
4
4
12  
16  
4
8
12  
28  
8
8
24  
32  
FG320  
FG456  
FG676  
FG900  
FG1156(1)  
12  
12  
20  
32  
40  
8
28  
40  
8
40  
52  
16  
24  
32  
64  
76  
80  
120  
184  
104  
Notes:  
1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See  
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.  
A majority of package pins are user-defined I/O pins. However, the numbers and characteristics of these I/O depends on the  
device type and the package in which it is available, as shown in Table 85. The table shows the maximum number of  
single-ended I/O pins available, assuming that all I/O-, DUAL-, DCI-, VREF-, and GCLK-type pins are used as  
general-purpose I/O. Likewise, the table shows the maximum number of differential pin-pairs available on the package.  
Finally, the table shows how the total maximum user I/Os are distributed by pin type, including the number of  
unconnected—i.e., N.C.—pins on the device.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
128  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 85: Maximum User I/Os by Package  
Maximum  
Differential  
Pairs  
All Possible I/O Pins by Type  
N.C.  
Maximum  
User I/Os  
Device  
Package  
I/O  
DUAL  
DCI  
VREF  
GCLK  
XC3S50  
VQ100  
VQ100  
CP132(1)  
TQ144  
TQ144  
TQ144  
PQ208  
PQ208  
PQ208  
FT256  
63  
29  
29  
22  
22  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
0
0
XC3S200  
XC3S50  
63  
7
89  
44  
44  
11  
12  
12  
12  
16  
22  
22  
24  
24  
24  
29  
29  
29  
32  
36  
36  
36  
40  
48  
48  
48  
48  
48  
48  
48  
55  
56  
0
XC3S50  
97  
46  
51  
0
XC3S200  
XC3S400  
XC3S50  
97  
46  
51  
0
97  
46  
51  
0
124  
141  
141  
173  
173  
173  
221  
221  
221  
264  
333  
333  
333  
391  
487  
489  
489  
489  
565  
633  
633  
712  
784  
56  
72  
17  
0
XC3S200  
XC3S400  
XC3S200  
XC3S400  
XC3S1000  
XC3S400  
XC3S1000  
XC3S1500  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S4000  
XC3S5000  
62  
83  
62  
83  
0
76  
113  
113  
113  
156  
156  
156  
196  
261  
261  
261  
315  
403  
405  
405  
405  
481  
549  
549  
621  
692  
0
FT256  
76  
0
FT256  
76  
0
FG320  
FG320  
FG320  
FG456  
FG456  
FG456  
FG456  
FG676  
FG676  
FG676  
FG676  
FG676  
FG900  
FG900  
FG900  
FG1156(1)  
FG1156(1)  
100  
100  
100  
116  
149  
149  
149  
175  
221  
221  
221  
221  
270  
300  
300  
312  
344  
0
0
0
69  
0
0
0
98  
2
0
0
0
68  
0
0
73  
1
Notes:  
1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See  
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.  
Electronic versions of the package pinout tables and footprints are available for download from the Xilinx website. Using a  
spreadsheet program, the data can be sorted and reformatted according to any specific needs. Similarly, the ASCII-text file  
is easily parsed by most scripting programs. Download the files from the following location:  
http://www.xilinx.com/support/documentation/data_sheets/s3_pin.zip  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
129  
Spartan-3 FPGA Family: Pinout Descriptions  
Package Thermal Characteristics  
The power dissipated by an FPGA application has implications on package selection and system design. The power  
consumed by a Spartan-3 FPGA is reported using either the XPower Estimator (XPE) or the XPower Analyzer integrated in  
the Xilinx ISE development software. Table 86 provides the thermal characteristics for the various Spartan-3 device/package  
offerings.  
The junction-to-case thermal resistance (θ ) indicates the difference between the temperature measured on the package  
JC  
body (case) and the die junction temperature per watt of power consumption. The junction-to-board (θ ) value similarly  
JB  
reports the difference between the board and junction temperature. The junction-to-ambient (θ ) value reports the  
JA  
temperature difference per watt between the ambient environment and the junction temperature. The θ value is reported  
JA  
at different air velocities, measured in linear feet per minute (LFM). The “Still Air (0 LFM)” column shows the θ value in a  
JA  
system without a fan. The thermal resistance drops with increasing air flow.  
Table 86: Spartan-3 FPGA Package Thermal Characteristics  
Junction-to-Ambient (θJA) at Different Air Flows  
Junction-to-  
Junction-to-B  
oard (θJB)  
Package  
Device  
Units  
Still Air  
(0 LFM)  
Case (θJC  
)
250 LFM  
500 LFM  
750 LFM  
XC3S50  
XC3S200  
XC3S50  
12.0  
10.0  
14.5  
7.6  
6.6  
6.1  
10.6  
8.6  
7.5  
9.9  
7.9  
5.6  
8.9  
7.8  
6.7  
8.4  
6.4  
4.9  
3.7  
6.0  
4.9  
4.1  
3.6  
3.4  
3.7  
3.3  
2.9  
46.2  
40.5  
53.0  
41.0  
34.5  
32.8  
37.4  
36.2  
35.4  
31.7  
28.4  
24.8  
24.4  
22.3  
20.3  
20.8  
19.3  
18.3  
17.7  
17.9  
16.8  
15.6  
15.0  
14.7  
14.3  
13.6  
13.1  
38.4  
33.7  
46.4  
31.9  
26.9  
25.5  
27.6  
26.7  
26.1  
25.6  
22.8  
19.2  
19.0  
17.0  
15.18  
15.1  
13.4  
12.4  
11.7  
13.7  
12.4  
11.1  
10.5  
10.3  
10.3  
9.7  
35.8  
31.3  
44.0  
27.2  
23.0  
21.8  
24.4  
23.6  
23.1  
24.5  
21.5  
18.0  
17.8  
15.8  
13.8  
13.9  
12.3  
11.2  
10.5  
12.6  
11.3  
9.9  
34.9  
30.5  
42.5  
25.6  
21.6  
20.4  
22.6  
21.9  
21.4  
24.2  
21.0  
17.5  
17.0  
15.0  
13.1  
13.4  
11.7  
10.7  
10.0  
12.0  
10.7  
9.3  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
VQ(G)100  
CP(G)132(1)  
32.8  
XC3S50  
TQ(G)144  
PQ(G)208  
FT(G)256  
FG(G)320  
XC3S200  
XC3S400  
XC3S50  
XC3S200  
XC3S400  
XC3S200  
XC3S400  
XC3S1000  
XC3S400  
XC3S1000  
XC3S1500  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S2000  
XC3S4000  
XC3S5000  
22.9  
19.0  
14.7  
13.9  
11.8  
9.8  
13.6  
10.6  
8.3  
6.5  
10.4  
8.8  
7.9  
7.0  
6.3  
7.0  
6.4  
5.9  
FG(G)456  
FG(G)676  
FG(G)900  
9.3  
8.7  
9.1  
8.5  
9.3  
8.8  
8.7  
8.2  
9.2  
8.1  
7.6  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
130  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 86: Spartan-3 FPGA Package Thermal Characteristics (Cont’d)  
Junction-to-Ambient (θJA) at Different Air Flows  
Junction-to-  
Junction-to-B  
oard (θJB)  
Package  
Device  
Units  
Still Air  
Case (θJC  
)
250 LFM  
500 LFM  
750 LFM  
(0 LFM)  
XC3S4000  
XC3S5000  
1.9  
1.9  
14.7  
11.4  
11.3  
10.1  
10.0  
9.0  
8.9  
°C/Watt  
°C/Watt  
FG(G)1156(1)  
8.9  
14.5  
Notes:  
1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See  
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.  
VQ100: 100-lead Very-Thin Quad Flat Package  
The XC3S50 and the XC3S200 devices are available in the 100-lead very-thin quad flat package, VQ100. Both devices  
share a common footprint for this package as shown in Table 87 and Figure 44.  
All the package pins appear in Table 87 and are sorted by bank number, then by pin name. Pairs of pins that form a  
differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as  
defined earlier.  
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at  
http://www.xilinx.com/support/documentation/data_ sheets/s3_pin.zip.  
Pinout Table  
Table 87: VQ100 Package Pinout  
XC3S50  
XC3S200  
Pin Name  
VQ100  
Pin  
Number  
Bank  
Type  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L31N_0  
P97  
P96  
P92  
P91  
P90  
P89  
P94  
P81  
P80  
P79  
P86  
P85  
P88  
P87  
P83  
P75  
P74  
P72  
P71  
P68  
P67  
DCI  
DCI  
I/O  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
VREF  
GCLK  
GCLK  
VCCO  
I/O  
IO  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
DCI  
DCI  
VREF  
I/O  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
GCLK  
GCLK  
VCCO  
DCI  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L21N_2  
DCI  
I/O  
IO_L21P_2  
I/O  
IO_L24N_2  
I/O  
IO_L24P_2  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
131  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 87: VQ100 Package Pinout (Cont’d)  
XC3S50  
XC3S200  
Pin Name  
VQ100  
Bank  
Pin  
Type  
Number  
2
2
2
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
IO_L40N_2  
P65  
P64  
P70  
P55  
P59  
P54  
P53  
P61  
P60  
P63  
P62  
P57  
P50  
P49  
P48  
P47  
P44  
P43  
P42  
P40  
P39  
P38  
P46  
P28  
P27  
P32  
P30  
P35  
P34  
P37  
P36  
P31  
P17  
P21  
P23  
P22  
P16  
P15  
P14  
I/O  
VREF  
VCCO  
I/O  
IO_L40P_2/VREF_2  
VCCO_2  
IO  
IO  
I/O  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L24N_3  
DCI  
DCI  
I/O  
IO_L24P_3  
I/O  
IO_L40N_3/VREF_3  
IO_L40P_3  
VREF  
I/O  
VCCO_3  
VCCO  
DCI  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L31P_4/DOUT/BUSY  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
DCI  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
I/O  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
IO  
IO  
I/O  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
DCI  
DCI  
VREF  
I/O  
IO_L40N_6  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
132  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 87: VQ100 Package Pinout (Cont’d)  
XC3S50  
XC3S200  
Pin Name  
VQ100  
Bank  
Pin  
Type  
Number  
6
IO_L40P_6/VREF_6  
VCCO_6  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L21N_7  
IO_L21P_7  
IO_L23N_7  
IO_L23P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
GND  
P13  
P19  
P2  
VREF  
VCCO  
DCI  
6
7
7
P1  
DCI  
7
P5  
I/O  
7
P4  
I/O  
7
P9  
I/O  
7
P8  
I/O  
7
P12  
P11  
P6  
VREF  
I/O  
7
7
VCCO  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
P3  
GND  
P10  
P20  
P29  
P41  
P56  
P66  
P73  
P82  
P95  
P7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
P33  
P58  
P84  
P18  
P45  
P69  
P93  
P52  
P51  
P98  
P25  
P24  
P26  
P99  
P77  
P100  
VCCINT  
VCCINT  
VCCINT  
VCCAUX CCLK  
VCCAUX DONE  
VCCAUX HSWAP_EN  
VCCAUX M0  
VCCAUX M1  
VCCAUX M2  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
JTAG  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
133  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 87: VQ100 Package Pinout (Cont’d)  
XC3S50  
XC3S200  
Pin Name  
VQ100  
Bank  
Pin  
Type  
Number  
VCCAUX TDO  
VCCAUX TMS  
P76  
P78  
JTAG  
JTAG  
User I/Os by Bank  
Table 88 indicates how the available user-I/O pins are distributed between the eight I/O banks on the VQ100 package.  
Table 88: User I/Os Per Bank in VQ100 Package  
All Possible I/O Pins by Type  
Package Edge  
Top  
I/O Bank  
Maximum I/O  
I/O  
1
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
6
7
0
0
0
0
6
6
0
0
1
1
1
1
0
0
2
1
2
2
0
0
2
2
0
0
2
2
8
5
2
Right  
8
5
2
10  
8
0
2
Bottom  
Left  
0
0
8
4
2
8
5
2
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
134  
Spartan-3 FPGA Family: Pinout Descriptions  
VQ100 Footprint  
X-Ref Target - Figure 44  
IO_L01P_7/VRN_7  
1
2
75 IO_L01N_2/VRP_2  
Bank 0  
Bank 1  
74 IO_L01P_2/VRN_2  
73 GND  
IO_L01N_7/VRP_7  
GND  
3
IO_L21P_7  
IO_L21N_7  
4
72 IO_L21N_2  
71 IO_L21P_2  
70 VCCO_2  
5
6
VCCO_7  
VCCAUX  
7
69 VCCINT  
IO_L23P_7  
IO_L23N_7  
8
68 IO_L24N_2  
67 IO_L24P_2  
66 GND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GND  
IO_L40P_7  
65 IO_L40N_2  
64 IO_L40P_2/VREF_2  
63 IO_L40N_3/VREF_3  
62 IO_L40P_3  
61 IO_L24N_3  
60 IO_L24P_3  
59 IO  
IO_L40N_7/VREF_7  
IO_L40P_6/VREF_6  
IO_L40N_6  
IO_L24P_6  
IO_L24N_6/VREF_6  
IO  
VCCINT  
58 VCCAUX  
57 VCCO_3  
VCCO_6  
56 GND  
GND  
55 IO  
IO  
IO_L01P_6/VRN_6  
54 IO_L01N_3/VRP_3  
53 IO_L01P_3/VRN_3  
52 CCLK  
IO_L01N_6/VRP_6  
M1  
M0  
Bank 5  
Bank 4  
no VREF, no DCI)  
(no VREF)  
(
51 DONE  
DS099-4_15_042303  
Figure 44: VQ100 Package Footprint (Top View). Note pin 1 indicator in top-left corner and logo orientation.  
DUAL: Configuration pin, then possible  
VREF: User I/O or input voltage reference for  
22 I/O: Unrestricted, general-purpose user I/O  
12  
8
7
8
4
4
user I/O  
bank  
DCI: User I/O or reference resistor input for  
GCLK: User I/O or global clock buffer  
input  
14  
7
VCCO: Output voltage supply for bank  
VCCINT: Internal core voltage supply (+1.2V)  
VCCAUX: Auxiliary voltage supply (+2.5V)  
bank  
CONFIG: Dedicated configuration pins  
4
JTAG: Dedicated JTAG port pins  
0
N.C.: No unconnected pins in this package  
10 GND: Ground  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
135  
Spartan-3 FPGA Family: Pinout Descriptions  
CP132: 132-Ball Chip-Scale Package  
Note: The CP132 and CPG132 packages are discontinued. See  
www.xilinx.com/support/documentation/spartan-3.htm#19600.  
The pinout and footprint for the XC3S50 in the 132-ball chip-scale package, CP132, appear in Table 89 and Figure 45.  
All the package pins appear in Table 89 and are sorted by bank number, then by pin name. Pins that form a differential I/O  
pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.  
The CP132 footprint has eight I/O banks. However, the voltage supplies for the two I/O banks along an edge are connected  
together internally. Consequently, there are four output voltage supplies, labeled VCCO_TOP, VCCO_RIGHT,  
VCCO_BOTTOM, and VCCO_LEFT.  
Pinout Table  
Table 89: CP132 Package Pinout  
CP132  
Ball  
Bank  
XC3S50 Pin Name  
Type  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L27N_0  
A3  
DCI  
DCI  
I/O  
C4  
C5  
IO_L27P_0  
B5  
I/O  
IO_L30N_0  
B6  
I/O  
IO_L30P_0  
A6  
I/O  
IO_L31N_0  
C7  
I/O  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L27N_1  
B7  
VREF  
GCLK  
GCLK  
DCI  
DCI  
I/O  
A7  
C8  
A13  
B13  
C11  
A12  
A11  
B11  
C9  
IO_L27P_1  
I/O  
IO_L28N_1  
I/O  
IO_L28P_1  
I/O  
IO_L31N_1/VREF_1  
IO_L31P_1  
VREF  
I/O  
A10  
A8  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L20N_2  
GCLK  
GCLK  
DCI  
DCI  
I/O  
A9  
D12  
C14  
E12  
E13  
E14  
F12  
F13  
F14  
G12  
IO_L20P_2  
I/O  
IO_L21N_2  
I/O  
IO_L21P_2  
I/O  
IO_L23N_2/VREF_2  
IO_L23P_2  
VREF  
I/O  
IO_L24N_2  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
136  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 89: CP132 Package Pinout (Cont’d)  
CP132  
Ball  
Bank  
XC3S50 Pin Name  
IO_L24P_2  
Type  
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
6
6
6
G13  
G14  
H12  
N13  
N14  
L12  
M14  
L14  
L13  
K13  
K12  
J12  
K14  
H14  
J13  
N12  
P12  
M11  
M10  
N10  
N9  
I/O  
I/O  
IO_L40N_2  
IO_L40P_2/VREF_2  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L20N_3  
VREF  
DCI  
DCI  
I/O  
IO_L20P_3  
I/O  
IO_L22N_3  
I/O  
IO_L22P_3  
I/O  
IO_L23N_3  
I/O  
IO_L23P_3/VREF_3  
IO_L24N_3  
VREF  
I/O  
IO_L24P_3  
I/O  
IO_L40N_3/VREF_3  
IO_L40P_3  
VREF  
I/O  
IO/VREF_4  
VREF  
DCI  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L31P_4/DOUT/BUSY  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L27N_5/VREF_5  
IO_L27P_5  
DCI  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
DUAL  
DUAL  
VREF  
I/O  
P9  
M8  
N8  
P8  
M7  
P2  
N2  
M4  
P3  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L20N_6  
P4  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
DCI  
N4  
M6  
P5  
P7  
P6  
L3  
M1  
DCI  
K3  
I/O  
IO_L20P_6  
K2  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
137  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 89: CP132 Package Pinout (Cont’d)  
CP132  
Ball  
Bank  
XC3S50 Pin Name  
IO_L22N_6  
Type  
6
6
K1  
J3  
I/O  
I/O  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
IO_L40N_6  
IO_L40P_6/VREF_6  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_TOP  
VCCO_TOP  
VCCO_TOP  
VCCO_RIGHT  
VCCO_RIGHT  
VCCO_RIGHT  
VCCO_BOTTOM  
VCCO_BOTTOM  
VCCO_BOTTOM  
VCCO_LEFT  
VCCO_LEFT  
VCCO_LEFT  
GND  
6
J2  
I/O  
6
J1  
I/O  
6
H3  
H2  
H1  
G3  
B2  
VREF  
I/O  
6
6
I/O  
6
VREF  
DCI  
7
7
B1  
DCI  
7
C1  
D3  
D1  
D2  
E2  
I/O  
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
E3  
I/O  
7
F3  
I/O  
7
E1  
I/O  
7
G1  
F2  
VREF  
I/O  
7
0,1  
0,1  
0,1  
2,3  
2,3  
2,3  
4,5  
4,5  
4,5  
6,7  
6,7  
6,7  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
B12  
A4  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B8  
D13  
H13  
M12  
N7  
P11  
N3  
G2  
L2  
C3  
B4  
GND  
B9  
GND  
C2  
C12  
D14  
F1  
GND  
GND  
GND  
GND  
J14  
L1  
GND  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
138  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 89: CP132 Package Pinout (Cont’d)  
CP132  
Ball  
Bank  
XC3S50 Pin Name  
GND  
Type  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
M3  
M13  
N6  
GND  
GND  
GND  
GND  
GND  
GND  
N11  
A5  
GND  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
C10  
M5  
P10  
B10  
C6  
M9  
N5  
VCCAUX CCLK  
VCCAUX DONE  
VCCAUX HSWAP_EN  
VCCAUX M0  
P14  
P13  
B3  
N1  
VCCAUX M1  
M2  
P1  
VCCAUX M2  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
A2  
B14  
A1  
JTAG  
VCCAUX TDO  
VCCAUX TMS  
C13  
A14  
JTAG  
JTAG  
User I/Os by Bank  
Table 90 indicates how the 89 available user-I/O pins are distributed between the eight I/O banks on the CP132 package.  
There are only four output banks, each with its own VCCO voltage input.  
Table 90: User I/Os Per Bank for XC3S50 in CP132 Package  
All Possible I/O Pins by Type  
Package Edge  
Top  
I/O Bank  
Maximum I/O  
I/O  
5
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
10  
10  
12  
12  
11  
10  
12  
12  
0
0
0
0
6
6
0
0
1
1
2
2
1
1
2
1
2
2
0
0
2
2
0
0
5
2
8
2
Right  
8
2
0
2
Bottom  
Left  
1
0
8
2
9
2
Notes:  
1. The CP132 and CPG132 packages are discontinued. See www.xilinx.com/support/documentation/spartan-3.htm#19600.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
139  
Spartan-3 FPGA Family: Pinout Descriptions  
CP132 Footprint  
X-Ref Target - Figure 45  
VCCO_TOP for Top Edge Outputs  
Bank 0  
5
Bank 1  
1
2
3
4
6
7
8
9
10  
11  
12  
13  
14  
I/O  
L32N_0  
GCLK7  
I/O  
L32N_1  
GCLK5  
I/O  
L32P_1  
GCLK4  
I/O  
L01N_0  
VRP_0  
I/O  
L01N_1  
VRP_1  
VCCO_  
TOP  
I/O  
L30P_0  
I/O  
L31P_1  
I/O  
L28N_1  
I/O  
L27P_1  
PROG_B  
VCCAUX  
TDI  
TMS  
A
B
C
D
E
F
I/O  
I/O  
L01N_7  
VRP_7  
I/O  
L31P_0  
VREF_0  
I/O  
L01P_1  
VRN_1  
VCCO_  
TOP  
VCCO_  
TOP  
HSWAP_  
EN  
I/O  
L27P_0  
I/O  
L30N_0  
I/O  
L28P_1  
GND  
GND  
VCCINT  
TCK  
L01P_7  
VRN_7  
I/O  
L01P_2  
VRN_2  
I/O  
L32P_0  
GCLK6  
I/O  
L31N_1  
VREF_1  
I/O  
L01P_0  
VRN_0  
VCCO_  
LEFT  
I/O  
L21N_7  
I/O  
L27N_0  
I/O  
L31N_0  
I/O  
L27N_1  
GND  
VCCINT  
VCCAUX  
TDO  
GND  
I/O  
L01N_2  
VRP_2  
VCCO_  
RIGHT  
I/O  
L22N_7  
I/O  
L22P_7  
I/O  
L21P_7  
GND  
I/O  
L23N_7  
I/O  
L23P_7  
I/O  
L24P_7  
I/O  
L20N_2  
I/O  
L20P_2  
I/O  
L21N_2  
I/O  
L23N_2  
VREF_2  
I/O  
L40P_7  
I/O  
L24N_7  
I/O  
L21P_2  
I/O  
L23P_2  
GND  
I/O  
L40N_7  
VREF_7  
I/O  
L40P_6  
VREF_6  
I/O  
L24N_2  
I/O  
L24P_2  
I/O  
L40N_2  
VCCO_  
LEFT  
G
H
J
I/O  
L24N_6  
VREF_6  
I/O  
L40P_2  
VREF_2  
I/O  
L40N_3  
VREF_3  
VCCO_  
RIGHT  
I/O  
L40N_6  
I/O  
L24P_6  
I/O  
L24N_3  
I/O  
L40P_3  
I/O  
L23P_6  
I/O  
L23N_6  
I/O  
L22P_6  
GND  
I/O  
L23P_3  
VREF_3  
I/O  
L23N_3  
I/O  
L24P_3  
I/O  
L22N_6  
I/O  
L20P_6  
I/O  
L20N_6  
K
L
I/O  
L01N_6  
VRP_6  
VCCO_  
LEFT  
I/O  
L20N_3  
I/O  
L22P_3  
I/O  
L22N_3  
GND  
I/O  
L27N_4  
DIN  
I/O  
L32P_4  
GCLK0  
I/O  
L01P_6  
VRN_6  
I/O  
I/O  
L31N_5  
D4  
I/O  
L31N_4  
INIT_B  
VCCO_  
RIGHT  
GND  
GND  
VCCINT  
M1  
L27N_5 VCCAUX  
VREF_5  
M
N
P
L01P_4  
VRN_4  
L20P_3  
D0  
I/O  
I/O  
L01P_5  
CS_B  
I/O  
L28P_5  
D7  
I/O  
L30N_4  
D2  
I/O  
L27P_4  
D1  
I/O  
L01N_3  
VRP_3  
I/O  
L01P_3  
VRN_3  
VCCO_  
BOTTOM  
VCCO_  
BOTTOM  
L31P_4  
DOUT  
BUSY  
I/O  
VREF_4  
VCCINT  
GND  
GND  
M0  
M2  
I/O  
L01N_5  
RDWR_B  
I/O  
L28N_5  
D6  
I/O  
L31P_5  
D5  
I/O  
L32P_5  
GCLK2  
I/O  
L32N_5  
GCLK3  
I/O  
L32N_4  
GCLK1  
I/O  
L30P_4  
D3  
I/O  
L01N_4  
VRP_4  
VCCO_  
BOTTOM  
I/O  
L27P_5  
VCCAUX  
DONE  
CCLK  
Bank 5  
VCCO_BOTTOM for Bottom Edge Outputs  
Bank 4  
DS099-4_17_011005  
Figure 45: CP132 Package Footprint (Top View). Note pin 1 indicator in top-left corner and logo orientation.  
DUAL: Configuration pin, then possible  
VREF: User I/O or input voltage reference for  
44 I/O: Unrestricted, general-purpose user I/O  
12  
8
11  
user I/O  
bank  
DCI: User I/O or reference resistor input for  
GCLK: User I/O, input, or global buffer  
input  
14  
12 VCCO: Output voltage supply for bank  
bank  
7
0
CONFIG: Dedicated configuration pins  
4
JTAG: Dedicated JTAG port pins  
4
4
VCCINT: Internal core voltage supply (+1.2V)  
VCCAUX: Auxiliary voltage supply (+2.5V)  
N.C.: No unconnected pins in this package  
12 GND: Ground  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
140  
Spartan-3 FPGA Family: Pinout Descriptions  
TQ144: 144-lead Thin Quad Flat Package  
The XC3S50, the XC3S200, and the XC3S400 are available in the 144-lead thin quad flat package, TQ144. All devices  
share a common footprint for this package as shown in Table 91 and Figure 46.  
The TQ144 package only has four separate VCCO inputs, unlike the BGA packages, which have eight separate VCCO  
inputs. The TQ144 package has a separate VCCO input for the top, bottom, left, and right. However, there are still eight  
separate I/O banks, as shown in Table 91 and Figure 46. Banks 0 and 1 share the VCCO_TOP input, Banks 2 and 3 share  
the VCCO_RIGHT input, Banks 4 and 5 share the VCCO_BOTTOM input, and Banks 6 and 7 share the VCCO_LEFT input.  
All the package pins appear in Table 91 and are sorted by bank number, then by pin name. Pairs of pins that form a  
differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as  
defined earlier.  
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at  
http://www.xilinx.com/support/documentation/data_ sheets/s3_pin.zip.  
Pinout Table  
Table 91: TQ144 Package Pinout  
XC3S50, XC3S200,  
XC3S400 Pin Name  
TQ144 Pin  
Number  
Bank  
Type  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L27N_0  
P141  
P140  
P137  
P135  
P132  
P131  
P130  
P129  
P128  
P127  
P116  
P113  
P112  
P119  
P118  
P123  
P122  
P125  
P124  
P108  
P107  
P105  
P104  
P103  
P102  
P100  
P99  
DCI  
DCI  
I/O  
IO_L27P_0  
I/O  
IO_L30N_0  
I/O  
IO_L30P_0  
I/O  
IO_L31N_0  
I/O  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
IO  
VREF  
GCLK  
GCLK  
I/O  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L28N_1  
DCI  
DCI  
I/O  
IO_L28P_1  
I/O  
IO_L31N_1/VREF_1  
IO_L31P_1  
VREF  
I/O  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L20N_2  
GCLK  
GCLK  
DCI  
DCI  
I/O  
IO_L20P_2  
I/O  
IO_L21N_2  
I/O  
IO_L21P_2  
I/O  
IO_L22N_2  
I/O  
IO_L22P_2  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
141  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 91: TQ144 Package Pinout (Cont’d)  
XC3S50, XC3S200,  
XC3S400 Pin Name  
TQ144 Pin  
Bank  
Type  
Number  
P98  
P97  
P96  
P95  
P93  
P92  
P76  
P74  
P73  
P78  
P77  
P80  
P79  
P83  
P82  
P85  
P84  
P87  
P86  
P90  
P89  
P70  
P69  
P68  
P65  
P63  
P60  
P59  
P58  
P57  
P56  
P55  
P44  
P41  
P40  
P47  
P46  
P51  
P50  
P53  
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
IO_L23N_2/VREF_2  
IO_L23P_2  
VREF  
I/O  
IO_L24N_2  
I/O  
IO_L24P_2  
I/O  
IO_L40N_2  
I/O  
IO_L40P_2/VREF_2  
IO  
VREF  
I/O  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L20N_3  
DCI  
DCI  
I/O  
IO_L20P_3  
I/O  
IO_L21N_3  
I/O  
IO_L21P_3  
I/O  
IO_L22N_3  
I/O  
IO_L22P_3  
I/O  
IO_L23N_3  
I/O  
IO_L23P_3/VREF_3  
IO_L24N_3  
VREF  
I/O  
IO_L24P_3  
I/O  
IO_L40N_3/VREF_3  
IO_L40P_3  
VREF  
I/O  
IO/VREF_4  
VREF  
DCI  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L31P_4/DOUT/BUSY  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
IO/VREF_5  
DCI  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VREF  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
142  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 91: TQ144 Package Pinout (Cont’d)  
XC3S50, XC3S200,  
XC3S400 Pin Name  
TQ144 Pin  
Bank  
Type  
Number  
P52  
P36  
P35  
P33  
P32  
P31  
P30  
P28  
P27  
P26  
P25  
P24  
P23  
P21  
P20  
P4  
5
6
IO_L32P_5/GCLK2  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L20N_6  
GCLK  
DCI  
6
DCI  
6
I/O  
6
IO_L20P_6  
I/O  
6
IO_L21N_6  
I/O  
6
IO_L21P_6  
I/O  
6
IO_L22N_6  
I/O  
6
IO_L22P_6  
I/O  
6
IO_L23N_6  
I/O  
6
IO_L23P_6  
I/O  
6
IO_L24N_6/VREF_6  
IO_L24P_6  
VREF  
I/O  
6
6
IO_L40N_6  
I/O  
6
IO_L40P_6/VREF_6  
IO/VREF_7  
VREF  
VREF  
DCI  
7
7
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L20N_7  
P2  
7
P1  
DCI  
7
P6  
I/O  
7
IO_L20P_7  
P5  
I/O  
7
IO_L21N_7  
P8  
I/O  
7
IO_L21P_7  
P7  
I/O  
7
IO_L22N_7  
P11  
P10  
P13  
P12  
P15  
P14  
P18  
P17  
P126  
P138  
P115  
P106  
P75  
P91  
P54  
P43  
P66  
P19  
I/O  
7
IO_L22P_7  
I/O  
7
IO_L23N_7  
I/O  
7
IO_L23P_7  
I/O  
7
IO_L24N_7  
I/O  
7
IO_L24P_7  
I/O  
7
IO_L40N_7/VREF_7  
IO_L40P_7  
VREF  
I/O  
7
0,1  
0,1  
0,1  
2,3  
2,3  
2,3  
4,5  
4,5  
4,5  
6,7  
VCCO_TOP  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO_TOP  
VCCO_TOP  
VCCO_RIGHT  
VCCO_RIGHT  
VCCO_RIGHT  
VCCO_BOTTOM  
VCCO_BOTTOM  
VCCO_BOTTOM  
VCCO_LEFT  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
143  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 91: TQ144 Package Pinout (Cont’d)  
XC3S50, XC3S200,  
XC3S400 Pin Name  
TQ144 Pin  
Number  
Bank  
Type  
6,7  
6,7  
VCCO_LEFT  
VCCO_LEFT  
GND  
P34  
VCCO  
VCCO  
GND  
P3  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
P136  
P139  
P114  
P117  
P94  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
P101  
P81  
GND  
GND  
GND  
GND  
P88  
GND  
GND  
P64  
GND  
GND  
P67  
GND  
GND  
P42  
GND  
GND  
P45  
GND  
GND  
P22  
GND  
GND  
P29  
GND  
GND  
P9  
GND  
GND  
P16  
GND  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
P134  
P120  
P62  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
P48  
P133  
P121  
P61  
P49  
VCCAUX CCLK  
VCCAUX DONE  
VCCAUX HSWAP_EN  
VCCAUX M0  
P72  
P71  
P142  
P38  
VCCAUX M1  
P37  
VCCAUX M2  
P39  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
P143  
P110  
P144  
P109  
P111  
JTAG  
VCCAUX TDO  
VCCAUX TMS  
JTAG  
JTAG  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
144  
Spartan-3 FPGA Family: Pinout Descriptions  
User I/Os by Bank  
Table 92 indicates how the available user-I/O pins are distributed between the eight I/O banks on the TQ144 package.  
Table 92: User I/Os Per Bank in TQ144 Package  
All Possible I/O Pins by Type  
Package Edge  
Top  
I/O Bank  
Maximum I/O  
I/O  
5
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
10  
9
0
0
0
0
6
6
0
0
1
1
2
2
1
1
2
2
2
2
0
0
2
2
0
0
4
2
14  
15  
11  
9
10  
11  
0
2
Right  
2
2
Bottom  
Left  
0
0
14  
15  
10  
11  
2
2
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
145  
Spartan-3 FPGA Family: Pinout Descriptions  
TQ144 Footprint  
X-Ref Target - Figure 46  
IO_L01P_7/VRN_7  
IO_L01N_7/VRP_7  
VCCO_LEFT  
IO/VREF_7  
IO_L20P_7  
1
2
3
4
5
6
7
8
9
108 IO_L01N_2/VRP_2  
Bank 0  
Bank 1  
107 IO_L01P_2/VRN_2  
VCCO for Top Edge  
106 VCCO_RIGHT  
105 IO_L20N_2  
104 IO_L20P_2  
103 IO_L21N_2  
102 IO_L21P_2  
101 GND  
X
IO_L20N_7  
IO_L21P_7  
IO_L21N_7  
GND  
100 IO_L22N_2  
99 IO_L22P_2  
98 IO_L23N_2/VREF_2  
97 IO_L23P_2  
96 IO_L24N_2  
95 IO_L24P_2  
94 GND  
IO_L22P_7 10  
IO_L22N_7 11  
IO_L23P_7 12  
IO_L23N_7 13  
IO_L24P_7 14  
IO_L24N_7 15  
GND 16  
93 IO_L40N_2  
92 IO_L40P_2/VREF_2  
91 VCCO_RIGHT  
90 IO_L40N_3/VREF_3  
89 IO_L40P_3  
88 GND  
IO_L40P_7 17  
IO_L40N_7/VREF_7 18  
VCCO_LEFT 19  
IO_L40P_6/VREF_6 20  
IO_L40N_6 21  
GND 22  
87 IO_L24N_3  
86 IO_L24P_3  
85 IO_L23N_3  
84 IO_L23P_3/VREF_3  
83 IO_L22N_3  
82 IO_L22P_3  
81 GND  
IO_L24P_6 23  
IO_L24N_6/VREF_6 24  
IO_L23P_6 25  
IO_L23N_6 26  
IO_L22P_6 27  
IO_L22N_6 28  
GND 29  
80 IO_L21N_3  
79 IO_L21P_3  
78 IO_L20N_3  
77 IO_L20P_3  
76 IO  
IO_L21P_6 30  
IO_L21N_6 31  
IO_L20P_6 32  
IO_L20N_6 33  
VCCO_LEFT 34  
IO_L01P_6/VRN_6 35  
IO_L01N_6/VRP_6 36  
VCCO for Bottom Edge  
75 VCCO_RIGHT  
74  
73  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
Bank 5  
Bank 4  
(no DCI)  
DS099-4_08_121103  
Figure 46: TQ144 Package Footprint (Top View). Note pin 1 indicator in top-left corner and logo orientation.  
DUAL: Configuration pin, then possible  
VREF: User I/O or input voltage reference for  
51 I/O: Unrestricted, general-purpose user I/O  
12  
8
12  
user I/O  
bank  
DCI: User I/O or reference resistor input for  
GCLK: User I/O or global clock buffer  
input  
14  
12 VCCO: Output voltage supply for bank  
bank  
7
0
CONFIG: Dedicated configuration pins  
4
JTAG: Dedicated JTAG port pins  
4
4
VCCINT: Internal core voltage supply (+1.2V)  
VCCAUX: Auxiliary voltage supply (+2.5V)  
N.C.: No unconnected pins in this package  
16 GND: Ground  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
146  
Spartan-3 FPGA Family: Pinout Descriptions  
PQ208: 208-lead Plastic Quad Flat Pack  
The 208-lead plastic quad flat package, PQ208, supports three different Spartan-3 devices, including the XC3S50, the  
XC3S200, and the XC3S400. The footprints for the XC3S200 and XC3S400 are identical, as shown in Table 93 and  
Figure 47. The XC3S50, however, has fewer I/O pins resulting in 17 unconnected pins on the PQ208 package, labeled as  
“N.C.In Table 93 and Figure 47, these unconnected pins are indicated with a black diamond symbol ().  
All the package pins appear in Table 93 and are sorted by bank number, then by pin name. Pairs of pins that form a  
differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as  
defined earlier.  
If there is a difference between the XC3S50 pinout and the pinout for the XC3S200 and XC3S400, then that difference is  
highlighted in Table 93. If the table entry is shaded grey, then there is an unconnected pin on the XC3S50 that maps to a  
user-I/O pin on the XC3S200 and XC3S400. If the table entry is shaded tan, then the unconnected pin on the XC3S50 maps  
to a VREF-type pin on the XC3S200 and XC3S400. If the other VREF pins in the bank all connect to a voltage reference to  
support a special I/O standard, then also connect the N.C. pin on the XC3S50 to the same VREF voltage. This provides  
maximum flexibility as you could potentially migrate a design from the XC3S50 device to an XC3S200 or XC3S400 FPGA  
without changing the printed circuit board.  
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at  
http://www.xilinx.com/support/documentation/data_ sheets/s3_pin.zip  
Pinout Table  
Table 93: PQ208 Package Pinout  
XC3S50  
Pin Name  
XC3S200, XC3S400  
Pin Names  
PQ208Pin  
Number  
Bank  
Type  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
IO  
IO  
IO  
IO  
P189  
P197  
P200  
P205  
P204  
P203  
P199  
P198  
P196  
P194  
P191  
P190  
P187  
P185  
P184  
P183  
P188  
P201  
P167  
P175  
P182  
P162  
P161  
I/O  
I/O  
N.C. ()  
IO/VREF_0  
IO/VREF_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L25N_0  
IO_L25P_0  
VREF  
VREF  
DCI  
DCI  
I/O  
IO/VREF_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L25N_0  
IO_L25P_0  
IO_L27N_0  
IO_L27P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
I/O  
IO_L27N_0  
IO_L27P_0  
I/O  
I/O  
IO_L30N_0  
IO_L30P_0  
I/O  
I/O  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
I/O  
VREF  
GCLK  
GCLK  
VCCO  
VCCO  
I/O  
VCCO_0  
VCCO_0  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
DCI  
DCI  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
147  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 93: PQ208 Package Pinout (Cont’d)  
XC3S50  
XC3S200, XC3S400  
PQ208Pin  
Number  
Bank  
Type  
Pin Name  
Pin Names  
IO_L10N_1/VREF_1  
IO_L10P_1  
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
IO_L10N_1/VREF_1  
IO_L10P_1  
P166  
P165  
P169  
P168  
P172  
P171  
P178  
P176  
P181  
P180  
P164  
P177  
P154  
P156  
P155  
P152  
P150  
P149  
P148  
P147  
P146  
P144  
P143  
P141  
P140  
P139  
P138  
P137  
P135  
P133  
P132  
P136  
P153  
P107  
P106  
P109  
P108  
P113  
P111  
P115  
VREF  
I/O  
IO_L27N_1  
IO_L27N_1  
I/O  
IO_L27P_1  
IO_L27P_1  
I/O  
IO_L28N_1  
IO_L28N_1  
I/O  
IO_L28P_1  
IO_L28P_1  
I/O  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
VREF  
I/O  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
GCLK  
GCLK  
VCCO  
VCCO  
VREF  
DCI  
DCI  
I/O  
VCCO_1  
VCCO_1  
N.C. ()  
IO/VREF_2  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L19N_2  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L19N_2  
IO_L19P_2  
IO_L19P_2  
I/O  
IO_L20N_2  
IO_L20N_2  
I/O  
IO_L20P_2  
IO_L20P_2  
I/O  
IO_L21N_2  
IO_L21N_2  
I/O  
IO_L21P_2  
IO_L21P_2  
I/O  
IO_L22N_2  
IO_L22N_2  
I/O  
IO_L22P_2  
IO_L22P_2  
I/O  
IO_L23N_2/VREF_2  
IO_L23P_2  
IO_L23N_2/VREF_2  
IO_L23P_2  
VREF  
I/O  
IO_L24N_2  
IO_L24N_2  
I/O  
IO_L24P_2  
IO_L24P_2  
I/O  
N.C. ()  
IO_L39N_2  
I/O  
N.C. ()  
IO_L39P_2  
I/O  
IO_L40N_2  
IO_L40N_2  
I/O  
IO_L40P_2/VREF_2  
VCCO_2  
IO_L40P_2/VREF_2  
VCCO_2  
VREF  
VCCO  
VCCO  
DCI  
DCI  
I/O  
VCCO_2  
VCCO_2  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
N.C. ()  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L17N_3  
N.C. ()  
IO_L17P_3/VREF_3  
IO_L19N_3  
VREF  
I/O  
IO_L19N_3  
IO_L19P_3  
IO_L19P_3  
I/O  
IO_L20N_3  
IO_L20N_3  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
148  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 93: PQ208 Package Pinout (Cont’d)  
XC3S50  
Pin Name  
XC3S200, XC3S400  
Pin Names  
PQ208Pin  
Number  
Bank  
Type  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
IO_L20P_3  
IO_L20P_3  
P114  
P117  
P116  
P120  
P119  
P123  
P122  
P125  
P124  
P128  
P126  
P131  
P130  
P110  
P127  
P93  
I/O  
I/O  
IO_L21N_3  
IO_L21N_3  
IO_L21P_3  
IO_L21P_3  
I/O  
IO_L22N_3  
IO_L22N_3  
I/O  
IO_L22P_3  
IO_L22P_3  
I/O  
IO_L23N_3  
IO_L23N_3  
I/O  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
VREF  
I/O  
IO_L24P_3  
IO_L24P_3  
I/O  
N.C. ()  
IO_L39N_3  
I/O  
N.C. ()  
IO_L39P_3  
I/O  
IO_L40N_3/VREF_3  
IO_L40P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
VREF  
I/O  
VCCO_3  
VCCO_3  
VCCO  
VCCO  
I/O  
VCCO_3  
VCCO_3  
IO  
IO  
N.C. ()  
IO  
P97  
I/O  
IO/VREF_4  
IO/VREF_4  
P85  
VREF  
VREF  
VREF  
DCI  
N.C. ()  
IO/VREF_4  
P96  
IO/VREF_4  
IO/VREF_4  
P102  
P101  
P100  
P95  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L25N_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L25N_4  
DCI  
I/O  
IO_L25P_4  
IO_L25P_4  
P94  
I/O  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
P92  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
I/O  
P90  
P87  
P86  
P83  
IO_L31P_4/DOUT/BUSY IO_L31P_4/DOUT/BUSY  
P81  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
P80  
P79  
P84  
VCCO_4  
VCCO_4  
P98  
IO  
IO  
P63  
IO  
IO  
P71  
I/O  
IO/VREF_5  
IO/VREF_5  
P78  
VREF  
DUAL  
DUAL  
DCI  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L10N_5/VRP_5  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L10N_5/VRP_5  
P58  
P57  
P62  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
149  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 93: PQ208 Package Pinout (Cont’d)  
XC3S50  
XC3S200, XC3S400  
PQ208Pin  
Number  
Bank  
Type  
Pin Name  
Pin Names  
IO_L10P_5/VRN_5  
IO_L27N_5/VREF_5  
IO_L27P_5  
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
IO_L10P_5/VRN_5  
IO_L27N_5/VREF_5  
IO_L27P_5  
P61  
P65  
P64  
P68  
P67  
P74  
P72  
P77  
P76  
P60  
P73  
P50  
P52  
P51  
P48  
P46  
P45  
P44  
P43  
P42  
P40  
P39  
P37  
P36  
P35  
P34  
P33  
P31  
P29  
P28  
P32  
P49  
P3  
DCI  
VREF  
I/O  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
VREF  
DCI  
VCCO_5  
VCCO_5  
N.C. ()  
IO/VREF_6  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L19N_6  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L19N_6  
DCI  
I/O  
IO_L19P_6  
IO_L19P_6  
I/O  
IO_L20N_6  
IO_L20N_6  
I/O  
IO_L20P_6  
IO_L20P_6  
I/O  
IO_L21N_6  
IO_L21N_6  
I/O  
IO_L21P_6  
IO_L21P_6  
I/O  
IO_L22N_6  
IO_L22N_6  
I/O  
IO_L22P_6  
IO_L22P_6  
I/O  
IO_L23N_6  
IO_L23N_6  
I/O  
IO_L23P_6  
IO_L23P_6  
I/O  
IO_L24N_6/VREF_6  
IO_L24P_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
VREF  
I/O  
N.C. ()  
IO_L39N_6  
I/O  
N.C. ()  
IO_L39P_6  
I/O  
IO_L40N_6  
IO_L40N_6  
I/O  
IO_L40P_6/VREF_6  
VCCO_6  
IO_L40P_6/VREF_6  
VCCO_6  
VREF  
VCCO  
VCCO  
DCI  
VCCO_6  
VCCO_6  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
N.C. ()  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L16N_7  
P2  
DCI  
P5  
I/O  
N.C. ()  
IO_L16P_7/VREF_7  
IO_L19N_7/VREF_7  
IO_L19P_7  
P4  
VREF  
VREF  
I/O  
IO_L19N_7/VREF_7  
IO_L19P_7  
P9  
P7  
IO_L20N_7  
IO_L20N_7  
P11  
P10  
I/O  
IO_L20P_7  
IO_L20P_7  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
150  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 93: PQ208 Package Pinout (Cont’d)  
XC3S50  
Pin Name  
XC3S200, XC3S400  
Pin Names  
PQ208Pin  
Number  
Bank  
Type  
7
IO_L21N_7  
IO_L21N_7  
P13  
P12  
P16  
P15  
P19  
P18  
P21  
P20  
P24  
P22  
P27  
P26  
P6  
I/O  
I/O  
7
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
N.C. ()  
N.C. ()  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
GND  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
GND  
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
VREF  
I/O  
7
7
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
7
P23  
P1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
P186  
P195  
P202  
P163  
P170  
P179  
P134  
P145  
P151  
P157  
P112  
P118  
P129  
P82  
P91  
P99  
P105  
P53  
P59  
P66  
P75  
P30  
P41  
P47  
P8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
151  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 93: PQ208 Package Pinout (Cont’d)  
XC3S50  
Pin Name  
XC3S200, XC3S400  
Pin Names  
PQ208Pin  
Number  
Bank  
Type  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
P14  
P25  
GND  
GND  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
P193  
P173  
P142  
P121  
P89  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
P69  
P38  
P17  
P192  
P174  
P88  
P70  
VCCAUX CCLK  
VCCAUX DONE  
VCCAUX HSWAP_EN  
VCCAUX M0  
P104  
P103  
P206  
P55  
DONE  
HSWAP_EN  
M0  
VCCAUX M1  
M1  
P54  
VCCAUX M2  
M2  
P56  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
PROG_B  
TCK  
P207  
P159  
P208  
P158  
P160  
TDI  
JTAG  
VCCAUX TDO  
VCCAUX TMS  
TDO  
JTAG  
TMS  
JTAG  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
152  
Spartan-3 FPGA Family: Pinout Descriptions  
User I/Os by Bank  
Table 94 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S50 in the PQ208  
package. Similarly, Table 95 shows how the available user-I/O pins are distributed between the eight I/O banks for the  
XC3S200 and XC3S400 in the PQ208 package.  
Table 94: User I/Os Per Bank for XC3S50 in PQ208 Package  
All Possible I/O Pins by Type  
Package Edge  
Top  
I/O Bank  
Maximum I/O  
I/O  
9
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
15  
15  
16  
16  
15  
15  
16  
16  
0
0
0
0
6
6
0
0
2
2
2
2
2
2
2
2
2
2
0
0
2
2
0
0
9
2
13  
12  
3
2
Right  
2
2
Bottom  
Left  
3
2
12  
12  
2
2
Table 95: User I/Os Per Bank for XC3S200 and XC3S400 in PQ208 Package  
All Possible I/O Pins by Type  
Package Edge  
Top  
I/O Bank  
Maximum I/O  
I/O  
9
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
16  
15  
19  
20  
17  
15  
19  
20  
0
0
0
0
6
6
0
0
3
2
3
3
3
2
3
3
2
2
0
0
2
2
0
0
9
2
14  
15  
4
2
Right  
2
2
Bottom  
Left  
3
2
14  
15  
2
2
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
153  
Spartan-3 FPGA Family: Pinout Descriptions  
X-Ref Target - Figure 47  
PQ208 Footprint  
Left Half of Package  
(Top View)  
XC3S50  
(124 max. user I/O)  
I/O: Unrestricted,  
1
GND  
IO_L01P_7/VRN_7  
IO_L01N_7/VRP_7  
() IO_L16P_7/VREF_7  
() IO_L16N_7  
VCCO_7  
72  
Bank 0  
general-purpose user I/O  
2
3
4
5
6
7
8
9
VREF: User I/O or input  
16  
voltage reference for bank  
IO_L19P_7  
N.C.: Unconnected pins for  
XC3S50 ()  
17  
GND  
IO_L19N_7/VREF_7  
IO_L20P_7 10  
IO_L20N_7 11  
IO_L21P_7 12  
IO_L21N_7 13  
GND 14  
XC3S200, XC3S400  
(141 max user I/O)  
I/O: Unrestricted,  
83  
general-purpose user I/O  
IO_L22P_7 15  
IO_L22N_7 16  
VCCAUX 17  
VREF: User I/O or input  
22  
voltage reference for bank  
IO_L23P_7 18  
IO_L23N_7 19  
IO_L24P_7 20  
IO_L24N_7 21  
() IO_L39P_7 22  
VCCO_7 23  
N.C.: No unconnected pins  
in this package  
0
All devices  
() IO_L39N_7 24  
GND 25  
DUAL: Configuration pin,  
then possible user I/O  
12  
IO_L40P_7 26  
IO_L40N_7/VREF_7 27  
IO_L40P_6/VREF_6 28  
IO_L40N_6 29  
GND 30  
GCLK: User I/O or global  
clock buffer input  
8
() IO_L39P_6 31  
VCCO_6 32  
DCI: User I/O or reference  
16  
resistor input for bank  
() IO_L39N_6 33  
IO_L24P_6 34  
IO_L24N_6/VREF_6 35  
IO_L23P_6 36  
IO_L23N_6 37  
VCCAUX 38  
CONFIG: Dedicated  
7
configuration pins  
JTAG: Dedicated JTAG  
port pins  
4
IO_L22P_6 39  
IO_L22N_6 40  
GND 41  
IO_L21P_6 42  
IO_L21N_6 43  
IO_L20P_6 44  
IO_L20N_6 45  
IO_L19P_6 46  
GND 47  
VCCINT: Internal core  
voltage supply (+1.2V)  
4
VCCO: Output voltage  
supply for bank  
12  
IO_L19N_6 48  
VCCO_6 49  
VCCAUX: Auxiliary voltage  
supply (+2.5V)  
8
() IO/VREF_6 50  
IO_L01P_6/VRN_6 51  
IO_L01N_6/VRP_6 52  
Bank 5  
28 GND: Ground  
DS099-4_09a_121103  
Figure 47: PQ208 Package Footprint (Top View). Note pin 1 indicator in top-left corner and logo orientation.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
154  
Spartan-3 FPGA Family: Pinout Descriptions  
Right Half of Package  
(Top View)  
156 IO_L01N_2/VRP_2  
155 IO_L01P_2/VRN_2  
154 IO/VREF_2 ()  
153 VCCO_2  
Bank 1  
152 IO_L19N_2  
151 GND  
150 IO_L19P_2  
149 IO_L20N_2  
148 IO_L20P_2  
147 IO_L21N_2  
146 IO_L21P_2  
145 GND  
144 IO_L22N_2  
143 IO_L22P_2  
142 VCCAUX  
141 IO_L23N_2/VREF_2  
140 IO_L23P_2  
139 IO_L24N_2  
138 IO_L24P_2  
137 IO_L39N_2 ()  
136 VCCO_2  
135 IO_L39P_2 ()  
134 GND  
133 IO_L40N_2  
132 IO_L40P_2/VREF_2  
131 IO_L40N_3/VREF_3  
130 IO_L40P_3  
129 GND  
128 IO_L39N_3 ()  
127 VCCO_3  
126 IO_L39P_3 ()  
125 IO_L24N_3  
124 IO_L24P_3  
123 IO_L23N_3  
122 IO_L23P_3/VREF_3  
121 VCCAUX  
120 IO_L22N_3  
119 IO_L22P_3  
118 GND  
117 IO_L21N_3  
116 IO_L21P_3  
115 IO_L20N_3  
114 IO_L20P_3  
113 IO_L19N_3  
112 GND  
111 IO_L19P_3  
110 VCCO_3  
109 IO_L17N_3 ()  
108 IO_L17P_3/VREF_3 ()  
107 IO_L01N_3/VRP_3  
106 IO_L01P_3/VRN_3  
105 GND  
Bank 4  
DS099-4_9b_121103  
Figure 48: PQ208 Package Footprint (Top View) Continued  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
155  
Spartan-3 FPGA Family: Pinout Descriptions  
FT256: 256-lead Fine-pitch Thin Ball Grid Array  
The 256-lead fine-pitch thin ball grid array package, FT256, supports three different Spartan-3 devices, including the  
XC3S200, the XC3S400, and the XC3S1000. The footprints for all three devices are identical, as shown in Table 96 and  
Figure 49.  
All the package pins appear in Table 96 and are sorted by bank number, then by pin name. Pairs of pins that form a  
differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as  
defined earlier.  
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at  
http://www.xilinx.com/support/documentation/data_ sheets/s3_pin.zip.  
Pinout Table  
Table 96: FT256 Package Pinout  
XC3S200, XC3S400, XC3S1000 FT256 Pin  
Bank  
Type  
Pin Name  
Number  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
IO  
A5  
I/O  
I/O  
IO  
A7  
IO/VREF_0  
IO/VREF_0  
A3  
VREF  
VREF  
DCI  
DCI  
I/O  
D5  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L25N_0  
IO_L25P_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
B4  
A4  
C5  
B5  
I/O  
E6  
I/O  
D6  
I/O  
C6  
I/O  
B6  
I/O  
E7  
I/O  
D7  
I/O  
C7  
I/O  
B7  
I/O  
D8  
I/O  
C8  
VREF  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
I/O  
B8  
A8  
E8  
VCCO_0  
F7  
VCCO_0  
F8  
IO  
A9  
IO  
A12  
C10  
D12  
A14  
B14  
I/O  
IO  
I/O  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
VREF  
DCI  
DCI  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
156  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 96: FT256 Package Pinout (Cont’d)  
XC3S200, XC3S400, XC3S1000 FT256 Pin  
Bank  
Type  
Pin Name  
IO_L10N_1/VREF_1  
IO_L10P_1  
Number  
A13  
B13  
B12  
C12  
D11  
E11  
B11  
C11  
D10  
E10  
A10  
B10  
C9  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
VREF  
I/O  
IO_L27N_1  
I/O  
IO_L27P_1  
I/O  
IO_L28N_1  
I/O  
IO_L28P_1  
I/O  
IO_L29N_1  
I/O  
IO_L29P_1  
I/O  
IO_L30N_1  
I/O  
IO_L30P_1  
I/O  
IO_L31N_1/VREF_1  
IO_L31P_1  
VREF  
I/O  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
I/O  
D9  
E9  
VCCO_1  
F9  
VCCO_1  
F10  
G16  
B16  
C16  
C15  
D14  
D15  
D16  
E13  
E14  
E15  
E16  
F12  
F13  
F14  
F15  
G12  
G13  
G14  
G15  
H13  
H14  
H15  
H16  
IO  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L16N_2  
DCI  
DCI  
I/O  
IO_L16P_2  
I/O  
IO_L17N_2  
I/O  
IO_L17P_2/VREF_2  
IO_L19N_2  
VREF  
I/O  
IO_L19P_2  
I/O  
IO_L20N_2  
I/O  
IO_L20P_2  
I/O  
IO_L21N_2  
I/O  
IO_L21P_2  
I/O  
IO_L22N_2  
I/O  
IO_L22P_2  
I/O  
IO_L23N_2/VREF_2  
IO_L23P_2  
VREF  
I/O  
IO_L24N_2  
I/O  
IO_L24P_2  
I/O  
IO_L39N_2  
I/O  
IO_L39P_2  
I/O  
IO_L40N_2  
I/O  
IO_L40P_2/VREF_2  
VREF  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
157  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 96: FT256 Package Pinout (Cont’d)  
XC3S200, XC3S400, XC3S1000 FT256 Pin  
Pin Name  
Bank  
Type  
Number  
G11  
H11  
H12  
K15  
P16  
R16  
P15  
P14  
N16  
N15  
M14  
N14  
M16  
M15  
L13  
M13  
L15  
L14  
K12  
L12  
K14  
K13  
J14  
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
VCCO_2  
VCCO_2  
VCCO_2  
IO  
VCCO  
VCCO  
VCCO  
I/O  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L16N_3  
DCI  
DCI  
I/O  
IO_L16P_3  
I/O  
IO_L17N_3  
I/O  
IO_L17P_3/VREF_3  
IO_L19N_3  
VREF  
I/O  
IO_L19P_3  
I/O  
IO_L20N_3  
I/O  
IO_L20P_3  
I/O  
IO_L21N_3  
I/O  
IO_L21P_3  
I/O  
IO_L22N_3  
I/O  
IO_L22P_3  
I/O  
IO_L23N_3  
I/O  
IO_L23P_3/VREF_3  
IO_L24N_3  
VREF  
I/O  
IO_L24P_3  
I/O  
IO_L39N_3  
I/O  
IO_L39P_3  
J13  
I/O  
IO_L40N_3/VREF_3  
IO_L40P_3  
J16  
VREF  
I/O  
K16  
J11  
VCCO_3  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_3  
J12  
VCCO_3  
K11  
T12  
T14  
N12  
P13  
T10  
R13  
T13  
P12  
R12  
M11  
N11  
IO  
IO  
I/O  
IO/VREF_4  
VREF  
VREF  
VREF  
DCI  
DCI  
I/O  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L25N_4  
IO_L25P_4  
I/O  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
DUAL  
DUAL  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
158  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 96: FT256 Package Pinout (Cont’d)  
XC3S200, XC3S400, XC3S1000 FT256 Pin  
Bank  
Type  
Pin Name  
Number  
P11  
R11  
M10  
N10  
P10  
R10  
N9  
P9  
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
I/O  
I/O  
I/O  
I/O  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L31P_4/DOUT/BUSY  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
I/O  
R9  
T9  
L9  
VCCO_4  
L10  
M9  
N5  
P7  
VCCO_4  
IO  
IO  
I/O  
IO  
T5  
I/O  
IO/VREF_5  
T8  
VREF  
DUAL  
DUAL  
DCI  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L27N_5/VREF_5  
IO_L27P_5  
T3  
R3  
T4  
R4  
R5  
P5  
DCI  
VREF  
I/O  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
N6  
M6  
R6  
P6  
DUAL  
DUAL  
I/O  
IO_L29P_5/VREF_5  
IO_L30N_5  
VREF  
I/O  
N7  
M7  
T7  
IO_L30P_5  
I/O  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
I/O  
R7  
P8  
N8  
L7  
VCCO_5  
L8  
VCCO_5  
M8  
K1  
IO  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L16N_6  
R1  
P1  
DCI  
DCI  
P2  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
159  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 96: FT256 Package Pinout (Cont’d)  
XC3S200, XC3S400, XC3S1000 FT256 Pin  
Bank  
Type  
Pin Name  
Number  
N3  
N2  
N1  
M4  
M3  
M2  
M1  
L5  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L16P_6  
IO_L17N_6  
I/O  
I/O  
IO_L17P_6/VREF_6  
IO_L19N_6  
IO_L19P_6  
VREF  
I/O  
I/O  
IO_L20N_6  
IO_L20P_6  
I/O  
I/O  
IO_L21N_6  
IO_L21P_6  
I/O  
L4  
I/O  
IO_L22N_6  
IO_L22P_6  
L3  
I/O  
L2  
I/O  
IO_L23N_6  
IO_L23P_6  
K5  
K4  
K3  
K2  
J4  
I/O  
I/O  
IO_L24N_6/VREF_6  
IO_L24P_6  
VREF  
I/O  
IO_L39N_6  
IO_L39P_6  
I/O  
J3  
I/O  
IO_L40N_6  
IO_L40P_6/VREF_6  
VCCO_6  
J2  
I/O  
J1  
VREF  
VCCO  
VCCO  
VCCO  
I/O  
J5  
VCCO_6  
J6  
VCCO_6  
K6  
G2  
C1  
B1  
C2  
C3  
D1  
D2  
E3  
D3  
E1  
E2  
F4  
E4  
F2  
F3  
G5  
F5  
G3  
IO  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L16N_7  
IO_L16P_7/VREF_7  
IO_L17N_7  
IO_L17P_7  
DCI  
DCI  
I/O  
VREF  
I/O  
I/O  
IO_L19N_7/VREF_7  
IO_L19P_7  
VREF  
I/O  
IO_L20N_7  
IO_L20P_7  
I/O  
I/O  
IO_L21N_7  
IO_L21P_7  
I/O  
I/O  
IO_L22N_7  
IO_L22P_7  
I/O  
I/O  
IO_L23N_7  
IO_L23P_7  
I/O  
I/O  
IO_L24N_7  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
160  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 96: FT256 Package Pinout (Cont’d)  
XC3S200, XC3S400, XC3S1000 FT256 Pin  
Bank  
Type  
Pin Name  
Number  
G4  
H3  
7
IO_L24P_7  
IO_L39N_7  
IO_L39P_7  
I/O  
I/O  
7
7
H4  
I/O  
7
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
H1  
VREF  
I/O  
7
G1  
G6  
H5  
7
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
7
7
H6  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
A1  
GND  
A16  
B2  
GND  
GND  
B9  
GND  
B15  
F6  
GND  
GND  
F11  
G7  
G8  
G9  
G10  
H2  
GND  
GND  
GND  
GND  
GND  
GND  
H7  
GND  
H8  
GND  
H9  
GND  
H10  
J7  
GND  
GND  
J8  
GND  
J9  
GND  
J10  
J15  
K7  
GND  
GND  
GND  
K8  
GND  
K9  
GND  
K10  
L6  
GND  
GND  
L11  
R2  
GND  
GND  
R8  
GND  
R15  
T1  
GND  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
161  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 96: FT256 Package Pinout (Cont’d)  
XC3S200, XC3S400, XC3S1000 FT256 Pin  
Bank  
Type  
Pin Name  
Number  
T16  
A6  
N/A  
N/A  
GND  
GND  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
N/A  
A11  
F1  
N/A  
N/A  
F16  
L1  
N/A  
N/A  
L16  
T6  
N/A  
N/A  
T11  
D4  
N/A  
N/A  
D13  
E5  
N/A  
N/A  
E12  
M5  
N/A  
N/A  
M12  
N4  
N/A  
N/A  
N13  
T15  
R14  
C4  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
DONE  
HSWAP_EN  
M0  
P3  
M1  
T2  
M2  
P4  
PROG_B  
TCK  
B3  
C14  
A2  
TDI  
JTAG  
TDO  
A15  
C13  
JTAG  
TMS  
JTAG  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
162  
Spartan-3 FPGA Family: Pinout Descriptions  
User I/Os by Bank  
Table 97 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FT256 package.  
Table 97: User I/Os Per Bank in FT256 Package  
All Possible I/O Pins by Type  
Package Edge  
Top  
I/O Bank  
Maximum I/O  
I/O  
13  
13  
18  
18  
8
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
20  
20  
23  
23  
21  
20  
23  
23  
0
0
0
0
6
6
0
0
3
3
3
3
3
3
3
3
2
2
0
0
2
2
0
0
2
2
Right  
2
2
Bottom  
Left  
7
2
18  
18  
2
2
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
163  
Spartan-3 FPGA Family: Pinout Descriptions  
FT256 Footprint  
X-Ref Target - Figure 49  
Bank 0  
Bank 1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
I/O  
L01P_0  
VRN_0  
I/O  
L32P_0  
GCLK6  
I/O  
L31N_1  
VREF_1  
I/O  
I/O  
IO  
VREF_0  
VCCAUX  
VCCAUX  
TDI  
I/O  
I/O  
I/O  
I/O  
TDO  
GND  
A
GND  
L10N_1 L01N_1  
VREF_1 VRP_1  
I/O  
L01P_7  
VRN_7  
I/O  
L01N_0  
VRP_0  
I/O  
L32N_0  
GCLK7  
I/O  
I/O  
I/O  
L01N_2  
VRP_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PROG_B  
GND  
I/O  
GND  
B
C
D
E
F
GND  
L01P_1  
L25P_0 L28P_0 L30P_0  
L31P_1 L29N_1 L27N_1 L10P_1  
VRN_1  
I/O  
L01N_7  
VRP_7  
I/O  
L16P_7  
VREF_7  
I/O  
I/O  
L01P_2  
VRN_2  
I/O  
L16N_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L16N_2  
HSWAP_  
EN  
I/O  
TMS  
TCK  
L31P_0 L32N_1  
VREF_0 GCLK5  
L25N_0 L28N_0 L30N_0  
L29P_1 L27P_1  
I/O  
I/O  
I/O  
L17P_2  
VREF_2  
IO  
IO  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCINT  
VCCINT  
I/O  
L32P_1  
VREF_0  
VREF_1  
L17N_7 L17P_7 L19P_7  
L27P_0 L29P_0 L31N_0  
L30N_1 L28N_1  
L16P_2 L17N_2  
GCLK4  
I/O  
L19N_7  
VREF_7  
I/O  
I/O  
I/O  
L21P_7  
I/O  
I/O  
I/O  
I/O  
I/O I/O  
I/O  
VCCO_0 VCCO_1  
VCCINT  
I/O  
VCCINT  
I/O  
L20N_7 L20P_7  
L27N_0 L29N_0  
L30P_1 L28P_1  
L19N_2 L19P_2 L20N_2 L20P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
VCCO_0 VCCO_0 VCCO_1 VCCO_1  
VCCAUX  
I/O  
GND  
GND  
VCCO_7  
L22N_7 L22P_7 L21N_7 L23P_7  
L21N_2 L21P_2 L22N_2 L22P_2  
I/O  
L23N_2  
VREF_2  
I/O  
L40P_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_2  
I/O  
G
H
J
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L24N_7 L24P_7 L23N_7  
L23P_2 L24N_2 L24P_2  
I/O  
L40N_7  
VREF_7  
I/O  
L40P_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_7 VCCO_7  
VCCO_2 VCCO_2  
GND  
I/O  
L39N_7 L39P_7  
L39N_2 L39P_2 L40N_2  
I/O  
L40P_6  
VREF_6  
I/O  
L40N_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
VCCO_6 VCCO_6  
I/O  
VCCO_3 VCCO_3  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L40N_6 L39P_6 L39N_6  
L39P_3 L39N_3  
I/O  
L24N_6  
VREF_6  
I/O  
L24P_6  
I/O  
I/O  
I/O  
I/O  
L40P_3  
VCCO_6 GND  
GND VCCO_3  
I/O  
I/O  
I/O  
K
L
L23P_6 L23N_6  
L23N_3 L24P_3 L24N_3  
I/O  
L23P_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
I/O  
VCCO_5 VCCO_5 VCCO_4 VCCO_4  
VCCAUX  
GND  
GND  
L22P_6 L22N_6 L21P_6 L21N_6  
L21N_3 L22P_3 L22N_3  
I/O  
L27N_4  
DIN  
I/O  
L28P_5  
D7  
I/O  
I/O  
I/O  
I/O  
L30P_5  
I/O  
L29N_4  
I/O I/O I/O  
I/O  
VCCO_5 VCCO_4  
VCCINT  
I/O  
VCCINT  
M
N
P
R
T
L20P_6 L20N_6 L19P_6 L19N_6  
L21P_3 L19N_3 L20P_3 L20N_3  
I/O  
D0  
I/O  
L17P_6  
VREF_6  
I/O  
L28N_5  
D6  
I/O  
I/O  
I/O  
L27P_4  
D1  
IO  
VREF_4  
I/O  
I/O  
I/O  
L30N_5  
I/O  
L29P_4  
I/O  
L19P_3  
I/O  
L17N_3  
VCCINT  
VCCINT  
L32P_5 L31N_4  
GCLK2 INIT_B  
L17P_3  
VREF_3  
L17N_6 L16P_6  
I/O  
I/O  
I/O  
L01P_6  
VRN_6  
I/O  
L29P_5  
VREF_5  
I/O  
L30N_4  
D2  
I/O  
L01N_3  
VRP_3  
IO  
VREF_4  
I/O  
M0  
I/O  
L27P_5  
I/O  
I/O  
I/O  
I/O  
L31P_4  
L32N_5  
DOUT  
M2  
I/O  
I/O  
L16N_6  
L28N_4 L25N_4  
L16P_3 L16N_3  
GCLK3  
BUSY  
I/O  
L01N_6  
VRP_6  
I/O  
I/O  
I/O  
L31P_5  
D5  
I/O  
I/O  
I/O  
L01N_4  
VRP_4  
I/O  
L01P_3  
VRN_3  
I/O  
L29N_5  
I/O  
I/O  
GND  
GND  
DONE  
I/O  
GND  
L01P_5 L10P_5 L27N_5  
CS_B VRN_5 VREF_5  
L32N_4 L30P_4  
GCLK1  
L28P_4 L25P_4  
D3  
I/O  
I/O  
I/O  
L31N_5  
D4  
I/O  
L32P_4  
GCLK0  
I/O  
L01P_4  
VRN_4  
IO  
VREF_5  
IO  
VREF_4  
VCCAUX  
VCCAUX  
M1  
I/O  
I/O  
CCLK  
GND  
L01N_5 L10N_5  
RDWR_B VRP_5  
GND  
Bank 5  
Bank 4  
DS099-4_10_030503  
Figure 49: FT256 Package Footprint (Top View)  
DUAL: Configuration pin, then possible  
VREF: User I/O or input voltage reference  
113 I/O: Unrestricted, general-purpose user I/O 12  
DCI: User I/O or reference resistor input for  
24  
user I/O  
for bank  
16  
8
GCLK: User I/O or global clock buffer input 24 VCCO: Output voltage supply for bank  
VCCINT: Internal core voltage supply  
bank  
7
CONFIG: Dedicated configuration pins  
4
JTAG: Dedicated JTAG port pins  
8
(+1.2V)  
VCCAUX: Auxiliary voltage supply  
(+2.5V)  
0
N.C.: No unconnected pins in this package 32 GND: Ground  
8
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
164  
Spartan-3 FPGA Family: Pinout Descriptions  
FG320: 320-lead Fine-pitch Ball Grid Array  
The 320-lead fine-pitch ball grid array package, FG320, supports three different Spartan-3 devices, including the XC3S400,  
the XC3S1000, and the XC3S1500. The footprint for all three devices is identical, as shown in Table 98 and Figure 50.  
The FG320 package is an 18 x 18 array of solder balls minus the four center balls.  
All the package pins appear in Table 98 and are sorted by bank number, then by pin name. Pairs of pins that form a  
differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as  
defined earlier.  
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at  
http://www.xilinx.com/support/documentation/data_ sheets/s3_pin.zip.  
Pinout Table  
Table 98: FG320 Package Pinout  
XC3S400, XC3S1000, XC3S1500  
Pin Name  
FG320  
Pin Number  
Bank  
Type  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
D9  
E7  
B3  
D6  
A2  
A3  
B4  
C4  
C5  
D5  
A4  
A5  
B5  
B6  
C7  
D7  
C8  
D8  
E8  
F8  
A7  
A8  
B9  
A9  
E9  
F9  
B8  
C6  
G8  
I/O  
I/O  
IO  
IO/VREF_0  
IO/VREF_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L15N_0  
IO_L15P_0  
IO_L25N_0  
IO_L25P_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
VREF  
VREF  
DCI  
DCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO_0  
VCCO_0  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
165  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 98: FG320 Package Pinout (Cont’d)  
XC3S400, XC3S1000, XC3S1500  
FG320  
Pin Number  
Bank  
Type  
Pin Name  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
VCCO_0  
G9  
VCCO  
I/O  
IO  
A11  
B13  
D10  
A12  
A16  
A17  
A15  
B15  
C14  
C15  
A14  
B14  
D14  
D13  
E13  
E12  
C12  
D12  
F11  
E11  
C11  
D11  
A10  
B10  
E10  
F10  
B11  
C13  
G10  
G11  
J13  
IO  
I/O  
IO  
I/O  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L24N_1  
IO_L24P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
VREF  
DCI  
DCI  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_1  
VCCO_1  
VCCO_1  
IO  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
IO_L17P_2/VREF_2  
IO_L19N_2  
IO_L19P_2  
C16  
C17  
B18  
C18  
D17  
D18  
D16  
E16  
DCI  
DCI  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
166  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 98: FG320 Package Pinout (Cont’d)  
XC3S400, XC3S1000, XC3S1500  
FG320  
Pin Number  
Bank  
Type  
Pin Name  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L20N_2  
IO_L20P_2  
E17  
E18  
F15  
E15  
F14  
G14  
G18  
F17  
G15  
G16  
H13  
H14  
H16  
H15  
H17  
H18  
J18  
I/O  
I/O  
IO_L21N_2  
IO_L21P_2  
I/O  
I/O  
IO_L22N_2  
IO_L22P_2  
I/O  
I/O  
IO_L23N_2/VREF_2  
IO_L23P_2  
VREF  
I/O  
IO_L24N_2  
IO_L24P_2  
I/O  
I/O  
IO_L27N_2  
IO_L27P_2  
I/O  
I/O  
IO_L34N_2/VREF_2  
IO_L34P_2  
VREF  
I/O  
IO_L35N_2  
IO_L35P_2  
I/O  
I/O  
IO_L39N_2  
IO_L39P_2  
I/O  
J17  
I/O  
IO_L40N_2  
IO_L40P_2/VREF_2  
VCCO_2  
J15  
I/O  
J14  
VREF  
VCCO  
VCCO  
VCCO  
I/O  
F16  
H12  
J12  
VCCO_2  
VCCO_2  
IO  
K15  
T17  
T16  
T18  
U18  
P16  
R16  
R17  
R18  
P18  
P17  
P15  
N15  
M14  
N14  
M15  
M16  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L16N_3  
IO_L16P_3  
DCI  
DCI  
I/O  
I/O  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L19N_3  
IO_L19P_3  
I/O  
VREF  
I/O  
I/O  
IO_L20N_3  
IO_L20P_3  
I/O  
I/O  
IO_L21N_3  
IO_L21P_3  
I/O  
I/O  
IO_L22N_3  
IO_L22P_3  
I/O  
I/O  
IO_L23N_3  
IO_L23P_3/VREF_3  
I/O  
VREF  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
167  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 98: FG320 Package Pinout (Cont’d)  
XC3S400, XC3S1000, XC3S1500  
FG320  
Pin Number  
Bank  
Type  
Pin Name  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
IO_L24N_3  
IO_L24P_3  
M18  
N17  
L14  
L13  
L15  
L16  
L18  
L17  
K13  
K14  
K17  
K18  
K12  
L12  
N16  
P12  
V14  
R10  
U13  
V17  
U16  
V16  
P14  
R14  
U15  
V15  
T14  
U14  
R13  
P13  
T12  
R12  
V12  
V11  
R11  
T11  
N11  
P11  
U10  
I/O  
I/O  
IO_L27N_3  
IO_L27P_3  
I/O  
I/O  
IO_L34N_3  
IO_L34P_3/VREF_3  
IO_L35N_3  
IO_L35P_3  
I/O  
VREF  
I/O  
I/O  
IO_L39N_3  
IO_L39P_3  
I/O  
I/O  
IO_L40N_3/VREF_3  
IO_L40P_3  
VREF  
I/O  
VCCO_3  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_3  
VCCO_3  
IO  
IO  
I/O  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L06N_4/VREF_4  
IO_L06P_4  
VREF  
VREF  
VREF  
DCI  
DCI  
VREF  
I/O  
IO_L09N_4  
IO_L09P_4  
I/O  
I/O  
IO_L10N_4  
IO_L10P_4  
I/O  
I/O  
IO_L25N_4  
IO_L25P_4  
I/O  
I/O  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
IO_L28P_4  
DUAL  
DUAL  
I/O  
I/O  
IO_L29N_4  
IO_L29P_4  
I/O  
I/O  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
DUAL  
DUAL  
DUAL  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
168  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 98: FG320 Package Pinout (Cont’d)  
XC3S400, XC3S1000, XC3S1500  
FG320  
Pin Number  
Bank  
Type  
Pin Name  
4
IO_L31P_4/  
DOUT/BUSY  
V10  
DUAL  
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
N10  
P10  
M10  
M11  
T13  
U11  
N8  
P8  
U6  
R9  
V3  
V2  
T5  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
IO  
I/O  
IO  
I/O  
IO/VREF_5  
VREF  
DUAL  
DUAL  
I/O  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L06N_5  
IO_L06P_5  
T4  
I/O  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L15N_5  
V4  
U4  
R6  
R5  
V5  
U5  
P6  
P7  
R7  
T7  
DCI  
DCI  
I/O  
IO_L15P_5  
I/O  
IO_L16N_5  
I/O  
IO_L16P_5  
I/O  
IO_L27N_5/VREF_5  
IO_L27P_5  
VREF  
I/O  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
DUAL  
DUAL  
I/O  
V8  
V7  
R8  
T8  
IO_L29P_5/VREF_5  
IO_L30N_5  
VREF  
I/O  
IO_L30P_5  
I/O  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
U9  
V9  
N9  
P9  
M8  
M9  
T6  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_5  
VCCO_5  
VCCO_5  
U8  
K6  
T3  
IO  
IO_L01N_6/VRP_6  
DCI  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
169  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 98: FG320 Package Pinout (Cont’d)  
XC3S400, XC3S1000, XC3S1500  
FG320  
Pin Number  
Bank  
Type  
Pin Name  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
IO_L01P_6/VRN_6  
IO_L16N_6  
T2  
U1  
T1  
R2  
R1  
R3  
P3  
P2  
P1  
N4  
P4  
N5  
M5  
M3  
M4  
N2  
M1  
L6  
DCI  
I/O  
IO_L16P_6  
I/O  
IO_L17N_6  
I/O  
IO_L17P_6/VREF_6  
IO_L19N_6  
VREF  
I/O  
IO_L19P_6  
I/O  
IO_L20N_6  
I/O  
IO_L20P_6  
I/O  
IO_L21N_6  
I/O  
IO_L21P_6  
I/O  
IO_L22N_6  
I/O  
IO_L22P_6  
I/O  
IO_L23N_6  
I/O  
IO_L23P_6  
I/O  
IO_L24N_6/VREF_6  
IO_L24P_6  
VREF  
I/O  
IO_L27N_6  
I/O  
IO_L27P_6  
L5  
I/O  
IO_L34N_6/VREF_6  
IO_L34P_6  
L3  
VREF  
I/O  
L4  
IO_L35N_6  
L2  
I/O  
IO_L35P_6  
L1  
I/O  
IO_L39N_6  
K5  
K4  
K1  
K2  
K7  
L7  
I/O  
IO_L39P_6  
I/O  
IO_L40N_6  
I/O  
IO_L40P_6/VREF_6  
VCCO_6  
VREF  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_6  
VCCO_6  
N3  
J6  
IO  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L16N_7  
C3  
C2  
C1  
B1  
D1  
D2  
E3  
D3  
E2  
DCI  
DCI  
I/O  
IO_L16P_7/VREF_7  
IO_L17N_7  
VREF  
I/O  
IO_L17P_7  
I/O  
IO_L19N_7/VREF_7  
IO_L19P_7  
VREF  
I/O  
IO_L20N_7  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
170  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 98: FG320 Package Pinout (Cont’d)  
XC3S400, XC3S1000, XC3S1500  
FG320  
Pin Number  
Bank  
Type  
Pin Name  
7
7
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L27N_7  
IO_L27P_7/VREF_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
E1  
E4  
I/O  
I/O  
7
F4  
I/O  
7
G5  
F5  
I/O  
7
I/O  
7
G1  
F2  
I/O  
7
I/O  
7
G4  
G3  
H5  
H6  
H4  
H3  
H1  
H2  
J1  
I/O  
7
I/O  
7
I/O  
7
VREF  
I/O  
7
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
J2  
I/O  
7
J5  
VREF  
I/O  
7
J4  
7
F3  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
7
H7  
J7  
7
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
A1  
GND  
A13  
A18  
A6  
GND  
GND  
GND  
B17  
B2  
GND  
GND  
C10  
C9  
F1  
GND  
GND  
GND  
F18  
G12  
G7  
H10  
H11  
H8  
H9  
J11  
J16  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
171  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 98: FG320 Package Pinout (Cont’d)  
XC3S400, XC3S1000, XC3S1500  
FG320  
Pin Number  
Bank  
Type  
Pin Name  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
J3  
J8  
GND  
GND  
GND  
GND  
K11  
K16  
K3  
GND  
GND  
GND  
GND  
GND  
GND  
K8  
GND  
GND  
L10  
L11  
L8  
GND  
GND  
GND  
GND  
GND  
GND  
L9  
GND  
GND  
M12  
M7  
GND  
GND  
GND  
GND  
N1  
GND  
GND  
N18  
T10  
T9  
GND  
GND  
GND  
GND  
GND  
GND  
U17  
U2  
GND  
GND  
GND  
GND  
V1  
GND  
GND  
V13  
V18  
V6  
GND  
GND  
GND  
GND  
GND  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
B12  
B7  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
G17  
G2  
M17  
M2  
U12  
U7  
F12  
F13  
F6  
F7  
G13  
G6  
M13  
M6  
N12  
N13  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
172  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 98: FG320 Package Pinout (Cont’d)  
XC3S400, XC3S1000, XC3S1500  
FG320  
Pin Number  
Bank  
Type  
Pin Name  
N/A  
N/A  
VCCINT  
VCCINT  
N6  
N7  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
VCCAUX CCLK  
VCCAUX DONE  
VCCAUX HSWAP_EN  
VCCAUX M0  
T15  
R15  
E6  
P5  
VCCAUX M1  
U3  
VCCAUX M2  
R4  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
E5  
E14  
D4  
JTAG  
VCCAUX TDO  
VCCAUX TMS  
D15  
B16  
JTAG  
JTAG  
User I/Os by Bank  
Table 99 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FG320 package.  
Table 99: User I/Os Per Bank in FG320 Package  
All Possible I/O Pins by Type  
Maximum  
I/O  
Maximum  
Package Edge  
Top  
I/O Bank  
LVDS Pairs  
I/O  
19  
19  
23  
23  
13  
13  
23  
23  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
26  
26  
29  
29  
27  
26  
29  
29  
11  
11  
14  
14  
11  
11  
14  
14  
0
0
0
0
6
6
0
0
3
3
4
4
4
3
4
4
2
2
0
0
2
2
0
0
2
2
Right  
2
2
Bottom  
Left  
2
2
2
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
173  
Spartan-3 FPGA Family: Pinout Descriptions  
FG320 Footprint  
X-Ref Target  
-
Figure 50  
Bank 0  
Bank 1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
L01N_0  
L01P_0  
GND  
L31P_0  
L31N_1  
L10N_1  
L01N_1  
L01P_1  
A
B
C
D
E
F
VREF_1  
L15N_0  
L15P_0  
L30N_0  
L30P_0  
L16N_1  
VRP_0  
VRN_0  
VREF_0 VREF_1  
VRP_1  
VRN_1  
VREF_1  
I/O  
L16P_7  
VREF_7  
I/O  
L16P_1  
I/O  
L10P_1  
I/O  
L16N_2  
I/O  
VREF_0  
I/O  
L31N_0  
I/O  
L31P_1  
I/O  
L25P_0  
I/O  
L09N_0  
I/O  
L25N_0  
VCCAUX  
GND  
GND  
VCCO_0  
VCCO_1  
VCCAUX  
I/O  
TMS  
I/O  
L01P_7  
VRN_7  
I/O  
L01N_7  
VRP_7  
I/O  
L01N_2  
VRP_2  
I/O  
L01P_2  
VRN_2  
I/O  
L30N_1  
I/O  
L28N_1  
I/O  
L15N_1  
I/O  
L15P_1  
I/O  
L16P_2  
I/O  
L16N_7  
I/O  
L09P_0  
I/O  
L10N_0  
I/O  
L27N_0  
I/O  
L28N_0  
VCCO_0  
VCCO_1  
GND  
GND  
I/O  
L17P_2  
VREF_2  
I/O  
L17N_7  
I/O  
L17P_7  
I/O  
L19P_7  
I/O  
L10P_0  
I/O  
VREF_0  
I/O  
L27P_0  
I/O  
L28P_0  
I/O  
L30P_1  
I/O  
L28P_1  
I/O  
L24P_1  
I/O  
L24N_1  
I/O  
L19N_2  
I/O  
L17N_2  
TDI  
I/O  
I/O  
TDO  
I/O  
L19N_7  
VREF_7  
I/O  
L32N_0  
GCLK7  
I/O  
L32N_1  
GCLK5  
I/O  
L29N_0  
I/O  
L29P_1  
I/O  
L27P_1  
I/O  
L27N_1  
I/O  
L21P_2  
I/O  
L19P_2  
I/O  
L20N_2  
I/O  
L20P_2  
I/O  
L20P_7  
I/O  
L20N_7  
I/O  
L21N_7  
HSWAP_  
EN  
PROG_B  
I/O  
TCK  
I/O  
L32P_0  
GCLK6  
I/O  
L32P_1  
GCLK4  
I/O  
L23P_7  
I/O  
L21P_7  
I/O  
L22P_7  
I/O  
L29P_0  
I/O  
L29N_1  
I/O  
L22N_2  
I/O  
L21N_2  
I/O  
L23P_2  
VCCO_2  
VCCO_7  
VCCINT VCCINT  
VCCINT VCCINT  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
VCCO_1 VCCO_1  
VCCINT  
GND  
VCCINT  
GND  
VCCO_0 VCCO_0  
L23N_2  
G
H
J
VCCAUX  
L23N_7  
L24P_7  
L24N_7  
L22N_7  
L22P_2  
L24N_2  
L24P_2  
VREF_2  
I/O  
L27P_7  
I/O  
L34N_2  
VREF_2  
I/O  
L35N_7  
I/O  
L35P_7  
I/O  
L34P_7  
I/O  
L34N_7  
I/O  
L27N_7  
I/O  
L27N_2  
I/O  
L27P_2  
I/O  
L34P_2  
I/O  
L35N_2  
I/O  
L35P_2  
VCCO_2  
VCCO_2  
VCCO_3  
VCCO_3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCO_7  
VCCO_7  
VCCO_6  
VCCO_6  
VREF_7  
I/O  
L40N_7  
VREF_7  
I/O  
L40P_2  
VREF_2  
I/O  
L39N_7  
I/O  
L39P_7  
I/O  
L40P_7  
I/O  
L40N_2  
I/O  
L39P_2  
I/O  
L39N_2  
GND  
GND  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
L40P_6  
VREF_6  
I/O  
L40N_3  
VREF_3  
I/O  
L40N_6  
I/O  
L39P_6  
I/O  
L39N_6  
I/O  
L39N_3  
I/O  
L39P_3  
I/O  
L40P_3  
I/O  
K
L
I/O  
L34N_6  
VREF_6  
I/O  
L34P_3  
VREF_3  
I/O  
L35P_6  
I/O  
L35N_6  
I/O  
L34P_6  
I/O  
L27P_6  
I/O  
L27N_6  
I/O  
L27P_3  
I/O  
L27N_3  
I/O  
L34N_3  
I/O  
L35P_3  
I/O  
L35N_3  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_5 VCCO_5 VCCO_4 VCCO_4  
VCCINT  
VCCAUX  
VCCAUX  
GND  
GND  
L23P_3  
M
N
P
R
T
VCCINT  
L24P_6  
L23N_6  
L23P_6  
L22P_6  
L22N_3  
L23N_3  
L24N_3  
VREF_3  
I/O  
L24N_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
L21N_6  
I/O  
L22N_6  
I/O  
L22P_3  
I/O  
L21P_3  
I/O  
L24P_3  
I/O  
I/O  
GND  
GND  
VCCINT VCCINT  
L32N_5  
L32N_4  
L30N_4 VCCINT VCCINT  
VCCO_3  
VCCO_6  
D2  
GCLK3  
GCLK1  
I/O  
I/O  
I/O  
L32P_5  
GCLK2  
I/O  
L32P_4  
GCLK0  
I/O  
L30P_4  
D3  
I/O  
L06N_4  
VREF_4  
I/O  
L20P_6  
I/O  
L20N_6  
I/O  
L19P_6  
I/O  
L21P_6  
I/O  
L25P_4  
I/O  
L21N_3  
I/O  
L17N_3  
I/O  
L20P_3  
I/O  
L20N_3  
M0  
I/O  
L27N_5  
L27P_5  
VREF_5  
I/O  
L17P_6  
VREF_6  
I/O  
I/O  
I/O  
L27P_4  
D1  
I/O  
L17P_3  
VREF_3  
I/O  
L17N_6  
I/O  
L19N_6  
I/O  
L15P_5  
I/O  
L30N_5  
I/O  
I/O  
I/O  
L29N_4  
I/O  
L25N_4  
I/O  
L06P_4  
I/O  
L19N_3  
I/O  
L19P_3  
M2  
DONE  
CCLK  
L28N_5  
L15N_5  
D6  
VREF_5 VREF_4  
I/O  
L27N_4  
DIN  
I/O  
L01P_6  
VRN_6  
I/O  
L01N_6  
VRP_6  
I/O  
L28P_5  
D7  
I/O  
L01P_3  
VRN_3  
I/O  
L01N_3  
VRP_3  
I/O  
L16P_6  
I/O  
L06P_5  
I/O  
L06N_5  
I/O  
L30P_5  
I/O  
L29P_4  
I/O  
L10N_4  
I/O  
L16N_3  
VCCO_5  
I/O  
GND  
GND  
VCCO_4  
D0  
I/O  
L10P_5  
VRN_5  
I/O  
L31N_5  
D4  
I/O  
I/O  
L01N_4  
VRP_4  
I/O  
L16N_6  
I/O  
L16P_5  
I/O  
VREF_4  
I/O  
L10P_4  
I/O  
L09N_4  
I/O  
L16P_3  
VCCAUX  
VCCAUX  
VCCO_5  
VCCO_4  
GND  
M1  
GND  
L31N_4  
U
V
INIT_B  
I/O  
I/O  
L01P_5  
CS_B  
I/O  
L01N_5  
RDWR_B VRP_5  
I/O  
L10N_5  
I/O  
L29P_5  
VREF_5  
I/O  
L31P_5  
D5  
I/O  
L01P_4  
VRN_4  
I/O  
L16N_5  
I/O  
L29N_5  
I/O  
L28P_4  
I/O  
L28N_4  
I/O  
L09P_4  
I/O  
VREF_4  
L31P_4  
DOUT  
GND  
I/O  
GND  
GND  
GND  
BUSY  
Bank 5  
Bank 4  
ds099-3_16_121103  
Figure 50: FG320 Package Footprint (Top View)  
DUAL: Configuration pin, then possible  
VREF: User I/O or input voltage reference  
156 I/O: Unrestricted, general-purpose user I/O 12  
DCI: User I/O or reference resistor input for  
29  
user I/O  
for bank  
16  
8
GCLK: User I/O or global clock buffer input 28 VCCO: Output voltage supply for bank  
VCCINT: Internal core voltage supply  
bank  
7
CONFIG: Dedicated configuration pins  
4
JTAG: Dedicated JTAG port pins  
12  
(+1.2V)  
VCCAUX: Auxiliary voltage supply  
(+2.5V)  
0
N.C.: No unconnected pins in this package 40 GND: Ground  
8
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
174  
Spartan-3 FPGA Family: Pinout Descriptions  
FG456: 456-lead Fine-pitch Ball Grid Array  
The 456-lead fine-pitch ball grid array package, FG456, supports four different Spartan-3 devices, including the XC3S400,  
the XC3S1000, the XC3S1500, and the XC3S2000. The footprints for the XC3S1000, the XC3S1500, and the XC3S2000  
are identical, as shown in Table 100 and Figure 51. The XC3S400, however, has fewer I/O pins which consequently results  
in 69 unconnected pins on the FG456 package, labeled as “N.C.In Table 100 and Figure 51, these unconnected pins are  
indicated with a black diamond symbol ().  
All the package pins appear in Table 100 and are sorted by bank number, then by pin name. Pairs of pins that form a  
differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as  
defined earlier.  
If there is a difference between the XC3S400 pinout and the pinout for the XC3S1000, the XC3S1500, or the XC3S2000,  
then that difference is highlighted in Table 100. If the table entry is shaded grey, then there is an unconnected pin on the  
XC3S400 that maps to a user-I/O pin on the XC3S1000, XC3S1500, and XC3S2000. If the table entry is shaded tan, then  
the unconnected pin on the XC3S400 maps to a VREF-type pin on the XC3S1000, the XC3S1500, or the XC3S2000. If the  
other VREF pins in the bank all connect to a voltage reference to support a special I/O standard, then also connect the N.C.  
pin on the XC3S400 to the same VREF voltage. This provides maximum flexibility as you could potentially migrate a design  
from the XC3S400 device to an XC3S1000, an XC3S1500, or an XC3S2000 FPGA without changing the printed circuit  
board.  
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at  
http://www.xilinx.com/support/documentation/data_ sheets/s3_pin.zip.  
Pinout Table  
Table 100: FG456 Package Pinout  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
IO  
IO  
IO  
A10  
D9  
D10  
F6  
I/O  
I/O  
IO  
IO  
I/O  
IO  
I/O  
IO/VREF_0  
IO/VREF_0  
N.C. ()  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L06N_0  
IO_L06P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L19N_0  
IO_L19P_0  
A3  
C7  
E5  
F7  
VREF  
VREF  
VREF  
VREF  
DCI  
DCI  
I/O  
IO/VREF_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L06N_0  
IO_L06P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
N.C. ()  
B4  
A4  
D5  
C5  
B5  
A5  
E6  
D6  
C6  
B6  
E7  
D7  
B7  
A7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
175  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N.C. ()  
IO_L22N_0  
E8  
D8  
I/O  
I/O  
N.C. ()  
IO_L22P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
B8  
I/O  
A8  
I/O  
F9  
I/O  
E9  
I/O  
B9  
I/O  
A9  
I/O  
F10  
E10  
C10  
B10  
F11  
E11  
D11  
C11  
B11  
A11  
C8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_0  
VCCO_0  
F8  
VCCO_0  
VCCO_0  
G9  
VCCO_0  
VCCO_0  
G10  
G11  
A12  
E16  
F12  
F13  
F16  
F17  
E13  
F14  
C19  
B20  
A19  
B19  
C18  
D18  
A18  
B18  
D17  
VCCO_0  
VCCO_0  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO/VREF_1  
N.C. ()  
IO/VREF_1  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L06N_1/VREF_1  
IO_L06P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L15N_1  
VREF  
VREF  
DCI  
DCI  
VREF  
I/O  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L06N_1/VREF_1  
IO_L06P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L15N_1  
I/O  
I/O  
VREF  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
176  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
IO_L15P_1  
IO_L15P_1  
E17  
B17  
C17  
C16  
D16  
A16  
B16  
D15  
E15  
B15  
A15  
D14  
E14  
A14  
B14  
C13  
D13  
A13  
B13  
D12  
E12  
B12  
C12  
C15  
F15  
G12  
G13  
G14  
C22  
C20  
C21  
D20  
D19  
D21  
D22  
E18  
F18  
E19  
E20  
E21  
I/O  
I/O  
IO_L16N_1  
IO_L16P_1  
N.C. ()  
IO_L16N_1  
IO_L16P_1  
IO_L19N_1  
IO_L19P_1  
IO_L22N_1  
IO_L22P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
I/O  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
IO  
IO  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
IO_L17P_2/VREF_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
IO_L17P_2/VREF_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
DCI  
DCI  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
177  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
IO_L21P_2  
IO_L21P_2  
E22  
G17  
G18  
F19  
G19  
F20  
F21  
G20  
H19  
G21  
G22  
H18  
J17  
H21  
H22  
J18  
J19  
J21  
J22  
K17  
K18  
K19  
K20  
K21  
K22  
L17  
L18  
L19  
L20  
L21  
L22  
H17  
H20  
J16  
K16  
L16  
Y21  
Y20  
Y19  
W22  
I/O  
I/O  
IO_L22N_2  
IO_L22P_2  
IO_L23N_2/VREF_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
N.C. ()  
IO_L22N_2  
IO_L22P_2  
IO_L23N_2/VREF_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L34N_2/VREF_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2/VREF_2  
VCCO_2  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
I/O  
IO_L27N_2  
IO_L27P_2  
N.C. ()  
I/O  
I/O  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
IO_L34N_2/VREF_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2/VREF_2  
VCCO_2  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
IO  
IO  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L16N_3  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L16N_3  
DCI  
DCI  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
178  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L16P_3  
IO_L16P_3  
Y22  
V19  
W19  
W21  
W20  
U19  
V20  
V22  
V21  
T17  
U18  
U21  
U20  
R18  
T18  
T20  
T19  
T22  
T21  
R22  
R21  
P19  
R19  
P18  
P17  
P22  
P21  
N18  
N17  
N20  
N19  
N22  
N21  
M18  
M17  
M20  
M19  
M22  
M21  
M16  
I/O  
I/O  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L24P_3  
N.C. ()  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L34P_3/VREF_3  
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
VCCO_3  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
N.C. ()  
I/O  
IO_L27N_3  
IO_L27P_3  
N.C. ()  
I/O  
I/O  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
IO_L34N_3  
IO_L34P_3/VREF_3  
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
VCCO_3  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
VCCO  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
179  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
VCCO_3  
VCCO_3  
N16  
P16  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
R17  
VCCO_3  
VCCO_3  
R20  
IO  
IO  
U16  
IO  
IO  
U17  
I/O  
IO  
IO  
W13  
W14  
AB13  
V18  
I/O  
IO  
IO  
I/O  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
N.C. ()  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L05N_4  
IO_L05P_4  
IO_L06N_4/VREF_4  
IO_L06P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L19N_4  
IO_L19P_4  
VREF  
VREF  
VREF  
DCI  
DCI  
I/O  
Y16  
AA20  
AB20  
AA19  
AB19  
W18  
Y18  
N.C. ()  
I/O  
IO_L06N_4/VREF_4  
IO_L06P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
N.C. ()  
VREF  
I/O  
AA18  
AB18  
V17  
I/O  
I/O  
I/O  
W17  
Y17  
I/O  
I/O  
AA17  
V16  
I/O  
I/O  
W16  
AA16  
AB16  
V15  
I/O  
I/O  
N.C. ()  
I/O  
N.C. ()  
IO_L22N_4/  
VREF_4  
VREF  
4
4
4
4
4
4
4
4
4
4
4
N.C. ()  
IO_L22P_4  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
W15  
AA15  
AB15  
U14  
I/O  
I/O  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
I/O  
I/O  
V14  
I/O  
AA14  
AB14  
U13  
DUAL  
DUAL  
I/O  
V13  
I/O  
Y13  
I/O  
AA13  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
180  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L30N_4/D2  
IO_L30N_4/D2  
U12  
V12  
W12  
Y12  
AA12  
AB12  
T12  
T13  
T14  
U15  
Y15  
U7  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IO_L30P_4/D3  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L31N_4/INIT_B  
IO_L31P_4/DOUT/BUSY IO_L31P_4/DOUT/BUSY  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
IO  
N.C. ()  
IO  
U9  
I/O  
IO  
IO  
U10  
U11  
V7  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
V10  
AB11  
U6  
I/O  
IO/VREF_5  
IO/VREF_5  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L06N_5  
IO_L06P_5  
IO_L09N_5  
IO_L09P_5  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
N.C. ()  
IO/VREF_5  
IO/VREF_5  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L06N_5  
IO_L06P_5  
IO_L09N_5  
IO_L09P_5  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L19N_5  
VREF  
VREF  
DUAL  
DUAL  
I/O  
Y4  
AA3  
AB4  
AA4  
Y5  
I/O  
I/O  
W5  
I/O  
AB5  
AA5  
W6  
DCI  
DCI  
I/O  
V6  
I/O  
AA6  
Y6  
I/O  
I/O  
Y7  
I/O  
N.C. ()  
IO_L19P_5/  
VREF_5  
W7  
VREF  
5
5
5
5
5
5
N.C. ()  
IO_L22N_5  
IO_L22P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
AB7  
AA7  
W8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
V8  
AB8  
AA8  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
181  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
3S1000, 3S1500, 3S2000  
FG456  
Bank  
Type  
Pin Name  
Pin Name  
IO_L27N_5/VREF_5  
IO_L27P_5  
Pin Number  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IO_L27N_5/VREF_5  
IO_L27P_5  
W9  
V9  
VREF  
I/O  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
AB9  
AA9  
Y10  
W10  
AB10  
AA10  
W11  
V11  
AA11  
Y11  
T9  
DUAL  
DUAL  
I/O  
IO_L29P_5/VREF_5  
IO_L30N_5  
IO_L29P_5/VREF_5  
IO_L30N_5  
VREF  
I/O  
IO_L30P_5  
IO_L30P_5  
I/O  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_5  
VCCO_5  
T10  
T11  
U8  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
Y8  
IO  
IO  
Y1  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L16N_6  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L16N_6  
Y3  
DCI  
DCI  
I/O  
Y2  
W4  
W3  
W2  
W1  
V5  
IO_L16P_6  
IO_L16P_6  
I/O  
IO_L17N_6  
IO_L17N_6  
I/O  
IO_L17P_6/VREF_6  
IO_L19N_6  
IO_L17P_6/VREF_6  
IO_L19N_6  
VREF  
I/O  
IO_L19P_6  
IO_L19P_6  
U5  
I/O  
IO_L20N_6  
IO_L20N_6  
V4  
I/O  
IO_L20P_6  
IO_L20P_6  
V3  
I/O  
IO_L21N_6  
IO_L21N_6  
V2  
I/O  
IO_L21P_6  
IO_L21P_6  
V1  
I/O  
IO_L22N_6  
IO_L22N_6  
T6  
I/O  
IO_L22P_6  
IO_L22P_6  
T5  
I/O  
IO_L23N_6  
IO_L23N_6  
U4  
I/O  
IO_L23P_6  
IO_L23P_6  
T4  
I/O  
IO_L24N_6/VREF_6  
IO_L24P_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
U3  
VREF  
I/O  
U2  
N.C. ()  
IO_L26N_6  
T3  
I/O  
N.C. ()  
IO_L26P_6  
R4  
I/O  
IO_L27N_6  
IO_L27N_6  
T2  
I/O  
IO_L27P_6  
IO_L27P_6  
T1  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
182  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
N.C. ()  
IO_L28N_6  
R5  
P6  
R2  
R1  
P5  
P4  
P2  
P1  
N6  
N5  
N4  
N3  
N2  
N1  
M6  
M5  
M4  
M3  
M2  
M1  
M7  
N7  
P7  
R3  
R6  
C2  
C3  
C4  
D1  
C1  
E4  
D4  
D3  
D2  
F4  
E3  
E1  
E2  
G6  
F5  
I/O  
I/O  
N.C. ()  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
IO_L34N_6/VREF_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L40P_6/VREF_6  
VCCO_6  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
IO_L34N_6/VREF_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L40P_6/VREF_6  
VCCO_6  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
IO  
IO  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L16N_7  
IO_L16P_7/VREF_7  
IO_L17N_7  
IO_L17P_7  
IO_L19N_7/VREF_7  
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L16N_7  
IO_L16P_7/VREF_7  
IO_L17N_7  
IO_L17P_7  
IO_L19N_7/VREF_7  
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
DCI  
DCI  
I/O  
VREF  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
183  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
7
7
IO_L23N_7  
IO_L23N_7  
F2  
F3  
I/O  
I/O  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
N.C. ()  
N.C. ()  
IO_L27N_7  
IO_L27P_7/VREF_7  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
IO_L27P_7/VREF_7  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
7
H5  
G5  
G3  
G4  
G1  
G2  
H1  
H2  
J4  
I/O  
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
VREF  
I/O  
7
7
I/O  
7
I/O  
7
H4  
J5  
I/O  
7
I/O  
7
J6  
I/O  
7
J1  
I/O  
7
J2  
I/O  
7
K5  
K6  
K3  
K4  
K1  
K2  
L5  
I/O  
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
I/O  
7
L6  
I/O  
7
L3  
I/O  
7
L4  
I/O  
7
L1  
VREF  
I/O  
7
L2  
7
H3  
H6  
J7  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
7
VCCO_7  
7
VCCO_7  
7
VCCO_7  
K7  
L7  
7
VCCO_7  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
A1  
A22  
AA2  
AA21  
AB1  
AB22  
B2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
184  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B21  
C9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
C14  
J3  
J9  
J10  
J11  
J12  
J13  
J14  
J20  
K9  
K10  
K11  
K12  
K13  
K14  
L9  
L10  
L11  
L12  
L13  
L14  
M9  
M10  
M11  
M12  
M13  
M14  
N9  
N10  
N11  
N12  
N13  
N14  
P3  
P9  
P10  
P11  
P12  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
185  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 100: FG456 Package Pinout (Cont’d)  
3S400  
Pin Name  
3S1000, 3S1500, 3S2000  
Pin Name  
FG456  
Pin Number  
Bank  
Type  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
P13  
P14  
P20  
Y9  
GND  
GND  
GND  
GND  
Y14  
A6  
GND  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
A17  
AB6  
AB17  
F1  
F22  
U1  
U22  
G7  
G8  
G15  
G16  
H7  
H16  
R7  
R16  
T7  
T8  
T15  
T16  
AA22  
AB21  
B3  
VCCAUX CCLK  
VCCAUX DONE  
VCCAUX HSWAP_EN  
VCCAUX M0  
DONE  
HSWAP_EN  
M0  
AB2  
AA1  
AB3  
A2  
VCCAUX M1  
M1  
VCCAUX M2  
M2  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
PROG_B  
TCK  
A21  
B1  
TDI  
JTAG  
VCCAUX TDO  
VCCAUX TMS  
TDO  
B22  
A20  
JTAG  
TMS  
JTAG  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
186  
Spartan-3 FPGA Family: Pinout Descriptions  
User I/Os by Bank  
Table 101 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S400 in the  
FG456 package. Similarly, Table 102 shows how the available user-I/O pins are distributed between the eight I/O banks for  
the XC3S1000, XC3S1500, and XC3S2000 in the FG456 package.  
Table 101: User I/Os Per Bank for XC3S400 in FG456 Package  
All Possible I/O Pins by Type  
I/O  
Edge  
Top  
Maximum I/O  
Bank  
I/O  
27  
27  
25  
25  
21  
21  
25  
25  
DUAL  
DCI  
VREF  
GCLK  
0
1
2
3
4
5
6
7
35  
35  
31  
31  
35  
35  
31  
31  
0
0
0
0
6
6
0
0
2
4
4
4
4
4
4
4
4
2
2
0
0
2
2
0
0
2
2
Right  
Bottom  
Left  
2
2
2
2
2
Table 102: User I/Os Per Bank for XC3S1000, XC3S1500, and XC3S2000 in FG456 Package  
All Possible I/O Pins by Type  
Edge  
Top  
I/O Bank  
Maximum I/O  
I/O  
31  
31  
37  
37  
26  
25  
37  
37  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
40  
40  
43  
43  
41  
40  
43  
43  
0
0
0
0
6
6
0
0
5
5
4
4
5
5
4
4
2
2
0
0
2
2
0
0
2
2
Right  
Bottom  
Left  
2
2
2
2
2
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
187  
Spartan-3 FPGA Family: Pinout Descriptions  
X-Ref Target - Figure 51  
FG456 Footprint  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
11  
Left Half of FG456  
Package (Top View)  
I/O  
I/O  
L01P_0  
VRN_0  
I/O  
L32P_0  
GCLK6  
IO  
I/O  
I/O  
I/O  
L19P_0  
PROG_B  
VCCAUX  
I/O  
A
B
C
D
E
F
GND  
VREF_0  
L09P_0  
L24P_0 L27P_0  
I/O  
L19N_0  
I/O  
L01N_0  
VRP_0  
I/O  
L32N_0  
GCLK7  
HSWAP_  
EN  
I/O  
I/O  
I/O  
I/O  
I/O  
XC3S400  
(264 max. user I/O)  
TDI  
GND  
L09N_0 L15P_0  
L24N_0 L27N_0 L29P_0  
I/O: Unrestricted,  
general-purpose user I/O  
I/O  
L16P_7  
VREF_7  
I/O  
I/O  
I/O  
L31P_0  
VREF_0  
196  
IO  
VREF_0  
I/O  
I/O  
I/O  
VCCO_0  
I/O  
I/O  
GND  
L01N_7 L01P_7  
VRP_7 VRN_7  
L06P_0 L15N_0  
L29N_0  
I/O  
I/O  
L22P_0  
VREF: User I/O or input  
32  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L31N_0  
voltage reference for bank  
I/O  
I/O  
L19N_7  
VREF_7  
L16N_7 L19P_7  
L17P_7 L06N_0 L10P_0 L16P_0  
IO  
VREF_0  
I/O  
L22N_0  
N.C.: Unconnected pins for  
XC3S400 ()  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
69  
L21N_7 L21P_7 L20P_7 L17N_7  
L10N_0 L16N_0  
L25P_0 L28P_0 L30P_0  
IO  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
XC3S1000, XC3S1500,  
XC3S2000 (333 max user I/O)  
VCCAUX  
VCCO_0  
VREF_0  
L23N_7 L23P_7 L20N_7 L22P_7  
L25N_0 L28N_0 L30N_0  
I/O: Unrestricted,  
I/O  
L27P_7  
VREF_7  
261  
I/O  
I/O  
I/O  
I/O  
I/O  
general-purpose user I/O  
VCCO_0 VCCO_0 VCCO_0  
VCCINT VCCINT  
VCCINT  
G
H
J
L26N_7 L26P_7  
L27N_7  
L24P_7 L22N_7  
I/O  
I/O  
I/O  
L29P_7  
VREF: User I/O or input  
36  
I/O  
L24N_7  
L28N_7 L28P_7  
VCCO_7  
VCCO_7  
voltage reference for bank  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C.: No unconnected pins  
in this package  
0
L32N_7 L32P_7  
L29N_7 L31N_7 L31P_7  
VCCO_7  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
All devices  
L33N_7 L33P_7  
VCCO_7  
K
L35N_7 L35P_7 L34N_7 L34P_7  
DUAL: Configuration pin,  
then possible user I/O  
12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_7  
L L40N_7  
L40P_7 L39N_7 L39P_7 L38N_7 L38P_7  
VREF_7  
GCLK: User I/O or global  
clock buffer input  
8
I/O  
M L40P_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_6  
L40N_6 L39P_6 L39N_6 L38P_6 L38N_6  
DCI: User I/O or reference  
16  
I/O  
I/O  
I/O  
L34N_6  
VREF_6  
resistor input for bank  
I/O  
I/O  
I/O  
L33P_6 L33N_6  
VCCO_6  
N
GND  
GND  
GND  
GND  
GND  
GND  
L35P_6 L35N_6 L34P_6  
CONFIG: Dedicated  
I/O  
I/O  
I/O  
I/O  
I/O  
7
configuration pins  
L32P_6 L32N_6  
L31P_6 L31N_6 L28P_6  
VCCO_6  
GND  
P
R
T
JTAG: Dedicated JTAG  
port pins  
I/O  
I/O  
I/O  
I/O  
4
L29P_6 L29N_6  
L26P_6 L28N_6  
VCCO_6  
VCCO_6  
VCCINT  
I/O  
L26N_6  
VCCINT: Internal core  
12  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_5 VCCO_5 VCCO_5  
I/O  
VCCINT VCCINT  
voltage supply (+1.2V)  
L27P_6 L27N_6  
L23P_6 L22P_6 L22N_6  
I/O  
L24N_6  
VREF_6  
IO  
VCCO: Output voltage  
supply for bank  
I/O  
L24P_6  
I/O  
I/O  
VCCAUX  
VCCO_5  
I/O  
I/O  
I/O  
I/O  
40  
U
V
VREF_5  
I/O  
L23N_6 L19P_6  
I/O  
L31P_5  
D5  
I/O  
I/O  
I/O  
I/O I/O  
I/O  
VCCAUX:Auxiliaryvoltage  
supply (+2.5V)  
I/O  
I/O  
I/O  
8
L21P_6 L21N_6 L20P_6 L20N_6 L19N_6 L15P_5  
L24P_5 L27P_5  
I/O  
L19P_5  
VREF_5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
W L17P_6  
L27N_5 L29P_5 L31N_5  
L17N_6 L16P_6 L16N_6 L09P_5 L15N_5  
L24N_5  
52 GND: Ground  
VREF_6  
VREF_5 VREF_5  
D4  
I/O  
I/O  
I/O  
I/O  
I/O  
L32P_5  
GCLK2  
I/O  
I/O  
I/O  
GND  
L19N_5  
VCCO_5  
I/O  
M1  
Y
L01P_6 L01N_6 L01N_5  
L09N_5 L16P_5  
L29N_5  
VRN_6 VRP_6 RDWR_B  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L32N_5  
GCLK3  
A
A
I/O  
I/O  
L22P_5  
GND  
M0  
L01P_5  
CS_B  
L10P_5  
L16N_5  
VRN_5  
L28P_5  
L30P_5  
D7  
L06P_5  
L25P_5  
I/O  
L22N_5  
I/O  
I/O  
I/O  
A
B
IO  
VREF_5  
I/O  
I/O  
L25N_5  
VCCAUX  
L10N_5  
GND  
M2  
L28N_5  
L30N_5  
D6  
L06N_5  
VRP_5  
Bank 5  
DS099-4_11a_030203  
Figure 51: FG456 Package Footprint (Top View)  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
188  
Spartan-3 FPGA Family: Pinout Descriptions  
Bank 1  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
I/O  
Right Half of FG456  
Package (Top View)  
I/O  
I/O  
I/O  
I/O  
I/O  
L22N_1  
VCCAUX  
I/O  
TMS  
TCK  
GND  
L10N_1 L06N_1  
VREF_1 VREF_1  
A
B
C
L30N_1 L28N_1 L25P_1  
I/O  
L22P_1  
I/O  
L32N_1  
GCLK5  
I/O  
L01P_1  
VRN_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
TDO  
L30P_1 L28P_1 L25N_1  
L16N_1 L10P_1 L06P_1  
I/O  
L19N_1  
I/O  
L32P_1  
GCLK4  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_1  
I/O  
GND  
I/O  
I/O  
I/O  
L01N_1 L01N_2 L01P_2  
VRP_1 VRP_2 VRN_2  
L29N_1  
I/O  
L16P_1 L09N_1  
I/O  
L19P_1  
I/O  
L31N_1  
VREF_1  
I/O  
I/O  
I/O  
I/O  
I/O  
L17P_2 D  
L29P_1 L27N_1 L24N_1  
L15N_1 L09P_1 L16P_2 L16N_2 L17N_2  
VREF_2  
IO  
VREF_1  
I/O  
L31P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
E
L27P_1 L24P_1  
L15P_1 L19N_2 L20N_2 L20P_2 L21N_2 L21P_2  
IO  
I/O  
L23N_2  
VREF_2  
I/O  
I/O  
I/O  
VREF_1  
VCCO_1  
VCCAUX  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
F
G
H
J
L19P_2  
L24N_2 L24P_2  
I/O  
L26N_2  
I/O  
I/O  
I/O  
VCCO_1 VCCO_1 VCCO_1  
VCCINT VCCINT  
VCCINT  
L22N_2 L22P_2 L23P_2  
L27N_2 L27P_2  
I/O  
I/O  
I/O  
I/O  
L28N_2 L26P_2  
L29N_2 L29P_2  
VCCO_2  
I/O  
VCCO_2  
I/O  
I/O  
I/O  
I/O  
L28P_2 L31N_2 L31P_2  
L32N_2 L32P_2  
VCCO_2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
L34N_2  
VREF_2  
I/O  
I/O  
L33N_2 L33P_2  
VCCO_2  
K
L
L34P_2 L35N_2 L35P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_2  
L40P_2  
L38N_2 L38P_2 L39N_2 L39P_2 L40N_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_3  
L40N_3 M  
L38P_3 L38N_3 L39P_3 L39N_3 L40P_3  
VREF_3  
I/O  
I/O  
I/O  
L34P_3  
VREF_3  
I/O  
I/O  
I/O  
L33P_3 L33N_3  
VCCO_3  
N
L34N_3 L35P_3 L35N_3  
I/O  
I/O  
I/O  
I/O  
I/O  
L31P_3 L31N_3 L29N_3  
L32P_3 L32N_3  
VCCO_3  
GND  
P
R
T
I/O  
L29P_3  
I/O  
I/O  
I/O  
L24N_3  
L28P_3 L28N_3  
VCCO_3  
VCCO_3  
I/O  
VCCINT  
I/O  
I/O  
I/O  
I/O  
I/O  
L26P_3 L26N_3  
VCCO_4 VCCO_4 VCCO_4  
I/O  
VCCINT VCCINT  
L22N_3 L24P_3  
L27P_3 L27N_3  
I/O  
L23P_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L23N_3  
VCCO_4  
VCCAUX  
I/O  
I/O  
L30N_4  
D2  
U
V
W
Y
L28N_4 L25N_4  
L22P_3 L20N_3  
I/O  
L22N_4  
VREF_4  
I/O  
L22P_4  
I/O  
L30P_4  
D3  
IO  
VREF_4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L28P_4 L25P_4  
L16N_4 L10N_4  
L17N_3 L20P_3 L21P_3 L21N_3  
I/O  
L31N_4  
INIT_B  
I/O  
L31P_4  
DOUT L29N_4  
BUSY  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L06N_4 L17P_3  
VREF_4 VREF_3  
L16P_4 L10P_4  
L19P_3 L19N_3 L16N_3  
I/O  
I/O  
I/O  
IO  
VREF_4  
I/O  
I/O  
L16P_3  
VCCO_4  
GND  
I/O  
L01P_3 L01N_3  
VRN_3 VRP_3  
L15N_4 L06P_4  
I/O  
L27N_4  
DIN  
I/O  
L19N_4  
I/O  
L05N_4  
I/O  
L01N_4  
VRP_4  
A
A
I/O  
I/O  
L24N_4  
I/O  
I/O  
GND  
CCLK  
L32N_4  
L29P_4  
GCLK1  
L15P_4 L09N_4  
D0  
I/O  
I/O  
I/O  
IO  
I/O  
L27P_4  
D1  
I/O  
L01P_4  
VRN_4  
A
B
I/O  
L24P_4  
I/O  
L09P_4  
L19P_4  
L05P_4  
VCCAUX  
DONE GND  
L32P_4  
VREF_4  
GCLK0  
Bank 4  
DS099-4_11b_030503  
Figure 52: FG456 Package Footprint (Top View) Continued  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
189  
Spartan-3 FPGA Family: Pinout Descriptions  
FG676: 676-lead Fine-pitch Ball Grid Array  
The 676-lead fine-pitch ball grid array package, FG676, supports five different Spartan-3 devices, including the XC3S1000,  
XC3S1500, XC3S2000, XC3S4000, and XC3S5000. All five have nearly identical footprints but are slightly different,  
primarily due to unconnected pins on the XC3S1000 and XC3S1500. For example, because the XC3S1000 has fewer I/O  
pins, this device has 98 unconnected pins on the FG676 package, labeled as “N.C.In Table 103 and Figure 53, these  
unconnected pins are indicated with a black diamond symbol (). The XC3S1500, however, has only two unconnected pins,  
also labeled “N.C.in the pinout table but indicated with a black square symbol ().  
All the package pins appear in Table 103 and are sorted by bank number, then by pin name. Pairs of pins that form a  
differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as  
defined earlier.  
If there is a difference between the XC3S1000, XC3S1500, XC3S2000, XC3S4000, and XC3S5000 pinouts, then that  
difference is highlighted in Table 103. If the table entry is shaded grey, then there is an unconnected pin on either the  
XC3S1000 or XC3S1500 that maps to a user-I/O pin on the XC3S2000, XC3S4000, and XC3S5000. If the table entry is  
shaded tan, then the unconnected pin on either the XC3S1000 or XC3S1500 maps to a VREF-type pin on the XC3S2000,  
XC3S4000, and XC3S5000. If the other VREF pins in the bank all connect to a voltage reference to support a special I/O  
standard, then also connect the N.C. pin on the XC3S1000 or XC3S1500 to the same VREF voltage. This provides  
maximum flexibility as you could potentially migrate a design from the XC3S1000 through to the XC3S5000 FPGA without  
changing the printed circuit board.  
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at  
http://www.xilinx.com/support/documentation/data_ sheets/s3_pin.zip.  
Pinout Table  
Table 103: FG676 Package Pinout  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO_L04N_0(3)  
A3  
A5  
I/O  
I/O  
IO  
IO  
A6  
I/O  
IO_L04P_0(3)  
IO_L13N_0(3)  
IO  
C4  
C8  
C12  
E13  
H11  
H12  
B3  
I/O  
I/O  
N.C. ()  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L05N_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L05N_0  
IO_L05P_0/VREF_0  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
VREF  
VREF  
VREF  
DCI  
DCI  
I/O  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
F7  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
G10  
E5  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L05N_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L05N_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L05N_0  
D5  
B4  
IO_L05P_0/VREF_0 IO_L05P_0/VREF_0  
IO_L05P_0/VREF_0  
IO_L06N_0  
IO_L05P_0/VREF_0  
IO_L06N_0  
A4  
VREF  
I/O  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
C5  
B5  
IO_L06P_0  
IO_L06P_0  
I/O  
IO_L07N_0  
IO_L07N_0  
E6  
I/O  
IO_L07P_0  
IO_L07P_0  
D6  
C6  
B6  
I/O  
IO_L08N_0  
IO_L08N_0  
I/O  
IO_L08P_0  
IO_L08P_0  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
190  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO_L09N_0  
IO_L09N_0  
IO_L09N_0  
IO_L09N_0  
IO_L09N_0  
E7  
D7  
I/O  
I/O  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
N.C. ()  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L26P_0/VREF_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L26P_0/VREF_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L26P_0/VREF_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO(3)  
B7  
I/O  
A7  
I/O  
G8  
I/O  
F8  
I/O  
N.C. ()  
E8  
I/O  
N.C. ()  
IO(3)  
D8  
I/O  
N.C. ()  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
N.C. ()  
IO_L13P_0(3)  
IO(3)  
B8  
I/O  
A8  
I/O  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L26P_0/VREF_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
G9  
I/O  
F9  
I/O  
E9  
I/O  
D9  
I/O  
N.C. ()  
C9  
I/O  
N.C. ()  
B9  
I/O  
N.C. ()  
IO_L19N_0  
IO_L19P_0  
IO_L22N_0  
IO_L22P_0  
N.C. ()  
F10  
E10  
D10  
C10  
B10  
A10  
G11  
F11  
E11  
D11  
B11  
A11  
G12  
H13  
F12  
E12  
B12  
A12  
G13  
F13  
D13  
C13  
B13  
A13  
C7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
N.C. ()  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
N.C. ()  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L31P_0/VREF_0 IO_L31P_0/VREF_0  
VREF  
GCLK  
GCLK  
VCCO  
VCCO  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
C11  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
191  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
H9  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
VCCO_0  
VCCO_0  
VCCO_0  
H10  
J11  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
J12  
VCCO_0  
VCCO_0  
VCCO_0  
J13  
VCCO_0  
VCCO_0  
VCCO_0  
K13  
A14  
A22  
A23  
D16  
E18  
F14  
F20  
G19  
C15  
C17  
D18  
D22  
E22  
B23  
C23  
E21  
F21  
B22  
C22  
C21  
D21  
A21  
B21  
D20  
E20  
A20  
B20  
E19  
F19  
C19  
D19  
A19  
B19  
F18  
G18  
B18  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO_L17P_1(3)  
IO  
I/O  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
I/O  
IO/VREF_1  
IO/VREF_1  
N.C. ()  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO_L06N_1/VREF_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L18N_1  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO_L06N_1/VREF_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L18N_1  
IO/VREF_1  
IO/VREF_1  
IO_L17N_1/VREF_1(3)  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO_L06N_1/VREF_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO(3)  
VREF  
VREF  
VREF  
DCI  
DCI  
I/O  
I/O  
I/O  
I/O  
IO_L06N_1/VREF_1 IO_L06N_1/VREF_1  
VREF  
I/O  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L10N_1/VREF_1 IO_L10N_1/VREF_1  
VREF  
I/O  
IO_L10P_1  
N.C. ()  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L18N_1  
I/O  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
N.C. ()  
I/O  
I/O  
I/O  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
192  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
IO_L18P_1  
IO_L18P_1  
IO_L18P_1  
IO(3)  
C18  
F17  
G17  
D17  
E17  
A17  
B17  
G16  
H16  
E16  
F16  
A16  
B16  
G15  
H15  
E15  
F15  
A15  
B15  
G14  
H14  
D14  
E14  
B14  
C14  
C16  
C20  
H17  
H18  
J14  
I/O  
I/O  
N.C. ()  
IO_L19N_1  
IO_L19P_1  
IO_L22N_1  
IO_L22P_1  
N.C. ()  
IO_L19N_1  
IO_L19P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L19N_1  
IO_L19P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
IO_L19N_1  
IO_L19P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
IO_L19N_1  
IO_L19P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
N.C. ()  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L31N_1/VREF_1 IO_L31N_1/VREF_1  
VREF  
I/O  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
J15  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
J16  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
K14  
F22  
C25  
C26  
E23  
E24  
D25  
D26  
E25  
E26  
IO  
IO  
IO  
N.C. ()  
N.C. ()  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L02N_2  
IO_L02P_2  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L02N_2  
IO_L02P_2  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L02N_2  
IO_L02P_2  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L02N_2  
IO_L02P_2  
IO_L03N_2/VREF_2  
IO_L03P_2  
IO_L05N_2  
IO_L05P_2  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L02N_2  
IO_L02P_2  
IO_L03N_2/VREF_2  
IO_L03P_2  
IO_L05N_2  
IO_L05P_2  
DCI  
DCI  
I/O  
I/O  
IO_L03N_2/VREF_2 IO_L03N_2/VREF_2(1) IO_L03N_2/VREF_2  
VREF(1)  
I/O  
IO_L03P_2  
N.C. ()  
N.C. ()  
IO_L03P_2  
IO_L05N_2  
IO_L05P_2  
IO_L03P_2  
IO_L05N_2  
IO_L05P_2  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
193  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IO_L06N_2  
IO_L06N_2  
IO_L06N_2  
IO_L06N_2  
G20  
G21  
F23  
F24  
G22  
G23  
F25  
F26  
G25  
G26  
H20  
H21  
H22  
J21  
I/O  
I/O  
N.C. ()  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L06P_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L09N_2/VREF_2  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L11N_2  
IO_L11P_2  
IO_L12N_2  
IO_L12P_2  
IO(3)  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
IO_L14N_2  
IO_L14P_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
IO_L07N_2  
I/O  
IO_L07P_2  
I/O  
IO_L08N_2  
I/O  
IO_L08P_2  
I/O  
IO_L09N_2/VREF_2(1) IO_L09N_2/VREF_2  
IO_L09N_2/VREF_2  
IO_L09P_2  
VREF(1)  
I/O  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L14N_2  
IO_L14P_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
IO_L09P_2  
IO_L10N_2  
IO_L10N_2  
I/O  
IO_L10P_2  
IO_L10P_2  
I/O  
IO_L14N_2(2)  
IO_L14P_2(2)  
IO_L16N_2(2)  
IO_L16P_2(2)  
IO_L17N_2(2)  
IO_L11N_2(2)  
IO_L11P_2(2)  
IO_L12N_2(2)  
IO_L12P_2(2)  
IO_L13N_2(2)  
I/O  
I/O  
I/O  
I/O  
H23  
H24  
H25  
H26  
J20  
I/O  
IO_L17P_2/VREF_2 IO_L17P_2/VREF_2  
IO_L17P_2(2)/VREF_2 IO_L13P_2(2)/VREF_2 IO/VREF_2(3)  
VREF  
I/O  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L23N_2/VREF_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L23N_2/VREF_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L23N_2/VREF_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
I/O  
I/O  
K20  
J22  
I/O  
I/O  
J23  
I/O  
J24  
I/O  
J25  
I/O  
IO_L23N_2/VREF_2 IO_L23N_2/VREF_2  
K21  
K22  
K23  
K24  
K25  
K26  
L19  
L20  
L21  
L22  
L25  
L26  
M19  
M20  
M21  
M22  
L23  
M24  
VREF  
I/O  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
194  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L34N_2/VREF_2 IO_L34N_2/VREF_2  
IO_L34N_2/VREF_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2/VREF_2  
VCCO_2  
IO_L34N_2/VREF_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2/VREF_2  
VCCO_2  
IO_L34N_2/VREF_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2/VREF_2  
VCCO_2  
M25  
M26  
N19  
VREF  
I/O  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
I/O  
N20  
I/O  
N21  
I/O  
N22  
I/O  
N23  
I/O  
N24  
I/O  
N25  
I/O  
IO_L40P_2/VREF_2 IO_L40P_2/VREF_2  
N26  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DCI  
DCI  
VREF  
I/O  
VCCO_2  
VCCO_2  
G24  
J19  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
K19  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
L18  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
L24  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
M18  
N17  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
N18  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L02N_3/VREF_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L09P_3/VREF_3  
IO_L10N_3  
IO_L10P_3  
IO_L14N_3  
IO_L14P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L02N_3/VREF_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L09P_3/VREF_3  
IO_L10N_3  
IO_L10P_3  
IO_L14N_3  
IO_L14P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L02N_3/VREF_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L09P_3/VREF_3  
IO_L10N_3  
IO_L10P_3  
IO_L14N_3  
IO_L14P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L17P_3/VREF_3  
AA22  
AA21  
AB24  
AB23  
AC26  
AC25  
Y21  
IO_L02N_3/VREF_3 IO_L02N_3/VREF_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
N.C. ()  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L09P_3/VREF_3  
IO_L10N_3  
IO_L10P_3  
IO_L14N_3  
IO_L14P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
I/O  
I/O  
I/O  
Y20  
I/O  
N.C. ()  
AB26  
AB25  
AA24  
AA23  
Y23  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
Y22  
I/O  
N.C. ()  
AA26  
AA25  
W21  
W20  
Y26  
I/O  
N.C. ()  
VREF  
I/O  
N.C. ()  
N.C. ()  
I/O  
N.C. ()  
IO_L14N_3  
IO_L14P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
I/O  
Y25  
I/O  
V21  
I/O  
W22  
W24  
W23  
I/O  
I/O  
IO_L17P_3/VREF_3 IO_L17P_3/VREF_3  
VREF  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
195  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L19N_3  
IO_L19N_3  
IO_L19N_3  
IO_L19N_3  
IO_L19N_3  
W26  
W25  
U20  
V20  
V23  
V22  
V25  
V24  
U22  
U21  
U24  
U23  
U26  
U25  
T20  
T19  
T22  
T21  
T26  
T25  
R20  
R19  
R22  
R21  
R24  
T23  
R26  
R25  
P20  
P19  
P22  
P21  
P24  
P23  
P26  
P25  
P17  
P18  
R18  
T18  
T24  
U19  
V19  
I/O  
I/O  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L34P_3/VREF_3  
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
VCCO_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L34P_3/VREF_3  
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
VCCO_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L34P_3/VREF_3  
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
VCCO_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L23P_3/VREF_3 IO_L23P_3/VREF_3  
VREF  
I/O  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L34P_3/VREF_3 IO_L34P_3/VREF_3  
VREF  
I/O  
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L40N_3/VREF_3 IO_L40N_3/VREF_3  
VREF  
I/O  
IO_L40P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
IO_L40P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
196  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
Y24  
VCCO  
I/O  
IO  
IO  
IO  
IO  
IO  
AA20  
AD15  
AD19  
AD23  
AF21  
AF22  
W15  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
I/O  
N.C. ()  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
W16  
I/O  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L06N_4/VREF_4  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L12N_4  
IO_L12P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L06N_4/VREF_4  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L12N_4  
IO_L12P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L06N_4/VREF_4  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L12N_4  
IO_L12P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
AB14  
AD25  
Y17  
VREF  
VREF  
VREF  
DCI  
DCI  
I/O  
AB22  
AC22  
AE24  
AF24  
AE23  
AF23  
AD22  
AE22  
AB21  
AC21  
AD21  
AE21  
AB20  
AC20  
AE20  
AF20  
Y19  
I/O  
I/O  
I/O  
IO_L06N_4/VREF_4 IO_L06N_4/VREF_4  
VREF  
I/O  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
N.C. ()  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L12N_4  
IO_L12P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AA19  
AB19  
AC19  
AE19  
AF19  
Y18  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
N.C. ()  
I/O  
I/O  
I/O  
AA18  
AB18  
AC18  
AD18  
AE18  
AC17  
AA17  
I/O  
I/O  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
IO_L19N_4  
IO_L19P_4  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
197  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
IO_L22N_4/VREF_4 IO_L22N_4/VREF_4  
IO_L22N_4/VREF_4  
IO_L22P_4  
IO_L22N_4/VREF_4  
IO_L22P_4  
IO_L22N_4/VREF_4  
IO_L22P_4  
AD17  
AB17  
AE17  
AF17  
Y16  
VREF  
I/O  
IO_L22P_4  
N.C. ()  
IO_L22P_4  
IO_L23N_4  
IO_L23N_4  
IO_L23N_4  
IO_L23N_4  
I/O  
IO_L23P_4  
IO_L23P_4  
IO_L23P_4  
IO_L23P_4  
I/O  
N.C. ()  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
N.C. ()  
IO_L24N_4  
IO_L24N_4  
IO_L24N_4  
IO_L24N_4  
I/O  
IO_L24P_4  
IO_L24P_4  
IO_L24P_4  
IO_L24P_4  
AA16  
AB16  
AC16  
AE16  
AF16  
Y15  
I/O  
IO_L25N_4  
IO_L25N_4  
IO_L25N_4  
IO_L25N_4  
I/O  
IO_L25P_4  
IO_L25P_4  
IO_L25P_4  
IO_L25P_4  
I/O  
IO_L26N_4  
IO_L26N_4  
IO_L26N_4  
IO_L26N_4  
I/O  
IO_L26P_4/VREF_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
IO_L26P_4/VREF_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
IO_L26P_4/VREF_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
IO_L26P_4/VREF_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
VREF  
DUAL  
DUAL  
I/O  
N.C. ()  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
W14  
AA15  
AB15  
AE15  
AF15  
Y14  
IO_L28P_4  
IO_L28P_4  
IO_L28P_4  
IO_L28P_4  
I/O  
IO_L29N_4  
IO_L29N_4  
IO_L29N_4  
IO_L29N_4  
I/O  
IO_L29P_4  
IO_L29P_4  
IO_L29P_4  
IO_L29P_4  
I/O  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
DUAL  
DUAL  
DUAL  
DUAL  
AA14  
AC14  
AD14  
IO_L31P_4/  
DOUT/BUSY  
IO_L31P_4/  
DOUT/BUSY  
IO_L31P_4/  
DOUT/BUSY  
IO_L31P_4/  
DOUT/BUSY  
IO_L31P_4/  
DOUT/BUSY  
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
IO_L32N_4/GCLK1  
IO_L32N_4/GCLK1  
IO_L32N_4/GCLK1  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
AE14  
AF14  
AD16  
AD20  
U14  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IO_L32P_4/GCLK0  
IO_L32P_4/GCLK0  
IO_L32P_4/GCLK0  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
V14  
V15  
V16  
W17  
W18  
AA7  
IO  
IO  
IO  
IO  
IO  
AA13  
AB9  
I/O  
IO_L17P_5(3)  
IO_L17N_5(3)  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
AC9  
AC11  
AD10  
AD12  
AF4  
I/O  
N.C. ()  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
IO  
IO  
Y8  
I/O  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
AF5  
VREF  
VREF  
DUAL  
AF13  
AC5  
IO_L01N_5/RDWR_B IO_L01N_5/RDWR_B IO_L01N_5/RDWR_B IO_L01N_5/RDWR_B IO_L01N_5/RDWR_B  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
198  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L01P_5/CS_B  
IO_L04N_5  
IO_L04P_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO_L07N_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
N.C. ()  
IO_L01P_5/CS_B  
IO_L04N_5  
IO_L04P_5  
IO_L01P_5/CS_B  
IO_L04N_5  
IO_L01P_5/CS_B  
IO_L04N_5  
IO_L01P_5/CS_B  
IO_L04N_5  
AB5  
AE4  
AD4  
AB6  
AA6  
AE5  
AD5  
AD6  
AC6  
AF6  
DUAL  
I/O  
IO_L04P_5  
IO_L04P_5  
IO_L04P_5  
I/O  
IO_L05N_5  
IO_L05P_5  
IO_L05N_5  
IO_L05N_5  
IO_L05N_5  
I/O  
IO_L05P_5  
IO_L05P_5  
IO_L05P_5  
I/O  
IO_L06N_5  
IO_L06P_5  
IO_L06N_5  
IO_L06N_5  
IO_L06N_5  
I/O  
IO_L06P_5  
IO_L06P_5  
IO_L06P_5  
I/O  
IO_L07N_5  
IO_L07P_5  
IO_L07N_5  
IO_L07N_5  
IO_L07N_5  
I/O  
IO_L07P_5  
IO_L07P_5  
IO_L07P_5  
I/O  
IO_L08N_5  
IO_L08P_5  
IO_L08N_5  
IO_L08N_5  
IO_L08N_5  
I/O  
IO_L08P_5  
IO_L08P_5  
IO_L08P_5  
AE6  
AC7  
AB7  
AF7  
I/O  
IO_L09N_5  
IO_L09P_5  
IO_L09N_5  
IO_L09N_5  
IO_L09N_5  
I/O  
IO_L09P_5  
IO_L09P_5  
IO_L09P_5  
I/O  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L11N_5/VREF_5  
IO_L11P_5  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L11N_5/VREF_5  
IO_L11P_5  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L11N_5/VREF_5  
IO_L11P_5  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L11N_5/VREF_5  
IO_L11P_5  
DCI  
DCI  
VREF  
I/O  
AE7  
AB8  
AA8  
AD8  
AC8  
AF8  
N.C. ()  
IO_L12N_5  
IO_L12P_5  
IO_L12N_5  
IO_L12N_5  
IO_L12N_5  
I/O  
N.C. ()  
IO_L12P_5  
IO_L12P_5  
IO_L12P_5  
I/O  
N.C. ()  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
N.C. ()  
IO_L15N_5  
IO_L15P_5  
IO_L15N_5  
IO_L15N_5  
IO_L15N_5  
I/O  
IO_L15P_5  
IO_L15P_5  
IO_L15P_5  
AE8  
AA9  
Y9  
I/O  
IO_L16N_5  
IO_L16P_5  
IO_L16N_5  
IO_L16N_5  
IO_L16N_5  
I/O  
IO_L16P_5  
IO_L16P_5  
IO_L16P_5  
I/O  
IO_L18N_5  
IO_L18P_5  
IO_L18N_5  
IO_L18N_5  
IO_L18N_5  
AE9  
AD9  
AA10  
Y10  
I/O  
IO_L18P_5  
IO_L18P_5  
IO_L18P_5  
I/O  
N.C. ()  
IO_L19N_5  
IO_L19N_5  
IO_L19N_5  
IO_L19N_5  
IO_L19N_5  
I/O  
IO_L19P_5/VREF_5 IO_L19P_5/VREF_5  
IO_L19P_5/VREF_5  
IO_L22N_5  
IO_L19P_5/VREF_5  
IO_L22N_5  
IO_L19P_5/VREF_5  
IO_L22N_5  
VREF  
I/O  
IO_L22N_5  
IO_L22P_5  
N.C. ()  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
AC10  
AB10  
AF10  
AE10  
Y11  
IO_L22P_5  
IO_L22P_5  
IO_L22P_5  
I/O  
IO_L23N_5  
IO_L23N_5  
IO_L23N_5  
I/O  
IO_L23P_5  
IO_L23P_5  
IO_L23P_5  
I/O  
N.C. ()  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
N.C. ()  
IO_L24N_5  
IO_L24N_5  
IO_L24N_5  
I/O  
IO_L24P_5  
IO_L24P_5  
IO_L24P_5  
W11  
AB11  
AA11  
AF11  
AE11  
Y12  
I/O  
IO_L25N_5  
IO_L25N_5  
IO_L25N_5  
I/O  
IO_L25P_5  
IO_L25P_5  
IO_L25P_5  
I/O  
IO_L26N_5  
IO_L26N_5  
IO_L26N_5  
I/O  
IO_L26P_5  
IO_L26P_5  
IO_L26P_5  
I/O  
N.C. ()  
IO_L27N_5/VREF_5 IO_L27N_5/VREF_5  
IO_L27N_5/VREF_5  
IO_L27P_5  
IO_L27N_5/VREF_5  
IO_L27P_5  
IO_L27N_5/VREF_5  
IO_L27P_5  
VREF  
I/O  
IO_L27P_5  
IO_L27P_5  
W12  
AB12  
AA12  
AF12  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
DUAL  
DUAL  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
199  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IO_L29P_5/VREF_5 IO_L29P_5/VREF_5  
IO_L29P_5/VREF_5  
IO_L30N_5  
IO_L30P_5  
IO_L29P_5/VREF_5  
IO_L30N_5  
IO_L30P_5  
IO_L29P_5/VREF_5  
IO_L30N_5  
IO_L30P_5  
AE12  
Y13  
W13  
AC13  
AB13  
AE13  
AD13  
AD7  
AD11  
U13  
V11  
V12  
V13  
W9  
VREF  
I/O  
IO_L30N_5  
IO_L30P_5  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
IO_L30N_5  
IO_L30P_5  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
I/O  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
W10  
AA5  
AD2  
AD1  
AB4  
AB3  
AC2  
AC1  
AB2  
AB1  
Y7  
IO  
IO  
IO  
N.C. ()  
N.C. ()  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L02N_6  
IO_L02P_6  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L02N_6  
IO_L02P_6  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L02N_6  
IO_L02P_6  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L02N_6  
IO_L02P_6  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L02N_6  
IO_L02P_6  
DCI  
DCI  
I/O  
I/O  
IO_L03N_6/VREF_6 IO_L03N_6/VREF_6  
IO_L03N_6/VREF_6  
IO_L03P_6  
IO_L03N_6/VREF_6  
IO_L03P_6  
IO_L03N_6/VREF_6  
IO_L03P_6  
VREF  
I/O  
IO_L03P_6  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
IO_L14N_6  
IO_L14P_6  
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
IO_L03P_6  
IO_L05N_6  
IO_L05P_6  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
IO_L09N_6/VREF_6  
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L14N_6  
IO_L14P_6  
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
IO_L05N_6  
IO_L05P_6  
IO_L05N_6  
IO_L05P_6  
IO_L05N_6  
IO_L05P_6  
I/O  
I/O  
IO_L06N_6  
IO_L06P_6  
IO_L06N_6  
IO_L06P_6  
IO_L06N_6  
IO_L06P_6  
I/O  
Y6  
I/O  
IO_L07N_6  
IO_L07P_6  
IO_L07N_6  
IO_L07P_6  
IO_L07N_6  
IO_L07P_6  
AA4  
AA3  
Y5  
I/O  
I/O  
IO_L08N_6  
IO_L08P_6  
IO_L08N_6  
IO_L08P_6  
IO_L08N_6  
IO_L08P_6  
I/O  
Y4  
I/O  
IO_L09N_6/VREF_6  
IO_L09P_6  
IO_L09N_6/VREF_6  
IO_L09P_6  
IO_L09N_6/VREF_6  
IO_L09P_6  
AA2  
AA1  
Y2  
VREF  
I/O  
IO_L10N_6  
IO_L10P_6  
IO_L10N_6  
IO_L10P_6  
IO_L10N_6  
IO_L10P_6  
I/O  
Y1  
I/O  
IO_L14N_6  
IO_L14P_6  
IO_L14N_6  
IO_L14P_6  
IO_L14N_6  
IO_L14P_6  
W7  
I/O  
W6  
I/O  
IO_L16N_6  
IO_L16P_6  
IO_L16N_6  
IO_L16P_6  
IO_L16N_6  
IO_L16P_6  
V6  
I/O  
W5  
I/O  
IO_L17N_6  
IO_L17P_6/VREF_6  
IO_L19N_6  
IO_L19P_6  
IO_L17N_6  
IO_L17P_6/VREF_6  
IO_L19N_6  
IO_L19P_6  
IO_L17N_6  
IO_L17P_6/VREF_6  
IO_L19N_6  
IO_L19P_6  
W4  
I/O  
IO_L17P_6/VREF_6 IO_L17P_6/VREF_6  
W3  
VREF  
I/O  
IO_L19N_6  
IO_L19P_6  
IO_L19N_6  
IO_L19P_6  
W2  
W1  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
200  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
IO_L20N_6  
IO_L20N_6  
IO_L20N_6  
IO_L20N_6  
IO_L20N_6  
V7  
U7  
V5  
V4  
V3  
V2  
U6  
U5  
U4  
U3  
U2  
U1  
T8  
T7  
T6  
T5  
T2  
T1  
R8  
R7  
R6  
R5  
T4  
R3  
R2  
R1  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P9  
P10  
R9  
T3  
T9  
U8  
V8  
Y3  
F5  
I/O  
I/O  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
IO_L34N_6/VREF_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L40P_6/VREF_6  
VCCO_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
IO_L34N_6/VREF_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L40P_6/VREF_6  
VCCO_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
IO_L34N_6/VREF_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L40P_6/VREF_6  
VCCO_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L24N_6/VREF_6 IO_L24N_6/VREF_6  
VREF  
I/O  
IO_L24P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
IO_L24P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L34N_6/VREF_6 IO_L34N_6/VREF_6  
VREF  
I/O  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L40P_6/VREF_6 IO_L40P_6/VREF_6  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DCI  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
IO_L01N_7/VRP_7  
IO_L01N_7/VRP_7  
IO_L01N_7/VRP_7  
IO_L01N_7/VRP_7  
IO_L01N_7/VRP_7  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
201  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L01P_7/VRN_7  
IO_L02N_7  
IO_L01P_7/VRN_7  
IO_L02N_7  
IO_L01P_7/VRN_7  
IO_L02N_7  
IO_L01P_7/VRN_7  
IO_L02N_7  
IO_L01P_7/VRN_7  
IO_L02N_7  
F6  
E3  
E4  
D1  
D2  
G6  
G7  
E1  
E2  
F3  
F4  
G4  
G5  
F1  
F2  
H6  
H7  
G1  
G2  
J6  
DCI  
I/O  
IO_L02P_7  
IO_L02P_7  
IO_L02P_7  
IO_L02P_7  
IO_L02P_7  
I/O  
IO_L03N_7/VREF_7 IO_L03N_7/VREF_7  
IO_L03N_7/VREF_7  
IO_L03P_7  
IO_L03N_7/VREF_7  
IO_L03P_7  
IO_L03N_7/VREF_7  
IO_L03P_7  
VREF  
I/O  
IO_L03P_7  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
IO_L14N_7  
IO_L14P_7  
IO_L16N_7  
IO_L03P_7  
IO_L05N_7  
IO_L05P_7  
IO_L06N_7  
IO_L06P_7  
IO_L07N_7  
IO_L07P_7  
IO_L08N_7  
IO_L08P_7  
IO_L09N_7  
IO_L09P_7  
IO_L10N_7  
IO_L10P_7/VREF_7  
IO_L14N_7  
IO_L14P_7  
IO_L16N_7  
IO_L05N_7  
IO_L05N_7  
IO_L05N_7  
I/O  
IO_L05P_7  
IO_L05P_7  
IO_L05P_7  
I/O  
IO_L06N_7  
IO_L06N_7  
IO_L06N_7  
I/O  
IO_L06P_7  
IO_L06P_7  
IO_L06P_7  
I/O  
IO_L07N_7  
IO_L07N_7  
IO_L07N_7  
I/O  
IO_L07P_7  
IO_L07P_7  
IO_L07P_7  
I/O  
IO_L08N_7  
IO_L08N_7  
IO_L08N_7  
I/O  
IO_L08P_7  
IO_L08P_7  
IO_L08P_7  
I/O  
IO_L09N_7  
IO_L09N_7  
IO_L09N_7  
I/O  
IO_L09P_7  
IO_L09P_7  
IO_L09P_7  
I/O  
IO_L10N_7  
IO_L10N_7  
IO_L10N_7  
I/O  
IO_L10P_7/VREF_7  
IO_L14N_7  
IO_L10P_7/VREF_7  
IO_L14N_7  
IO_L10P_7/VREF_7  
IO_L14N_7  
VREF  
I/O  
IO_L14P_7  
IO_L14P_7  
IO_L14P_7  
I/O  
IO_L16N_7  
IO_L16N_7  
IO_L16N_7  
I/O  
IO_L16P_7/VREF_7 IO_L16P_7/VREF_7  
IO_L16P_7/VREF_7  
IO_L17N_7  
IO_L16P_7/VREF_7  
IO_L17N_7  
IO_L16P_7/VREF_7  
IO_L17N_7  
H5  
H3  
H4  
H1  
H2  
K7  
J7  
VREF  
I/O  
IO_L17N_7  
IO_L17P_7  
IO_L17N_7  
IO_L17P_7  
IO_L17P_7  
IO_L17P_7  
IO_L17P_7  
I/O  
IO_L19N_7/VREF_7 IO_L19N_7/VREF_7  
IO_L19N_7/VREF_7  
IO_L19P_7  
IO_L19N_7/VREF_7  
IO_L19P_7  
IO_L19N_7/VREF_7  
IO_L19P_7  
VREF  
I/O  
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
IO_L20N_7  
IO_L20N_7  
IO_L20N_7  
I/O  
IO_L20P_7  
IO_L20P_7  
IO_L20P_7  
I/O  
IO_L21N_7  
IO_L21N_7  
IO_L21N_7  
J4  
I/O  
IO_L21P_7  
IO_L21P_7  
IO_L21P_7  
J5  
I/O  
IO_L22N_7  
IO_L22N_7  
IO_L22N_7  
J2  
I/O  
IO_L22P_7  
IO_L22P_7  
IO_L22P_7  
J3  
I/O  
IO_L23N_7  
IO_L23N_7  
IO_L23N_7  
K5  
K6  
K3  
K4  
K1  
K2  
L7  
L8  
L5  
L6  
L1  
I/O  
IO_L23P_7  
IO_L23P_7  
IO_L23P_7  
I/O  
IO_L24N_7  
IO_L24N_7  
IO_L24N_7  
I/O  
IO_L24P_7  
IO_L24P_7  
IO_L24P_7  
I/O  
IO_L26N_7  
IO_L26N_7  
IO_L26N_7  
I/O  
IO_L26P_7  
IO_L26P_7  
IO_L26P_7  
I/O  
IO_L27N_7  
IO_L27N_7  
IO_L27N_7  
I/O  
IO_L27P_7/VREF_7 IO_L27P_7/VREF_7  
IO_L27P_7/VREF_7  
IO_L28N_7  
IO_L27P_7/VREF_7  
IO_L28N_7  
IO_L27P_7/VREF_7  
IO_L28N_7  
VREF  
I/O  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L28P_7  
IO_L28P_7  
IO_L28P_7  
I/O  
IO_L29N_7  
IO_L29N_7  
IO_L29N_7  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
202  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L29P_7  
IO_L29P_7  
IO_L29P_7  
IO_L29P_7  
IO_L29P_7  
L2  
M7  
I/O  
I/O  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
M8  
I/O  
M6  
I/O  
M5  
I/O  
M3  
I/O  
L4  
I/O  
M1  
I/O  
M2  
I/O  
N7  
I/O  
N8  
I/O  
N5  
I/O  
N6  
I/O  
N3  
I/O  
N4  
I/O  
IO_L40N_7/VREF_7 IO_L40N_7/VREF_7  
N1  
VREF  
I/O  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
N2  
G3  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J8  
K8  
L3  
L9  
M9  
N9  
N10  
A1  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
GND  
GND  
GND  
GND  
A26  
AC4  
AC12  
AC15  
AC23  
AD3  
AD24  
AE2  
AE25  
AF1  
AF26  
B2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B25  
C3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
C24  
D4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D12  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
203  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D15  
D23  
K11  
K12  
K15  
K16  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
M4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M23  
N11  
N12  
N13  
N14  
N15  
N16  
P11  
P12  
P13  
P14  
P15  
P16  
R4  
R10  
R11  
R12  
R13  
R14  
R15  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
204  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
R16  
R17  
R23  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
U11  
U12  
U15  
U16  
A2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
A9  
A18  
A25  
AE1  
AE26  
AF2  
AF9  
AF18  
AF25  
B1  
B26  
J1  
J26  
V1  
V26  
H8  
H19  
J9  
J10  
J17  
J18  
K9  
K10  
K17  
K18  
U9  
U10  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
205  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 103: FG676 Package Pinout (Cont’d)  
XC3S1000  
Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG676 Pin  
Number  
Bank  
Type  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
U17  
U18  
V9  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
V10  
V17  
V18  
W8  
W19  
AD26  
VCC CCLK  
AUX  
VCC DONE  
AUX  
DONE  
HSWAP_EN  
M0  
DONE  
HSWAP_EN  
M0  
DONE  
HSWAP_EN  
M0  
DONE  
HSWAP_EN  
M0  
AC24  
C2  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
VCC HSWAP_EN  
AUX  
VCC M0  
AUX  
AE3  
AC3  
AF3  
D3  
VCC M1  
AUX  
M1  
M1  
M1  
M1  
VCC M2  
AUX  
M2  
M2  
M2  
M2  
VCC PROG_B  
AUX  
PROG_B  
TCK  
PROG_B  
TCK  
PROG_B  
TCK  
PROG_B  
TCK  
VCC TCK  
AUX  
B24  
C1  
VCC TDI  
AUX  
TDI  
TDI  
TDI  
TDI  
JTAG  
VCC TDO  
AUX  
TDO  
TDO  
TDO  
TDO  
D24  
A24  
JTAG  
VCC TMS  
AUX  
TMS  
TMS  
TMS  
TMS  
JTAG  
Notes:  
1. XC3S1500 balls D25 and F25 are not VREF pins although they are designated as such. If a design uses an IOSTANDARD requiring VREF in bank  
2 then apply the workaround in Answer Record 20519.  
2. XC3S4000 is pin compatible with XC3S2000 but uses alternate differential pair labeling on six package balls (H20, H21, H22, H23, H24, J21).  
3. XC3S5000 is pin compatible with XC3S4000 but uses alternate differential pair functionality on fifteen package balls (A3, A8, B8, B18, C4, C8, C18,  
D8, D18, E8, E18, H23, H24, AB9, and AC9).  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
206  
Spartan-3 FPGA Family: Pinout Descriptions  
User I/Os by Bank  
Table 104 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S1000 in the  
FG676 package. Similarly, Table 105 shows how the available user-I/O pins are distributed between the eight I/O banks for  
the XC3S1500 in the FG676 package. Finally, Table 106 shows the same information for the XC3S2000, XC3S4000, and  
XC3S5000 in the FG676 package.  
Table 104: User I/Os Per Bank for XC3S1000 in FG676 Package  
All Possible I/O Pins by Type  
I/O  
Edge  
Top  
Maximum I/O  
Bank  
I/O  
40  
41  
41  
41  
35  
35  
41  
41  
DUAL  
DCI  
VREF  
GCLK  
0
1
2
3
4
5
6
7
49  
50  
48  
48  
50  
50  
48  
48  
0
0
0
0
6
6
0
0
2
5
5
5
5
5
5
5
5
2
2
0
0
2
2
0
0
2
2
Right  
Bottom  
Left  
2
2
2
2
2
Table 105: User I/Os Per Bank for XC3S1500 in FG676 Package  
All Possible I/O Pins by Type  
I/O  
Edge  
Top  
Maximum I/O  
Bank  
I/O  
52  
51  
52  
52  
47  
45  
52  
52  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
62  
61  
60  
60  
63  
61  
60  
60  
0
0
0
0
6
6
0
0
6
6
6
6
6
6
6
6
2
2
0
0
2
2
0
0
2
2
Right  
Bottom  
Left  
2
2
2
2
2
Table 106: User I/Os Per Bank for XC3S2000, XC3S4000, and XC3S5000 in FG676 Package  
All Possible I/O Pins by Type  
Edge  
Top  
I/O Bank  
Maximum I/O  
I/O  
52  
51  
53  
52  
47  
45  
53  
52  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
62  
61  
61  
60  
63  
61  
61  
60  
0
0
0
0
6
6
0
0
6
6
6
6
6
6
6
6
2
2
0
0
2
2
0
0
2
2
Right  
Bottom  
Left  
2
2
2
2
2
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
207  
Spartan-3 FPGA Family: Pinout Descriptions  
X-Ref Target - Figure 53  
FG676 Footprint  
Bank 0  
1
2
3
4
I/O  
L05P_0  
VREF_0  
5
6
7
8
9
VCCAUX  
I/O  
10  
11  
12  
13  
I/O  
L32P_0  
GCLK6  
I/O  
I/O  
Left Half of Package  
(Top View)  
L26P_0  
VREF_0  
I/O  
L10P_0  
I/O  
L15P_0  
I/O  
L29P_0  
L23P_0  
VCCAUX  
GND  
I/O  
I/O  
I/O  
A
B
C
D
E
F
I/O  
I/O  
I/O  
L32N_0  
GCLK7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L29N_0  
L18P_0 L23N_0 L26N_0  
GND  
VCCAUX  
TD I  
VREF_0 L05N_0 L06P_0 L08P_0 L10N_0 L15N_0  
XC3S1000  
(391 max. user I/O)  
I/O  
L18N_0  
I/O  
L31P_0  
VREF_0  
I/O  
HSWAP_  
EN  
I/O  
I/O  
I/O  
L22P_0  
GND  
VCCO_0  
I/O  
VCCO_0  
I/O  
I/O  
L06N_0 L08N_0  
I/O: Unrestricted,  
general-purpose user I/O  
315  
I/O  
I/O  
I/O  
L03N_7  
VREF_7  
I/O  
I/O  
I/O  
L03P_7  
I/O  
I/O  
I/O  
L31N_0  
L12P_0 L17P_0  
PROG_B  
I/O  
GND  
I/O  
GND  
I/O  
L01P_0  
L07P_0 L09P_0  
L22N_0 L25P_0  
VRN_0  
VREF: User I/O or input  
40  
I/O  
I/O  
I/O  
I/O  
voltage reference for bank  
I/O  
L01N_0  
VRP_0  
I/O  
I/O  
I/O  
L19P_0  
I/O  
L06N_7 L06P_7  
L12N_0 L17N_0  
I/O  
L02N_7 L02P_7  
L07N_0 L09N_0  
L25N_0 L28P_0  
N.C.: Unconnected pins for  
XC3S1000 ()  
I/O  
I/O  
I/O I/O  
I/O  
L11P_0  
I/O  
I/O  
I/O  
98  
I/O  
I/O  
I/O  
I/O  
I/O  
L09N_7 L09P_7 L07N_7 L07P_7  
L01N_7 L01P_7  
VRP_7  
VREF_0  
L16P_0 L19N_0 L24P_0 L28N_0 L30P_0  
VRN_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L16N_0  
I/O  
VREF_0  
I/O  
I/O  
I/O  
XC3S1500  
L08N_7 L08P_7 L05N_7 L05P_7 L11N_0  
VCCO_7  
G
H
J
L14N_7 L14P_7  
L24N_0 L27N_0 L30N_0  
(487 max user I/O)  
I/O  
I/O  
L10N_7  
I/O: Unrestricted,  
general-purpose user I/O  
I/O  
I/O  
I/O  
L16P_7  
VREF_7  
L10P_7  
VREF_7  
I/O  
I/O  
I/O  
L27P_0  
403  
VCCO_0 VCCO_0  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT  
I/O  
I/O  
L19N_7  
L19P_7 L17N_7 L17P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
VCCO_7  
VCCO_7  
VCCO_0 VCCO_0 VCCO_0  
VREF: User I/O or input  
48  
L22N_7 L22P_7 L21N_7 L21P_7 L16N_7 L20P_7  
voltage reference for bank  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_0  
K
L
GND  
GND  
GND  
GND  
L26N_7 L26P_7 L24N_7 L24P_7 L23N_7 L23P_7 L20N_7  
N.C.: Unconnected pins for  
XC3S1500 ()  
2
I/O  
L27P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_7  
VCCO_7  
GND  
GND  
L29N_7 L29P_7  
L33P_7 L28N_7 L28P_7 L27N_7  
XC3S2000, XC3S4000,  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
XC3S5000 (489 max user I/O)  
VCCO_7  
GND  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
M
N
P
R
T
L34N_7 L34P_7 L33N_7  
L32P_7 L32N_7 L31N_7 L31P_7  
I/O: Unrestricted,  
general-purpose user I/O  
405  
I/O  
L40N_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_7 VCCO_7  
VCCO_6 VCCO_6  
L40P_7 L39N_7 L39P_7 L38N_7 L38P_7 L35N_7 L35P_7  
VREF: User I/O or input  
48  
I/O  
L40P_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L35N_6  
voltage reference for bank  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L40N_6 L39P_6 L39N_6 L38P_6 L38N_6 L35P_6  
I/O  
L34N_6  
VREF_6  
I/O  
L34P_6  
I/O  
L33P_6  
I/O  
I/O  
I/O  
I/O  
L31N_6  
VCCO_6  
GND  
0
N.C.: No unconnected pins  
GND  
I/O  
L32P_6 L32N_6 L31P_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L27N_6  
VCCO_6  
VCCO_6  
GND  
GND  
All devices  
L29P_6 L29N_6  
L33N_6 L28P_6 L28N_6 L27P_6  
DUAL: Configuration pin,  
I/O  
L24N_6  
VREF_6  
12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
then possible user I/O  
VCCO_6  
VCCO_6  
VCCINT  
I/O  
VCCO_5  
VCCINT VCCINT  
VCCINT VCCINT  
VCCO_5 VCCO_5  
U
V
W
Y
L26P_6 L26N_6 L24P_6  
L23P_6 L23N_6 L20P_6  
GCLK: User I/O or global  
clock buffer input  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
VCCO_5 VCCO_5 VCCO_5  
8
L22P_6 L22N_6 L21P_6 L21N_6 L16N_6 L20N_6  
I/O  
L17P_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DCI: User I/O or reference  
resistor input for bank  
L19P_6 L19N_6  
L17N_6 L16P_6 L14P_6 L14N_6  
L24P_5 L27P_5 L30P_5  
16  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L27N_5  
VREF_5  
I/O  
L24N_5  
I/O  
L30N_5  
L10P_6 L10N_6  
L08P_6 L08N_6 L06P_6 L06N_6  
VCCO_6  
I/O  
L19P_5  
L16P_5  
VREF_5  
CONFIG: Dedicated  
configuration pins  
I/O  
L09N_6  
VREF_6  
I/O  
L09P_6  
I/O  
I/O  
L11P_5  
I/O  
L28P_5  
D7  
I/O  
A
A
I/O  
L05P_5  
I/O  
I/O  
I/O  
L07P_6 L07N_6  
I/O  
I/O  
I/O  
L16N_5 L19N_5 L25P_5  
  
JTAG: Dedicated JTAG  
port pins  
I/O  
I/O  
I/O  
4
I/O  
L01P_5  
CS_B  
I/O  
A
B
L11N_5  
VREF_5  
I/O  
I/O  
I/O  
I/O  
I/O  
L22P_5  
I/O  
L25N_5  
L05P_6 L05N_6  
I/O  
L28N_5 L31P_5  
D6  
L02P_6 L02N_6  
L05N_5 L09P_5  
D5  
I/O  
L12P_5  
I/O  
L03N_6  
VREF_6  
I/O  
L01N_5  
RDWR_B  
I/O  
L31N_5  
D4  
VCCINT: Internal core  
I/O  
A
C
I/O  
L03P_6  
I/O  
I/O  
I/O  
L22N_5  
20  
64  
16  
M1  
GND  
M0  
GND  
I/O  
GND  
L07P_5 L09N_5  
voltage supply (+1.2V)  
I/O  
I/O  
I/O  
I/O  
I/O  
L32P_5  
GCLK2  
A
D
I/O  
I/O  
I/O  
L12N_5 L18P_5  
VCCO_5  
VCCO_5  
I/O  
I/O  
I/O  
I/O  
I/O  
L01P_6 L01N_6  
VCCO: Output voltage  
supply for bank  
L04P_5 L06P_5 L07N_5  
VRN_6  
VRP_6  
I/O  
I/O  
L10P_5  
VRN_5  
I/O  
A
E
I/O  
I/O  
I/O  
I/O  
L15P_5  
L18N_5 L23P_5 L26P_5  
VCCAUX  
GND  
L29P_5 L32N_5  
VREF_5 GCLK3  
L04N_5 L06N_5 L08P_5  
VCCAUX: Auxiliary voltage  
supply (+2.5V)  
I/O  
I/O  
I/O  
L10N_5  
VRP_5  
A
F
I/O  
I/O  
I/O  
L15N_5  
I/O  
I/O  
L23N_5 L26N_5  
VCCAUX  
M2  
I/O  
GND  
VCCAUX  
VREF_5 L08N_5  
L29N_5 VREF_5  
76 GND: Ground  
Bank 5  
DS099-4 12a 030203  
Figure 53: FG676 Package Footprint (Top View)  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
208  
Spartan-3 FPGA Family: Pinout Descriptions  
Bank 1  
14  
15  
16  
17  
18  
VCCAUX  
I/O  
19  
20  
I/O  
L10N_1  
VREF_1  
21  
22  
23  
24  
25  
26  
I/O  
I/O  
Right Half of Package  
(Top View)  
I/O  
L29N_1  
I/O  
L15N_1  
I/O  
L08N_1  
L26N_1 L23N_1  
GND  
VCCAUX  
I/O  
I/O  
I/O  
TMS  
A
B
C
D
E
F
I/O  
I/O  
I/O  
L32N_1  
GCLK5  
I/O  
L06N_1  
VREF_1  
I/O  
L29P_1  
I/O  
I/O  
I/O  
I/O  
L04N_1  
L26P_1 L23P_1 L18N_1  
VCCAUX  
I/O  
TCK  
GND  
I/O  
L01N_2 L01P_2  
VRP_2  
L15P_1 L10P_1 L08P_1  
I/O  
I/O  
I/O  
L32P_1  
GCLK4  
I/O  
VREF_1  
I/O  
VREF_1  
I/O  
L07N_1  
I/O  
I/O  
L18P_1 L12N_1  
VCCO_1  
VCCO_1  
GND  
L06P_1 L04P_1  
VRN_2  
I/O  
I/O  
I/O  
L31N_1  
VREF_1  
I/O  
L01N_1  
VRP_1  
I/O  
L03N_2  
VREF_2  
I/O  
L22N_1  
I/O  
I/O  
I/O  
L03P_2  
VREF_1 L12P_1  
GND  
I/O  
I/O  
GND  
TDO  
I/O  
L09N_1 L07P_1  
I/O  
L11N_1  
I/O  
I/O  
I/O  
L22P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L05N_2 L05P_2  
I/O  
L01P_1  
L31P_1 L28N_1 L25N_1  
L09P_1 L05N_1  
L02N_2 L02P_2  
VRN_1  
I/O  
I/O  
L11P_1  
I/O  
I/O  
I/O  
L09P_2  
I/O  
L09N_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L07N_2 L07P_2  
I/O  
L28P_1 L25P_1 L19N_1 L16N_1  
L05P_1  
  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L06N_2 L06P_2 L08N_2 L08P_2  
L10N_2 L10P_2  
VCCO_2  
I/O  
G
H
J
L30N_1 L27N_1 L24N_1 L19P_1 L16P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
L17P_2  
(L13P_2)  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_1 VCCO_1  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT  
VCCO_2  
L14N_2 L14P_2 L16N_2 L17N_2  
(L11N_2) (L11P_2) (L12N_2) (L13N_2)  
Notes:  
L30P_1 L27P_1 L24P_1  
L19N_2 L19P_2  
VREF_2  
1. Differential pair assignments  
shown in parentheses on balls  
H20, H21, H22, H23, H24,  
and J21 are for XC3S4000  
only.  
2. Differential pair assignments  
for the XC3S5000 are different  
on 15 balls (see Table 103 for  
details.)  
I/O  
L16P_2  
(L12P_2)  
I/O  
L20N_2  
I/O  
I/O  
I/O  
L22N_2  
I/O  
L22P_2  
VCCO_1 VCCO_1 VCCO_1  
VCCAUX  
L21N_2 L21P_2  
I/O  
L23N_2  
VREF_2  
I/O  
L20P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_1  
GND  
VCCO_2  
I/O  
GND  
GND  
GND  
GND  
K
L
L23P_2 L24N_2 L24P_2 L26N_2 L26P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
VCCO_2  
VCCO_2  
VCCO_2  
L27N_2 L27P_2 L28N_2  
L28P_2 L33N_2  
L29N_2 L29P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
L32P_2  
I/O  
L33P_2  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
L34N_2  
L34P_2  
VREF_2  
M
N
P
R
T
L31N_2 L31P_2 L32N_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCO_2 VCCO_2  
VCCO_3 VCCO_3  
L40P_2  
VREF_2  
L35N_2 L35P_2 L38N_2  
L38P_2 L39N_2 L39P_2 L40N_2  
I/O  
L40N_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L39N_3  
I/O  
L40P_3  
GND  
GND  
GND  
GND  
GND  
GND  
L35P_3 L35N_3 L38P_3 L38N_3 L39P_3  
I/O  
L34P_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
I/O  
L33N_3  
I/O  
L34N_3  
VCCO_3  
GND  
GND  
I/O  
L31P_3 L31N_3 L32P_3 L32N_3  
I/O  
I/O  
I/O  
I/O  
I/O  
L29P_3  
I/O  
L29N_3  
VCCO_3  
GND  
VCCO_3  
GND  
GND  
GND  
GND  
GND  
L27P_3 L27N_3 L28P_3 L28N_3 L33P_3  
I/O  
L23P_3  
VREF_3  
I/O  
L20N_3  
I/O  
I/O  
I/O  
L24N_3  
I/O  
L26P_3  
I/O  
L26N_3  
VCCO_4  
VCCO_3  
VCCO_3  
VCCINT VCCINT  
VCCINT VCCINT  
VCCO_4 VCCO_4  
U
V
W
Y
L23N_3 L24P_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_4 VCCO_4 VCCO_4  
I/O  
L27P_4  
D1  
VCCAUX  
L20P_3 L16N_3  
L21P_3 L21N_3 L22P_3 L22N_3  
I/O  
I/O  
I/O  
L17P_3  
VREF_3  
I/O  
L16P_3  
I/O  
L17N_3  
I/O  
L19P_3  
I/O  
L19N_3  
L10P_3 L10N_3  
I/O  
I/O  
VCCINT  
I/O  
I/O  
L27N_4  
DIN  
I/O  
I/O  
I/O  
I/O  
I/O  
L30N_4  
D2  
I/O  
I/O  
I/O  
I/O  
L14P_3  
I/O  
L14N_3  
L11N_4 L05P_3 L05N_3  
L08P_3 L08N_3  
VCCO_3  
I/O  
L24N_4 VREF_4 L16N_4  
D0  
I/O  
I/O  
L11P_4  
I/O  
I/O  
L09N_3  
I/O  
L30P_4  
D3  
I/O  
I/O  
A
A
L09P_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
L07P_3 L07N_3  
I/O  
L01P_3 L01N_3  
VRN_3  
L28N_4 L24P_4 L19P_4 L16P_4  
VRP_3  
I/O  
I/O  
I/O  
I/O  
I/O  
L01N_4  
VRP_4  
I/O  
L02N_3  
VREF_3  
A
B
IO  
VREF_4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L02P_3  
L17N_4 L12N_4  
L06P_3 L06N_3  
L28P_4 L25N_4 L22P_4  
L09N_4 L07N_4  
I/O  
I/O  
I/O  
L31N_4  
INIT_B  
I/O  
L01P_4  
VRN_4  
A
C
I/O  
I/O  
I/O  
I/O  
I/O  
L03P_3  
I/O  
L03N_3  
L17P_4 L12P_4  
GND  
I/O  
GND  
DONE  
L25P_4 L19N_4  
L09P_4 L07P_4  
I/O  
I/O  
L18N_4  
I/O  
I/O  
L06N_4  
VREF_4  
I/O  
A
D
I/O  
L08N_4  
I/O  
VREF_4  
L31P_4  
DOUT  
BUSY  
VCCO_4  
L22N_4  
VCCO_4  
GND  
I/O  
I/O  
I/O  
CCLK  
VREF_4  
I/O  
I/O  
I/O  
I/O  
L32N_4  
GCLK1  
A
E
I/O  
L29N_4  
I/O  
I/O  
I/O  
I/O  
L26N_4 L23N_4 L18P_4  
VCCAUX  
GND  
L15N_4 L10N_4 L08P_4 L06P_4 L05N_4 L04N_4  
I/O  
I/O  
L23P_4  
I/O  
L32P_4  
GCLK0  
A
F
L26P_4  
VREF_4  
I/O  
L29P_4  
I/O  
I/O  
I/O  
L05P_4  
I/O  
L04P_4  
VCCAUX  
VCCAUX  
I/O  
I/O  
GND  
L15P_4 L10P_4  
Bank 4  
DS099-4_12b_011205  
Figure 54: FG676 Package Footprint (Top View) Continued  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
209  
Spartan-3 FPGA Family: Pinout Descriptions  
FG900: 900-lead Fine-pitch Ball Grid Array  
The 900-lead fine-pitch ball grid array package, FG900, supports three different Spartan-3 devices, including the  
XC3S2000, the XC3S4000, and the XC3S5000. The footprints for the XC3S4000 and XC3S5000 are identical, as shown in  
Table 107 and Figure 55. The XC3S2000, however, has fewer I/O pins which consequently results in 68 unconnected pins  
on the FG900 package, labeled as “N.C.In Table 107 and Figure 55, these unconnected pins are indicated with a black  
diamond symbol ().  
All the package pins appear in Table 107 and are sorted by bank number, then by pin name. Pairs of pins that form a  
differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as  
defined earlier.  
If there is a difference between the XC3S2000 pinout and the pinout for the XC3S4000 and XC3S5000, then that difference  
is highlighted in Table 107. If the table entry is shaded, then there is an unconnected pin on the XC3S2000 that maps to a  
user-I/O pin on the XC3S4000 and XC3S5000.  
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at  
http://www.xilinx.com/support/documentation/data_ sheets/s3_pin.zip.  
Pinout Table  
Table 107: FG900 Package Pinout  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
E15  
K15  
D13  
K13  
G8  
F9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I/O  
I/O  
I/O  
I/O  
I/O  
IO/VREF_0  
IO/VREF_0  
VREF  
VREF  
DCI  
DCI  
I/O  
IO/VREF_0  
IO/VREF_0  
C4  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L02N_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L02N_0  
B4  
A4  
B5  
IO_L02P_0  
IO_L02P_0  
A5  
I/O  
IO_L03N_0  
IO_L03N_0  
D5  
I/O  
IO_L03P_0  
IO_L03P_0  
E6  
I/O  
IO_L04N_0  
IO_L04N_0  
C6  
I/O  
IO_L04P_0  
IO_L04P_0  
B6  
I/O  
IO_L05N_0  
IO_L05N_0  
F6  
I/O  
IO_L05P_0/VREF_0  
IO_L06N_0  
IO_L05P_0/VREF_0  
IO_L06N_0  
F7  
VREF  
I/O  
D7  
IO_L06P_0  
IO_L06P_0  
C7  
I/O  
IO_L07N_0  
IO_L07N_0  
F8  
I/O  
IO_L07P_0  
IO_L07P_0  
E8  
I/O  
IO_L08N_0  
IO_L08N_0  
D8  
I/O  
IO_L08P_0  
IO_L08P_0  
C8  
I/O  
IO_L09N_0  
IO_L09N_0  
B8  
I/O  
IO_L09P_0  
IO_L09P_0  
A8  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
210  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO_L10N_0  
IO_L10N_0  
J9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
IO_L14P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L20N_0  
IO_L20P_0  
IO_L21N_0  
IO_L21P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L26P_0/VREF_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
IO_L14P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L20N_0  
IO_L20P_0  
IO_L21N_0  
IO_L21P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L26P_0/VREF_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
H9  
G10  
F10  
C10  
B10  
J10  
K11  
H11  
G11  
F11  
E11  
D11  
C11  
B11  
A11  
K12  
J12  
H12  
G12  
F12  
E12  
D12  
C12  
B12  
A12  
J13  
H13  
F13  
E13  
B13  
A13  
K14  
J14  
G14  
F14  
C14  
B14  
J15  
H15  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
211  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
G15  
F15  
D15  
C15  
B15  
A15  
B7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IO_L30N_0  
IO_L30N_0  
I/O  
I/O  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
N.C. ()  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
IO_L35N_0  
IO_L35P_0  
IO_L36N_0  
IO_L36P_0  
IO_L37N_0  
IO_L37P_0  
IO_L38N_0  
IO_L38P_0  
VCCO_0  
I/O  
VREF  
GCLK  
GCLK  
I/O  
N.C. ()  
A7  
I/O  
N.C. ()  
G7  
I/O  
N.C. ()  
H8  
I/O  
N.C. ()  
E9  
I/O  
N.C. ()  
D9  
I/O  
N.C. ()  
B9  
I/O  
N.C. ()  
A9  
I/O  
VCCO_0  
C5  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_0  
VCCO_0  
E7  
VCCO_0  
VCCO_0  
C9  
VCCO_0  
VCCO_0  
G9  
VCCO_0  
VCCO_0  
J11  
L12  
C13  
G13  
L13  
L14  
E25  
J21  
K20  
F18  
F16  
A16  
J17  
A27  
B27  
D26  
C27  
A26  
B26  
B25  
C25  
F24  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L02N_1  
IO_L02P_1  
IO_L03N_1  
IO_L03P_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L02N_1  
IO_L02P_1  
IO_L03N_1  
IO_L03P_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
VREF  
DCI  
DCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
212  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Pin Name  
Bank  
Type  
Number  
F25  
C24  
D24  
A24  
B24  
H23  
G24  
F23  
G23  
C23  
D23  
A23  
B23  
H22  
J22  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IO_L05P_1  
IO_L05P_1  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L06N_1/VREF_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L13N_1  
IO_L13P_1  
IO_L14N_1  
IO_L14P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L17N_1/VREF_1  
IO_L17P_1  
IO_L18N_1  
IO_L18P_1  
IO_L19N_1  
IO_L19P_1  
IO_L20N_1  
IO_L20P_1  
IO_L21N_1  
IO_L21P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L06N_1/VREF_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L13N_1  
IO_L13P_1  
IO_L14N_1  
IO_L14P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L17N_1/VREF_1  
IO_L17P_1  
IO_L18N_1  
IO_L18P_1  
IO_L19N_1  
IO_L19P_1  
IO_L20N_1  
IO_L20P_1  
IO_L21N_1  
IO_L21P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
F22  
E23  
D22  
E22  
A22  
B22  
F21  
G21  
B21  
C21  
G20  
H20  
E20  
F20  
C20  
D20  
A20  
B20  
J19  
K19  
G19  
H19  
E19  
F19  
C19  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
213  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
D19  
A19  
B19  
F17  
G17  
B17  
C17  
J16  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
IO_L25P_1  
IO_L25P_1  
I/O  
I/O  
IO_L26N_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
N.C. ()  
IO_L26N_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
IO_L37N_1  
IO_L37P_1  
IO_L38N_1  
IO_L38P_1  
IO_L39N_1  
IO_L39P_1  
IO_L40N_1  
IO_L40P_1  
VCCO_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K16  
G16  
H16  
D16  
E16  
B16  
C16  
H18  
J18  
I/O  
I/O  
I/O  
VREF  
I/O  
GCLK  
GCLK  
I/O  
N.C. ()  
I/O  
N.C. ()  
D18  
E18  
A18  
B18  
K17  
K18  
L17  
C18  
G18  
L18  
L19  
J20  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
VCCO_1  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
C22  
G22  
E24  
C26  
J25  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
IO  
IO  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L02N_2  
IO_L02P_2  
IO_L03N_2/VREF_2  
IO_L03P_2  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L02N_2  
IO_L02P_2  
IO_L03N_2/VREF_2  
IO_L03P_2  
C29  
C30  
D27  
D28  
D29  
D30  
DCI  
DCI  
I/O  
I/O  
VREF  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
214  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Pin Name  
Bank  
Type  
Number  
E29  
E30  
F28  
F29  
G27  
G28  
G29  
G30  
G25  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
J26  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IO_L04N_2  
IO_L04N_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L04P_2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L09N_2/VREF_2  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L12N_2  
IO_L12P_2  
IO_L13N_2  
IO_L13P_2/VREF_2  
IO_L14N_2  
IO_L14P_2  
IO_L15N_2  
IO_L15P_2  
IO_L16N_2  
IO_L16P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L23N_2/VREF_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L04P_2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L09N_2/VREF_2  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L12N_2  
IO_L12P_2  
IO_L13N_2  
IO_L13P_2/VREF_2  
IO_L14N_2  
IO_L14P_2  
IO_L15N_2  
IO_L15P_2  
IO_L16N_2  
IO_L16P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L23N_2/VREF_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
J27  
J29  
J30  
J23  
K22  
K24  
K25  
L25  
L26  
L27  
L28  
L29  
L30  
M22  
M23  
M24  
M25  
M27  
M28  
M21  
N21  
N22  
N23  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
215  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Pin Name  
Bank  
Type  
Number  
M26  
N25  
N26  
N27  
N29  
N30  
P21  
P22  
P24  
P25  
P28  
P29  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
E27  
F26  
K28  
K29  
K21  
L21  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IO_L28N_2  
IO_L28N_2  
I/O  
I/O  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L34N_2/VREF_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L37N_2  
IO_L37P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2/VREF_2  
N.C. ()  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L34N_2/VREF_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L37N_2  
IO_L37P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2/VREF_2  
IO_L41N_2  
IO_L41P_2  
IO_L45N_2  
IO_L45P_2  
IO_L46N_2  
IO_L46P_2  
IO_L47N_2  
IO_L47P_2  
IO_L50N_2  
IO_L50P_2  
VCCO_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
L23  
I/O  
N.C. ()  
L24  
I/O  
N.C. ()  
M29  
M30  
M20  
N20  
P20  
L22  
I/O  
N.C. ()  
I/O  
VCCO_2  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
J24  
VCCO_2  
VCCO_2  
N24  
G26  
E28  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
216  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
VCCO_2  
VCCO_2  
J28  
VCCO  
VCCO  
I/O  
VCCO_2  
VCCO_2  
N28  
IO  
IO  
AB25  
AH30  
AH29  
AG28  
AG27  
AG30  
AG29  
AF30  
AF29  
AE26  
AF27  
AE29  
AE28  
AD28  
AD27  
AD30  
AD29  
AC24  
AD25  
AC26  
AC25  
AC28  
AC27  
AC30  
AC29  
AB27  
AB26  
AB30  
AB29  
AA22  
AB23  
AA25  
AA24  
AA29  
AA28  
Y21  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L02N_3/VREF_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L04N_3  
IO_L04P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L09P_3/VREF_3  
IO_L10N_3  
IO_L10P_3  
IO_L11N_3  
IO_L11P_3  
IO_L13N_3/VREF_3  
IO_L13P_3  
IO_L14N_3  
IO_L14P_3  
IO_L15N_3  
IO_L15P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L02N_3/VREF_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L04N_3  
IO_L04P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L09P_3/VREF_3  
IO_L10N_3  
IO_L10P_3  
IO_L11N_3  
IO_L11P_3  
IO_L13N_3/VREF_3  
IO_L13P_3  
IO_L14N_3  
IO_L14P_3  
IO_L15N_3  
IO_L15P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
DCI  
DCI  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
AA21  
Y24  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
217  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Pin Name  
Bank  
Type  
Number  
Y23  
Y26  
Y25  
Y28  
Y27  
Y30  
Y29  
W30  
W29  
V21  
W21  
V23  
V22  
V25  
W26  
V30  
V29  
U22  
U21  
U25  
U24  
U29  
U28  
T22  
T21  
T24  
T23  
T26  
T25  
T28  
T27  
T30  
T29  
W23  
W22  
W25  
W24  
W28  
W27  
V27  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L21P_3  
IO_L21P_3  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L34P_3/VREF_3  
IO_L35N_3  
IO_L35P_3  
IO_L37N_3  
IO_L37P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
N.C. ()  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L34P_3/VREF_3  
IO_L35N_3  
IO_L35P_3  
IO_L37N_3  
IO_L37P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
IO_L46N_3  
IO_L46P_3  
IO_L47N_3  
IO_L47P_3  
IO_L48N_3  
IO_L48P_3  
IO_L50N_3  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
218  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
N.C. ()  
IO_L50P_3  
V26  
I/O  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_3  
VCCO_3  
U20  
VCCO_3  
VCCO_3  
V20  
VCCO_3  
VCCO_3  
W20  
VCCO_3  
VCCO_3  
Y22  
VCCO_3  
VCCO_3  
V24  
VCCO_3  
VCCO_3  
AB24  
AD26  
V28  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
AB28  
AF28  
AA16  
AG18  
AA18  
AE22  
AD23  
AH27  
AF16  
AK28  
AJ27  
AK27  
AJ26  
AK26  
AG26  
AF25  
AD24  
AC23  
AE23  
AF23  
AG23  
AH23  
AJ23  
AK23  
AB22  
AC22  
AF22  
AG22  
AJ22  
AK22  
AD21  
VCCO_3  
VCCO_3  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L02N_4  
IO_L02P_4  
IO_L03N_4  
IO_L03P_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L06N_4/VREF_4  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L02N_4  
IO_L02P_4  
IO_L03N_4  
IO_L03P_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L06N_4/VREF_4  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
VREF  
VREF  
DCI  
DCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
219  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Pin Name  
Bank  
Type  
Number  
AE21  
AH21  
AJ21  
AB21  
AA20  
AC20  
AD20  
AE20  
AF20  
AG20  
AH20  
AJ20  
AK20  
AA19  
AB19  
AC19  
AD19  
AE19  
AF19  
AG19  
AH19  
AJ19  
AK19  
AB18  
AC18  
AE18  
AF18  
AJ18  
AK18  
AA17  
AB17  
AD17  
AE17  
AH17  
AJ17  
AB16  
AC16  
AD16  
AE16  
AG16  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
IO_L11P_4  
IO_L11P_4  
I/O  
I/O  
IO_L12N_4  
IO_L12P_4  
IO_L12N_4  
IO_L12P_4  
I/O  
IO_L13N_4  
IO_L13P_4  
IO_L13N_4  
IO_L13P_4  
I/O  
I/O  
IO_L14N_4  
IO_L14P_4  
IO_L14N_4  
IO_L14P_4  
I/O  
I/O  
IO_L15N_4  
IO_L15P_4  
IO_L15N_4  
IO_L15P_4  
I/O  
I/O  
IO_L16N_4  
IO_L16P_4  
IO_L16N_4  
IO_L16P_4  
I/O  
I/O  
IO_L17N_4  
IO_L17P_4  
IO_L17N_4  
IO_L17P_4  
I/O  
I/O  
IO_L18N_4  
IO_L18P_4  
IO_L18N_4  
IO_L18P_4  
I/O  
I/O  
IO_L19N_4  
IO_L19P_4  
IO_L19N_4  
IO_L19P_4  
I/O  
I/O  
IO_L20N_4  
IO_L20P_4  
IO_L20N_4  
IO_L20P_4  
I/O  
I/O  
IO_L21N_4  
IO_L21P_4  
IO_L21N_4  
IO_L21P_4  
I/O  
I/O  
IO_L22N_4/VREF_4  
IO_L22P_4  
IO_L22N_4/VREF_4  
IO_L22P_4  
VREF  
I/O  
IO_L23N_4  
IO_L23P_4  
IO_L23N_4  
IO_L23P_4  
I/O  
I/O  
IO_L24N_4  
IO_L24P_4  
IO_L24N_4  
IO_L24P_4  
I/O  
I/O  
IO_L25N_4  
IO_L25P_4  
IO_L25N_4  
IO_L25P_4  
I/O  
I/O  
IO_L26N_4  
IO_L26P_4/VREF_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
IO_L28P_4  
IO_L26N_4  
IO_L26P_4/VREF_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
IO_L28P_4  
I/O  
VREF  
DUAL  
DUAL  
I/O  
I/O  
IO_L29N_4  
IO_L29P_4  
IO_L29N_4  
IO_L29P_4  
I/O  
I/O  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
DUAL  
DUAL  
DUAL  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
220  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
AH16  
AJ16  
AK16  
AH25  
AJ25  
AE25  
AE24  
AG24  
AH24  
AJ24  
AK24  
Y17  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L31P_4/DOUT/BUSY IO_L31P_4/DOUT/BUSY  
DUAL  
GCLK  
GCLK  
I/O  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
N.C. ()  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
IO_L33N_4  
IO_L33P_4  
IO_L34N_4  
IO_L34P_4  
IO_L35N_4  
IO_L35P_4  
IO_L38N_4  
IO_L38P_4  
VCCO_4  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
VCCO_4  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_4  
VCCO_4  
Y18  
VCCO_4  
VCCO_4  
AD18  
AH18  
Y19  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
AB20  
AD22  
AH22  
AF24  
AH26  
AE6  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
IO  
IO  
IO  
AB10  
AA11  
AA15  
AE15  
AH4  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO/VREF_5  
IO/VREF_5  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L02N_5  
IO_L02P_5  
IO_L03N_5  
IO_L03P_5  
IO_L04N_5  
IO_L04P_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO/VREF_5  
IO/VREF_5  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L02N_5  
IO_L02P_5  
IO_L03N_5  
IO_L03P_5  
IO_L04N_5  
IO_L04P_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
VREF  
VREF  
DUAL  
DUAL  
I/O  
AK15  
AK4  
AJ4  
AK5  
AJ5  
I/O  
AF6  
I/O  
AG5  
I/O  
AJ6  
I/O  
AH6  
I/O  
AE7  
I/O  
AD7  
I/O  
AH7  
I/O  
AG7  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
221  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L07N_5  
IO_L07N_5  
AK8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DCI  
DCI  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L11N_5/VREF_5  
IO_L11P_5  
IO_L12N_5  
IO_L12P_5  
IO_L13N_5  
IO_L13P_5  
IO_L14N_5  
IO_L14P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L17N_5  
IO_L17P_5  
IO_L18N_5  
IO_L18P_5  
IO_L19N_5  
IO_L19P_5/VREF_5  
IO_L20N_5  
IO_L20P_5  
IO_L21N_5  
IO_L21P_5  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L11N_5/VREF_5  
IO_L11P_5  
IO_L12N_5  
IO_L12P_5  
IO_L13N_5  
IO_L13P_5  
IO_L14N_5  
IO_L14P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L17N_5  
IO_L17P_5  
IO_L18N_5  
IO_L18P_5  
IO_L19N_5  
IO_L19P_5/VREF_5  
IO_L20N_5  
IO_L20P_5  
IO_L21N_5  
IO_L21P_5  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
AJ8  
AC9  
AB9  
AG9  
AF9  
AK9  
AJ9  
AE10  
AE9  
AJ10  
AH10  
AD11  
AD10  
AF11  
AE11  
AH11  
AG11  
AK11  
AJ11  
AB12  
AC11  
AD12  
AC12  
AF12  
AE12  
AH12  
AG12  
AK12  
AJ12  
AA13  
AA12  
AC13  
AB13  
AG13  
AF13  
AK13  
AJ13  
AB14  
AA14  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
222  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
IO_L27N_5/VREF_5  
IO_L27P_5  
Number  
AE14  
AE13  
AJ14  
AH14  
AC15  
AB15  
AD15  
AD14  
AG15  
AF15  
AJ15  
AH15  
AK7  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
IO_L27N_5/VREF_5  
IO_L27P_5  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
IO_L29P_5/VREF_5  
IO_L30N_5  
IO_L30P_5  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
N.C. ()  
VREF  
I/O  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
IO_L29P_5/VREF_5  
IO_L30N_5  
IO_L30P_5  
DUAL  
DUAL  
I/O  
VREF  
I/O  
I/O  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
IO_L35N_5  
IO_L35P_5  
DUAL  
DUAL  
GCLK  
GCLK  
I/O  
N.C. ()  
AJ7  
I/O  
N.C. ()  
IO_L36N_5  
IO_L36P_5  
AD8  
I/O  
N.C. ()  
AC8  
I/O  
N.C. ()  
IO_L37N_5  
IO_L37P_5  
AF8  
I/O  
N.C. ()  
AE8  
I/O  
N.C. ()  
IO_L38N_5  
IO_L38P_5  
AH8  
I/O  
N.C. ()  
AG8  
AH5  
I/O  
VCCO_5  
VCCO_5  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_5  
VCCO_5  
AF7  
VCCO_5  
VCCO_5  
AD9  
VCCO_5  
VCCO_5  
AH9  
VCCO_5  
VCCO_5  
AB11  
Y12  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
Y13  
VCCO_5  
VCCO_5  
AD13  
AH13  
Y14  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
IO  
IO  
AB6  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L02N_6  
IO_L02P_6  
IO_L03N_6/VREF_6  
IO_L03P_6  
IO_L04N_6  
IO_L04P_6  
IO_L05N_6  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L02N_6  
IO_L02P_6  
AH2  
DCI  
AH1  
DCI  
AG4  
AG3  
AG2  
AG1  
AF2  
I/O  
I/O  
IO_L03N_6/VREF_6  
IO_L03P_6  
VREF  
I/O  
IO_L04N_6  
IO_L04P_6  
I/O  
AF1  
I/O  
IO_L05N_6  
AF4  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
223  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Pin Name  
Bank  
Type  
Number  
AE5  
AE3  
AE2  
AD4  
AD3  
AD2  
AD1  
AD6  
AC7  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
AB5  
AB4  
AB2  
AB1  
AB8  
AA9  
AA7  
AA6  
AA3  
AA2  
AA10  
Y10  
Y8  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IO_L05P_6  
IO_L05P_6  
I/O  
I/O  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
IO_L09N_6/VREF_6  
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L11N_6  
IO_L11P_6  
IO_L13N_6  
IO_L13P_6/VREF_6  
IO_L14N_6  
IO_L14P_6  
IO_L15N_6  
IO_L15P_6  
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
IO_L17P_6/VREF_6  
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
N.C. ()  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
IO_L09N_6/VREF_6  
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L11N_6  
IO_L11P_6  
IO_L13N_6  
IO_L13P_6/VREF_6  
IO_L14N_6  
IO_L14P_6  
IO_L15N_6  
IO_L15P_6  
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
IO_L17P_6/VREF_6  
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
IO_L25N_6  
IO_L25P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
Y7  
I/O  
Y6  
I/O  
Y5  
I/O  
Y2  
VREF  
I/O  
Y1  
W9  
I/O  
N.C. ()  
W8  
I/O  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
W7  
I/O  
W6  
I/O  
W4  
I/O  
W3  
I/O  
W2  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
224  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
W1  
W10  
V10  
V9  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
IO_L28P_6  
IO_L28P_6  
I/O  
I/O  
IO_L29N_6  
IO_L29P_6  
N.C. ()  
IO_L29N_6  
IO_L29P_6  
IO_L30N_6  
IO_L30P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
IO_L34N_6/VREF_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L36N_6  
IO_L36P_6  
IO_L37N_6  
IO_L37P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L40P_6/VREF_6  
IO_L45N_6  
IO_L45P_6  
IO_L52N_6  
IO_L52P_6  
VCCO_6  
I/O  
I/O  
N.C. ()  
V8  
I/O  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
IO_L34N_6/VREF_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
N.C. ()  
W5  
V6  
I/O  
I/O  
V5  
I/O  
V4  
I/O  
V2  
I/O  
V1  
I/O  
U10  
U9  
VREF  
I/O  
U7  
I/O  
U6  
I/O  
U3  
I/O  
N.C. ()  
U2  
I/O  
IO_L37N_6  
IO_L37P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L40P_6/VREF_6  
N.C. ()  
T10  
T9  
I/O  
I/O  
T6  
I/O  
T5  
I/O  
T4  
I/O  
T3  
I/O  
T2  
I/O  
T1  
VREF  
I/O  
Y4  
N.C. ()  
Y3  
I/O  
N.C. ()  
T8  
I/O  
N.C. ()  
T7  
I/O  
VCCO_6  
V3  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_6  
VCCO_6  
AB3  
AF3  
AD5  
V7  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
AB7  
Y9  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
U11  
V11  
W11  
J6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
IO  
IO  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
225  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L02N_7  
Number  
C1  
C2  
D3  
D4  
D1  
D2  
E1  
E2  
F5  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L02N_7  
DCI  
DCI  
I/O  
IO_L02P_7  
IO_L02P_7  
I/O  
IO_L03N_7/VREF_7  
IO_L03P_7  
IO_L03N_7/VREF_7  
IO_L03P_7  
VREF  
I/O  
IO_L04N_7  
IO_L04N_7  
I/O  
IO_L04P_7  
IO_L04P_7  
I/O  
IO_L05N_7  
IO_L05N_7  
I/O  
IO_L05P_7  
IO_L05P_7  
E4  
F2  
I/O  
IO_L06N_7  
IO_L06N_7  
I/O  
IO_L06P_7  
IO_L06P_7  
F3  
I/O  
IO_L07N_7  
IO_L07N_7  
G3  
G4  
G1  
G2  
H7  
G6  
H5  
H6  
H3  
H4  
H1  
H2  
J4  
I/O  
IO_L07P_7  
IO_L07P_7  
I/O  
IO_L08N_7  
IO_L08N_7  
I/O  
IO_L08P_7  
IO_L08P_7  
I/O  
IO_L09N_7  
IO_L09N_7  
I/O  
IO_L09P_7  
IO_L09P_7  
I/O  
IO_L10N_7  
IO_L10N_7  
I/O  
IO_L10P_7/VREF_7  
IO_L11N_7  
IO_L10P_7/VREF_7  
IO_L11N_7  
VREF  
I/O  
IO_L11P_7  
IO_L11P_7  
I/O  
IO_L13N_7  
IO_L13N_7  
I/O  
IO_L13P_7  
IO_L13P_7  
I/O  
IO_L14N_7  
IO_L14N_7  
I/O  
IO_L14P_7  
IO_L14P_7  
J5  
I/O  
IO_L15N_7  
IO_L15N_7  
J1  
I/O  
IO_L15P_7  
IO_L15P_7  
J2  
I/O  
IO_L16N_7  
IO_L16N_7  
K9  
J8  
I/O  
IO_L16P_7/VREF_7  
IO_L17N_7  
IO_L16P_7/VREF_7  
IO_L17N_7  
VREF  
I/O  
K6  
K7  
K2  
K3  
L10  
K10  
L7  
IO_L17P_7  
IO_L17P_7  
I/O  
IO_L19N_7/VREF_7  
IO_L19P_7  
IO_L19N_7/VREF_7  
IO_L19P_7  
VREF  
I/O  
IO_L20N_7  
IO_L20N_7  
I/O  
IO_L20P_7  
IO_L20P_7  
I/O  
IO_L21N_7  
IO_L21N_7  
I/O  
IO_L21P_7  
IO_L21P_7  
L8  
I/O  
IO_L22N_7  
IO_L22N_7  
L5  
I/O  
IO_L22P_7  
IO_L22P_7  
L6  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
226  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L23N_7  
IO_L23N_7  
L3  
I/O  
I/O  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
N.C. ()  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L25N_7  
IO_L25P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
IO_L27P_7/VREF_7  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L37N_7  
IO_L37P_7/VREF_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
IO_L46N_7  
IO_L46P_7  
IO_L49N_7  
IO_L49P_7  
IO_L50N_7  
IO_L50P_7  
VCCO_7  
L4  
L1  
I/O  
L2  
I/O  
M6  
M7  
M3  
M4  
M1  
M2  
N10  
M10  
N8  
N9  
N1  
N2  
P9  
I/O  
N.C. ()  
I/O  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
IO_L27P_7/VREF_7  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L37N_7  
IO_L37P_7/VREF_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
N.C. ()  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P10  
P6  
I/O  
I/O  
P7  
I/O  
P2  
I/O  
P3  
I/O  
R9  
R10  
R7  
R8  
R5  
R6  
R3  
R4  
R1  
R2  
M8  
M9  
N6  
M5  
N4  
N5  
E3  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
VCCO_7  
VCCO  
VCCO  
VCCO_7  
VCCO_7  
J3  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
227  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
7
VCCO_7  
VCCO_7  
N3  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
7
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
G5  
7
J7  
7
N7  
7
L9  
7
M11  
N11  
P11  
A1  
7
7
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
B1  
GND  
GND  
F1  
GND  
GND  
K1  
GND  
GND  
P1  
GND  
GND  
U1  
GND  
GND  
AA1  
AE1  
AJ1  
AK1  
A2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B2  
GND  
GND  
AJ2  
E5  
GND  
GND  
GND  
GND  
K5  
GND  
GND  
P5  
GND  
GND  
U5  
GND  
GND  
AA5  
AF5  
A6  
GND  
GND  
GND  
GND  
GND  
GND  
AK6  
K8  
GND  
GND  
GND  
GND  
P8  
GND  
GND  
U8  
GND  
GND  
AA8  
A10  
E10  
H10  
AC10  
AF10  
AK10  
R12  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
228  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
T12  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N13  
P13  
R13  
T13  
U13  
V13  
A14  
E14  
H14  
N14  
P14  
R14  
T14  
U14  
V14  
AC14  
AF14  
AK14  
M15  
N15  
P15  
R15  
T15  
U15  
V15  
W15  
M16  
N16  
P16  
R16  
T16  
U16  
V16  
W16  
A17  
E17  
H17  
N17  
P17  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
229  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
R17  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
T17  
U17  
V17  
AC17  
AF17  
AK17  
N18  
P18  
R18  
T18  
U18  
V18  
R19  
T19  
A21  
E21  
H21  
AC21  
AF21  
AK21  
K23  
P23  
U23  
AA23  
A25  
AK25  
E26  
K26  
P26  
U26  
AA26  
AF26  
A29  
B29  
AJ29  
AK29  
A30  
B30  
F30  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
230  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
K30  
GND  
P30  
GND  
U30  
AA30  
AE30  
AJ30  
AK30  
AK2  
F4  
GND  
GND  
GND  
GND  
GND  
GND  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
K4  
P4  
U4  
AA4  
AE4  
D6  
AG6  
D10  
AG10  
D14  
AG14  
D17  
AG17  
D21  
AG21  
D25  
AG25  
F27  
K27  
P27  
U27  
AA27  
AE27  
L11  
R11  
T11  
Y11  
M12  
N12  
P12  
U12  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
231  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 107: FG900 Package Pinout (Cont’d)  
XC3S2000  
Pin Name  
XC3S4000, XC3S5000 FG900 Pin  
Bank  
Type  
Pin Name  
Number  
V12  
W12  
M13  
W13  
M14  
W14  
L15  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
Y15  
L16  
Y16  
M17  
W17  
M18  
W18  
M19  
N19  
P19  
U19  
V19  
W19  
L20  
R20  
T20  
Y20  
AH28  
AJ28  
A3  
VCCAUX CCLK  
VCCAUX DONE  
VCCAUX HSWAP_EN  
VCCAUX M0  
DONE  
HSWAP_EN  
M0  
AJ3  
AH3  
AK3  
B3  
VCCAUX M1  
M1  
VCCAUX M2  
M2  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
PROG_B  
TCK  
B28  
C3  
TDI  
JTAG  
VCCAUX TDO  
VCCAUX TMS  
TDO  
C28  
A28  
JTAG  
TMS  
JTAG  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
232  
Spartan-3 FPGA Family: Pinout Descriptions  
User I/Os by Bank  
Table 108 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S2000 in the  
FG900 package. Similarly, Table 109 shows how the available user-I/O pins are distributed between the eight I/O banks for  
the XC3S4000 and XC3S5000 in the FG900 package.  
Table 108: User I/Os Per Bank for XC3S2000 in FG900 Package  
All Possible I/O Pins by Type  
Edge  
Top  
I/O Bank  
Maximum I/O  
I/O  
62  
62  
61  
62  
57  
55  
60  
62  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
71  
71  
69  
71  
72  
71  
69  
71  
0
0
0
0
6
6
0
0
5
5
6
7
5
6
7
7
2
2
0
0
2
2
0
0
2
2
Right  
Bottom  
Left  
2
2
2
2
2
Table 109: User I/Os Per Bank for XC3S4000 and XC3S5000 in FG900 Package  
All Possible I/O Pins by Type  
Edge  
Top  
I/O Bank  
Maximum I/O  
I/O  
70  
70  
71  
70  
65  
63  
70  
70  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
79  
79  
79  
79  
80  
79  
79  
79  
0
0
0
0
6
6
0
0
5
5
6
7
5
6
7
7
2
2
0
0
2
2
0
0
2
2
Right  
Bottom  
Left  
2
2
2
2
2
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
233  
Spartan-3 FPGA Family: Pinout Descriptions  
X-Ref Target - Figure 55  
FG900 Footprint  
Bank 0  
1
2
3
4
5
I/O  
6
7
8
I/O  
9
10  
11  
I/O  
12  
I/O  
13  
I/O  
14  
15  
I/O  
L35P_0  
I/O  
L38P_0  
I/O  
I/O  
HSWAP_  
EN  
Left Half of FG900  
Package (Top View)  
A
B
C
D
E
F
L01P_0  
VRN_0  
L32P_0  
GCLK6  
GND  
GND  
GND  
GND  
GND  
L02P_0  
L09P_0  
L17P_0 L22P_0 L25P_0  
I/O  
L35N_0  
I/O  
L38N_0  
I/O  
L01N_0  
VRP_0  
I/O  
L32N_0  
GCLK7  
I/O  
I/O  
I/O  
L09N_0  
I/O  
I/O  
I/O  
I/O  
I/O  
PROG_B  
GND  
I/O  
L01N_7 L01P_7  
VRP_7  
GND  
I/O  
L02N_0 L04P_0  
L12P_0 L17N_0 L22N_0 L25N_0 L28P_0  
I/O  
L31P_0  
VREF_0  
XC3S2000  
(565 max. user I/O)  
IO  
VREF_0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L28N_0  
V
CCO_0  
V
CCO_0  
VCCO_0  
TDI  
I/O  
L04N_0 L06P_0 L08P_0  
L12N_0 L16P_0 L21P_0  
V
RN_  
7
I/O  
I/O  
L03N_7  
VREF_7  
I/O: Unrestricted,  
general-purpose user I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L31N_0  
L37P_0  
481  
VCCAUX  
VCCAUX  
VCCAUX  
I/O  
I/O  
L03P_7 L02N_7 L02P_7 L03N_0  
L06N_0 L08N_0  
L16N_0 L21N_0  
I/O  
I/O  
I/O  
I/O  
L05P_7  
I/O  
L03P_0  
I/O  
L07P_0  
I/O  
I/O  
L37N_0  
V
CCO_7  
GND  
V
CCO_0  
GND  
I/O  
GND  
I/O  
I/O  
L04N_7 L04P_7  
L15P_0 L20P_0 L24P_0  
VREF: User I/O or input  
48  
voltage reference for bank  
I/O  
L05P_0  
VREF_0  
IO  
VREF_0  
I/O  
I/O  
I/O  
I/O  
I/O  
L07N_0  
I/O I/O I/O  
I/O  
VCCAUX  
GND  
L06N_7 L06P_7  
L05N_7 L05N_0  
L11P_0 L15N_0 L20N_0 L24N_0 L27P_0 L30P_0  
I/O  
L36N_0  
N.C.: Unconnected pins for  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
68  
V
CCO_7  
VCCO_0  
VCCO_0  
I/O  
G
H
J
L08N_7 L08P_7 L07N_7 L07P_7  
L09P_7  
L11N_0 L14P_0 L19P_0  
L27N_0 L30N_0  
XC3S2000 ()  
I/O  
L36P_0  
I/O  
L10P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L09N_7  
I/O  
L10P_0  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
I/O  
L13N_7 L13P_7 L11N_7 L11P_7 L10N_7  
L14N_0 L19N_0 L23P_0  
L29P_0  
XC3S4000, XC3S5000  
(633 max user I/O)  
I/O  
L16P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
CCO_7  
VCCO_7  
VCCO_0  
I/O  
L26P_0  
L29N_0  
VREF_0  
L15N_7 L15P_7  
L14N_7 L14P_7  
L10N_0 L13N_0  
L18P_0 L23N_0  
I/O: Unrestricted,  
general-purpose user I/O  
549  
I/O  
I/O  
L19P_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
I/O  
GND  
GND  
I/O  
GND  
I/O  
K
L
L19N_7  
L17N_7 L17P_7  
L16N_7 L20P_7 L13P_0 L18N_0  
I/O  
VCCO_0 VCCO_0 VCCO_0  
VCCINT VCCINT  
L26N_0  
VREF_7  
VREF: User I/O or input  
48  
I/O  
I/O  
I/O  
I/O I/O  
VCCO_7  
L24N_7 L24P_7 L23N_7 L23P_7 L22N_7 L22P_7 L21N_7 L21P_7  
L20N_7  
voltage reference for bank  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L27P_7  
VREF_7  
I/O  
L27N_7  
I/O  
I/O  
I/O  
L28P_7  
L49P_7 L25N_7 L25P_7 L46N_7 L46P_7  
V
CCO_7  
VCCINT VCCINT VCCINT GND  
M
N
P
R
T
L26N_7 L26P_7  
N.C.: No unconnected pins  
in this package  
0
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L50N_7 L50P_7 L49N_7  
V
CCO_7  
V
CCO_7  
VCCO_7  
VCCINT GND  
GND  
GND  
L31N_7 L31P_7  
L29N_7 L29P_7 L28N_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
All devices  
VCCAUX  
VCCO_7  
VCCINT  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCINT  
I/O  
L34N_7 L34P_7  
L33N_7 L33P_7  
L32N_7 L32P_7  
DUAL: Configuration pin,  
then possible user I/O  
12  
I/O  
L40N_7  
VREF_7  
I/O  
L37P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCINT  
VCCINT  
GND  
GND  
GND  
GND  
GND  
GND  
L40P_7 L39N_7 L39P_7 L38N_7 L38P_7 L37N_7  
L35N_7 L35P_7  
I/O  
I/O  
I/O  
L40P_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L52P_6 L52N_6  
GCLK: User I/O or global  
clock buffer input  
L40N_6 L39P_6 L39N_6 L38P_6 L38N_6  
L37P_6 L37N_6  
8
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L36P_6 L36N_6  
VCCO_6  
GND  
VCCAUX GND  
VCCINT  
VCCINT  
U
V
L34N_6  
L34P_6  
VREF_6  
L35P_6 L35N_6  
DCI: User I/O or reference  
16  
I/O  
I/O  
resistor input for bank  
I/O  
I/O  
I/O  
I/O  
I/O  
L30P_6 L30N_6  
VCCO_6  
VCCO_6  
VCCO_6  
L33P_6 L33N_6  
L32P_6 L32N_6 L31P_6  
L29P_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O I/O I/O  
L28N_6 L27P_6 L27N_6 L31N_6 L26P_6 L26N_6  
I/O  
I/O  
L29N_6  
L25P_6 L25N_6  
CONFIG: Dedicated  
configuration pins  
VCCO_6  
VCCINT VCCINT VCCINT  
W L28P_6  
7
I/O  
I/O  
I/O  
L24N_6  
VREF_6  
I/O  
Y
I/O  
I/O  
I/O  
I/O  
I/O  
L20P_6  
L45P_6 L45N_6  
V
CCO_6  
VCCO_5 VCCO_5 VCCO_5  
VCCINT  
I/O  
L24P_6  
L22P_6 L22N_6 L21P_6 L21N_6  
JTAG: Dedicated JTAG port  
pins  
4
I/O  
I/O  
A
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
A
GND  
GND  
VCCAUX  
L17P_6  
VREF_6  
L19P_6 L19N_6  
L17N_6  
L16P_6 L20N_6  
L22P_5 L22N_5 L26P_5  
I/O  
L29P_5  
VREF_5  
A
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
CCO_6  
V
CCO_6  
VCCO_5  
VCCINT: Internal core  
32  
I/O  
L15P_6 L15N_6  
L14P_6 L14N_6  
L16N_6 L08P_5  
L17N_5 L23P_5 L26N_5  
B
voltage supply (+1.2V)  
I/O  
L36P_5  
I/O  
A L13P_6  
C VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L29N_5  
GND  
I/O  
GND  
I/O  
L13N_6 L11P_6 L11N_6 L10P_6 L10N_6 L09P_6  
L08N_5  
L17P_5 L18P_5 L23N_5  
VCCO: Output voltage  
I/O  
L36N_5  
80  
I/O  
L09N_6  
VREF_6  
A
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
supply for bank  
V
CCO_6  
V
CCO_5  
VCCO_5  
L08P_6 L08N_6 L07P_6 L07N_6  
L05P_5  
L13P_5 L13N_5 L18N_5  
L30P_5 L30N_5  
D
I/O  
I/O  
L11N_5  
VREF_5  
I/O  
L19P_5  
VREF_5  
I/O  
L27N_5  
VREF_5  
A
E
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L37P_5  
VCCAUX  
GND  
I/O  
I/O  
I/O  
VCCAUX: Auxiliary voltage  
supply (+2.5V)  
L06P_6 L06N_6  
L05P_6  
L05N_5  
L11P_5  
L14P_5  
L27P_5  
24  
I/O  
I/O  
L31P_5  
D5  
A
F
I/O  
I/O  
L05N_6  
I/O  
L03N_5  
I/O  
L09P_5  
I/O  
I/O  
I/O  
L37N_5  
VCCO_5  
VCCO_6  
GND  
GND  
GND  
L04P_6 L04N_6  
L14N_5 L19N_5 L24P_5  
I/O  
120 GND: Ground  
I/O  
I/O  
I/O  
L31N_5  
D4  
A
G
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L38P_5  
V
CCAUX  
L03N_6  
L03P_6  
VREF_6  
VCCAUX  
I/O  
VCCAUX  
I/O  
L02P_6 L02N_6 L03P_5  
L06P_5  
L09N_5  
L15P_5 L20P_5 L24N_5  
I/O  
L38N_5  
I/O  
I/O  
I/O  
I/O  
A
H
IO  
VREF_5  
I/O  
I/O  
I/O  
V
CCO_5  
V
CCO_5  
V
CCO_5  
M1  
M0  
M2  
L01P_6 L01N_6  
VRN_6 VRP_6  
L28P_5 L32P_5  
L04P_5 L06N_5  
L12P_5 L15N_5 L20N_5  
D7  
GCLK2  
I/O  
L35P_5  
I/O  
L01P_5  
CS_B  
I/O  
L10P_5  
VRN_5  
I/O  
I/O  
A
J
I/O  
I/O  
I/O  
L07P_5  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
L28N_5 L32N_5  
L02P_5 L04N_5  
L12N_5 L16P_5 L21P_5 L25P_5  
D6  
GCLK3  
I/O  
L35N_5  
I/O  
L01N_5  
RDWR_B  
I/O  
L10N_5  
VRP_5  
A
K
IO  
VREF_5  
I/O  
GND  
I/O  
L07N_5  
I/O  
I/O  
I/O  
GND  
GND  
L02N_5  
L16N_5 L21N_5 L25N_5  
Bank 5  
DS099-4_13a_121103  
Figure 55: FG900 Package Footprint (Top View)  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
234  
Spartan-3 FPGA Family: Pinout Descriptions  
Bank 1  
16  
17  
18  
19  
I/O  
20  
I/O  
21  
22  
23  
I/O  
24  
I/O  
25  
26  
I/O  
27  
28  
29  
30  
I/O  
I/O  
I/O  
L39N_1  
I/O  
GND  
GND  
GND  
TMS  
GND  
GND  
L01N_1  
VRP_1  
A
Right Half of FG900  
Package (Top View)  
L26N_1 L21N_1  
L15N_1 L11N_1 L07N_1  
L03N_1  
I/O  
I/O  
L32N_1  
GCLK5  
I/O  
L17N_1  
VREF_1  
I/O  
I/O  
L28N_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L39P_1  
TCK  
GND  
I/O  
GND  
I/O  
L01P_1  
L15P_1 L11P_1 L07P_1 L04N_1 L03P_1  
VRN_1  
B
L26P_1 L21P_1  
I/O  
L32P_1  
GCLK4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_1  
VCCO_1  
TDO  
I/O  
L10N_1 L06N_1  
VREF_1 VREF_1  
L01N_2 L01P_2 C  
VCCO_1  
L28P_1  
L25N_1 L20N_1 L17P_1  
L04P_1  
L02P_1  
VRP_2 VRN_2  
I/O  
L38N_1  
I/O  
L31N_1  
VREF_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
GND  
L03N_2  
VREF_2  
D
E
F
VCCAUX  
VCCAUX  
L25P_1 L20P_1  
L14N_1 L10P_1 L06P_1  
L02N_1 L02N_2 L02P_2  
L03P_2  
I/O  
L38P_1  
I/O  
L41N_2  
I/O  
L31P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
GND  
VCCO_2  
I/O  
VCCO_1  
L24N_1 L19N_1  
L14P_1 L13P_1  
L04N_2 L04P_2  
I/O  
L41P_2  
I/O  
L27N_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCAUX  
L24P_1 L19P_1 L16N_1 L13N_1 L09N_1 L05N_1 L05P_1  
L05N_2 L05P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_1  
VCCO_2  
VCCO_1  
G
H
J
L30N_1 L27P_1  
L23N_1 L18N_1 L16P_1  
L09P_1 L08P_1 L08N_2  
L06N_2 L06P_2 L07N_2 L07P_2  
I/O  
L37N_1  
I/O  
L09N_2  
VREF_2  
I/O  
L30P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O I/O I/O I/O  
L09P_2 L10N_2 L10P_2 L12N_2 L12P_2  
GND  
GND  
I/O  
L23P_1 L18P_1  
L12N_1 L08N_1 L08P_2  
I/O  
L37P_1  
I/O  
L13P_2  
VREF_2  
IO  
VREF_1  
I/O  
L29N_1  
I/O  
I/O  
I/O  
I/O  
L13N_2  
I/O  
I/O  
VCCO_1  
L22N_1  
I/O  
VCCO_2  
I/O  
VCCO_2  
I/O  
L45N_2 L45P_2  
L12P_1 L15N_2  
L14N_2 L14P_2  
I/O  
I/O  
I/O  
L46N_2  
I/O  
I/O  
L29P_1  
I/O  
I/O  
I/O  
L15P_2  
I/O  
L40N_1 L40P_1  
GND  
GND  
GND  
I/O  
K
L
VCCAUX  
L22P_1  
L16N_2 L16P_2  
I/O  
L46P_2  
I/O  
I/O  
I/O  
L47N_2 L47P_2  
I/O  
I/O  
I/O  
I/O  
VCCO_2  
VCCINT  
VCCINT  
VCCO_1 VCCO_1 VCCO_1  
L19N_2 L19P_2 L20N_2 L20P_2 L21N_2 L21P_2  
I/O  
I/O  
I/O  
L23N_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L50N_2 L50P_2  
GND VCCINT VCCINT VCCINT  
VCCO_2  
M
N
P
L26N_2 L22N_2 L22P_2  
L23P_2 L28N_2 L24N_2 L24P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND VCCINT  
GND VCCINT  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
L26P_2 L27N_2 L27P_2  
L28P_2 L29N_2 L29P_2  
L31N_2 L31P_2  
I/O  
L34N_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
L34P_2  
GND  
I/O  
GND  
GND  
VCCAUX  
L32N_2 L32P_2  
L33N_2 L33P_2  
I/O I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND VCCINT  
GND VCCINT  
L40P_2 R  
L35N_2 L35P_2 L37N_2 L37P_2 L38N_2 L38P_2 L39N_2 L39P_2 L40N_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L40N_3 T  
L35P_3 L35N_3 L37P_3 L37N_3 L38P_3 L38N_3 L39P_3 L39N_3 L40P_3  
VREF_3  
I/O  
L34P_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
I/O  
L34N_3  
GND VCCINT  
GND  
I/O  
GND  
I/O  
VCCAUX  
I/O  
GND  
U
VCCO_3  
L32P_3 L32N_3  
L33P_3 L33N_3  
I/O  
I/O  
I/O  
VCCO_3  
I/O  
I/O  
L50P_3 L50N_3  
GND VCCINT VCCO_3  
VCCO_3  
I/O  
V
L27N_3 L28P_3 L28N_3  
L29N_3  
L31P_3 L31N_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L27P_3  
I/O  
L29P_3  
I/O  
I/O  
L46P_3 L46N_3 L47P_3 L47N_3  
L48P_3 L48N_3  
VCCO_3  
GND VCCINT VCCINT VCCINT  
W
Y
L26P_3 L26N_3  
I/O  
I/O  
L20N_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCINT VCCO_4 VCCO_4 VCCO_4 VCCINT  
L23P_3  
L23N_3 L24P_3 L24N_3  
VREF_3  
VCCO_3  
L21P_3 L21N_3 L22P_3 L22N_3  
I/O  
I/O  
A
A
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
I/O  
I/O  
I/O  
GND  
GND  
GND  
I/O  
L17P_3  
VREF_3  
L26N_4  
L18N_4 L13P_4 L20P_3 L16N_3  
L17N_3  
L19P_3 L19N_3  
I/O  
L26P_4  
VREF_4  
A
B
I/O  
L29N_4  
I/O  
I/O  
L13N_4  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_4  
I/O  
VCCO_3  
VCCO_3  
L23N_4 L18P_4  
L08N_4 L16P_3  
L14P_3 L14N_3  
I/O I/O  
L15P_3 L15N_3  
I/O  
I/O  
A
C
I/O  
L29P_4  
I/O I/O  
L23P_4 L19N_4 L14N_4  
I/O  
I/O I/O  
I/O  
I/O  
I/O  
GND  
GND  
L13N_3  
VREF_3  
L08P_4 L04P_4 L09N_3 L10P_3 L10N_3 L11P_3 L11N_3 L13P_3  
I/O  
L27N_4  
DIN  
I/O  
L30N_4  
D2  
I/O  
A
D
I/O  
I/O  
I/O  
I/O  
L04N_4  
I/O  
I/O  
I/O  
I/O  
VCCO_4  
I/O  
L09P_3 VCCO_3  
VREF_3  
VCCO_4  
L19P_4 L14P_4 L11N_4  
L07P_3 L07N_3 L08P_3 L08N_3  
D0  
I/O  
I/O  
I/O  
I/O  
I/O  
A
E
I/O  
I/O I/O I/O  
I/O  
I/O  
I/O  
L34P_4 L34N_4  
I/O  
I/O  
VCCAUX  
GND  
L30P_4 L27P_4  
L24N_4 L20N_4 L15N_4 L11P_4  
L05N_4  
L05N_3  
GND  
I/O  
L06P_3 L06N_3  
D3  
D1  
A
F
I/O  
VREF_4  
I/O  
I/O  
I/O  
I/O  
I/O  
L03P_4  
I/O  
L05P_3  
I/O  
I/O  
VCCO_3  
GND  
GND  
VCCO_4  
L24P_4 L20P_4 L15P_4  
L09N_4 L05P_4  
L04P_3 L04N_3  
I/O  
L35N_4  
I/O  
L31N_4  
INIT_B  
I/O  
I/O  
I/O  
L02N_3  
VREF_3  
A
G
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
I/O  
I/O  
VCCAUX  
I/O  
VCCAUX  
I/O  
L06N_4  
L09P_4  
VREF_4  
L21N_4 L16N_4  
L03N_4 L02P_3  
L03P_3 L03N_3  
I/O  
I/O  
I/O  
I/O  
A
H
I/O  
I/O  
I/O  
L31P_4  
L35P_4 L33N_4  
I/O  
CCLK  
DONE  
L01P_3 L01N_3  
VRN_3 VRP_3  
VCCO_4  
I/O  
VCCO_4  
L06P_4  
VCCO_4  
DOUT L28N_4  
L21P_4 L16P_4 L12N_4  
BUSY  
I/O  
I/O  
I/O  
I/O  
I/O  
L22N_4  
VREF_4  
I/O  
I/O  
A
J
I/O  
I/O  
I/O  
I/O  
L38N_4 L33P_4  
GND  
GND  
GND  
GND  
L32N_4  
L01N_4  
L02N_4  
VRP_4  
L28P_4 L25N_4  
L17N_4 L12P_4 L10N_4 L07N_4  
GCLK1  
I/O  
L38P_4  
I/O  
L32P_4  
GCLK0  
I/O  
I/O  
A
K
IO  
VREF_4  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
L01P_4  
L02P_4  
VRN_4  
L25P_4 L22P_4 L17P_4  
L10P_4 L07P_4  
Bank 4  
DS099-4_13b_121103  
Figure 56: FG900 Package Footprint (Top View) Continued  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
235  
Spartan-3 FPGA Family: Pinout Descriptions  
FG1156: 1156-lead Fine-pitch Ball Grid Array  
Note: The FG(G)1156 package is discontinued. See  
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.  
The 1,156-lead fine-pitch ball grid array package, FG1156, supports two different Spartan-3 devices, namely the XC3S4000  
and the XC3S5000. The XC3S4000, however, has fewer I/O pins, which consequently results in 73 unconnected pins on the  
FG1156 package, labeled as “N.C.In Table 110 and Figure 53, these unconnected pins are indicated with a black diamond  
symbol ().  
The XC3S5000 has a single unconnected package pin, ball AK31, which is also unconnected for the XC3S4000.  
All the package pins appear in Table 110 and are sorted by bank number, then by pin name. Pairs of pins that form a  
differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as  
defined earlier.  
On ball L29 in I/O Bank 2, the unconnected pin on the XC3S4000 maps to a VREF-type pin on the XC3S5000. If the other  
VREF_2 pins all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the  
XC3S4000 to the same VREF_2 voltage.  
Pinout Table  
Table 110: FG1156 Package Pinout  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
B9  
E17  
F6  
I/O  
I/O  
I/O  
F8  
I/O  
G12  
H8  
I/O  
I/O  
H9  
I/O  
J11  
J9  
I/O  
N.C. ()  
N.C. ()  
IO  
I/O  
K11  
K13  
K16  
K17  
L13  
L16  
L17  
D5  
I/O  
I/O  
IO  
I/O  
IO  
I/O  
IO  
I/O  
IO  
I/O  
IO  
I/O  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L02N_0  
IO_L02P_0  
IO_L03N_0  
IO/VREF_0  
VREF  
VREF  
VREF  
VREF  
DCI  
DCI  
I/O  
IO/VREF_0  
E10  
J14  
L15  
B3  
IO/VREF_0  
IO/VREF_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L02N_0  
A3  
B4  
IO_L02P_0  
A4  
I/O  
IO_L03N_0  
C5  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
236  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO_L03P_0  
IO_L03P_0  
B5  
D6  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L04N_0  
IO_L04P_0  
IO_L05N_0  
IO_L05P_0/VREF_0  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
IO_L14P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L20N_0  
IO_L20P_0  
IO_L21N_0  
IO_L21P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L04N_0  
IO_L04P_0  
IO_L05N_0  
IO_L05P_0/VREF_0  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
IO_L14P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L20N_0  
IO_L20P_0  
IO_L21N_0  
IO_L21P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
C6  
B6  
A6  
F7  
E7  
G9  
F9  
D9  
C9  
J10  
H10  
G10  
F10  
L12  
K12  
J12  
H12  
F12  
E12  
D12  
C12  
B12  
A12  
H13  
G13  
D13  
C13  
L14  
K14  
H14  
G14  
F14  
E14  
D14  
C14  
B14  
A14  
K15  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
237  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO_L23P_0  
IO_L23P_0  
J15  
G15  
F15  
D15  
C15  
B15  
A15  
G16  
F16  
C16  
B16  
J17  
H17  
G17  
F17  
D17  
C17  
B17  
A17  
D7  
I/O  
I/O  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L26P_0/VREF_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
N.C. ()  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L26P_0/VREF_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
IO_L33N_0  
IO_L33P_0  
IO_L34N_0  
IO_L34P_0  
IO_L35N_0  
IO_L35P_0  
IO_L36N_0  
IO_L36P_0  
IO_L37N_0  
IO_L37P_0  
IO_L38N_0  
IO_L38P_0  
IO_L39N_0  
IO_L39P_0  
IO_L40N_0  
IO_L40P_0  
VCCO_0  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
GCLK  
GCLK  
I/O  
N.C. ()  
C7  
I/O  
N.C. ()  
B7  
I/O  
N.C. ()  
A7  
I/O  
IO_L35N_0  
IO_L35P_0  
IO_L36N_0  
IO_L36P_0  
IO_L37N_0  
IO_L37P_0  
IO_L38N_0  
IO_L38P_0  
N.C. ()  
E8  
I/O  
D8  
I/O  
B8  
I/O  
A8  
I/O  
D10  
C10  
B10  
A10  
G11  
F11  
B11  
A11  
B13  
C4  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
VCCO_0  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
C8  
VCCO_0  
VCCO_0  
D11  
D16  
VCCO_0  
VCCO_0  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
238  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VCCO_0  
VCCO_0  
F13  
G8  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
VCCO_0  
VCCO_0  
H11  
H15  
M13  
M14  
M15  
M16  
B26  
A18  
C23  
E21  
E25  
F18  
F27  
F29  
H23  
H26  
J26  
K19  
L19  
L20  
L21  
L23  
L24  
D30  
K21  
L18  
A32  
B32  
A31  
B31  
B30  
C30  
C29  
D29  
A29  
B29  
E28  
F28  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
N.C. ()  
IO  
IO  
I/O  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
N.C. ()  
IO  
IO  
I/O  
IO  
I/O  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L02N_1  
IO_L02P_1  
IO_L03N_1  
IO_L03P_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO_L06N_1/VREF_1  
IO_L06P_1  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L02N_1  
IO_L02P_1  
IO_L03N_1  
IO_L03P_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO_L06N_1/VREF_1  
IO_L06P_1  
VREF  
VREF  
VREF  
DCI  
DCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
239  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IO_L07N_1  
IO_L07N_1  
D27  
E27  
A27  
B27  
F26  
G26  
C26  
D26  
H25  
J25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L13N_1  
IO_L13P_1  
IO_L14N_1  
IO_L14P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L17N_1/VREF_1  
IO_L17P_1  
IO_L18N_1  
IO_L18P_1  
IO_L19N_1  
IO_L19P_1  
IO_L20N_1  
IO_L20P_1  
IO_L21N_1  
IO_L21P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L26P_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L13N_1  
IO_L13P_1  
IO_L14N_1  
IO_L14P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L17N_1/VREF_1  
IO_L17P_1  
IO_L18N_1  
IO_L18P_1  
IO_L19N_1  
IO_L19P_1  
IO_L20N_1  
IO_L20P_1  
IO_L21N_1  
IO_L21P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L26P_1  
F25  
G25  
C25  
D25  
A25  
B25  
A24  
B24  
J23  
K23  
F23  
G23  
D23  
E23  
A23  
B23  
K22  
L22  
G22  
H22  
C22  
D22  
H21  
J21  
F21  
G21  
C21  
D21  
A21  
B21  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
240  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IO_L27N_1  
IO_L27N_1  
F19  
G19  
B19  
C19  
J18  
I/O  
I/O  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
N.C. ()  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
IO_L33N_1  
IO_L33P_1  
IO_L34N_1  
IO_L34P_1  
IO_L35N_1  
IO_L35P_1  
IO_L36N_1  
IO_L36P_1  
IO_L37N_1  
IO_L37P_1  
IO_L38N_1  
IO_L38P_1  
IO_L39N_1  
IO_L39P_1  
IO_L40N_1  
IO_L40P_1  
VCCO_1  
I/O  
I/O  
I/O  
K18  
G18  
H18  
D18  
E18  
B18  
C18  
C28  
D28  
A28  
B28  
J24  
I/O  
I/O  
I/O  
VREF  
I/O  
GCLK  
GCLK  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
K24  
F24  
G24  
J20  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
IO_L37N_1  
IO_L37P_1  
IO_L38N_1  
IO_L38P_1  
IO_L39N_1  
IO_L39P_1  
IO_L40N_1  
IO_L40P_1  
VCCO_1  
I/O  
K20  
F20  
G20  
C20  
D20  
A20  
B20  
B22  
C27  
C31  
D19  
D24  
F22  
G27  
H20  
H24  
M19  
M20  
M21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
241  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
VCCO_1  
VCCO_1  
M22  
G33  
G34  
U25  
U26  
C33  
C34  
D33  
D34  
E32  
E33  
F31  
F32  
G29  
G30  
H29  
H30  
H33  
H34  
J28  
J29  
H31  
J31  
J32  
J33  
J27  
K26  
K27  
K28  
K29  
K30  
K31  
K32  
K33  
K34  
L25  
L26  
L28  
L29  
VCCO  
I/O  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L02N_2  
IO_L02P_2  
IO_L03N_2/VREF_2  
IO_L03P_2  
IO_L04N_2  
IO_L04P_2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L09N_2/VREF_2  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L11N_2  
IO_L11P_2  
IO_L12N_2  
IO_L12P_2  
IO_L13N_2  
IO_L13P_2/VREF_2  
IO_L14N_2  
IO_L14P_2  
IO_L15N_2  
IO_L15P_2  
IO_L16N_2  
IO_L16P_2  
N.C. ()  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L02N_2  
IO_L02P_2  
IO_L03N_2/VREF_2  
IO_L03P_2  
IO_L04N_2  
IO_L04P_2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L09N_2/VREF_2  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L11N_2  
IO_L11P_2  
IO_L12N_2  
IO_L12P_2  
IO_L13N_2  
IO_L13P_2/VREF_2  
IO_L14N_2  
IO_L14P_2  
IO_L15N_2  
IO_L15P_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
DCI  
DCI  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
IO_L17P_2/  
VREF_2  
VREF  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
242  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IO_L19N_2  
IO_L19N_2  
M29  
M30  
M31  
M32  
M26  
N25  
N27  
N28  
N31  
N32  
N24  
P24  
P29  
P30  
P31  
P32  
P33  
P34  
R24  
R25  
R28  
R29  
R31  
R32  
R33  
R34  
R26  
T25  
T28  
T29  
T32  
T33  
U27  
U28  
U29  
U30  
U31  
U32  
U33  
U34  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L23N_2/VREF_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L30N_2  
IO_L30P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L34N_2/VREF_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L37N_2  
IO_L37P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2/VREF_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L23N_2VREF_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L30N_2  
IO_L30P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L34N_2/VREF_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L37N_2  
IO_L37P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2/VREF_2  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
243  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
IO_L41N_2  
IO_L41N_2  
F33  
F34  
I/O  
I/O  
IO_L41P_2  
N.C. ()  
IO_L41P_2  
IO_L42N_2  
IO_L42P_2  
IO_L45N_2  
IO_L45P_2  
IO_L46N_2  
IO_L46P_2  
IO_L47N_2  
IO_L47P_2  
IO_L48N_2  
IO_L48P_2  
IO_L49N_2  
IO_L49P_2  
IO_L50N_2  
IO_L50P_2  
IO_L51N_2  
IO_L51P_2  
VCCO_2  
G31  
G32  
L33  
I/O  
N.C. ()  
I/O  
IO_L45N_2  
IO_L45P_2  
IO_L46N_2  
IO_L46P_2  
IO_L47N_2  
IO_L47P_2  
IO_L48N_2  
IO_L48P_2  
N.C. ()  
I/O  
L34  
I/O  
M24  
M25  
M27  
M28  
M33  
M34  
P25  
P26  
P27  
P28  
T24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
I/O  
IO_L50N_2  
IO_L50P_2  
N.C. ()  
I/O  
I/O  
I/O  
N.C. ()  
U24  
D32  
H28  
H32  
L27  
I/O  
VCCO_2  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
L31  
VCCO_2  
VCCO_2  
N23  
N29  
N33  
P23  
R23  
R27  
T23  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
T31  
IO  
IO  
AH33  
AH34  
V25  
V26  
AM34  
AM33  
AL34  
AL33  
AK33  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L02N_3/VREF_3  
IO_L02P_3  
IO_L03N_3  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L02N_3/VREF_3  
IO_L02P_3  
IO_L03N_3  
DCI  
DCI  
VREF  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
244  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L03P_3  
IO_L03P_3  
AK32  
AJ32  
AJ31  
AJ34  
AJ33  
AH30  
AH29  
AG30  
AG29  
AG34  
AG33  
AF29  
AF28  
AF31  
AG31  
AF33  
AF32  
AE26  
AF27  
AE28  
AE27  
AE30  
AE29  
AE32  
AE31  
AE34  
AE33  
AD26  
AD25  
AD34  
AD33  
AC25  
AC24  
AC28  
AC27  
AC30  
AC29  
AC32  
AC31  
AB25  
I/O  
I/O  
IO_L04N_3  
IO_L04P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L09P_3/VREF_3  
IO_L10N_3  
IO_L10P_3  
IO_L11N_3  
IO_L11P_3  
IO_L12N_3  
IO_L12P_3  
IO_L13N_3/VREF_3  
IO_L13P_3  
IO_L14N_3  
IO_L14P_3  
IO_L15N_3  
IO_L15P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L04N_3  
IO_L04P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L09P_3/VREF_3  
IO_L10N_3  
IO_L10P_3  
IO_L11N_3  
IO_L11P_3  
IO_L12N_3  
IO_L12P_3  
IO_L13N_3/VREF_3  
IO_L13P_3  
IO_L14N_3  
IO_L14P_3  
IO_L15N_3  
IO_L15P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
245  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L24P_3  
IO_L24P_3  
AC26  
AA28  
AA27  
AA30  
AA29  
AA32  
AA31  
AA34  
AA33  
Y29  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L30N_3  
IO_L30P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L34P_3/VREF_3  
IO_L35N_3  
IO_L35P_3  
IO_L37N_3  
IO_L37P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
N.C. ()  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L30N_3  
IO_L30P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L34P_3/VREF_3  
IO_L35N_3  
IO_L35P_3  
IO_L37N_3  
IO_L37P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
IO_L41N_3  
IO_L41P_3  
IO_L44N_3  
IO_L44P_3  
IO_L45N_3  
IO_L45P_3  
IO_L46N_3  
IO_L46P_3  
IO_L47N_3  
IO_L47P_3  
IO_L48N_3  
Y28  
Y32  
Y31  
Y34  
Y33  
W25  
Y26  
W29  
W28  
W33  
W32  
V28  
V27  
V30  
V29  
V32  
V31  
V34  
V33  
AH32  
AH31  
AD29  
AD28  
AC34  
AC33  
AB28  
AB27  
AB32  
AB31  
AA24  
N.C. ()  
N.C. ()  
N.C. ()  
IO_L45N_3  
IO_L45P_3  
IO_L46N_3  
IO_L46P_3  
IO_L47N_3  
IO_L47P_3  
IO_L48N_3  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
246  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
IO_L48P_3  
IO_L48P_3  
AB24  
AA26  
AA25  
Y25  
I/O  
I/O  
N.C. ()  
N.C. ()  
IO_L50N_3  
IO_L50P_3  
N.C. ()  
N.C. ()  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
IO  
IO_L49N_3  
IO_L49P_3  
IO_L50N_3  
IO_L50P_3  
IO_L51N_3  
IO_L51P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
IO  
I/O  
I/O  
Y24  
I/O  
V24  
I/O  
W24  
I/O  
AA23  
AB23  
AB29  
AB33  
AD27  
AD31  
AG28  
AG32  
AL32  
W23  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
W31  
Y23  
Y27  
AD18  
AD19  
AD20  
AD22  
AE18  
AE19  
AE22  
AE24  
AF24  
AF26  
AG26  
AG27  
AJ27  
AJ29  
AK25  
AN26  
AF21  
AH23  
AK18  
AL30  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
N.C. ()  
IO  
IO  
I/O  
IO  
I/O  
N.C. ()  
IO  
IO  
I/O  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
VREF  
VREF  
VREF  
VREF  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
247  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
FG1156  
Bank  
Type  
Pin Name  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L02N_4  
IO_L02P_4  
IO_L03N_4  
IO_L03P_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L06N_4/VREF_4  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L12N_4  
IO_L12P_4  
IO_L13N_4  
IO_L13P_4  
IO_L14N_4  
IO_L14P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
IO_L20N_4  
IO_L20P_4  
Pin Number  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L02N_4  
IO_L02P_4  
IO_L03N_4  
IO_L03P_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L06N_4/VREF_4  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L12N_4  
IO_L12P_4  
IO_L13N_4  
IO_L13P_4  
IO_L14N_4  
IO_L14P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
IO_L20N_4  
IO_L20P_4  
AN32  
AP32  
AN31  
AP31  
AM30  
AN30  
AN27  
AP27  
AH26  
AJ26  
AL26  
AM26  
AF25  
AG25  
AH25  
AJ25  
AL25  
AM25  
AN25  
AP25  
AD23  
AE23  
AF23  
AG23  
AJ23  
AK23  
AL23  
AM23  
AN23  
AP23  
AG22  
AH22  
AL22  
AM22  
AD21  
AE21  
AG21  
AH21  
AJ21  
AK21  
DCI  
DCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
248  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
IO_L21N_4  
IO_L21N_4  
AL21  
AM21  
AN21  
AP21  
AE20  
AF20  
AH20  
AJ20  
AL20  
AM20  
AN20  
AP20  
AH19  
AJ19  
AM19  
AN19  
AF18  
AG18  
AH18  
AJ18  
AL18  
AM18  
AN18  
AP18  
AL29  
AM29  
AN29  
AP29  
AJ28  
AK28  
AL28  
AM28  
AN28  
AP28  
AK27  
AL27  
AH24  
AJ24  
AN24  
AP24  
I/O  
I/O  
IO_L21P_4  
IO_L21P_4  
IO_L22N_4/VREF_4  
IO_L22P_4  
IO_L22N_4/VREF_4  
IO_L22P_4  
VREF  
I/O  
IO_L23N_4  
IO_L23N_4  
I/O  
IO_L23P_4  
IO_L23P_4  
I/O  
IO_L24N_4  
IO_L24N_4  
I/O  
IO_L24P_4  
IO_L24P_4  
I/O  
IO_L25N_4  
IO_L25N_4  
I/O  
IO_L25P_4  
IO_L25P_4  
I/O  
IO_L26N_4  
IO_L26N_4  
I/O  
IO_L26P_4/VREF_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
IO_L26P_4/VREF_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
VREF  
DUAL  
DUAL  
I/O  
IO_L28P_4  
IO_L28P_4  
I/O  
IO_L29N_4  
IO_L29N_4  
I/O  
IO_L29P_4  
IO_L29P_4  
I/O  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
I/O  
IO_L31P_4/DOUT/BUSY IO_L31P_4/DOUT/BUSY  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
IO_L33N_4  
IO_L33P_4  
IO_L34N_4  
IO_L34P_4  
IO_L35N_4  
IO_L35P_4  
N.C. ()  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
IO_L33N_4  
IO_L33P_4  
IO_L34N_4  
IO_L34P_4  
IO_L35N_4  
IO_L35P_4  
IO_L36N_4  
IO_L36P_4  
IO_L37N_4  
IO_L37P_4  
IO_L38N_4  
IO_L38P_4  
IO_L39N_4  
IO_L39P_4  
IO_L40N_4  
IO_L40P_4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
IO_L38N_4  
IO_L38P_4  
N.C. ()  
I/O  
I/O  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
249  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
VCCO_4  
VCCO_4  
AC19  
AC20  
AC21  
AC22  
AG20  
AG24  
AH27  
AJ22  
AL19  
AL24  
AM27  
AM31  
AN22  
AD11  
AD12  
AD14  
AD15  
AD16  
AD17  
AE14  
AE16  
AF9  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
N.C. ()  
IO  
IO  
I/O  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
N.C. ()  
IO  
IO  
I/O  
IO  
AG9  
I/O  
IO  
IO  
AG12  
AJ6  
I/O  
IO  
IO  
I/O  
IO  
IO  
AJ17  
AK10  
AK14  
AM12  
AN9  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L02N_5  
IO_L02P_5  
IO_L03N_5  
IO_L03P_5  
IO_L04N_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L02N_5  
IO_L02P_5  
IO_L03N_5  
IO_L03P_5  
IO_L04N_5  
AJ8  
VREF  
VREF  
VREF  
DUAL  
DUAL  
I/O  
AL5  
AP17  
AP3  
AN3  
AP4  
AN4  
I/O  
AN5  
I/O  
AM5  
I/O  
AM6  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
250  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L04P_5  
IO_L04P_5  
AL6  
AP6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DCI  
DCI  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO_L07N_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L11N_5/VREF_5  
IO_L11P_5  
IO_L12N_5  
IO_L12P_5  
IO_L13N_5  
IO_L13P_5  
IO_L14N_5  
IO_L14P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L17N_5  
IO_L17P_5  
IO_L18N_5  
IO_L18P_5  
IO_L19N_5  
IO_L19P_5/VREF_5  
IO_L20N_5  
IO_L20P_5  
IO_L21N_5  
IO_L21P_5  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO_L07N_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L11N_5/VREF_5  
IO_L11P_5  
IO_L12N_5  
IO_L12P_5  
IO_L13N_5  
IO_L13P_5  
IO_L14N_5  
IO_L14P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L17N_5  
IO_L17P_5  
IO_L18N_5  
IO_L18P_5  
IO_L19N_5  
IO_L19P_5/VREF_5  
IO_L20N_5  
IO_L20P_5  
IO_L21N_5  
IO_L21P_5  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
AN6  
AK7  
AJ7  
AG10  
AF10  
AJ10  
AH10  
AM10  
AL10  
AP10  
AN10  
AP11  
AN11  
AF12  
AE12  
AJ12  
AH12  
AL12  
AK12  
AP12  
AN12  
AE13  
AD13  
AH13  
AG13  
AM13  
AL13  
AG14  
AF14  
AJ14  
AH14  
AM14  
AL14  
AP14  
AN14  
AF15  
AE15  
AJ15  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
251  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L24P_5  
IO_L24P_5  
AH15  
AM15  
AL15  
AP15  
AN15  
AJ16  
AH16  
AN16  
AM16  
AF17  
AE17  
AH17  
AG17  
AL17  
AK17  
AN17  
AM17  
AM7  
I/O  
I/O  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
IO_L27N_5/VREF_5  
IO_L27P_5  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
IO_L29P_5/VREF_5  
IO_L30N_5  
IO_L30P_5  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
N.C. ()  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
IO_L27N_5/VREF_5  
IO_L27P_5  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
IO_L29P_5/VREF_5  
IO_L30N_5  
IO_L30P_5  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
IO_L33N_5  
IO_L33P_5  
IO_L34N_5  
IO_L34P_5  
IO_L35N_5  
IO_L35P_5  
IO_L36N_5  
IO_L36P_5  
IO_L37N_5  
IO_L37P_5  
IO_L38N_5  
IO_L38P_5  
IO_L39N_5  
IO_L39P_5  
IO_L40N_5  
IO_L40P_5  
VCCO_5  
I/O  
I/O  
I/O  
VREF  
I/O  
DUAL  
DUAL  
I/O  
VREF  
I/O  
I/O  
DUAL  
DUAL  
GCLK  
GCLK  
I/O  
N.C. ()  
AL7  
I/O  
N.C. ()  
AP7  
I/O  
N.C. ()  
AN7  
I/O  
IO_L35N_5  
IO_L35P_5  
IO_L36N_5  
IO_L36P_5  
IO_L37N_5  
IO_L37P_5  
IO_L38N_5  
IO_L38P_5  
N.C. ()  
AL8  
I/O  
AK8  
I/O  
AP8  
I/O  
AN8  
I/O  
AJ9  
I/O  
AH9  
I/O  
AM9  
I/O  
AL9  
I/O  
AF11  
AE11  
AJ11  
AH11  
AC13  
AC14  
AC15  
AC16  
AG11  
AG15  
AH8  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
N.C. ()  
I/O  
VCCO_5  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
252  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
VCCO_5  
VCCO_5  
AJ13  
AL11  
AL16  
AM4  
AM8  
AN13  
AH1  
AH2  
V9  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
IO  
IO  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
V10  
AM2  
AM1  
AL2  
AL1  
AK3  
AK2  
AJ4  
I/O  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L02N_6  
IO_L02P_6  
IO_L03N_6/VREF_6  
IO_L03P_6  
IO_L04N_6  
IO_L04P_6  
IO_L05N_6  
IO_L05P_6  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
IO_L09N_6/VREF_6  
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L11N_6  
IO_L11P_6  
IO_L12N_6  
IO_L12P_6  
IO_L13N_6  
IO_L13P_6/VREF_6  
IO_L14N_6  
IO_L14P_6  
IO_L15N_6  
IO_L15P_6  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L02N_6  
IO_L02P_6  
IO_L03N_6/VREF_6  
IO_L03P_6  
IO_L04N_6  
IO_L04P_6  
IO_L05N_6  
IO_L05P_6  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
IO_L09N_6/VREF_6  
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L11N_6  
IO_L11P_6  
IO_L12N_6  
IO_L12P_6  
IO_L13N_6  
IO_L13P_6/VREF_6  
IO_L14N_6  
IO_L14P_6  
IO_L15N_6  
IO_L15P_6  
DCI  
DCI  
I/O  
I/O  
VREF  
I/O  
I/O  
AJ3  
I/O  
AJ2  
I/O  
AJ1  
I/O  
AH6  
AH5  
AG6  
AG5  
AG2  
AG1  
AF7  
AF6  
AG4  
AF4  
AF3  
AF2  
AF8  
AE9  
AE8  
AE7  
AE6  
AE5  
AE4  
AE3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
253  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IO_L16N_6  
IO_L16N_6  
AE2  
AE1  
AD10  
AD9  
AD2  
AD1  
AC11  
AC10  
AC8  
AC7  
AC6  
AC5  
AC2  
AC1  
AC9  
AB10  
AB8  
AB7  
AB4  
AB3  
AB11  
AA11  
AA8  
AA7  
AA6  
AA5  
AA4  
AA3  
AA2  
AA1  
Y11  
Y10  
Y4  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L16P_6  
IO_L17N_6  
IO_L17P_6/VREF_6  
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
IO_L25N_6  
IO_L25P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L30N_6  
IO_L30P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
IO_L34N_6/VREF_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L36N_6  
IO_L36P_6  
IO_L16P_6  
IO_L17N_6  
IO_L17P_6/VREF_6  
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
IO_L25N_6  
IO_L25P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L30N_6  
IO_L30P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
IO_L34N_6/VREF_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L36N_6  
IO_L36P_6  
Y3  
Y2  
Y1  
Y9  
W10  
W7  
W6  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
254  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
IO_L37N_6  
IO_L37N_6  
W3  
W2  
I/O  
I/O  
IO_L37P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L40P_6/VREF_6  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
IO_L45N_6  
IO_L45P_6  
N.C. ()  
N.C. ()  
IO_L48N_6  
IO_L48P_6  
N.C. ()  
N.C. ()  
IO_L52N_6  
IO_L52P_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
IO  
IO_L37P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L40P_6/VREF_6  
IO_L41N_6  
IO_L41P_6  
IO_L44N_6  
IO_L44P_6  
IO_L45N_6  
IO_L45P_6  
IO_L46N_6  
IO_L46P_6  
IO_L48N_6  
IO_L48P_6  
IO_L49N_6  
IO_L49P_6  
IO_L52N_6  
IO_L52P_6  
VCCO_6  
V6  
I/O  
V5  
I/O  
V4  
I/O  
V3  
I/O  
V2  
I/O  
V1  
VREF  
I/O  
AH4  
AH3  
AD7  
AD6  
AC4  
AC3  
AA10  
AA9  
Y7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Y6  
I/O  
W11  
V11  
V8  
I/O  
I/O  
I/O  
V7  
I/O  
AA12  
AB12  
AB2  
AB6  
AD4  
AD8  
AG3  
AG7  
AL3  
W12  
W4  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
Y12  
Y8  
VCCO_6  
IO  
G1  
IO  
IO  
G2  
I/O  
IO  
IO  
U10  
U9  
I/O  
IO  
IO  
I/O  
IO_L01N_7/VRP_7  
IO_L01N_7/VRP_7  
C1  
DCI  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
255  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
FG1156  
Bank  
Type  
Pin Name  
IO_L01P_7/VRN_7  
IO_L02N_7  
Pin Number  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L01P_7/VRN_7  
IO_L02N_7  
IO_L02P_7  
C2  
D1  
D2  
E2  
E3  
F3  
F4  
F1  
F2  
G5  
G6  
H5  
H6  
H1  
H2  
J6  
DCI  
I/O  
IO_L02P_7  
I/O  
IO_L03N_7/VREF_7  
IO_L03P_7  
IO_L03N_7/VREF_7  
IO_L03P_7  
VREF  
I/O  
IO_L04N_7  
IO_L04P_7  
IO_L04N_7  
I/O  
IO_L04P_7  
I/O  
IO_L05N_7  
IO_L05P_7  
IO_L05N_7  
I/O  
IO_L05P_7  
I/O  
IO_L06N_7  
IO_L06P_7  
IO_L06N_7  
I/O  
IO_L06P_7  
I/O  
IO_L07N_7  
IO_L07P_7  
IO_L07N_7  
I/O  
IO_L07P_7  
I/O  
IO_L08N_7  
IO_L08P_7  
IO_L08N_7  
I/O  
IO_L08P_7  
I/O  
IO_L09N_7  
IO_L09P_7  
IO_L09N_7  
I/O  
IO_L09P_7  
J7  
I/O  
IO_L10N_7  
IO_L10P_7/VREF_7  
IO_L11N_7  
IO_L11P_7  
IO_L10N_7  
J4  
I/O  
IO_L10P_7/VREF_7  
IO_L11N_7  
H4  
J2  
VREF  
I/O  
IO_L11P_7  
J3  
I/O  
IO_L12N_7  
IO_L12P_7  
IO_L12N_7  
K9  
J8  
I/O  
IO_L12P_7  
I/O  
IO_L13N_7  
IO_L13P_7  
IO_L13N_7  
K7  
K8  
K5  
K6  
K3  
K4  
K1  
K2  
L9  
I/O  
IO_L13P_7  
I/O  
IO_L14N_7  
IO_L14P_7  
IO_L14N_7  
I/O  
IO_L14P_7  
I/O  
IO_L15N_7  
IO_L15P_7  
IO_L15N_7  
I/O  
IO_L15P_7  
I/O  
IO_L16N_7  
IO_L16P_7/VREF_7  
IO_L17N_7  
IO_L17P_7  
IO_L16N_7  
I/O  
IO_L16P_7/VREF_7  
IO_L17N_7  
VREF  
I/O  
IO_L17P_7  
L10  
L1  
I/O  
IO_L19N_7/VREF_7  
IO_L19P_7  
IO_L19N_7/VREF_7  
IO_L19P_7  
VREF  
I/O  
L2  
IO_L20N_7  
IO_L20P_7  
IO_L20N_7  
M10  
M11  
M7  
M8  
M5  
I/O  
IO_L20P_7  
I/O  
IO_L21N_7  
IO_L21P_7  
IO_L21N_7  
I/O  
IO_L21P_7  
I/O  
IO_L22N_7  
IO_L22N_7  
I/O  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
256  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L22P_7  
IO_L22P_7  
M6  
M3  
M4  
N10  
M9  
N3  
N4  
P11  
N11  
P7  
P8  
P5  
P6  
P3  
P4  
R6  
R7  
R3  
R4  
R1  
R2  
T10  
R9  
T6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L25N_7  
IO_L25P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
IO_L27P_7/VREF_7  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L30N_7  
IO_L30P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L37N_7  
IO_L37P_7/VREF_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
N.C. ()  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L25N_7  
IO_L25P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
IO_L27P_7/VREF_7  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L30N_7  
IO_L30P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L37N_7  
IO_L37P_7/VREF_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
IO_L41N_7  
IO_L41P_7  
IO_L44N_7  
IO_L44P_7  
IO_L45N_7  
T7  
T2  
T3  
U7  
U8  
U5  
U6  
U3  
U4  
U1  
U2  
G3  
G4  
L6  
N.C. ()  
N.C. ()  
N.C. ()  
L7  
IO_L45N_7  
M1  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
257  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
7
7
IO_L45P_7  
IO_L45P_7  
M2  
N7  
I/O  
I/O  
IO_L46N_7  
IO_L46P_7  
N.C. ()  
N.C. ()  
IO_L49N_7  
IO_L49P_7  
IO_L50N_7  
IO_L50P_7  
N.C. ()  
N.C. ()  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
IO_L46N_7  
IO_L46P_7  
IO_L47N_7  
IO_L47P_7  
IO_L49N_7  
IO_L49P_7  
IO_L50N_7  
IO_L50P_7  
IO_L51N_7  
IO_L51P_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
7
N8  
I/O  
7
P9  
I/O  
7
P10  
P1  
I/O  
7
I/O  
7
P2  
I/O  
7
R10  
R11  
U11  
T11  
D3  
I/O  
7
I/O  
7
I/O  
7
I/O  
7
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
7
H3  
7
H7  
7
L4  
7
L8  
7
N12  
N2  
7
7
N6  
7
P12  
R12  
R8  
7
7
7
T12  
T4  
7
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
A1  
GND  
GND  
A13  
A16  
A19  
A2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A22  
A26  
A30  
A33  
A34  
A5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A9  
GND  
GND  
AA14  
AA15  
AA16  
AA17  
GND  
GND  
GND  
GND  
GND  
GND  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
258  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AA18  
AA19  
AA20  
AA21  
AB1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AB17  
AB18  
AB26  
AB30  
AB34  
AB5  
AB9  
AD3  
AD32  
AE10  
AE25  
AF1  
AF13  
AF16  
AF19  
AF22  
AF30  
AF34  
AF5  
AH28  
AH7  
AK1  
AK13  
AK16  
AK19  
AK22  
AK26  
AK30  
AK34  
AK5  
AK9  
AM11  
AM24  
AM3  
AM32  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
259  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AN1  
AN2  
AN33  
AN34  
AP1  
AP13  
AP16  
AP19  
AP2  
AP22  
AP26  
AP30  
AP33  
AP34  
AP5  
AP9  
B1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B2  
B33  
B34  
C11  
C24  
C3  
C32  
E1  
E13  
E16  
E19  
E22  
E26  
E30  
E34  
E5  
E9  
G28  
G7  
J1  
J13  
J16  
J19  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
260  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J22  
J30  
J34  
J5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
K10  
K25  
L3  
L32  
N1  
N17  
N18  
N26  
N30  
N34  
N5  
N9  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
T1  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
261  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
T21  
T26  
T30  
T34  
T5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
T9  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W26  
W30  
W34  
W5  
W9  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
262  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
AK31  
AD30  
AD5  
AG16  
AG19  
AJ30  
AJ5  
AK11  
AK15  
AK20  
AK24  
AK29  
AK6  
E11  
E15  
E20  
E24  
E29  
E6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N.C. ()  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
N.C. ()  
N.C.  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
F30  
F5  
H16  
H19  
L30  
L5  
R30  
R5  
T27  
T8  
W27  
W8  
Y30  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
263  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VCCAUX  
VCCAUX  
Y5  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
AA13  
AA22  
AB13  
AB14  
AB15  
AB16  
AB19  
AB20  
AB21  
AB22  
AC12  
AC17  
AC18  
AC23  
M12  
M17  
M18  
M23  
N13  
N14  
N15  
N16  
N19  
N20  
N21  
N22  
P13  
P22  
R13  
R22  
T13  
T22  
U12  
U23  
V12  
V23  
W13  
W22  
Y13  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
264  
Spartan-3 FPGA Family: Pinout Descriptions  
Table 110: FG1156 Package Pinout (Cont’d)  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
FG1156  
Pin Number  
Bank  
Type  
N/A  
VCCINT  
VCCINT  
Y22  
AL31  
AD24  
L11  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
VCCAUX CCLK  
VCCAUX DONE  
CCLK  
DONE  
HSWAP_EN  
M0  
VCCAUX HSWAP_EN  
VCCAUX M0  
AL4  
AK4  
AG8  
D4  
VCCAUX M1  
M1  
VCCAUX M2  
M2  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
PROG_B  
TCK  
D31  
E4  
TDI  
JTAG  
VCCAUX TDO  
VCCAUX TMS  
TDO  
E31  
H27  
JTAG  
TMS  
JTAG  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
265  
Spartan-3 FPGA Family: Pinout Descriptions  
User I/Os by Bank  
Note: The FG(G)1156 package is discontinued. See  
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.  
Table 111 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S4000 in the  
FG1156 package. Similarly, Table 112 shows how the available user-I/O pins are distributed between the eight I/O banks for  
the XC3S5000 in the FG1156 package.  
Table 111: User I/Os Per Bank for XC3S4000 in FG1156 Package  
All Possible I/O Pins by Type  
I/O  
Package Edge  
Top  
Maximum I/O  
Bank  
I/O  
79  
79  
80  
79  
73  
73  
79  
79  
DUAL  
DCI  
VREF  
GCLK  
0
1
2
3
4
5
6
7
90  
90  
88  
88  
90  
90  
88  
88  
0
0
0
0
6
6
0
0
2
7
7
6
7
7
7
7
7
2
2
0
0
2
2
0
0
2
2
Right  
2
2
Bottom  
Left  
2
2
2
Notes:  
1. The FG1156 and FGG1156 packages are discontinued. See www.xilinx.com/support/documentation/spartan-3.htm#19600.  
Table 112: User I/Os Per Bank for XC3S5000 in FG1156 Package  
All Possible I/O Pins by Type  
I/O  
Package Edge  
Top  
Maximum I/O  
Bank  
I/O  
89  
89  
87  
87  
83  
83  
87  
87  
DUAL  
DCI  
VREF  
GCLK  
0
1
2
3
4
5
6
7
100  
100  
96  
0
0
0
0
6
6
0
0
2
7
7
7
7
7
7
7
7
2
2
0
0
2
2
0
0
2
2
Right  
96  
2
100  
100  
96  
2
Bottom  
Left  
2
2
96  
2
Notes:  
1. The FG1156 and FGG1156 packages are discontinued. See www.xilinx.com/support/documentation/spartan-3.htm#19600.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
266  
Spartan-3 FPGA Family: Pinout Descriptions  
FG1156 Footprint  
Top Left Corner of FG1156  
Package (Top View)  
XC3S4000  
(712 max. user I/O)  
I/O: Unrestricted,  
general-purpose user I/O  
VREF: User I/O or input voltage  
N.C.: Unconnected pins for  
XC3S4000 ()  
621  
55  
56  
73  
1
reference for bank  
XC3S5000  
(784 max. user I/O)  
I/O: Unrestricted,  
general-purpose user I/O  
VREF: User I/O or input voltage  
reference for bank  
N.C.: Unconnected pins for  
XC3S5000 ()  
692  
X-Ref Target - Figure 57  
Bank 0  
1
2
3
I/O  
L01P_0  
VRN_0  
4
5
6
I/O  
L05P_0  
VREF_0  
7
8
9
10  
11  
12  
13  
14  
15  
I/O  
L26P_0  
VREF_0  
16  
17  
I/O  
L32P_0  
GCLK6  
I/O  
I/O  
I/O  
L02P_0  
I/O  
L36P_0  
I/O  
L38P_0  
I/O  
L15P_0  
I/O  
L22P_0  
L34P_0  
L40P_0  
GND  
GND  
GND  
GND  
GND  
GND  
A
B
C
D
E
F
I/O  
L34N_0  
I/O  
L40N_0  
I/O  
L01N_0  
VRP_0  
I/O  
L32N_0  
GCLK7  
I/O  
L02N_0  
I/O  
L03P_0  
I/O  
L05N_0  
I/O  
L36N_0  
I/O  
L38N_0  
I/O  
L15N_0  
I/O  
L22N_0  
I/O  
L26N_0  
I/O  
L28P_0  
GND  
GND  
VCCO_0  
I/O  
I/O  
L33P_0  
I/O  
L01N_7  
VRP_7  
I/O  
L01P_7  
VRN_7  
I/O  
L31P_0  
VREF_0  
I/O  
L03N_0  
I/O  
L04P_0  
I/O  
L08P_0  
I/O  
L37P_0  
I/O  
L14P_0  
I/O  
L17P_0  
I/O  
L21P_0  
I/O  
L25P_0  
I/O  
L28N_0  
VCCO_0  
VCCO_0  
GND  
GND  
I/O  
L33N_0  
IO  
VREF_0  
I/O  
L02N_7  
I/O  
L02P_7  
I/O  
L04N_0  
I/O  
L35P_0  
I/O  
L08N_0  
I/O  
L37N_0  
I/O  
L14N_0  
I/O  
L17N_0  
I/O  
L21N_0  
I/O  
L25N_0  
I/O  
L31N_0  
VCCO_7 PROG_B  
VCCO_0  
VCCAUX  
VCCO_0  
GND  
I/O  
L03N_7  
VREF_7  
IO  
VREF_0  
I/O  
TDI  
I/O  
L06P_0  
I/O  
L35N_0  
I/O  
L13P_0  
I/O  
L20P_0  
GND  
GND  
VCCAUX  
I/O  
GND  
VCCAUX  
I/O  
GND  
L03P_7  
I/O  
L39P_0  
I/O  
L05N_7  
I/O  
L05P_7  
I/O  
L04N_7  
I/O  
L04P_7  
I/O  
L06N_0  
I/O  
L07P_0  
I/O  
L10P_0  
I/O  
L13N_0  
I/O  
L20N_0  
I/O  
L24P_0  
I/O  
L27P_0  
I/O  
L30P_0  
VCCAUX  
VCCO_0  
I/O  
VCCO_0  
I/O  
I/O  
L41N_7  
I/O  
L41P_7  
I/O  
L39N_0  
I/O  
L06N_7  
I/O  
L06P_7  
I/O  
L07N_0  
I/O  
L10N_0  
I/O  
L16P_0  
I/O  
L19P_0  
I/O  
L24N_0  
I/O  
L27N_0  
I/O  
L30N_0  
I/O  
I/O  
GND  
I/O  
G
H
J
I/O  
L10P_7  
VREF_7  
I/O  
L08N_7  
I/O  
L08P_7  
I/O  
L07N_7  
I/O  
L07P_7  
I/O  
L09P_0  
I/O  
L12P_0  
I/O  
L16N_0  
I/O  
L19N_0  
I/O  
L29P_0  
VCCO_7  
VCCO_7  
VCCO_0  
VCCO_0 VCCAUX  
I/O  
I/O  
IO  
VREF_0  
I/O  
L11N_7  
I/O  
L11P_7  
I/O  
L10N_7  
I/O  
L09N_7  
I/O  
L09P_7  
I/O  
L12P_7  
I/O  
L09N_0  
I/O  
L12N_0  
I/O  
L23P_0  
I/O  
L29N_0  
GND  
GND  
I/O  
GND  
I/O  
GND  
I/O  
L16P_7  
VREF_7  
I/O  
I/O  
L16N_7  
I/O  
L15N_7  
I/O  
L15P_7  
I/O  
L14N_7  
I/O  
L14P_7  
I/O  
L13N_7  
I/O  
L13P_7  
I/O  
L12N_7  
I/O  
L11P_0  
I/O  
L18P_0  
I/O  
I/O  
GND  
I/O  
I/O  
K
L
L23N_0  
I/O  
L44N_7  
I/O  
L44P_7  
I/O  
L19N_7  
VREF_7  
HSWAP_  
EN  
IO  
I/O  
I/O  
L19P_7  
I/O  
L17N_7  
I/O  
L17P_7  
I/O  
L11N_0  
I/O  
L18N_0  
GND  
VCCO_7 VCCAUX  
VCCO_7  
I/O  
VREF_0  
I/O  
L45N_7  
I/O  
L45P_7  
I/O  
L23N_7  
I/O  
L23P_7  
I/O  
L22N_7  
I/O  
L22P_7  
I/O  
L21N_7  
I/O  
L21P_7  
I/O  
L24P_7  
I/O  
L20N_7  
I/O  
L20P_7  
VCCO_0 VCCO_0 VCCO_0 VCCO_0  
VCCINT VCCINT VCCINT VCCINT  
VCCINT  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCINT  
VCCINT  
GND  
GND  
GND  
M
N
P
R
T
I/O  
L25N_7  
I/O  
L25P_7  
I/O  
L46N_7  
I/O  
L46P_7  
I/O  
L24N_7  
I/O  
L26P_7  
VCCO_7  
GND  
VCCO_7  
GND  
GND  
I/O  
L47N_7  
I/O  
L47P_7  
I/O  
L27P_7  
VREF_7  
I/O  
L49N_7  
I/O  
L49P_7  
I/O  
L29N_7  
I/O  
L29P_7  
I/O  
L28N_7  
I/O  
L28P_7  
I/O  
L27N_7  
I/O  
L26N_7  
GND  
GND  
GND  
GND  
GND  
GND  
VCCINT  
VCCINT  
VCCINT  
GND  
I/O  
L32N_7  
I/O  
L32P_7  
I/O  
L31N_7  
I/O  
L31P_7  
I/O  
L30N_7  
I/O  
L30P_7  
I/O  
L33P_7  
I/O  
L50N_7  
I/O  
L50P_7  
VCCAUX  
GND  
VCCO_7  
VCCAUX  
I/O  
L51P_7  
I/O  
L35N_7  
I/O  
L35P_7  
I/O  
L34N_7  
I/O  
L34P_7  
I/O  
L33N_7  
VCCO_7  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
L51N_7  
I/O  
L40N_7  
VREF_7  
I/O  
L37P_7  
VREF_7  
I/O  
L40P_7  
I/O  
L39N_7  
I/O  
L39P_7  
I/O  
L38N_7  
I/O  
L38P_7  
I/O  
L37N_7  
U
I/O  
DS099-4_14a_072903  
Figure 57: FG1156 Package Footprint (Top View)  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
267  
Spartan-3 FPGA Family: Pinout Descriptions  
Top Right Corner of FG1156 Package  
(Top View)  
All Devices  
DUAL: Configuration pin, then  
DCI: User I/O or reference  
GCLK: User I/O or global clock  
12  
7
16  
4
8
possible user I/O  
resistor input for bank  
buffer input  
CONFIG: Dedicated  
configuration pins  
VCCO: Output voltage supply  
for bank  
JTAG: Dedicated JTAG port pins 104  
VCCAUX: Auxiliary voltage  
VCCINT: Internal core voltage  
supply (+1.2V)  
40  
32  
184 GND: Ground  
supply (+2.5V)  
Bank 1  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O  
L01N_1  
VRP_1  
33  
34  
I/O  
I/O  
L40N_1  
I/O  
L26N_1  
I/O  
L19N_1  
I/O  
L15N_1  
I/O  
L14N_1  
I/O  
L08N_1  
I/O  
L05N_1  
I/O  
L02N_1  
L34N_1  
I/O  
GND  
GND  
GND  
GND  
A
B
C
D
E
F
GND  
GND  
I/O  
L34P_1  
I/O  
L32N_1  
GCLK5  
I/O  
L01P_1  
VRN_1  
I/O  
L28N_1  
I/O  
L40P_1  
I/O  
L26P_1  
I/O  
L19P_1  
I/O  
L15P_1  
I/O  
L14P_1  
I/O  
L08P_1  
I/O  
L05P_1  
I/O  
L03N_1  
I/O  
L02P_1  
VCCO_1  
I/O  
GND  
GND  
I/O  
L33N_1  
I/O  
L32P_1  
GCLK4  
I/O  
L10N_1  
VREF_1  
I/O  
L01N_2  
VRP_2  
I/O  
L01P_2  
VRN_2  
I/O  
L28P_1  
I/O  
L39N_1  
I/O  
L25N_1  
I/O  
L22N_1  
I/O  
L13N_1  
I/O  
L04N_1  
I/O  
L03P_1  
GND  
VCCO_1  
VCCO_1  
I/O  
GND  
I/O  
L33P_1  
I/O  
L31N_1  
VREF_1  
IO  
VREF_1  
I/O  
L39P_1  
I/O  
L25P_1  
I/O  
L22P_1  
I/O  
L18N_1  
I/O  
L13P_1  
I/O  
L10P_1  
I/O  
L07N_1  
I/O  
L04P_1  
I/O  
L02N_2  
I/O  
L02P_2  
VCCO_1  
GND  
VCCO_1  
VCCAUX  
VCCO_2  
TCK  
TDO  
I/O  
L06N_1  
VREF_1  
I/O  
L03N_2  
VREF_2  
I/O  
L31P_1  
I/O  
L18P_1  
I/O  
L07P_1  
I/O  
L03P_2  
VCCAUX  
VCCAUX  
I/O  
I/O  
GND  
I/O  
GND  
GND  
GND  
I/O  
L36N_1  
I/O  
L17N_1  
VREF_1  
I/O  
L27N_1  
I/O  
L38N_1  
I/O  
L24N_1  
I/O  
L12N_1  
I/O  
L09N_1  
I/O  
L06P_1  
I/O  
L04N_2  
I/O  
L04P_2  
I/O  
L41N_2  
I/O  
L41P_2  
VCCO_1  
VCCAUX  
I/O  
I/O  
I/O  
L36P_1  
I/O  
L42N_2  
I/O  
L42P_2  
I/O  
L30N_1  
I/O  
L27P_1  
I/O  
L38P_1  
I/O  
L24P_1  
I/O  
L21N_1  
I/O  
L17P_1  
I/O  
L12P_1  
I/O  
L09P_1  
I/O  
L05N_2  
I/O  
L05P_2  
I/O  
I/O  
VCCO_1  
TMS  
GND  
G
H
J
I/O  
L09N_2  
VREF_2  
I/O  
L30P_1  
I/O  
L23N_1  
I/O  
L21P_1  
I/O  
L11N_1  
I/O  
L06N_2  
I/O  
L06P_2  
I/O  
L07N_2  
I/O  
L07P_2  
VCCAUX VCCO_1  
VCCO_1  
VCCO_2  
VCCO_2  
I/O  
I/O  
I/O  
L35N_1  
I/O  
I/O  
L29N_1  
I/O  
L37N_1  
I/O  
L23P_1  
I/O  
L16N_1  
I/O  
L11P_1  
I/O  
L11N_2  
I/O  
L08N_2  
I/O  
L08P_2  
I/O  
L09P_2  
I/O  
L10N_2  
I/O  
L10P_2  
GND  
GND  
GND  
GND  
I/O  
L35P_1  
I/O  
L13P_2  
VREF_2  
IO  
VREF_1  
I/O  
L29P_1  
I/O  
I/O  
I/O  
L20N_1  
I/O  
L16P_1  
I/O  
L11P_2  
I/O  
L12N_2  
I/O  
L12P_2  
I/O  
L13N_2  
I/O  
L14N_2  
I/O  
L14P_2  
I/O  
L15N_2  
I/O  
L15P_2  
GND  
K
L
L37P_1  
I/O  
I/O  
L17N_2  
I/O  
L17P_2  
VREF_2  
IO  
VREF_1  
I/O  
L20P_1  
I/O  
L16N_2  
I/O  
L16P_2  
I/O  
L45N_2  
I/O  
L45P_2  
GND  
VCCO_2  
VCCAUX VCCO_2  
I/O  
I/O  
I/O  
I/O  
I/O  
L46N_2  
I/O  
L46P_2  
I/O  
L21N_2  
I/O  
L47N_2  
I/O  
L47P_2  
I/O  
L19N_2  
I/O  
L19P_2  
I/O  
L20N_2  
I/O  
L20P_2  
I/O  
L48N_2  
I/O  
L48P_2  
VCCO_1 VCCO_1 VCCO_1 VCCO_1  
VCCINT VCCINT VCCINT VCCINT  
VCCINT  
VCCINT  
GND  
VCCINT  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCINT  
M
N
P
R
T
I/O  
L23N_2  
VREF_2  
I/O  
L24N_2  
I/O  
L21P_2  
I/O  
L22N_2  
I/O  
L22P_2  
I/O  
L23P_2  
GND  
VCCO_2  
VCCO_2  
GND  
GND  
I/O  
L49N_2  
I/O  
L49P_2  
I/O  
L24P_2  
I/O  
L50N_2  
I/O  
L50P_2  
I/O  
L26N_2  
I/O  
L26P_2  
I/O  
L27N_2  
I/O  
L27P_2  
I/O  
L28N_2  
I/O  
L28P_2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
L29N_2  
I/O  
L29P_2  
I/O  
L33N_2  
I/O  
L30N_2  
I/O  
L30P_2  
I/O  
L31N_2  
I/O  
L31P_2  
I/O  
L32N_2  
I/O  
L32P_2  
VCCO_2  
VCCAUX  
VCCAUX  
GND  
VCCINT  
VCCINT  
GND  
I/O  
L51N_2  
I/O  
L34N_2  
VREF_2  
I/O  
L33P_2  
I/O  
L34P_2  
I/O  
L35N_2  
I/O  
L35P_2  
VCCO_2  
GND  
I/O  
GND  
I/O  
L51P_2  
I/O  
L40P_2  
VREF_2  
I/O  
L37N_2  
I/O  
L37P_2  
I/O  
L38N_2  
I/O  
L38P_2  
I/O  
L39N_2  
I/O  
L39P_2  
I/O  
L40N_2  
I/O  
U
DS099-4_14b_072903  
Figure 58: FG1156 Package Footprint (Top View) Continued  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
268  
Spartan-3 FPGA Family: Pinout Descriptions  
1
I/O  
L40P_6  
VREF_6  
2
3
4
5
6
7
8
9
10  
11  
I/O  
L49P_6  
12  
13  
14  
15  
16  
17  
I/O  
L40N_6  
I/O  
L39P_6  
I/O  
L39N_6  
I/O  
L38P_6  
I/O  
L38N_6  
I/O  
L52P_6  
I/O  
L52N_6  
VCCINT  
V
W
Y
I/O  
I/O  
GND  
GND  
GND  
GND  
GND  
I/O  
L49N_6  
I/O  
L37P_6  
I/O  
L37N_6  
I/O  
L36P_6  
I/O  
L36N_6  
I/O  
L35P_6  
GND  
VCCO_6  
GND  
VCCAUX  
VCCO_6  
GND  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
GND  
GND  
GND  
GND  
I/O  
L34N_6  
VREF_6  
I/O  
L34P_6  
I/O  
L33P_6  
I/O  
L33N_6  
I/O  
L48P_6  
I/O  
L48N_6  
I/O  
L35N_6  
I/O  
L32P_6  
I/O  
L32N_6  
VCCAUX  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
L46P_6  
I/O  
L46N_6  
A
A
I/O  
L31P_6  
I/O  
L31N_6  
I/O  
L30P_6  
I/O  
L30N_6  
I/O  
L29P_6  
I/O  
L29N_6  
I/O  
L28P_6  
I/O  
L28N_6  
I/O  
L27P_6  
A
B
I/O  
L26P_6  
I/O  
L26N_6  
I/O  
L25P_6  
I/O  
L25N_6  
I/O  
L24P_6  
I/O  
L27N_6  
VCCO_6  
VCCO_6  
GND  
GND  
GND  
VCCINT VCCINT VCCINT VCCINT  
I/O  
L24N_6  
VREF_6  
A
C
I/O  
L23P_6  
I/O  
L23N_6  
I/O  
L45P_6  
I/O  
L45N_6  
I/O  
L22P_6  
I/O  
L22N_6  
I/O  
L21P_6  
I/O  
L21N_6  
I/O  
L20P_6  
I/O  
L20N_6  
VCCO_5 VCCO_5 VCCO_5 VCCO_5  
VCCINT  
I/O  
I/O  
L44P_6  
I/O  
L44N_6  
I/O  
L17P_6  
VREF_6  
I/O  
A
D
I/O  
L19P_6  
I/O  
L19N_6  
I/O  
L17N_6  
I/O  
L16P_5  
VCCO_6 VCCAUX  
VCCO_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
L39P_5  
I/O  
L13P_6  
VREF_6  
I/O  
L29P_5  
VREF_5  
A
E
I/O  
L16P_6  
I/O  
L16N_6  
I/O  
L15P_6  
I/O  
L15N_6  
I/O  
L14P_6  
I/O  
L14N_6  
I/O  
L13N_6  
I/O  
L12P_6  
I/O  
L12P_5  
I/O  
L16N_5  
I/O  
L23P_5  
GND  
I/O  
L39N_5  
I/O  
L09N_6  
VREF_6  
I/O  
L19P_5  
VREF_5  
I/O  
A
F
I/O  
L11P_6  
I/O  
L11N_6  
I/O  
L10P_6  
I/O  
L09P_6  
I/O  
L12N_6  
I/O  
L07P_5  
I/O  
L12N_5  
I/O  
L23N_5  
I/O  
L29N_5  
GND  
GND  
GND  
GND  
A
G
I/O  
L08P_6  
I/O  
L08N_6  
I/O  
L10N_6  
I/O  
L07P_6  
I/O  
L07N_6  
I/O  
L07N_5  
I/O  
L17P_5  
I/O  
L19N_5  
I/O  
L30P_5  
VCCO_6  
VCCO_6  
GND  
VCCO_5  
VCCO_5 VCCAUX  
M2  
I/O  
I/O  
I/O  
L41P_6  
I/O  
L41N_6  
I/O  
L40P_5  
A
H
I/O  
L06P_6  
I/O  
L06N_6  
I/O  
L37P_5  
I/O  
L08P_5  
I/O  
L13P_5  
I/O  
L17N_5  
I/O  
L20P_5  
I/O  
I/O  
I/O  
L30N_5  
I/O  
I/O  
VCCO_5  
L24P_5  
L27P_5  
I/O  
L40N_5  
I/O  
L27N_5  
VREF_5  
A
J
IO  
VREF_5  
I/O  
L05P_6  
I/O  
L05N_6  
I/O  
L04P_6  
I/O  
L04N_6  
I/O  
L06P_5  
I/O  
L37N_5  
I/O  
L08N_5  
I/O  
L13N_5  
I/O  
L20N_5  
I/O  
L24N_5  
VCCAUX  
GND  
VCCO_5  
GND  
I/O  
I/O  
I/O  
L03N_6  
VREF_6  
I/O  
L31P_5  
D5  
A
K
I/O  
L03P_6  
I/O  
L06N_5  
I/O  
L35P_5  
I/O  
L14P_5  
VCCAUX  
VCCAUX  
VCCO_5  
GND  
VCCAUX  
M1  
M0  
I/O  
I/O  
GND  
GND  
GND  
I/O  
L33P_5  
I/O  
L31N_5  
D4  
A
L
IO  
VREF_5  
I/O  
L02P_6  
I/O  
L02N_6  
I/O  
L04P_5  
I/O  
L35N_5  
I/O  
L38P_5  
I/O  
L09P_5  
I/O  
L14N_5  
I/O  
L18P_5  
I/O  
L21P_5  
I/O  
L25P_5  
VCCO_6  
GND  
VCCO_5  
I/O  
L33N_5  
I/O  
L01P_6  
VRN_6  
I/O  
L01N_6  
VRP_6  
I/O  
L28P_5  
D7  
I/O  
L32P_5  
GCLK2  
A
M
I/O  
L03P_5  
I/O  
L04N_5  
I/O  
L38N_5  
I/O  
L09N_5  
I/O  
L18N_5  
I/O  
L21N_5  
I/O  
L25N_5  
VCCO_5  
VCCO_5  
I/O  
I/O  
L34P_5  
I/O  
L01P_5  
CS_B  
I/O  
L10P_5  
VRN_5  
I/O  
L28N_5  
D6  
I/O  
L32N_5  
GCLK3  
A
N
I/O  
L02P_5  
I/O  
L03N_5  
I/O  
L05P_5  
I/O  
L36P_5  
I/O  
L11P_5  
I/O  
L15P_5  
I/O  
L22P_5  
I/O  
L26P_5  
VCCO_5  
GND  
I/O  
GND  
GND  
GND  
GND  
I/O  
L34N_5  
I/O  
L01N_5  
RDWR_B  
I/O  
L10N_5  
VRP_5  
I/O  
L11N_5  
VREF_5  
A
P
IO  
VREF_5  
I/O  
L02N_5  
I/O  
L05N_5  
I/O  
L36N_5  
I/O  
L15N_5  
I/O  
L22N_5  
I/O  
L26N_5  
GND  
GND  
GND  
Bank 5  
DS099-4_14c_072503  
Bottom Left Corner of  
FG1156 Package  
(Top View)  
Figure 59: FG1156 Package Footprint (Top View) Continued  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
269  
Spartan-3 FPGA Family: Pinout Descriptions  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I/O  
L40N_3  
VREF_3  
I/O  
I/O  
L37P_3  
I/O  
L37N_3  
I/O  
L38P_3  
I/O  
L38N_3  
I/O  
L39P_3  
I/O  
L39N_3  
I/O  
L40P_3  
L51N_3  
I/O  
I/O  
GND  
GND  
GND  
GND  
GND  
VCCINT  
V
W
Y
I/O  
L51P_3  
I/O  
L34P_3  
VREF_3  
I/O  
L33N_3  
I/O  
L34N_3  
I/O  
L35P_3  
I/O  
L35N_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCINT  
VCCAUX  
VCCO_3  
VCCO_3  
GND  
GND  
GND  
GND  
VCCINT  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCINT  
VCCINT  
VCCINT  
GND  
GND  
GND  
I/O  
L50P_3  
I/O  
L50N_3  
I/O  
L33P_3  
I/O  
L30P_3  
I/O  
L30N_3  
I/O  
L31P_3  
I/O  
L31N_3  
I/O  
L32P_3  
I/O  
L32N_3  
VCCAUX  
I/O  
L49P_3  
I/O  
L49N_3  
A
A
I/O  
L48N_3  
I/O  
L26P_3  
I/O  
L26N_3  
I/O  
L27P_3  
I/O  
L27N_3  
I/O  
L28P_3  
I/O  
L28N_3  
I/O  
L29P_3  
I/O  
L29N_3  
A
B
I/O  
L48P_3  
I/O  
L24N_3  
I/O  
L46P_3  
I/O  
L46N_3  
I/O  
L47P_3  
I/O  
L47N_3  
VCCO_3  
VCCO_3  
VCCINT VCCINT VCCINT VCCINT  
GND  
GND  
GND  
I/O  
L23P_3  
VREF_3  
A
C
I/O  
L20P_3  
I/O  
L20N_3  
I/O  
L24P_3  
I/O  
L21P_3  
I/O  
L21N_3  
I/O  
L22P_3  
I/O  
L22N_3  
I/O  
L23N_3  
I/O  
L45P_3  
I/O  
L45N_3  
VCCO_4 VCCO_4 VCCO_4 VCCO_4  
I/O  
L44P_3  
I/O  
L44N_3  
I/O  
L17P_3  
VREF_3  
A
D
I/O  
L18N_4  
I/O  
L11N_4  
I/O  
L17N_3  
I/O  
L19P_3  
I/O  
L19N_3  
VCCO_3  
VCCAUX VCCO_3  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
DONE  
I/O  
L13N_3  
VREF_3  
I/O  
A
E
I/O  
L23N_4  
I/O  
L18P_4  
I/O  
L11P_4  
I/O  
L12N_3  
I/O  
L13P_3  
I/O  
L14P_3  
I/O  
L14N_3  
I/O  
L15P_3  
I/O  
L15N_3  
I/O  
L16P_3  
I/O  
L16N_3  
GND  
I/O  
I/O  
L09P_3  
VREF_3  
I/O  
A
F
IO  
VREF_4  
I/O  
L29N_4  
I/O  
L23P_4  
I/O  
L12N_4  
I/O  
L07N_4  
I/O  
L12P_3  
I/O  
L09N_3  
I/O  
L10N_3  
I/O  
L11P_3  
I/O  
L11N_3  
I/O  
GND  
GND  
GND  
GND  
A
G
I/O  
L29P_4  
I/O  
L19N_4  
I/O  
L16N_4  
I/O  
L12P_4  
I/O  
L07P_4  
I/O  
L07P_3  
I/O  
L07N_3  
I/O  
L10P_3  
I/O  
L08P_3  
I/O  
L08N_3  
VCCAUX VCCO_4  
I/O  
VCCO_4  
VCCO_3  
GND  
VCCO_3  
I/O  
I/O  
VCCO_4  
I/O  
I/O  
L39N_4  
I/O  
L41P_3  
I/O  
L41N_3  
I/O  
L30N_4  
D2  
A
H
IO  
VREF_4  
I/O  
L24N_4  
I/O  
L19P_4  
I/O  
L16P_4  
I/O  
L08N_4  
I/O  
L05N_4  
I/O  
L06P_3  
I/O  
L06N_3  
L27N_4  
DIN  
I/O  
I/O  
D0  
I/O  
L39P_4  
I/O  
L30P_4  
D3  
I/O  
L27P_4  
D1  
A
J
I/O  
L24P_4  
I/O  
L20N_4  
I/O  
L13N_4  
I/O  
L08P_4  
I/O  
L05P_4  
I/O  
L35N_4  
I/O  
L04P_3  
I/O  
L04N_3  
I/O  
L05P_3  
I/O  
L05N_3  
VCCO_4  
GND  
VCCAUX  
GND  
I/O  
N.C.  
A
K
IO  
VREF_4  
I/O  
L20P_4  
I/O  
L13P_4  
I/O  
L38N_4  
I/O  
L35P_4  
I/O  
L03P_3  
I/O  
L03N_3  
VCCAUX  
VCCAUX  
VCCAUX  
I/O  
GND  
GND  
GND  
I/O  
L36N_4  
I/O  
L31N_4  
INIT_B  
I/O  
L06N_4  
VREF_4  
I/O  
L02N_3  
VREF_3  
A
L
IO  
VREF_4  
I/O  
L25N_4  
I/O  
L21N_4  
I/O  
L17N_4  
I/O  
L14N_4  
I/O  
L09N_4  
I/O  
L38P_4  
I/O  
L33N_4  
I/O  
L02P_3  
VCCO_4  
VCCO_4  
GND  
VCCO_3  
GND  
CCLK  
I/O  
I/O  
L36P_4  
I/O  
L01P_3  
VRN_3  
I/O  
L01N_3  
VRP_3  
A
M
I/O  
L28N_4  
I/O  
L25P_4  
I/O  
L21P_4  
I/O  
L17P_4  
I/O  
L14P_4  
I/O  
L09P_4  
I/O  
L06P_4  
I/O  
L33P_4  
I/O  
L03N_4  
L31P_4  
DOUT  
BUSY  
VCCO_4  
VCCO_4  
I/O  
L40N_4  
I/O  
L37N_4  
I/O  
L32N_4  
GCLK1  
I/O  
L22N_4  
VREF_4  
I/O  
L01N_4  
VRP_4  
A
N
I/O  
L28P_4  
I/O  
L26N_4  
I/O  
L15N_4  
I/O  
L10N_4  
I/O  
L04N_4  
I/O  
L34N_4  
I/O  
L03P_4  
I/O  
L02N_4  
VCCO_4  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
L40P_4  
I/O  
L37P_4  
I/O  
L32P_4  
GCLK0  
I/O  
L26P_4  
VREF_4  
I/O  
L01P_4  
VRN_4  
A
P
I/O  
L22P_4  
I/O  
L15P_4  
I/O  
L10P_4  
I/O  
L04P_4  
I/O  
L34P_4  
I/O  
L02P_4  
GND  
GND  
GND  
Bank 4  
DS099-4_14d_072903  
Bottom Right Corner  
of FG1156 Package  
(Top View)  
Figure 60: FG1156 Package Footprint (Top View) Continued  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
270  
Spartan-3 FPGA Family: Pinout Descriptions  
Revision History  
Date  
Version  
Description  
04/03/2003  
04/21/2003  
1.0  
Initial Xilinx release.  
1.1  
Added information on the VQ100 package footprint, including a complete pinout table (Table 87) and  
footprint diagram (Figure 44). Updated Table 85 with final I/O counts for the VQ100 package. Also added  
final differential I/O pair counts for the TQ144 package. Added clarifying comments to HSWAP_EN pin  
description on page 119. Updated the footprint diagram for the FG900 package shown in Figure 55a and  
Figure 55b. Some thick lines separating I/O banks were incorrect. Made cosmetic changes to Figure 40,  
Figure 42, and Figure 43. Updated Xilinx hypertext links. Added XC3S200 and XC3S400 to Pin Name  
column in Table 91.  
05/12/2003  
07/11/2003  
1.1.1  
1.1.2  
AM32 pin was missing GND label in FG1156 package diagram (Figure 53).  
Corrected misspellings of GCLK in Table 69 and Table 70. Changed CMOS25 to LVCMOS25 in  
Dual-Purpose Pin I/O Standard During Configuration section. Clarified references to Module 2. For  
XC3S5000 in FG1156 package, corrected N.C. symbol to a black square in Table 110, key, and package  
drawing.  
07/29/2003  
1.2  
Corrected pin names on FG1156 package. Some package balls incorrectly included LVDS pair names.  
The affected balls on the FG1156 package include G1, G2, G33, G34, U9, U10, U25, U26, V9, V10, V25,  
V26, AH1, AH2, AH33, AH34. The number of LVDS pairs is unaffected. Modified affected balls and  
re-sorted rows in Table 110. Updated affected balls in Figure 53. Also updated ASCII and Excel electronic  
versions of FG1156 pinout.  
08/19/2003  
10/09/2003  
1.2.1  
1.2.2  
Removed 100 MHz ConfigRate option in CCLK: Configuration Clock section and in Table 80. Added note  
that TDO is a totem-pole output in Table 77.  
Some pins had incorrect bank designations and were improperly sorted in Table 93. No pin names or  
functions changed. Renamed DCI_IN to DCI and added black diamond to N.C. pins in Table 93. In  
Figure 47, removed some extraneous text from pin 106 and corrected spelling of pins 45, 48, and 81.  
12/17/2003  
1.3  
Added FG320 pin tables and pinout diagram (FG320: 320-lead Fine-pitch Ball Grid Array). Made cosmetic  
changes to the TQ144 footprint (Figure 46), the PQ208 footprint (Figure 47), the FG676 footprint  
(Figure 53), and the FG900 footprint (Figure 55). Clarified wording in Precautions When Using the JTAG  
Port in 3.3V Environments section.  
02/27/2004  
07/13/2004  
1.4  
1.5  
Clarified wording in Using JTAG Port After Configuration section. In Table 81, reduced package height for  
FG320 and increased maximum I/O values for the FG676, FG900, and FG1156 packages.  
Added information on lead-free (Pb-free) package options to the Package Overview section plus Table 81  
and Table 83. Clarified the VRN_# reference resistor requirements for I/O standards that use single  
termination as described in the DCI Termination Types section and in Figure 42b. Graduated from  
Advance Product Specification to Product Specification.  
08/24/2004  
01/17/2005  
1.5.1  
1.6  
Removed XC3S2000 references from FG1156: 1156-lead Fine-pitch Ball Grid Array.  
Added XC3S50 in CP132 package option. Added XC3S2000 in FG456 package option. Added  
XC3S4000 in FG676 package option. Added Selecting the Right Package Option section. Modified or  
added Table 81, Table 83, Table 84, Table 85, Table 89, Table 90, Table 100, Table 102, Table 103,  
Table 106, Figure 45, and Figure 53.  
08/19/2005  
04/03/2006  
1.7  
2.0  
Removed term “weak” from the description of pull-up and pull-down resistors. Added IDCODE Register  
values. Added signal integrity precautions to CCLK: Configuration Clock and indicated that CCLK should  
be treated as an I/O during Master mode in Table 79.  
Added Package Thermal Characteristics. Updated Figure 41 to make it a more obvious example. Added  
detail about which pins have dedicated pull-up resistors during configuration, regardless of the  
HSWAP_EN value to Table 70 and to Pin Behavior During Configuration. Updated Precautions When  
Using the JTAG Port in 3.3V Environments.  
04/26/2006  
05/25/2007  
2.1  
2.2  
Corrected swapped data row in Table 86. The Theta-JA with zero airflow column was swapped with the  
Theta-JC column. Made additional notations on CONFIG and JTAG pins that have pull-up resistors during  
configuration, regardless of the HSWAP_EN input.  
Added link on page 128 to Material Declaration Data Sheets. Corrected units typo in Table 74. Added  
Note 1 to Table 103 about VREF for XC3S1500 in FG676.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
271  
Spartan-3 FPGA Family: Pinout Descriptions  
Date  
Version  
Description  
11/30/2007  
2.3  
Added XC3S5000 FG(G)676 package. Noted that the FG(G)1156 package is being discontinued.  
Updated Table 86 with latest thermal characteristics data.  
06/25/2008  
12/04/2009  
2.4  
2.5  
Updated formatting and links.  
Added link to UG332 in CCLK: Configuration Clock. Noted that the CP132, CPG132, FG1156, and  
FGG1156 packages are being discontinued in Table 81, Table 83, Table 84, Table 85, and Table 86.  
Updated CP132: 132-Ball Chip-Scale Package to indicate that the CP132 and CPG132 packages are  
being discontinued.  
10/29/2012  
06/27/2013  
3.0  
3.1  
Added Notice of Disclaimer. Per XCN07022, updated the FG1156 and FGG1156 package discussion  
throughout document including in Table 81, Table 83, Table 84, Table 85, and Table 86. Per XCN08011,  
updated CP132 and CPG132 package discussion throughout document including in Table 81, Table 83,  
Table 84, Table 85, and Table 86. This product is not recommended for new designs.  
Removed banner. This product IS recommended for new designs.  
Notice of Disclaimer  
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND  
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED  
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE  
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.  
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE  
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES  
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO  
APPLICABLE LAWS AND REGULATIONS.  
CRITICAL APPLICATIONS DISCLAIMER  
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE  
FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR  
SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE  
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE  
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, CRITICAL APPLICATIONS”). FURTHERMORE,  
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A  
VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF  
SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE  
OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX  
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY  
APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL  
APPLICATIONS.  
AUTOMOTIVE APPLICATIONS DISCLAIMER  
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING  
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A  
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN  
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III)  
USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY  
USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.  
DS099 (v3.1) June 27, 2013  
www.xilinx.com  
Product Specification  
272  

相关型号:

XC3S50-4FTG256I

Field Programmable Gate Array, 192 CLBs, 50000 Gates, PBGA256, LEAD FREE, FTBGA-256
XILINX

XC3S50-4PQ208C

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S50-4PQ208I

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S50-4PQG208C

Spartan-3 FPGA Family: Complete Data Sheet
XILINX

XC3S50-4PQG208I

Spartan-3 FPGA Family: Complete Data Sheet
XILINX

XC3S50-4TQ144C

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S50-4TQ144I

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S50-4TQG144C

Spartan-3 FPGA Family: Complete Data Sheet
XILINX

XC3S50-4TQG144I

Spartan-3 FPGA Family: Complete Data Sheet
XILINX

XC3S50-4VQ100C

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S50-4VQ100I

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S50-4VQG100C

Spartan-3 FPGA Family: Complete Data Sheet
XILINX