YSS940 [YAMAHA]

ADAMB Advanced Digital Audio Multi channel decode processor; ADAMB先进的数字音频多声道解码处理器
YSS940
型号: YSS940
厂家: YAMAHA CORPORATION    YAMAHA CORPORATION
描述:

ADAMB Advanced Digital Audio Multi channel decode processor
ADAMB先进的数字音频多声道解码处理器

文件: 总34页 (文件大小:899K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
YSS944/943/940  
ADAMB  
Advanced Digital Audio Multi channel decode processor  
„ Outline  
The YSS944 (ADAMB-f)/YSS943 (ADAMB-b)/YSS940 (ADAMB-nd) is an audio decoding digital signal  
processor that integrates onto a single chip the various digital signal processing functions required for AV  
amplifiers, etc. It includes an advanced 32-bit floating-point DSP and is able to decode a variety of audio  
formats.  
[Note]  
The contents described in this manual are implemented by downloading boot firmware.  
For detailed information about the boot firmware, please contact YAMAHA.  
The YSS943 cannot execute DTS-ES and DTS Neo:6 decoding.  
The YSS940 cannot execute any decoding related to DTS (DTS, DTS-ES, DTS 96/24, and DTS Neo:6).  
„ Features  
Supports various types of decoding up to 7.1 channels (5.1/6.1/7.1 channels selectable).  
5.1-channel decoding of Dolby Digital (AC-3), DTS, AAC.  
6.1-channel decoding of Dolby Digital EX, DTS-ES.  
DTS 96/24 decoding and audio interface clock division/switching functions.  
Dolby Pro Logic IIx and DTS Neo:6 decoding  
Tone control and bass management functions  
Function modification/expansion by downloading firmware to on-chip memory  
Lip-sync function that enables synchronization of voice and video with variable voice delay  
Supports sampling frequencies up to 192 kHz during PCM playback.  
1/2 down sampling function when two PCM channels are played back  
Dolby Digital/DTS/AAC decode information output function (can be read by microprocessor)  
High-speed/high-accuracy operation by 32-bit floating-point DSP  
Operating frequency: 180 MHz (178.176 MHz)  
Data bus width: 32 bits (24-bit mantissa and 8-bit exponent)  
Multiplier/adder: 32 bits × 32 bits + 55 bits 55 bits (47-bit mantissa and 8-bit exponent)  
No external memory needed (external memory is used when delay is increased.)  
Eight general I/O ports  
On-chip PLL for generation of high-speed internal operating clock  
Supply voltage: 1.2 V (core block) and 3.3 V (pin block)  
Low power consumption: about 210 mW (standard value during Dolby Digital decoding)  
Si-gate CMOS process  
Lead-free plating LQFP144 package (YSS944-VZ, YSS943-VZ, and YSS940-VZ)  
[Note]  
“Dolby,” ”Dolby Pro Logic IIx,” and “AC-3” are trademarks of Dolby Laboratories.  
“DTS,” “DTS-ES,” “DTS 96/24,” and “DTS Neo:6” are trademarks of Digital Theater Systems, Inc.  
„ Applications  
AV amplifiers for home theaters  
Car audio systems  
YSS944/943/940 CATALOG  
CATALOG No.: LSI-4SS944A31  
2005.6  
YSS944/943/940  
„ YSS944/943/940 functional comparison  
Decoder functional comparison  
devise  
YSS944  
YSS943  
YSS940  
function  
Dolby Digital  
Dolby Digital EX  
Dolby Pro Logic IIx  
AAC  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
NO  
YES  
YES  
YES  
YES  
NO  
DTS  
DTS 96/24  
DTS-ES  
NO  
NO  
DTS Neo:6  
NO  
NO  
YSS944/943/940 common functions  
Input channel selection  
Volume adjustment  
Tone Control  
Bass Management  
User mute  
Auto mute  
Input delay  
Output delay  
Stream detection  
Noise generation  
Impulse generation  
General purpose I/O port  
2
YSS944/943/940  
„ Block Diagram  
Block Name  
Function  
This is the internal operating clock generation block.  
ClkGen  
MicomIF  
SDI  
This block provides the PLL and supplies the clock to each block.  
This is an interface block to connect to a microprocessor.  
This block controls access to the registers/memory in this LSI.  
This is the audio interface block for DIR, ADC, etc.  
This block controls the input data format/delay, etc.  
This is the audio interface block for DIT, DAC, etc.  
This block controls the output data format/delay, etc.  
This is the stream detection block.  
SDO  
Detector  
EMC  
This block detects the input data encoding format.  
This is an interface block to read from and write to external memory.  
This block implements delay functions using external memory.  
This is an operation processing block.  
This decoder includes a 32-bit floating-point DSP and memory (ROM or RAM).  
Various functions can be implemented.  
Processor  
Function modification/expansion by downloading firmware is also supported.  
3
YSS944/943/940  
„ Pin Configuration  
nMEMCE  
MEMA10  
nMEMOE  
MEMA18  
STATUS0  
STATUS1  
STATUS2  
STATUS3  
VSS  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
MEMA15  
VDD2  
VDD2  
VSS  
nMEMWE  
MEMA11  
MEMA9  
MEMA8  
VDD2  
VDD2  
VSS  
VSS  
VDD2  
VDD2  
VDD1  
MISO  
VSS  
MISI  
VSS  
VDD1  
MEMA13  
MEMA17  
IOPORT7  
IOPORT6  
IOPORT5  
IOPORT4  
IOPORT3  
IOPORT2  
VDD2  
VDD2  
VSS  
VSS  
IOPORT1  
IOPORT0  
VDD1  
SDO3  
SDO2  
MISCK  
nMICS  
VDD2  
VDD2  
VSS  
VSS  
nIC  
TEST  
ZEROFLG  
nINT  
nMUTE  
VDD1  
VDD2  
VDD2  
VSS  
VSS  
VSS  
SDO1  
SDO0  
SDOMCK  
SDOWCK  
VSS  
AVSSR  
AVDDR  
AHVDD  
AHVDDG  
< LQFP 144 TOP VIEW >  
4
YSS944/943/940  
„ Pin Functions  
Type  
Pin  
No.  
Pin Name  
I/O  
Note 1)  
-
Function  
Power supply  
9
VDD1  
Power supply pins for pin block (Typ. 3.3 V).  
33  
45  
60  
85  
100  
121  
136  
5
VDD2  
-
Power supply pins for core block (Typ. 1.2 V).  
6
15  
22  
23  
36  
50  
51  
63  
64  
70  
71  
79  
80  
88  
89  
95  
107  
108  
119  
120  
127  
128  
137  
138  
142  
AVDDR  
AHVDD  
AHVDDG  
DVDD  
-
-
-
-
-
Power supply pin 1 for PLL analog block (Typ. 3.3 V).  
Be sure to insert a 0.1 F capacitor between the AVDDR and AVSSR  
µ
pins.  
143  
144  
4
Power supply pin 2 for PLL analog block (Typ. 3.3 V).  
Be sure to insert a 0.1 F capacitor between the AHVDD and AHVSS  
µ
pins.  
Power supply pin 3 for PLL analog block (Typ. 3.3 V).  
Be sure to insert a 0.1 F capacitor between the AHVDDG and  
µ
AHVSSG pins.  
Power supply pin for PLL digital block (Typ. 1.2 V).  
Be sure to insert a 0.1 F capacitor between the DVDD and DVSS  
µ
pins.  
7
VSS  
Ground pins  
8
14  
20  
21  
35  
41  
42  
48  
49  
5
YSS944/943/940  
Type  
Pin  
Pin Name  
I/O  
Function  
No.  
Note 1)  
61  
62  
69  
77  
78  
86  
87  
93  
94  
105  
106  
117  
118  
123  
129  
130  
139  
140  
1
AHVSS  
AHVSSG  
DVSS  
Ground pin 2 for PLL analog block.  
Be sure to insert a 0.1 F capacitor between the AHVDD and AHVSS  
µ
pins.  
2
3
Ground pin 3 for PLL analog block.  
Be sure to insert a 0.1 F capacitor between the AHVDDG and  
µ
AHVSSG pins.  
Ground pin for PLL digital block.  
Be sure to insert a 0.1 F capacitor between the DVDD and DVSS  
µ
pins.  
141  
AVSSR  
Ground pin 1 for PLL analog block.  
Be sure to insert a 0.1 F capacitor between the AVDDR and AVSSR  
µ
pins.  
Initial clear  
Clock  
131  
18  
nIC  
XI  
Is  
I
Hardware reset input pin  
The LSI is initialized when this pin is at low level.  
Clock input pin.  
Connect this pin as shown in the circuit example  
12.288 MHz crystal oscillator.  
of the  
Note 2)  
If not connected to a crystal oscillator, input a 12.288 MHz clock to  
this pin.  
19  
XO  
O
Is  
This is the output pin for the crystal oscillator.  
Connect this pin as shown in the circuit example  
If not connected to a crystal oscillator and inputting directly to the XI  
pin, do not connect anything to this pin. Do not use this pin for any  
purpose other than clock oscillation.  
.
Note 2)  
Microprocessor  
interface  
126  
nMICS  
This is the microprocessor interface’s chip select input pin.  
Input to the MISCK and MISI pins becomes valid when this pin is at  
low level.  
125  
124  
MISCK  
MISI  
Is  
I
This is the microprocessor interface’s clock input pin.  
This is the microprocessor interface’s address read/write control and  
data input pin.  
122  
32  
MISO  
Ot  
Is  
This is the microprocessor interface’s data output pin.  
Connect a pull-up resistor.  
Audio interface  
SDIMCK  
This is the master clock input pin for the audio interface’s input side.  
The master clock is input from DIR, ADC, etc.  
The highest clock frequency that can be input is 25 MHz.  
(The clock rate is 512 fs when the input sampling frequency is 48 kHz  
or less, 256 fs when the frequency is 96 kHz, and 128 fs when the  
frequency is up to 192 kHz.)  
31  
SDIBCK  
Is  
This is the bit clock I/O pin for the audio interface’s input side.  
6
YSS944/943/940  
Type  
Pin  
Pin Name  
I/O  
Function  
No.  
Note 1)  
It inputs a 64 fs bit clock.  
30  
26  
SDIWCK  
SDI3  
I
I
This is the word clock pin for the audio interface’s input side.  
This is the audio interface’s serial data input pin 3.  
If this pin is not used, connect it to a ground.  
27  
28  
29  
SDI2  
SDI1  
SDI0  
I
I
I
This is the audio interface’s serial data input pin 2.  
If this pin is not used, connect it to a ground.  
This is the audio interface’s serial data input pin 1.  
If this pin is not used, connect it to a ground.  
This is the audio interface’s serial data input pin 0.  
Connect digital audio data (various streams or PCM) via IEC60958 to  
this pin.  
Audio interface  
38  
SDOMCK  
Ot  
This is the master clock output pin for the audio interface’s output  
side.  
It outputs the master clock to DIT, DAC, etc.  
The highest clock frequency that can be output is 25 MHz.  
This is the bit clock I/O pin for the audio interface’s output side.  
It inputs or outputs a 64 fs bit clock.  
34  
SDOBCK  
Is/O  
37  
44  
SDOWCK  
SDO3  
I/O  
O
This is the word clock pin for the audio interface’s output side.  
This is the audio interface’s serial data output pin 3.  
This is the audio interface’s serial data output pin 2.  
This is the audio interface’s serial data output pin 1.  
This is the audio interface’s serial data output pin 0.  
These are external memory address output pins 18 to 0.  
If external memory is not used, these pins should be left unconnected.  
43  
SDO2  
O
40  
SDO1  
O
39  
SDO0  
O
External memory  
interface  
112  
58  
MEMA18  
MEMA17  
MEMA16  
MEMA15  
MEMA14  
MEMA13  
MEMA12  
MEMA11  
MEMA10  
MEMA9  
MEMA8  
MEMA7  
MEMA6  
MEMA5  
MEMA4  
MEMA3  
MEMA2  
MEMA1  
MEMA0  
MEMD7  
MEMD6  
MEMD5  
MEMD4  
MEMD3  
MEMD2  
MEMD1  
MEMD0  
nMEMCE  
O
73  
72  
74  
59  
75  
67  
110  
66  
65  
76  
81  
82  
83  
84  
90  
91  
92  
104  
103  
102  
101  
99  
I/O  
These are external memory data I/O pins 7 to 0.  
If external memory is not used, these pins should be left unconnected.  
98  
97  
96  
109  
O
O
O
O
This is the external memory chip select output pin.  
If external memory is not used, this pin should be left unconnected.  
This is the external memory output enable output pin.  
If external memory is not used, this pin should be left unconnected.  
This is the external memory write enable output pin.  
If external memory is not used, this pin should be left unconnected.  
This is the interrupt request output pin.  
111  
68  
nMEMOE  
nMEMWE  
nINT  
Status ports  
134  
7
YSS944/943/940  
Type  
Pin  
Pin Name  
I/O  
Function  
No.  
Note 1)  
135  
133  
13  
nMUTE  
ZEROFLG  
STATUS7  
STATUS6  
STATUS5  
STATUS4  
STATUS3  
STATUS2  
STATUS1  
STATUS0  
IOPORT7  
IOPORT6  
IOPORT5  
IOPORT4  
IOPORT3  
IOPORT2  
IOPORT1  
IOPORT0  
TEST  
O
O
O
This is the output pin during auto mute periods.  
This is the consecutive zero data input detection pin.  
These are status output pins 7 to 0.  
They are used to confirm firmware operations.  
Normally, they should be left unconnected.  
12  
11  
10  
116  
115  
114  
113  
57  
General-purpose  
I/O ports  
I(+)/O These are general I/O port pins 7 to 0.  
Their I/O status can be set via register settings.  
I(+)/O These are general I/O port pins 7 to 0.  
Their I/O status can be set via register settings.  
56  
General-purpose  
I/O ports  
55  
54  
53  
52  
47  
46  
Test  
16  
Is  
Test pins  
Connect these pins to a ground.  
17  
24  
25  
132  
Note 1) I/O symbols  
I:  
Input  
Is:  
O:  
Schmitt trigger input  
Output  
Ot: Tri-state output  
I/O: I/O  
I(+)/O: Pull-up during input, no pull-up during output  
Note 2) Example of circuit connected to crystal oscillator  
XI  
XO  
12.288 MHz  
* The above resistor and capacitor vary depending on the crystal oscillator. Be sure to comply with the specifications of the  
crystal oscillator used.  
8
YSS944/943/940  
„ Function Description  
Functions of the YSS944/943/940 are follows.  
(1) Main Decoder Functions  
Dolby Digital decoding  
- Firmware AC3 decoder is included.  
- Supports Annex D.  
- Supports sampling frequencies of 32 kHz, 44.1 kHz, and 48 kHz.  
- 5.1-channel decoding.  
DTS decoding  
- Firmware DTS decoder is included.  
- Supports DTS-ES Discrete 6.1 decoding. (Sampling frequencies of 44.1 kHz and 48 kHz.)  
- Supports DTS 96/24 decoding. (Output sampling frequencies of 88.2 kHz and 96 kHz.)  
[Note]  
- The YSS943 does not support DTS-ES Discrete 6.1 decoding.  
- The YSS940 does not support any DTS decoding.  
AAC decoding  
- Firmware AAC decoder is included.  
- Complies with ARIB digital broadcast standard.  
- Supports ADTS.  
- Supports LC profile.  
- Supported sampling frequencies are 32 kHz, 44.1 kHz, and 48 kHz.  
- 5.1-channel decoding  
PCM 2-channel input playback  
- Firmware PCM2 player is included.  
- Supported sampling frequencies are 32 kHz, 44.1 kHz, 48 kHz, 64 kHz, 88.2 kHz, 96 kHz, 128 kHz,  
176.4 kHz, and 192 kHz.  
- Supports 24-bit word length.  
- De-emphasis function.  
- Input DC cutoff function.  
- 1/2 down sampling function.  
PCM 6-/7-/8-channel input playback  
- Firmware PCM8 player is included.  
- Supported sampling frequencies are 32 kHz, 44.1 kHz, 48 kHz, 64 kHz, 88.2 kHz, 96 kHz, 128 kHz,  
176.4 kHz, and 192 kHz.  
- Supports 24-bit word length.  
- De-emphasis function.  
- Input DC cutoff function.  
- Audio data input channel control function.  
(2) Post Decoder Functions  
The following post-decoder function can be applied to the results of main decoder described above.  
Dolby Pro Logic IIx decoding  
- Firmware PL2 decoder is included.  
- Expands to up to 7 channels from 2 channels of L and R.  
- Expands to up to 4 channel from 2 channels of LS and RS (supports Dolby Digital EX with the  
combination of Dolby Digital decoding function)  
- Supported sampling frequencies are 32 kHz, 44.1 kHz, 48 kHz, 64 kHz, 88.2 kHz, 96 kHz, 176.4 kHz,  
and 192 kHz.  
DTS Neo:6 decoding  
- Firmware Neo:6 decoder is included.  
- Expands to up to 6 channels from 2 channels of L and R.  
9
YSS944/943/940  
- Expands to 3 channels from 2 channels of LS and RS (supports ES Matrix processing when combined  
with DTS decoding function).  
- Supported sampling frequencies are 32 kHz, 44.1 kHz, 48 kHz, 64 kHz, 88.2 kHz, and 96 kHz.  
[Note]  
- The YSS943 and YSS940 do not support DTS Neo:6 decoding.  
(3) Post Processor Functions  
The following post-processing function can be applied to the results of main decoder or post decoder.  
Post-processing input channel selection  
- Firmware Switcher is included.  
- Supports 8 channels.  
Tone control  
- Firmware Tone controller is included.  
- Adjustable bass and treble for left and right channels  
- Supported sampling frequencies are 32 kHz, 44.1 kHz, 48 kHz, 64 kHz, 88.2 kHz, 96 kHz, 128 kHz,  
176.4 kHz, and 192 kHz.  
Bass Management  
- Firmware Bass manager is included.  
- Characteristics can be changed by changing the coefficient.  
- Up to 7.1-channel input/output.  
- Supported sampling frequencies are 32 kHz, 44.1 kHz, 48 kHz, 64 kHz, 88.2 kHz, 96 kHz, 128 kHz,  
176.4 kHz, and 192 kHz.  
Volume adjustment  
- Firmware Scaler is included.  
- Adjustable master volume (setting range: -127 dB to +31 dB, in 1 dB units).  
- Adjustable volume for up to eight channels (-dB to +12 dB, phase inversion enabled).  
(4) Generator Functions  
Noise generation  
- Firmware noise generator is included.  
- Enables generation of pink noise (“shaped noise” in the Dolby standard) and white noise.  
- Supported sampling frequencies are 32 kHz, 44.1 kHz, and 48 kHz.  
Impulse generation  
- Firmware impulse generator is included.  
- Impulses can be generated.  
- Supported sampling frequencies are 32 kHz, 44.1 kHz, and 48 kHz.  
(5) Other Functions  
Microprocessor interface  
- This is a four-wire serial interface.  
- Enables register access and on-chip memory access (firmware download).  
Firmware download  
- Instruction code from the microprocessor to this LSI and coefficient data can be downloaded.  
- The amount of 6-/7-/8-channel output delay can be changed.  
- The filter characteristics of the bass management function can be changed.  
- Functions can be expanded for future use.  
[Note]  
- The boot firmware must be downloaded at initialization.  
10  
YSS944/943/940  
Audio interface  
- Master clock, bit clock, word clock, and four serial data (8ch) for input and output are provided  
respectively.  
- Various audio interface formats are supported.  
- The bit clock rate is fixed to 64 fs.  
- Supported sampling frequencies are 32 kHz, 44.1 kHz, 48 kHz, 64 kHz, 88.2 kHz, 96 kHz, 128 kHz,  
176.4 kHz, and 192 kHz.  
- The bit clock and word clock on the output side have switchable input/output, and can therefore be  
used as either master or slave.  
- A clock divider/switching function is included to enable adjustment of the input/output sampling  
frequency for DTS 96/24, etc.  
Audio data output channel control  
- Audio output data can be output to any of the channels for the SDO3 to SDO0 pins.  
Bypass  
- Output of SDI data to SDO can bypass the internal core logic.  
User mute  
- Output channels can be muted via the microprocessor interface.  
External memory interface  
- Up to 4 Mb of SRAM can be connected for input delay and/or output delay.  
- Access time can be adjusted via register settings.  
Input delay (lip sync)  
- Input delay for adjusting synchronization between video and audio can be implemented when using  
external memory.  
Output delay  
- 3-/4-/5-/6-/7-/8-channel output delay with an output sampling frequency of up to 192 kHz can be  
implemented without using external memory (some exceptions).  
- 3-/4-/5-/6-/7-/8-channel output delay with an output sampling frequency of up to 96 kHz can be  
implemented using external memory.  
Stream detection  
- Encoding format detection  
- Zero detection  
- Input sampling frequency detection  
Auto mute  
- All channels are muted automatically by detection of noise generation factor.  
Status ports  
- Consecutive-zero data input detection: 1 pin.  
- Auto mute period output:  
- Interrupt request output:  
1 pin.  
1 pin.  
General purpose I/O port  
- 8 general purpose I/O ports are available.  
- Input and output mode can be switched by register setting.  
Internal operating clock generation  
- Generates the high-speed internal operating clock by on-chip PLL.  
Power-up/power-down  
- Enables power-up/power-down control of the LSI via register settings.  
11  
YSS944/943/940  
„ Microprocessor Interface  
External microprocessor or similar devices use this microprocessor interface (4-wire serial interface) to  
perform the following tasks.  
Access to registers  
Firmware download to on-chip memory  
(1) Register access  
Registers are accessed in 16-bit units via the microprocessor interface. MISI is used to specify the register’s  
address (7 bits: A6 to A0) and the read/write option (1 bit:R/W). During a write operation (R/W=L), data (8  
bits: D7 to D0) is input to MISI and during a read operation (R/W=H) 8-bit data is output from the MISO pin.  
The data to be written is stored in the register at the rising edge of MISCK during the last data bit (D7 in  
figure).  
The microprocessor interface’s sequence when accessing registers is shown below.  
nMICS  
MISCK  
During  
write  
Don't care  
A0 A1 A2 A3 A4 A5 A6 R/W D0 D1 D2 D3 D4 D5 D6 D7  
Don't care  
MISI  
operation  
(R/W = L)  
High-Z  
MISO  
During  
read  
operation  
(R/W = H)  
Don't care  
A0 A1 A2 A3 A4 A5 A6 R/W  
Don't care  
Don't care  
High-Z  
MISI  
High-Z  
D0 D1 D2 D3 D4 D5 D6 D7  
MISO  
[Note]  
MISO is in output mode only when nMICS is at low level and during the data (8 bits) output timing.  
Otherwise, it is in high impedance (High-Z) mode and MISCK, MISI, and MISO can be shared for devices  
that have a similar interface.  
Registers can be accessed continuously while nMICS remains at low level. There is no need to  
repeatedly set nMICS to high level.  
Certain register settings enable nMICS to be shared by multiple LSIs.  
Access to on-chip memory (firmware download) is performed by combining with control of writing to a  
register  
Operation during a hardware reset (when nIC is at low level):  
During a hardware reset, the microprocessor interface does not function. Also, MISO is fixed at high  
impedance (High-Z). When nIC is at low level, nMICS should be initialized to high level.  
Interruption of access:  
Access can be interrupted by setting nMICS to high level. The write operation prior to the 16th rising  
edge of MISCK (MISI’s D7 data capture clock) described above becomes invalid. The MISO pin is set  
to high impedance (High-Z).  
12  
YSS944/943/940  
(2) On-chip memory access (firmware download)  
Access to on-chip memory is performed in 32-bit units via the microprocessor interface. Also, on-chip  
memory access can be performed concurrently with register access. The two firmware downloading  
methods prepared for this LSI are explained below.  
(a) Burst transfer mode  
When the IA carrier (PRGMOD[1:0] = 11) is used, instruction code/coefficient data firmware can be  
downloaded in this mode. By using this mode, a large amount of data can be downloaded at high speeds  
when initialization is executed or when the sampling frequency is changed. The features of the burst  
transfer mode are as follows.  
During the transfer period, decoding is aborted and data is transferred at high speeds. Muting is  
automatically effected during the transfer period.  
Data transferred from the microprocessor can be received without handshaking.  
Both instruction code firmware and coefficient data firmware can be downloaded.  
The microprocessor interface’s sequence in firmware downloading burst transfer mode is shown below.  
<1>  
<2>  
<3>  
<4>  
nMICS  
MISCK  
Don't care  
Don't care  
A
A
A
A
A
A
A
A
A+1 A+1 A+1 A+1  
A+n A+n A+n A+n  
D28 D29 D30 D31  
D4 D5 D6 D7  
MISI  
D0 D1 D2 D3  
D28 D29 D30 D31 D0 D1 D2 D3  
High-Z  
MISO  
[Access steps and statuses]  
<1> Register setting:  
The microprocessor interface function change for the on-chip memory access start address (A in  
figure) and on-chip memory access is set by register as shown below.  
Set the instruction code firmware download mode (IACNFG = 1)  
Change the firmware program mode to IA carrier (PRGMOD[1:0] = 11).  
Set the on-chip memory access start address IAA[20:0].  
Change the function of the microprocessor interface pin from register access to on-chip memory  
access (IA = 1).  
Once this setting is made, the microprocessor interface functions in firmware downloading burst  
transfer mode until the nMICS pin is set to high level.  
<2> Start firmware download:  
The nMICS pin is fixed at low level.  
Data is transferred LSB first, in 32-bit units.  
Data is written to on-chip memory when the rising edge of MISCK occurs for the 32nd bit of data  
(D31 in the figure).  
<3> Continuation and termination of firmware download:  
Each time 32 bits of data are written, IAA[20:0] is automatically incremented. Accordingly, when  
writing to consecutive addresses, only the data is transferred.  
When nMICS changes from low level to high level, firmware download ends and the  
microprocessor interface returns to accessing registers.  
When accessing non-consecutive on-chip memory addresses or when resuming firmware  
downloading after an access interruption, be sure to set IAA[20:0] as described in <1> above.  
<4> When this LSI has not been selected:  
<5> Register setting:  
After completing a firmware download, perform the following processing.  
Set the instruction code firmware execution mode (IACNFG = 0).  
Report the existence of boot firmware to this LSI (DL = 1).  
Change the firmware program mode PRGMOD[1:0] from “IA carrier” to another mode.  
13  
YSS944/943/940  
[Note]  
Interruption of burst transfer:  
Burst transfer can be interrupted by setting nMICS to high level.  
The write operation becomes invalid when the rising edge of MISCK occurs for the 32nd bit of data (D31  
in the figure).  
The MISO pin is set to high impedance (High-Z).  
(b) Runtime transfer mode  
When the main decoder, noise generator, or impulse generator is used (PRGMOD[1:0] = 00, 01, or 10), the  
coefficient data firmware can be downloaded in this mode. By using this mode, coefficients such as the  
amount of 6-/7-/8-channel output delay can be changed without disruption of sound. The features of the  
runtime transfer mode are as follows.  
Transfer is executed while decoding continues. Muting is not automatically effected during the transfer  
period.  
One word is transferred at a time while the device is handshaking with the microprocessor.  
Up to 32 words of transfer data are buffered and written all at once to the on-chip memory.  
Downloading coefficient firmware is supported.  
[Access steps and statuses]  
<1> Start firmware download:  
Set the runtime transfer mode and transfer start address by using registers.  
Initialize the handshake-related registers (RDLFLG = RDLEND = RDLCNT[4:0] = 0).  
Set the runtime transfer mode (RDLMODE = 1).  
Set the on-chip memory access start address IAA[20:0].  
<2> Execute firmware download:  
One word (32 bits) is downloaded at a time.  
Change the microprocessor interface pin function from register access to on-chip memory access (IA  
= 1). IAA[20:16] in this byte is valid only when it is set for the first time (for the second and  
subsequent time, any value may be written).  
Fix nMICS to L.  
Transfer data with the LSB first and in 32-bit units.  
Raise nMICS from L to H.  
Read RDLCNT[4:0].  
Specify starting data transfer (RDLFLG = 1).  
Set RDLEND to 1 if the transferred data is the last word in successive address transfer; otherwise,  
clear RDLEND to 0. At this time, write back the value that is read, to RDLCNT[4:0].  
<3> Continuation of firmware download (if RDLEND = 0 in <2>):  
Confirm the termination of data transfer (RDLFLG = 0).  
Return to step <2> above.  
<4> Termination of firmware download (if RDLEND = 1 in <2>):  
Confirm the termination of data transfer/successive address transfer (RDLFLG = RDLEND = 0).  
Cancel the runtime transfer mode (RDLMODE = 0).  
[Note]  
Runtime transfer can be stopped by making nMICS high and clearing RDLMODE to 0.  
Start from <1> if non-successive addresses are transferred or when execution is started again after stopping  
downloading.  
When the transfer data is captured in the internal buffer, the value of RDLFLG automatically changes from  
1 to 0.  
If RDLEND = 0 at this time, the transfer data is written only to the internal buffer and not to the transfer  
destination address.  
If RDLEND = 1, the transfer data, along with the data in the internal buffer, is sequentially written from  
the transfer start address. If data of two or more words, such as filter coefficients, are changed at the  
same time, transfer them as successive address data.  
Transfer successive address data in the order of the address data that has been incremented starting from  
the data of the transfer start address.  
Up to 32 words can be transferred as successive address data.  
If more than 32 words are transferred to successive addresses, start the next transfer from <1> after the  
first 32 words have been transferred.  
The time until RDLFLG is automatically cleared to 0 after it has been set to 1 varies from 0 to 4 ms.  
Unlike the burst transfer mode, it is not necessary to change IACNFG and PRGMOD[1:0].  
14  
YSS944/943/940  
(3) Microprocessor interface connection example  
When microprocessor interface pins are shared by several LSIs, the target LSI can be selected by either of the  
following two methods.  
Design nMICS pins dedicated to specific LSIs.  
When nMICS pins are shared by several LSIs, use the ChipAdr register to select the target LSI.  
These two examples are described below.  
(a) Microprocessor interface connection example 1 (single LSI)  
nMICS  
Default value after hardware reset is CAE = 0,  
Chip 0  
so there is no need to write to ChipAdr.  
IOPORT3 to IOPORT0 = X  
<1>  
<2>  
<3>  
<4>  
<5>  
nMICS  
MISI  
WriteChipAdr  
CAE = 0  
CA [3:0] =0100  
WriteChipAdr  
CAE = 1  
CA [3:0] =XXXX  
Read ChipAdr  
CAE = 0  
CA [3:0] =0100  
On-chip memory access  
CAE  
(Chip0)  
0
Internal signal  
nMICS (Chip0)  
<1> A write operation to ChipAdr as the register access immediately after the falling edge of nMICS is  
valid.  
In the above figure, an example of writing when CAE = 0 and CA[3:0] = 4 is illustrated.  
<2> A write operation to ChipAdr as the register access immediately after the falling edge of nMICS is  
invalid.  
<3> ChipAdr can be read at any time.  
In this case, the write operation (<2>) is disabled, so the write results from <1> are read.  
<4> Registers cannot be accessed while accessing on-chip memory.  
15  
YSS944/943/940  
(b) Microprocessor interface connection example 2 (multiple LSIs)  
nMICS  
When multiple LSIs are connected such as on  
the left, or when the device has a similar  
interface, access is performed using the register  
byte ChipAdr (CAE, CA[3:0]).  
Chip 2  
Chip 3  
IOPORT3 to IOPORT0 = 2  
IOPORT3 to IOPORT0 = 3  
<1>  
<2>  
<3>  
<4>  
<5>  
n MICS  
MI SI  
Write ChipAdr  
CAE = 1  
CA[3:0] = 0011  
Write ChipAdr  
CAE = 1  
CA[3:0] = 0010  
Read ChipAdr  
CAE = 1  
CA[3:0] = 0011  
On-chip memory access  
CAE  
(Chip 2, 3)  
0
1
0
Internal signal  
nMICS (Chip 2)  
Internal signal  
nMICS (Chip 3)  
<1> A write operation to ChipAdr as the register access immediately after the falling edge of nMICS is  
valid to for all LSIs (chips 2 and 3 in this example) that share the nMICS pin. In this case, CAE = 1  
and CA[3:0] = 3, so only the access only for chip 3 is valid.  
<2> A write operation to ChipAdr not immediately after the falling edge of nMICS is also invalid for chip  
3.  
(Chip 2 is not affected by the register access itself.)  
<3> The ChipAdr register can be read at any time. In this case, the write results from <1> are read from  
chip 3.  
(Chip 2 is not affected by the register access itself.)  
<4> During on-chip memory access, register access for chip 3 is invalid.  
(Chip 2 is not affected by on-chip memory access.)  
<5> CAE of all LSIs becomes zero at the rising edge of nMICS.  
[Note]  
The timing by which the chip selection is confirmed in <1> is determined by the value of IOPORT3 to  
IOPORT0 either at:  
the register access immediately after falling edge of nMICS, or  
a write operation to ChipAdr.  
Once the chip selection is confirmed, the current value is retained until the next rising edge of nMICS.  
Accordingly, even if the selected chip’s own IOPORT3 to IOPORT0 values change, the chip does not  
become deselected immediately.  
When nMICS is shared by multiple chips:  
CAE = 0 at the register access immediately after the falling edge of nMICS or CAE = 1 is not written.  
CAE = 1 at the register access immediately after the falling edge of nMICS, but the values of IOPORT3  
to IOPORT0 are the same for multiple LSIs.  
In the above cases, the multiple LSIs that share nMICS become the selected devices. In such cases,  
multiple LSIs can be written to at once, but note with caution that a conflict can occur with the MISO output  
when they are read.  
16  
YSS944/943/940  
„ Audio Interface  
Input and output of digital audio data is performed via two interfaces:  
SDI (serial data input) interface  
SDO (serial data output) interface  
(1) SDI interface format  
The following serial data input format is supported via register settings.  
Regardless of the register setting, the input signals for SDI3 to SDI0 are always handled as fixed-point 24-bit  
data.  
1 frame (IEC60958 Frame)  
L ch  
R ch  
SDIWP = 0  
SDIWP = 1  
SDIBP = 0  
SDIBP = 1  
SDIWCK  
SDIBCK  
32 clock cycles  
32 clock cycles  
24 clock cycles  
24 clock cycles  
SDIFMT[1:0]=00  
SDIBIT[1:0]=XX  
M
L
M
L
24 bits  
24 bits  
SDIFMT[1:0]=1X  
SDIBIT[1:0]=XX  
M
L
M
L
SDIFMT[1:0]=01  
SDIBIT[1:0]=00  
L
M
8 7  
6 5  
4 3  
L
L
M
8 7  
6 5  
4 3  
L
SDI3  
to  
SDIFMT[1:0]=01  
SDIBIT[1:0]=01  
L
M
L
M
SDI0  
SDIFMT[1:0]=01  
SDIBIT[1:0]=10  
L
M
L
M
SDIFMT[1:0]=01  
SDIBIT[1:0]=11  
M
M
M : MSB DATA L : LSB DATA  
17  
YSS944/943/940  
(2) SDO interface format  
The following serial data output format is supported via register settings.  
Regardless of the register setting, the output signals for SDO3 to SDO0 are always handled as fixed-point  
24-bit data.  
1 frame (IEC60958 frame)  
L ch  
R ch  
SDIWP = 0  
SDOWP = 1  
SDOBP = 0  
SDOBP = 1  
SDOWCK  
SDOBCK  
32 clock cycles  
32 clock cycles  
24 clock cycles  
24 clock cycles  
SDOFMT[1:0]=00  
SDOBIT[1:0]=XX  
M
L
M
L
24 bits  
24 bits  
SDOFMT[1:0]=1X  
SDOBIT[1:0]=XX  
M
L
M
L
SDOFMT[1:0]=01  
SDOBIT[1:0]=00  
L
M
8 7  
6 5  
4 3  
L
L
M
8 7  
6 5  
4 3  
L
SDO3  
to  
SDOFMT[1:0]=01  
SDOBIT[1:0]=01  
L
M
L
M
SDO0  
SDOFMT[1:0]=01  
SDOBIT[1:0]=10  
L
M
L
M
SDOFMT[1:0]=01  
SDOBIT[1:0]=11  
M
M
M : MSB DATA L : LSB DATA  
18  
YSS944/943/940  
„ Interrupt Requests  
This LSI’s status changes by any of the following five factors are externally reported as interrupt requests via  
the nINT pin.  
<1> When mute status is set by the auto mute function  
<2> When mute status is canceled by the auto mute function  
<3> When decode information is changed  
<4> When the main decoder is changed (MAINMOD[7:0] are changed)  
<5> When the post decoder is changed (POSTMOD[7:0] are changed)  
IM register can enable or disable generation of the interrupt of each interrupt factor, and IR register can check  
generation of and clear an interrupt factor. However, generation of an interrupt factor is not affected by the  
IM register setting. Changes in the status of this LSI are always detected and reported to IR register.  
„ General Purpose I/O Ports  
The general-purpose I/O ports IOPORT7 to IOPORT0 have the following functions. The functions are  
switched by IOSEL[7:0].  
<1> Input port:  
Pin statuses are read via IPORT[7:0].  
<2> Output port:  
Setting values in OPORT[7:0] are output from pins.  
<3> CA comparison port:  
IOPORT3 to IOPORT0 function as a CA comparison port that is used when nMICS is shared by  
several LSIs.  
A functional outline of IOPORT7 to IOPORT0 is shown below.  
19  
YSS944/943/940  
„ Register List  
The YSS422/421 is controlled by accessing the following registers via the microcomputer interface (nMICS,  
MISCK, MISI, and MISO).  
Default  
Address Byte Name R/W  
D7  
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
Value  
0x00  
ChipAdr R/W 0x00  
CAE  
CA[3:0]  
0x01  
0x02  
0x03  
IOsel  
IPort  
R/W 0x00  
IOSEL[7:0]  
R
IPORT[7:0]  
OPORT[7:0]  
Undefined  
OPort  
R/W 0x00  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
Mute  
R/W 0x00 nMUTE_3R nMUTE_3L  
nMUTE_2R  
nMUTE_2L  
nMUTE_1R nMUTE_1L nMUTE_0R nMUTE_0L  
SDIOClk R/W 0x00  
MCKOUT  
SDISEL[1:0]  
0
MSEL[1:0]  
WBCKOUT  
SDIBIT[1:0]  
SDOBIT[1:0]  
WBSEL[2:0]  
SDIWP  
SDI  
R/W 0x00  
R/W 0x00  
SDIFMT[1:0]  
SDOFMT[1:0]  
SDIBP  
SDO  
BYPASS  
0
SDOWP  
SDOBP  
SDOsel0 R/W 0x10  
SDOsel1 R/W 0x32  
SDOsel2 R/W 0x54  
SDOsel3 R/W 0x76  
0
0
0
0
SDOSEL_0R[2:0]  
0
0
0
0
SDOSEL_0L[2:0]  
SDOSEL_1L[2:0]  
SDOSEL_2L[2:0]  
SDOSEL_3L[2:0]  
SDOSEL_1R[2:0]  
SDOSEL_2R[2:0]  
SDOSEL_3R[2:0]  
EM0  
EM1  
EM2  
Zero  
IA0  
R/W 0x00  
EM_OEH[1:0]  
EM_WEH[1:0]  
EM_CYC[3:0]  
EM_INSIZE[4:0]  
R/W 0x00 EM_INCLR  
0
0
0
0
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
EM_OUTSIZE[4:0]  
EM_OUTCLR  
IA  
ZERO[7:0]  
0
0
IAA[20:16]  
IA1  
IAA[15:8]  
IAA[7:0]  
IA2  
IACnfg  
IACNFG  
IMMUTE  
0
0
0
0
0
0
0
0
IMUMUTE  
IMBSCHG  
IMMAINCHG IMPOSTCHG  
IRMAINCHG IRPOSTCHG  
0
0
0
0
0x14  
IM  
R/W 0x00  
R/W 0x00  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
IR  
State  
IRMUTE  
nMUTE  
IRUMUTE  
0
IRBSCHG  
0
0
R
R
R
R
R
R
R
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0
IEC61937  
PC[15:8]  
DTSCD[1:0]  
ZEROFLG  
Pc0  
Pc1  
PC[7:0]  
FsCnt  
MainMod  
PostMod  
Stream  
FSCNT[7:0]  
MAINMOD[7:0]  
POSTMOD[7:0]  
STREAM[7:0]  
PrgMod R/W 0x00  
PRGMOD[1:0]  
0
0
DTSCDIGN  
DSNIGN  
DSNSEL[2:0]  
DELAY[11:8]  
Dly0  
Dly1  
R/W 0x00  
R/W 0x00  
0
0
0
DELAY[7:0]  
0x20  
0x21  
Download R/W 0x00 RDLMODE  
0
0
0
CHISEL[2:0]  
CHCNFG[1:0]  
OUTMOD[3:0]  
DL  
OutMode R/W 0x00  
VOLON  
PNWN  
DUALMOD[1:0]  
0x22 NoiseMode R/W 0x00  
0x23 NoiseLevel R/W 0x00  
0
0
0
0
0
NOISEFS[1:0]  
NOISELEV[7:0]  
0x24  
0x25  
SDly  
CDly  
R/W 0x00  
R/W 0x00  
0
0
0
0
0
0
SDELAY[4:0]  
0
0
CDELAY[2:0]  
0x26  
0x27  
0x28  
0x29  
BSDly  
Switch  
R/W 0x00  
R/W 0x00  
0
BSDELAY[5:0]  
RSOUTOFF LSOUTOFF ROUTOFF  
LFEOUTOFF LBOUTOFF  
COUTOFF  
LOUTOFF  
RBOUTOFF  
LVolume R/W 0x00  
RVolume R/W 0x00  
LVOL[7:0]  
RVOL[7:0]  
LSVOL[7:0]  
RSVOL[7:0]  
CVOL[7:0]  
0x2A LSVolume R/W 0x00  
0x2B RSVolume R/W 0x00  
0x2C  
CVolume R/W 0x00  
0x2D LSVolume R/W 0x00  
0x2E LFEVolume R/W 0x00  
LBVOL[7:0]  
LFEVOL[7:0]  
20  
YSS944/943/940  
0x2F RBVolume R/W 0x00  
RBVOL[7:0]  
MVOL[7:0]  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
R/W 0x00  
MasterVolume  
LScaleH R/W 0x00  
LScaleL R/W 0x00  
RScaleH R/W 0x00  
RScaleL R/W 0x00  
LSScaleH R/W 0x00  
LSScaleL R/W 0x00  
RSScaleH R/W 0x00  
RSScaleL R/W 0x00  
CScaleH R/W 0x00  
CScaleL R/W 0x00  
LSCALE[15:8]  
LSCALE[7:0]  
RSCALE[15:8]  
RSCALE[7:0]  
LSSCALE[15:8]  
LSSCALE[7:0]  
RSSCALE[15:8]  
RSSCALE[7:0]  
CSCALE[15:8]  
CSCALE[7:0]  
0x3B LBScaleH R/W 0x00  
0x3C LBScaleL R/W 0x00  
LBSCALE[15:8]  
LBSCALE[7:0]  
LFESCALE[15:8]  
LFESCALE[7:0]  
RBSCALE[15:8]  
RBSCALE[7:0]  
0x3D LFEScaleH R/W 0x00  
0x3E LFEScaleL R/W 0x00  
0x3F RBScaleH R/W 0x00  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
RBScaleL R/W 0x00  
SimMode R/W 0x00  
ALLDELAY DELAYOFF  
BASS[3:0]  
0
0
0
0
0
0
0
0
0
TC  
R/W 0x00  
TREBLE[3:0]  
PCMFS[3:0]  
BMMode R/W 0x00  
HDynrng R/W 0x00  
LDynrng R/W 0x00  
0
0
0
0
BMMODE  
HDYNRNG[7:0]  
LDYNRNG[7:0]  
0x46 PCMMode0 R/W 0x00  
0x47 PCMMode1 R/W 0x00  
PCMDLY  
0
PCMIGN  
PCMEMPON  
PCMDS  
PCMDCCUTON  
PCM20MOD[2:0]  
0
0
0
0x48 AC3Mode0 R/W 0x00 AC3P11OFF AC3DIALOFF AC3DITHOFF AC3CRCOFF  
AC3STAUTO  
AC3COMP[1:0]  
AC3KARAOKE  
0x49 AC3Mode1 R/W 0x00  
0x4A DTSMode0 R/W 0x00  
0x4B DTSMode1 R/W 0x00  
0x4C AACMode0 R/W 0x00  
0x4D AACMode1 R/W 0x00  
0
0
AC320MOD[2:0]  
0
AC3S2MOD[2:0]  
DTSEXT[1:0]  
DTSDITHOFF  
0
0
0
0
DTSDIAL  
DTSS2MOD[2:0]  
0
DTSCOMP  
0
0
0
DTS20MOD[2:0]  
AACMIX AACMIXSET AACMIXLEV AACCRCOFF  
0
0
0
0
0
0
0
0
AAC20MOD[2:0]  
AACS2MOD[2:0]  
0x4E  
0x4F  
0x50  
Reserved R/W 0x00  
Reserved R/W 0x00  
Reserved R/W 0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x51 PL2XMode0 R/W 0x00  
0x52 PL2XMode1 R/W 0x00  
PL2XDECMOD[1:0]  
PL2XINVMAT PL2XSPLIT PL2XRSINV PL2XAIBON  
PL2XSRFIL[1:0]  
PL2XDIMCFG[3:0]  
PL2XCWCFG[2:0]  
0
0
0
0x53 Neo6Mode0 R/W 0x00 N6DECMOD  
0x54 Neo6Mode1 R/W 0x00 N6CGAINON  
0
0
0
0
0
0
0
0
0
N6CGAIN[6:0]  
0
0x55  
0x56  
0x57  
Reserved R/W 0x00  
RunTime R/W 0x00  
Reserved R/W 0x00  
0
RDLFLG  
0
0
RDLEND  
0
0
0
0
0
0
0
RDLCNT[4:0]  
0
0
0x58 Bitstream0 R/W 0x00  
0x59 Bitstream1 R/W 0x00  
0x5A Bitstream2 R/W 0x00  
0x5B Bitstream3 R/W 0x00  
0x5C Bitstream4 R/W 0x00  
0x5D Bitstream5 R/W 0x00  
0x5E Bitstream6 R/W 0x00  
0x5F Bitstream7 R/W 0x00  
0x60 Bitstream8 R/W 0x00  
0x61 Bitstream9 R/W 0x00  
0x62 Bitstream10 R/W 0x00  
0x63 Bitstream11 R/W 0x00  
0x64 Bitstream12 R/W 0x00  
0x65 Bitstream13 R/W 0x00  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
21  
YSS944/943/940  
Main decoder’s decode information output  
0x66 Bitstream14 R/W 0x00  
0x67 Bitstream15 R/W 0x00  
0x68 Bitstream16 R/W 0x00  
0x69 Bitstream17 R/W 0x00  
0x6A Bitstream18 R/W 0x00  
0x6B Bitstream19 R/W 0x00  
0x6C Bitstream20 R/W 0x00  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
Main decoder’s decode information output  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
Test  
Test  
Test  
Test  
Test  
Test  
Test  
Test  
Test  
Test  
Test  
Test  
Test  
Access prohibited.  
Access prohibited.  
Access prohibited.  
Access prohibited.  
Access prohibited.  
Access prohibited.  
Access prohibited.  
Access prohibited.  
Access prohibited.  
Access prohibited.  
Access prohibited.  
Access prohibited.  
Access prohibited.  
0x7A  
0x7B  
0x7C  
0x7D  
PLL0  
PLL1  
R/W 0x1B  
R/W 0x00  
R/W 0x00  
R/W 0x80  
0
PLL_F[6:0]  
PLL_OD[1:0]  
nRESET  
PD[1:0]  
PLL_RDIV1  
PLL_R[4:0]  
IC[3:0]  
nReset  
Power  
0
0
0
0
0
0
0
0
0
UP  
DOWN  
0x01  
R
0x7E ADAMID  
0
0
0
ADAM_ID[2:0]  
0x00  
0x7F  
DevID  
R
0x03  
DEV_ID = 0x03  
[Note]  
Register addresses 0x6D to 0x79 comprise a test area. Writing of values to this area is prohibited and read  
values are undefined.  
Access conditions for other addresses are shown below.  
(Bold frame) indicates area that is accessible regardless of PD[1:0] value.  
(Narrow frame) indicates area that is accessible only when PD[1:0] = 00. When PD[1:0] is not “00”  
values in this area are undefined when read or written.  
(Shaded) indicates areas reserved for future expansion. Write zeros to these areas. Their output is  
undefined.  
0
22  
YSS944/943/940  
„ Electrical Characteristics  
(1) Absolute Maximum Ratings  
Item  
Symbol  
Min.  
-0.5  
Max.  
4.6  
Unit  
V
VDD1  
AVDDR  
AHVDD  
AHVDDG  
VDD2  
DVDD  
VI  
Power supply voltage 1 (3.3 V)  
Power supply voltage 2 (1.2 V)  
-0.5  
1.68  
V
Input voltage1 Note 1)  
Input voltage2 Note 2)  
Storage temperature  
-0.5  
-0.5  
-50  
5.5  
4.6  
125  
V
V12  
V
TSTG  
°C  
Condition: All GND pins (VSS, AVSSR, AHVSS, AHVSSG, and DVSS) are 0 V.  
Note 1) Applies to input pins other than the X1 pin.  
Note 2) Applies to the X1 pin.  
(2) Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
3.0  
Typ.  
3.3  
Max.  
Unit  
V
VDD1  
AVDDR  
AHVDD  
AHVDDG  
VDD2  
Power supply voltage 1(3.3 V)  
3.6  
Power supply voltage 2(1.2 V)  
Operating temperature  
1.14  
-40  
1.2  
25  
1.26  
85  
V
DVDD  
Top  
°C  
Condition: All GND pins (VSS, AVSSR, AHVSS, AHVSSG, and DVSS) are 0 V.  
(3) Current Consumption  
Parameter  
Condition  
Min.  
Typ.  
211  
13  
Max.  
Unit  
Power consumption  
395  
21  
mW  
mA  
mA  
µA  
Notes 1 and 4)  
3.3 V current consumption(normal operation mode)  
1.2 V current consumption(normal operation mode)  
3.3 V current consumption (power-down mode)  
1.2 V current consumption (power-down mode)  
Notes 1, 2, and 4)  
Notes 1, 3, and 4)  
Notes 1, 2, 5 and 6)  
Notes 1, 3, 5, and 6)  
140  
35  
253  
90  
15  
85  
mA  
Note 1) Typical values are typical under the recommended operating conditions. Maximum values are the  
maximum conditions under the recommended operating conditions.  
Note 2) Total current of VDD1, AVDDR, AHVDD, and AHVDDG  
Note 3) Total current of VDD2 and DVDD  
Note 4) Typical value is at Dloby Digital. Maximum values are at PCM 2-chanel 192kHz+Dolby Pro Logic  
IIx+Bass Management.  
Note 5) Value in power-down mode 3. XI input is at high level.  
Note 6) The current consumption increases during power-down at higher temperatures.  
23  
YSS944/943/940  
(4) DC Characteristics  
Parameter  
Symbol  
VIH1  
VIL1  
VIH2  
VIL2  
VOH  
VOL  
IOH  
Condition  
Min.  
Typ.  
Max.  
VDD1  
0.2VDD1  
5.25  
Unit  
High level input voltage (1)  
Low level input voltage (1)  
High level input voltage (2)  
Low level input voltage (2)  
High level output voltage  
Low level output voltage  
High level output current  
Low level output current  
Input leakage current  
XI pin  
XI pin  
0.8VDD1  
V
V
Input pin other than XI Note 1)  
Input pin other than XI Note 1)  
IOH = -1.0 mA, Note 2)  
2.2  
2.4  
V
0.8  
V
V
IOL = 1.0 mA,  
Note 2)  
0.4  
-1.0  
1.0  
1
V
mA  
mA  
µA  
k  
pF  
IOL  
Pin without pull-up resistor  
-1  
ILI  
Pull-up resistance  
37  
72  
7
RU  
Input pin’s capacitance  
CI  
Note 1) All input pins other than XI are tolerant of 5 V.  
Note 2) Applies to all output pins other than XO. No rating for the XO output voltage level.  
24  
YSS944/943/940  
(5) AC Characteristics  
(a) Power up, Hardware Reset, and clock  
No.  
Parameter  
nIC time 1  
Symbol  
Condition  
Min.  
Typ.  
Max.  
60  
Unit  
1
2
3
4
TIC1  
TIC2  
Figure 1) below  
Figure 2) below  
5
1
ms  
µs  
MHz  
%
nIC time 2  
XI clock frequency  
XI clock duty  
fXIN  
XDUTY  
12.288  
40  
Internal operating  
clock cycle  
5
6
TCLK  
1000/178.176  
ns  
Note 1)  
0
1
1
1
s
s
Note 2)  
Note 3)  
Power ON time  
TV1V2  
Note 1) When using recommended XI input and recommended PLL setting. The internal operating clock  
frequency is 178.176 MHz.  
Note 2) When Shortcut key barrier diode is not connected  
The 3.3 V power supply (VDD1, AVDDR, AHVDD, and AHVDDG) should be started before the  
1.2 V power supply (VDD2 and DVDD).  
Note 3) When Shortcut key barrier diode is connected  
Insert a Shortcut key barrier diode with forward voltage of 0.4 V or less between the 3.3 V power  
supply (VDD1, AVDDR, AHVDD, and AHVDDG) and 1.2 V power supply (VDD2 and DVDD)  
(cathode is VDD1 and anode is VDD2).  
The 3.3 V power supply and 1.2 V power supply can be started in either order.  
Note 4) The time interval of power ON or OFF between 3.3V power supply and 1.2V power supply must  
be within one second. Only one power keep on supplying, LSI would be damaged.  
1)At power-on  
6
1
VDD1, AVDDR,  
AHVDD, AHVDDG  
VDD2,  
DVDD  
XI  
nIC  
If a crystal oscillator is connected, this includes the time between power supply stabilization and  
oscillator stabilization.  
Turn on the power when nIC is at low level.  
2)In normal operation mode  
2
nIC  
The XI input and power supply must be stabilized.  
If XI oscillation has stopped during initialization in power-down mode, time is required to stabilize  
the oscillation.  
25  
YSS944/943/940  
(b)Microprocessor interface  
No.  
Parameter  
MISCK cycle  
Symbol Condition  
Min.  
160  
Typ.  
Max.  
Unit  
1
2
3
4
5
6
7
8
9
tcc  
tcr  
tcf  
tch  
tcl  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MISCK rise time  
20  
20  
MISCK fall time  
MISCK high level time  
MISCK low level time  
nMICS and MISI setup time  
nMICS and MISI hold time  
MISO output delay time  
MISO output High-Z time  
80  
80  
10  
10  
tset  
Note 1)  
Note 1)  
thold  
tdelay CL = 50pF  
tz CL = 50pF  
50  
20  
Note 1) Satisfy the setup time/hold time (vs. MISCK) on starting/ending transfer, with nMICS = L.  
nMICS  
1
6
3
2
7
5
4
MISCK  
MISI  
6
7
8
9
High-Z  
MISO  
26  
YSS944/943/940  
(c)Audio interface  
1) SDIMCK  
No.  
Parameter  
Symbol Condition  
Min.  
Typ.  
50  
Max.  
25  
Unit  
1
2
3
4
SDIMCK input frequency  
SDIMCK duty  
fIMCK  
dIMCK  
tIMR  
MHz  
%
SDIMCK rise time  
SDIMCK fall time  
10  
10  
ns  
tIMF  
ns  
1
2
2
SDIMCK  
3
4
2) SDOMCK  
No.  
Parameter  
Symbol Condition  
fOMCK  
Min.  
Typ.  
50  
Max.  
25  
Unit  
1
2
3
4
SDOMCK output frequency  
SDOMCK duty  
MHz  
%
dOMCK  
tOMR  
Note 1)  
SDOMCK rise time  
SDOMCK fall time  
CL = 50pF  
CL = 50pF  
10  
10  
ns  
tOMF  
ns  
Note 1) When MSEL[1:0] = 00 has been set and “through” has been selected for SDIMCK, the SDOMCK  
duty factor is affected by the SDIMCK duty factor.  
1
2
2
SDOMCK  
3
4
27  
YSS944/943/940  
3) SDIBCK, SDIWCK, SDI3 to SDI0 (slave operation)  
No.  
Parameter  
Symbol Condition  
fIBCK  
Min.  
Typ.  
50  
Max.  
12.5  
Unit  
1
2
3
4
5
6
SDIBCK input frequency  
SDIBCK duty  
MHz  
%
dIBCK  
tIBR  
Note 1)  
SDIBCK rise time  
10  
10  
ns  
SDIBCK fall time  
tIBF  
ns  
SDIWCK and SDI3-0 setup time  
SDIWCK and SDI3-0 hold time  
tIWS  
tIWH  
10  
10  
ns  
ns  
Note 1) The polarity of SDIBCK can be changed by SDIBP. In the figure below, SDIBP = 0.  
1
3
4
2
2
SDIBCK  
SDIWCK  
SDI3-0  
5
5
6
6
4) SDOBCK, SDOWCK, SDO3 to SDO0 (slave operation)  
No.  
Parameter  
Symbol Condition  
fOBCK  
Min.  
Typ.  
50  
Max.  
12.5  
Unit  
1
2
3
4
5
6
7
SDOBCK input frequency  
SDOBCK duty  
MHz  
%
dOBCK  
tOBR  
Note 1)  
SDOBCK rise time  
10  
10  
ns  
SDOBCK fall time  
tOBF  
ns  
SDOWCK setup time  
SDOWCK hold time  
SDO3-0 output delay time  
tOWS  
tOWH  
tODLY  
10  
10  
ns  
ns  
CL = 50pF  
30  
ns  
Note 1) The polarity of SDOBCK can be changed by SDOBP. In the figure below, SDOBP = 0.  
1
3
4
2
2
SDOBCK  
SDOWCK  
SDO3-0  
5
6
7
28  
YSS944/943/940  
5) SDOBCK, SDOWCK, SDO3 to SDO0 (master operation)  
No.  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
50  
Max.  
12.5  
Unit  
SDOBCK output frequency  
SDOBCK output duty factor  
1
2
3
4
fOBCK  
dOBCK  
tOBR  
MHz  
%
Note 2)  
Notes 1 and 3)  
CL = 50 pF  
CL = 50 pF  
10  
10  
ns  
SDOBCK rise time  
SDOBCK fall time  
tOBF  
ns  
SDOWCK, SDO3 to SDO0  
Output delay time  
5
6
tODLY  
CL = 50 pF  
-15  
0
15  
25  
ns  
ns  
CL = 50 pF  
Note 4)  
SDIBCK SDOBCK  
Output delay time  
tOBDLY  
Note 1) The output polarity of SDIBCK and SDOBCK can be changed by DSIBP and DSOBP. In the  
figure below, SDOBP = SDOBP = 0.  
Note 2) Although output divided from SDIMCK can be selected for SDOBCK via WBSEL[2:0], operation  
is not guaranteed if SDIMCK’s frequency exceeds the range noted above.  
Note 3) When “SDIBCK through” has been selected (WBSEL[2:0] = 00), the SDDBCK output duty factor  
is affected by the SDIBCK duty factor.  
Note 4) When “SDIBCK through” has been selected (WBSEL[2:0] = 00).  
6
SDIBCK  
1
3
4
2
2
SDOBCK  
SDOWCK  
SDO3-0  
5
5
29  
YSS944/943/940  
(d)External memory interface  
When EM_CYC = c, EM_WEH = w, and EM_OEH = o, the timing is as described below.  
1) Read  
No.  
Parameter  
Symbol Condition  
tRCYC CL = 20 pF  
Min.  
Typ.  
tASR+ REP+ AHR  
Max.  
Unit  
1
2
3
4
5
6
7
8
Read cycle time  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 20 pF  
CL = 20 pF  
Address access time  
nMEMOE access time  
Data setup time  
tAA  
tEAC  
tDSR  
tDHR  
TCLK×(2c+3)-25  
TCLK×(2c+2)-25  
25  
0
Data hold time  
Address setup time  
Address hold time  
nMEMOE pulse width  
tASR CL = 20 pF  
tAHR CL = 20 pF  
tREP CL = 20 pF  
TCLK×1  
TCLK×(2^o+1)  
TCLK×(2c+2)  
1
MEMA18-0  
nMEMCE  
nMEMOE  
nMEMWE  
MEMD7-0  
6
8
7
3
2
4
5
Read  
Data  
30  
YSS944/943/940  
2) Write  
No.  
1
Parameter  
Write cycle time  
Data setup time  
Symbol Condition  
tWCYC CL = 20 pF  
Min.  
Typ.  
Max.  
Unit  
ns  
TCLK×(2c+5+2w)  
TCLK×(w+1)  
TCLK×(w+2)  
TCLK×(w+1)  
TCLK×(w+2)  
TCLK×(2c+2)  
2
tDSW  
tDHW  
tASW  
tAHW  
tWEP  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
0
0
ns  
3
Data hold time  
ns  
4
Address setup time  
Address hold time  
nMEMWE pulse width  
ns  
5
ns  
6
ns  
1
MEMA18-0  
nMEMCE  
nMEMOE  
nMEMWE  
MEMD7-0  
4
2
6
5
3
Write Data  
31  
YSS944/943/940  
„ Example of System Configuration  
The YSS944/943/940 is connected to CODEC (ADC/DAC) or DIR/DIT via the audio interface.  
The YSS944/943/940 is connected to a microprocessor for control via the microcomputer interface.  
External memory (SRAM) is an option when using the input/output delay function. The YSS944/943/940 can  
be used with only the internal RAM (without connecting external memory).  
Microprocessor  
nIC  
Reset  
SDIMCK  
SDIBCK  
SDIWCK  
SDOMCK  
SDOBCK  
SDOWCK  
Digital output  
Digital input  
DIR  
DIT  
ADAMB  
SDI0  
SDI1  
SDO0  
Analog output  
Analog input  
SDO1  
SDO2  
SDO3  
(YSS944/943/941)  
DAC  
ADC  
12.288MHz  
(SRAM)  
optional  
32  
YSS944/943/940  
„ Package Dimensions  
The shape of the molded corner may slightly differ from the  
shape in this diagram.  
The figure in the parentheses ( ) should be used as a reference.  
Plastic body dimensions do not include resin burr.  
UNIT: mm  
The storage and soldering of LSIs for surface mounting need special consideration.  
For detailed information, please contact your local Yamaha agent  
33  
YSS944/943/940  

相关型号:

YSS943

ADAMB Advanced Digital Audio Multi channel decode processor
YAMAHA

YSS943-VZ

Consumer Circuit, CMOS, PQFP144, LEAD FREE, PLASTIC, LQFP-144
YAMAHA

YSS944

ADAMB Advanced Digital Audio Multi channel decode processor
YAMAHA

YSS944-VZ

暂无描述
YAMAHA

YSS950

DAP1 Digital Audio Processor
YAMAHA

YST025

2.50mm PITCH CONNECTOR
YEONHO

YST025J

2.50mm PITCH CONNECTOR
YEONHO

YST200

2.00mm PITCH CONNECTOR
YEONHO

YST200-C

2.00mm PITCH CONNECTOR
YEONHO

YSUSB2

LOW CAPACITANCE
YEASHIN

YSUSB2.0-5

LOW CAPACITANCE TVS DIODE ARRAY
YEASHIN

YSV010D

Wire Terminal, 10mm2
AMPHENOL