XCS20-3TQ256C [XILINX]

Spartan and Spartan-XL Families Field Programmable Gate Arrays; 斯巴达和Spartan-XL系列现场可编程门阵列
XCS20-3TQ256C
型号: XCS20-3TQ256C
厂家: XILINX, INC    XILINX, INC
描述:

Spartan and Spartan-XL Families Field Programmable Gate Arrays
斯巴达和Spartan-XL系列现场可编程门阵列

现场可编程门阵列 栅
文件: 总82页 (文件大小:848K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0
R
Spartan and Spartan-XL Families  
Field Programmable Gate Arrays  
0
0
DS060 (v1.6) September 19, 2001  
Product Specification  
System level features  
Introduction  
-
-
-
-
Available in both 5V and 3.3V versions  
On-chip SelectRAMmemory  
Fully PCI compliant  
Full readback capability for program verification  
and internal node observability  
The Spartan and the Spartan-XL families are a high-vol-  
ume production FPGA solution that delivers all the key  
requirements for ASIC replacement up to 40,000 gates.  
These requirements include high performance, on-chip  
RAM, core solutions and prices that, in high volume,  
approach and in many cases are equivalent to mask pro-  
grammed ASIC devices.  
-
-
-
-
-
-
Dedicated high-speed carry logic  
Internal 3-state bus capability  
Eight global low-skew clock or signal networks  
IEEE 1149.1-compatible Boundary Scan logic  
Low cost plastic packages available in all densities  
Footprint compatibility in common packages  
The Spartan series is the result of more than 14 years of  
FPGA design experience and feedback from thousands of  
customers. By streamlining the Spartan series feature set,  
leveraging advanced process technologies and focusing on  
total cost management, the Spartan series delivers the key  
features required by ASIC and other high-volume logic  
users while avoiding the initial cost, long development  
cycles and inherent risk of conventional ASICs. The Spar-  
tan and Spartan-XL families in the Spartan series have ten  
members, as shown in Table 1.  
Fully supported by powerful Xilinx development system  
-
-
-
Foundation Series: Integrated, shrink-wrap  
software  
Alliance Series: Dozens of PC and workstation  
third party development systems supported  
Fully automatic mapping, placement and routing  
Additional Spartan-XL Features  
Spartan and Spartan-XL Features  
3.3V supply for low power with 5V tolerant I/Os  
Power down input  
Note: The Spartan series devices described in this data  
sheet include the 5V Spartan family and the 3.3V  
Spartan-XL family. See the separate data sheet for the 2.5V  
Spartan-II family.  
Higher performance  
Faster carry logic  
First ASIC replacement FPGA for high-volume  
production with on-chip RAM  
More flexible high-speed clock network  
Latch capability in Configurable Logic Blocks  
Input fast capture latch  
Density up to 1862 logic cells or 40,000 system gates  
Streamlined feature set based on XC4000 architecture  
System performance beyond 80 MHz  
Optional mux or 2-input function generator on outputs  
12 mA or 24 mA output drive  
5V and 3.3V PCI compliant  
Broad set of AllianceCOREand LogiCORE™  
predefined solutions available  
Enhanced Boundary Scan  
Unlimited reprogrammability  
Low cost  
Express Mode configuration  
Chip scale packaging  
Table 1: Spartan and Spartan-XL Field Programmable Gate Arrays  
Max  
System  
Gates (Logic and RAM)  
Typical  
Gate Range  
Max.  
Avail. Distributed  
CLBs Flip-flops User I/O RAM Bits  
Total  
Logic  
Cells  
238  
CLB  
Matrix  
Total  
No. of  
(1)  
Device  
XCS05 and XCS05XL  
XCS10 and XCS10XL  
XCS20 and XCS20XL  
5,000  
10,000  
20,000  
30,000  
40,000  
2,000-5,000  
3,000-10,000  
7,000-20,000  
10,000-30,000  
13,000-40,000  
10 x 10  
14 x 14  
20 x 20  
24 x 24  
28 x 28  
100  
196  
400  
576  
784  
360  
616  
77  
3,200  
6,272  
466  
112  
160  
192  
224  
950  
1,120  
1,536  
2,016  
12,800  
18,432  
25,088  
XCS30 and XCS30XL 1368  
XCS40 and XCS40XL 1862  
Notes:  
1. Max values of Typical Gate Range include 20-30% of CLBs used as RAM.  
© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.  
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
1
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
memory cells determine the logic functions and intercon-  
nections implemented in the FPGA. The FPGA can either  
actively read its configuration data from an external serial  
PROM (Master Serial mode), or the configuration data can  
be written into the FPGA from an external device (Slave  
Serial mode).  
General Overview  
Spartan series FPGAs are implemented with a regular, flex-  
ible, programmable architecture of Configurable Logic  
Blocks (CLBs), interconnected by a powerful hierarchy of  
versatile routing resources (routing channels), and sur-  
rounded by a perimeter of programmable Input/Output  
Blocks (IOBs), as seen in Figure 1. They have generous  
routing resources to accommodate the most complex inter-  
connect patterns.  
Spartan series FPGAs can be used where hardware must  
be adapted to different user applications. FPGAs are ideal  
for shortening design and development cycles, and also  
offer a cost-effective solution for production rates well  
beyond 50,000 systems per month.  
The devices are customized by loading configuration data  
into internal static memory cells. Re-programming is possi-  
ble an unlimited number of times. The values stored in these  
B-  
SCAN  
OSC  
IOB  
IOB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
Routing Channels  
IOB  
IOB  
IOB  
IOB  
CLB  
CLB  
IOB  
IOB  
IOB  
IOB  
START  
-UP  
RDBK  
VersaRing Routing Channels  
DS060_01_081100  
Figure 1: Basic FPGA Block Diagram  
2
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan series devices achieve high-performance, low-cost  
operation through the use of an advanced architecture and  
semiconductor technology. Spartan and Spartan-XL  
devices provide system clock rates exceeding 80 MHz and  
internal performance in excess of 150 MHz. In contrast to  
other FPGA devices, the Spartan series offers the most  
cost-effective solution while maintaining leading-edge per-  
formance. In addition to the conventional benefit of high vol-  
ume programmable logic solutions, Spartan series FPGAs  
also offer on-chip edge-triggered single-port and dual-port  
RAM, clock enables on all flip-flops, fast carry logic, and  
many other features.  
The functionality of each circuit block is customized during  
configuration by programming internal static memory cells.  
The values stored in these memory cells determine the  
logic functions and interconnections implemented in the  
FPGA.  
Configurable Logic Blocks (CLBs)  
The CLBs are used to implement most of the logic in an  
FPGA. The principal CLB elements are shown in the simpli-  
fied block diagram in Figure 2. There are three look-up  
tables (LUT) which are used as logic function generators,  
two flip-flops and two groups of signal steering multiplexers.  
There are also some more advanced features provided by  
the CLB which will be covered in the Advanced Features  
Description, page 13.  
The Spartan/XL families leverage the highly successful  
XC4000 architecture with many of that familys features and  
benefits. Technology advancements have been derived  
from the XC4000XLA process developments.  
Function Generators  
Two 16 x 1 memory look-up tables (F-LUT and G-LUT) are  
used to implement 4-input function generators, each offer-  
ing unrestricted logic implementation of any Boolean func-  
tion of up to four independent input signals (F1 to F4 or G1  
to G4). Using memory look-up tables the propagation delay  
is independent of the function implemented.  
Logic Functional Description  
The Spartan series uses a standard FPGA structure as  
shown in Figure 1, page 2. The FPGA consists of an array  
of configurable logic blocks (CLBs) placed in a matrix of  
routing channels. The input and output of signals is  
achieved through a set of input/output blocks (IOBs) forming  
a ring around the CLBs and routing channels.  
A third 3-input function generator (H-LUT) can implement  
any Boolean function of its three inputs. Two of these inputs  
are controlled by programmable multiplexers (see box "A" of  
Figure 2). These inputs can come from the F-LUT or G-LUT  
outputs or from CLB inputs. The third input always comes  
from a CLB input. The CLB can, therefore, implement cer-  
tain functions of up to nine inputs, like parity checking. The  
three LUTs in the CLB can also be combined to do any arbi-  
trarily defined Boolean function of five inputs.  
CLBs provide the functional elements for implementing  
the users logic.  
IOBs provide the interface between the package pins  
and internal signal lines.  
Routing channels provide paths to interconnect the  
inputs and outputs of the CLBs and IOBs.  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
3
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
B
G-LUT  
G4  
G3  
G2  
G4  
G3  
G2  
G1  
SR  
Q
D
YQ  
Logic  
Function  
of  
G1-G4  
G
CK  
EC  
G1  
SR  
H-LUT  
Y
G
Logic  
Function  
of  
F-G-H1  
H1  
H
H1  
DIN  
F4  
F
F4  
F3  
F2  
F1  
SR  
A
Q
D
XQ  
Logic  
Function  
of  
F1-F4  
F3  
G
CK  
EC  
F2  
F1  
X
F-LUT  
Multiplexer Controlled  
by Configuration Program  
K
EC  
DS060_02_0506 01  
Figure 2: Spartan/XL Simplified CLB Logic Diagram (some features not shown)  
A CLB can implement any of the following functions:  
Flip-Flops  
Any function of up to four variables, plus any second  
function of up to four unrelated variables, plus any third  
function of up to three unrelated variables  
Each CLB contains two flip-flops that can be used to regis-  
ter (store) the function generator outputs. The flip-flops and  
function generators can also be used independently (see  
Figure 2). The CLB input DIN can be used as a direct input  
to either of the two flip-flops. H1 can also drive either  
flip-flop via the H-LUT with a slight additional delay.  
Note: When three separate functions are generated, one of  
the function outputs must be captured in a flip-flop internal to  
the CLB. Only two unregistered function generator outputs  
are available from the CLB.  
The two flip-flops have common clock (CK), clock enable  
(EC) and set/reset (SR) inputs. Internally both flip-flops are  
also controlled by a global initialization signal (GSR) which  
is described in detail in Global Signals: GSR and GTS,  
page 20.  
Any single function of five variables  
Any function of four variables together with some  
functions of six variables  
Some functions of up to nine variables.  
Implementing wide functions in a single block reduces both  
the number of blocks required and the delay in the signal  
path, achieving both increased capacity and speed.  
Latches (Spartan-XL only)  
The Spartan-XL CLB storage elements can also be config-  
ured as latches. The two latches have common clock (K)  
and clock enable (EC) inputs. Functionality of the storage  
element is described in Table 2.  
The versatility of the CLB function generators significantly  
improves system speed. In addition, the design-software  
tools can deal with each function generator independently.  
This flexibility improves cell usage.  
4
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Clock Input  
.
Table 2: CLB Storage Element Functionality  
Each flip-flop can be triggered on either the rising or falling  
clock edge. The CLB clock line is shared by both flip-flops.  
However, the clock is individually invertible for each flip-flop  
(see CK path in Figure 3). Any inverter placed on the clock  
Mode  
CK  
EC  
SR  
D
Q
Power-Up or  
GSR  
X
X
X
X
SR  
line in the design is automatically absorbed into the CLB.  
Flip-Flop  
Operation  
X
X
1*  
X
1
X
D
X
X
D
SR  
Clock Enable  
0*  
0*  
0*  
0*  
D
The clock enable line (EC) is active High. The EC line is  
Q
0
1
0
shared by both flip-flops in a CLB. If either one is left discon-  
Latch  
Operation  
(Spartan-XL)  
1*  
1*  
Q
D
nected, the clock enable for that flip-flop defaults to the  
active state. EC is not invertible within the CLB. The clock  
enable is synchronous to the clock and must satisfy the  
setup and hold timing specified for the device.  
Both  
Legend:  
X
X
0
0*  
X
Q
Set/Reset  
The set/reset line (SR) is an asynchronous active High con-  
trol of the flip-flop. SR can be configured as either set or  
reset at each flip-flop. This configuration option determines  
the state in which each flip-flop becomes operational after  
configuration. It also determines the effect of a GSR pulse  
during normal operation, and the effect of a pulse on the SR  
line of the CLB. The SR line is shared by both flip-flops. If  
SR is not specified for a flip-flop the set/reset for that flip-flop  
defaults to the inactive state. SR is not invertible within the  
CLB.  
Dont care  
Rising edge (clock not inverted).  
SR  
0*  
Set or Reset value. Reset is default.  
Input is Low or unconnected (default  
value)  
1*  
Input is High or unconnected (default  
value)  
CLB Signal Flow Control  
SR  
In addition to the H-LUT input control multiplexers (shown in  
box "A" of Figure 2, page 4) there are signal flow control  
multiplexers (shown in box "B" of Figure 2) which select the  
signals which drive the flip-flop inputs and the combinatorial  
CLB outputs (X and Y).  
GND  
GSR  
Each flip-flop input is driven from a 4:1 multiplexer which  
selects among the three LUT outputs and DIN as the data  
source.  
SD  
D
D
Q
Q
Each combinatorial output is driven from a 2:1 multiplexer  
which selects between two of the LUT outputs. The X output  
can be driven from the F-LUT or H-LUT, the Y output from  
G-LUT or H-LUT.  
CK  
RD  
EC  
Control Signals  
Vcc  
There are four signal control multiplexers on the input of the  
CLB. These multiplexers allow the internal CLB control sig-  
nals (H1, DIN, SR, and EC in Figure 2 and Figure 4) to be  
driven from any of the four general control inputs (C1-C4 in  
Figure 4) into the CLB. Any of these inputs can drive any of  
the four internal control signals.  
Multiplexer Controlled  
by Configuration Program  
DS060_03_041901  
Figure 3: CLB Flip-Flop Functional Block Diagram  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
5
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
DIN  
GSR  
H1  
SD  
RD  
D
D
Q
Q
C1  
CK  
C2  
SR  
C3  
EC  
C4  
Vcc  
EC  
Multiplexer Controlled  
by Configuration Program  
Multiplexer Controlled  
by Configuration Program  
DS060_05_041901  
DS060_04_081100  
Figure 5: IOB Flip-Flop/Latch Functional Block  
Diagram  
Figure 4: CLB Control Signal Interface  
IOB Input Signal Path  
The four internal control signals are:  
The input signal to the IOB can be configured to either go  
directly to the routing channels (via I1 and I2 in Figure 6) or  
to the input register. The input register can be programmed  
as either an edge-triggered flip-flop or a level-sensitive  
latch. The functionality of this register is shown in Table 3,  
and a simplified block diagram of the register can be seen in  
Figure 5.  
EC: Enable Clock  
SR: Asynchronous Set/Reset or H function generator  
Input 0  
DIN: Direct In or H function generator Input 2  
H1: H function generator Input 1.  
Input/Output Blocks (IOBs)  
Table 3: Input Register Functionality  
User-configurable input/output blocks (IOBs) provide the  
interface between external package pins and the internal  
logic. Each IOB controls one package pin and can be con-  
figured for input, output, or bidirectional signals. Figure 6  
shows a simplified functional block diagram of the Spar-  
tan/XL IOB.  
Mode  
CK  
EC  
D
Q
Power-Up or  
GSR  
X
X
X
SR  
Flip-Flop  
1*  
X
D
X
X
D
X
D
Q
Q
D
Q
0
1
0
X
Latch  
1*  
1*  
0
Both  
Legend:  
X
Dont care.  
Rising edge (clock not inverted).  
SR  
0*  
Set or Reset value. Reset is default.  
Input is Low or unconnected (default  
value)  
1*  
Input is High or unconnected (default  
value)  
6
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
The register choice is made by placing the appropriate  
library symbol. For example, IFD is the basic input flip-flop  
(rising edge triggered), and ILD is the basic input latch  
(transparent-High). Variations with inverted clocks are also  
available. The clock signal inverter is also shown in Figure 5  
on the CK line.  
The 5V Spartan input buffers can be globally configured for  
either TTL (1.2V) or CMOS (VCC/2) thresholds, using an  
option in the bitstream generation software. The Spartan  
output levels are also configurable; the two global adjust-  
ments of input threshold and output level are independent.  
The inputs of Spartan devices can be driven by the outputs  
of any 3.3V device, if the Spartan inputs are in TTL mode.  
Input and output thresholds are TTL on all configuration  
pins until the configuration has been loaded into the device  
and specifies how they are to be used. Spartan-XL inputs  
are TTL compatible and 3.3V CMOS compatible.  
The Spartan IOB data input path has a one-tap delay ele-  
ment: either the delay is inserted (default), or it is not. The  
Spartan-XL IOB data input path has a two-tap delay ele-  
ment, with choices of a full delay, a partial delay, or no delay.  
The added delay guarantees a zero hold time with respect  
to clocks routed through the global clock buffers. (See Glo-  
bal Nets and Buffers, page 12 for a description of the glo-  
bal clock buffers in the Spartan/XL families.) For a shorter  
input register setup time, with positive hold-time, attach a  
NODELAY attribute or property to the flip-flop.The output of  
the input register goes to the routing channels (via I1 and I2  
in Figure 6). The I1 and I2 signals that exit the IOB can each  
carry either the direct or registered input signal.  
Supported sources for Spartan/XL device inputs are shown  
in Table 4.  
Spartan-XL I/Os are fully 5V tolerant even though the V is  
CC  
3.3V. This allows 5V signals to directly connect to the Spar-  
tan-XL inputs without damage, as shown in Table 4. In addi-  
tion, the 3.3V V can be applied before or after 5V signals  
CC  
are applied to the I/Os. This makes the Spartan-XL devices  
immune to power supply sequencing problems.  
GTS  
T
D
Q
O
OUTPUT DRIVER  
Programmable Slew Rate  
Programmable TTL/CMOS Drive  
(Spartan only)  
CK  
EC  
OK  
Package  
Pad  
I1  
I2  
INPUT BUFFER  
Delay  
D
Q
Programmable  
Pull-Up/  
Pull-Down  
Network  
IK  
CK  
EC  
Multiplexer Controlled  
by Configuration Program  
EC  
DS060_06_041901  
Figure 6: Simplified Spartan/XL IOB Block Diagram  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
7
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL V Clamping  
Table 4: Supported Sources for Spartan/XL Inputs  
CC  
Spartan-XL FPGAs have an optional clamping diode con-  
Spartan  
Inputs  
Spartan-XL  
nected from each I/O to V . When enabled they clamp  
CC  
Inputs  
ringing transients back to the 3.3V supply rail. This clamping  
3.3V  
action is required in 3.3V PCI applications. V  
a global option affecting all I/O pins.  
clamping is  
5V,  
5V,  
CC  
Source  
TTL CMOS  
CMOS  
Spartan-XL devices are fully 5V TTL I/O compatible if V  
Any device, V = 3.3V,  
CC  
Unreli-  
able  
Data  
CC  
clamping is not enabled. With V  
clamping enabled, the  
CMOS outputs  
CC  
Spartan-XL devices will begin to clamp input voltages to  
Spartan family, V = 5V,  
CC  
one diode voltage drop above V . If enabled, TTL I/O com-  
CC  
TTL outputs  
patibility is maintained but full 5V I/O tolerance is sacrificed.  
The user may select either 5V tolerance (default) or 3.3V  
PCI compatibility. In both cases negative voltage is clamped  
to one diode voltage drop below ground.  
Any device, V = 5V,  
CC  
TTL outputs (V 3.7V)  
OH  
Any device, V = 5V,  
(default  
mode)  
CC  
CMOS outputs  
Spartan-XL devices are compatible with TTL, LVTTL, PCI  
3V, PCI 5V and LVCMOS signalling. The various standards  
are illustrated in Table 5.  
Table 5: I/O Standards Supported by Spartan-XL FPGAs  
Signaling  
Standard  
VCC  
Clamping  
Output  
Drive  
V
V
V
V
V
OL MAX  
IH MAX  
IH MIN  
IL MAX  
OH MIN  
TTL  
LVTTL  
Not allowed  
OK  
12/24 mA  
12/24 mA  
24 mA  
5.5  
2.0  
0.8  
2.4  
0.4  
3.6  
5.5  
3.6  
3.6  
2.0  
2.0  
0.8  
0.8  
2.4  
2.4  
0.4  
0.4  
PCI5V  
Not allowed  
Required  
OK  
PCI3V  
12 mA  
50% of V  
50% of V  
30% of V  
30% of V  
90% of V  
10% of V  
10% of V  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
LVCMOS 3V  
12/24 mA  
90% of V  
Additional Fast Capture Input Latch (Spartan-XL only)  
Table 6: Output Flip-Flop Functionality  
The Spartan-XL IOB has an additional optional latch on the  
input. This latch is clocked by the clock used for the output  
flip-flop rather than the input clock. Therefore, two different  
clocks can be used to clock the two input storage elements.  
This additional latch allows the fast capture of input data,  
which is then synchronized to the internal clock by the IOB  
flip-flop or latch.  
Clock  
Clock Enable  
Mode  
T
D
Q
Power-Up  
or GSR  
X
X
0*  
X
SR  
Flip-Flop  
X
0
1*  
X
0*  
0*  
1
X
D
X
X
Q
D
Z
To place the Fast Capture latch in a design, use one of the  
special library symbols, ILFFX or ILFLX. ILFFX is a trans-  
parent-Low Fast Capture latch followed by an active High  
input flip-flop. ILFLX is a transparent Low Fast Capture latch  
followed by a transparent High input latch. Any of the clock  
inputs can be inverted before driving the library element,  
and the inverter is absorbed into the IOB.  
X
0
X
0*  
Q
Legend:  
X
Dont care  
Rising edge (clock not inverted).  
SR  
0*  
1*  
Z
Set or Reset value. Reset is default.  
IOB Output Signal Path  
Input is Low or unconnected (default value)  
Input is High or unconnected (default value)  
3-state  
Output signals can be optionally inverted within the IOB,  
and can pass directly to the output buffer or be stored in an  
edge-triggered flip-flop and then to the output buffer. The  
functionality of this flip-flop is shown in Table 6.  
8
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Output Multiplexer/2-Input Function Generator  
(Spartan-XL only)  
By default, a 5V Spartan device output buffer pull-up struc-  
ture is configured as a TTL-like totem-pole. The High driver  
is an n-channel pull-up transistor, pulling to a voltage one  
The output path in the Spartan-XL IOB contains an addi-  
tional multiplexer not available in the Spartan IOB. The mul-  
tiplexer can also be configured as a 2-input function  
generator, implementing a pass gate, AND gate, OR gate,  
or XOR gate, with 0, 1, or 2 inverted inputs.  
transistor threshold below V . Alternatively, the outputs  
CC  
can be globally configured as CMOS drivers, with additional  
p-channel pull-up transistors pulling to V . This option,  
CC  
applied using the bitstream generation software, applies to  
all outputs on the device. It is not individually programma-  
ble.  
When configured as a multiplexer, this feature allows two  
output signals to time-share the same output pad, effec-  
tively doubling the number of device outputs without requir-  
ing a larger, more expensive package. The select input is  
the pin used for the output flip-flop clock, OK.  
All Spartan-XL device outputs are configured as CMOS  
drivers, therefore driving rail-to-rail. The Spartan-XL outputs  
are individually programmable for 12 mA or 24 mA output  
drive.  
When the multiplexer is configured as a 2-input function  
generator, logic can be implemented within the IOB itself.  
Combined with a Global buffer, this arrangement allows  
very high-speed gating of a single signal. For example, a  
wide decoder can be implemented in CLBs, and its output  
gated with a Read or Write Strobe driven by a global buffer.  
Any 5V Spartan device with its outputs configured in TTL  
mode can drive the inputs of any typical 3.3V device. Sup-  
ported destinations for Spartan/XL device outputs are  
shown in Table 7.  
Three-State Register (Spartan-XL Only)  
The user can specify that the IOB function generator be  
used by placing special library symbols beginning with the  
letter "O." For example, a 2-input AND gate in the IOB func-  
tion generator is called OAND2. Use the symbol input pin  
labeled "F" for the signal on the critical path. This signal is  
placed on the OK pin the IOB input with the shortest  
delay to the function generator. Two examples are shown in  
Figure 7.  
Spartan-XL devices incorporate an optional register control-  
ling the three-state enable in the IOBs. The use of the  
three-state control register can significantly improve output  
enable and disable time.  
Output Slew Rate  
The slew rate of each output buffer is, by default, reduced,  
to minimize power bus transients when switching non-criti-  
cal signals. For critical signals, attach a FAST attribute or  
property to the output buffer or flip-flop.  
OMUX2  
D0  
F
O
Spartan/XL devices have a feature called "Soft Start-up,"  
designed to reduce ground bounce when all outputs are  
turned on simultaneously at the end of configuration.  
When the configuration process is finished and the device  
starts up, the first activation of the outputs is automatically  
slew-rate limited. Immediately following the initial activation  
of the I/O, the slew rate of the individual outputs is deter-  
mined by the individual configuration option for each IOB.  
D1  
OAND2  
S0  
DS060_07_081100  
Figure 7: AND and MUX Symbols in Spartan-XL IOB  
Output Buffer  
An active High 3-state signal can be used to place the out-  
put buffer in a high-impedance state, implementing 3-state  
outputs or bidirectional I/O. Under configuration control, the  
output (O) and output 3-state (T) signals can be inverted.  
The polarity of these signals is independently configured for  
each IOB (see Figure 6, page 7). An output can be config-  
ured as open-drain (open-collector) by tying the 3-state pin  
(T) to the output signal, and the input pin (I) to Ground.  
Pull-up and Pull-down Network  
Programmable pull-up and pull-down resistors are used for  
tying unused pins to V or Ground to minimize power con-  
CC  
sumption and reduce noise sensitivity. The configurable  
pull-up resistor is a p-channel transistor that pulls to V  
The configurable pull-down resistor is an n-channel transis-  
tor that pulls to Ground. The value of these resistors is typi-  
cally 20 KΩ − 100 K(See "Spartan DC Characteristics  
.
CC  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
9
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Over Operating Conditions" on page 43.). This high value  
makes them unsuitable as wired-AND pull-up resistors.  
falling-edge or rising-edge triggered flip-flops. The clock  
inputs for each IOB are independent.  
Common Clock Enables  
Table 7: Supported Destinations for Spartan/XL  
Outputs  
The input and output flip-flops in each IOB have a common  
clock enable input (see EC signal in Figure 5), which  
through configuration, can be activated individually for the  
input or output flip-flop, or both. This clock enable operates  
exactly like the EC signal on the Spartan/XL CLB. It cannot  
be inverted within the IOB.  
Spartan-XL  
Outputs  
Spartan  
Outputs  
5V,  
5V,  
Destination  
Any device,  
= 3.3V,  
3.3V, CMOS  
TTL  
CMOS  
(1)  
Some  
Routing Channel Description  
V
CC  
All internal routing channels are composed of metal seg-  
ments with programmable switching points and switching  
matrices to implement the desired routing. A structured,  
hierarchical matrix of routing channels is provided to  
achieve efficient automated routing.  
CMOS-threshold  
inputs  
Any device,  
V
= 5V,  
CC  
TTL-thresholdinputs  
This section describes the routing channels available in  
Spartan/XL devices. Figure 8 shows a general block dia-  
gram of the CLB routing channels. The implementation soft-  
ware automatically assigns the appropriate resources  
based on the density and timing requirements of the design.  
The following description of the routing channels is for infor-  
mation only and is simplified with some minor details omit-  
ted. For an exact interconnect description the designer  
should open a design in the FPGA Editor and review the  
actual connections in this tool.  
Any device,  
Unreliable  
Data  
V
= 5V,  
CC  
CMOS-threshold  
inputs  
Notes:  
1. Only if destination device has 5V tolerant inputs.  
After configuration, voltage levels of unused pads, bonded  
or unbonded, must be valid logic levels, to reduce noise  
sensitivity and avoid excess current. Therefore, by default,  
unused pads are configured with the internal pull-up resistor  
active. Alternatively, they can be individually configured with  
the pull-down resistor, or as a driven output, or to be driven  
by an external source. To activate the internal pull-up, attach  
the PULLUP library component to the net attached to the  
pad. To activate the internal pull-down, attach the PULL-  
DOWN library component to the net attached to the pad.  
The routing channels will be discussed as follows;  
CLB routing channels which run along each row and  
column of the CLB array.  
IOB routing channels which form a ring (called a  
VersaRing) around the outside of the CLB array. It  
connects the I/O with the CLB routing channels.  
Global routing consists of dedicated networks primarily  
designed to distribute clocks throughout the device with  
minimum delay and skew. Global routing can also be  
used for other high-fanout signals.  
Set/Reset  
As with the CLB registers, the GSR signal can be used to  
set or clear the input and output registers, depending on the  
value of the INIT attribute or property. The two flip-flops can  
be individually configured to set or clear on reset and after  
configuration. Other than the global GSR net, no user-con-  
trolled set/reset signal is available to the I/O flip-flops  
(Figure 5). The choice of set or reset applies to both the ini-  
tial state of the flip-flop and the response to the GSR pulse.  
CLB Routing Channels  
The routing channels around the CLB are derived from  
three types of interconnects; single-length, double-length,  
and longlines. At the intersection of each vertical and hori-  
zontal routing channel is a signal steering matrix called a  
Programmable Switch Matrix (PSM). Figure 8 shows the  
basic routing channel configuration showing single-length  
lines, double-length lines and longlines as well as the CLBs  
and PSMs. The CLB to routing channel interface is shown  
as well as how the PSMs interface at the channel intersec-  
tions.  
Independent Clocks  
Separate clock signals are provided for the input (IK) and  
output (OK) flip-flops. The clock can be independently  
inverted for each flip-flop within the IOB, generating either  
10  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
8 Singles  
PSM  
PSM  
PSM  
2 Doubles  
3 Longs  
CLB  
CLB  
3 Longs  
2 Doubles  
PSM  
PSM  
PSM  
2 Doubles  
3 Longs 8 Singles 3 Longs  
2 Doubles  
DS060_09_041901  
Figure 8: Spartan/XL CLB Routing Channels and Interface Block Diagram  
CLB Interface  
Programmable Switch Matrices  
A block diagram of the CLB interface signals is shown in  
Figure 9. The input signals to the CLB are distributed evenly  
on all four sides providing maximum routing flexibility. In  
general, the entire architecture is symmetrical and regular.  
It is well suited to established placement and routing algo-  
rithms. Inputs, outputs, and function generators can freely  
swap positions within a CLB to avoid routing congestion  
during the placement and routing operation. The exceptions  
are the clock (K) input and CIN/COUT signals. The K input  
is routed to dedicated global vertical lines as well as four  
single-length lines and is on the left side of the CLB. The  
CIN/COUT signals are routed through dedicated intercon-  
nects which do not interfere with the general routing struc-  
ture. The output signals from the CLB are available to drive  
both vertical and horizontal channels.  
The horizontal and vertical single- and double-length lines  
intersect at a box called a programmable switch matrix  
(PSM). Each PSM consists of programmable pass transis-  
tors used to establish connections between the lines (see  
Figure 10).  
For example, a single-length signal entering on the right  
side of the switch matrix can be routed to a single-length  
line on the top, left, or bottom sides, or any combination  
thereof, if multiple branches are required. Similarly, a dou-  
ble-length signal can be routed to a double-length line on  
any or all of the other three edges of the programmable  
switch matrix.  
Single-Length Lines  
Single-length lines provide the greatest interconnect flexibil-  
ity and offer fast routing between adjacent blocks. There are  
eight vertical and eight horizontal single-length lines associ-  
ated with each CLB. These lines connect the switching  
matrices that are located in every row and column of CLBs.  
Single-length lines are connected by way of the program-  
mable switch matrices, as shown in Figure 10. Routing con-  
nectivity is shown in Figure 8.  
CIN  
COUT  
G1  
Y
G3  
C3  
F3  
Single-length lines incur a delay whenever they go through  
a PSM. Therefore, they are not suitable for routing signals  
for long distances. They are normally used to conduct sig-  
nals within a localized area and to provide the branching for  
nets with fanout greater than one.  
C1  
K
CLB  
F1  
X
Rev 1.1  
DS060_08_081100  
Figure 9: CLB Interconnect Signals  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
11  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Six Pass Transistors Per  
Switch Matrix Interconnect Point  
DS060_10_081100  
Figure 10: Programmable Switch Matrix  
I/O Routing  
Double-Length Lines  
The double-length lines consist of a grid of metal segments,  
each twice as long as the single-length lines: they run past  
two CLBs before entering a PSM. Double-length lines are  
grouped in pairs with the PSMs staggered, so that each line  
goes through a PSM at every other row or column of CLBs  
(see Figure 8).  
Spartan/XL devices have additional routing around the IOB  
ring. This routing is called a VersaRing. The VersaRing facil-  
itates pin-swapping and redesign without affecting board  
layout. Included are eight double-length lines, and four lon-  
glines.  
Global Nets and Buffers  
There are four vertical and four horizontal double-length  
lines associated with each CLB. These lines provide faster  
signal routing over intermediate distances, while retaining  
routing flexibility.  
The Spartan/XL devices have dedicated global networks.  
These networks are designed to distribute clocks and other  
high fanout control signals throughout the devices with min-  
imal skew.  
Longlines  
Four vertical longlines in each CLB column are driven exclu-  
sively by special global buffers. These longlines are in addi-  
tion to the vertical longlines used for standard interconnect.  
In the 5V Spartan devices, the four global lines can be  
driven by either of two types of global buffers; Primary Glo-  
bal buffers (BUFGP) or Secondary Global buffers (BUFGS).  
Each of these lines can be accessed by one particular Pri-  
mary Global buffer, or by any of the Secondary Global buff-  
ers, as shown in Figure 11. In the 3V Spartan-XL devices,  
the four global lines can be driven by any of the eight Global  
Low-Skew Buffers (BUFGLS). The clock pins of every CLB  
and IOB can also be sourced from local interconnect.  
Longlines form a grid of metal interconnect segments that  
run the entire length or width of the array. Longlines are  
intended for high fan-out, time-critical signal nets, or nets  
that are distributed over long distances.  
Each Spartan/XL device longline has a programmable split-  
ter switch at its center. This switch can separate the line into  
two independent routing channels, each running half the  
width or height of the array.  
Routing connectivity of the longlines is shown in Figure 8.  
The longlines also interface to some 3-state buffers which is  
described later in 3-State Long Line Drivers, page 19.  
12  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
IOB  
IOB  
IOB  
IOB  
BUFGS  
BUFGP  
PGCK1  
SGCK4  
PGCK4  
SGCK1  
4
4
BUFGS  
BUFGP  
4
4
locals  
locals  
CLB  
CLB  
CLB  
CLB  
IOB  
IOB  
locals  
locals  
locals  
locals  
Any BUFGS  
Any BUFGS  
X4  
X4  
X4  
X4  
One BUFGP  
per Global Line  
One BUFGP  
per Global Line  
IOB  
IOB  
locals  
locals  
BUFGP  
BUFGS  
SGCK3  
PGCK2  
SGCK2  
PGCK3  
BUFGP  
BUFGS  
IOB  
IOB  
IOB  
IOB  
ds060_11_080400  
Figure 11: 5V Spartan Family Global Net Distribution  
The four Primary Global buffers offer the shortest delay and  
negligible skew. Four Secondary Global buffers have  
slightly longer delay and slightly more skew due to poten-  
tially heavier loading, but offer greater flexibility when used  
to drive non-clock CLB inputs. The eight Global Low-Skew  
buffers in the Spartan-XL devices combine short delay, neg-  
ligible skew, and flexibility.  
Advanced Features Description  
Distributed RAM  
Optional modes for each CLB allow the function generators  
(F-LUT and G-LUT) to be used as Random Access Memory  
(RAM).  
Read and write operations are significantly faster for this  
on-chip RAM than for off-chip implementations. This speed  
advantage is due to the relatively short signal propagation  
delays within the FPGA.  
The Primary Global buffers must be driven by the semi-ded-  
icated pads (PGCK1-4). The Secondary Global buffers can  
be sourced by either semi-dedicated pads (SGCK1-4) or  
internal nets. Each corner of the device has one Primary  
buffer and one Secondary buffer. The Spartan-XL family  
has eight global low-skew buffers, two in each corner. All  
can be sourced by either semi-dedicated pads (GCK1-8) or  
internal nets.  
Memory Configuration Overview  
There are two available memory configuration modes: sin-  
gle-port RAM and dual-port RAM. For both these modes,  
write operations are synchronous (edge-triggered), while  
read operations are asynchronous. In the single-port mode,  
a single CLB can be configured as either a 16 x 1, (16 x 1)  
x 2, or 32 x 1 RAM array. In the dual-port mode, a single  
CLB can be configured only as one 16 x 1 RAM array. The  
different CLB memory configurations are summarized in  
Table 8. Any of these possibilities can be individually pro-  
grammed into a Spartan/XL CLB.  
Using the library symbol called BUFG results in the software  
choosing the appropriate clock buffer, based on the timing  
requirements of the design. A global buffer should be spec-  
ified for all timing-sensitive global signal distribution. To use  
a global buffer, place a BUFGP (primary buffer), BUFGS  
(secondary buffer), BUFGLS (Spartan-XL global low-skew  
buffer), or BUFG (any buffer type) element in a schematic or  
in HDL code.  
Table 8: CLB Memory Configurations  
Mode  
Single-Port  
Dual-Port  
16 x 1  
(16 x 1) x 2  
32 x 1  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
13  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
The 16 x 1 single-port configuration contains a RAM  
array with 16 locations, each one-bit wide. One 4-bit  
address decoder determines the RAM location for write  
and read operations. There is one input for writing data  
and one output for reading data, all at the selected  
address.  
Table 9: Single-Port RAM Signals  
RAM Signal  
D0 or D1  
A[3:0]  
Function  
Data In  
CLB Signal  
DIN or H1  
Address  
Address  
Write Enable  
Clock  
F[4:1] or G[4:1]  
A4 (32 x 1 only)  
WE  
H1  
SR  
K
The (16 x 1) x 2 single-port configuration combines two  
16 x 1 single-port configurations (each according to the  
preceding description). There is one data input, one  
data output and one address decoder for each array.  
These arrays can be addressed independently.  
WCLK  
SPO  
Single Port Out  
(Data Out)  
F
or G  
OUT OUT  
The 32 x 1 single-port configuration contains a RAM  
array with 32 locations, each one-bit wide. There is one  
data input, one data output, and one 5-bit address  
decoder.  
n
The dual-port mode 16 x 1 configuration contains a  
RAM array with 16 locations, each one-bit wide. There  
are two 4-bit address decoders, one for each port. One  
port consists of an input for writing and an output for  
reading, all at a selected address. The other port  
consists of one output for reading from an  
16 x 1  
32 x 1  
RAM ARRAY  
n
A[n-1:0]  
independently selected address.  
WE  
WRITE  
CONTROL  
READ  
OUT  
The appropriate choice of RAM configuration mode for a  
given design should be based on timing and resource  
requirements, desired functionality, and the simplicity of the  
design process. Selection criteria include the following:  
Whereas the 32 x 1 single-port, the (16 x 1) x 2 single-port,  
and the 16 x 1 dual-port configurations each use one entire  
CLB, the 16 x 1 single-port configuration uses only one half  
of a CLB. Due to its simultaneous read/write capability, the  
dual-port RAM can transfer twice as much data as the sin-  
gle-port RAM, which permits only one data operation at any  
given time.  
SPO  
D0 or D1  
WCLK  
DS060_12_043010  
Notes:  
1. The (16 x 1) x 2 configuration combines two 16 x 1 single-port  
RAMs, each with its own independent address bus and data  
input. The same WE and WCLK signals are connected to both  
RAMs.  
2. n = 4 for the 16 x 1 and (16 x 1) x 2 configurations. n = 5 for the  
32 x 1 configuration.  
Figure 12: Logic Diagram for the Single-Port RAM  
CLB memory configuration options are selected by using  
the appropriate library symbol in the design entry.  
Writing data to the single-port RAM is essentially the same  
as writing to a data register. It is an edge-triggered (syn-  
chronous) operation performed by applying an address to  
the A inputs and data to the D input during the active edge  
of WCLK while WE is High.  
Single-Port Mode  
There are three CLB memory configurations for the sin-  
gle-port RAM: 16 x 1, (16 x 1) x 2, and 32 x 1, the functional  
organization of which is shown in Figure 12.  
The timing relationships are shown in Figure 13. The High  
logic level on WE enables the input data register for writing.  
The active edge of WCLK latches the address, input data,  
and WE signals. Then, an internal write pulse is generated  
that loads the data into the memory cell.  
The single-port RAM signals and the CLB signals (Figure 2,  
page 4) from which they are originally derived are shown in  
Table 9.  
14  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
inverted with respect to the sense of the flip-flop clock  
inputs. Consequently, within the same CLB, data at the  
RAMs SPO line can be stored in a flip-flop with either the  
same or the inverse clock polarity used to write data to the  
RAM.  
TWPS  
WCLK (K)  
WE  
TWHS  
TDHS  
TAHS  
TWSS  
The WE input is active High and cannot be inverted within  
the CLB.  
Allowing for settling time, the data on the SPO output  
reflects the contents of the RAM location currently  
addressed. When the address changes, following the asyn-  
TDSS  
DATA IN  
chronous delay T , the data stored at the new address  
ILO  
TASS  
location will appear on SPO. If the data at a particular RAM  
address is overwritten, after the delay T  
will appear on SPO.  
, the new data  
WOS  
ADDRESS  
Dual-Port Mode  
TILO  
TILO  
In dual-port mode, the function generators (F-LUT and  
G-LUT) are used to create a 16 x 1 dual-port memory. Of  
the two data ports available, one permits read and write  
operations at the address specified by A[3:0] while the sec-  
ond provides only for read operations at the address speci-  
fied independently by DPRA[3:0]. As a result, simultaneous  
read/write operations at different addresses (or even at the  
same address) are supported.  
TWOS  
DATA OUT  
OLD  
NEW  
DS060_13_080400  
Figure 13: Data Write and Access Timing for RAM  
WCLK can be configured as active on either the rising edge  
(default) or the falling edge. While the WCLK input to the  
RAM accepts the same signal as the clock input to the asso-  
ciated CLBs flip-flops, the sense of this WCLK input can be  
The functional organization of the 16 x 1 dual-port RAM is  
shown in Figure 14. The dual-port RAM signals and the  
4
16 x 1  
RAM  
4
4
A[3:0]  
WE  
D
WRITE  
CONTROL  
READ  
OUT  
SPO  
WCLK  
16 x 1  
RAM  
4
DPRA[3:0]  
WRITE  
CONTROL  
READ  
OUT  
DPO  
DS060_14_043001  
Figure 14: Logic Diagram for the Dual-Port RAM  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
15  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
CLB signals from which they are originally derived are  
shown in Table 10.  
attached to the RAM or ROM symbol, as described in the  
schematic library guide. If not defined, all RAM contents are  
initialized to zeros, by default.  
Table 10: Dual-Port RAM Signals  
RAM initialization occurs only during device configuration.  
The RAM content is not affected by GSR.  
RAM Signal  
Function  
CLB Signal  
DIN  
D
Data In  
More Information on Using RAM Inside CLBs  
Three application notes are available from Xilinx that dis-  
cuss synchronous (edge-triggered) RAM: "Xilinx Edge-Trig-  
gered and Dual-Port RAM Capability," "Implementing FIFOs  
in Xilinx RAM," and "Synchronous and Asynchronous FIFO  
Designs." All three application notes apply to both the Spar-  
tan and the Spartan-XL families.  
A[3:0]  
Read Address for  
Single-Port.  
F[4:1]  
Write Address for  
Single-Port and  
Dual-Port.  
DPRA[3:0]  
Read Address for  
Dual-Port  
G[4:1]  
Fast Carry Logic  
Each CLB F-LUT and G-LUT contains dedicated arithmetic  
logic for the fast generation of carry and borrow signals.  
This extra output is passed on to the function generator in  
the adjacent CLB. The carry chain is independent of normal  
routing resources. (See Figure 15.)  
WE  
WCLK  
SPO  
Write Enable  
Clock  
SR  
K
Single Port Out  
(addressed by A[3:0])  
F
OUT  
Dedicated fast carry logic greatly increases the efficiency  
and performance of adders, subtractors, accumulators,  
comparators and counters. It also opens the door to many  
new applications involving arithmetic operation, where the  
previous generations of FPGAs were not fast enough or too  
inefficient. High-speed address offset calculations in micro-  
processor or graphics systems, and high-speed addition in  
digital signal processing are two typical applications.  
DPO  
Dual Port Out  
(addressed by  
DPRA[3:0])  
G
OUT  
The RAM16X1D primitive used to instantiate the dual-port  
RAM consists of an upper and a lower 16 x 1 memory array.  
The address port labeled A[3:0] supplies both the read and  
write addresses for the lower memory array, which behaves  
the same as the 16 x 1 single-port RAM array described  
previously. Single Port Out (SPO) serves as the data output  
for the lower memory. Therefore, SPO reflects the data at  
address A[3:0].  
The two 4-input function generators can be configured as a  
2-bit adder with built-in hidden carry that can be expanded  
to any length. This dedicated carry circuitry is so fast and  
efficient that conventional speed-up methods like carry gen-  
erate/propagate are meaningless even at the 16-bit level,  
and of marginal benefit at the 32-bit level. This fast carry  
logic is one of the more significant features of the Spartan  
The other address port, labeled DPRA[3:0] for Dual Port  
Read Address, supplies the read address for the upper  
memory. The write address for this memory, however,  
comes from the address A[3:0]. Dual Port Out (DPO) serves  
as the data output for the upper memory. Therefore, DPO  
reflects the data at address DPRA[3:0].  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
By using A[3:0] for the write address and DPRA[3:0] for the  
read address, and reading only the DPO output, a FIFO that  
can read and write simultaneously is easily generated. The  
simultaneous read/write capability possible with the  
dual-port RAM can provide twice the effective data through-  
put of a single-port RAM alternating read and write opera-  
tions.  
The timing relationships for the dual-port RAM mode are  
shown in Figure 13.  
Note that write operations to RAM are synchronous  
(edge-triggered); however, data access is asynchronous.  
CLB  
Initializing RAM at FPGA Configuration  
DS060_15_081100  
Both RAM and ROM implementations in the Spartan/XL  
families are initialized during device configuration. The initial  
contents are defined via an INIT attribute or property  
Figure 15: Available Spartan/XL Carry Propagation  
Paths  
16  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
and Spartan-XL families, speeding up arithmetic and count-  
ing functions.  
control inputs with the function generators. The carry out-  
puts connect to the function generators, where they are  
combined with the operands to form the sums.  
The carry chain in 5V Spartan devices can run either up or  
down. At the top and bottom of the columns where there are  
no CLBs above and below, the carry is propagated to the  
right. The default is always to propagate up the column, as  
shown in the figures. The carry chain in Spartan-XL devices  
can only run up the column, providing even higher speed.  
Figure 17, page 19 shows the details of the Spartan/XL  
carry logic. This diagram shows the contents of the box  
labeled "CARRY LOGIC" in Figure 16.  
The fast carry logic can be accessed by placing special  
library symbols, or by using Xilinx Relationally Placed Mac-  
ros (RPMs) that already include these symbols.  
Figure 16, page 18 shows a Spartan/XL CLB with dedi-  
cated fast carry logic. The carry logic shares operand and  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
17  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
C
D
IN  
OUT  
CARRY  
LOGIC  
G
H
Y
G
CARRY  
G4  
G3  
G2  
G
D
IN  
S/R  
EC  
H
G
F
D
Q
YQ  
G1  
H1  
C
OUT0  
H
D
IN  
S/R  
EC  
H
G
F
F
D
Q
XQ  
CARRY  
F4  
F3  
F2  
F1  
F
H
F
X
K
S/R  
EC  
C
IN  
DS060_16_080400  
Figure 16: Fast Carry Logic in Spartan/XL CLB  
18  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
C
OUT  
M
G1  
G4  
M
1
0
1
G2  
G3  
0
I
C
TO  
OUT0  
FUNCTION  
GENERATORS  
M
F2  
F1  
M
M
1
0
0
1
M
F4  
M
M
0
1
3
1
0
F3  
M
C
M
IN  
Figure 17: Detail of Spartan/XL Dedicated Carry Logic  
Three-State Buffer Example  
DS060_17_080400  
3-State Long Line Drivers  
Figure 18 shows how to use the 3-state buffers to imple-  
ment a multiplexer. The selection is accomplished by the  
buffer 3-state signal.  
A pair of 3-state buffers is associated with each CLB in the  
array. These 3-state buffers (BUFT) can be used to drive  
signals onto the nearest horizontal longlines above and  
below the CLB. They can therefore be used to implement  
multiplexed or bidirectional buses on the horizontal lon-  
glines, saving logic resources.  
Pay particular attention to the polarity of the T pin when  
using these buffers in a design. Active High 3-state (T) is  
identical to an active Low output enable, as shown in  
Table 11.  
There is a weak keeper at each end of these two horizontal  
longlines. This circuit prevents undefined floating levels.  
However, it is overridden by any driver.  
Table 11: Three-State Buffer Functionality  
IN  
X
T
1
0
OUT  
Z
The buffer enable is an active High 3-state (i.e., an active  
Low enable), as shown in Table 11.  
IN  
IN  
Z = (D A) + (D B) + (D C) + (D N)  
A
B
C
N
~100 kΩ  
D
A
D
B
D
C
D
N
BUFT  
BUFT  
BUFT  
BUFT  
A
B
C
N
"Weak Keeper"  
DS060_18_080400  
Figure 18: 3-state Buffers Implement a Multiplexer  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
19  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
connected to GTS. A specific pin location can be assigned  
to this input using a LOC attribute or property, just as with  
any other user-programmable pad. An inverter can option-  
ally be inserted after the input buffer to invert the sense of  
the Global 3-state signal. Alternatively, GTS can be driven  
from any internal node.  
On-Chip Oscillator  
Spartan/XL devices include an internal oscillator. This oscil-  
lator is used to clock the power-on time-out, for configura-  
tion memory clearing, and as the source of CCLK in Master  
configuration mode. The oscillator runs at a nominal 8 MHz  
frequency that varies with process, V , and temperature.  
CC  
The output frequency falls between 4 MHz and 10 MHz.  
STARTUP  
The oscillator output is optionally available after configura-  
tion. Any two of four resynchronized taps of a built-in divider  
are also available. These taps are at the fourth, ninth, four-  
teenth and nineteenth bits of the divider. Therefore, if the  
primary oscillator output is running at the nominal 8 MHz,  
the user has access to an 8-MHz clock, plus any two of  
500 kHz, 16 kHz, 490 Hz and 15 Hz. These frequencies  
can vary by as much as -50% or +25%.  
GSR  
GTS  
PAD  
Q2  
Q3  
IBUF  
Q1, Q4  
DONEIN  
CLK  
DS060_19_080400  
Figure 19: Schematic Symbols for Global Set/Reset  
These signals can be accessed by placing the OSC4 library  
element in a schematic or in HDL code. The oscillator is  
automatically disabled after configuration if the OSC4 sym-  
bol is not used in the design.  
Boundary Scan  
The "bed of nails" has been the traditional method of testing  
electronic assemblies. This approach has become less  
appropriate, due to closer pin spacing and more sophisti-  
cated assembly methods like surface-mount technology  
and multi-layer boards. The IEEE Boundary Scan Standard  
1149.1 was developed to facilitate board-level testing of  
electronic assemblies. Design and test engineers can  
embed a standard test logic structure in their device to  
achieve high fault coverage for I/O and internal logic. This  
structure is easily implemented with a four-pin interface on  
any boundary scan compatible device. IEEE 1149.1-com-  
patible devices may be serial daisy-chained together, con-  
nected in parallel, or a combination of the two.  
Global Signals: GSR and GTS  
Global Set/Reset  
A separate Global Set/Reset line, as shown in Figure 3,  
page 5 for the CLB and Figure 5, page 6 for the IOB, sets or  
clears each flip-flop during power-up, reconfiguration, or  
when a dedicated Reset net is driven active. This global net  
(GSR) does not compete with other routing resources; it  
uses a dedicated distribution network.  
Each flip-flop is configured as either globally set or reset in  
the same way that the local set/reset (SR) is specified.  
Therefore, if a flip-flop is set by SR, it is also set by GSR.  
Similarly, if in reset mode, it is reset by both SR and GSR.  
The Spartan and Spartan-XL families implement IEEE  
1149.1-compatible BYPASS, PRELOAD/SAMPLE and  
EXTEST boundary scan instructions. When the boundary  
scan configuration option is selected, three normal user I/O  
pins become dedicated inputs for these functions. Another  
user output pin becomes the dedicated boundary scan out-  
put. The details of how to enable this circuitry are covered  
later in this section.  
GSR can be driven from any user-programmable pin as a  
global reset input. To use this global net, place an input pad  
and input buffer in the schematic or HDL code, driving the  
GSR pin of the STARTUP symbol. (See Figure 19.) A spe-  
cific pin location can be assigned to this input using a LOC  
attribute or property, just as with any other user-program-  
mable pad. An inverter can optionally be inserted after the  
input buffer to invert the sense of the GSR signal. Alterna-  
tively, GSR can be driven from any internal node.  
By exercising these input signals, the user can serially load  
commands and data into these devices to control the driving  
of their outputs and to examine their inputs. This method is  
an improvement over bed-of-nails testing. It avoids the need  
to over-drive device outputs, and it reduces the user inter-  
face to four pins. An optional fifth pin, a reset for the control  
logic, is described in the standard but is not implemented in  
the Spartan/XL devices.  
Global 3-State  
A separate Global 3-state line (GTS) as shown in Figure 6,  
page 7 forces all FPGA outputs to the high-impedance  
state, unless boundary scan is enabled and is executing an  
EXTEST instruction. GTS does not compete with other rout-  
ing resources; it uses a dedicated distribution network.  
The dedicated on-chip logic implementing the IEEE 1149.1  
functions includes a 16-state machine, an instruction regis-  
ter and a number of data registers. The functional details  
can be found in the IEEE 1149.1 specification and are also  
discussed in the Xilinx application note: "Boundary Scan in  
FPGA Devices."  
GTS can be driven from any user-programmable pin as a  
global 3-state input. To use this global net, place an input  
pad and input buffer in the schematic or HDL code, driving  
the GTS pin of the STARTUP symbol. This is similar to what  
is shown in Figure 19 for GSR except the IBUF would be  
20  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Figure 20 is a diagram of the Spartan/XL boundary scan  
logic. It includes three bits of Data Register per IOB, the  
IEEE 1149.1 Test Access Port controller, and the Instruction  
Register with decodes.  
The other standard data register is the single flip-flop  
BYPASS register. It synchronizes data being passed  
through the FPGA to the next downstream boundary scan  
device.  
Spartan/XL devices can also be configured through the  
boundary scan logic. See Configuration Through the  
Boundary Scan Pins, page 37.  
The FPGA provides two additional data registers that can  
be specified using the BSCAN macro. The FPGA provides  
two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are  
the decodes of two user instructions. For these instructions,  
two corresponding pins (BSCAN.TDO1 and BSCAN.TDO2)  
allow user scan data to be shifted out on TDO. The data  
register clock (BSCAN.DRCK) is available for control of test  
logic which the user may wish to implement with CLBs. The  
NAND of TCK and RUN-TEST-IDLE is also provided  
(BSCAN.IDLE).  
Data Registers  
The primary data register is the boundary scan register. For  
each IOB pin in the FPGA, bonded or not, it includes three  
bits for In, Out and 3-state Control. Non-IOB pins have  
appropriate partial bit population for In or Out only. PRO-  
GRAM, CCLK and DONE are not included in the boundary  
scan register. Each EXTEST CAPTURE-DR state captures  
all In, Out, and 3-state pins.  
Instruction Set  
The Spartan/XL boundary scan instruction set also includes  
instructions to configure the device and read back the con-  
figuration data. The instruction set is coded as shown in  
Table 12.  
The data register also includes the following non-pin bits:  
TDO.T, and TDO.O, which are always bits 0 and 1 of the  
data register, respectively, and BSCANT.UPD, which is  
always the last bit of the data register. These three bound-  
ary scan bits are special-purpose Xilinx test signals.  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
21  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
DATA IN  
IOB.T  
0
1
1
sd  
D
Q
D
Q
0
LE  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
IOB  
sd  
1
0
D
Q
D
Q
LE  
1
0
IOB.I  
1
sd  
D
Q
D
Q
0
LE  
1
0
IOB.Q  
IOB.T  
BYPASS  
REGISTER  
0
1
M
U
X
TDO  
1
sd  
INSTRUCTION REGISTER  
TDI  
D
Q
D
Q
0
LE  
1
sd  
D
Q
D
Q
0
LE  
1
0
IOB.I  
DATAOUT  
SHIFT/  
CAPTURE  
UPDATE  
EXTEST  
CLOCK DATA  
REGISTER  
DS060_20_080400  
Figure 20: Spartan/XL Boundary Scan Logic  
22  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Table 12: Boundary Scan Instructions  
Instruction  
Test  
TDO.T  
TDO.O  
I/O Data  
Source  
Bit 0 ( TDO end)  
Bit 1  
Bit 2  
TDO  
Source  
I2  
0
I1  
0
I0  
0
Selected  
Top-edge IOBs (Right to Left)  
Left-edge IOBs (Top to Bottom)  
EXTEST  
DR  
DR  
0
0
1
SAMPLE/  
DR  
Pin/Logic  
PRELOAD  
0
0
1
1
1
0
0
1
0
USER 1  
USER 2  
BSCAN.  
TDO1  
User Logic  
User Logic  
Pin/Logic  
MODE.I  
BSCAN.  
TDO2  
Bottom-edge IOBs (Left to Right)  
READBACK  
CONFIGURE  
Readback  
Data  
Right-edge IOBs (Bottom to Top)  
BSCANT.UPD  
1
1
0
1
1
0
DOUT  
Disabled  
-
(TDI end)  
IDCODE  
(Spartan-XL  
only)  
IDCODE  
Register  
DS060_21_080400  
Figure 21: Boundary Scan Bit Sequence  
1
1
1
BYPASS  
Bypass  
-
Register  
BSDL (Boundary Scan Description Language) files for  
Spartan/XL devices are available on the Xilinx website in  
the File Download area. Note that the 5V Spartan devices  
and 3V Spartan-XL devices have different BSDL files.  
Bit Sequence  
The bit sequence within each IOB is: In, Out, 3-state. The  
input-only pins contribute only the In bit to the boundary  
scan I/O data register, while the output-only pins contributes  
all three bits.  
Including Boundary Scan in a Design  
If boundary scan is only to be used during configuration, no  
special schematic elements need be included in the sche-  
matic or HDL code. In this case, the special boundary scan  
pins TDI, TMS, TCK and TDO can be used for user func-  
tions after configuration.  
The first two bits in the I/O data register are TDO.T and  
TDO.O, which can be used for the capture of internal sig-  
nals. The final bit is BSCANT.UPD, which can be used to  
drive an internal net. These locations are primarily used by  
Xilinx for internal testing.  
To indicate that boundary scan remain enabled after config-  
uration, place the BSCAN library symbol and connect the  
TDI, TMS, TCK and TDO pad symbols to the appropriate  
pins, as shown in Figure 22.  
From a cavity-up view of the chip (as shown in the FPGA  
Editor), starting in the upper right chip corner, the boundary  
scan data-register bits are ordered as shown in Figure 21.  
The device-specific pinout tables for the Spartan/XL devices  
include the boundary scan locations for each IOB pin.  
Optional  
To User  
Logic  
IBUF  
BSCAN  
TDI  
TMS  
TCK  
TDI  
TDO  
DRCK  
IDLE  
TDO  
TMS  
TCK  
To User  
Logic  
TDO1  
TDO2  
SEL1  
SEL2  
From  
User Logic  
DS060_22_080400  
Figure 22: Boundary Scan Schematic Example  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
23  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Even if the boundary scan symbol is used in a schematic,  
the input pins TMS, TCK, and TDI can still be used as inputs  
to be routed to internal logic. Care must be taken not to  
force the chip into an undesired boundary scan state by  
inadvertently applying boundary scan input patterns to  
these pins. The simplest way to prevent this is to keep TMS  
High, and then apply whatever signal is desired to TDI and  
TCK.  
Configuration State: The configuration state is available to  
JTAG controllers.  
Configuration Disable: The JTAG port can be prevented  
from configuring the FPGA.  
TCK Startup: TCK can now be used to clock the start-up  
block in addition to other user clocks.  
CCLK Holdoff: Changed the requirement for Boundary  
Scan Configure or EXTEST to be issued prior to the release  
of INIT pin and CCLK cycling.  
Avoiding Inadvertent Boundary Scan  
If TMS or TCK is used as user I/O, care must be taken to  
ensure that at least one of these pins is held constant during  
configuration. In some applications, a situation may occur  
where TMS or TCK is driven during configuration. This may  
cause the device to go into boundary scan mode and dis-  
rupt the configuration process.  
Reissue Configure: The Boundary Scan Configure can be  
reissued to recover from an unfinished attempt to configure  
the device.  
Bypass FF: Bypass FF and IOB is modified to provide  
DRCLOCK only during BYPASS for the bypass flip-flop, and  
during EXTEST or SAMPLE/PRELOAD for the IOB register.  
To prevent activation of boundary scan during configuration,  
do either of the following:  
Power-Down (Spartan-XL Only)  
TMS: Tie High to put the Test Access Port controller  
in a benign RESET state.  
All Spartan/XL devices use a combination of efficient seg-  
mented routing and advanced process technology to pro-  
vide low power consumption under all conditions. The 3.3V  
Spartan-XL family adds a dedicated active Low power-down  
pin (PWRDWN) to reduce supply current to 100 µA typical.  
The PWRDWN pin takes advantage of one of the unused  
No Connect locations on the 5V Spartan device. The user  
must de-select the "5V Tolerant I/Os" option in the Configu-  
ration Options to achieve the specified Power Down current.  
The PWRDWN pin has a default internal pull-up resistor,  
allowing it to be left unconnected if unused.  
TCK: Tie High or Lowdo not toggle this clock input.  
For more information regarding boundary scan, refer to the  
Xilinx Application Note, "Boundary Scan in FPGA Devices. "  
Boundary Scan Enhancements (Spartan-XL Only)  
Spartan-XL devices have improved boundary scan func-  
tionality and performance in the following areas:  
IDCODE: The IDCODE register is supported. By using the  
IDCODE, the device connected to the JTAG port can be  
determined. The use of the IDCODE enables selective con-  
figuration dependent on the FPGA found.  
V
must continue to be supplied during Power-down, and  
CC  
configuration data is maintained. When the PWRDWN pin is  
pulled Low, the input and output buffers are disabled. The  
inputs are internally forced to a logic Low level, including the  
MODE pins, DONE, CCLK, and TDO, and all internal  
pull-up resistors are turned off. The PROGRAM pin is not  
affected by Power Down. The GSR net is asserted during  
Power Down, initializing all the flip-flops to their start-up  
state.  
The IDCODE register has the following binary format:  
vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc:ccc1  
where  
c = the company code (49h for Xilinx)  
a = the array dimension in CLBs (ranges from 0Ah for  
XCS05XL to 1Ch for XCS40XL)  
PWRDWN has a minimum pulse width of 50 ns (Figure 23).  
On entering the Power-down state, the inputs will be dis-  
abled and the flip-flops set/reset, and then the outputs are  
disabled about 10 ns later. The user may prefer to assert the  
GTS or GSR signals before PWRDWN to affect the order of  
events. When the PWRDWN signal is returned High, the  
inputs will be enabled first, followed immediately by the  
release of the GSR signal initializing the flip-flops. About 10  
ns later, the outputs will be enabled. Allow 50 ns after the  
release of PWRDWN before using the device.  
f = the family code (02h for Spartan-XL family)  
v = the die version number (currently 0h)  
Table 13: IDCODEs Assigned to Spartan-XL FPGAs  
FPGA  
IDCODE  
XCS05XL  
XCS10XL  
XCS20XL  
XCS30XL  
XCS40XL  
0040A093h  
0040E093h  
00414093h  
00418093h  
0041C093h  
24  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
T
PWDW  
PWRDWN  
50 ns  
50 ns  
Power Down Mode  
Outputs  
Description  
Min  
Symbol  
T
50 ns  
Power Down Time  
PWD  
T
Power Down Pulse Width  
50 ns  
PWDW  
DS060_23_041901  
Figure 23: PWRDWN Pulse Timing  
Power-down retains the configuration, but loses all data  
stored in the device flip-flops. All inputs are interpreted as  
Low, but the internal combinatorial logic is fully functional.  
Make sure that the combination of all inputs Low and all  
flip-flops set or reset in your design will not generate internal  
oscillations, or create permanent bus contention by activat-  
ing internal bus drivers with conflicting data onto the same  
long line.  
configuration bit defines the state of a static memory cell  
that controls either a function look-up table bit, a multiplexer  
input, or an interconnect pass transistor. The Xilinx develop-  
ment system translates the design into a netlist file. It auto-  
matically partitions, places and routes the logic and  
generates the configuration data in PROM format.  
Configuration Mode Control  
During configuration, the PWRDWN pin must be High. If the  
Power Down state is entered before or during configuration,  
the device will restart configuration once the PWRDWN sig-  
nal is removed. Note that the configuration pins are affected  
by Power Down and may not reflect their normal function. If  
there is an external pull-up resistor on the DONE pin, it will  
be High during Power Down even if the device is not yet  
configured. Similarly, if PWRDWN is asserted before config-  
uration is completed, the INIT pin will not indicate status  
information.  
5V Spartan devices have two configuration modes.  
MODE = 1 sets Slave Serial mode  
MODE = 0 sets Master Serial mode  
3V Spartan-XL devices have three configuration modes.  
M1/M0 = 11 sets Slave Serial mode  
M1/M0 = 10 sets Master Serial mode  
M1/M0 = 0X sets Express mode  
In addition to these modes, the device can be configured  
through the Boundary Scan logic (See "Configuration  
Through the Boundary Scan Pins" on page 37.).  
Note that the PWRDWN pin is not part of the Boundary  
Scan chain. Therefore, the Spartan-XL family has a sepa-  
rate set of BSDL files than the 5V Spartan family. Boundary  
scan logic is not usable during Power Down.  
The Mode pins are sampled prior to starting configuration to  
determine the configuration mode. After configuration,  
these pin are unused. The Mode pins have a weak pull-up  
resistor turned on during configuration. With the Mode pins  
High, Slave Serial mode is selected, which is the most pop-  
ular configuration mode. Therefore, for the most common  
configuration mode, the Mode pins can be left unconnected.  
If the Master Serial mode is desired, the MODE/M0 pin  
should be connected directly to GND, or through a  
pull-down resistor of 1 Kor less.  
Configuration and Test  
Configuration is the process of loading design-specific pro-  
gramming data into one or more FPGAs to define the func-  
tional operation of the internal blocks and their  
interconnections. This is somewhat like loading the com-  
mand registers of a programmable peripheral chip.  
Spartan/XL devices use several hundred bits of configura-  
tion data per CLB and its associated interconnects. Each  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
25  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
During configuration, some of the I/O pins are used tempo-  
rarily for the configuration process. All pins used during con-  
figuration are shown in Table 14 and Table 15.  
Table 15: Pin Functions During Configuration  
(Spartan-XL family only)  
CONFIGURATION MODE <M1:M0>  
Table 14: Pin Functions During Configuration  
(Spartan family only)  
Slave  
Serial  
[1:1]  
Master  
Serial  
[1:0]  
Express  
[0:X]  
User  
Operation  
Configuration Mode (MODE Pin)  
M1 (High) (I) M1 (High) (I) M1(Low) (I)  
M0 (High) (I) M0 (Low) (I) M0 (I)  
HDC (High) HDC (High)  
M1  
M0  
Slave Serial  
(High)  
Master Serial  
(Low)  
User  
Operation  
MODE (I)  
HDC (High)  
LDC (Low)  
INIT  
MODE (I)  
HDC (High)  
LDC (Low)  
INIT  
MODE  
I/O  
HDC (High)  
LDC (Low)  
INIT  
I/O  
LDC (Low)  
INIT  
LDC (Low)  
INIT  
I/O  
I/O  
I/O  
I/O  
DONE  
DONE  
DONE  
DONE  
DONE  
DONE  
DONE  
PROGRAM  
(I)  
PROGRAM PROGRAM PROGRAM  
(I)  
(I)  
PROGRAM (I)  
CCLK (I)  
DIN (I)  
PROGRAM (I)  
CCLK (O)  
DIN (I)  
PROGRAM  
CCLK (I)  
I/O  
CCLK (I)  
CCLK (O)  
CCLK (I)  
DATA 7 (I)  
DATA 6 (I)  
DATA 5 (I)  
DATA 4 (I)  
DATA 3 (I)  
DATA 2 (I)  
DATA 1 (I)  
DATA 0 (I)  
DOUT  
CCLK (I)  
I/O  
I/O  
DOUT  
DOUT  
SGCK4-I/O  
TDI-I/O  
TCK-I/O  
TMS-I/O  
TDO-(O)  
ALL OTHERS  
I/O  
TDI  
TDI  
I/O  
TCK  
TCK  
I/O  
TMS  
TMS  
I/O  
TDO  
TDO  
I/O  
DIN (I)  
DOUT  
TDI  
DIN (I)  
DOUT  
TDI  
I/O  
Notes:  
1. A shaded table cell represents the internal pull-up used  
before and during configuration.  
2. (I) represents an input; (O) represents an output.  
3. INIT is an open-drain output during configuration.  
GCK6-I/O  
TDI-I/O  
TCK-I/O  
TMS-I/O  
TDO-(O)  
I/O  
TDI  
TCK  
TCK  
TCK  
TMS  
TDO  
TMS  
TDO  
TMS  
TDO  
CS1  
ALL  
OTHERS  
Notes:  
1. A shaded table cell represents the internal pull-up used  
before and during configuration.  
2. (I) represents an input; (O) represents an output.  
3. INIT is an open-drain output during configuration.  
26  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
falling CCLK edge, and the next FPGA in the daisy chain  
accepts data on the subsequent rising CCLK edge. See the  
timing diagram in Figure 24.  
Master Serial Mode  
The Master serial mode uses an internal oscillator to gener-  
ate a Configuration Clock (CCLK) for driving potential slave  
devices and the Xilinx serial-configuration PROM  
(SPROM). The CCLK speed is selectable as either 1 MHz  
(default) or 8 MHz. Configuration always starts at the default  
slow frequency, then can switch to the higher frequency dur-  
ing the first frame. Frequency tolerance is 50% to +25%.  
In the bitstream generation software, the user can specify  
Fast Configuration Rate, which, starting several bits into the  
first frame, increases the CCLK frequency by a factor of  
eight. For actual timing values please refer to the specifica-  
tion section. Be sure that the serial PROM and slaves are  
fast enough to support this data rate. Devices such as  
XC3000A and XC3100A do not support the Fast Configura-  
tion Rate option.  
In Master Serial mode, the CCLK output of the device drives  
a Xilinx SPROM that feeds the FPGA DIN input. Each rising  
edge of the CCLK output increments the Serial PROM inter-  
nal address counter. The next data bit is put on the SPROM  
data output, connected to the FPGA DIN pin. The FPGA  
accepts this data on the subsequent rising CCLK edge.  
The SPROM CE input can be driven from either LDC or  
DONE. Using LDC avoids potential contention on the DIN  
pin, if this pin is configured as user I/O, but LDC is then  
restricted to be a permanently High user output after config-  
uration. Using DONE can also avoid contention on DIN, pro-  
vided the Early DONE option is invoked.  
When used in a daisy-chain configuration the Master Serial  
FPGA is placed as the first device in the chain and is  
referred to as the lead FPGA. The lead FPGA presents the  
preamble data, and all data that overflows the lead device,  
on its DOUT pin. There is an internal pipeline delay of 1.5  
CCLK periods, which means that DOUT changes on the  
Figure 25 shows a full master/slave system. The leftmost  
device is in Master Serial mode, all other devices in the  
chain are in Slave Serial mode.  
CCLK  
(Output)  
T
CKDS  
T
DSCK  
Serial Data In  
n
n + 1  
n + 2  
Serial DOUT  
(Output)  
n 3  
n 2  
n 1  
n
DS060_24_080400  
Symbol  
Description  
Min  
20  
0
Units  
ns  
T
DIN setup  
DIN hold  
DSCK  
CKDS  
CCLK  
T
ns  
Notes:  
1. At power-up, V must rise from 2.0V to V min in less than 25 ms, otherwise  
CC  
CC  
delay configuration by pulling PROGRAM Low until V is valid.  
CC  
2. Master Serial mode timing is based on testing in slave mode.  
Figure 24: Master Serial Mode Programming Switching Characteristics  
The lead FPGA then presents the preamble dataand all  
data that overflows the lead deviceon its DOUT pin. There  
is an internal delay of 0.5 CCLK periods, which means that  
DOUT changes on the falling CCLK edge, and the next  
FPGA in the daisy chain accepts data on the subsequent  
rising CCLK edge.  
Slave Serial Mode  
In Slave Serial mode, the FPGA receives serial configura-  
tion data on the rising edge of CCLK and, after loading its  
configuration, passes additional data out, resynchronized  
on the next falling edge of CCLK.  
In this mode, an external signal drives the CCLK input of the  
FPGA (most often from a Master Serial device). The serial  
configuration bitstream must be available at the DIN input of  
the lead FPGA a short setup time before each rising CCLK  
edge.  
Figure 25 shows a full master/slave system. A Spartan/XL  
device in Slave Serial mode should be connected as shown  
in the third device from the left.  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
27  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Slave Serial is the default mode if the Mode pins are left  
unconnected, as they have weak pull-up resistors during  
configuration.  
and is captured by each FPGA when it recognizes the 0010  
preamble. Following the length-count data, each FPGA out-  
puts a High on DOUT until it has received its required num-  
ber of data frames.  
Multiple slave devices with identical configurations can be  
wired with parallel DIN inputs. In this way, multiple devices  
can be configured simultaneously.  
After an FPGA has received its configuration data, it passes  
on any additional frame start bits and configuration data on  
DOUT. When the total number of configuration clocks  
applied after memory initialization equals the value of the  
24-bit length count, the FPGAs begin the start-up sequence  
and become operational together. FPGA I/O are normally  
released two CCLK cycles after the last configuration bit is  
received.  
Serial Daisy Chain  
Multiple devices with different configurations can be con-  
nected together in a "daisy chain," and a single combined  
bitstream used to configure the chain of slave devices.  
To configure a daisy chain of devices, wire the CCLK pins of  
all devices in parallel, as shown in Figure 25. Connect the  
DOUT of each device to the DIN of the next. The lead or  
master FPGA and following slaves each passes resynchro-  
nized configuration data coming from a single source. The  
header data, including the length count, is passed through  
The daisy-chained bitstream is not simply a concatenation  
of the individual bitstreams. The PROM File Formatter must  
be used to combine the bitstreams for a daisy-chained con-  
figuration.  
Note:  
M2, M1, M0 can be shorted  
to V  
if not used as I/O  
CC  
V
CC  
3.3K  
3.3K  
3.3K  
M0 M1  
M2  
MODE  
DOUT  
N/C  
MODE  
DIN  
DOUT  
DOUT  
DIN  
CCLK  
CCLK  
V
CC  
Spartan  
Master  
Spartan  
Slave  
Xilinx SPROM  
+5V  
FPGA  
Slave  
3.3K  
Seria  
l
CLK  
CCLK  
V
PP  
DATA  
CE  
DIN  
LDC  
INIT  
CEO  
PROGRAM  
DONE  
PROGRAM  
DONE  
RESET  
D/P  
INIT  
INIT  
RESET/OE  
(Low Reset Option Used)  
PROGRAM  
DS060_25_061301  
Figure 25: Master/Slave Serial Mode Circuit Diagram  
28  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
DIN  
Bit n  
Bit n + 1  
T
T
T
CCL  
DCC  
CCD  
CCLK  
T
T
CCH  
CCO  
DOUT  
(Output)  
Bit n 1  
Bit n  
DS060_26_080400  
Symbol  
Description  
Min  
20  
0
Max  
Units  
ns  
T
T
T
T
DIN setup  
DIN hold  
-
-
DCC  
CCD  
CCO  
CCH  
ns  
DIN to DOUT  
High time  
Low time  
-
30  
-
ns  
CCLK  
40  
40  
-
ns  
T
-
ns  
CCL  
F
Frequency  
10  
MHz  
CC  
Notes:  
1. Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are  
High.  
Figure 26: Slave Serial Mode Programming Switching Characteristics  
are in Express mode. A single combined bitstream is used  
to configure the chain of Express mode devices. CCLK pins  
are tied together and D0-D7 pins are tied together for all  
devices along the chain. A status signal is passed from  
DOUT to CS1 of successive devices along the chain. Frame  
data is accepted only when CS1 is High and the devices  
configuration memory is not already full. The lead device in  
the chain has its CS1 input tied High (or floating, since there  
is an internal pull-up). The status pin DOUT is pulled Low  
after the header is received by all devices, and remains Low  
until the devices configuration memory is full. DOUT is then  
pulled High to signal the next device in the chain to accept  
the configuration data on the D0-D7 bus.  
Express Mode (Spartan-XL only)  
Express mode is similar to Slave Serial mode, except that  
data is processed one byte per CCLK cycle instead of one  
bit per CCLK cycle. An external source is used to drive  
CCLK, while byte-wide data is loaded directly into the con-  
figuration data shift registers (Figure 27). A CCLK fre-  
quency of 1 MHz is equivalent to a 8 MHz serial rate,  
because eight bits of configuration data are loaded per  
CCLK cycle. Express mode does not support CRC error  
checking, but does support constant-field error checking. A  
length count is not used in Express mode.  
Express mode must be specified as an option to the devel-  
opment system. The Express mode bitstream is not com-  
patible with the other configuration modes (see Table 16,  
page 32.) Express mode is selected by a <0X> on the Mode  
pins (M1, M0).  
The DONE pins of all devices in the chain should be tied  
together, with one or more active internal pull-ups. If a large  
number of devices are included in the chain, deactivate  
some of the internal pull-ups, since the Low-driving DONE  
pin of the last device in the chain must sink the current from  
all pull-ups in the chain. The DONE pull-up is activated by  
default. It can be deactivated using a development system  
option.  
The first byte of parallel configuration data must be available  
at the D inputs of the FPGA a short setup time before the  
second rising CCLK edge. Subsequent data bytes are  
clocked in on each consecutive rising CCLK edge  
(Figure 28).  
The requirement that all DONE pins in a daisy chain be  
wired together applies only to Express mode, and only if all  
devices in the chain are to become active simultaneously.  
All Spartan-XL devices in Express mode are synchronized  
to the DONE pin. User I/Os for each device become active  
Pseudo Daisy Chain  
Multiple devices with different configurations can be config-  
ured in a pseudo daisy chain provided that all of the devices  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
29  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
after the DONE pin for that device goes High. (The exact  
timing is determined by development system options.)  
Since the DONE pin is open-drain and does not drive a High  
value, tying the DONE pins of all devices together prevents  
all devices in the chain from going High until the last device  
in the chain has completed its configuration cycle. If the  
DONE pin of a device is left unconnected, the device  
becomes active as soon as that device has been config-  
ured. Because only Spartan-XL, XC4000XLA/XV, and  
XC5200 devices support Express mode, only these devices  
can be used to form an Express mode daisy chain.  
V
CC  
8
To Additional  
M0  
M1  
M0  
M1  
Optional  
Daisy-Chained  
Devices  
CS1  
CS1  
DOUT  
DOUT  
8
8
D0-D7  
D0-D7  
DATA BUS  
Optional  
Daisy-Chained  
Spartan-XL  
VCC  
3.3K  
Spartan-XL  
PROGRAM  
INIT  
PROGRAM  
PROGRAM  
INIT  
INIT  
CCLK  
DONE  
DONE  
CCLK  
To Additional  
Optional  
Daisy-Chained  
Devices  
CCLK  
DS060_27_080400  
Figure 27: Express Mode Circuit Diagram  
30  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
CCLK  
T
IC  
INIT  
T
CD  
T
DC  
BYTE  
BYTE  
1
BYTE  
6
D0-D7  
DOUT  
0
Header Received  
FPGA Filled  
DS060_28_080400  
Symbol  
Description  
Min  
Max  
Units  
µs  
T
INIT (High) setup time  
D0-D7 setup time  
D0-D7 hold time  
CCLK High time  
CCLK Low time  
5
20  
0
-
-
IC  
T
T
ns  
DC  
CD  
-
ns  
CCLK  
T
45  
45  
-
-
ns  
CCH  
T
-
ns  
CCL  
F
CCLK Frequency  
10  
MHz  
CC  
Notes:  
1. If not driven by the preceding DOUT, CS1 must remain High until the  
device is fully configured.  
Figure 28: Express Mode Programming Switching Characteristics  
Table 16. Bit-serial data is read from left to right. Express  
mode data is shown with D0 at the left and D7 at the right.  
Setting CCLK Frequency  
In Master mode, CCLK can be generated in either of two  
frequencies. In the default slow mode, the frequency ranges  
from 0.5 MHz to 1.25 MHz for Spartan/XL devices. In fast  
CCLK mode, the frequency ranges from 4 MHz to 10 MHz  
for Spartan/XL devices. The frequency is changed to fast by  
an option when running the bitstream generation software.  
The configuration data stream begins with a string of eight  
ones, a preamble code, followed by a 24-bit length count  
and a separator field of ones (or 24 fill bits, in Spartan-XL  
Express mode). This header is followed by the actual con-  
figuration data in frames. The length and number of frames  
depends on the device type (see Table 17). Each frame  
begins with a start field and ends with an error check. In  
serial modes, a postamble code is required to signal the end  
of data for a single device. In all cases, additional start-up  
bytes of data are required to provide four clocks for the star-  
tup sequence at the end of configuration. Long daisy chains  
require additional startup bytes to shift the last data through  
the chain. All start-up bytes are "dont cares".  
Data Stream Format  
The data stream ("bitstream") format is identical for both  
serial configuration modes, but different for the Spartan-XL  
Express mode. In Express mode, the device becomes  
active when DONE goes High, therefore no length count is  
required. Additionally, CRC error checking is not supported  
in Express mode. The data stream format is shown in  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
31  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
A selection of CRC or non-CRC error checking is allowed by  
the bitstream generation software. The Spartan-XL Express  
mode only supports non-CRC error checking. The  
Table 16: Spartan/XL Data Stream Formats  
Express Mode  
Serial Modes  
(D0...)  
(D0-D7)  
(Spartan-XL only)  
non-CRC error checking tests for  
a
designated  
Data Type  
Fill Byte  
end-of-frame field for each frame. For CRC error checking,  
the software calculates a running CRC and inserts a unique  
four-bit partial check at the end of each frame. The 11-bit  
CRC check of the last frame of an FPGA includes the last  
seven data bits.  
11111111b  
0010b  
FFFFh  
Preamble Code  
Length Count  
Fill Bits  
11110010b  
(1)  
COUNT[23:0]  
1111b  
COUNT[23:0]  
Detection of an error results in the suspension of data load-  
ing before DONE goes High, and the pulling down of the  
INIT pin. In Master serial mode, CCLK continues to operate  
externally. The user must detect INIT and initialize a new  
configuration by pulsing the PROGRAM pin Low or cycling  
-
Field Check  
Code  
-
11010010b  
(2)  
Start Field  
0b  
11111110b  
V
.
CC  
Data Frame  
DATA[n1:0]  
DATA[n1:0]  
Cyclic Redundancy Check (CRC) for Configura-  
tion and Readback  
CRC or Constant xxxx (CRC)  
11010010b  
Field Check  
or 0110b  
The Cyclic Redundancy Check is a method of error detec-  
tion in data transmission applications. Generally, the trans-  
mitting system performs a calculation on the serial  
bitstream. The result of this calculation is tagged onto the  
data stream as additional check bits. The receiving system  
performs an identical calculation on the bitstream and com-  
pares the result with the received checksum.  
Extend Write  
Cycle  
-
FFD2FFFFFFh  
Postamble  
01111111b  
FFh  
-
(3)  
Start-Up Bytes  
FFFFFFFFFFFFFFh  
Legend:  
Each data frame of the configuration bitstream has four  
error bits at the end, as shown in Table 16. If a frame data  
error is detected during the loading of the FPGA, the config-  
uration process with a potentially corrupted bitstream is ter-  
minated. The FPGA pulls the INIT pin Low and goes into a  
Wait state.  
Unshaded  
Light  
Once per bitstream  
Once per data frame  
Once per device  
Dark  
Notes:  
1. Not used by configuration logic.  
2. 11111111b for XCS40XL only.  
3. Development system may add more start-up bytes.  
32  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Table 17: Spartan/XL Program Data  
Device  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
Max System  
Gates  
5,000  
10,000  
20,000  
30,000  
40,000  
CLBs  
100  
196  
400  
576  
784  
(Row x Col.)  
(10 x 10)  
(14 x 14)  
(20 x 20)  
(24 x 24)  
(28 x 28)  
IOBs  
80  
112  
160  
192  
224  
Part Number  
Supply Voltage  
Bits per Frame  
Frames  
XCS05 XCS05XL XCS10 XCS10XL XCS20 XCS20XL XCS30 XCS30XL XCS40 XCS40XL  
5V  
126  
3.3V  
127  
5V  
166  
3.3V  
167  
573  
5V  
3.3V  
227  
789  
5V  
3.3V  
267  
933  
5V  
306  
3.3V  
307  
226  
788  
266  
932  
428  
429  
572  
1,076  
1,077  
Program Data  
53,936  
53,984  
54,491  
54,544  
94,960  
95,008  
95,699 178,096 179,111 247,920 249,119 329,264 330,647  
95,752 178,144 179,160 247,968 249,168 329,312 330,696  
PROM Size  
(bits)  
Serial PROM  
17S05 17S05XL 17S10 17S10XL 17S20 17S20XL 17S30 17S30XL 17S40 17S40XL  
79,072 128,488 221,056 298,696 387,856  
Express Mode  
PROM Size  
(bits)  
-
-
-
-
-
Notes:  
1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits (+1 for Spartan-XL  
device)  
Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 (+ 1 for Spartan-XL device)  
Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits  
PROM Size = Program Data + 40 (header) + 8, rounded up to the nearest byte  
2. The user can add more "1" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame,  
following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra  
leading ones at the beginning of the header.  
3. Express mode adds 57 (XCS05XL, XCS10XL), or 53 (XCS20XL, XCS30XL, XCS40XL) bits per frame, + additional start-up bits.  
During Readback, 11 bits of the 16-bit checksum are added  
to the end of the Readback data stream. The checksum is  
computed using the CRC-16 CCITT polynomial, as shown  
in Figure 29. The checksum consists of the 11 most signifi-  
cant bits of the 16-bit code. A change in the checksum indi-  
cates a change in the Readback bitstream. A comparison to  
a previous checksum is meaningful only if the readback  
data is independent of the current device state. CLB outputs  
should not be included (Readback Capture option not  
used), and if RAM is present, the RAM content must be  
unchanged.  
Statistically, one error out of 2048 might go undetected.  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
33  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
X2  
X15  
X16  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
15  
SERIAL DATA IN  
Polynomial: X16 + X15 + X2 + 1  
1
1
1
1
1
0 15 14 13 12 11 10 9  
8
7
6
5
LAST DATA FRAME  
CRC CHECKSUM  
Readback Data Stream  
Figure 29: Circuit for Generating CRC-16  
DS060_29_080400  
Low. During this time delay, or as long as the PROGRAM  
input is asserted, the configuration logic is held in a Config-  
uration Memory Clear state. The configuration-memory  
frames are consecutively initialized, using the internal oscil-  
lator.  
Configuration Sequence  
There are four major steps in the Spartan/XL power-up con-  
figuration sequence.  
Configuration Memory Clear  
Initialization  
At the end of each complete pass through the frame  
addressing, the power-on time-out delay circuitry and the  
level of the PROGRAM pin are tested. If neither is asserted,  
the logic initiates one additional clearing of the configuration  
frames and then tests the INIT input.  
Configuration  
Start-up  
The full process is illustrated in Figure 30.  
Configuration Memory Clear  
Initialization  
When power is first applied or is reapplied to an FPGA, an  
internal circuit forces initialization of the configuration logic.  
During initialization and configuration, user pins HDC, LDC,  
INIT and DONE provide status outputs for the system inter-  
face. The outputs LDC, INIT and DONE are held Low and  
HDC is held High starting at the initial application of power.  
When V  
reaches an operational level, and the circuit  
CC  
passes the write and read test of a sample pair of configu-  
ration bits, a time delay is started. This time delay is nomi-  
nally 16 ms. The delay is four times as long when in Master  
Serial Mode to allow ample time for all slaves to reach a sta-  
The open drain INIT pin is released after the final initializa-  
tion pass through the frame addresses. There is a deliber-  
ate delay before a Master-mode device recognizes an  
inactive INIT. Two internal clocks after the INIT pin is recog-  
nized as High, the device samples the MODE pin to deter-  
mine the configuration mode. The appropriate interface  
lines become active and the configuration preamble and  
data can be loaded.  
ble V . When all INIT pins are tied together, as recom-  
CC  
mended, the longest delay takes precedence. Therefore,  
devices with different time delays can easily be mixed and  
matched in a daisy chain.  
This delay is applied only on power-up. It is not applied  
when reconfiguring an FPGA by pulsing the PROGRAM pin  
34  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Configuration  
The 0010 preamble code indicates that the following 24 bits  
represent the length count for serial modes. The length  
count is the total number of configuration clocks needed to  
load the complete configuration data. (Four additional con-  
figuration clocks are required to complete the configuration  
process, as discussed below.) After the preamble and the  
length count have been passed through to any device in the  
daisy chain, its DOUT is held High to prevent frame start  
bits from reaching any daisy-chained devices. In Spar-  
tan-XL Express mode, the length count bits are ignored,  
and DOUT is held Low, to disable the next device in the  
pseudo daisy chain.  
V
No  
CC  
Valid  
Boundary Scan  
Instructions  
Available:  
Yes  
Test MODE, Generate  
One Time-Out Pulse  
of 16 or 64 ms  
PROGRAM  
= Low  
Yes  
Keep Clearing  
Configuration  
Memory  
EXTEST*  
SAMPLE/PRELOAD  
BYPASS  
CONFIGURE*  
(* if PROGRAM = High)  
Completely Clear  
Configuration Memory  
Once More  
~1.3 µs per Frame  
A specific configuration bit, early in the first frame of a mas-  
ter device, controls the configuration-clock rate and can  
increase it by a factor of eight. Therefore, if a fast configura-  
tion clock is selected by the bitstream, the slower clock rate  
is used until this configuration bit is detected.  
INIT  
No  
High? if  
Master  
Master Delays Before  
Sampling Mode Line  
Each frame has a start field followed by the frame-configu-  
ration data bits and a frame error field. If a frame data error  
is detected, the FPGA halts loading, and signals the error by  
pulling the open-drain INIT pin Low. After all configuration  
frames have been loaded into an FPGA using a serial  
mode, DOUT again follows the input data so that the  
remaining data is passed on to the next device. In  
Spartan-XL Express mode, when the first device is fully pro-  
grammed, DOUT goes High to enable the next device in the  
chain.  
Yes  
Sample  
Mode Line  
Master CCLK  
Goes Active  
Load One  
Configuration  
Data Frame  
Yes  
Frame  
Error  
Pull INIT Low  
and Stop  
Delaying Configuration After Power-Up  
No  
There are two methods of delaying configuration after  
power-up: put a logic Low on the PROGRAM input, or pull  
the bidirectional INIT pin Low, using an open-collector  
(open-drain) driver. (See Figure 30.)  
SAMPLE/PRELOAD  
Config-  
uration  
memory  
Full  
No  
BYPASS  
Yes  
A Low on the PROGRAM input is the more radical  
approach, and is recommended when the power-supply rise  
time is excessive or poorly defined. As long as PROGRAM  
is Low, the FPGA keeps clearing its configuration memory.  
When PROGRAM goes High, the configuration memory is  
cleared one more time, followed by the beginning of config-  
uration, provided the INIT input is not externally held Low.  
Note that a Low on the PROGRAM input automatically  
forces a Low on the INIT output. The Spartan/XL PRO-  
GRAM pin has a permanent weak pull-up. Avoid holding  
PROGRAM Low for more than 500 µs.  
Pass  
Configuration  
Data to DOUT  
CCLK  
Count Equals  
Length  
No  
Count  
Yes  
Start-Up  
Sequence  
F
Operational  
Using an open-collector or open-drain driver to hold INIT  
Low before the beginning of configuration causes the FPGA  
to wait after completing the configuration memory clear  
operation. When INIT is no longer held Low externally, the  
device determines its configuration mode by capturing the  
state of the Mode pins, and is ready to start the configura-  
EXTEST  
SAMPLE PRELOAD  
BYPASS  
If Boundary Scan  
is Selected  
USER 1  
USER 2  
CONFIGURE  
READBACK  
DS060_30_080400  
tion process. A master device waits up to an additional  
300 µs to make sure that any slaves in the optional daisy  
chain have seen that INIT is High.  
Figure 30: Power-up Configuration Sequence  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
35  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
For more details on Configuration, refer to the Xilinx Appli-  
cation Note "FPGA Configuration Guidelines" (XAPP090).  
options in the bitstream generation software. Heavy lines in  
Figure 31 show the default timing. The thin lines indicate all  
other possible timing options. The start-up logic must be  
clocked until the "F" (Finished) state is reached.  
Start-Up  
Start-up is the transition from the configuration process to  
the intended user operation. This transition involves a  
change from one clock source to another, and a change  
from interfacing parallel or serial configuration data where  
most outputs are 3-stated, to normal operation with I/O pins  
active in the user system. Start-up must make sure that the  
user logic wakes upgracefully, that the outputs become  
active without causing contention with the configuration sig-  
nals, and that the internal flip-flops are released from the  
Global Set/Reset (GSR) at the right time.  
The default option, and the most practical one, is for DONE  
to go High first, disconnecting the configuration data source  
and avoiding any contention when the I/Os become active  
one clock later. GSR is then released another clock period  
later to make sure that user operation starts from stable  
internal conditions. This is the most common sequence,  
shown with heavy lines in Figure 31, but the designer can  
modify it to meet particular requirements.  
Start-Up Clock  
Normally, the start-up sequence is controlled by the internal  
device oscillator (CCLK), which is asynchronous to the sys-  
tem clock. As a configuration option, they can be triggered  
by an on-chip user net called UCLK. This user net can be  
accessed by placing the STARTUP library symbol, and the  
start-up modes are known as UCLK_NOSYNC or  
UCLK_SYNC. This allows the device to wake up in synchro-  
nism with the user system.  
Start-Up Initiation  
Two conditions have to be met in order for the start-up  
sequence to begin:  
The chip's internal memory must be full, and  
The configuration length count must be met, exactly.  
In all configuration modes except Express mode, Spar-  
tan/XL devices read the expected length count from the bit-  
stream and store it in an internal register. The length count  
varies according to the number of devices and the composi-  
tion of the daisy chain. Each device also counts the number  
of CCLKs during configuration.  
DONE Pin  
Note that DONE is an open-drain output and does not go  
High unless an internal pull-up is activated or an external  
pull-up is attached. The internal pull-up is activated as the  
default by the bitstream generation software.  
In Express mode, there is no length count. The start-up  
sequence for each device begins when the device has  
received its quota of configuration data. Wiring the DONE  
pins of several devices together delays start-up of all  
devices until all are fully configured.  
The DONE pin can also be wire-ANDed with DONE pins of  
other FPGAs or with other external signals, and can then be  
used as input to the start-up control logic. This is called  
Start-up Timing Synchronous to Done Inand is selected  
by either CCLK_SYNC or UCLK_SYNC. When DONE is not  
used as an input, the operation is called Start-up Timing  
Not Synchronous to DONE In,and is selected by either  
CCLK_NOSYNC or UCLK_NOSYNC. Express mode con-  
figuration always uses either CCLK_SYNC or UCLK_SYNC  
timing, while the other configuration modes can use any of  
the four timing sequences.  
Start-Up Events  
The device can be programmed to control three start-up  
events.  
The release of the open-drain DONE output  
The termination of the Global Three-State and the  
change of configuration-related pins to the user  
function, activating all IOBs.  
When the UCLK_SYNC option is enabled, the user can  
externally hold the open-drain DONE output Low, and thus  
stall all further progress in the start-up sequence until  
DONE is released and has gone High. This option can be  
used to force synchronization of several FPGAs to a com-  
mon user clock, or to guarantee that all devices are suc-  
cessfully configured before any I/Os go active.  
The termination of the Global Set/Reset initialization of  
all CLB and IOB storage elements.  
Figure 31 describes start-up timing in detail. The three  
events DONE going High, the internal GSR being  
de-activated, and the user I/O going active can all occur  
in any arbitrary sequence. This relative timing is selected by  
36  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Length Count Match  
CCLK Period  
CCLK  
F
DONE  
C1  
C2  
C2  
C3  
C3  
C4  
C4  
F = Finished, no more  
configuration clocks needed  
Daisy-chain lead device  
must have latest F  
I/O  
CCLK_NOSYNC  
GSR Active  
Heavy lines describe  
default timing  
C2  
C3  
C4  
DONE IN  
F
DONE  
I/O  
C1, C2 or C3  
CCLK_SYNC  
Di  
Di+1  
Di+1  
GSR Active  
Di  
F
DONE  
I/O  
C1  
U2  
U2  
U3  
U3  
U4  
UCLK_NOSYNC  
U4  
GSR Active  
U2  
U3  
U4  
DONE IN  
F
DONE  
I/O  
C1  
U2  
UCLK_SYNC  
Di  
Di+1  
Di+2  
Di+2  
GSR Active  
Di Di+1  
Synchronization  
Uncertainty  
UCLK Period  
DS060_39_082801  
Figure 31: Start-up Timing  
Wait for INIT to go High.  
Configuration Through the Boundary Scan  
Pins  
Sequence the boundary scan Test Access Port to the  
SHIFT-DR state.  
Spartan/XL devices can be configured through the bound-  
ary scan pins. The basic procedure is as follows:  
Toggle TCK to clock data into TDI pin.  
The user must account for all TCK clock cycles after INIT  
goes High, as all of these cycles affect the Length Count  
compare.  
Power up the FPGA with INIT held Low (or drive the  
PROGRAM pin Low for more than 300 ns followed by a  
High while holding INIT Low). Holding INIT Low allows  
enough time to issue the CONFIG command to the  
FPGA. The pin can be used as I/O after configuration if  
a resistor is used to hold INIT Low.  
For more detailed information, refer to the Xilinx application  
note, "Boundary Scan in FPGA Devices." This application  
note applies to Spartan and Spartan-XL devices.  
Issue the CONFIG command to the TMS input.  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
37  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
of the first frame. The first two data bits of the first frame are  
always High.  
Readback  
The user can read back the content of configuration mem-  
ory and the level of certain internal nodes without interfering  
with the normal operation of the device.  
Each frame ends with four error check bits. They are read  
back as High. The last seven bits of the last frame are also  
read back as High. An additional Start bit (Low) and an  
11-bit Cyclic Redundancy Check (CRC) signature follow,  
before RDBK.RIP returns Low.  
Readback not only reports the downloaded configuration  
bits, but can also include the present state of the device,  
represented by the content of all flip-flops and latches in  
CLBs and IOBs, as well as the content of function genera-  
tors used as RAMs.  
Readback Options  
Readback options are: Readback Capture, Readback  
Abort, and Clock Select. They are set with the bitstream  
generation software.  
Although readback can be performed while the device is  
operating, for best results and to freeze a known capture  
state, it is recommended that the clock inputs be stopped  
until readback is complete.  
Readback Capture  
When the Readback Capture option is selected, the data  
stream includes sampled values of CLB and IOB signals.  
The rising edge of RDBK.TRIG latches the inverted values  
of the four CLB outputs, the IOB output flip-flops and the  
input signals I1 and I2. Note that while the bits describing  
configuration (interconnect, function generators, and RAM  
content) are not inverted, the CLB and IOB output signals  
are inverted. RDBK.TRIG is located in the lower-left corner  
of the device.  
Readback of Spartan-XL Express mode bitstreams results  
in data that does not resemble the original bitstream,  
because the bitstream format differs from other modes.  
Spartan/XL Readback does not use any dedicated pins, but  
uses four internal nets (RDBK.TRIG, RDBK.DATA,  
RDBK.RIP and RDBK.CLK) that can be routed to any IOB.  
To access the internal Readback signals, instantiate the  
READBACK library symbol and attach the appropriate pad  
symbols, as shown in Figure 32.  
When the Readback Capture option is not selected, the val-  
ues of the capture bits reflect the configuration data origi-  
nally written to those memory locations. If the RAM  
capability of the CLBs is used, RAM data are available in  
Readback, since they directly overwrite the F and G func-  
tion-table configuration of the CLB.  
After Readback has been initiated by a Low-to-High transi-  
tion on RDBK.TRIG, the RDBK.RIP (Read In Progress) out-  
put goes High on the next rising edge of RDBK.CLK.  
Subsequent rising edges of this clock shift out Readback  
data on the RDBK.DATA net.  
Readback data does not include the preamble, but starts  
with five dummy bits (all High) followed by the Start bit (Low)  
If Unconnected,  
Default is CCLK  
DATA  
RIP  
READ_DATA  
CLK  
READBACK  
OBUF  
READ_TRIGGER  
TRIG  
IBUF  
DS060_31_080400  
Figure 32: Readback Schematic Example  
38  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Readback Abort  
met. For example, if a processor is controlling Readback, an  
interrupt may force it to stop in the middle of a readback.  
This necessitates stopping the clock, and thus violating the  
specification.  
When the Readback Abort option is selected, a High-to-Low  
transition on RDBK.TRIG terminates the Readback opera-  
tion and prepares the logic to accept another trigger.  
The specification is mandatory only on clocking data at the  
end of a frame prior to the next start bit. The transfer mech-  
anism will load the data to a shift register during the last six  
clock cycles of the frame, prior to the start bit of the following  
frame. This loading process is dynamic, and is the source of  
the maximum High and Low time requirements.  
After an aborted Readback, additional clocks (up to one  
Readback clock per configuration frame) may be required to  
re-initialize the control logic. The status of Readback is indi-  
cated by the output control net RDBK.RIP. RDBK.RIP is  
High whenever a readback is in progress.  
Clock Select  
Therefore, the specification only applies to the six clock  
cycles prior to and including any start bit, including the  
clocks before the first start bit in the Readback data stream.  
At other times, the frame data is already in the register and  
the register is not dynamic. Thus, it can be shifted out just  
like a regular shift register.  
CCLK is the default clock. However, the user can insert  
another clock on RDBK.CLK. Readback control and data  
are clocked on rising edges of RDBK.CLK. If Readback  
must be inhibited for security reasons, the Readback control  
nets are simply not connected. RDBK.CLK is located in the  
lower right chip corner.  
The user must precisely calculate the location of the Read-  
back data relative to the frame. The system must keep track  
of the position within a data frame, and disable interrupts  
before frame boundaries. Frame lengths and data formats  
are listed in Table 16 and Table 17.  
Violating the Maximum High and Low Time  
Specification for the Readback Clock  
The Readback clock has a maximum High and Low time  
specification. In some cases, this specification cannot be  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
39  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Readback Switching Charateristics Guidelines  
The following guidelines reflect worst-case values over the  
recommended operating conditions.  
Finished  
Internal Net  
rdbk.TRIG  
T
RCRT  
T
RCRT  
T
RTRC  
T
RTRC  
rdclk.I  
T
RCL  
T
RCH  
rdbk.RIP  
T
RCRR  
DUMMY  
DUMMY  
VALID  
VALID  
rdbk.DATA  
T
RCRD  
DS060_32_080400  
Figure 33: Spartan and Spartan-XL Readback Timing Diagram  
Spartan and Spartan-XL Readback Switching Characteristics  
Symbol  
Description  
rdbk.TRIG setup to initiate and abort Readback  
rdbk.TRIG hold to initiate and abort Readback  
rdbk.DATA delay  
Min  
200  
50  
-
Max  
-
Units  
ns  
T
T
rdbk.TRIG  
rdclk.I  
RTRC  
RCRT  
RCRD  
RCRR  
-
ns  
T
T
250  
250  
500  
500  
ns  
rdbk.RIP delay  
-
ns  
T
High time  
250  
250  
ns  
RCH  
T
Low time  
ns  
RCL  
Notes:  
1. Timing parameters apply to all speed grades.  
2. If rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback.  
40  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Configuration Switching Characteristics  
V
CC  
RE-PROGRAM  
>300 ns  
T
POR  
PROGRAM  
INIT  
T
PI  
T
T
CCLK  
ICCK  
CCLK Output or Input  
<300 ns  
Mode Pins  
(Required)  
DONE Response  
I/O  
<300 ns  
DS060_33_080400  
Master Mode  
Symbol  
Description  
Min  
40  
Max  
130  
200  
Units  
T
Power-on reset  
ms  
POR  
T
Program Latency  
30  
µs per CLB column  
PI  
T
CCLK (output) delay  
40  
250  
µs  
ns  
ns  
ICCK  
CCLK  
CCLK  
T
T
CCLK (output) period, slow  
CCLK (output) period, fast  
640  
100  
2000  
250  
Slave Mode  
Symbol  
Description  
Power-on reset  
Min  
10  
30  
4
Max  
33  
200  
-
Units  
T
ms  
POR  
T
Program latency  
µs per CLB column  
PI  
T
CCLK (input) delay (required)  
CCLK (input) period (required)  
µs  
ICCK  
T
80  
-
ns  
CCLK  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
41  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan Detailed Specifications  
Definition of Terms  
In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as  
follows:  
Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or families. Values  
are subject to change. Use as estimates, not for production.  
Preliminary: Based on preliminary characterization. Further changes are not expected.  
Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final.  
Notwithstanding the definition of the above terms, all specifications are subject to change without notice.  
Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are  
derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction  
temperature conditions. The parameters included are common to popular designs and typical applications.  
Spartan Absolute Maximum Ratings(1)  
Symbol  
Description  
Value  
Units  
V
V
Supply voltage relative to GND  
0.5 to +7.0  
CC  
(2,3)  
V
Input voltage relative to GND  
0.5 to V +0.5  
V
IN  
CC  
(2,3)  
V
Voltage applied to 3-state output  
Storage temperature (ambient)  
Junction temperature  
0.5 to V +0.5  
V
TS  
CC  
T
65 to +150  
°C  
°C  
STG  
T
Plastic packages  
+125  
J
Notes:  
1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions  
is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.  
2. Maximum DC overshoot (above V ) or undershoot (below GND) must be limited to either 0.5V or 10 mA, whichever is easier to  
CC  
achieve.  
3. Maximum AC (during transitions) conditions are as follows; the device pins may undershoot to 2.0V or overshoot to +7.0V, provided  
this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.  
4. For soldering guidelines, see the Package Infomation on the Xilinx website.  
Spartan Recommended Operating Conditions  
Symbol  
V
Description  
Supply voltage relative to GND, T = 0°C to +85°C  
Min  
4.75  
4.5  
2.0  
70%  
0
Max  
5.25  
5.5  
Units  
Commercial  
Industrial  
V
V
V
CC  
J
(1)  
Supply voltage relative to GND, T = 40°C to +100°C  
J
(2)  
V
High-level input voltage  
TTL inputs  
CMOS inputs  
TTL inputs  
CMOS inputs  
V
CC  
IH  
100%  
0.8  
V
CC  
(2)  
V
Low-level input voltage  
V
IL  
0
20%  
250  
V
CC  
T
Input signal transition time  
-
ns  
IN  
Notes:  
1. At junction temperatures above those listed as Recommended Operating Conditions, all delay parameters increase by 0.35% per °C.  
2. Input and output measurement thresholds are: 1.5V for TTL and 2.5V for CMOS.  
42  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan DC Characteristics Over Operating Conditions  
Symbol  
Description  
High-level output voltage @ I = 4.0 mA, V min  
Min  
Max  
-
Units  
V
V
TTL outputs  
2.4  
OH  
OH  
CC  
High-level output voltage @ I = 1.0 mA, V min  
CMOS outputs  
TTL outputs  
V 0.5  
CC  
-
V
OH  
CC  
(1)  
V
V
Low-level output voltage @ I = 12.0 mA, V min  
-
0.4  
0.4  
-
V
OL  
OL  
CC  
CMOS outputs  
-
3.0  
-
V
Data retention supply voltage (below which configuration data may be lost)  
V
DR  
(2)  
I
Quiescent FPGA supply current  
Commercial  
Industrial  
3.0  
6.0  
+10  
10  
0.25  
-
mA  
mA  
µA  
pF  
mA  
mA  
CCO  
-
I
Input or output leakage current  
10  
-
L
C
Input capacitance (sample tested)  
IN  
I
Pad pull-up (when selected) @ V = 0V (sample tested)  
0.02  
0.02  
RPU  
RPD  
IN  
I
Pad pull-down (when selected) @ V = 5V (sample tested)  
IN  
Notes:  
1. With 50% of the outputs simultaneously sinking 12 mA, up to a maximum of 64 pins.  
2. With no output current loads, no active input pull-up resistors, all package pins at V or GND, and the FPGA configured with a Tie  
CC  
option.  
Spartan Global Buffer Switching Characteristic Guidelines  
Testing of the switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values where one global clock input  
drives one vertical clock line in each accessible column, and  
where all accessible IOB and CLB flip-flops are clocked by  
the global clock net.  
driven from the same global clock, the delay is longer. For  
more specific, more precise, and worst-case guaranteed  
data, reflecting the actual routing structure, use the values  
provided by the static timing analyzer (TRCE in the Xilinx  
Development System) and back-annotated to the simulation  
netlist. These path delays, provided as a guideline, have  
been extracted from the static timing analyzer report. All  
timing parameters assume worst-case operating conditions  
(supply voltage and junction temperature).  
When fewer vertical clock lines are connected, the clock dis-  
tribution is faster; when multiple clock lines per column are  
Speed Grade  
-4  
Max  
2.0  
2.4  
2.8  
3.2  
3.5  
2.5  
2.9  
3.3  
3.6  
3.9  
-3  
Max  
4.0  
4.3  
5.4  
5.8  
6.4  
4.4  
4.7  
5.8  
6.2  
6.7  
Symbol  
Description  
Device  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
Units  
ns  
T
From pad through Primary buffer, to any clock K  
PG  
ns  
ns  
ns  
ns  
T
From pad through Secondary buffer, to any clock K  
ns  
SG  
ns  
ns  
ns  
ns  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
43  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan CLB Switching Characteristic Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values. For more specific, more precise,  
and worst-case guaranteed data, use the values reported  
by the static timing analyzer (TRCE in the Xilinx Develop-  
ment System) and back-annotated to the simulation netlist.  
All timing parameters assume worst-case operating condi-  
tions (supply voltage and junction temperature). Values  
apply to all Spartan devices and expressed in nanoseconds  
unless otherwise noted.  
Speed Grade  
-4  
-3  
Description  
Symbol  
Min  
Max  
Min  
Max  
Units  
Clocks  
T
Clock High time  
Clock Low time  
3.0  
3.0  
-
-
4.0  
4.0  
-
-
ns  
ns  
CH  
T
CL  
Combinatorial Delays  
T
F/G inputs to X/Y outputs  
-
-
-
1.2  
2.0  
1.7  
-
-
-
1.6  
2.7  
2.2  
ns  
ns  
ns  
ILO  
T
F/G inputs via H to X/Y outputs  
C inputs via H1 via H to X/Y outputs  
IHO  
T
HH1O  
CLB Fast Carry Logic  
Operand inputs (F1, F2, G1, G4) to C  
T
-
-
-
-
-
1.7  
2.8  
1.2  
2.0  
0.5  
-
-
-
-
-
2.1  
3.7  
1.4  
2.6  
0.6  
ns  
ns  
ns  
ns  
ns  
OPCY  
OUT  
T
Add/Subtract input (F3) to C  
OUT  
ASCY  
T
Initialization inputs (F1, F3) to C  
OUT  
INCY  
T
C
C
through function generators to X/Y outputs  
SUM  
IN  
T
to C  
, bypass function generators  
OUT  
BYP  
IN  
Sequential Delays  
Clock K to Flip-Flop outputs Q  
Setup Time before Clock K  
T
-
2.1  
-
2.8  
ns  
CKO  
T
F/G inputs  
1.8  
2.9  
2.3  
1.3  
2.0  
2.5  
-
-
-
-
-
-
2.4  
3.9  
3.3  
2.0  
2.6  
4.0  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ICK  
T
F/G inputs via H  
IHCK  
T
C inputs via H1 through H  
C inputs via DIN  
HH1CK  
T
DICK  
T
C inputs via EC  
ECCK  
T
C inputs via S/R, going Low (inactive)  
RCK  
Hold Time after Clock K  
All Hold times, all devices  
Set/Reset Direct  
0.0  
-
0.0  
-
ns  
T
Width (High)  
3.0  
-
-
4.0  
-
-
ns  
ns  
RPW  
T
Delay from C inputs via S/R, going High to Q  
3.0  
4.0  
RIO  
Global Set/Reset  
T
Minimum GSR pulse width  
11.5  
-
13.5  
-
ns  
MRW  
T
Delay from GSR input to any Q  
See page 50 for T  
values per device.  
RRI  
MRQ  
F
Toggle Frequency (MHz)  
-
166  
-
125  
MHz  
TOG  
(for export control purposes)  
44  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values. For more specific, more precise,  
and worst-case guaranteed data, use the values reported  
by the static timing analyzer (TRCE in the Xilinx Develop-  
ment System) and back-annotated to the simulation netlist.  
All timing parameters assume worst-case operating condi-  
tions (supply voltage and junction temperature). Values  
apply to all Spartan devices and are expressed in nanosec-  
onds unless otherwise noted.  
Speed Grade  
-4  
-3  
(1)  
Symbol  
Single Port RAM  
Size  
Min  
Max  
Min  
Max  
Units  
Write Operation  
T
Address write cycle time (clock K period)  
Clock K pulse width (active edge)  
Address setup time before clock K  
Address hold time after clock K  
DIN setup time before clock K  
DIN hold time after clock K  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
8.0  
8.0  
4.0  
4.0  
1.5  
1.5  
0.0  
0.0  
1.5  
1.5  
0.0  
0.0  
1.5  
1.5  
0.0  
0.0  
-
-
11.6  
11.6  
5.8  
5.8  
2.0  
2.0  
0.0  
0.0  
2.7  
1.7  
0.0  
0.0  
1.6  
1.6  
0.0  
0.0  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WCS  
T
-
-
WCTS  
T
-
-
WPS  
T
-
-
WPTS  
T
-
-
ASS  
T
-
-
ASTS  
T
-
-
AHS  
T
-
-
AHTS  
T
-
-
DSS  
T
-
-
DSTS  
T
-
-
DHS  
T
-
-
DHTS  
T
WE setup time before clock K  
WE hold time after clock K  
-
-
-
-
WSS  
T
T
T
WSTS  
T
-
-
WHS  
-
-
WHTS  
T
Data valid after clock K  
6.5  
7.0  
7.9  
9.3  
WOS  
-
-
WOTS  
Read Operation  
T
Address read cycle time  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
2.6  
3.8  
-
-
-
2.6  
3.8  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
RC  
T
RCT  
T
Data valid after address change (no Write  
Enable)  
1.2  
2.0  
-
1.6  
2.7  
-
ILO  
IHO  
T
-
-
T
Address setup time before clock K  
1.8  
2.9  
2.4  
3.9  
ICK  
T
-
-
IHCK  
Notes:  
1. Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing.  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
45  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines (continued)  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values. For more specific, more precise,  
and worst-case guaranteed data, use the values reported  
by the static timing analyzer (TRCE in the Xilinx Develop-  
ment System) and back-annotated to the simulation netlist.  
All timing parameters assume worst-case operating condi-  
tions (supply voltage and junction temperature). Values  
apply to all Spartan devices and are expressed in nanosec-  
onds unless otherwise noted.  
Dual-Port RAM Synchronous (Edge-Triggered) Write Operation Characteristics  
-4  
-3  
(1)  
Symbol  
Dual Port RAM  
Size  
Min Max Min Max Units  
Write Operation  
T
T
Address write cycle time (clock K period)  
Clock K pulse width (active edge)  
Address setup time before clock K  
Address hold time after clock K  
DIN setup time before clock K  
DIN hold time after clock K  
16x1  
16x1  
16x1  
16x1  
16x1  
16x1  
16x1  
16x1  
16x1  
8.0  
4.0  
1.5  
0
-
11.6  
5.8  
2.1  
0
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WCDS  
WPDS  
-
-
T
-
-
ASDS  
T
-
-
AHDS  
T
T
1.5  
0
-
1.6  
0
-
DSDS  
DHDS  
WSDS  
WHDS  
WODS  
-
-
-
-
T
T
T
WE setup time before clock K  
WE hold time after clock K  
1.5  
0
1.6  
0
-
-
Data valid after clock K  
-
6.5  
-
7.0  
Notes:  
1. Read Operation timing for 16 x 1 dual-port RAM option is identical to 16 x 2 single-port RAM timing  
Spartan CLB RAM Synchronous (Edge-Triggered) Write Timing  
Single Port  
Dual Port  
TWPS  
TWPDS  
WCLK (K)  
WCLK (K)  
TWSS  
TWHS  
TWSDS  
TWHDS  
WE  
WE  
TDHS  
TDHDS  
TDSS  
TDSDS  
DATA IN  
DATA IN  
TAHS  
TASS  
TAHDS  
TASDS  
ADDRESS  
DATA OUT  
ADDRESS  
DATA OUT  
TILO  
TILO  
TILO  
TILO  
TWODS  
OLD  
TWOS  
OLD  
NEW  
NEW  
DS060_34_011300  
46  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan Pin-to-Pin Output Parameter Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Pin-to-pin timing parameters are  
derived from measuring external and internal test patterns  
and are guaranteed over worst-case operating conditions  
(supply voltage and junction temperature). Listed below are  
representative values for typical pin locations and normal  
clock loading. For more specific, more precise, and  
worst-case guaranteed data, reflecting the actual routing  
structure, use the values provided by the static timing ana-  
lyzer (TRCE in the Xilinx Development System) and  
back-annotated to the simulation netlist. These path delays,  
provided as a guideline, have been extracted from the static  
timing analyzer report.  
Spartan Output Flip-Flop, Clock-to-Out  
Speed Grade  
-4  
-3  
Symbol  
Description  
Device  
Max  
Max  
Units  
Global Primary Clock to TTL Output using OFF  
T
Fast  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
5.3  
5.7  
8.7  
9.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ICKOF  
6.1  
9.3  
6.5  
9.4  
6.8  
10.2  
11.5  
12.0  
12.2  
12.8  
12.8  
T
Slew-rate limited  
9.0  
ICKO  
9.4  
9.8  
10.2  
10.5  
Global Secondary Clock to TTL Output using OFF  
T
Fast  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
5.8  
6.2  
9.2  
9.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ICKSOF  
6.6  
9.8  
7.0  
9.9  
7.3  
10.7  
12.0  
12.5  
12.7  
13.2  
14.3  
T
Slew-rate limited  
9.5  
ICKSO  
9.9  
10.3  
10.7  
11.0  
Delay Adder for CMOS Outputs Option  
T
Fast  
All devices  
All devices  
0.8  
1.5  
1.0  
2.0  
ns  
ns  
CMOSOF  
T
Slew-rate limited  
CMOSO  
Notes:  
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column,and  
where all accessible IOB and CLB flip-flops are clocked by the global clock net.  
2. Output timing is measured at ~50% V threshold with 50 pF external capacitive load. For different loads, see Figure 33.  
CC  
3. OFF = Output Flip-Flop  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
47  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Capacitive Load Factor  
3
Figure 33 shows the relationship between I/O output delay  
and load capacitance. It allows a user to adjust the specified  
output delay if the load capacitance is different than 50 pF.  
For example, if the actual load capacitance is 120 pF, add  
2.5 ns to the specified delay. If the load capacitance is 20  
pF, subtract 0.8 ns from the specified output delay.  
Figure 33 is usable over the specified operating conditions  
of voltage and temperature and is independent of the output  
slew rate control.  
2
1
0
-1  
-2  
0
20  
40  
60  
80  
100  
120  
140  
Capacitance (pF)  
DS060_35_080400  
Figure 34: Delay Factor at Various Capacitive Loads  
48  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan Pin-to-Pin Input Parameter Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Pin-to-pin timing parameters are  
derived from measuring external and internal test patterns  
and are guaranteed over worst-case operating conditions  
(supply voltage and junction temperature). Listed below are  
representative values for typical pin locations and normal  
clock loading.  
Spartan Primary and Secondary Setup and Hold  
Speed Grade  
-4  
-3  
Symbol  
Description  
Device  
Min  
Min  
Units  
Input Setup/Hold Times Using Primary Clock and IFF  
T
/T  
No Delay  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
1.2 / 1.7  
1.0 / 2.3  
0.8 / 2.7  
0.6 / 3.0  
0.4 / 3.5  
4.3 / 0.0  
4.3 / 0.0  
4.3 / 0.0  
4.3 / 0.0  
5.3 / 0.0  
1.8 / 2.5  
1.5 / 3.4  
1.2 / 4.0  
0.9 / 4.5  
0.6 / 5.2  
6.0 / 0.0  
6.0 / 0.0  
6.0 / 0.0  
6.0 / 0.0  
6.8 / 0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PSUF PHF  
T
/T  
With Delay  
PSU PH  
Input Setup/Hold Times Using Secondary Clock and IFF  
T
/T  
No Delay  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
0.9 / 2.2  
0.7 / 2.8  
0.5 / 3.2  
0.3 / 3.5  
0.1 / 4.0  
4.0 / 0.0  
4.0 / 0.0  
4.0 / 0.5  
4.0 / 0.5  
5.0 / 0.0  
1.5 / 3.0  
1.2 / 3.9  
0.9 / 4.5  
0.6 / 5.0  
0.3 / 5.7  
5.7 / 0.0  
5.7 / 0.0  
5.7 / 0.5  
5.7 / 0.5  
6.5 / 0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SSUF SHF  
T
/T  
With Delay  
SSU SH  
Notes:  
1. Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a  
reference load of one clock pin per IOB/CLB.  
2. IFF = Input Flip-flop or Latch  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
49  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan IOB Input Switching Characteristic Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values. For more specific, more precise,  
and worst-case guaranteed data, use the values reported  
by the static timing analyzer (TRCE in the Xilinx Develop-  
ment System) and back-annotated to the simulation netlist.  
These path delays, provided as a guideline, have been  
extracted from the static timing analyzer report. All timing  
parameters assume worst-case operating conditions (sup-  
ply voltage and junction temperature).  
Speed Grade  
-4  
-3  
Symbol  
Description  
Device  
Min  
Max  
Min  
Max  
Units  
Setup Times - TTL Inputs(1)  
T
T
Clock Enable (EC) to Clock (IK), no delay  
Pad to Clock (IK), no delay  
All devices  
All devices  
1.6  
1.5  
-
-
2.1  
2.0  
-
-
ns  
ns  
ECIK  
PICK  
Hold Times  
T
Clock Enable (EC) to Clock (IK), no delay  
All Other Hold Times  
All devices  
All devices  
0.0  
0.0  
-
-
0.9  
0.0  
-
-
ns  
ns  
IKEC  
Propagation Delays - TTL Inputs(1)  
T
Pad to I1, I2  
All devices  
All devices  
All devices  
All devices  
-
-
-
-
1.5  
2.8  
2.7  
3.2  
-
-
-
-
2.0  
3.6  
2.8  
3.9  
ns  
ns  
ns  
ns  
PID  
T
Pad to I1, I2 via transparent input latch, no delay  
Clock (IK) to I1, I2 (flip-flop)  
PLI  
T
IKRI  
T
Clock (IK) to I1, I2 (latch enable, active Low)  
IKLI  
Delay Adder for Input with Delay Option  
T
T
T
T
= T  
= T  
+ T  
+ T  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
3.6  
3.7  
3.8  
4.5  
5.5  
-
-
-
-
-
4.0  
4.1  
4.2  
5.0  
5.5  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
Delay  
ECIKD  
PICKD  
ECIK  
Delay  
PICK  
Delay  
= T  
+ T  
Delay  
PDLI  
PLI  
Global Set/Reset  
T
Minimum GSR pulse width  
All devices 11.5  
-
13.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
MRW  
T
Delay from GSR input to any Q  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
-
-
-
-
-
9.0  
-
-
-
-
-
11.3  
11.9  
12.5  
13.1  
13.8  
RRI  
9.5  
10.0  
10.5  
11.0  
Notes:  
1. Delay adder for CMOS Inputs option: for -3 speed grade, add 0.4 ns; for -4 speed grade, add 0.2 ns.  
2. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock  
input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table.  
3. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up  
(default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.  
50  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan IOB Output Switching Characteristic Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values. For more specific, more precise,  
and worst-case guaranteed data, use the values reported  
by the static timing analyzer (TRCE in the Xilinx Develop-  
ment System) and back-annotated to the simulation netlist.  
These path delays, provided as a guideline, have been  
extracted from the static timing analyzer report. All timing  
parameters assume worst-case operating conditions (sup-  
ply voltage and junction temperature). Values are  
expressed in nanoseconds unless otherwise noted.  
Speed Grade  
-4  
-3  
Symbol  
Clocks  
Description  
Device  
Min  
Max  
Min  
Max  
Units  
T
Clock High  
Clock Low  
All devices  
All devices  
3.0  
3.0  
-
-
4.0  
4.0  
-
-
ns  
ns  
CH  
T
CL  
Propagation Delays - TTL Outputs(1,2)  
T
Clock (OK) to Pad, fast  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
-
-
-
-
-
-
-
3.3  
6.9  
3.6  
7.2  
3.0  
6.0  
9.6  
-
-
-
-
-
-
-
4.5  
7.0  
4.8  
7.3  
3.8  
7.3  
9.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OKPOF  
T
Clock (OK to Pad, slew-rate limited  
Output (O) to Pad, fast  
OKPOS  
T
OPF  
T
Output (O) to Pad, slew-rate limited  
3-state to Pad High-Z (slew-rate independent)  
3-state to Pad active and valid, fast  
3-state to Pad active and valid, slew-rate limited  
OPS  
T
TSHZ  
TSONF  
TSONS  
T
T
Setup and Hold Times  
T
T
Output (O) to clock (OK) setup time  
Output (O) to clock (OK) hold time  
All devices  
All devices  
All devices  
All devices  
2.5  
0.0  
2.0  
0.0  
-
-
-
-
3.8  
0.0  
2.7  
0.5  
-
-
-
-
ns  
ns  
ns  
ns  
OOK  
OKO  
T
T
Clock Enable (EC) to clock (OK) setup time  
Clock Enable (EC) to clock (OK) hold time  
ECOK  
OKEC  
Global Set/Reset  
T
Minimum GSR pulse width  
All devices  
XCS05  
XCS10  
XCS20  
XCS30  
XCS40  
11.5  
13.5  
ns  
ns  
ns  
ns  
ns  
ns  
MRW  
T
Delay from GSR input to any Pad  
-
-
-
-
-
12.0  
12.5  
13.0  
13.5  
14.0  
-
-
-
-
-
15.0  
15.7  
16.2  
16.9  
17.5  
RPO  
Notes:  
1. Delay adder for CMOS Outputs option (with fast slew rate option): for -3 speed grade, add 1.0 ns; for -4 speed grade, add 0.8 ns.  
2. Delay adder for CMOS Outputs option (with slow slew rate option): for -3 speed grade, add 2.0 ns; for -4 speed grade, add 1.5 ns.  
3. Output timing is measured at ~50% V threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output  
CC  
rise/fall times are approximately two times longer than fast output rise/fall times.  
4. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up  
(default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
51  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL Detailed Specifications  
Definition of Terms  
In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as  
follows:  
Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or device families.  
Values are subject to change. Use as estimates, not for production.  
Preliminary: Based on preliminary characterization. Further changes are not expected.  
Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final.  
Notwithstanding the definition of the above terms, all specifications are subject to change without notice.  
Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are  
derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction  
temperature conditions. The parameters included are common to popular designs and typical applications.  
Spartan-XL Absolute Maximum Ratings(1)  
Symbol  
Description  
Value  
Units  
V
V
Supply voltage relative to GND  
Input voltage relative to GND  
0.5 to 4.0  
0.5 to 5.5  
CC  
(2, 3)  
(2, 3)  
V
5V Tolerant I/O Checked  
V
IN  
(4, 5)  
Not 5V Tolerant I/Os  
0.5 to V + 0.5  
V
CC  
V
Voltage applied to 3-state output  
5V Tolerant I/O Checked  
0.5 to 5.5  
V
TS  
(4, 5)  
Not 5V Tolerant I/Os  
0.5 to V + 0.5  
V
CC  
T
Storage temperature (ambient)  
Junction temperature  
65 to +150  
°C  
°C  
STG  
T
Plastic packages  
+125  
J
Notes:  
1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions  
is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.  
2. With 5V Tolerant I/Os selected, the Maximum DC overshoot must be limited to either +5.5V or 10 mA and undershoot (below GND)  
must be limited to either 0.5V or 10 mA, whichever is easier to achieve.  
3. With 5V Tolerant I/Os selected, the Maximum AC (during transitions) conditions are as follows; the device pins may undershoot to  
2.0V or overshoot to + 7.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than  
100 mA.  
4. Without 5V Tolerant I/Os selected, the Maximum DC overshoot or undershoot must be limited to either 0.5V or 10 mA, whichever is  
easier to achieve.  
5. Without 5V Tolerant I/Os selected, the Maximum AC conditions are as follows; the device pins may undershoot to 2.0V or overshoot  
to V + 2.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.  
CC  
6. For soldering guidelines, see the Package Infomation on the Xilinx website.  
Spartan-XL Recommended Operating Conditions  
Symbol  
Description  
Supply voltage relative to GND, T = 0°C to +85°C  
Min  
Max  
3.6  
Units  
V
Commercial  
Industrial  
3.0  
V
V
CC  
J
(1)  
Supply voltage relative to GND, T = 40°C to +100°C  
3.0  
3.6  
J
(2)  
V
High-level input voltage  
50% of V  
5.5  
V
IH  
CC  
(2)  
V
Low-level input voltage  
0
-
30% of V  
V
IL  
CC  
T
Input signal transition time  
250  
ns  
IN  
Notes:  
1. At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.35% per °C.  
2. Input and output measurement threshold is ~50% of V  
.
CC  
52  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL DC Characteristics Over Operating Conditions  
Symbol  
Description  
Min  
Typ.  
Max  
Units  
V
High-level output voltage @ I  
= 4.0 mA, V min (LVTTL)  
CC  
2.4  
-
-
-
-
-
-
-
V
V
V
V
V
V
OH  
OH  
OH  
High-level output voltage @ I  
= 500 µA, (LVCMOS)  
90% V  
-
0.4  
CC  
(1)  
(2)  
V
Low-level output voltage @ I = 12.0 mA, V min (LVTTL)  
-
-
OL  
OL  
CC  
Low-level output voltage @ I = 24.0 mA, V min (LVTTL)  
0.4  
OL  
CC  
Low-level output voltage @ I = 1500 µA, (LVCMOS)  
-
10% V  
-
OL  
CC  
V
Data retention supply voltage (below which configuration data  
may be lost)  
2.5  
DR  
(3,4)  
I
Quiescent FPGA supply current  
Commercial  
Industrial  
-
0.1  
0.1  
0.1  
0.1  
-
2.5  
5
mA  
mA  
mA  
mA  
µA  
CCO  
-
(3,5)  
I
Power Down FPGA supply current  
Commercial  
Industrial  
-
2.5  
5
CCPD  
-
10  
-
I
Input or output leakage current  
10  
10  
0.25  
-
L
C
Input capacitance (sample tested)  
-
pF  
IN  
I
Pad pull-up (when selected) @ V = 0V (sample tested)  
0.02  
0.02  
-
mA  
mA  
RPU  
RPD  
IN  
I
Pad pull-down (when selected) @ V = 3.3V (sample tested)  
-
IN  
Notes:  
1. With up to 64 pins simultaneously sinking 12 mA (default mode).  
2. With up to 64 pins simultaneously sinking 24 mA (with 24 mA option selected).  
3. With 5V tolerance not selected, no internal oscillators, and the FPGA configured with the Tie option.  
4. With no output current loads, no active input resistors, and all package pins at V or GND.  
CC  
5. With PWRDWN active.  
Supply Current Requirements During Power-On  
Spartan-XL FPGAs require that a minimum supply current  
be provided to the V lines for a successful power  
on. If more current is available, the FPGA can consume  
A maximum limit for I  
using foldback/crowbar supplies and fuses. It is possible to  
control the magnitude of I by limiting the supply current  
is not specified. Be careful when  
CCPO  
I
CCPO  
CC  
CCPO  
more than I  
reliability.  
min., though this cannot adversely affect  
available to the FPGA. A current limit below the trip level will  
avoid inadvertently activating over-current protection cir-  
cuits.  
CCPO  
Symbol  
Description  
Min  
100  
-
Max  
-
Units  
mA  
I
Total V supply current required during power-on  
CCPO  
CC  
(2,3)  
T
V
ramp time  
CC  
50  
ms  
CCPO  
Notes:  
1. The I  
requirement applies for a brief time (commonly only a few milliseconds) when V ramps from 0 to 3.3V.  
CC  
CCPO  
2. The ramp time is measured from GND to V max on a fully loaded board.  
CC  
3.  
V
must not dip in the negative direction during power on.  
CC  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
53  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL Global Buffer Switching Characteristic Guidelines  
Testing of the switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values where one global clock input  
drives one vertical clock line in each accessible column, and  
where all accessible IOB and CLB flip-flops are clocked by  
the global clock net.  
driven from the same global clock, the delay is longer. For  
more specific, more precise, and worst-case guaranteed  
data, reflecting the actual routing structure, use the values  
provided by the static timing analyzer (TRCE in the Xilinx  
Development System) and back-annotated to the simulation  
netlist. These path delays, provided as a guideline, have  
been extracted from the static timing analyzer report. All  
timing parameters assume worst-case operating conditions  
(supply voltage and junction temperature).  
When fewer vertical clock lines are connected, the clock dis-  
tribution is faster; when multiple clock lines per column are  
Speed Grade  
-5  
Max  
1.4  
1.7  
2.0  
2.3  
2.6  
-4  
Max  
1.5  
1.8  
2.1  
2.5  
2.8  
Symbol  
Description  
Device  
Units  
ns  
T
From pad through buffer, to any clock K  
XCS05XL  
XCS10XL  
XCS20XL  
XCS30XL  
XCS40XL  
GLS  
ns  
ns  
ns  
ns  
54  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL CLB Switching Characteristic Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values. For more specific, more precise,  
and worst-case guaranteed data, use the values reported  
by the static timing analyzer (TRCE in the Xilinx Develop-  
ment System) and back-annotated to the simulation netlist.  
All timing parameters assume worst-case operating condi-  
tions (supply voltage and junction temperature). Values  
apply to all Spartan-XL devices and expressed in nanosec-  
onds unless otherwise noted.  
Speed Grade  
-5  
-4  
Symbol  
Clocks  
Description  
Min  
Max  
Min  
Max  
Units  
T
Clock High time  
Clock Low time  
2.0  
2.0  
-
-
2.3  
2.3  
-
-
ns  
ns  
CH  
T
CL  
Combinatorial Delays  
T
F/G inputs to X/Y outputs  
-
-
-
-
1.0  
1.7  
1.5  
1.5  
-
-
-
-
1.1  
2.0  
1.8  
1.8  
ns  
ns  
ns  
ns  
ILO  
T
F/G inputs via H to X/Y outputs  
IHO  
T
F/G inputs via transparent latch to Q outputs  
C inputs via H1 via H to X/Y outputs  
ITO  
T
HH1O  
Sequential Delays  
Clock K to Flip-Flop or latch outputs Q  
Setup Time before Clock K  
T
-
1.2  
-
1.4  
ns  
CKO  
T
F/G inputs  
0.6  
1.3  
-
-
0.7  
1.6  
-
-
ns  
ns  
ICK  
T
F/G inputs via H  
IHCK  
Hold Time after Clock K  
All Hold times, all devices  
Set/Reset Direct  
0.0  
-
0.0  
-
ns  
T
Width (High)  
2.5  
-
-
2.8  
-
-
ns  
ns  
RPW  
T
Delay from C inputs via S/R, going High to Q  
2.3  
2.7  
RIO  
Global Set/Reset  
T
T
Minimum GSR Pulse Width  
10.5  
-
11.5  
-
ns  
MRW  
Delay from GSR input to any Q  
See page 60 for T  
values per device.  
RRI  
MRQ  
F
Toggle Frequency (MHz)  
-
250  
-
217  
MHz  
TOG  
(for export control purposes)  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
55  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values. For more specific, more precise,  
and worst-case guaranteed data, use the values reported  
by the static timing analyzer (TRCE in the Xilinx Develop-  
ment System) and back-annotated to the simulation netlist.  
All timing parameters assume worst-case operating condi-  
tions (supply voltage and junction temperature). Values  
apply to all Spartan-XL devices and are expressed in nano-  
seconds unless otherwise noted.  
Speed Grade  
-5  
-4  
(1)  
Symbol  
Single Port RAM  
Size  
Min  
Max  
Min  
Max  
Units  
Write Operation  
T
Address write cycle time (clock K period)  
Clock K pulse width (active edge)  
Address setup time before clock K  
DIN setup time before clock K  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
16x2  
7.7  
7.7  
3.1  
3.1  
1.3  
1.5  
1.5  
1.8  
1.4  
1.3  
0.0  
-
-
8.4  
8.4  
3.6  
3.6  
1.5  
1.7  
1.7  
2.1  
1.6  
1.5  
0.0  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WCS  
T
-
-
WCTS  
T
-
-
WPS  
T
-
-
WPTS  
T
-
-
ASS  
T
-
-
ASTS  
T
-
-
DSS  
T
-
-
-
-
DSTS  
T
WE setup time before clock K  
WSS  
T
-
-
WSTS  
All hold times after clock K  
Data valid after clock K  
-
-
T
4.5  
5.4  
5.3  
6.3  
WOS  
T
-
-
WOTS  
Read Operation  
T
Address read cycle time  
16x2  
32x1  
16x2  
32x1  
16x2  
32x1  
2.6  
3.8  
-
-
-
3.1  
5.5  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
RC  
T
RCT  
T
Data Valid after address change (no Write  
Enable)  
1.0  
1.7  
-
1.1  
2.0  
-
ILO  
T
-
-
IHO  
T
Address setup time before clock K  
0.6  
1.3  
0.7  
1.6  
ICK  
T
-
-
IHCK  
Notes:  
1. Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing.  
56  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines (cont.)  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values. For more specific, more precise,  
and worst-case guaranteed data, use the values reported  
by the static timing analyzer (TRCE in the Xilinx Develop-  
ment System) and back-annotated to the simulation netlist.  
All timing parameters assume worst-case operating condi-  
tions (supply voltage and junction temperature). Values  
apply to all Spartan-XL devices and are expressed in nano-  
seconds unless otherwise noted.  
-5  
-4  
Symbol  
Dual Port RAM  
Size  
Min Max Min Max Units  
Write Operation(1)  
T
T
Address write cycle time (clock K period)  
Clock K pulse width (active edge)  
Address setup time before clock K  
DIN setup time before clock K  
WE setup time before clock K  
All hold times after clock K  
16x1  
16x1  
16x1  
16x1  
16x1  
16x1  
16x1  
7.7  
3.1  
1.3  
1.7  
1.4  
0
-
8.4  
3.6  
1.5  
2.0  
1.6  
0
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WCDS  
WPDS  
-
-
T
-
-
ASDS  
DSDS  
WSDS  
T
-
-
-
-
T
-
-
T
Data valid after clock K  
-
5.2  
-
6.1  
WODS  
Notes:  
1. Read Operation timing for 16 x 1 dual-port RAM option is identical to 16 x 2 single-port RAM timing  
Spartan-XL CLB RAM Synchronous (Edge-Triggered) Write Timing  
Single Port  
Dual Port  
TWPS  
TWPDS  
WCLK (K)  
WCLK (K)  
TWSS  
TWHS  
TWSDS  
TWHDS  
WE  
WE  
TDHS  
TDHDS  
TDSS  
TDSDS  
DATA IN  
DATA IN  
TAHS  
TASS  
TAHDS  
TASDS  
ADDRESS  
DATA OUT  
ADDRESS  
DATA OUT  
TILO  
TILO  
TILO  
TILO  
TWODS  
OLD  
TWOS  
OLD  
NEW  
NEW  
DS060_34_011300  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
57  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL Pin-to-Pin Output Parameter Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Pin-to-pin timing parameters are  
derived from measuring external and internal test patterns  
and are guaranteed over worst-case operating conditions  
(supply voltage and junction temperature). Listed below are  
representative values for typical pin locations and normal  
clock loading.  
Spartan-XL Output Flip-Flop, Clock-to-Out  
Speed Grade  
-5  
-4  
Symbol  
Description  
Device  
Max  
Max  
Units  
Global Clock to Output using OFF  
T
Fast  
XCS05XL  
XCS10XL  
XCS20XL  
XCS30XL  
XCS40XL  
4.6  
4.9  
5.2  
5.5  
5.8  
5.2  
5.5  
5.8  
6.2  
6.5  
ns  
ns  
ns  
ns  
ns  
ICKOF  
Slew Rate Adjustment  
For Output SLOW option add  
T
All Devices  
1.5  
1.7  
ns  
SLOW  
Notes:  
1. Output delays are representative values where one global clock input drives one vertical clock line in each accessible column,and  
where all accessible IOB and CLB flip-flops are clocked by the global clock net.  
2. Output timing is measured at ~50% V threshold with 50 pF external capacitive load.  
CC  
3. OFF = Output Flip Flop  
58  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL Pin-to-Pin Input Parameter Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Pin-to-pin timing parameters are  
derived from measuring external and internal test patterns  
and are guaranteed over worst-case operating conditions  
(supply voltage and junction temperature). Listed below are  
representative values for typical pin locations and normal  
clock loading.  
Spartan-XL Setup and Hold  
Speed Grade  
-5  
-4  
Symbol  
Description  
Device  
Max  
Max  
Units  
Input Setup/Hold Times Using Global Clock and IFF  
T
/T  
No Delay  
Full Delay  
XCS05XL  
XCS10XL  
XCS20XL  
XCS30XL  
XCS40XL  
XCS05XL  
XCS10XL  
XCS20XL  
XCS30XL  
XCS40XL  
1.1/2.0  
1.0/2.2  
0.9/2.4  
0.8/2.6  
0.7/2.8  
3.9/0.0  
4.1/0.0  
4.3/0.0  
4.5/0.0  
4.7/0.0  
1.6/2.6  
1.5/2.8  
1.4/3.0  
1.3/3.2  
1.2/3.4  
5.1/0.0  
5.3/0.0  
5.5/0.0  
5.7/0.0  
5.9/0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SUF HF  
T
/T  
H
SU  
Notes:  
1. IFF = Input Flip-Flop or Latch  
2. Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a  
reference load of one clock pin per IOB/CLB.  
Capacitive Load Factor  
Figure 35 shows the relationship between I/O output delay  
and load capacitance. It allows a user to adjust the specified  
3
output delay if the load capacitance is different than 50 pF.  
For example, if the actual load capacitance is 120 pF, add  
2
2.5 ns to the specified delay. If the load capacitance is 20  
pF, subtract 0.8 ns from the specified output delay.  
Figure 35 is usable over the specified operating conditions  
1
of voltage and temperature and is independent of the output  
slew rate control.  
0
-1  
-2  
0
20  
40  
60  
80  
100  
120  
140  
Capacitance (pF)  
DS060_35_080400  
Figure 35: Delay Factor at Various Capacitive Loads  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
59  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL IOB Input Switching Characteristic Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values. For more specific, more precise,  
and worst-case guaranteed data, use the values reported  
by the static timing analyzer (TRCE in the Xilinx Develop-  
ment System) and back-annotated to the simulation netlist.  
These path delays, provided as a guideline, have been  
extracted from the static timing analyzer report. All timing  
parameters assume worst-case operating conditions (sup-  
ply voltage and junction temperature).  
Speed Grade  
-5  
-4  
Symbol  
Description  
Device  
Min  
Max  
Min  
Max  
Units  
Setup Times  
T
T
Clock Enable (EC) to Clock (IK)  
All devices  
All devices  
All devices  
0.0  
1.0  
0.7  
-
-
-
0.0  
1.2  
0.8  
-
-
-
ns  
ns  
ns  
ECIK  
PICK  
Pad to Clock (IK), no delay  
T
Pad to Fast Capture Latch Enable (OK), no delay  
POCK  
Hold Times  
All Hold Times  
All devices  
0.0  
-
0.0  
-
ns  
Propagation Delays  
T
Pad to I1, I2  
All devices  
All devices  
All devices  
All devices  
-
-
-
-
0.9  
2.1  
1.0  
1.1  
-
-
-
-
1.1  
2.5  
1.1  
1.2  
ns  
ns  
ns  
ns  
PID  
T
Pad to I1, I2 via transparent input latch, no delay  
Clock (IK) to I1, I2 (flip-flop)  
PLI  
T
IKRI  
T
Clock (IK) to I1, I2 (latch enable, active Low)  
IKLI  
Delay Adder for Input with Full Delay Option  
T
T
T
= T  
+ T  
XCS05XL  
XCS10XL  
XCS20XL  
XCS30XL  
XCS40XL  
4.0  
4.8  
5.0  
5.5  
6.5  
-
-
-
-
-
4.7  
5.6  
5.9  
6.5  
7.6  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
Delay  
PICKD  
PICK  
Delay  
+ T  
Delay  
= T  
PDLI  
PLI  
Global Set/Reset  
T
Minimum GSR pulse width  
All devices 10.5  
-
11.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
MRW  
T
Delay from GSR input to any Q  
XCS05XL  
XCS10XL  
XCS20XL  
XCS30XL  
XCS40XL  
-
-
-
-
-
9.0  
-
-
-
-
-
10.5  
11.0  
11.5  
12.5  
13.5  
RRI  
9.5  
10.0  
11.0  
12.0  
Notes:  
1. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock  
input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table.  
2. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up  
(default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.  
60  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Spartan-XL IOB Output Switching Characteristic Guidelines  
Testing of switching parameters is modeled after testing  
methods specified by MIL-M-38510/605. All devices are  
100% functionally tested. Internal timing parameters are  
derived from measuring internal test patterns. Listed below  
are representative values. For more specific, more precise,  
and worst-case guaranteed data, use the values reported  
by the static timing analyzer (TRCE in the Xilinx Develop-  
ment System) and back-annotated to the simulation netlist.  
These path delays, provided as a guideline, have been  
extracted from the static timing analyzer report. All timing  
parameters assume worst-case operating conditions (sup-  
ply voltage and junction temperature). Values are  
expressed in nanoseconds unless otherwise noted.  
Speed Grade  
-5  
-4  
Symbol  
Description  
Device  
Min  
Max  
Min  
Max  
Units  
Propagation Delays  
T
Clock (OK) to Pad, fast  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
-
-
-
-
-
-
-
3.2  
2.5  
2.8  
2.6  
3.7  
3.3  
1.5  
-
-
-
-
-
-
-
3.7  
2.9  
3.3  
3.0  
4.4  
3.9  
1.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OKPOF  
T
Output (O) to Pad, fast  
OPF  
T
3-state to Pad High-Z (slew-rate independent)  
3-state to Pad active and valid, fast  
Output (O) to Pad via Output Mux, fast  
Select (OK) to Pad via Output Mux, fast  
For Output SLOW option add  
TSHZ  
T
TSONF  
T
OFPF  
T
OKFPF  
T
SLOW  
Setup and Hold Times  
T
Output (O) to clock (OK) setup time  
Output (O) to clock (OK) hold time  
All devices  
All devices  
All devices  
All devices  
0.5  
0.0  
0.0  
0.1  
-
-
-
-
0.5  
0.0  
0.0  
0.2  
-
-
-
-
ns  
ns  
ns  
ns  
OOK  
T
OKO  
T
T
Clock Enable (EC) to clock (OK) setup time  
Clock Enable (EC) to clock (OK) hold time  
ECOK  
OKEC  
Global Set/Reset  
T
Minimum GSR pulse width  
All devices  
XCS05XL  
XCS10XL  
XCS20XL  
XCS30XL  
XCS40XL  
10.5  
-
11.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
MRW  
T
Delay from GSR input to any Pad  
-
-
-
-
-
11.9  
12.4  
12.9  
13.9  
14.9  
-
-
-
-
-
14.0  
14.5  
15.0  
16.0  
17.0  
RPO  
Notes:  
1. Output timing is measured at ~50% V threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output  
CC  
rise/fall times are approximately two times longer than fast output rise/fall times.  
2. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up  
(default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
61  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Pin Descriptions  
There are three types of pins in the Spartan/XL devices:  
Any user I/O can be configured to drive the Global  
Set/Reset net GSR or the global three-state net GTS. See  
Global Signals: GSR and GTS, page 20 for more informa-  
tion.  
Permanently dedicated pins  
User I/O pins that can have special functions  
Unrestricted user-programmable I/O pins.  
Device pins for Spartan/XL devices are described in  
Table 18.  
Before and during configuration, all outputs not used for the  
configuration process are 3-stated with the I/O pull-up resis-  
tor network activated. After configuration, if an IOB is  
unused it is configured as an input with the I/O pull-up resis-  
tor network remaining activated.  
Table 18: Pin Descriptions  
I/O  
During  
Config.  
I/O After  
Config.  
Pin Name  
Pin Description  
Permanently Dedicated Pins  
V
X
X
Eight or more (depending on package) connections to the nominal +5V supply  
voltage (+3.3V for Spartan-XL devices). All must be connected, and each must be  
decoupled with a 0.01 0.1 µF capacitor to Ground.  
CC  
GND  
X
X
I
Eight or more (depending on package type) connections to Ground. All must be  
connected.  
CCLK  
I or O  
During configuration, Configuration Clock (CCLK) is an output in Master mode and  
is an input in Slave mode. After configuration, CCLK has a weak pull-up resistor  
and can be selected as the Readback Clock. There is no CCLK High or Low time  
restriction on Spartan/XL devices, except during Readback. See Violating the  
Maximum High and Low Time Specification for the Readback Clock, page 39  
for an explanation of this exception.  
DONE  
I/O  
O
DONE is a bidirectional signal with an optional internal pull-up resistor. As an  
open-drain output, it indicates the completion of the configuration process. As an  
input, a Low level on DONE can be configured to delay the global logic initialization  
and the enabling of outputs.  
The optional pull-up resistor is selected as an option in the program that creates  
the configuration bitstream. The resistor is included by default.  
PROGRAM  
I
I
I
PROGRAM is an active Low input that forces the FPGA to clear its configuration  
memory. It is used to initiate a configuration cycle. When PROGRAM goes High,  
the FPGA finishes the current clear cycle and executes another complete clear  
cycle, before it goes into a WAIT state and releases INIT.  
The PROGRAM pin has a permanent weak pull-up, so it need not be externally  
pulled up to VCC.  
MODE  
(Spartan)  
X
The Mode input(s) are sampled after INIT goes High to determine the  
configuration mode to be used.  
M0, M1  
(Spartan-XL)  
During configuration, these pins have a weak pull-up resistor. For the most popular  
configuration mode, Slave Serial, the mode pins can be left unconnected. For  
Master Serial mode, connect the Mode/M0 pin directly to system ground.  
62  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Table 18: Pin Descriptions (Continued)  
I/O  
During  
Config.  
I/O After  
Config.  
Pin Name  
Pin Description  
PWRDWN  
I
I
PWRDWN is an active Low input that forces the FPGA into the Power Down state  
and reduces power consumption. When PWRDWN is Low, the FPGA disables all  
I/O and initializes all flip-flops. All inputs are interpreted as Low independent of  
their actual level. VCC must be maintained, and the configuration data is  
maintained. PWRDWN halts configuration if asserted before or during  
configuration, and re-starts configuration when removed. When PWRDWN returns  
High, the FPGA becomes operational by first enabling the inputs and flip-flops and  
then enabling the outputs. PWRDWN has a default internal pull-up resistor.  
User I/O Pins That Can Have Special Functions  
TDO  
O
O
If boundary scan is used, this pin is the Test Data Output. If boundary scan is not  
used, this pin is a 3-state output without a register, after configuration is  
completed.  
To use this pin, place the library component TDO instead of the usual pad symbol.  
An output buffer must still be used.  
TDI, TCK,  
TMS  
I
I/O  
or I  
(JTAG)  
If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode  
Select inputs respectively. They come directly from the pads, bypassing the IOBs.  
These pins can also be used as inputs to the CLB logic after configuration is  
completed.  
If the BSCAN symbol is not placed in the design, all boundary scan functions are  
inhibited once configuration is completed, and these pins become  
user-programmable I/O. In this case, they must be called out by special library  
elements. To use these pins, place the library components TDI, TCK, and TMS  
instead of the usual pad symbols. Input or output buffers must still be used.  
HDC  
LDC  
INIT  
O
O
I/O  
I/O  
I/O  
High During Configuration (HDC) is driven High until the I/O go active. It is  
available as a control output indicating that configuration is not yet completed.  
After configuration, HDC is a user-programmable I/O pin.  
Low During Configuration (LDC) is driven Low until the I/O go active. It is available  
as a control output indicating that configuration is not yet completed. After  
configuration, LDC is a user-programmable I/O pin.  
I/O  
Before and during configuration, INIT is a bidirectional signal. A 1 kto 10 kΩ  
external pull-up resistor is recommended.  
As an active Low open-drain output, INIT is held Low during the power stabilization  
and internal clearing of the configuration memory. As an active Low input, it can  
be used to hold the FPGA in the internal WAIT state before the start of  
configuration. Master mode devices stay in a WAIT state an additional 30 to  
300 µs after INIT has gone High.  
During configuration, a Low on this output indicates that a configuration data error  
has occurred. After the I/O go active, INIT is a user-programmable I/O pin.  
PGCK1 -  
PGCK4  
(Spartan)  
Weak  
Pull-up  
I or I/O  
Four Primary Global inputs each drive a dedicated internal global net with short  
delay and minimal skew. If not used to drive a global buffer, any of these pins is a  
user-programmable I/O.  
The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad  
symbol connected directly to the input of a BUFGP symbol is automatically placed  
on one of these pins.  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
63  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Table 18: Pin Descriptions (Continued)  
I/O  
During  
Config.  
I/O After  
Config.  
Pin Name  
Pin Description  
SGCK1 -  
SGCK4  
(Spartan)  
Weak  
Pull-up  
(except  
SGCK4  
is DOUT)  
I or I/O  
Four Secondary Global inputs each drive a dedicated internal global net with short  
delay and minimal skew. These internal global nets can also be driven from  
internal logic. If not used to drive a global net, any of these pins is a  
user-programmable I/O pin.  
The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global  
Buffers. Any input pad symbol connected directly to the input of a BUFGS symbol  
is automatically placed on one of these pins.  
GCK1 -  
GCK8  
(Spartan-XL)  
Weak  
Pull-up  
(except  
GCK6 is  
DOUT)  
I or I/O  
Eight Global inputs each drive a dedicated internal global net with short delay and  
minimal skew. These internal global nets can also be driven from internal logic. If  
not used to drive a global net, any of these pins is a user-programmable I/O pin.  
The GCK1-GCK8 pins provide the shortest path to the eight Global Low-Skew  
Buffers. Any input pad symbol connected directly to the input of a BUFGLS symbol  
is automatically placed on one of these pins.  
CS1  
(Spartan-XL)  
I
I
I
I/O  
I/O  
I/O  
During Express configuration, CS1 is used as a serial-enable signal for  
daisy-chaining.  
D0-D7  
(Spartan-XL)  
During Express configuration, these eight input pins receive configuration data.  
After configuration, they are user-programmable I/O pins.  
DIN  
During Slave Serial or Master Serial configuration, DIN is the serial configuration  
data input receiving data on the rising edge of CCLK. After configuration, DIN is a  
user-programmable I/O pin.  
DOUT  
O
I/O  
During Slave Serial or Master Serial configuration, DOUT is the serial  
configuration data output that can drive the DIN of daisy-chained slave FPGAs.  
DOUT data changes on the falling edge of CCLK, one-and-a-half CCLK periods  
after it was received at the DIN input.  
In Spartan-XL Express mode, DOUT is the status output that can drive the CS1 of  
daisy-chained FPGAs, to enable and disable downstream devices.  
After configuration, DOUT is a user-programmable I/O pin.  
Unrestricted User-Programmable I/O Pins  
I/O  
Weak  
Pull-up  
I/O  
These pins can be configured to be input and/or output after configuration is  
completed. Before configuration is completed, these pins have an internal  
high-value pull-up resistor network that defines the logic level as High.  
64  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Device-Specific Pinout Tables  
Device-specific tables include all packages for each Spar-  
tan and Spartan-XL device. They follow the pad locations  
around the die, and include boundary scan register loca-  
tions.  
XCS05 and XCS05XL Device Pinouts  
XCS05/XL  
Bndry  
Scan  
Pad Name  
I/O (HDC)  
PC84  
P36  
-
P37  
P38  
P39  
-
VQ100  
P28  
P29  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P38  
P39  
P40  
P41  
P42  
P43  
P44  
P45  
P46  
P47  
P48  
P49  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P57  
P58  
P59  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
P68  
P69  
P70  
P71  
P72  
(3)  
130  
(3)  
I/O  
133  
136  
(3)  
I/O (LDC)  
I/O  
(3)  
139  
XCS05 and XCS05XL Device Pinouts  
(3)  
I/O  
142  
XCS05/XL  
Pad Name  
Bndry  
Scan  
-
(3)  
I/O  
I/O  
I/O  
145  
148  
PC84  
P2  
P3  
VQ100  
P89  
P90  
P91  
P92  
P93  
P94  
P95  
P96  
P97  
P98  
P99  
P100  
P1  
(3)  
-
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
(3)  
P40  
P41  
P42  
P43  
P44  
P45  
-
151  
32  
(3)  
I/O (INIT)  
VCC  
GND  
I/O  
154  
P4  
-
-
P5  
35  
38  
41  
44  
47  
50  
53  
56  
59  
-
-
-
(3)  
157  
(3)  
I/O  
I/O  
I/O  
I/O  
160  
163  
P6  
P7  
P8  
P9  
(3)  
(3)  
-
166  
(3)  
P46  
P47  
P48  
P49  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P57  
P58  
-
169  
(3)  
(1)  
(2)  
(2)  
I/O  
I/O  
I/O  
I/O  
172  
175  
I/O, SGCK1 , GCK8  
VCC  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
-
P19  
P20  
P21  
P22  
P23  
P24  
-
P25  
P26  
P27  
-
P28  
P29  
P30  
P31  
P32  
P33  
P34  
(3)  
(3)  
178  
GND  
-
(3)  
(1)  
181  
I/O, PGCK1 , GCK1  
P2  
62  
65  
68  
71  
74  
77  
83  
86  
89  
-
(1)  
(2)  
(3)  
I/O, SGCK3 , GCK4  
184  
I/O  
P3  
P4  
P5  
P6  
GND  
DONE  
VCC  
-
-
-
-
I/O, TDI  
I/O, TCK  
I/O, TMS  
I/O  
PROGRAM  
P7  
P8  
P9  
(2)  
(3)  
I/O (D7  
)
187  
I/O  
I/O  
I/O  
(1)  
(2)  
(3)  
I/O, PGCK3 , GCK5  
190  
(2)  
(3)  
I/O (D6  
I/O  
I/O (D5  
I/O  
)
)
193  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
(3)  
196  
199  
GND  
VCC  
I/O  
(2)  
(2)  
(2)  
(3)  
P59  
P60  
-
-
(3)  
202  
92  
95  
98  
104  
107  
110  
113  
116  
119  
122  
-
(3)  
I/O  
205  
I/O  
(3)  
I/O  
I/O (D4  
I/O  
VCC  
GND  
I/O (D3  
I/O  
-
208  
211  
I/O  
I/O  
I/O  
I/O  
(3)  
)
)
P61  
P62  
P63  
P64  
P65  
P66  
-
(3)  
214  
-
-
I/O  
I/O  
(3)  
217  
(3)  
(1)  
(2)  
(2)  
220  
I/O, SGCK2 , GCK2  
(3)  
(1)  
I/O  
223  
Not Connected , M1  
(2)  
(2)  
(2)  
(3)  
I/O (D2  
I/O  
I/O (D1  
I/O  
)
)
P67  
P68  
P69  
P70  
P71  
229  
232  
GND  
(3)  
(1)  
(2)  
MODE , M0  
125  
-
(3)  
235  
VCC  
(3)  
(1)  
(1)  
238  
Not Connected  
PWRDWN  
,
126  
(2)  
(3)  
I/O (D0 , DIN)  
241  
(1)  
(2)  
(3)  
I/O, PGCK2 , GCK3  
P35  
P27  
127  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
65  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS05 and XCS05XL Device Pinouts  
XCS10 and XCS10XL Device Pinouts  
XCS05/XL  
Pad Name  
Bndry  
Scan  
XCS10/XL  
Pad Name PC84 VQ100 CS144  
Bndry  
TQ144 Scan  
(2)  
PC84  
VQ100  
(1)  
(2)  
(3)  
I/O, SGCK4 , GCK6  
P72  
P73  
244  
I/O,  
PGCK1  
GCK1  
I/O  
P13  
P2  
B1  
P2  
86  
(1)  
(DOUT)  
CCLK  
VCC  
O, TDO  
GND  
(2)  
P73  
P74  
P75  
P76  
P77  
P78  
P79  
P80  
P81  
P82  
-
P74  
P75  
P76  
P77  
P78  
P79  
P80  
P81  
P82  
P83  
P84  
P85  
P86  
P87  
P88  
-
-
0
-
2
P14  
P3  
-
-
P4  
P5  
-
-
-
P6  
P7  
-
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
-
P16  
P17  
-
-
-
C2  
C1  
D4  
D3  
D2  
D1  
E4  
E3  
E2  
E1  
F4  
F3  
F2  
F1  
G2  
G1  
G3  
G4  
H1  
H2  
H3  
H4  
J1  
P3  
P4  
P5  
P6  
P7  
89  
92  
95  
98  
101  
-
104  
107  
110  
113  
116  
119  
122  
125  
-
I/O  
I/O  
I/O, TDI  
I/O, TCK  
GND  
I/O  
I/O  
I/O, TMS  
I/O  
I/O  
I/O  
-
-
P15  
P16  
-
-
-
P17  
P18  
-
I/O  
(1)  
(2)  
I/O, PGCK4 , GCK7  
5
8
(2)  
P8  
P9  
I/O (CS1  
I/O  
)
11  
14  
17  
20  
23  
26  
29  
-
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
P32  
P33  
I/O  
I/O  
I/O  
I/O  
I/O  
-
-
P83  
P84  
P1  
I/O  
P19  
P20  
P21  
P22  
P23  
P24  
-
I/O  
I/O  
GND  
Notes:  
GND  
VCC  
I/O  
1. 5V Spartan only  
2. 3V Spartan-XL only  
3. The PWRDWNon the XCS05XL is not part of the Boundary  
Scan chain. For the XCS05XL, subtract 1 from all Boundary  
Scan numbers from GCK3 on (127 and higher).  
-
128  
131  
134  
137  
140  
143  
146  
149  
-
I/O  
I/O  
I/O  
I/O  
-
P25  
P26  
-
-
-
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
XCS10 and XCS10XL Device Pinouts  
XCS10/XL  
Pad Name PC84 VQ100 CS144  
Bndry  
TQ144 Scan  
J2  
J3  
(2)  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
P2  
P3  
P4  
-
P89  
P90  
P91  
P92  
P93  
P94  
P95  
-
D7  
A6  
B6  
C6  
D6  
A5  
B5  
C5  
D5  
A4  
B4  
C4  
A3  
B3  
C3  
A2  
P128  
P129  
P130  
P131  
P132  
P133  
P134  
P135  
P136  
P137  
P138  
P139  
P140  
P141  
P142  
P143  
-
P27  
-
-
P18  
P19  
-
J4  
152  
155  
158  
161  
164  
167  
44  
47  
50  
53  
56  
59  
62  
65  
-
68  
71  
74  
77  
80  
83  
K1  
K2  
K3  
L1  
-
-
-
I/O  
I/O,  
SGCK2  
GCK2  
P28  
P29  
P20  
P21  
P5  
P6  
-
L2  
(1)  
(2)  
-
-
Not  
P30  
P22  
L3  
P34  
170  
-
-
(1)  
Connected  
(2)  
P7  
P8  
-
P96  
P97  
-
M1  
GND  
P31  
P32  
P23  
P24  
M1  
M2  
P35  
P36  
-
(1)  
MODE  
,
173  
(2)  
I/O  
-
-
M0  
I/O  
I/O,  
SGCK1  
GCK8  
P9  
P10  
P98  
P99  
VCC  
Not  
Connected  
P33  
P34  
P25  
P26  
N1  
N2  
P37  
P38 174  
-
(1)  
(1)  
(1)  
(2)  
(2)  
PWRDWN  
VCC  
P11  
P12  
P100  
P1  
B2  
A1  
P144  
P1  
-
-
GND  
66  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS10 and XCS10XL Device Pinouts  
XCS10 and XCS10XL Device Pinouts  
XCS10/XL  
Pad Name PC84 VQ100 CS144  
Bndry  
TQ144 Scan  
XCS10/XL  
Pad Name PC84 VQ100 CS144  
Bndry  
TQ144 Scan  
(2)  
(2)  
(3)  
I/O,  
PGCK2  
GCK3  
I/O (HDC)  
I/O  
I/O  
I/O  
I/O (LDC)  
GND  
I/O  
P35  
P27  
M3  
P39  
175  
GND  
I/O  
-
-
-
-
J10  
J11  
P81  
-
(1)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
P82 277  
P83 280  
P84 283  
P85 286  
P86 289  
P87 292  
P88 295  
P89 298  
(2)  
I/O  
I/O (D5  
I/O  
-
-
J12  
J13  
(3)  
(3)  
(3)  
(3)  
(3)  
P36  
P28  
-
-
P29  
P30  
-
N3  
K4  
L4  
M4  
N4  
K5  
P40 178  
P41 181  
P42 184  
P43 187  
P44 190  
(2)  
(2)  
(2)  
(2)  
)
)
)
)
P59  
P60  
-
P57  
P58  
P59  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
-
-
-
-
H10  
H11  
H12  
H13  
G12  
G13  
G11  
G10  
F13  
F12  
F11  
F10  
E13  
E12  
E11  
E10  
D13  
D12  
D11  
C13  
C12  
I/O  
I/O  
I/O (D4  
I/O  
VCC  
GND  
I/O (D3  
I/O  
-
P37  
-
-
P61  
P62  
P63  
P64  
P65  
P66  
-
P45  
-
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
-
-
L5  
P46 193  
P47 196  
P48 199  
P49 202  
P50 205  
P51 208  
P52 211  
P53 214  
P90  
P91  
-
-
I/O  
I/O  
-
M5  
N5  
K6  
P38  
P39  
-
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P38  
P39  
P40  
P41  
P42  
P43  
P44  
-
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
P92 301  
P93 304  
P94 307  
P95 310  
P96 313  
P97 316  
P98 319  
P99 322  
I/O  
I/O  
I/O  
I/O  
L6  
I/O  
-
M6  
N6  
M7  
N7  
L7  
I/O  
I/O (D2  
I/O  
-
P40  
P41  
P42  
P43  
P44  
P45  
-
P67  
P68  
-
P68  
P69  
-
I/O (INIT)  
VCC  
GND  
I/O  
P54  
P55  
-
-
I/O  
I/O  
-
-
-
-
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
K7  
P56 217  
P57 220  
P58 223  
P59 226  
P60 229  
P61 232  
P62 235  
P63 238  
GND  
I/O (D1  
I/O  
P100  
-
I/O  
I/O  
I/O  
I/O  
N8  
M8  
L8  
(2)  
(2)  
(3)  
(3)  
(3)  
(3)  
(3)  
)
,
P69  
P70  
-
P70  
P71  
-
P101 325  
P102 328  
P103 331  
P104 334  
P105 337  
-
I/O  
I/O  
I/O (D0  
DIN)  
I/O,  
P46  
P47  
-
-
-
K8  
-
-
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
N9  
M9  
L9  
P71  
P72  
(3)  
-
-
P72  
P73  
C11  
P106 340  
(1)  
K9  
P64  
-
SGCK4  
GCK6  
(2)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
P48  
P49  
-
P45  
P46  
-
N10  
M10  
L10  
N11  
M11  
L11  
P65 241  
P66 244  
P67 247  
P68 250  
P69 253  
P70 256  
(DOUT)  
CCLK  
VCC  
O, TDO  
GND  
I/O  
I/O,  
PGCK4  
GCK7  
I/O  
P73  
P74  
P75  
P76  
P77  
P78  
P74  
P75  
P76  
P77  
P78  
P79  
B13  
B12  
A13  
A12  
B11  
A11  
P107  
P108  
P109  
P110  
P111  
P112  
-
-
0
-
-
-
I/O  
I/O,  
SGCK3  
GCK4  
GND  
DONE  
VCC  
PROGRAM  
I/O (D7  
I/O,  
P50  
P51  
P47  
P48  
(1)  
2
5
(2)  
(1)  
P52  
P53  
P54  
P55  
P56  
P57  
P49  
P50  
P51  
P52  
P53  
P54  
N12  
M12  
N13  
M13  
L12  
L13  
P71  
P72  
P73  
P74  
P75 259  
P76 262  
-
-
-
-
(2)  
-
-
-
D10  
C10  
B10  
A10  
C9  
P113  
P114  
P115  
P116  
P118  
P119  
P120  
P121  
P122  
P123  
8
I/O  
-
P79  
P80  
-
11  
14  
17  
-
20  
23  
26  
29  
32  
(2)  
(2)  
(3)  
(3)  
I/O (CS1  
I/O  
GND  
I/O  
)
P80  
P81  
-
)
(1)  
PGCK3  
GCK5  
(2)  
-
-
B9  
(3)  
(3)  
(3)  
(3)  
I/O  
I/O  
I/O (D6  
I/O  
-
-
-
K10  
K11  
K12  
K13  
P77 265  
P78 268  
P79 271  
P80 274  
I/O  
I/O  
I/O  
I/O  
-
-
A9  
D8  
C8  
B8  
-
P58  
-
P81  
P82  
-
P82  
P83  
P84  
(2)  
)
P55  
P56  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
67  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Additional XCS10/XL Package Pins  
XCS10 and XCS10XL Device Pinouts  
XCS10/XL  
Pad Name PC84 VQ100 CS144  
Bndry  
TQ144 Scan  
(2)  
TQ144  
I/O  
I/O  
I/O  
-
P85  
P86  
P87  
P88  
A8  
B7  
A7  
C7  
P124  
P125  
P126  
P127  
35  
38  
41  
-
Not Connected Pins  
P83  
P84  
P1  
P117  
-
-
-
-
-
-
-
-
5/5/97  
GND  
Notes:  
1. 5V Spartan only  
2. 3V Spartan-XL only  
3. The PWRDWNon the XCS10XL is not part of the Boundary  
Scan chain. For the XCS10XL, subtract 1 from all Boundary  
Scan numbers from GCK3 on (175 and higher).  
CS144  
Not Connected Pins  
D9  
-
-
4/28/99  
XCS20 and XCS20XL Device Pinouts  
XCS20 and XCS20XL Device Pinouts  
XCS20/XL  
Bndry  
Scan  
(2)  
Pad Name  
I/O,  
PGCK1  
VQ100 CS144  
TQ144  
PQ208  
XCS20/XL  
Pad Name  
Bndry  
Scan  
(2)  
VQ100 CS144  
TQ144  
P128  
P129  
P130  
P131  
P132  
-
PQ208  
P183  
P184  
P185  
P186  
P187  
P188  
P189  
P190  
P191  
P192  
P193  
P194  
P195  
P196  
P197  
P198  
P199  
P200  
P201  
P204  
P205  
P206  
P207  
P2  
B1  
P2  
P2  
122  
(1)  
,
VCC  
P89  
D7  
A6  
B6  
C6  
D6  
-
-
(2)  
GCK1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
P90  
62  
65  
68  
71  
74  
77  
80  
83  
-
I/O  
P3  
C2  
C1  
D4  
D3  
D2  
-
P3  
P4  
P5  
P6  
P7  
-
P3  
P4  
125  
128  
131  
134  
137  
140  
143  
146  
149  
-
P91  
I/O  
-
P92  
I/O  
-
P5  
P93  
I/O, TDI  
I/O, TCK  
I/O  
P4  
P6  
-
P5  
P7  
-
-
-
-
P8  
P94  
A5  
B5  
-
P133  
P134  
-
I/O  
-
-
-
P9  
P95  
I/O  
-
-
-
-
P10  
P11  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
(2)  
-
I/O  
-
-
-
C5  
D5  
A4  
-
P135  
P136  
P137  
-
86  
89  
-
GND  
I/O  
-
D1  
E4  
E3  
E2  
E1  
-
P8  
P9  
P10  
P11  
P12  
-
-
-
152  
155  
158  
161  
-
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
-
I/O  
-
-
92  
95  
98  
101  
104  
107  
110  
113  
116  
119  
I/O, TMS  
I/O  
P6  
P7  
-
-
-
-
-
-
-
(2)  
VCC  
-
-
-
I/O  
-
-
-
164  
167  
170  
173  
176  
179  
-
P96  
P97  
-
B4  
C4  
A3  
B3  
C3  
A2  
P138  
P139  
P140  
P141  
P142  
P143  
I/O  
-
-
-
I/O  
-
F4  
F3  
F2  
F1  
G2  
G1  
G3  
G4  
H1  
H2  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
I/O  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
-
-
I/O  
P98  
P99  
I/O  
I/O,  
SGCK1  
GCK8  
GND  
VCC  
I/O  
(1)  
,
(2)  
-
VCC  
P100  
P1  
B2  
A1  
P144  
P1  
P208  
P1  
-
-
182  
185  
188  
191  
GND  
I/O  
I/O  
I/O  
68  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS20 and XCS20XL Device Pinouts  
XCS20 and XCS20XL Device Pinouts  
XCS20/XL  
Pad Name  
Bndry  
Scan  
XCS20/XL  
Pad Name  
(2)  
Bndry  
Scan  
(2)  
(2)  
VQ100 CS144  
TQ144  
-
PQ208  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P38  
P40  
P41  
P42  
P43  
P44  
P45  
P46  
P47  
P48  
P49  
VQ100 CS144  
TQ144  
-
PQ208  
P71  
P72  
P73  
P74  
P75  
P76  
P77  
P78  
P79  
P80  
P81  
P82  
P83  
P84  
P85  
P86  
P87  
P88  
P89  
P90  
P91  
P93  
P94  
P95  
P96  
P97  
P98  
P99  
P100  
P101  
P102  
I/O  
-
-
-
194  
197  
-
VCC  
-
-
-
-
-
(3)  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
-
-
I/O  
-
289  
(2)  
(3)  
-
-
-
I/O  
-
-
-
292  
(3)  
P16  
H3  
H4  
J1  
J2  
J3  
-
P23  
P24  
P25  
P26  
P27  
-
200  
203  
206  
209  
-
I/O  
P33  
P34  
P35  
P36  
P37  
P38  
P39  
P40  
P41  
P42  
-
L6  
M6  
N6  
M7  
N7  
L7  
K7  
N8  
M8  
L8  
-
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P57  
P58  
P59  
-
295  
(3)  
P17  
I/O  
298  
(3)  
-
I/O  
301  
(3)  
-
I/O (INIT)  
VCC  
GND  
I/O  
304  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
-
-
-
-
212  
215  
218  
221  
224  
227  
230  
233  
236  
239  
(3)  
-
-
-
-
307  
(3)  
-
-
I/O  
310  
(3)  
-
-
-
I/O  
313  
(3)  
P18  
P19  
-
J4  
K1  
K2  
K3  
L1  
L2  
P28  
P29  
P30  
P31  
P32  
P33  
I/O  
316  
(3)  
I/O  
319  
(3)  
I/O  
-
-
-
322  
(2)  
-
VCC  
-
-
-
-
(3)  
P20  
P21  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O,  
P43  
P44  
-
K8  
N9  
M9  
L9  
K9  
-
P60  
P61  
P62  
P63  
P64  
-
325  
(3)  
I/O,  
SGCK2  
GCK2  
328  
(1)  
,
(3)  
331  
(2)  
(3)  
-
334  
Not  
P22  
L3  
P34  
P50  
242  
-
-
(1)  
Connected  
(3)  
(2)  
-
337  
M1  
(3)  
-
-
-
340  
GND  
P23  
P24  
M1  
M2  
P35  
P36  
P51  
P52  
-
(3)  
(1)  
-
-
-
343  
MODE  
M0  
,
245  
(2)  
(3)  
-
-
-
346  
(3)  
VCC  
Not  
Connected  
P25  
P26  
N1  
N2  
P37  
P38  
P53  
P54  
-
P45  
P46  
-
N10  
M10  
L10  
N11  
M11  
L11  
P65  
P66  
P67  
P68  
P69  
P70  
349  
(1)  
(3)  
246  
352  
(1)  
(3)  
355  
(2)  
PWRDWN  
(3)  
-
358  
(3)  
I/O,  
PGCK2  
GCK3  
P27  
M3  
P39  
P55  
247  
(3)  
P47  
P48  
361  
(1)  
,
(3)  
364  
(2)  
(1)  
SGCK3  
GCK4  
,
(3)  
I/O (HDC)  
I/O  
P28  
N3  
K4  
L4  
M4  
N4  
-
P40  
P41  
P42  
P43  
P44  
-
P56  
P57  
P58  
P59  
P60  
P61  
P62  
P63  
P64  
P66  
P67  
P68  
P69  
P70  
250  
(2)  
(3)  
-
253  
GND  
DONE  
VCC  
P49  
P50  
P51  
P52  
P53  
P54  
N12  
M12  
N13  
M13  
L12  
L13  
P71  
P72  
P73  
P74  
P75  
P76  
P103  
P104  
P105  
P106  
P107  
P108  
-
-
-
-
(3)  
I/O  
-
256  
(3)  
I/O  
P29  
259  
(3)  
I/O (LDC)  
I/O  
P30  
262  
PROGRAM  
(3)  
-
265  
(2)  
(3)  
I/O (D7  
)
367  
(3)  
I/O  
-
-
-
268  
(3)  
I/O,  
PGCK3  
GCK5  
370  
(3)  
(1)  
I/O  
-
-
-
271  
,
(2)  
(3)  
I/O  
-
-
-
274  
(3)  
I/O  
-
-
K10  
K11  
K12  
K13  
-
P77  
P78  
P79  
P80  
-
P109  
P110  
P112  
P113  
P114  
373  
GND  
I/O  
-
-
K5  
L5  
M5  
N5  
K6  
P45  
P46  
P47  
P48  
P49  
-
(3)  
(3)  
I/O  
376  
277  
(2)  
(3)  
(3)  
I/O (D6  
I/O  
)
P55  
P56  
-
379  
I/O  
-
280  
(3)  
(3)  
382  
I/O  
P31  
P32  
283  
(3)  
(3)  
I/O  
385  
I/O  
286  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
69  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS20 and XCS20XL Device Pinouts  
XCS20 and XCS20XL Device Pinouts  
XCS20/XL  
Pad Name  
Bndry  
Scan  
XCS20/XL  
Pad Name  
Bndry  
Scan  
(2)  
(2)  
VQ100 CS144  
TQ144  
-
PQ208  
P115  
P116  
P117  
P118  
P119  
P120  
P121  
P122  
P123  
P124  
P125  
P126  
P127  
P128  
P129  
P130  
P131  
P132  
P133  
P134  
P135  
P136  
P137  
P138  
P139  
P140  
P141  
P142  
P143  
P145  
P146  
P147  
P148  
P149  
P150  
P151  
P152  
P153  
VQ100 CS144  
TQ144  
P108  
P109  
P110  
P111  
P112  
PQ208  
P156  
P157  
P158  
P159  
P160  
(3)  
I/O  
-
-
388  
VCC  
P75  
P76  
P77  
P78  
P79  
B12  
A13  
A12  
B11  
A11  
-
(3)  
I/O  
-
-
-
391  
O, TDO  
GND  
I/O  
0
-
(3)  
I/O  
-
-
-
394  
GND  
I/O  
-
J10  
J11  
J12  
-
P81  
P82  
P83  
-
-
2
5
(3)  
-
397  
I/O,  
PGCK4  
GCK7  
(1)  
,
(3)  
I/O  
-
400  
(2)  
(2)  
VCC  
I/O (D5  
I/O  
-
-
I/O  
-
D10  
C10  
B10  
A10  
D9  
-
P113  
P114  
P115  
P116  
P117  
-
P161  
P162  
P163  
P164  
P166  
P167  
P168  
P169  
P170  
P171  
P172  
P173  
P174  
P175  
P176  
P177  
P178  
P179  
P180  
P181  
P182  
8
(2)  
(3)  
)
P57  
J13  
H10  
-
P84  
P85  
-
403  
I/O  
-
11  
14  
17  
20  
23  
26  
29  
-
(3)  
P58  
406  
(2)  
I/O (CS1  
I/O  
)
P80  
(3)  
I/O  
-
409  
P81  
(3)  
I/O  
-
-
-
412  
I/O  
-
(3)  
I/O  
P59  
H11  
H12  
H13  
G12  
G13  
G11  
G10  
F13  
F12  
F11  
-
P86  
P87  
P88  
P89  
P90  
P91  
P92  
P93  
P94  
P95  
-
415  
I/O  
-
(3)  
I/O  
P60  
418  
I/O  
-
-
-
(2)  
(2)  
(3)  
I/O (D4  
I/O  
)
)
P61  
421  
I/O  
-
-
-
-
(3)  
P62  
424  
GND  
I/O  
C9  
B9  
A9  
-
P118  
P119  
P120  
-
VCC  
GND  
I/O (D3  
I/O  
P63  
-
-
-
32  
35  
-
P64  
I/O  
-
(3)  
P65  
427  
(2)  
VCC  
-
(3)  
P66  
430  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P82  
P83  
-
D8  
C8  
-
P121  
P122  
-
38  
41  
44  
47  
50  
53  
56  
59  
-
(3)  
I/O  
P67  
433  
(3)  
I/O  
-
436  
(3)  
I/O  
-
439  
-
-
-
(3)  
I/O  
-
-
-
442  
P84  
P85  
P86  
P87  
P88  
B8  
A8  
B7  
A7  
C7  
P123  
P124  
P125  
P126  
P127  
(2)  
(3)  
I/O (D2  
I/O  
)
P68  
F10  
E13  
-
P96  
P97  
-
445  
(3)  
P69  
448  
(2)  
VCC  
-
-
(3)  
I/O  
-
E12  
E11  
E10  
-
P98  
P99  
P100  
-
451  
GND  
(3)  
I/O  
-
454  
2/8/00  
GND  
I/O  
-
-
(3)  
-
457  
Additional XCS20/XL Package Pins  
(3)  
I/O  
-
-
-
460  
(3)  
I/O  
-
-
-
-
463  
PQ208  
(3)  
I/O  
-
-
466  
Not Connected Pins  
(2)  
(3)  
I/O (D1  
I/O  
)
P70  
P71  
-
D13  
D12  
D11  
C13  
C12  
P101  
P102  
P103  
P104  
P105  
469  
(1)  
(1)  
(1)  
P12  
P18  
P33  
P39  
P65  
P71  
(3)  
472  
(1)  
(1)  
(1)  
P86  
P165  
P92  
P111  
P121  
P202  
P140  
P203  
P144  
-
(3)  
I/O  
475  
(1)  
(1)  
P173  
P192  
(3)  
I/O  
-
478  
9/16/98  
(3)  
Notes:  
1. 5V Spartan only  
2. 3V Spartan-XL only  
3. The PWRDWNon the XCS20XL is not part of the  
I/O  
(D0 , DIN)  
P72  
481  
(2)  
(3)  
I/O,  
SGCK4  
GCK6  
P73  
P74  
C11  
P106  
P154  
484  
(1)  
,
Boundary Scan chain. For the XCS20XL, subtract 1 from all  
Boundary Scan numbers from GCK3 on (247 and higher).  
(2)  
(DOUT)  
CCLK  
B13  
P107  
P155  
-
70  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS30 and XCS30XL Device Pinouts  
XCS30/XL  
Bndry  
Scan  
(2)  
Pad Name  
VCC  
I/O  
VQ100  
TQ144  
PQ208  
P183  
P184  
P185  
P186  
P187  
P188  
P189  
P190  
P191  
P192  
-
PQ240  
P212  
P213  
P214  
P215  
P216  
P217  
P218  
P220  
P221  
P222  
P223  
P224  
P225  
P226  
P227  
P228  
P229  
P230  
P231  
P232  
P233  
P234  
P235  
P236  
P237  
P238  
P239  
P240  
P1  
BG256  
CS280  
(4)  
(4)  
P89  
P128  
VCC  
VCC  
D10  
E10  
A9  
-
P90  
P129  
C10  
D10  
A9  
74  
I/O  
P91  
P130  
77  
I/O  
P92  
P131  
80  
I/O  
P93  
P132  
B9  
B9  
83  
I/O  
-
-
C9  
D9  
A8  
C9  
86  
I/O  
-
-
D9  
89  
I/O  
P94  
P133  
A8  
92  
I/O  
P95  
P134  
B8  
B8  
95  
(4)  
(4)  
VCC  
I/O  
-
-
VCC  
VCC  
B7  
-
-
-
A6  
C7  
B6  
A5  
98  
I/O  
-
-
-
C7  
D7  
A6  
101  
104  
107  
-
I/O  
-
P135  
P193  
P194  
P195  
P196  
P197  
P198  
P199  
P200  
P201  
P202  
P203  
P204  
P205  
P206  
P207  
P208  
P1  
I/O  
-
P136  
(4)  
(4)  
GND  
I/O  
-
P137  
GND  
GND  
B6  
-
-
C6  
B5  
A4  
C5  
B4  
A3  
D5  
C4  
B3  
B2  
A2  
C3  
110  
113  
116  
119  
122  
125  
128  
131  
134  
137  
140  
143  
-
I/O  
-
-
-
C6  
D6  
E6  
I/O  
-
I/O  
-
-
I/O  
P96  
P138  
P139  
-
A5  
I/O  
P97  
C5  
B4  
I/O  
-
I/O  
-
-
C4  
A3  
I/O  
-
P140  
P141  
P142  
P143  
P144  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
-
I/O  
-
A2  
I/O  
P98  
B3  
(1)  
(2)  
(2)  
I/O, SGCK1 , GCK8  
P99  
B2  
(4)  
(4)  
VCC  
P100  
VCC  
VCC  
GND  
C3  
C2  
B1  
(4)  
(4)  
GND  
P1  
GND  
-
(1)  
I/O, PGCK1 , GCK1  
P2  
P2  
P2  
B1  
C2  
D2  
D3  
E4  
C1  
D1  
E3  
E2  
E1  
F3  
F2  
146  
149  
152  
155  
158  
161  
164  
167  
170  
173  
176  
179  
-
I/O  
I/O  
P3  
P3  
P3  
-
P4  
P4  
I/O  
-
P5  
P5  
C1  
D4  
D3  
E2  
I/O, TDI  
I/O, TCK  
I/O  
P4  
P6  
P6  
P5  
-
P7  
P7  
P8  
P8  
I/O  
-
-
P9  
P9  
E4  
I/O  
-
-
P10  
P11  
P12  
-
P10  
E1  
I/O  
-
-
P11  
F5  
I/O  
-
-
P12  
F3  
I/O  
-
-
P13  
F2  
(4)  
(4)  
GND  
I/O  
-
P8  
P9  
P10  
P13  
P14  
P15  
P14  
GND  
GND  
F4  
-
P15  
G3  
G2  
182  
185  
I/O  
-
P16  
F1  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
71  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS30 and XCS30XL Device Pinouts (Continued)  
XCS30/XL  
Bndry  
Scan  
(2)  
Pad Name  
I/O, TMS  
I/O  
VQ100  
TQ144  
P11  
P12  
-
PQ208  
P16  
P17  
P18  
-
PQ240  
P17  
P18  
P19  
P20  
P21  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P38  
P39  
P40  
P41  
P42  
P43  
P44  
P45  
P46  
P47  
P48  
P49  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P57  
P58  
P59  
P60  
P61  
P62  
BG256  
G1  
CS280  
G3  
P6  
188  
191  
-
P7  
H3  
G2  
(4)  
(4)  
VCC  
I/O  
-
VCC  
VCC  
G4  
H1  
H4  
J1  
-
-
H2  
H1  
J2  
194  
197  
200  
203  
206  
209  
212  
215  
-
I/O  
-
-
-
I/O  
-
-
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
P32  
-
I/O  
-
-
J1  
I/O  
-
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
-
K2  
K3  
K1  
L1  
J2  
I/O  
P8  
J3  
I/O  
P9  
J4  
I/O  
P10  
K1  
(4)  
(4)  
GND  
VCC  
I/O  
P11  
GND  
GND  
(4)  
(4)  
P12  
VCC  
VCC  
K3  
K4  
K5  
L1  
-
P13  
L2  
L3  
218  
221  
224  
227  
230  
233  
236  
239  
-
I/O  
P14  
I/O  
P15  
L4  
I/O  
-
M1  
M2  
M3  
N1  
N2  
I/O  
-
L2  
I/O  
-
-
L3  
I/O  
-
-
M2  
M3  
I/O  
-
-
-
(4)  
(4)  
VCC  
I/O  
-
-
P33  
P34  
P35  
P36  
P37  
P38  
-
VCC  
VCC  
N1  
N2  
N3  
N4  
GND  
P1  
P16  
P23  
P24  
P25  
P26  
P27  
-
P1  
P2  
R1  
P3  
242  
245  
248  
251  
-
I/O  
P17  
I/O  
-
I/O  
-
(4)  
(4)  
GND  
I/O  
-
-
GND  
T1  
R3  
T2  
U1  
T3  
U2  
V1  
T4  
U3  
V2  
W1  
V3  
W2  
254  
257  
260  
263  
266  
269  
272  
275  
278  
281  
284  
287  
290  
-
I/O  
-
-
P39  
P40  
P41  
P42  
P43  
P44  
P45  
P46  
P47  
P48  
P49  
P50  
P51  
P52  
P53  
P54  
P2  
I/O  
-
-
P3  
I/O  
-
-
P4  
I/O  
-
-
P5  
I/O  
-
-
R1  
T1  
I/O  
P18  
P19  
-
P28  
P29  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P38  
I/O  
T2  
I/O  
T3  
I/O  
-
U1  
V1  
I/O  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
(1)  
(2)  
(2)  
I/O, SGCK2 , GCK2  
U2  
V2  
(1)  
Not Connected , M1  
(4)  
(4)  
GND  
GND  
GND  
(1)  
(2)  
MODE , M0  
Y1  
W1  
293  
(4)  
(4)  
VCC  
VCC  
VCC  
V3  
-
(1)  
(1)  
Not Connected  
,
W3  
294  
(2)  
PWRDWN  
72  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS30 and XCS30XL Device Pinouts (Continued)  
XCS30/XL  
Pad Name  
Bndry  
Scan  
(2)  
VQ100  
TQ144  
P39  
P40  
P41  
P42  
P43  
P44  
-
PQ208  
P55  
P56  
P57  
P58  
P59  
P60  
P61  
P62  
P63  
P64  
P65  
-
PQ240  
P63  
P64  
P65  
P66  
P67  
P68  
P69  
P70  
P71  
P72  
P73  
P74  
P75  
P76  
P77  
P78  
P79  
P80  
P81  
P82  
P84  
P85  
P86  
P87  
P88  
P89  
P90  
P91  
P92  
P93  
P94  
P95  
P96  
P97  
P99  
P100  
P101  
P102  
P103  
P104  
P105  
P106  
P107  
P108  
P109  
BG256  
Y2  
CS280  
W2  
W3  
T4  
(1)  
(2)  
(3)  
I/O, PGCK2 , GCK3  
P27  
295  
(3)  
I/O (HDC)  
I/O  
P28  
W4  
V4  
298  
(3)  
-
301  
(3)  
I/O  
-
U5  
U4  
304  
(3)  
I/O  
P29  
Y3  
V4  
307  
(3)  
I/O (LDC)  
I/O  
P30  
Y4  
W4  
T5  
310  
(3)  
-
V5  
313  
(3)  
I/O  
-
-
W5  
Y5  
W5  
R6  
316  
(3)  
I/O  
-
-
319  
(3)  
I/O  
-
-
V6  
U6  
322  
(3)  
I/O  
-
-
W6  
Y6  
V6  
325  
(3)  
I/O  
-
-
T6  
328  
(4)  
(4)  
GND  
I/O  
-
P45  
P46  
P47  
P48  
P49  
-
P66  
P67  
P68  
P69  
P70  
P71  
P72  
P73  
-
GND  
GND  
W6  
U7  
-
(3)  
-
W7  
Y7  
331  
(3)  
I/O  
-
334  
(3)  
I/O  
P31  
V8  
V7  
337  
(3)  
I/O  
P32  
W8  
W7  
340  
(4)  
(4)  
VCC  
I/O  
-
VCC  
VCC  
W8  
U8  
-
(3)  
-
-
Y8  
U9  
343  
(3)  
I/O  
-
-
346  
(3)  
I/O  
-
-
Y9  
W9  
V9  
349  
(3)  
I/O  
-
-
-
W10  
V10  
Y10  
Y11  
W11  
352  
(3)  
I/O  
P33  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P57  
P58  
P59  
-
P74  
P75  
P76  
P77  
P78  
P79  
P80  
P81  
P82  
P83  
P84  
P85  
-
U9  
355  
(3)  
I/O  
P34  
T9  
358  
(3)  
I/O  
P35  
W10  
V10  
361  
(3)  
I/O (INIT)  
VCC  
GND  
I/O  
P36  
364  
(4)  
(4)  
P37  
VCC  
VCC  
GND  
-
-
(4)  
(4)  
P38  
GND  
(3)  
P39  
V11  
U11  
Y12  
W12  
V12  
U12  
V13  
Y14  
T10  
R10  
W11  
V11  
U11  
T11  
U12  
T12  
367  
(3)  
I/O  
P40  
370  
(3)  
I/O  
P41  
373  
(3)  
I/O  
P42  
376  
(3)  
I/O  
-
379  
(3)  
I/O  
-
-
382  
(3)  
I/O  
-
-
385  
(3)  
I/O  
-
-
-
388  
(4)  
(4)  
VCC  
I/O  
-
-
P86  
P87  
P88  
P89  
P90  
P91  
-
VCC  
VCC  
V13  
U13  
T13  
W14  
-
(3)  
P43  
P60  
P61  
P62  
P63  
P64  
-
Y15  
V14  
W15  
Y16  
391  
(3)  
I/O  
P44  
394  
(3)  
I/O  
-
-
-
-
-
-
397  
(3)  
I/O  
400  
(4)  
(4)  
GND  
I/O  
GND  
GND  
V14  
U14  
T14  
-
(3)  
V15  
W16  
Y17  
403  
(3)  
I/O  
-
P92  
P93  
406  
(3)  
I/O  
-
409  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
73  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS30 and XCS30XL Device Pinouts (Continued)  
XCS30/XL  
Pad Name  
Bndry  
Scan  
(2)  
VQ100  
TQ144  
-
PQ208  
P94  
PQ240  
P110  
P111  
P112  
P113  
P114  
P115  
P116  
P117  
P118  
P119  
P120  
P121  
P122  
P123  
P124  
P125  
P126  
P127  
P128  
P129  
P130  
P131  
P132  
P133  
P134  
P135  
P136  
P137  
P138  
P139  
P140  
P141  
P142  
P144  
P145  
P146  
P147  
P148  
P149  
P150  
P151  
P152  
P153  
P154  
P155  
BG256  
V16  
CS280  
R14  
W15  
U15  
V16  
(3)  
I/O  
-
412  
(3)  
I/O  
-
-
-
P95  
W17  
Y18  
415  
(3)  
I/O  
-
P96  
418  
(3)  
I/O  
P45  
P46  
-
P65  
P66  
P67  
P68  
P69  
P70  
P71  
P72  
P73  
P74  
P75  
P76  
P77  
P78  
-
P97  
U16  
V17  
421  
(3)  
I/O  
P98  
U16  
W17  
W18  
V17  
424  
(3)  
I/O  
P99  
W18  
Y19  
427  
(3)  
I/O  
-
P100  
P101  
P102  
P103  
P104  
P105  
P106  
P107  
P108  
P109  
P110  
-
430  
(3)  
I/O  
P47  
P48  
P49  
P50  
P51  
P52  
P53  
P54  
-
V18  
433  
(1)  
(2)  
(3)  
I/O, SGCK3 , GCK4  
W19  
V18  
436  
(4)  
(4)  
GND  
DONE  
VCC  
GND  
GND  
W19  
-
-
-
-
Y20  
(4)  
(4)  
VCC  
VCC  
U18  
V19  
U19  
T16  
T17  
T18  
T19  
R16  
R19  
P15  
P17  
P18  
P16  
PROGRAM  
V19  
U19  
U18  
T17  
V20  
U20  
T18  
T19  
T20  
R18  
R19  
R20  
P18  
(2)  
(3)  
I/O (D7  
)
439  
(1)  
(2)  
(3)  
I/O, PGCK3 , GCK5  
442  
(3)  
I/O  
I/O  
I/O  
445  
(3)  
-
448  
(3)  
-
451  
(3)  
I/O  
-
-
P111  
P112  
P113  
P114  
P115  
P116  
P117  
P118  
-
454  
(2)  
(3)  
I/O (D6  
I/O  
)
P55  
P56  
-
P79  
P80  
-
457  
(3)  
460  
(3)  
I/O  
463  
(3)  
I/O  
-
-
466  
(3)  
I/O  
-
-
469  
(3)  
I/O  
-
-
472  
(4)  
(4)  
GND  
I/O  
-
P81  
-
GND  
GND  
P19  
N17  
N18  
N19  
-
(3)  
-
P20  
N18  
N19  
N20  
475  
(3)  
I/O  
-
-
-
478  
(3)  
I/O  
-
P82  
P83  
-
P119  
P120  
P121  
P122  
P123  
P124  
P125  
P126  
P127  
P128  
P129  
P130  
P131  
P132  
P133  
P134  
P135  
481  
(3)  
I/O  
-
484  
(4)  
(4)  
VCC  
-
VCC  
VCC  
M19  
M17  
L19  
L18  
L17  
L16  
K19  
K18  
-
(2)  
(3)  
I/O (D5  
I/O  
)
P57  
P58  
-
P84  
P85  
-
M17  
M18  
M20  
L19  
L18  
L20  
K20  
K19  
487  
(3)  
490  
(3)  
I/O  
493  
(3)  
I/O  
-
-
496  
(3)  
I/O  
P59  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
-
P86  
P87  
P88  
P89  
P90  
P91  
P92  
P93  
P94  
P95  
499  
(3)  
I/O  
502  
(2)  
(3)  
I/O (D4  
I/O  
)
)
505  
(3)  
508  
(4)  
(4)  
VCC  
GND  
VCC  
VCC  
GND  
-
-
(4)  
(4)  
GND  
(2)  
(3)  
I/O (D3  
I/O  
K18  
K17  
J20  
J19  
K16  
K15  
J19  
J18  
511  
(3)  
514  
(3)  
I/O  
517  
(3)  
I/O  
520  
74  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS30 and XCS30XL Device Pinouts (Continued)  
XCS30/XL  
Pad Name  
Bndry  
Scan  
(2)  
VQ100  
TQ144  
PQ208  
P136  
P137  
P138  
P139  
P140  
P141  
P142  
-
PQ240  
P156  
P157  
P159  
P160  
P161  
P162  
P163  
P164  
P165  
P166  
P167  
P168  
P169  
P170  
P171  
P172  
P173  
P174  
P175  
P176  
P177  
P178  
BG256  
J18  
CS280  
J17  
(3)  
I/O  
-
-
523  
(3)  
I/O  
-
-
J17  
J16  
526  
(2)  
(3)  
I/O (D2  
I/O  
)
P68  
P96  
H19  
H18  
H17  
H16  
529  
(3)  
P69  
P97  
532  
(4)  
(4)  
VCC  
I/O  
-
-
VCC  
VCC  
G18  
G17  
G16  
F19  
-
(3)  
-
P98  
G19  
F20  
G18  
F19  
535  
(3)  
I/O  
-
P99  
538  
(3)  
I/O  
-
-
541  
(3)  
I/O  
-
-
-
544  
(4)  
(4)  
GND  
I/O  
-
P100  
P143  
-
GND  
GND  
F18  
F17  
F16  
F15  
E19  
E17  
E16  
D19  
C19  
B19  
C18  
B18  
-
(3)  
-
-
F18  
E19  
D20  
E18  
D19  
C20  
E17  
D18  
C19  
B20  
C18  
B19  
547  
(3)  
I/O  
-
-
P144  
P145  
P146  
P147  
P148  
P149  
P150  
P151  
P152  
P153  
P154  
550  
(3)  
I/O  
-
-
553  
(3)  
I/O  
-
-
-
556  
(3)  
I/O  
-
559  
(3)  
I/O  
-
-
562  
(2)  
(3)  
I/O (D1  
I/O  
)
P70  
P71  
-
P101  
P102  
P103  
P104  
P105  
P106  
565  
(3)  
568  
(3)  
I/O  
571  
(3)  
I/O  
-
574  
(2)  
(3)  
I/O (D0 , DIN)  
P72  
P73  
577  
(1)  
(2)  
(3)  
I/O, SGCK4 , GCK6  
580  
(DOUT)  
CCLK  
VCC  
P74  
P107  
P108  
P109  
P110  
P111  
P112  
P113  
P114  
P115  
P116  
-
P155  
P156  
P157  
P158  
P159  
P160  
P161  
P162  
P163  
P164  
P165  
-
P179  
P180  
P181  
P182  
P183  
P184  
P185  
P186  
P187  
P188  
P189  
P190  
P191  
P192  
P193  
P194  
P196  
P197  
P198  
P199  
P200  
P201  
P202  
A20  
A19  
-
(4)  
(4)  
P75  
VCC  
VCC  
-
O, TDO  
GND  
P76  
A19  
B17  
0
(4)  
(4)  
P77  
GND  
GND  
A18  
A17  
D16  
C16  
B16  
A16  
D15  
A15  
E14  
C14  
B14  
D14  
-
I/O  
P78  
B18  
B17  
C17  
D16  
A18  
A17  
C16  
B16  
A16  
C15  
B15  
A15  
2
(1)  
(2)  
I/O, PGCK4 , GCK7  
P79  
5
I/O  
I/O  
-
8
-
11  
14  
17  
20  
23  
26  
29  
32  
35  
-
(2)  
I/O (CS1)  
P80  
I/O  
I/O  
P81  
-
I/O  
-
-
I/O  
-
P117  
-
P166  
P167  
P168  
P169  
P170  
P171  
P172  
-
I/O  
-
I/O  
-
-
I/O  
-
-
(4)  
(4)  
GND  
I/O  
-
P118  
P119  
P120  
-
GND  
GND  
A14  
C13  
B13  
A13  
-
B14  
A14  
C13  
B13  
38  
41  
44  
47  
-
I/O  
-
I/O  
-
I/O  
-
-
-
-
(4)  
(4)  
VCC  
I/O  
-
P173  
P174  
VCC  
VCC  
B12  
P82  
P121  
C12  
50  
DS060 (v1.6) September 19, 2001  
www.xilinx.com  
75  
Product Specification  
1-800-255-7778  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS30 and XCS30XL Device Pinouts (Continued)  
XCS30/XL  
Pad Name  
Bndry  
Scan  
(2)  
VQ100  
P83  
-
TQ144  
P122  
-
PQ208  
P175  
P176  
P177  
P178  
P179  
P180  
P181  
P182  
PQ240  
P203  
P205  
P206  
P207  
P208  
P209  
P210  
P211  
BG256  
B12  
CS280  
D12  
A11  
B11  
C11  
D11  
A10  
B10  
I/O  
53  
56  
59  
62  
65  
68  
71  
-
I/O  
A12  
I/O  
-
-
B11  
I/O  
P84  
P85  
P86  
P87  
P88  
P123  
P124  
P125  
P126  
P127  
C11  
A11  
I/O  
I/O  
A10  
I/O  
B10  
(4)  
(4)  
GND  
GND  
GND  
2/8/00  
Notes:  
1. 5V Spartan only  
2. 3V Spartan-XL only  
3. The PWRDWNon the XCS30XL is not part of the Boundary Scan chain. For the XCS30XL, subtract 1 from all Boundary Scan  
numbers from GCK3 on (295 and higher).  
(4)  
(4)  
4. Pads labeled GND or V  
are internally bonded to Ground or V planes within the package.  
CC  
CC  
Additional XCS30/XL Package Pins  
CS280  
PQ240  
VCC Pins  
GND Pins  
A1  
D13  
K17  
U3  
A7  
E3  
B5  
B15  
C10  
G19  
R18  
V15  
C17  
K2  
P22  
P37  
P83  
-
P98  
-
P143  
-
P158  
-
E18  
N16  
U17  
G1  
P204  
P219  
M4  
U10  
R3  
T7  
Not Connected Pins  
V5  
W13  
P195  
-
-
-
-
-
2/12/98  
GND Pins  
E5  
E7  
G5  
L5  
R7  
-
E8  
G15  
L15  
R8  
-
E9  
H5  
M5  
R9  
-
E11  
H15  
M15  
R11  
-
E12  
J5  
BG256  
E13  
J15  
N15  
R13  
VCC Pins  
N5  
R12  
-
C14  
E20  
K4  
D6  
F1  
D7  
F4  
D11  
F17  
P17  
U7  
-
D14  
G4  
P19  
U10  
-
D15  
G17  
R2  
L17  
R17  
V7  
P4  
Not Connected Pins  
R4  
U6  
U14  
-
U15  
W20  
A4  
D2  
A12  
D5  
C8  
D8  
H18  
R2  
T15  
-
C12  
D17  
H19  
R4  
U5  
-
C15  
D18  
L4  
D1  
E15  
M1  
R15  
V12  
-
GND Pins  
A1  
G20  
U4  
B7  
H4  
U8  
D4  
D8  
N3  
D13  
N4  
D17  
N17  
-
H2  
H3  
H17  
U13  
M16  
R17  
M18  
T8  
R5  
V8  
-
U17  
W14  
Not Connected Pins  
W12  
W16  
A7  
J4  
A13  
M4  
-
C8  
M19  
-
D12  
V9  
-
H20  
W9  
-
J3  
W13  
-
5/19/99  
Y13  
6/4/97  
76  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS40 and XCS40XL Device Pinouts  
XCS40 and XCS40XL Device Pinouts  
XCS40/XL  
Pad Name  
Bndry  
Scan  
XCS40/XL  
Pad Name  
Bndry  
Scan  
(2)  
(2)  
PQ208 PQ240 BG256 CS280  
PQ208 PQ240 BG256 CS280  
(4)  
(4)  
I/O  
P9  
P10  
P11  
P12  
-
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
-
E3  
E2  
E4  
E1  
197  
200  
203  
206  
209  
-
VCC  
P183  
P184  
P185  
P186  
P187  
P188  
P189  
P190  
P191  
-
P212  
P213  
P214  
P215  
P216  
P217  
P218  
P220  
P221  
-
VCC  
VCC  
D10  
E10  
A9  
-
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
C10  
D10  
A9  
86  
I/O  
E1  
F5  
89  
I/O  
F3  
F3  
92  
I/O  
F2  
F2  
B9  
B9  
95  
(4)  
(4)  
GND  
I/O  
P13  
P14  
P15  
P16  
P17  
P18  
-
GND  
G3  
G2  
G1  
H3  
GND  
F4  
C9  
D9  
A8  
C9  
98  
212  
215  
218  
221  
-
D9  
101  
104  
107  
110  
113  
-
I/O  
F1  
A8  
I/O, TMS  
I/O  
G3  
G2  
B8  
B8  
C8  
A7  
C8  
(4)  
(4)  
VCC  
I/O  
VCC  
VCC  
-
-
D8  
(4)  
(4)  
H2  
H1  
J4  
G4  
H1  
H3  
H2  
H4  
J1  
224  
227  
230  
233  
236  
239  
242  
245  
248  
251  
-
P192  
-
P222  
P223  
P224  
P225  
P226  
P227  
P228  
P229  
P230  
P231  
P232  
P233  
-
VCC  
A6  
C7  
B6  
A5  
GND  
C6  
B5  
A4  
C5  
B4  
A3  
-
VCC  
B7  
C7  
D7  
A6  
GND  
B6  
C6  
D6  
E6  
A5  
C5  
D5  
A4  
B4  
C4  
A3  
A2  
B3  
B2  
I/O  
-
116  
119  
122  
125  
-
I/O  
-
-
I/O  
-
-
J3  
P193  
P194  
P195  
P196  
P197  
P198  
P199  
P200  
P201  
-
I/O  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
P32  
-
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
-
J2  
(4)  
(4)  
I/O  
J1  
I/O  
K2  
K3  
K1  
L1  
J2  
128  
131  
134  
137  
140  
143  
146  
149  
152  
155  
158  
161  
164  
167  
I/O  
J3  
I/O  
J4  
I/O  
K1  
(4)  
(4)  
GND  
VCC  
I/O  
GND  
GND  
(4)  
(4)  
VCC  
L2  
VCC  
K3  
K4  
K5  
L1  
-
254  
257  
260  
263  
266  
269  
272  
275  
278  
281  
-
I/O  
L3  
-
-
-
I/O  
L4  
P202  
P203  
P204  
P205  
P206  
P207  
P234  
P235  
P236  
P237  
P238  
P239  
D5  
C4  
B3  
B2  
A2  
C3  
I/O  
M1  
M2  
M3  
M4  
-
I/O  
L2  
I/O  
L3  
I/O  
L4  
I/O  
-
-
M1  
M2  
M3  
I/O,  
SGCK1  
GCK8  
(1)  
(1)  
,
,
I/O  
-
P38  
P39  
P40  
P41  
P42  
P43  
P44  
P45  
P46  
P47  
P48  
P49  
P50  
P51  
N1  
N2  
(2)  
I/O  
-
(4)  
(4)  
(4)  
(4)  
VCC  
P208  
P1  
P240  
P1  
VCC  
GND  
B1  
VCC  
GND  
-
-
(4)  
(4)  
VCC  
I/O  
P33  
P34  
P35  
P36  
P37  
P38  
-
VCC  
P1  
VCC  
N1  
GND  
284  
287  
290  
293  
-
I/O,  
PGCK1  
GCK1  
P2  
P2  
C3  
170  
I/O  
P2  
N2  
I/O  
R1  
P3  
N3  
(2)  
I/O  
N4  
I/O  
P3  
P4  
P5  
P6  
P7  
-
P3  
P4  
P5  
P6  
P7  
-
C2  
D2  
D3  
E4  
C1  
-
C2  
B1  
C1  
D4  
D3  
D2  
D1  
E2  
173  
176  
179  
182  
185  
188  
191  
194  
(4)  
(4)  
GND  
I/O  
GND  
T1  
GND  
P1  
I/O  
296  
299  
302  
305  
308  
311  
I/O  
I/O  
P39  
P40  
P41  
P42  
P43  
R3  
T2  
P2  
I/O, TDI  
I/O, TCK  
I/O  
I/O  
P3  
I/O  
U1  
T3  
P4  
I/O  
P5  
I/O  
-
-
-
I/O  
U2  
R1  
I/O  
P8  
P8  
D1  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
77  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS40 and XCS40XL Device Pinouts  
XCS40 and XCS40XL Device Pinouts  
XCS40/XL  
Pad Name  
Bndry  
Scan  
XCS40/XL  
Pad Name  
Bndry  
Scan  
(2)  
(2)  
PQ208 PQ240 BG256 CS280  
PQ208 PQ240 BG256 CS280  
(3)  
I/O  
-
-
-
R2  
R4  
T1  
T2  
T3  
U1  
V1  
U2  
314  
317  
320  
323  
326  
329  
332  
335  
I/O  
-
P85  
P86  
P87  
P88  
P89  
P90  
P91  
P92  
P93  
P94  
P95  
P96  
P97  
-
W10  
V10  
Y10  
Y11  
W11  
V9  
U9  
412  
(3)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
-
-
-
I/O  
P74  
P75  
P76  
P77  
P78  
P79  
P80  
P81  
P82  
P83  
P84  
P85  
-
415  
(3)  
P44  
P45  
P46  
P47  
P48  
P49  
P52  
P53  
P54  
P55  
P56  
P57  
V1  
T4  
U3  
V2  
W1  
V3  
I/O  
T9  
418  
(3)  
I/O  
W10  
V10  
421  
(3)  
I/O (INIT)  
VCC  
GND  
I/O  
424  
(4)  
(4)  
(4)  
VCC  
GND  
VCC  
GND  
VCC  
(4)  
(4)  
-
(3)  
I/O,  
SGCK2  
GCK2  
V11  
U11  
Y12  
W12  
V12  
U12  
Y13  
W13  
V13  
Y14  
T10  
R10  
W11  
V11  
U11  
T11  
W12  
V12  
U12  
T12  
427  
(1)  
,
(3)  
I/O  
430  
(2)  
(3)  
I/O  
433  
Not  
Connected  
M1  
P50  
P58  
W2  
V2  
338  
(3)  
I/O  
436  
(1)  
(3)  
(2)  
I/O  
439  
(3)  
(4)  
(4)  
I/O  
442  
GND  
P51  
P52  
P59  
P60  
GND  
Y1  
GND  
-
(3)  
(1)  
I/O  
445  
MODE  
M0  
,
W1  
341  
(2)  
(3)  
I/O  
-
-
448  
(4)  
(4)  
(3)  
VCC  
P53  
P54  
P61  
P62  
VCC  
VCC  
V3  
-
I/O  
-
P99  
P100  
P101  
P102  
P103  
P104  
P105  
P106  
P107  
P108  
P109  
P110  
P111  
P112  
-
451  
(1)  
(3)  
Not  
Connected  
PWRDWN  
W3  
342  
I/O  
-
454  
(1)  
(4)  
(4)  
VCC  
I/O  
P86  
P87  
P88  
P89  
P90  
P91  
-
VCC  
Y15  
V14  
W15  
Y16  
VCC  
V13  
U13  
T13  
W14  
-
(2)  
(3)  
457  
(3)  
I/O,  
PGCK2  
GCK3  
P55  
P63  
Y2  
W2  
343  
(3)  
I/O  
460  
(1)  
,
(3)  
(2)  
I/O  
463  
(3)  
(3)  
I/O  
466  
I/O (HDC)  
I/O  
P56  
P57  
P58  
P59  
P60  
-
P64  
P65  
P66  
P67  
P68  
-
W4  
V4  
U5  
Y3  
Y4  
-
W3  
T4  
346  
(4)  
(4)  
(3)  
GND  
I/O  
GND  
V15  
W16  
Y17  
V16  
W17  
Y18  
-
GND  
V14  
U14  
T14  
R14  
W15  
U15  
T15  
W16  
V16  
U16  
W17  
W18  
V17  
V18  
-
349  
(3)  
(3)  
469  
I/O  
U4  
V4  
W4  
R5  
U5  
T5  
352  
(3)  
(3)  
I/O  
P92  
P93  
P94  
P95  
P96  
-
472  
I/O  
355  
(3)  
(3)  
I/O  
475  
I/O (LDC)  
I/O  
358  
(3)  
(3)  
I/O  
478  
361  
(3)  
(3)  
I/O  
481  
I/O  
-
-
-
364  
(3)  
(3)  
I/O  
484  
I/O  
P61  
P62  
P63  
P64  
P65  
-
P69  
P70  
P71  
P72  
P73  
P74  
P75  
P76  
P77  
P78  
P79  
P80  
P81  
P82  
-
V5  
W5  
Y5  
V6  
W6  
Y6  
367  
(3)  
(3)  
I/O  
487  
I/O  
W5  
R6  
U6  
V6  
T6  
370  
(3)  
(3)  
I/O  
-
-
-
490  
I/O  
373  
(3)  
(3)  
I/O  
P97  
P98  
P99  
P100  
P101  
P102  
P113  
P114  
P115  
P116  
P117  
P118  
U16  
V17  
W18  
Y19  
V18  
W19  
493  
I/O  
376  
(3)  
(3)  
I/O  
496  
I/O  
379  
(3)  
(3)  
I/O  
499  
I/O  
382  
(3)  
(4)  
(4)  
I/O  
502  
GND  
I/O  
P66  
P67  
P68  
P69  
P70  
P71  
P72  
P73  
-
GND  
W7  
Y7  
GND  
W6  
U7  
-
(3)  
(3)  
I/O  
505  
385  
(3)  
(3)  
I/O,  
SGCK3  
GCK4  
508  
I/O  
388  
(1)  
,
(3)  
I/O  
V8  
V7  
391  
(2)  
(3)  
I/O  
W8  
W7  
394  
(4)  
(4)  
GND  
DONE  
VCC  
P103  
P104  
P105  
P106  
P107  
P119  
P120  
P121  
P122  
P123  
GND  
Y20  
GND  
W19  
-
-
-
-
(4)  
(4)  
VCC  
I/O  
VCC  
Y8  
VCC  
W8  
U8  
-
(3)  
397  
(4)  
(4)  
VCC  
V19  
U19  
VCC  
U18  
V19  
(3)  
I/O  
U9  
400  
PROGRAM  
(3)  
I/O  
V9  
V8  
403  
(2)  
(3)  
I/O (D7  
)
511  
(3)  
I/O  
-
-
W9  
Y9  
T8  
406  
(3)  
I/O  
-
P84  
W9  
409  
78  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
XCS40 and XCS40XL Device Pinouts  
XCS40 and XCS40XL Device Pinouts  
XCS40/XL  
Bndry  
Scan  
XCS40/XL  
Pad Name  
Bndry  
Scan  
(2)  
(2)  
Pad Name  
I/O,  
PGCK3  
PQ208 PQ240 BG256 CS280  
PQ208 PQ240 BG256 CS280  
(3)  
(3)  
P108  
P124  
U18  
U19  
514  
I/O  
-
P164  
P165  
P166  
P167  
P168  
P169  
P170  
P171  
P172  
P173  
P174  
-
G18  
F19  
G16  
F19  
631  
(1)  
,
(3)  
I/O  
-
634  
(2)  
GCK5  
(4)  
(4)  
GND  
I/O  
P143  
-
GND  
F18  
E19  
D20  
E18  
D19  
C20  
E17  
D18  
-
GND  
F18  
F17  
F16  
F15  
E19  
E17  
E16  
D19  
D18  
D17  
C19  
B19  
C18  
-
(3)  
I/O  
P109  
P110  
-
P125  
P126  
P127  
P128  
-
T17  
V20  
U20  
T18  
-
T16  
T17  
T18  
T19  
R15  
R17  
R16  
R19  
P15  
P17  
P18  
P16  
517  
(3)  
637  
(3)  
I/O  
520  
(3)  
I/O  
P144  
P145  
P146  
P147  
P148  
P149  
P150  
-
640  
(3)  
I/O  
523  
(3)  
I/O  
643  
(3)  
I/O  
P111  
-
526  
(3)  
I/O  
646  
(3)  
I/O  
529  
(3)  
I/O  
649  
(3)  
I/O  
-
-
-
523  
(3)  
I/O  
652  
(2)  
(3)  
I/O (D6  
I/O  
)
P112  
P113  
P114  
P115  
P116  
P117  
P118  
-
P129  
P130  
P131  
P132  
P133  
P134  
P135  
P136  
P137  
P138  
P139  
P140  
P141  
P142  
-
T19  
T20  
R18  
R19  
R20  
P18  
535  
(2)  
(3)  
I/O (D1  
I/O  
)
655  
(3)  
538  
(3)  
658  
(3)  
I/O  
541  
(3)  
I/O  
661  
(3)  
I/O  
544  
(3)  
I/O  
-
-
-
664  
(3)  
I/O  
547  
(3)  
I/O  
P151  
P152  
P153  
P175  
P176  
P177  
C19  
B20  
C18  
667  
(3)  
I/O  
550  
(3)  
I/O  
670  
(4)  
(4)  
GND  
I/O  
GND  
P20  
N18  
N19  
N20  
GND  
P19  
N17  
N18  
N19  
-
(2)  
(3)  
I/O (D0  
DIN)  
,
673  
(3)  
553  
(3)  
I/O  
-
556  
(3)  
I/O,  
SGCK4  
GCK6  
P154  
P178  
B19  
B18  
676  
(3)  
(1)  
I/O  
P119  
P120  
P121  
P122  
P123  
-
559  
,
(2)  
(3)  
I/O  
562  
(DOUT)  
CCLK  
VCC  
(4)  
(4)  
VCC  
I/O (D5  
I/O  
VCC  
M17  
M18  
-
VCC  
M19  
M17  
M18  
M16  
L19  
-
P155  
P156  
P157  
P158  
P159  
P160  
P179  
P180  
P181  
P182  
P183  
P184  
A20  
A19  
-
-
(2)  
(3)  
)
565  
(4)  
(4)  
VCC  
A19  
VCC  
B17  
(3)  
568  
O, TDO  
GND  
I/O  
0
-
(3)  
I/O  
571  
(4)  
(4)  
GND  
B18  
B17  
GND  
A18  
A17  
(3)  
I/O  
-
-
M19  
M20  
L19  
L18  
L20  
K20  
K19  
574  
2
5
(3)  
I/O  
P124  
P125  
P126  
P127  
P128  
P129  
P130  
P131  
P132  
P133  
P134  
P135  
P136  
P137  
-
P144  
P145  
P146  
P147  
P148  
P149  
P150  
P151  
P152  
P153  
P154  
P155  
P156  
P157  
-
577  
I/O,  
PGCK4  
GCK7  
(3)  
I/O  
L18  
580  
(1)  
,
(3)  
(2)  
I/O  
L17  
583  
(3)  
I/O  
L16  
586  
I/O  
P161  
P162  
P163  
P164  
-
P185  
P186  
P187  
P188  
-
C17  
D16  
A18  
A17  
-
D16  
C16  
B16  
A16  
E15  
C15  
D15  
A15  
E14  
C14  
B14  
D14  
8
(2)  
(2)  
(3)  
I/O (D4  
I/O  
)
)
K19  
K18  
589  
I/O  
11  
14  
17  
20  
23  
26  
29  
32  
35  
38  
41  
-
(3)  
(2)  
592  
I/O (CS1  
I/O  
)
(4)  
(4)  
VCC  
GND  
I/O (D3  
I/O  
VCC  
GND  
VCC  
GND  
-
-
(4)  
(4)  
I/O  
(3)  
K18  
K17  
J20  
J19  
J18  
J17  
H20  
-
K16  
K15  
J19  
J18  
J17  
J16  
H19  
H18  
H17  
H16  
595  
I/O  
-
-
-
(3)  
598  
I/O  
P165  
-
P189  
P190  
P191  
P192  
P193  
P194  
P196  
P197  
P198  
P199  
P200  
P201  
C16  
B16  
A16  
C15  
B15  
A15  
(3)  
I/O  
601  
I/O  
(3)  
I/O  
604  
I/O  
P166  
P167  
P168  
P169  
P170  
P171  
P172  
-
(3)  
I/O  
607  
I/O  
(3)  
I/O  
610  
I/O  
(3)  
I/O  
613  
I/O  
(3)  
(4)  
(4)  
I/O  
-
-
616  
GND  
I/O  
GND  
B14  
A14  
C13  
B13  
GND  
A14  
C13  
B13  
A13  
(2)  
(3)  
I/O (D2  
I/O  
)
P138  
P139  
P140  
P141  
P142  
P159  
P160  
P161  
P162  
P163  
H19  
619  
44  
47  
50  
53  
-
(3)  
H18  
622  
I/O  
(4)  
(4)  
VCC  
I/O  
VCC  
G19  
F20  
VCC  
G18  
G17  
-
I/O  
(3)  
625  
I/O  
-
(3)  
(4)  
(4)  
I/O  
628  
VCC  
P173  
VCC  
VCC  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
79  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Additional XCS40/XL Package Pins  
XCS40 and XCS40XL Device Pinouts  
XCS40/XL  
Pad Name  
Bndry  
Scan  
(2)  
PQ208 PQ240 BG256 CS280  
PQ240  
I/O  
-
-
A13  
D12  
C12  
B12  
A12  
B11  
C11  
A11  
A10  
B10  
A12  
C12  
B12  
D12  
A11  
B11  
C11  
D11  
A10  
B10  
56  
59  
62  
65  
68  
71  
74  
77  
80  
83  
-
GND Pins  
P83 P98  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
-
-
P22  
P37  
P143  
-
P158  
-
P174  
P175  
P176  
P177  
P178  
P179  
P180  
P181  
P182  
P202  
P203  
P205  
P206  
P207  
P208  
P209  
P210  
P211  
P204  
P219  
-
-
Not Connected Pins  
P195  
-
-
-
-
-
2/12/98  
BG256  
(4)  
(4)  
VCC Pins  
GND  
GND  
GND  
2/8/00  
C14  
E20  
K4  
D6  
F1  
D7  
D11  
F17  
P17  
U7  
-
D14  
G4  
P19  
U10  
-
D15  
G17  
R2  
Notes:  
1. 5V Spartan only  
2. 3V Spartan-XL only  
3. The PWRDWNon the XCS40XL is not part of the Boundary  
Scan chain. For the XCS40XL, subtract 1 from all Boundary  
Scan numbers from GCK3 on (343 and higher).  
F4  
P4  
L17  
R17  
V7  
R4  
U6  
U14  
-
(4)  
(4)  
4. Pads labeled GND or V  
are internally bonded to  
U15  
W20  
CC  
Ground or V planes within the package.  
CC  
GND Pins  
A1  
B7  
H4  
U8  
D4  
D8  
N3  
D13  
N4  
D17  
N17  
-
G20  
H17  
U13  
U4  
U17  
W14  
6/17/97  
CS280  
VCC Pins  
A1  
D13  
K17  
U3  
A7  
E3  
B5  
B15  
G1  
R3  
C10  
G19  
R18  
V15  
C17  
K2  
E18  
N16  
U17  
M4  
U10  
T7  
V5  
W13  
GND Pins  
E5  
E7  
G5  
L5  
R7  
-
E8  
G15  
L15  
R8  
-
E9  
H5  
M5  
R9  
-
E11  
H15  
M15  
R11  
-
E12  
J5  
E13  
J15  
N15  
N5  
R12  
-
R13  
5/19/99  
80  
www.xilinx.com  
1-800-255-7778  
DS060 (v1.6) September 19, 2001  
Product Specification  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Product Availability  
Table 19 shows the packages and speed grades for Spartan/XL devices. Table 20 shows the number of user I/Os available  
for each device/package combination.  
Table 19: Component Availability Chart for Spartan/XL FPGAs  
Pins  
84  
100  
144  
144  
208  
240  
256  
280  
Plastic  
PLCC  
Plastic  
VQFP  
Chip  
Scale  
Plastic  
TQFP  
Plastic  
PQFP  
Plastic  
PQFP  
Plastic  
BGA  
Chip  
Scale  
Type  
Code  
-3  
Device  
PC84  
VQ100  
CS144  
TQ144  
PQ208  
PQ240  
BG256  
CS280  
C
C
C
C
-
C, I  
C
-
-
-
-
-
-
-
-
-
-
-
-
XCS05  
-4  
-3  
C, I  
C
-
C
C
C, I  
C
C, I  
C
-
-
-
-
-
XCS10  
XCS20  
-4  
-
-
-
-
-
-3  
C
-
C, I  
C
-
-
-
-4  
-
C
-
-
-
-
-3  
-
C
-
C, I  
C
C
C
C
C
-
C
C
C
C
-
-
XCS30  
-4  
-
C
-
-
-3  
-
-
-
C, I  
C
-
XCS40  
-4  
-
-
-
-
-
-4  
C
C
C
C
-
C, I  
C
-
-
-
-
XCS05XL  
XCS10XL  
XCS20XL  
XCS30XL  
XCS40XL  
-5  
-
-
-
-
-
-
-4  
C, I  
C
C
C
C
C
-
C
C
C, I  
C
C, I  
C
-
-
-
-
-
-5  
-
-
-
-
-4  
C, I  
C
C, I  
C
-
-
-
-5  
-
-
-
-
-4  
-
C
C, I  
C
C
C
C
C
C
C
C
C
C
C
C
C
-5  
-
C
-
-4  
-
-
-
C, I  
C
-5  
-
-
-
-
8/15/00  
Notes:  
1. C = Commercial T = 0° to +85°C  
J
2. I = Industrial T = 40°C to +100°C  
J
Table 20: User I/O Chart for Spartan/XL FPGAs  
Package Type  
Max  
Device  
XCS05  
I/O  
PC84  
VQ100  
77  
77  
77  
77  
-
CS144  
TQ144  
-
PQ208  
-
PQ240  
BG256  
CS280  
80  
61  
61  
-
-
-
-
-
XCS10  
112  
160  
192  
224  
80  
-
112  
113  
113  
-
-
-
-
-
-
-
XCS20  
-
160  
169  
169  
-
-
XCS30  
-
-
192  
192  
-
192  
205  
-
-
XCS40  
-
-
-
XCS05XL  
XCS10XL  
XCS20XL  
XCS30XL  
61  
61  
-
77  
77  
77  
77  
-
-
112  
113  
-
-
-
-
112  
160  
192  
224  
112  
113  
113  
-
-
-
-
160  
169  
169  
-
-
-
-
192  
192  
192  
205  
192  
224  
XCS40XL  
-
-
5/19/99  
DS060 (v1.6) September 19, 2001  
Product Specification  
www.xilinx.com  
1-800-255-7778  
81  
R
Spartan and Spartan-XL Families Field Programmable Gate Arrays  
Ordering Information  
Example:  
Device Type  
Speed Grade  
XCS20XL-4 PQ208C  
Temperature Range  
C = Commercial (T = 0 to +85 C)  
o
J
o
o
I = Industrial (T = 40 C to +100 C)  
J
-3  
-4  
-5  
Number of Pins  
Package Type  
BG = Ball Grid Array  
VQ = Very Thin Quad Flat Pack  
TQ = Thin Quad Flat Pack  
CS = Chip Scale  
PC = Plastic Lead Chip Carrier  
PQ = Plastic Quad Flat Pack  
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.3  
Description  
Added Spartan-XL specs and Power Down  
11/20/98  
01/06/99  
03/02/00  
09/19/01  
1.4  
All Spartan-XL -4 specs designated Preliminary with no changes  
Added CS package, updated Spartan-XL specs to Final  
1.5  
1.6  
Reformatted, updated power specs, clarified configuration information. Removed T  
SOL  
soldering information from Absolute Maximum Ratings table. Changed Figure 26: Slave  
Serial Mode Characteristics: T , T from 45 to 40 ns. Changed Master Mode  
CCH CCL  
Configuration Switching Characteristics: T  
min. from 80 to 100 ns. Added Total Dist.  
CCLK  
RAM Bits to Table 1; added Start-Up, page 36 characteristics.  
82  
www.xilinx.com  
DS060 (v1.6) September 19, 2001  
1-800-255-7778  
Product Specification  

相关型号:

XCS20-3TQ256I

Spartan and Spartan-XL Families Field Programmable Gate Arrays

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
XILINX

XCS20-3TQ280C

Spartan and Spartan-XL Families Field Programmable Gate Arrays

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
XILINX

XCS20-3TQ280I

Spartan and Spartan-XL Families Field Programmable Gate Arrays

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
XILINX

XCS20-3TQ84C

Spartan and Spartan-XL Families Field Programmable Gate Arrays

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
XILINX

XCS20-3TQ84I

Spartan and Spartan-XL Families Field Programmable Gate Arrays

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
XILINX

XCS20-3TQG144C

Field Programmable Gate Array, 400 CLBs, 7000 Gates, 125MHz, CMOS, PQFP144, PLASTIC, TQFP-144

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
XILINX

XCS20-3TQG144I

Field Programmable Gate Array, 400 CLBs, 7000 Gates, 125MHz, CMOS, PQFP144, PLASTIC, TQFP-144

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
XILINX

XCS20-3VQ100C

Spartan and Spartan-XL Families Field Programmable Gate Arrays

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
XILINX

XCS20-3VQ100I

Spartan and Spartan-XL Families Field Programmable Gate Arrays

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
XILINX

XCS20-3VQ144C

Spartan and Spartan-XL Families Field Programmable Gate Arrays

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
XILINX