MT312 [ZARLINK]

Satellite Channel Decoder; 卫星频道解码器
MT312
型号: MT312
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Satellite Channel Decoder
卫星频道解码器

解码器
文件: 总90页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MT312  
Satellite Channel Decoder  
Design Manual  
Supersedes DS5347 Issue 1.2 November 2001  
DM5651  
ISSUE 1.2  
January 2002  
Key Features  
Ordering Information  
Conforms to EBU specification for DVB-S and  
DirecTV specification for DSS.  
MT312C/CG/GP1N  
On-chip digital filtering supports 1 to 45MBaud  
Symbol rates.  
On-chip 6-bit 60 or 90MHz dual-ADC.  
High speed scanning mode for blind symbol  
rate/code rate acquisition.  
The MT312 is a QPSK/BPSK 1 to 45MBaud  
demodulator and channel decoder for digital satellite  
television transmissions to the European Broadcast  
Union ETS 300 421 specification (ref. 1). It receives  
analogue I and Q signals from the tuner, digitises  
and digitally demodulates this signal, and  
implements the complete DVB/DSS FEC (Forward  
Error Correction), and de-scrambling function. The  
output is in the form of MPEG2 or DSS transport  
stream data packets. An external MPEG clock input  
is provided for synchronisation to MPEG decoders  
and DVB Common Interface Modules. The MT312  
also provides automatic gain control to the RF front-  
end devices.  
Automatic IQ phase resolution.  
No signal indicator.  
Up to ±15MHz LNB frequency tracking.  
Fully digital timing and phase recovery loops.  
High level software interface for minimum  
development time.  
DiSEqC™ v2.2: receive/transmit for full control  
of LNB and dish.  
Applications  
DVB 1 to 45MBaud compliant satellite  
receivers.  
The MT312 has a serial 2-wire bus interface to the  
control microprocessor. Minimal software is required  
to control the MT312 because of the built in  
automatic search and decode control functions.  
DSS 20MBaud compliant satellite receivers.  
SCPC receivers. (Single Channel Per Carrier)  
SMATV trans-modulators. (Single Master  
Antenna TV)  
LMDS (Local Multipoint Distribution Service)  
Satellite PC applications.  
AGC control  
I
I I/P  
Direct  
Conversion  
RF I/P  
AGC  
Low pass  
Filter  
AMP  
Tuner  
Q
Q I/P  
SL1914  
SL1925  
Transport  
stream O/P  
Channel  
Decoder  
MT312  
Tank  
2-wire bus  
control  
2-wire bus control  
Synthesiser  
SP5769  
Figure 1 - System Block Diagram - SNIM5  
1
MT312 Design Manual  
80  
61  
1
60  
20  
41  
21  
40  
Figure 2 - System Block Diagram - SNIM5  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
FUNCTION  
1
2
CVSS  
CVDD  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
PLLVDD  
PLLGND  
PLL1  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
CVSS  
CVDD  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
MDO[1]  
CVDD  
MDO[2]  
MDO[3]  
MDO[4]  
MDO[5]  
CVDD  
MDO[6]  
MDO[7]  
CVSS  
3
IIN[1]  
AGC  
4
ADDR[7]  
ADDR[6]  
ADDR[5]  
ADDR[4]  
ADDR[3]  
CVDD  
ADCFGND  
ADCFVDD  
VRT  
CLK2/GPP0  
DATA2/GPP1  
DISEQC2/GPP2  
DISEQC1 HV  
DISEQC0 22kHz  
RESET  
5
6
7
IREF  
8
ISINGP  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CVSS  
ADCDVDD  
ADCDGND  
VRM  
CVDD  
ADDR[2]  
ADDR[1]  
VDD  
CVSS  
MDOEN  
MOVAL  
VDD  
STATUS  
CLK1  
QSINGP  
QREF  
MICLK  
VSS  
DATA1  
VSS  
VRB  
CVDD  
BKERR  
MOSTRT  
IIN[5]  
TESTCLK  
CVDD  
ADCAGND  
ADCAVDD  
RREF  
VSS  
IRQ  
XTI  
MOCLK  
MDO[0]  
IIN[4]  
XTO  
TEST1  
IIN[3]  
CVSS  
TEST2  
CVSS  
IIN[2]  
Table 1 - MT312 pin-out  
2
Design Manual MT312  
The MT312 provides a monitor of Bit Error Rate after  
the QPSK module and also after the Viterbi module.  
Quick start overview  
The MT312 is a QPSK/BPSK 1 to 45MBaud  
demodulator and channel decoder for digital satellite  
television transmissions compliant to both DVB-S  
and DSS standards and other systems, such as  
LMDS, that use the same architecture.  
For receiver installation, a high speed scan or 'blind  
search' mode is available. This allows all signals  
from a given satellite to be evaluated for frequency,  
symbol rate and convolutional coding scheme. The  
phase of the IQ signals can be automatically  
determined.  
A Command Driven Control (CDC) system is  
provided making the MT312 very simple to program.  
After the tuner has been programmed to the required  
frequency, to acquire a DVB transmission, the  
MT312 requires a minimum of ve registers to be  
written. Activity ow diagrams for initialisation and  
basic channel change are included in section 2.  
Full DiSEqCv2.2 is provided for both writing and  
reading DiSEqCmessages. Storage in registers  
for up to eight data bytes sent and eight data bytes  
received is provided.  
MPEG/  
DSS  
Packets  
I I/P  
Timing recovery  
Matched filter  
Phase recovery  
DVB  
DSS  
FEC  
Decimation  
Filteriing  
Dual ADC  
De-rotator  
Q I/P  
Bus I/O  
Analog  
AG  
Ccontrol  
Acquisition  
Control  
I?C  
Interface  
Clock Generation  
Figure 3 - MT312 Functional Block Diagram  
Additional Features  
De-Interleaver  
2-wire bus microprocessor interface.  
Compliant with DVB and DSS standards.  
All digital clock and carrier recovery.  
On-chip PLL clock generation using low cost 10  
to 15MHz crystal.  
Reed Solomon  
(204, 188) for DVB and (146,130) for DSS.  
3.3V operation.  
Reed Solomon Bit-error-rate monitor to indicate  
Viterbi performance.  
80 pin MQFP package.  
Low external component count.  
Commercial temperature range 0 to 70°C.  
De-Scrambler  
EBU specication De-scrambler for DVB mode.  
Demodulator  
BPSK or QPSK programmable.  
Outputs  
Optional fast acquisition mode for low symbol  
rates.  
MPEG transport parallel & serial output.  
MPEG clock input for external synchronising of  
MPEG data output.  
Viterbi  
Integrated MPEG2 TEI bit processing for DVB  
only.  
Programmable decoder rates 1/2, 2/3, 3/4, 5/6,  
6/7, 7/8.  
Automatic spectrum resolution of IQ phase.  
Constraint length k=7.  
Application Support  
Channel decoder system evaluation board.  
Windows based evaluation software.  
ANSI C generic software.  
Trace back depth 128.  
Extensive SNR and BER monitors.  
3
MT312 Contents  
Contents  
1
Functional Overview .............................................................................................10  
1.1  
1.2  
1.3  
1.4  
Introduction ........................................................................................................................................ 10  
Analogue-to-Digital Converter ............................................................................................................ 10  
QPSK Demodulator ............................................................................................................................ 10  
Forward Error Correction .................................................................................................................. 11  
Viterbi Error Count Measurement ................................................................................................ 11  
Viterbi Error Count Coarse Indication .......................................................................................... 12  
The Frame Alignment Block ........................................................................................................ 12  
The De-interleaver Block ............................................................................................................. 13  
DVB ............................................................................................................................................. 13  
DSS ............................................................................................................................................. 13  
The Reed Solomon Decoder Block ............................................................................................. 14  
The Energy Dispersal (De-Scrambler) Block, DVB only .............................................................. 14  
Output Stage ............................................................................................................................... 15  
Control ................................................................................................................................................ 15  
Symbol Rate and Code Rate Search Mode ................................................................................ 16  
Direct Conversion Application ............................................................................................................ 16  
DiSEqCTransmit and Receive Messages ..................................................................................... 17  
DiSEqCTransmitting Messages .............................................................................................. 17  
DiSEqCReceiving Messages .................................................................................................. 17  
1.4.1.1  
1.4.1.2  
1.4.2  
1.4.3  
1.4.3.1  
1.4.3.2  
1.4.4  
1.4.5  
1.4.6  
1.5  
1.5.2  
1.6  
1.7  
1.7.1  
1.7.2  
2
2.1  
MT312 Software Control .......................................................................................18  
MT312 Register Map Overview .......................................................................................................... 18  
3
MT312 Initialisation ...............................................................................................19  
The Configuration Register (127) ....................................................................................................... 19  
Power Supplies ................................................................................................................................... 19  
Initialisation Sequence ....................................................................................................................... 20  
Spectral Inversion .............................................................................................................................. 21  
MT312 Initialisation Read/Write Registers ......................................................................................... 21  
Reset. Register 21 (R/W) ........................................................................................................... 21  
MT312 Configuration. Register 127 (R/W) ................................................................................. 22  
System Clock Frequency. Register 34 (R/W) ............................................................................. 23  
MT312 Initialisation Read Register .................................................................................................... 23  
Identification. Register 126 (R) ................................................................................................... 23  
3.1  
3.2  
3.3  
3.4  
3.5  
3.5.1  
3.5.2  
3.5.3  
3.6  
3.6.1  
4
Tuner Control .........................................................................................................24  
Simple Channel Change Sequence ................................................................................................... 24  
Channel Change Sequence with a new Symbol Rate ....................................................................... 24  
Channel Change Sequence with Search Mode ................................................................................. 24  
Tuner Control Read/Write Registers .................................................................................................. 25  
General Purpose Port Control. Register 20 (R/W) ..................................................................... 25  
FR LIM: Frequency Limit. Register 37 (R/W) ............................................................................. 26  
FR OFF: Frequency Offset. Register 38 (R/W) .......................................................................... 27  
Tuner Control Read Registers ........................................................................................................... 27  
Measured LNB Frequency Error. Registers 7 - 8 (R) ........................................................................ 27  
Frequency Error 1 and 2. Registers 111 - 115 (R) ............................................................................ 28  
4.1  
4.2  
4.3  
4.4  
4.4.1  
4.4.2  
4.4.3  
4.5  
4.5.1  
4.5.2  
4
Contents MT312  
5
5.1  
5.2  
DiSEqC Control ......................................................................................................29  
Screen Printouts of DiSEqCWaveforms ........................................................................................ 29  
DiSEqC Control Read/Write Registers ............................................................................................... 30  
DiSEqCMode Control. Register 22 (R/W) .............................................................................. 30  
DiSEqC(tm) Ratio. Register 35 (R/W) ........................................................................................ 30  
DiSEqCInstruction (R/W). Register 36 (R/W) ........................................................................ 31  
DiSEqC2 Control 1. Registers 121 (R/W) .............................................................................. 31  
DiSEqCTM 2 Control 2. Registers 122 (R/W) ............................................................................ 32  
DiSEqC Control Read Registers ........................................................................................................ 33  
DiSEqCM 2 Interrupt Indicators. Register 118 (R) .................................................................. 33  
DiSEqCM 2 Status Indicators. Register 119 (R) ..................................................................... 34  
DiSEqC2 FIFO. Register 120 (R) ........................................................................................... 34  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.3  
5.3.1  
5.3.2  
5.3.3  
6
QPSK demodulator ................................................................................................36  
QPSK Demodulator Read/Write Registers ........................................................................................ 36  
Symbol Rate. Registers 23 - 24 (R/W) ....................................................................................... 36  
Viterbi mode. Register 25 (R/W) ................................................................................................. 38  
QPSK Control. Register 26 (R/W) .............................................................................................. 39  
Go Command. Register 27 (R/W) .............................................................................................. 40  
QPSK Interrupt Output Enable. Registers 28 - 30 (R/W) ........................................................... 40  
QPSK STATUS Output Enable. Register 32 (R/W) .................................................................... 41  
QPSK Demodulator Read Registers .................................................................................................. 42  
QPSK Interrupt. Registers 0 - 2 (R) ............................................................................................ 42  
QPSK Status. Registers 4 - 5 (R) ............................................................................................... 44  
Symbol Rate Output. Registers 116 - 117 (R) ............................................................................ 44  
Monitor Registers. Registers 123 - 124 (R) ................................................................................ 45  
6.1  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.2  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
7
Forward Error Correction ......................................................................................46  
Forward Error Correction Read/Write Registers ................................................................................ 47  
FEC Interrupt Enable. Register 31 (R/W) ................................................................................... 47  
FEC STATUS Output Enable. Register 33 (R/W) ...................................................................... 47  
FEC Set Up. Register 97 (R/W) .................................................................................................. 48  
Forward Error Correction Read Registers .......................................................................................... 48  
FEC Interrupt. Register 3 (R) ...................................................................................................... 48  
FEC Status. Register 6 (R) ......................................................................................................... 49  
Measured Signal to Noise Ratio. Registers 9 - 10 (R) ................................................................ 49  
Viterbi Error Count at Viterbi Input. Registers 11 - 13 (R) .......................................................... 50  
Reed Solomon Bit Errors Corrected. Registers 14 - 16 (R) ........................................................ 50  
Reed Solomon Uncorrected block Errors. Registers 17 - 18 (R) ................................................ 51  
7.1  
7.1.1  
7.1.2  
7.1.3  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
8
Automatic Gain Control ........................................................................................52  
Automatic Gain Control Read/Write Registers ................................................................................... 52  
AGC Control. Register 39 (R/W) ................................................................................................ 52  
AGC REF Reference Value. Register 41 (R/W) ......................................................................... 52  
Automatic Gain Control Read Registers ............................................................................................ 53  
Measured Signal Level at MT312 Input. Register 19 (R) ........................................................... 53  
Measured AGC Feed Back Value. Registers 108 - 110 (R) ....................................................... 53  
8.1  
8.1.1  
8.1.2  
8.2  
8.2.1  
8.2.2  
9
MPEG Packet Data Ouput .....................................................................................54  
MPEG Clock Modes ........................................................................................................................... 54  
Data Output Header Format - DVB only ............................................................................................ 55  
MPEG/DSS Data Output Signals ....................................................................................................... 56  
Data output timing .............................................................................................................................. 58  
MPEG Packet Data Output Read/Write Registers ............................................................................. 59  
Output Data Control. Register 96 (R/W) ..................................................................................... 59  
Monitor Control. Register 103 (R/W) .......................................................................................... 59  
9.1  
9.2  
9.3  
9.4  
9.5  
9.5.1  
9.5.2  
5
MT312 Contents  
10  
10.1  
10.2  
10.2.1  
10.2.2  
10.2.3  
10.2.4  
10.2.5  
10.2.6  
Secondary Registers for Test and De-Bugging ..................................................61  
Read / Write Secondary Register Map ............................................................................................... 61  
Secondary Registers for Test and De-Bugging Read/Write Registers .............................................. 63  
AGC Initial Value. Register 40 (R/W) ......................................................................................... 63  
AGC Maximum Value. Register 42 (R/W) .................................................................................. 63  
AGC Minimum Value. Register 43 (R/W) ................................................................................... 63  
AGC Lock Threshold Value. Register 44 (R/W) ......................................................................... 63  
AGC Lock Threshold Value. Register 45 (R/W) ......................................................................... 63  
AGC Power Setting Initial Value. Register 46 (R/W) .................................................................. 63  
QPSK Miscellaneous. Register 47 (R/W) ................................................................................... 63  
SNR Low Threshold Value. Register 48 (R/W) .......................................................................... 64  
SNR HIGH Threshold Value. Register 49 (R/W) ........................................................................ 64  
Timing Synchronisation Sweep Rate. Register 50 (R/W) ........................................................... 64  
Timing Synchronisation Sweep Limit Low. Register 51 (R/W) ................................................... 64  
Timing Synchronisation Sweep Limit High. Register 52 (R/W) .................................................. 64  
Carrier Synchronisation Sweep Rate 1. Register 53 (R/W) ........................................................ 64  
Carrier Synchronisation Sweep Rate 2. Register 54 (R/W) ........................................................ 64  
Carrier Synchronisation Sweep Rate 3. Register 55 (R/W) ........................................................ 65  
Carrier Synchronisation Sweep Rate 4. Register 56 (R/W) ........................................................ 65  
Carrier Synchronisation Sweep Limit. Register 57 (R/W) ........................................................... 65  
Timing Synchronisation Coefficients. Registers 58 - 60 (R/W) ................................................... 65  
Carrier Synchronisation Proportional Part Coefficients. Registers 61 - 62 (R/W) ...................... 65  
Carrier Synchronisation Integral Coefficients. Registers 63 - 64 (R/W) ..................................... 66  
QPSK Output Scale Factor. Register 65 (R/W) .......................................................................... 66  
Timing Lock Detect Threshold out of lock. Register 66 (R/W) .................................................... 66  
Timing Lock Detect Threshold in lock. Register 67 (R/W) .......................................................... 66  
Frequency Lock Detect Threshold. Register 68 ......................................................................... 66  
Phase Lock Detect Threshold out of lock. Registers 69 - 72 (R/W) ........................................... 67  
Phase Lock Detect Threshold in lock. Registers 73 - 76 (R/W) ................................................. 67  
Phase Lock Detect Accumulator Time. Register 77 (R/W) ......................................................... 67  
Sweep PAR. Register 78 (R/W) ................................................................................................. 68  
Start up Time. Register 79 (R/W) ............................................................................................... 68  
Loss Lock Threshold. Register 80 (R/W) .................................................................................... 68  
FEC Lock Time. Register 81 (R/W) ............................................................................................ 68  
Loss Lock Time. Register 82 (R/W) ............................................................................................ 69  
Viterbi Error Period. Registers 83 - 85 (R/W) ............................................................................. 69  
Viterbi Set up. Register 86 (R/W) ............................................................................................... 69  
Viterbi Reference Byte 0. Register 87 (R/W) .............................................................................. 70  
Viterbi Reference Byte 1. Register 88 (R/W) .............................................................................. 70  
Viterbi Reference Byte 2. Register 89 (R/W) .............................................................................. 70  
Viterbi Reference Byte 3. Register 90 (R/W) .............................................................................. 70  
Viterbi Reference Byte 4. Register 91 (R/W) .............................................................................. 70  
Viterbi Reference Byte 5. Register 92 (R/W) .............................................................................. 70  
Viterbi Reference Byte 6. Register 93 (R/W) .............................................................................. 70  
Viterbi Maximum Error. Register 94 (R/W) ................................................................................. 70  
Byte Align Set up. Register 95 (R/W) ......................................................................................... 71  
Program Synchronising Byte. Register 98 (R/W) ....................................................................... 71  
AFC Frequency Search Threshold. Register 99 (R/W) .............................................................. 71  
Accumulator Differential Threshold. Register 100 (R/W) ............................................................ 71  
QPSK Lock Control. Register 101 (R/W) ................................................................................... 71  
QPSK State Control. Register 102 (R/W) .................................................................................. 72  
QPSK Reset. Register 104 (R/W) .............................................................................................. 72  
QPSK Test Control. Register 105 (R/W) .................................................................................... 72  
QPSK Test State. Register 106 (R/W) ....................................................................................... 73  
Test Mode. Register 125 (R/W) .................................................................................................. 73  
Read only Secondary Register Map .................................................................................................. 73  
Secondary Registers for Test and De-Bugging Read Register .......................................................... 73  
Test Read. Register 107 (R) ....................................................................................................... 73  
10.2.7  
10.2.8  
10.2.9  
10.2.10  
10.2.11  
10.2.12  
10.2.13  
10.2.14  
10.2.15  
10.2.16  
10.2.17  
10.2.18  
10.2.19  
10.2.20  
10.2.21  
10.2.22  
10.2.23  
10.2.24  
10.2.25  
10.2.26  
10.2.27  
10.2.28  
10.2.29  
10.2.30  
10.2.31  
10.2.32  
10.2.33  
10.2.34  
10.2.35  
10.2.36  
10.2.37  
10.2.38  
10.2.39  
10.2.40  
10.2.41  
10.2.42  
10.2.43  
10.2.44  
10.2.45  
10.2.46  
10.2.47  
10.2.48  
10.2.49  
10.2.50  
10.2.51  
10.2.52  
10.3  
10.4  
10.4.1  
6
Contents MT312  
11  
Microprocessor Control ........................................................................................74  
Primary 2-wire bus interface ............................................................................................................... 74  
RADD: 2-Wire Register Address (W) ................................................................................................. 74  
Primary 2-Wire Bus Interface ............................................................................................................. 74  
Secondary 2-Wire Bus for Tuner Control ........................................................................................... 75  
Examples of 2-Wire Bus Messages ................................................................................................... 76  
Primary 2-Wire Bus Timing ................................................................................................................ 77  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
12  
Electrical Characteristics ......................................................................................78  
Recommended Operating Conditions ................................................................................................ 78  
Absolute Maximum Ratings ............................................................................................................... 78  
Crystal Specification ........................................................................................................................... 79  
DC Electrical Characteristics .............................................................................................................. 79  
MT312 Pinout Description .................................................................................................................. 80  
Alphabetical Listing of Pin-Out ........................................................................................................... 82  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
13  
Application Diagram ..............................................................................................83  
14  
14.1  
14.2  
MT312 Register Map ..............................................................................................84  
Read / Write Register Map ................................................................................................................. 84  
Read Only Register Map .................................................................................................................... 85  
7
MT312 Contents  
List of figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
System Block Diagram - SNIM5 ............................................................................................. 1  
System Block Diagram - SNIM5 ............................................................................................. 2  
MT312 Functional Block Diagram ........................................................................................... 3  
Viterbi block diagram ............................................................................................................11  
Viterbi error count measurement ...........................................................................................12  
Viterbi error count coarse indication ......................................................................................12  
DVB Conceptual diagram o f the conoluntional de-interleaver block .......................................13  
DSS Conceptual diagram of the convolutional de-interleaver block ........................................13  
DVB block structure ..............................................................................................................14  
Figure 10 DSS block structure ..............................................................................................................14  
Figure 11 DVB Energy dispersal conceptual diagram ............................................................................15  
Figure 12 MT312 Control Structure .......................................................................................................16  
Figure 13 Alternative System Block Diagram - SNIM6 ...........................................................................17  
Figure 14 Initialisation sequence in DVB mode .....................................................................................20  
Figure 15 Simple channel change sequence .........................................................................................24  
Figure 16 Channel change sequence with new Symbol rate, DVB mode ................................................24  
Figure 17 Channel change sequence with search mode, DVB mode .....................................................25  
Figure 18 Results of Symbol rate and code ...........................................................................................25  
Figure 19 A DiSEqCdata byte interrupting a continuous 22kHz tone .................................................29  
Figure 20 One DiSEqCdata byte - 0x11 (hex) plus parity bit .............................................................29  
Figure 21 DVB Transport Packet Header bytes ......................................................................................55  
Figure 22 MT312 output data wave form diagram ..................................................................................56  
Figure 23 MT312 output data wave form diagram 2 ...............................................................................57  
Figure 24 MT312 output data wave form diagram 2 ...............................................................................58  
Figure 25 One DiSEqCdata byte - 0x11 (hex) plus parity bit .............................................................77  
Figure 26 Crystal oscillator circuit .........................................................................................................79  
Figure 27 Application Schematic ...........................................................................................................83  
8
Contents MT312  
List of tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
MT312 pin-out ....................................................................................................................... 2  
MT312 register map overview ...............................................................................................18  
Viterbi code rate indication ....................................................................................................49  
Sigma Delta clock decimation ratio programming ..................................................................52  
MPEG clock modes 54  
MOCLK input minimum and maximum frequencies ................................................................54  
Viterbi code rate search start ................................................................................................69  
Primary 2-wire bus timing .....................................................................................................77  
Recommended operating conditions .....................................................................................78  
Table 10 Maximum operating conditions ..............................................................................................78  
Table 11 DC electrical characteristics ..................................................................................................79  
Table 12 Alphabetical listing of pin-out ................................................................................................82  
9
MT312 Functional Overview  
PLEASE NOTE: This manual has the following  
convention:  
0.5dB from theory. For a given Symbol rate, control  
algorithms on the chip detect the number of  
decimation stages needed and switch them in  
automatically.  
All numerical values are shown as decimal  
numbers, unless otherwise defined.  
The frequency offset compensation circuitry is  
capable of tracking out up to ±15MHz frequency  
offset. This allows the system to cope with relatively  
large frequency uncertainties introduced by the Low  
Noise Block (LNB). Full control of the LNB is  
provided by the DiSEqCoutputs from the MT312.  
Horizontal / Vertical polarisation and an instruction  
modulated 22kHz signal are available under register  
control. All DiSEqCv2.2 functions are  
implemented on the MT312 (ref. 2).  
1. Functional Overview  
1.1 Introduction  
MT312 is a single-chip variable rate digital QPSK/  
BPSK satellite demodulator and channel decoder.  
The MT312 accepts base-band in-phase and  
quadrature analogue signals and delivers an MPEG  
or DSS packet data stream. Digital ltering in MT312  
removes the need for programmable external anti-  
alias ltering for all symbol rates from 1 to 45Mbaud.  
Frequency, timing and carrier phase recovery are all  
digital and the only feed-back to the analogue front-  
end is for automatic gain control. The digital phase  
recovery loop enables very ne bandwidth control  
that is needed to overcome performance degradation  
due to phase and thermal noise.  
An internal state machine that handles all the  
demodulator functions controls the signal tracking  
and acquisition. Various pre-set modes are available  
as well as blind acquisition where the receiver has no  
prior knowledge of the received signal. Fast  
acquisition algorithms have been provided for low  
Symbol rate applications. Full interactive control of  
the acquisition function is possible for debug  
purposes.  
All acquisition algorithms are built into the MT312  
controller. The MT312 can be operated in a  
Command Driven Control (CDC) mode by specifying  
the Symbol rate and Viterbi code rate. There is also a  
provision for a search for unknown Symbol rates and  
Viterbi code rates.  
In the event of a signal fade or a cycle slip, QPSK  
demodulator allows sufcient time for the FEC to re-  
acquire lock, for example, via a phase rotation in the  
Viterbi decoder. This is to minimise the loss of signal  
due to the signal fade. Only if the FEC fails to re-  
acquire lock for  
a
long period (which is  
programmable) would QPSK try to re-acquire the  
signal.  
1.2 Analogue-to-Digital Converter  
The MT312 contains dual 6-bit A/D converters which  
each sample a 500mVpp single-ended analogue  
input at up to 90MHz. The xed rate sampling clock  
is provided on-chip using a programmable PLL  
needing only a low cost 10 to 15MHz crystal.  
Different crystal frequencies can be combined with  
different PLL ratios, depending on the maximum  
symbol rate, allowing a exible approach to clock  
generation.  
The matched lter is a root-raised-cosine lter with  
either 0.20 or 0.35 roll-off, compliant with DSS and  
DVB standards. Although not a part of the DVB  
standard, MT312 allows a roll-off of 0.20 to be used  
with other DVB parameters.  
An AGC signal is provided to control the signal levels  
in the tuner section of the receiver and ensure the  
signal level fed to the MT312 is set at an optimal  
value under all reception conditions.  
1.3 QPSK Demodulator  
The MT312 provides comprehensive information on  
the input signal and the state of the various parts of  
the device. This information includes Signal to Noise  
Ratio (SNR), signal level, AGC lock, timing and  
carrier lock signals. A maskable interrupt output is  
available to inform the host controller when events  
occur.  
The demodulator in the MT312 consists of signal  
amplitude offset compensation, frequency offset  
compensation, decimation ltering, carrier recovery,  
symbol recovery and matched ltering.  
The decimation lters give continuous operation from  
2Mbits/s to 90Mbits/s allowing one receiver to cover  
the needs of the consumer market as well as the  
single carrier per channel (SCPC) market with the  
same  
components  
without  
compromising  
performance, that is, the channel reception is within  
10  
Functional Overview MT312  
1.4 Forward Error Correction  
indication of the bit error rate at the output of the  
Viterbi decoder.  
The MT312 contains FEC blocks to enable error  
correction for DVB-S and DSS transmissions. The  
Viterbi decoder block can decode the convolutional  
code with rates 1/2, 2/3, 3/4, 5/6, 6/7 or 7/8. The  
block features automatic synchronisation, automatic  
IQ phase resolution and automatic code rate  
detection. The trace back depth of 128 provides  
better performance at high code rates and the built-in  
synchronisation algorithm allows the Viterbi decoder  
to lock onto signals with very poor signal-to-noise  
ratios. Viterbi bit error rate monitor provides an  
indication of the error rate at QPSK output.  
In DVB mode, spectrum de-scrambling is performed  
compatible with the DVB specication. The nal  
output is a parallel or serial transport data stream;  
packet sync; data clock; and a block error signal. The  
data clock may be inverted under software control.  
1.4.1.1 Viterbi Error Count Measurement  
A method of estimating the bit error rate at the output  
of the QPSK block has been provided in the Viterbi  
decoder. The incoming data bit stream is delayed  
and compared with the re-encoded and punctured  
version of the decoded bit stream to obtain a count of  
errors see Figure 4 - Viterbi block diagram.  
The 24-bit error count register in the Viterbi decoder  
allows the bit error rate at the output of the QPSK  
demodulator to be monitored. The 24-bit bit error  
count register in the Reed-Solomon decoder allows  
the Viterbi output bit error rate to be monitored. The  
The measurement system has a programmable  
register to determine the number of data bits (the  
error count period) over which the count is being  
recorded. A read register indicates the error count  
result and an interrupt can be generated to inform  
the host microprocessor that a new count is  
available.  
16-bit  
uncorrectable  
packet  
counter  
yields  
information about the output packet error rate. These  
three monitors and the QPSK SNR register allows  
the performance of the device and its individual  
components, such as the QPSK demodulator and  
the Viterbi decoder, to be monitored extensively by  
the external microprocessor.  
The VIT ERRPER H-M-L group of three registers is  
programmed with required number of data bits (the  
error count period) (VIT ERRPER[23:0]). The actual  
value is four times VIT ERRPER[23:0]. The count of  
errors found during this period is loaded by the  
MT312 into the VIT ERRCNT H-M-L trio of registers  
when the bit count VIT ERRPER[23:0] is reached. At  
the same time an interrupt is generated on the IRQ  
line. Setting the IE FEC[2] bit in the IE FEC register  
enables the interrupt, see page 32. Reading the  
register does not clear VIT ERRCNT [23:0], it is only  
loaded with the error count.  
The frame/byte align block features a sophisticated  
synchronisation algorithm to ensure reliable recovery  
of DVB and DSS framed data streams under worst  
case signal conditions. The de-interleaver uses on-  
chip RAM and is compatible with the DVB and DSS  
algorithms.  
The Reed-Solomon decoder is a truncated version of  
the (255, 239) code. The code block size is 204 for  
DVB and 146 for DSS. The decoder provides a count  
of the number of uncorrectable blocks as well as the  
number of bit errors corrected. The latter gives an  
DATA BIT STREAM  
VITERBI  
DECODER  
VITERBI  
ENCODER  
DELAY  
COMP  
ERROR COUNT  
Figure 4 - Viterbi block diagram  
11  
MT312 Functional Overview  
ERROR  
COUNT  
VIT_ERRCNT[23:0]  
0
0
VIT_ERRPER[23:0] DATA BITS  
IRQ  
Figure 5 - Viterbi error count measurement  
Figure 5 shows the bit errors rising until the  
maximum value programmed into the VIT  
MAXERR[7:0] register and the dish alignment on the  
satellite. This VIT MAXERR mode is enabled by  
setting the FEC STAT EN register bit B0. Figure 5  
above shows the bit errors rising to the maximum  
value programmed and triggering a change of state  
on the STATUS line.  
maximum programmed value of VIT ERRPER[23:0]  
is reached, when an interrupt is generated on the  
IRQ line to advise the host microprocessor that a  
new value of bit error count has been loaded into the  
VIT ERRCNT [23:0] register. The IRQ line will go  
high when the IE FEC register is read by the host  
microprocessor. The error count may be expressed  
as a ratio:  
1.4.2 The Frame Alignment Block  
VIT_ERRCNT[23:0]  
---------------------------------------------------------  
VIT_ERRPER[23:0]*4  
The frame alignment algorithm detects a sequence  
of correctly spaced synchronising bytes in the Viterbi  
decoded bit-stream and arranges the input into  
blocks of data bytes. Each block consists of 204  
bytes for DVB and 147 bytes for DSS. In the DSS  
mode, the synchronising byte is removed from the  
data stream, so only 146 bytes of a block are passed  
to the next stage. The frame alignment block also  
removes the 180° phase ambiguity not removed by  
Viterbi decoder.  
1.4.1.2 Viterbi Error Count Coarse Indication  
To assist in the process of aligning the receiver dish  
aerial, a coarse indication of the number of bit errors  
being received can be provided by monitoring the  
STATUS line with the following set up conditions.  
The frequency of the output waveform will be a  
function of the bit error count (triggering the  
VITERBI  
COURSE  
BIT  
VIT_MAXERR[7:0]  
ERROR  
COUNT  
0
0
DATA BITS  
STATUS  
Figure 6 - Viterbi error count coarse indication  
12  
Functional Overview MT312  
1.4.3 The De-interleaver Block  
1.4.3.1 DVB  
synchronisation byte in branch 0, etc. In the MT312,  
this de-interleaving function is realised using on-chip  
Random Access Memory (RAM).  
1.4.3.2 DSS  
Before transmission, the data bytes are interleaved  
with each other in a cyclic pattern of twelve. This  
ensures the bytes are spaced out to avoid the  
possibility of a noise spike corrupting a group of  
consecutive message bytes. The diagram below  
shows conceptually how the convolutional de-  
interleaving system works. The synchronisation byte  
is always loaded into the First-In-First-Out (FIFO)  
memory in branch 0. The switch is operated at  
regular byte intervals to insert successively received  
bytes into successive branches. After 12 bytes have  
been received, byte 13 is written next to the  
Before transmission, the data bytes are interleaved  
with each other in a cyclic pattern of thirteen. This  
ensures the bytes are spaced out to avoid the  
possibility of a noise spike corrupting a group of  
consecutive message bytes. The diagram below  
shows conceptually how the convolutional de-  
interleaving system works. On the MT312, this  
function is realised in the same Random Access  
Memory (RAM) as used for DVB, but utilising  
different addressing algorithm.  
Sync word route  
17x11 bytes  
0
0
1
2
3
one  
byte per  
position  
1
2
3
17x10 bytes  
17x9 bytes  
17x8 bytes  
17x7 bytes  
17x6 bytes  
17x5 bytes  
17x4 bytes  
17x3 bytes  
17x2 bytes  
17x1  
4
5
6
4
5
6
7
7
8
8
9
9
10  
11  
10  
11  
Figure 7 - DVB Conceptual diagram o f the conoluntional de-interleaver block  
Output  
145  
0
1
2
Input  
12D  
12D  
12D  
Figure 8 - DSS Conceptual diagram of the convolutional de-interleaver block  
13  
MT312 Functional Overview  
1.4.4 The Reed Solomon Decoder Block  
randomised using the conguration shown in Figure  
11 below. This is a Pseudo Random Binary  
Sequence (PRBS) generator, with the polynomial:  
DVB and DSS data are encoded using shortened  
versions of the Reed-Solomon code of block length  
255, containing 239 message bytes and 16 check  
bytes, that is (255,239) with T = 8. Both encoders  
use the same generator polynomial. The code block  
size for DVB is 204 and that for DSS is 146. Hence  
DVB code is (204, 188) and DSS code is (146, 130),  
with both having T = 8. The block structure of the  
DVB and DSS Reed-Solomon codes are as shown in  
Figure 9 and Figure 10 below.  
14  
15  
1 + X + X  
The PRBS registers are loaded with the initialisation  
sequence as shown, at the start of the rst transport  
packet in a group of eight packets. This point is  
indicated by the inverted sync byte B8hex. The  
normal DVB sync byte is 47hex. The data starting  
with the rst byte after the sync byte is randomised  
by exclusive-ORing data bits with the PRBS. (The  
sync bytes themselves are not randomised).  
The Reed-Solomon decoder can correct up to eight  
byte errors per packet. If there are more than 8 bytes  
containing errors, the packet is agged as  
uncorrectable using the pin BKERR. In the case of  
DVB the transport error indicator (TEI) bit of the  
MPEG packet is set to 1, if setting of TEI is enabled.  
In the decoder, the process of de-randomising or de-  
scrambling the data is exactly the same as described  
above. The de-scrambler also inverts the sync byte  
B8hex so that all MPEG output packets have the  
same synch byte 47hex.  
1.4.5 The Energy Dispersal (De-Scrambler)  
Block, DVB only  
Before Reed Solomon encoding in the DVB  
transmission system, the MPEG2 data stream is  
Sync byte  
Sync byte  
187 bytes  
Reed Solomon encoded block  
16 check bytes  
187 bytes  
MPEG transport packet  
Figure 9 - DVB block structure  
130 bytes  
16 check bytes  
Reed Solomon encoded block  
130 bytes  
DSS transport packet  
Figure 10 - DSS block structure  
14  
Functional Overview MT312  
Initialisation sequence  
1 0 0 1 0 1 0 1 0 0 0 0 0 0 0  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
XOR  
Figure 11 - DVB Energy dispersal conceptual diagram  
1.4.6 Output Stage  
the on-chip controller and take direct control of the  
QPSK demodulator.  
Transport stream can be output in a byte-parallel or  
bit-serial mode. The output interface consists of an  
8-bit output, output clock, a packet validation level, a  
packet start pulse and a block error indicator.  
Once the MT312 has locked up, any frequency offset  
can be read from the LNB FREQ error registers 7  
and 8. The frequency synthesiser under the software  
control can be re-tuned in frequency to optimise the  
received signal within the SAW bandwidth. Note that  
MT312 compensates for any frequency offsets  
before QPSK demodulation. Hence a frequency  
offset will not necessarily lead to a performance loss.  
Performance loss will occur only if a signicant part  
of the signal is cut off by the SAW or base-band lter,  
due to this frequency offset. This will happen only if  
the symbol rate is close to maximum supported by  
that lter. In such an event it is recommended that  
front-end be re-tuned to neutralise this error before  
the SAW lter. It is then necessary for the MT312 to  
re-acquire the signal.  
The output clock rate depends on the Symbol rate,  
QPSK/BPSK choice, convolutional (Viterbi) coding  
rate, DVB/DSS choice and byte-parallel or bit-serial  
output mode. This rate is computed by MT312 to be  
very close to the minimum required to output packet  
data without packet overlap. Furthermore, the  
packets at the output of MT312 are as evenly spaced  
as possible to minimise packet position movement in  
the transport layer. The maximum movement in the  
packet synchronisation byte position is limited to ±  
one output clock period.  
An external MPEG clock can be input to synchronise  
the MPEG data output to MPEG decoders.  
The MT312 can generate control signals to enable  
full control of the dish and LNB. The chip implements  
the signals needed for the full DiSEqCv2.2  
specication. This includes high/low band selection,  
polarisation and dish position.  
1.5 Control  
Automatic Symbol Rate Search, Code Rate Search,  
Signal Acquisition and Signal Tracking algorithms are  
built into the MT312 using a sophisticated on-chip  
controller. The software interaction with the device is  
via a simple Command Driven Control (CDC)  
interface. This CDC maps high level inputs such as  
symbol rates in MBaud and frequencies in MHz, to  
low level on-chip register settings. The on-chip  
control state machine and the CDC signicantly  
reduces the software overhead as well as the  
channel search times. There is also an option for the  
host processor to by-pass both the CDC as well as  
In this mode, the Symbol rate in MBaud and Viterbi  
code rate are the only values needed to start the  
MT312 searching for the signal. The CDC module  
maps the high level parameters into the various low  
level register settings needed to acquire and track  
the signal. The low level registers may be read and  
directly modied to suit very specic requirements.  
However, this is not recommended.  
15  
MT312 Functional Overview  
High level input/output  
(MBaud, MHz)  
MT312  
format  
registers  
Command  
Driven  
Control  
Acquisition/  
Track  
State machine  
QPSK  
Low level register read/write  
Figure 12 - MT312 Control Structure  
1.5.2 Symbol Rate and Code Rate Search Mode  
base-band, the pass-band of the low pass lter  
should extend up to 30 MHz. However, it is  
preferable to make this bandwidth larger by about 5  
MHz, partly to reduce the in-band phase distortion  
introduced by the lter and partly to reduce the loss  
of signal due to LNB offset. The lter must attenuate  
signals beyond 60 MHz by about 30 dB, as these  
signal will alias to the useful frequency range with 90  
MHz sampling.  
Where the Symbol rate and/or the Viterbi code rate  
are unknown, the MT312 can be programmed to  
search for QPSK/BPSK signals. The user should  
dene the range(s) over which the search is  
required. The MT312 will then locate and track any  
signal detected. Failure to nd a QPSK signal in the  
specied frequency and specied symbol rate  
ranges will be indicated by interrupts (see 6.2 QPSK  
Demodulator Read Registers). MT312 will carry on  
searching these ranges after issuing these  
interrupts. When the MT312 has locked onto a  
signal, the Symbol rate in MBaud may be read from  
the MONITOR registers. The Viterbi code rate may  
be read from the FEC STATUS register. This search  
facility is primarily for the initial installation of a set  
top box.  
Although the system is designed for 45 MBaud, if the  
actual symbol rate is much lower, say 1 MBaud, then  
MT312 will automatically introduce all the digital  
ltering needed to isolate the 1 MBaud signal.  
Figure 13 - Alternative System Block Diagram -  
SNIM6 shows an alternative application when a  
reduced Symbol rate is acceptable. The SL1935  
combines the functions of the RF pre-amp, direct  
conversion zero IF tuner and synthesiser.  
1.6 Direct Conversion Application  
Figure 1 shows a direct conversion system that  
mixes the L-band input to the tuner directly down to I  
and Q baseband channels at zero intermediate  
frequency.  
The RF AGC amp and tracking lter provide the  
required tuner noise gure and limit the total power  
reaching the SL1925. These elements also give  
isolation between the SL1925 local oscillator and the  
L-band tuner input. This is an important factor since  
both signals are at the same frequency.  
The baseband lter is an anti-alias lter. This  
replaces the ltering normally carried out with a SAW  
lter in conventional single conversion tuners.  
It is important to note that all the channel ltering  
needed to isolate low Baud rate signals is contained  
within the MT312. The low pass lter before MT312  
is designed not to lter channels, but to minimise any  
aliasing due to sampling. To illustrate this, let the  
sampling frequency be 90 MHz and the maximum  
symbol rate be 45 MBaud. The bandwidth of the 45  
MBaud QPSK signal, with 0.35 roll-off, is about 60  
MHz. If the channel has been mapped precisely to  
16  
Functional Overview MT312  
AGC control  
I
I I/P  
RF I/P  
Direct  
Conversion  
ZIF Tuner  
SL1935  
Low pass  
Filter  
Q
Q I/P  
Transport  
stream O/P  
Channel  
Decoder  
MT312  
Tank  
2-wire bus  
control  
2-wire bus control  
Figure 13 - Alternative System Block Diagram - SNIM6  
1.7 DiSEqC™ Transmit and Receive Messages  
transmitted. If a return message is expected, the  
DISEQC MODE[2:0] must be set to zero in order to  
leave the LNB control signal free for another  
DiSEqCtransmitter to respond.  
The MT312 has the capability to send and receive  
DiSEqCmessages. Eight registers are provided to  
store a message for transmission and a further eight  
registers are provided to store a received message.  
The received bytes have a parity bit and a parity  
error bit in addition to the eight data bits. These  
additional bits are read out in following the data bits,  
so two byte reads are required for each data byte.  
The sequence of events to receive a message are as  
follows:  
1. Enable DiSEqC2 GPP2 pin 46 as an input by  
setting GPP CTRL register 20 B5 to zero.  
2. Enable interrupts if the IRQ pin is being used to  
interrupt the host processor in DISEQC2 CTRL1  
register 121.  
1.7.1 DiSEqC™ Transmitting Messages  
3. Monitor DISEQC2 INT register.  
The sequence of events to send a message are as  
follows:  
4. If B3 = 1 and B1 = 0, there has been no message  
received.  
5. If a message has been received, B0 will be set, If  
B1 is also set the message is complete.  
DISEQC2 INT register B7-4 indicate how many  
bytes have been received.  
1. Load the required message bytes into the  
DiSEqCInstruction register 36, see page 34.  
Sequential writes to the same register is achieved  
by setting the Inhibit Auto Incrementing (IAI) bit 7  
in RADD, the register address byte.  
6. Read the received message from  
DISEQC2 FIFO register 120 by setting the Inhibit  
Auto Incrementing (IAI) bit 7 in RADD, the register  
address byte and sequentially reading  
DISEQC2 FIFO for the indicated number of  
bytes. Each data byte read requires two 2-wire  
bus reads. The second or the pair of bytes  
contains the parity bit and a parity bit error  
indicator.  
2. Load the number of bytes (less one) in the  
DiSEqCinstruction in the register  
DISEQC MODE[5:3], see page 32.  
3. Set DISEQC MODE[2:0] = 4 to command the  
MT312 to encode the data and transmit the  
message.  
4. Reset DISEQC MODE[2:0] to either 0 or 1  
depending on previous setting of 22kHz off or on.  
The user may choose to wait for the end of message  
indication, before reading the message, if it is known  
that the message is not greater than eight bytes.  
However, if the length of message is not known, the  
message should be read out of the FIFO by the host  
as it is being received. Care must be taken to avoid a  
FIFO buffer overow. DISEQC2 INT register B7-4 will  
indicate how many bytes remain in the FIFO.  
The data loaded into DISEQC INSTR register is  
retained, so that if the same message is to be  
repeated, the data loading stage 1 above can be  
omitted.  
1.7.2 DiSEqC™ Receiving Messages  
The MT312 will automatically listen for DiSEqC™  
messages 5ms after  
a
message has been  
17  
MT312 Software Control  
highest register address, because it is only written  
once during the initialisation sequence.  
2 MT312 Software Control  
This section describes the sequences of register  
operations needed to acquire DVB and DSS  
channels with known or unknown parameters.  
The CONFIG register can only be reset by the  
hardware reset. The MT312 is held in a power saving  
mode following the hardware reset.  
Communication with the MT312 is via a standard 2-  
wire bus and the rst byte following the chip address,  
in write mode, is the register address (RADD).  
After a hardware reset, the MT312 must be taken out  
of the power save mode by writing a one to the MSB  
of the CONFIG register (see 1.1 Introduction). When  
MT312 is not being used it can be put back into the  
power save mode by writing a zero to the MSB of  
CONFIG.  
The register map is organised to group important  
Read registers at the lowest addresses, then the  
main control Write registers in the next block of  
addresses.  
The rst register to be written must be the  
Conguration register, which has been placed at the  
2.1 MT312 Register Map Overview  
Address  
Description  
Section  
Type  
00 - 06  
07 - 19, 108 - 117, 123, 124  
20 - 39, 41, 96, 103  
40, 42 - 49, 50 - 106, 125  
107, 118 - 122  
126  
Interrupt and Status  
Primary signal monitors  
Primary control parameters  
Secondary parameters  
Secondary monitors  
Chip identication  
5.1to 5.4-  
5.5 to 5.17  
4 to 4.20  
read  
read  
write / read  
write / read  
read  
11.1.1 to 11.1.52  
11.2.1 to 4.22  
5.18  
read  
127  
Chip conguration  
4.22  
write / read  
Table 2 - MT312 register map overview  
All write / read registers take on default values on full software reset, except for the conguration register (127),  
that is only reset to the default value by a hardware reset.  
18  
Initialisation MT312  
e.g. For a crystal frequency of 10MHz, a system  
clock frequency of 60MHz, the PLL ratio will be 6,  
requiring the PLL FACTOR[1:0] = 2.  
3 MT312 Initialisation  
3.1 The Configuration Register (127)  
For QPSK reception and ADC internal, the MT312 is  
enabled by writing 88 hex to register 127.  
CONFIG[B7-0]: This register is for setting up the  
MT312. It must be loaded rst before any other  
register. It can only be reset to the default value by  
the RESET pin being pulled low. After loading this  
register, wait 150µs for the Clock PLL to settle before  
writing to the RESET register. During this wait  
period, the tuner may be programmed via the  
General Purpose Port. Note that the GPP register  
occupies the address space before the RESET  
register.  
MT312 computes the System clock frequency using  
bits B3-B1 above. This frequency is used internally  
for computing parameters needed for acquiring the  
QPSK signal.  
It is possible to use a crystal frequency other than 10  
or 15 MHz. As an example, let the crystal frequency  
be 10.25MHz and the PLL multiplication factor be 6.  
Then B3 is set to 1 and B2 to 0. Bit B1 may be given  
an arbitrary value (0 or 1). The external software  
must compute the system clock frequency and load  
this value (multiplied by 2) to the SYS CLK register  
(Address 34). In the above example, the system  
clock frequency is 61.5 MHz and hence the value  
123 has to be loaded into SYS CLK register.  
CONFIG[B7]: 312 ENHigh = MT312 enable.  
Low = MT312 disable to save power.  
CONFIG[B6-5]: DSS BDSS A  
0
0
1
1
0: DVB mode  
1: DSS mode 1 - code rate 2/3  
0: DSS mode 2 - code rate 6/7  
1: DSS Code Rate search  
The QPSK demodulator checks the SYS CLK  
register and if this is non-zero, it uses the contents of  
this as the system clock frequency, for internal  
calculations mentioned above. If this register is zero  
(which is the default setting), QPSK demodulator  
works out the system clock frequency from bits B3-  
B1 of the CONFIG register assuming that the crystal  
frequency is either 10 or 15 MHz, as dened by bit  
B1.  
If both DSS A and DSS B are set high, the MT312  
will search for the code rate in DSS mode. If either of  
the DSS A or DSS B are set high, the Symbol rate is  
automatically set to 20Mbaud and SYM RATE  
registers (23 & 24) are ignored. The matched lter  
root-raised-cosine roll-off is set to 0.20 and bit B0 of  
QPSK CTRL (26) is ignored. Also, any code rate  
programmed into VIT MODE register (25) and VIT  
SETUP register (86) will be ignored.  
3.2 Power Supplies  
To avoid the possibility of destructive latch-up, the  
CVDD supply must never, at any time during power-  
up, exceed 0·5V above the VDD supply and must  
also remain within the absolute maximum ratings,  
see section 12.2 on page 78.  
Also in DSS mode TS SW RATE register (50) must  
be set to 20, see 10.2.10 Timing Synchronisation  
Sweep Rate. Register 50 (R/W).  
VDD  
CONFIG[B4]: BPSK High = BPSK  
Low = QPSK  
CVDD  
RESET  
CONFIG[B3-2]: PLL FACTOR[1:0]:  
B3-2 Multiplication factor  
00:  
01:  
10:  
11:  
3
4
6
9
Don’t care  
~1ms typ.  
Don’t care  
ADDR[7:1]  
SLEEP  
Osc  
CONFIG[B1]: CRYS15 High = 15MHz crystal.  
Low = 10MHz crystal.  
Figure 14 - MT351 power-up sequence  
CONFIG[B0]: ADCEXT High = ADC external.  
Low = ADC internal.  
In general therefore, the VDD supply should be  
established ahead of, or simultaneously with the  
C
supply.  
VDD  
19  
MT312 Initialisation  
3.3 Initialisation Sequence  
Finally, the MT312 is given a GO command, register  
(27) GO =1, to release the state machine and to start  
the signal acquisition sequence. This is summarised  
as an example in the following ow diagram.  
MT312 will be in the power save mode after a  
hardware reset. The rst command to be written  
must be to the CONFIGURATION register at address  
127. After loading this register, wait 150µs before  
writing to the RESET register. During this wait, the  
tuner can programmed to the required channel  
frequency via the General Purpose Port (register  
20). If the AGC slope control bit of AGC CTRL(39) or  
the AGC REF(41) are to be changed, it is best to  
write to these registers after writing to the RESET  
register. This will allow the front-end AGC loop to  
settle while the other registers are being written.  
Enable MT312 : Program CONFIG  
Reg 127 = 140 (8Chex)  
Program tuner via GPP in 'pass through mode'  
Next write 128 to the RESET register (21) to reset  
the MT312 state machine and all parameter registers  
to the default settings. It is then necessary to change  
the default setting of register 49 to 50 (decimal).  
open port with Reg 20 = 64 (40hex)  
send TUNER DATA via I2C bus (5 bytes).  
close port with Reg 20 = 0  
Reset MT312 to default register settings  
Reg21 = 128 (80hex)  
Set SYS_CLK = 2*Xtal*PLL_RATIO  
Set DISEQQC_RATIO (if required)  
Set AGC_SL (if required)  
If necessary, other default parameters may need to  
be changed. These may include:  
Slope of AGC control signal - see register (39)  
ACG CTRL[B0] AGC SL bit  
Initialise register: reg 49 = 50 (32hex);  
AGC Reference value - see register (41) AGC  
REF  
DiSEqC mode  
Relative phase of IQ spectrum - see register  
(25) VIT MODE[B6]  
eg Horizontal with 22kHz on:  
Reg 22 = 65 (41hex)  
LNB frequency search range, default is ±6MHz  
- see register (37) FR LIM  
For low Baud rates only, set fast frequency  
acquisition mode - see register (26) set QPSK  
CTRL[B2] = 1  
Signal input - Symbol rate  
eg 27.5 MBaud:  
Reg 23 = 27 (1Bhex) DEFAULT state  
Reg 24 = 128 (80hex) DEFAULT state  
To invert MOCLK or BKERR output signals - see  
register (96) OP CTRL  
After this, the LNB controls are dened, in register  
(22) DISEQC MODE.  
Viterbi code rate  
eg V_IQ swap not set, CR = 3/4:  
Reg 25 = 4 (4hex)  
The signal parameters should then be written to the  
MT312. The symbol rate (registers 23 & 25 SYM  
RATE) may be specied within ±2% of the required  
value, absolute precision is not required to achieve  
successful lock and tracking. If the symbol rate is  
unknown, a search mode is available.  
QPSK control  
eg DVB : roll-off = 0.35:  
Reg 26 = 0 DEFAULT state  
Selecting the correct bit of register (25) VIT MODE, if  
known, programs the convolutional code rate. If the  
code rate is unknown, some or all of the bits of VIT  
MODE may be set to force the MT312 to search for  
the code rate.  
GO  
Release reset state to start signal capture  
Reg 27 = 1  
Figure 15 - Initialisation sequence in DVB mode  
20  
Initialisation MT312  
3.4 Spectral Inversion  
If no spectral inversion is caused by the receiver  
front-end design, then bit B6 of QPSK CTRL must  
always be held at zero. If the transmitted signal is  
known to be spectrally inverted, then V IQ SP bit B6  
of the VIT MODE register (25) must be set to 1. Then  
I and Q are swapped after QPSK demodulation. If  
the spectral inversion status of the transmitted signal  
is not known, then after QPSK has locked (i.e. QPSK  
CT LOCK = 1), the software must try to achieve FEC  
lock with the bit B6 of VIT MODE register rst at zero  
and then at one.  
Spectral inversion of the QPSK signal can be caused  
by the transmitter or the receiver front-end. In the  
latter case, this could happen due to the way I-Q  
conversion is carried out or because the I and Q  
wires are swapped between the I-Q converter and  
the MT312. If spectral inversion is caused by the  
receiver front-end, then this must be removed by  
swapping I and Q (within MT312) before QPSK  
demodulation, by setting Q IQ SP bit B6 of QPSK  
CTRL register (26) to 1.  
3.5 MT312 Initialisation Read/Write Registers  
3.5.1 Reset. Register 21 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESET  
21  
FR  
312  
PR  
312  
FR  
QP  
PR  
QP  
FR  
VIT  
PR  
VIT  
PR  
BA  
PR  
DS  
R/W  
00  
B7:  
B6:  
B5:  
B4:  
B3:  
B2:  
B1:  
B0:  
FR 312  
High = Full reset of MT312 device.  
High = Partial reset of MT312 device.  
High = Full reset of QPSK block.  
High = Partial reset of QPSK block.  
High = Full reset of Viterbi block.  
High = Partial reset of Viterbi block.  
High = Partial reset of Byte Align block.  
PR 312  
FR QP  
PR QP  
FR VIT  
PR VIT  
PR BA  
PR DS  
High = Partial reset of De-scrambler block.  
Writing a one to these register locations generates a reset pulse three crystal clock periods wide.  
The register automatically resets to zero after use.  
A full reset does reset the registers to their default values.  
A partial reset does not reset the registers to their default values.  
21  
MT312 Initialisation  
3.5.2 MT312 Configuration. Register 127 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
CONFIG  
127  
312 EN  
DSS B DSS A BPSK PLL FACTOR CRYS ADC R/W  
[1:0] 15 EXT  
08  
CONFIG[7:0]: This register is for setting up the MT312. It must be loaded rst before any other register. It can  
only be reset by the RESET pin being pulled low.  
B7:  
312 EN  
High = MT312 enable.  
Low = MT312 disable to save power.  
B6-5:  
DSS B  
DSS A  
0
0
1
1
0:  
1:  
0:  
1:  
DVB mode  
DSS mode 1 - code rate 2/3  
DSS mode 2 - code rate 6/7  
DSS search mode  
If both DSS A and DSS B are set high, the MT312 will search for the code rate in DSS mode. Then  
the Symbol rate is automatically set to 20Mbaud and SYM RATE registers (23 & 24) are ignored.  
Also, any code rate programmed into VIT MODE register (25) and VIT SETUP register (86) will be  
ignored.  
Also in DSS mode TS SW RATE register (50) must be set to 20, see page 70.  
B4:  
BPSK  
High = BPSK  
Low = QPSK  
B3-2:  
PLL FACTOR[1:0]:  
B3-2  
00:  
Multiplication factor  
3
4
6
9
01:  
10:  
11:  
B1:  
B0:  
e.g.  
CRYS15  
ADCEXT  
High = 15MHz crystal.  
Low = 10MHz crystal.  
High = ADC external.  
Low = ADC internal.  
For a crystal frequency of 10MHz, a system clock frequency of 60MHz, the PLL ratio will be 6,  
requiring the PLL FACTOR[1:0] = 2.  
When MT312 is not being used it can be put into power save mode by setting bit B7 to 0.  
22  
Initialisation MT312  
3.5.3 System Clock Frequency. Register 34 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SYS CLK  
34  
SYS CLK[7:0] - System clock frequency x2 in MHz  
R/W  
00  
SYS CLK[7:0] = System clock frequency * 2 in MHz.  
The SYS CLK register must be programmed to indicate the system clock frequency to the calculation unit. The  
maximum system clock frequency allowed is 90MHz.  
e.g. for a crystal frequency = 10MHz, if the PLL multiplication ratio is 9,  
The system clock frequency = 90MHz.  
Then SYS CLK[7:0] = 180.  
The system clock frequency is NOT affected by the setting of SYS CLK[7:0] register.  
3.6 MT312 Initialisation Read Register  
3.6.1 Identification. Register 126 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ID  
126  
ID[7:0] Chip identication.  
R
03  
ID[7:0]:  
This register provides an identication number related to the MT312 version.  
23  
MT312 Tuner Control  
4 Tuner Control  
4.1 Simple Channel Change Sequence  
Program tuner via GPP in 'pass through mode'  
If the MT312 is running, to change channel keeping  
the same signal conditions, it is only necessary to  
change the tuner data and possibly the DiSEqC™  
data. NO reset is necessary.  
open port with Reg 20 = 64 (40hex)  
send TUNER DATA via I2C bus (5 bytes).  
close port with Reg 20 = 0  
DiSEqC mode  
4.2 Channel Change Sequence with a new  
Symbol Rate  
eg Vertical with 22kHz on:  
Reg 22 = 1 (01hex)  
If the MT312 is running, to change channel and  
Symbol rate but not Viterbi coding rate, change the  
tuner data and possibly the DiSEqCdata and  
Symbol rate. NO reset is necessary.  
GO  
Re-acquire signal  
Reg 27 = 1  
4.3 Channel Change Sequence with Search  
Mode  
Figure 16 - Simple channel change sequence  
If the signal parameters are unknown, it is possible to  
instruct the MT312 to nd a digital signal and report  
the parameters found. Registers 24 and 25 are  
programmed with the expected range(s) and the  
search mode bit SYM RATE[B15] is set high. A code  
rate search is forced by programming more than one  
bit in VIT MODE (26) register. The IQ spectrum  
phase can be automatically determined by setting bit  
7 in the VIT MODE (26) register.  
Program tuner via GPP in 'pass through mode'  
open port with Reg 20 = 64 (40hex)  
send TUNER DATA via I2C bus (5 bytes).  
close port with Reg 20 = 0  
DiSEqC mode  
Note: code rate 6/7 is not searched for DVB mode.  
eg Horizontal with 22kHz on:  
Reg 22 = 65 (41hex)  
If a signal with the specied symbol rate range (or  
ranges) is not found in the frequency range  
searched, a QPSK Baud End interrupt (Bit B6, QPSK  
INT L (2)) is issued.  
Signal input - Symbol rate  
eg 22.0 MBaud:  
Reg 23 = 22 (16hex)  
Reg 24 = 0  
When the MT312 QPSK section has locked to the  
signal, this is indicated in register (6) by QPSK STAT  
H[B0] = 1. The symbol rate found can be read from  
registers (123 - 124) MONITOR, provided the  
register (103) MON CTRL = 3. The tolerance of the  
result is ±0.25%. The 14 MSBs of this result  
(discarding two LSBs) may be written as the 14 LSBs  
of the 16-bit register pair (23 and 24) SYM RATE in  
the non-search mode for re-acquisition of the same  
channel.  
Viterbi code rate  
eg V_IQ swap not set, CR = 5/6:  
Reg 25 = 8 (8hex)  
GO  
Re-acquire signal  
Reg 27 = 1  
The FEC is locked to the signal, when the Byte Align  
lock in FEC STATUS[B2] = 1. Then the code rate  
found can be read from FEC STATUS[B6-4], see  
register 6 49 for details.  
Figure 17 - Channel change sequence with new  
Symbol rate, DVB mode  
24  
Tuner Control MT312  
Program tuner via GPP in 'pass through mode'  
open port with Reg 20 = 64 (40hex)  
send TUNER DATA via I2C bus (5 bytes).  
close port with Reg 20 = 0  
Program MONITOR to read Symbol rate  
MON_CTRL Reg 103 = 3  
DiSEqC mode  
eg Horizontal with 22kHz on:  
Reg 22 = 65 (41hex)  
Read Symbol rate from MONITOR registers 123 & 124.  
Symbol rate = MONITOR_H/4 + MONITOR_L/1024 MBaud  
Signal input - Search mode  
eg if MONITOR_H = 27 and MONITOR_L = 136  
then Symbol rate = 27.53125 MBaud  
ie 27.5 MBaud ±0.25%  
eg for SYS_CLK=60MHz and  
30 to 20 Mbaud range:  
Reg 23 = 136 (88hex)  
Reg 24 = 0  
Viterbi code rate search  
Read code rate from FEC_STATUS[B6-4] register 6.  
eg set: AUTO IQ detection  
Reg 25 = 175 (AFhex)  
eg if FEC_STATUS = 2C hex  
signal is locked and the code rate = 3/4  
GO  
Re-aquire signal  
Reg 27 = 1  
Figure 18 - Channel change sequence with  
search mode, DVB mode  
Figure 19 - Results of Symbol rate and code  
rate search, DVB or DSS mode  
4.4 Tuner Control Read/Write Registers  
4.4.1 General Purpose Port Control. Register 20 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
GPP CTRL  
20  
Reserved  
2W  
GPP DIR[2:0]  
GPP PIN[2:0]  
R/W  
20  
PAS  
B7:  
B6:  
Reserved.  
2W PAS:  
Must be set low.  
High = 2-wire bus Pass-through.  
Low = GPP pin I/O direction set by GPP DIR[2:0].  
B5-3:  
GPP DIR[2:0]  
Any bit set high congures the corresponding GPP[2:0] pin as output  
Any bit set low congures the corresponding GPP[2:0] pin as input  
Mixed use of pins as inputs and outputs is allowed.  
If B6 = 1, pass-through mode, then:  
GPP DIR[1:0] are ignored,  
B2: = Input or output set by GPP DIR[2] - relating to pin 46.  
25  
MT312 Tuner Control  
Pin 45 = DATA2, this is a transparent, bi-directional connection to the primary DATA1.  
Pin 44 = CLK2, this is a transparent, bi-directional connection to the primary CLK1.  
If B6 = 0 then: GPP DIR[2:0] denes the input/output conditions of the GPP pins and:  
If a pin[n] is dened as output then:  
GPP PIN[n] high forces GPP[n] pin high  
GPP PIN[n] low forces GPP[n] pin low  
If a pin[n] is dened as input then:  
GPP[n] pin high sets bit GPP PIN[n] high  
GPP[n] pin low sets bit GPP PIN[n ] low  
Allocation of GPP PIN[2:0] is:  
GPP PIN[2] = DiSEqCv2.2 input, 3 wire bus Enable or can be used for any other application  
GPP PIN[1] = DATA2 or 3 wire bus Data  
GPP PIN[0] = CLK2 or 3 wire bus Clock  
The register default state of 20 hex allows the GPP[2] pin to be used for the 3 wire bus Enable line and to be  
kept low at all times, except when programming the Synthesiser.  
When GPP[2] pin is used for DiSEqCv2.2 input, the GPP CTRL register will need to be set to zero after  
every full reset to make GPP[2] an input.  
4.4.2 FR LIM: Frequency Limit. Register 37 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
FR LIM  
37  
Reserved  
FR LIM[6:0] - Freq. Limit in MHz  
R/W  
30  
B7:  
Reserved.  
Must be set low.  
FR LIM[6:0] Frequency search range MHz x 8. This unsigned 7 bit number represents a search range of +/-0  
to +/- 15.875MHz. Default value 30 (hex) = +/- 6MHz.  
26  
Tuner Control MT312  
4.4.3 FR OFF: Frequency Offset. Register 38 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
FR OFF  
38  
FR OFF[7:0] - Freq. Offset in MHz  
R/W  
00  
FR OFF[7:0] Frequency offset correction value in MHz x 32. This 2s complement 8 bit number represents an  
offset from -4MHz to +3.96875MHz. Default value 0.  
The frequency search is carried out in the range [(-FR LIM + FR OFF), (FR LIM + FR OFF]. Frequency offset  
register can be useful in reducing frequency search during channel hopping, especially with low symbol rates.  
If the location of the wanted channel with respect to the current channel is known and if the synthesiser step  
size is too large to set the precise frequency of that channel, then the FR OFF register can be used to take up  
any residual frequency offset.  
4.5 Tuner Control Read Registers  
4.5.1 Measured LNB Frequency Error. Registers 7 - 8 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
LNB FREQ H  
LNB FREQ L  
07  
08  
LNB FREQ15:8] Measured LNB frequency error (high byte)  
LNB FREQ[7:0] Measured LNB frequency error (low byte)  
R
R
00  
00  
LNB FREQ[15:0]: Once the chip is in lock these two registers provide a measurement of the frequency of the  
signal at the input to MT312. Ideally, this frequency is zero. Due to LNB frequency uncertainty this frequency  
may take a positive or negative value. Then the analogue front-end may be re-tuned to bring this offset close to  
zero. Note that MT312 indicates the frequency location of the QPSK spectrum with respect to zero frequency.  
The direction in which the synthesiser frequency has to be stepped depends on the design of the analogue  
front-end. Also note that in many instances it will not be necessary to re-tune even when there is a relatively  
large frequency offset. This is because MT312 compensates for this frequency offset before it demodulates the  
signal. Re-tune only if a substantial part of the QPSK spectrum is affected by the SAW or base-band lter  
which precedes MT312. This will be the case only for symbol rates which are close to the maximum symbol  
rate supported by the above mentioned lters.  
When MT312 locks part of the frequency offset is taken up by the frequency compensation mixer and part by  
the carrier synchroniser. LNB FREQ gives only the value in the frequency compensation mixer. Over a short  
period of about 1 s after lock, the carrier synchroniser will transfer all the frequency compensation to the mixer.  
Hence the LNB FREQ reading will have an error less than ±5% of the symbol rate, during this short period after  
lock. If an accurate frequency reading is needed immediately after lock, the calculation given in section on  
FREQ ERR2 has to be performed by external software.  
LNB FREQ[15:0] Frequency offset MHz x 512. This is a 2s complement 16 bit number. e.g. a hex value of  
F680 (=-2432) represents an offset of -4.75MHz.  
27  
MT312 Tuner Control  
4.5.2 Frequency Error 1 and 2. Registers 111 - 115 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
FREQ ERR1 H  
111  
FREQ ERR1[23:16] Input frequency error coarse (high byte)  
FREQ ERR1[15:8] Input frequency error coarse (middle byte)  
FREQ ERR1[7:0] Input frequency error coarse (low byte)  
R
R
R
00  
00  
00  
FREQ ERR1 M 112  
FREQ ERR1 L 113  
24  
FREQ ERR1[23:0] Ratio of Frequency Compensation Mixer offset to System Clock x 2 . 24 bit signed  
number. For most purposes the LS byte can be ignored hence the alternative denition is more useful: FREQ  
16  
ERR1[23:8] Ratio of Frequency Compensation Mixer offset to System Clock x 2 . 16 bit signed number.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
FREQ ERR2 H  
FREQ ERR2 L  
114  
115  
FREQ ERR2[15:8] Input frequency error ne (high byte)  
FREQ ERR2[7:0] Input frequency error ne (low byte)  
R
R
00  
00  
8
FREQ ERR2 [16:0] Ratio of Carrier Synchroniser offset to Symbol Rate x 2 . 16 bit signed number. This value  
drops to near zero within a second or so of signal lock.  
To obtain an accurate value for the frequency offset at any time, especially immediately after lock, the error  
from each of these registers can be calculated and add together. In practice only the two most signicant bytes  
of FREQ ERR 1 are required, so that the net offset can be calculated as:  
FREQ_ERR1(23:8)* PLL_CLK FREQ_ERR2(15:0)*Rs  
Frequency offset = -------------------------------------------------------------------------------- + ------------------------------------------------------------  
65536  
256  
Where PLL CLK is the sytem clock frequency (e.g. 60 MHz) and Rs is the symbol rate in MBd.  
Any frequency error in FREQ ERR2 transfers to FREQ ERR1 very rapidly after lock, so that any delay between  
reading the two values will cause an error in the calculation. It is therefore recommended that the ve bytes  
above are read as a block, especially if the two wire bus is subject to congestion or other delays.  
28  
DiSEqC Control MT312  
5 DiSEqC Control  
5.1 Screen Printouts of DiSEqC™ Waveforms  
Figure 20 - A DiSEqC™ data byte interrupting a continuous 22kHz tone  
The timing periods of the 16ms before the data byte and 16ms afterwards to the interrupt being asserted are  
clearly shown. The restoration of the 22kHz after the interrupt is controlled by software.  
Figure 21 - One DiSEqC™ data byte - 0x11 (hex) plus parity bit  
A 'zero' comprises 22kHz on for 1ms then off for 0.5ms. A 'one' comprises 22kHz on for 0.5ms then off for 1ms.  
The ninth bit is an odd parity bit.  
29  
MT312 DiSEqC Control  
5.2 DiSEqC Control Read/Write Registers  
5.2.1 DiSEqC™ Mode Control. Register 22 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DISEQC MODE  
22  
Reserved  
HV  
DISEQC  
22kHz mode  
R/W  
00  
instruction length  
B7:  
Reserved.  
Must be set low.  
B6:  
HV H/V polarisation control: High = Horizontal, DISEQC[1] pin = high  
Low = Vertical, DISEQC[1] pin = low  
The DISEQC[1] pin controls the externally generated 13/18V LNB voltage.  
B5-3:  
B2-0:  
Number of bytes in DiSEqCinstruction minus 1, to output on DISEQC[0] pin.  
i.e. if the message contains four bytes, program B5-3 with the value three.  
DiSEqCmode:  
0:  
22kHz off  
1:  
22kHz on continuous  
2:  
Burst mode - on for 12.5ms = '0'  
Burst mode - modulated 1:2 for 12.5ms = '1'  
Modulated with bytes from DISEQC INSTR  
Reserved.  
3:  
4:  
5-7:  
Note:  
for modes 2 and 3, an interrupt is generated 16ms after the '0' or '1' burst.  
for mode 4, there is a 16ms delay before the message bytes, then an interrupt is generated 16ms after  
the last message byte has been sent. The requisite number of bytes must be pre-loaded into  
DISEQC INSTR (register 36) before this bit is set, see 31.  
5.2.2 DiSEqC(tm) Ratio. Register 35 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DISEQC RATIO  
35  
DISEQC RATIO[7:0]  
R/W  
00  
DISEQC RATIO[7:0] This must be programmed to set the Diseqc output tone frequency.  
F
=
F
out  
xtal  
4*DISEQC_RATIO[7:0]  
Where F is in kHz and F  
is in MHz.  
xtal  
out  
For a 22kHz output tone, DISEQC RATIO[7:0] = 11.364 * F  
xtal  
e.g. with F  
= 10MHz, DISEQC RATIO[7:0] = 114, or for 15 MHz 170.  
xtal  
30  
DiSEqC Control MT312  
11E6  
For this example, the DiSEqCfrequency = --------------- = 22kHz.  
4*125  
For a 10MHz crystal, the tone frequency range is from 9.8kHz with DISEQC RATIO = 255 to 250kHz with  
DISEQC RATIO = 10. A lower value than 10 causes the tone frequency to become unstable, until the DISEQC  
RATIO = 0, the default, value giving a 22kHz tone frequency. This range is not guaranteed, the maximum tone  
frequency should be used with caution.  
5.2.3 DiSEqC™ Instruction (R/W). Register 36 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DISEQC INSTR  
36  
DISEQC Instruction [7:0]  
R/W  
00  
Up to eight instruction data bytes are rst loaded into a bank of registers through this register. The 2-wire  
automatic register address incrementing is turned off during this loading by setting B7: IAI = 1 in RADD,  
(register address). The number of bytes (less one) must be dened in the DiSEqCinstruction register  
DISEQC MODE[5:3].  
i.e. DISEQC MODE[5:3] = (number of bytes in the DiSEqCinstruction) - 1  
When the DiSEqCTM instruction data bytes have been loaded, set DISEQC MODE[2:0] = 4. At the same time  
program DISEQC MODE[5:3] as required. The instruction data is modulated onto the 22kHz signal and output  
from the DISEQC[0] pin.  
An interrupt is generated 16ms after all the data bytes have been sent and the MT312 then resets DISEQC  
MODE[5:0] to zero, see Figure 19 on page 33.  
5.2.4 DiSEqC™ 2 Control 1. Registers 121 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DISEQC2  
CTRL1  
121  
DISEQC2 CTRL1[7:0]  
R/W  
00  
B7-6:  
MIN TONE PER  
Minimum Tone Period.  
B7-6:  
MIN TONE PER  
00  
01  
10  
11  
3.0 * DISEQC RATIO  
3.125 * DISEQC RATIO  
2.875 * DISEQC RATIO  
2.75 * DISEQC RATIO  
B7:6  
B5:  
are for controlling (or ne tuning) the DiSEqC2 receive algorithm.  
Send extended pulse to the Status pin 52. This is a test or diagnostics bit. If it is set to 1, then the  
cleaned up and extended pulse stream is sent to the status pin so that it can be recorded or observed.  
B4:  
DiSEqC2 Reset only the DiSEqCTM 2 receive module. Automatically set low again after use.  
31  
MT312 DiSEqC Control  
This is the software (partial) reset for DISEQC2 module. If this is set to 1 in the DISEQC2 listen (or  
receive) period, any listen operations will be aborted and DISEQC2 will wait until the end of the next  
transmission to expect a reply.  
Note that the host beginning the next DISEQC2 transmission will have a similar effect to writing bit 4.  
B3:  
Interrupt enable for bit B3 of DISEQC2 INT STAT register 118.  
B2:  
B1:  
B0:  
Interrupt enable for bit B2 of DISEQC2 INT STAT register 118.  
Interrupt enable for bit B1 of DISEQC2 INT STAT register 118.  
Interrupt enable for bit B0 of DISEQC2 INT STAT register 118.  
Bits B0 and B3 are interrupt enables. These determine whether bits B0 to B3 of DISEQC2 INT (register 118,  
see 33) have any impact on the pin IRQ 57 of the MT312.  
Note that buffer overow interrupt does not have an interrupt enable and hence this cannot be brought out to  
the IRQ pin.  
5.2.5 DiSEqCTM 2 Control 2. Registers 122 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DISEQC2  
CTRL2  
122  
MIN PULS PER  
TONE EXT PER  
MAX TONE R/W  
PER  
D4  
B[7:5]: MIN PULS PER  
Minimum Pulse Period.  
B7-5:  
MIN PULS PER  
000  
001  
010  
011  
100  
101  
110  
111  
24 * DISEQC RATIO  
25 * DISEQC RATIO  
26 * DISEQC RATIO  
27 * DISEQC RATIO  
28 * DISEQC RATIO  
29 * DISEQC RATIO  
30 * DISEQC RATIO  
31 * DISEQC RATIO  
(default)  
B[4-2]: TONE EXT PER  
Tone Impulse Extended Period.  
B1-0:  
TONE EXT PER  
000  
001  
010  
011  
100  
7 * DISEQC RATIO  
8 * DISEQC RATIO  
9 * DISEQC RATIO  
10 * DISEQC RATIO  
11 * DISEQC RATIO  
32  
DiSEqC Control MT312  
B1-0:  
TONE EXT PER  
101  
110  
111  
12 * DISEQC RATIO  
13 * DISEQC RATIO  
14 * DISEQC RATIO  
(default)  
B[1-0]: MAX TONE PER  
Maximum Tone Period.  
B1-0:  
MAX TONE PER  
00  
01  
10  
11  
6.0 * DISEQC RATIO  
6.25 * DISEQC RATIO  
5.75 * DISEQC RATIO  
5.5 * DISEQC RATIO  
(default)  
5.3 DiSEqC Control Read Registers  
5.3.1 DiSEqC™M 2 Interrupt Indicators. Register 118 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DISEQC2 INT  
118  
DISEQC2 INT[7:0]  
R
00  
Note that the most signicant four bits are not reset on read. The least signicant four bits are interrupt bits  
which are reset when the register is read. Interrupts indicate events in history. The interrupts may be enabled to  
drive the IRQ pin 57 by setting required bit(s) in the DISEQC2 CTRL1 register 121, see 31.  
B7-4:  
Bits B7-4 denote the following number of bytes received:  
B7-4 = (Number of bytes received - Number of bytes read)  
Hence this is the number of bytes that would be in the FIFO BUFFER if this buffer had unlimited  
capacity. Since the size of this buffer is only 8 bytes, if the above difference, given by bits B7-4,  
exceeds eight, that indicates buffer overow.  
B3:  
Silent period exceeds 176 ms interrupt (reset on read)  
The host may enable interrupts B1 and B3. Then when an interrupt is received, the host may read the  
DISEQC2 INT register. Then if bit B3 is one and bit B1 is 0, this indicates there has been a  
continuous period 176ms of silence since the end of the transmission. If the host is expecting a reply,  
then this silence may be taken to signify a hardware fault in the system.  
There is a 5-bit number in the DISEQC2 STATUS BYTE which indicates the length of a continuous  
period of silence up to the read time, in multiples of 16 ms.  
B2:  
Receive error interrupt (reset on read).  
Bit B2 indicates an error in the received message. This does not refer to a parity error. It indicates  
that a bit has been lost due to excessive noise or interference in the return channel. This is identied  
within MT312 by the occurrence of an excessively long tone or silence period within a byte.  
33  
MT312 DiSEqC Control  
B1:  
End of message interrupt (reset on read).  
Bit B1 indicates a new message has been received. The end of a message is identied by a silent  
period of about 6 ms following a byte. The end-of-message interrupt bit makes it easier for the host  
processor to read DiSEqCdata from MT312. Instead of reading a byte at a time, it can read the  
message as a whole.  
It is important to note that MT312 does not stop accepting bytes after setting end-of-message  
interrupt. It will receive new messages, if any, whilst the current message is being read by the host.  
Since 2-wire bus read rate is higher than the byte receive rate, there is no reason for FIFO buffer  
overow. After every received message there will be an interrupt.  
B0:  
End of byte interrupt (reset on read).  
Bit B0 is set when a new byte is received. The host may wish to ignore byte interrupts and opt to read  
received messages, as described below.  
It is important to note that MT312 does not stop accepting bytes after setting end-of-message  
interrupt. It will receive new messages, if any, whilst the current message is being read by the host.  
Since 2-wire bus read rate is higher than the byte receive rate, there is no reason for FIFO buffer  
overow.  
After every received message there will be an interrupt.  
5.3.2 DiSEqC™M 2 Status Indicators. Register 119 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DISEQC2 STAT 119  
DISEQC2 STATUS[7:0]  
R
00  
B7-5:  
B4-0:  
DISEQC2 Finite State Machine State. This is primarily for debugging the device.  
Silent period since last received bit, in multiples of 16 ms.  
Bits B4-0 is reset to zero when a bit is received. When this 5-bit number reaches 176, the interrupt bit  
B3 of DISEQC2 INT register is set. This is saturated to 31. Hence if the total period exceeds 496  
ms this counter will continue to indicate 31.  
5.3.3 DiSEqC™ 2 FIFO. Register 120 (R)  
Odd byte read of register 120:  
Def  
hex  
NAME  
DISEQC2 FIFO 120  
Even byte read of register 120:  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DISEQC2 FIFO[7:0]  
R
00  
This FIFO contains data bytes and parity bits collected. This can hold a maximum of 8 data bytes, 8 parity bits  
and 8 parity error bits. The parity error bit is dened as the inverse of the exclusive-OR combination (or  
modulo-2 addition) of all 9 bits (8 data and 1 parity). This bit will be zero when there is no parity error.  
34  
DiSEqC Control MT312  
Def  
NAME  
DISEQC2 FIFO 120  
Refer to preceding section for buffer overow.  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
hex  
Reserved  
Par  
error  
Par  
bit  
R
00  
The received bytes are read from this location with 2-wire bus auto-increment bit set to zero. The received  
bytes will be available in the order received, i.e. the buffer is a First In First Out (FIFO) memory.  
Note that two read operations are needed for each byte. The rst read operation will give the data byte and the  
second will provide the associated parity bit(B0) and the parity-error bit(B1), the other 6 bits will be zero. For  
example, if four bytes are received, then eight read operations (with auto-increment bit set to zero) are needed  
to get all data bytes as well as the parity bits.  
The number of bytes received is given by bits B3-0 of DISEQC2 STATUS BYTES register 119.  
35  
MT312 QPSK Demodulator  
6 QPSK demodulator  
6.1 QPSK Demodulator Read/Write Registers  
6.1.1 Symbol Rate. Registers 23 - 24 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SYM RATE H  
SYM RATE L  
23  
24  
SEARCH Reserved  
SYM RATE[13:8] in MBaud (high byte)  
R/W  
R/W  
80  
80  
SYM RAT[7:0] in Mbaud (low byte)  
B15:  
SEARCH  
B14:  
B14:  
Reserved.  
S FMT  
Must be set low  
Sweep MT312 Format.  
If SYM RATE[15:14] = 0 this is the non-search mode, i.e. the known Symbol rate mode.  
B13-0:  
Required Symbol rate in Mbaud x 256. Unsigned 14 bit number. e.g. for a symbol  
rate of 27.5 MBd  
SYM RATE = 27.5 * 256 = 7040 = 1B80 (hex)  
If any of the two DSS bits are set in the CONFIG register, then the SYM RATE register contents are ignored  
and the symbol rate is taken as 20 MBaud. Hence it is not necessary to program the SYM RATE register for  
DSS applications.  
If SYM RATE[15:14] = 1x this is the Search Mode where x = don't care.  
B11-0:  
Sub-ranges to be searched (scaled by clock rate).  
The total symbol rate range is divided into 12 sub-ranges. A bit in the above register pair is assigned to each  
sub-range, as dened in the tables below. The symbol rate sub-range or sub-ranges to be searched are dened  
by setting the appropriate bits high. Small overlaps are automatically provided between successive sub-ranges.  
Note that the lowest sub-ranges have been provided for 90 MHz operation and the device has not been  
optimised for operation below 1 MBaud.  
36  
QPSK Demodulator MT312  
Bit  
Symbol Rate Sub Range MBaud  
11  
10  
9
SYS CLK /2 to SYS CLK/3  
SYS CLK/3 to SYS CLK/4  
SYS CLK/4 to SYS CLK/6  
SYS CLK/6 to SYS CLK/8  
SYS CLK/8 to SYS CLK/12  
SYS CLK/12 to SYS CLK/16  
SYS CLK/16 to SYS CLK/24  
SYS CLK/24 to SYS CLK/32  
SYS CLK /32 to SYS CLK/48  
SYS CLK/48 to SYS CLK/64  
SYS CLK /64 to SYS CLK/96  
SYS CLK/96 to SYS CLK/128  
8
7
6
5
4
3
2
1
0
Table 3 - Symbol sweep ranges for general case  
Bit  
Symbol Rate Sub Range MBaud  
11  
10  
9
45 - 30  
30 - 22.5  
22.5 - 15  
8
15 - 11.25  
7
11.25 - 7.5  
6
7.5 - 5.625  
5
5.625 - 3.75  
3.75 - 2.8125  
2.81325 - 1.875  
1.875 - 1.40625  
1.40625 - 0.9375  
0.9375 - 0.703125  
4
3
2
1
0
Table 4 - Symbol sweep ranges for 90MHz system clock  
37  
MT312 QPSK Demodulator  
6.1.2 Viterbi mode. Register 25 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
VIT MODE  
25  
AUT IQ  
V IQ  
SP  
CR  
7/8  
CR  
6/7  
CR  
5/6  
CR  
3/4  
CR  
2/3  
CR  
1/2  
R/W  
44  
B7:  
B6:  
AUT IQ  
Automatic IQ phaseHigh = Search for correct IQ phase.  
Low = Use IQ phase setting in V IQ SP.  
When this bit is set high, the Viterbi decoder will start with the IQ phase dened in V IQ SP and the  
code rate dened in VIT MODE[5:0], to establish the correct IQ phase of the incoming signal. When  
this is established, the V IQ SP bit will be set to that phase indication so that it can be read by  
software for subsequent re-tuning to the same channel.  
V IQ SP  
Swap I and Q inputs to the Viterbi decoder to overcome  
spectral inversion caused by the transmitter.  
High = I-Q swap  
Low = No I-Q swap  
If the transmitted signal is known to be spectrally inverted then set this bit to 1. If the spectral inversion  
status of the transmitted signal is not known, then after QPSK CT lock, try to achieve FEC lock with  
this bit rst at zero and then at one.  
When AUT IQ is set high, this bit will indicate the IQ phase following successful channel acquisition.  
In manual mode, when AUT IQ is set low, software is required to determine the spectrum phase and  
control this bit externally.  
B5:  
B4:  
B3:  
B2:  
B1:  
B0:  
CR 7/8  
CR 6/7  
CR 5/6  
CR 3/4  
CR 2/3  
CR 1/2  
High = Viterbi code rate 7/8.  
High = Viterbi code rate 6/7.  
High = Viterbi code rate 5/6.  
High = Viterbi code rate 3/4.  
High = Viterbi code rate 2/3.  
High = Viterbi code rate 1/2.  
38  
QPSK Demodulator MT312  
The Viterbi decoder will search for a signal with the code rates selected by this register. If one code rate is  
selected, the MT312 will search for a signal with only that code rate. If the code rate is unknown then all B5:0  
may be set, when the MT312 will search all code rates. It is possible to choose the starting point for the code  
rate search by setting a bit in VIT SETUP[B3:1] register (86). After searching for a signal with the initial code  
rate, if no signal is found the search proceeds to the next higher code rate, see 69.  
In the DSS mode the code rate is not specied using VIT MODE register. If any of the two DSS bits of  
Conguration Register (127) is set, then the code rates selected by the VIT MODE register are ignored. The  
DSS code rate selection is carried out as described in section 1.1, see 10.  
The result of the search is reported in the FEC STAT register (6), see 49.  
6.1.3 QPSK Control. Register 26 (R/W)  
Def  
hex  
NAME ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QPSK  
CTRL  
26 Reserved  
Q
IQ SP  
Reserved Reserved Reserved AFC Reserved ROLL R/W  
20  
00  
M
B7:  
Reserved  
Must be set low.  
B6:  
Q IQ SP  
Swap I and Q inputs before QPSK demodulation to overcome spectral inversion  
caused by the receiver front-end, for example through the swapping I and Q wires on  
the board.  
High = I-Q swap  
Low = No I-Q swap  
B5:  
B4:  
B3:  
B2:  
B1:  
B0:  
Reserved  
Reserved  
Reserved  
AFC M  
Must be set low.Q MANHigh = QPSK manual programming  
Must be set low.OP CALHigh = Output calculation disable  
Must be set low.FLD LKHigh = Use Frequency Lock Detector lock  
High = Use AFC mode, for low Symbol rates only, < 10MSym/s.  
Must be set low.  
Reserved  
ROLL 20  
High = Roll-off 0.20  
Low = Roll-off 0.35  
If any of the two DSS control bits of the Conguration Register (127) is active (see section 1.1 10), then bit B0  
(ROLL 20) is ignored and the matched lter root-raised-cosine roll-off factor is taken as 0.20. Hence bit only  
allows the choice of roll-off in the DVB mode.  
39  
MT312 QPSK Demodulator  
6.1.4 Go Command. Register 27 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
GO  
27  
Reserved  
GO  
R/W  
00  
B7-1:  
B0:  
Reserved - not used.  
GO  
High = release reset state to start signal capture, automatically reset to zero.  
Low = no action.  
If this register is read, it will return zero.  
6.1.5 QPSK Interrupt Output Enable. Registers 28 - 30 (R/W)  
When the bits of these three registers are set high, they enable an event to generate an interrupt on the IRQ  
pin 57. All interrupts may be enabled together. These registers do not affect the indication of events in the read  
registers 0 - 3.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
IE QPSK H  
28  
IE QPSK[23:16] Interrupt enable QPSK (high byte)  
R/W  
00  
B7:  
B6:  
B5:  
B4:  
B3:  
B2:  
B1:  
B0:  
High = Enable QPSK CT LOCK indication on interrupt pin.  
High = Enable QPSK CT UNLOCK indication on interrupt pin.  
High = Enable QPSK LOCK indication on interrupt pin.  
High = Enable QPSK UNLOCK indication on interrupt pin.  
High = Enable QPSK TS LOCK indication on interrupt pin.  
High = Enable QPSK TS UNLOCK indication on interrupt pin.  
High = Enable QPSK CS LOCK indication on interrupt pin  
High = Enable QPSK CS UNLOCK indication on interrupt pin.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
IE QPSK M  
29  
IE QPSK[15:8] Interrupt enable QPSK (middle byte)  
R/W  
00  
B7:  
B6:  
B5:  
High = Enable QPSK FE AGC LOCK indication on interrupt pin.  
High = Enable QPSK TS AGC LOCK indication on interrupt pin.  
High = Enable QPSK TS AGC UNLOCK indication on interrupt pin.  
40  
QPSK Demodulator MT312  
B4:  
B3:  
B2:  
B1:  
B0:  
High = Enable QPSK FR LOCK indication on interrupt pin.  
High = Enable QPSK FR UNLOCK indication on interrupt pin.  
High = Enable QPSK calculation complete indication on interrupt pin.  
High = Enable QPSK TS MAX indication on interrupt pin.  
High = Enable QPSK CS MAX indication on interrupt pin.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
IE QPSK L  
30  
IE QPSK [7:0] Interrupt enable QPSK (low byte)  
R/W  
00  
B7:  
B6:  
B5:  
B4:  
B3:  
B2:  
B1:  
High = Enable QPSK ST CHA indication on interrupt pin.  
High = Enable QPSK frequency end indication on interrupt pin.  
High = Enable QPSK BAUD end indication on interrupt pin.  
High = Enable QPSK AFC success indication on interrupt pin.  
High = Enable QPSK AFC fail indication on interrupt pin.  
High = Enable QPSK next FRS21 indication on interrupt pin.  
High = Enable QPSK same FRS21 indication on interrupt pin.  
B0:High = Enable QPSK LTV limit indication on interrupt pin.  
6.1.6 QPSK STATUS Output Enable. Register 32 (R/W)  
If more than one bit is enabled then the logical-OR combination of the selected status signals will appear on the  
STATUS pin 52.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QPSK STAT EN  
32  
QPSK STAT EN[7:0] Enable various QPSK outputs on STATUS pin R/W  
00  
B7:  
B6:  
B5:  
B4:  
B3:  
High = QPSK TS sweep on  
High = QPSK CS sweep on  
High = QPSK FR LOCK  
High = QPSK TS AGC LOCK  
High = QPSK TS LOCK  
41  
MT312 QPSK Demodulator  
B2:  
B1:  
B0:  
High = QPSK CS LOCK  
High = QPSK CT LOCK  
Reserved. Must be set low.  
6.2 QPSK Demodulator Read Registers  
6.2.1 QPSK Interrupt. Registers 0 - 2 (R)  
The majority of these interrupts are for diagnostic purposes and generally not useful in normal operation,  
unless otherwise indicated.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QPSK INT H  
00  
QPSK INT [23:16] Interrupt QPSK (high byte)  
R
00  
B7:  
B6:  
B5:  
B4:  
B3:  
B2:  
B1:  
B0:  
High = QPSK Carrier and Timing LOCK important indicator.  
High = QPSK Carrier and Timing UNLOCK  
High = QPSK LOCKimportant indicator.  
High = QPSK UNLOCK  
High = QPSK Timing LOCK  
High = QPSK Timing UNLOCK  
High = QPSK Carrier LOCK  
High = QPSK Carrier UNLOCK  
Reading an Interrupt register resets that register.  
After the QPSK demodulator achieves Carrier and Timing Lock, from now on referred to as QPSK CT Lock, it  
waits some time for the FEC to conrm this lock. When the FEC locks, the QPSK enters QPSK Lock state. The  
time QPSK waits for the FEC to gain lock is programmable via register 81 (see section 10.2.31 FEC Lock Time.  
Register 81 (R/W)). If the FEC does not achieve lock during this period (very unlikely), then MT312 drops its  
QPSK CT Lock status and resumes search for another QPSK signal.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QPSK INT M  
01  
QPSK INT [15:8] Interrupt QPSK (middle byte)  
R
00  
B7:  
B6:  
B5:  
B4:  
High = QPSK FE AGC LOCK  
High = QPSK Digital Internal AGC LOCK  
High = QPSK Digital Internal AGC UNLOCK  
Reserved High = QPSK FR LOCK  
42  
QPSK Demodulator MT312  
B3:  
B2:  
B1:  
B0:  
Reserved High = QPSK FR UNLOCK  
High = QPSK calculation complete  
High = QPSK TS MAX  
High = QPSK CS MAX  
Reading an Interrupt register resets that register.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QPSK INT L  
02  
QPSK INT [7:0] Interrupt QPSK (low byte)  
R
00  
The majority of these interrupts are for diagnostic purposes and generally not useful in normal operation,  
unless otherwise indicated.  
B7:  
B6:  
B5:  
B4:  
B3:  
B2:  
B1:  
B0:  
High = QPSK state change  
High = QPSK frequency end of search rangeimportant indicator.  
High = QPSK BAUD end of rangeimportant indicator.  
High = QPSK AFC success  
High = QPSK AFC fail  
High = QPSK next frequency search  
High = QPSK same frequency search  
High = QPSK LTV limit  
Reading an Interrupt register resets that register.  
Frequency and symbol rate search is carried out as follows. If the symbol rate is known then MT312 will search  
the specied frequency range for this symbol rate. Once the end of this range has been reached, "QPSK end of  
frequency range search" interrupt will be issued and MT312 will resume the search beginning from frequency  
zero. A "QPSK end of Symbol rate range(s) search" interrupt will not be issued.  
If the symbol rate is not known, then MT312 can be made to search several sub-ranges of symbol rates, by  
setting 12 bits of the pair of SYM RATE registers, as described in section 4.4. For illustration purposes, assume  
that the symbol rate sub-ranges SYS CLK/2 to SYS CLK/3 and SYS CLK/4 to SYS CLK/6 are to be searched.  
Then MT312 will begin the search from the upper sub-range SYS CLK/2 to SYS CLK/3. MT312 will search for  
a channel with a symbol rate in this range over the specied frequency range, for example ± 10 MHz. If no  
channel is found then MT312 will issue a "QPSK end of frequency range search" interrupt and will go on to  
search the sub-range SYS CLK/4 to SYS CLK/6 over the specied frequency range. If no channel is found,  
then MT312 will issue a "QPSK end of frequency range search" interrupt as well as a "QPSK end of Symbol  
rate range(s) search" interrupt. Then MT312 will return to search the specied frequency range for a symbol  
rate in the range SYS CLK/2 to SYS CLK/3. This process continues indenitely, unless it is interrupted by host  
processor software.  
43  
MT312 QPSK Demodulator  
6.2.2 QPSK Status. Registers 4 - 5 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QPSK STAT H  
04  
QPSK STATUS[15:8] (high byte)  
R
00  
B7:  
B6:  
B5:  
B4:  
B3:  
B2:  
B1:  
B0:  
High = QPSK SNR MSB  
High = QPSK SNR LSB  
High = QPSK FR LOCK  
High = QPSK Timing AGC LOCK  
High = QPSK Timing LOCK  
High = QPSK Carrier LOCK  
High = QPSK Carrier and Timing (CT) Lock  
High = QPSK LOCK  
Def  
hex  
NAME  
QPSK STAT L  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
05  
QPSK STATUS[7:0] (low byte)  
R
00  
B7:  
High = QPSK Timing sweep on  
High = QPSK Carrier sweep on  
Reserved  
B6:  
B5-0:  
6.2.3 Symbol Rate Output. Registers 116 - 117 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SYM RAT OP H 116  
SYM RAT OP L 117  
SYM RAT OP[15:8] Symbol Rate Output (high byte)  
SYM RAT OP[7:0] Symbol Rate Output (low byte)  
R
R
00  
00  
SYM RAT OP[15:0] These two bytes contain a positive number that is inversely proportional to the Symbol rate.  
The decimation ratio index must also be read from the MONITOR register bits B[7:5] and divided by 32 to  
normalise the result.  
PLL_CLK *8192  
Rs = ---------------------------------------------------------- * 2 -DEC RATIO  
SYM_RAT_OP+ 8192  
Where: Rs = Symbol rate in MBaud  
PLL CLK = PLL clock frequency in MHz  
SYM RAT OP = value of registers 116 and 117.  
DEC RATIO = MONITOR H[7:5] when MON CTRL[2:0] = 5.  
44  
QPSK Demodulator MT312  
6.2.4 Monitor Registers. Registers 123 - 124 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
MONITOR H  
MONITOR L  
123  
124  
MONITOR[15:8] Monitor (high byte)  
MONITOR[7:0] Monitor (low byte)  
R
R
00  
00  
For details, see MON CTRL register (103) on page 62.  
MON CTRL[3:0] = 0: MONITOR H = CS SYM I and MONITOR L = CS SYM Q.  
This is a snapshot of two I and Q samples (of the same symbol) after carrier synchroniser. This  
information could be used to produce a scatter diagram. Keep reading these continuously and mark  
these as points on a 2-D I-Q plane to get a scatter diagram.  
MON CTRL[3:0] = 1:  
MONITOR H = DC OFFSET I and MONITOR L = DC OFFSET Q.  
This will give the amount of DC offset in the I and Q inputs from the ADC compensated by the QPSK.  
Each of these is a two's complement number. If the 6-bit ADC range is taken to be in the scale -32 to  
31, then it is necessary divide DC OFFSET I by 16, to bring it to the same scale as the ADC. For  
example, if we get the DC OFFSET I as "11111101", the corresponding two's complement number is  
-3. However, the actual offset with respect to the ADC scale of [-32, 31] is actually -3/16. The same  
applies to DC OFFSET Q.  
MON CTRL[3:0] = 3:  
MONITOR H = MBAUD OP H and MONITOR L = MBAUD OP L.  
When the QPSK demodulator is in lock following a symbol rate search, the locked symbol rate may be  
read from the MONITOR register. Then:  
Symbol Rate = MONITOR[15:0]/ 1024.  
The accuracy of this reading is within ±0.25% of the actual symbol rate. Note that the channel with this  
symbol rate can be subsequently re-acquired without a search by programming the 14 MSBs of the  
above read-out (discarding the two LSBs) as the 14 LSBs of the 16-bit SYM RATE register (23,24),  
see page 27.  
MON CTRL[3:0] = 5:  
Decimation ratio = MONITOR[15:13]/32.  
MON CTRL[3:0] = 6:  
MONITOR H = M FLD[7:0] and MONITOR L = M FLD[7:0].  
M FLD[7:0]:  
This byte contains a number calculated in the TS FLD Timing synchroniser  
frequency lock detector and is used for frequency lock detection in the manual  
programming mode.  
MON CTRL[3:0] = 7:  
M TLD[15:0]:  
MONITOR H = M TLD H and MONITOR L = M TLD L.  
Measurement of the Timing lock detector value. Reading the bytes does NOT reset  
the value.  
MON CTRL[3:0] = 8:  
MONITOR H = M PLD H and MONITOR L = M PLD L.  
45  
MT312 QPSK Demodulator  
M PLD[15:0]:  
Measurement of the Phase lock detector value. Reading the bytes does NOT reset  
the value.  
The remaining settings of MON CTRL[3:0] are either reserved for diagnostic purposes or not used.  
46  
Forward Error Correction MT312  
7 Forward Error Correction  
7.1 Forward Error Correction Read/Write Registers  
7.1.1 FEC Interrupt Enable. Register 31 (R/W)  
When the bits of this register are set high, they enable an event to generate an interrupt on the pin 57. All  
interrupts may be enabled together.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
IE FEC  
31  
IE FEC[7:0] Interrupt enable FEC  
R/W  
00  
B7:  
B6:  
B5:  
B4:  
B3:  
B2:  
B1:  
High = Enable DiSEqCindication on interrupt pin.  
High = Enable Byte Align lock lost indication on interrupt pin.  
High = Enable Byte Align lock indication on interrupt pin.  
High = Enable Viterbi lock lost indication on interrupt pin.  
High = Enable Viterbi lock indication on interrupt pin.  
High = Enable Viterbi BER monitor period reached indication on interrupt pin.  
High = Enable De-scrambler lock lost indication on interrupt pin.  
B0:High = Enable De-scrambler lock indication on interrupt pin.  
7.1.2 FEC STATUS Output Enable. Register 33 (R/W)  
If more than one bit is enabled then the logical-OR combination of the selected status signals will appear on the  
STATUS pin 52.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
FEC STAT EN  
33  
MOCLK RATIO[3:0]  
DS lock BA  
lock  
VIT  
lock  
BER R/W  
tog  
14  
B7-4:  
MOCLK RATIO[3:0]  
MPEG clock ratio - 6. I.e. range is from 6 to 21  
see section 9.1.3 on 54.  
B3:  
B2:  
B1:  
DS lock  
BA lock  
VIT lock  
High = De-scrambler lock  
High = Byte Align lock  
High = Viterbi lock. High = Viterbi lock  
47  
MT312 Forward Error Correction  
B0:  
BER tog High = BER toggle. This bit enables the audio signal output on the STATUS pin it indicates  
BER during dish alignment, see 12, section 1.4.1.2. The frequency of the signal is controlled by  
VIT MAXERR register (94), see 70.  
7.1.3 FEC Set Up. Register 97 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
FEC SETUP  
97  
DIS SR  
ENCL  
KO  
DIS  
DS  
DIS  
RS  
DIS  
VIT  
EN  
PRS  
DS LK[1:0]  
R/W  
03  
B7:  
When MANUAL MOCLK (register 96 bit 7) is Low then:  
DIS SR  
High = Disable use of Symbol Rate for MOCLK generation.  
Low = Use Symbol Rate for MOCLK generation.  
When MANUAL MOCLK (register 96 bit 7) is High then:  
DIS SR  
High = Use external MICLK (pin 14) signal for MOCLK.  
Low = Manually set MOCLK period from MOCLK RATIO (reg. 33).  
High = Enable clock out for test purposes.  
B6:  
B5:  
B4:  
B3:  
B2:  
ENCLKO  
DIS DS  
DIS RS  
DIS VIT  
EN PRS  
High = Disable de-scrambler.  
High = Disable Reed Solomon decoder.  
High = Disable Viterbi (Viterbi by pass mode)  
High = Enable programmed synchronisation byte in register 98.  
B1-0:DS LK[1:0] + 2 =Number of bytes for de-scrambler to lose lock. The default register value of 3 is  
equivalent to 5 bad sync words.  
7.2 Forward Error Correction Read Registers  
7.2.1 FEC Interrupt. Register 3 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
FEC INT  
03  
FEC INT[7:0] Interrupt FEC  
R
00  
B7:  
B6:  
B5:  
B4:  
B3:  
High = DiSEqC™  
High = Byte Align lock lost  
High = Byte Align lockimportant indicator.  
High = Viterbi lock lost  
High = Viterbi lock  
48  
Forward Error Correction MT312  
B2:  
B1:  
B0:  
High = Viterbi BER monitor period reached  
High = De-scrambler lock lost  
High = De-scrambler lock  
Reading an Interrupt register resets that register.  
7.2.2 FEC Status. Register 6 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
FEC STATUS  
06  
FEC STATUS[7:0]  
R
00  
B7:  
Reserved  
B6-4:  
Viterbi coding rate  
B6-4  
Code rate indication  
0
1
2
3
4
5
1/2  
2/3  
3/4  
5/6  
6/7  
7/8  
Table 3 - Viterbi code rate indication  
B3:  
B2:  
B1:  
B0:  
High = De-scrambler lock  
High = Byte Align lock  
High = Viterbi lock  
Reserved  
7.2.3 Measured Signal to Noise Ratio. Registers 9 - 10 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
M SN R H  
M SNR L  
09  
10  
Reserved  
M SNR[14:8] Measured SNR (high byte)  
M SNR[7:0] Measured SNR (low byte)  
R
R
00  
00  
B15:  
Reserved  
49  
MT312 Forward Error Correction  
M SNR[14:0]: These two registers provide a indication of the signal to noise ratio of the channel being received  
by the MT312. It should not be taken as the absolute value of the SNR.  
13312 - M SNR[14:0]  
Eb/N0 = ~ ------------------------------------------------------- dB.  
683  
The equation given only holds for Es/No values in the range 3 to 15 dB, i.e. Eb/No values in the range 0 to 12  
dB.  
7.2.4 Viterbi Error Count at Viterbi Input. Registers 11 - 13 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
VIT ERRCNT H  
VIT ERRCNT M  
VIT ERRCNT L  
11  
12  
13  
VIT ERRCNT[23:16] - Viterbi error count (high byte)  
VIT ERRCNT[15:8] - Viterbi error count (middle byte)  
VIT ERRCNT[7:0] - Viterbi error count (low byte)  
R
R
R
00  
00  
00  
This is effectively the QPSK Bit Error Rate.  
VIT ERRCNT[23:0]: This is the count of bits corrected by the Viterbi decoder. This value is updated when the  
Viterbi error timer (VIT_ERRPER) expires (indicated by B2 in register FEC_INT) and is NOT reset by reading.  
VIT_ERRCNT[23:0]  
QPSK BER = -------------------------------------------------------------  
VIT_ERRPER[23:0] * 4  
7.2.5 Reed Solomon Bit Errors Corrected. Registers 14 - 16 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RS BERCNT H  
14  
RS BERCNT[23:16] - Reed Solomon bit errors corrected  
(high byte)  
R
R
R
00  
RS BERCNT M  
RS BERCNT L  
15  
16  
RS BERCNT[15:8] - Reed Solomon bit errors corrected  
(middle byte)  
00  
00  
RS BERCNT[7:0] - Reed Solomon bit errors corrected (low byte)  
This is effectively the Viterbi Bit Error Rate.  
RS BERCNT[23:0]: These three registers provide a measurement of the number of bit errors corrected by the  
Reed Solomon decoder. Reading the high byte stops the count incrementing. Reading the low byte resets all  
three bytes and restarts the count incrementing again.  
RS_BERCNT[23:0]  
Viterbi BER = --------------------------------------------------  
dt * Rs * 2 * CR  
Where: dt = delta time between two readings in sec (recommend 20s for 20 - 30 MBaud signals)  
Rs = Symbol rate in Baud  
CR = Viterbi code rate  
In denominator: the factor 2 is for QPSK, change it to 1 for BPSK  
e.g.  
for Rs = 27.5Mbaud, CR = 3/4 and dt = 20 sec  
RS_BERCNT[23:0] * 4  
Viterbi BER = -----------------------------------------------------------  
20 * 27.5E6 * 2 * 3  
50  
Forward Error Correction MT312  
RS_BERCNT[23:0]  
Viterbi BER = --------------------------------------------------  
8.25E8  
7.2.6 Reed Solomon Uncorrected block Errors. Registers 17 - 18 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RS UBC H  
17  
RS UBC[15:8] - Reed Solomon uncorrected block errors  
(high byte)  
R
R
00  
RS UBC L  
18  
RS UBC[7:0] - Reed Solomon uncorrected block errors (low byte)  
00  
RS UBC[15:0]: These two registers provide a measurement of the Reed Solomon uncorrected block errors.  
Reading the high byte resets the byte and stops the count incrementing. Reading the low byte resets the byte  
and restarts the count incrementing again.  
RS_UBC[15:0] *Blk_size  
Block Error Rate = -----------------------------------------------------------------  
dt *Rs *CR  
Where: dt = delta time between two readings in sec  
Rs = Symbol rate in Baud  
CR = Viterbi code rate  
Blk size = 1632 bits for DVB and 1096 bits for DSS  
In denominator: the factor 2 is for QPSK, change it to 1 for BPSK  
51  
MT312 Automatic Gain Control  
8 Automatic Gain Control  
8.1 Automatic Gain Control Read/Write Registers  
8.1.1 AGC Control. Register 39 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
AGC CTRL  
39  
Reserved Reserved  
AGC SD[1:0]  
AGC BW[2:0]  
AGC  
SL  
R/W  
26  
B7:  
Reserved.  
Reserved.  
AGC SD[1:0]  
Must be set low.  
Must be set low.  
B6:  
B5-4:  
Sigma Delta clock decimation ratio related to system clock.  
AGC SD[1:0]  
Decimation  
00  
01  
10  
11  
2
4
8
16  
Table 4 - Sigma Delta clock decimation ratio programming  
AGC control output is a pulse density modulated output created by a sigma-delta modulator. To reduce power  
consumption this is not clocked at the full system clock rate. The frequency at which this is clocked is the  
system clock divided by the decimation factor in Table 6.  
B3-1:  
B0:  
AGC BW[2:0]  
Front End AGC bandwidth (retain default value of 3).  
AGC SL Analogue AGC slope  
High = positive slope i.e. RF gain proportional to AGC voltage.  
Low = negative slope i.e. RF gain inversely proportional to AGC voltage (default).  
8.1.2 AGC REF Reference Value. Register 41 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
AGC REF[7:0] AGC reference level  
Front End AGC reference value.  
B5  
B4  
B3  
B2  
B1  
B0  
AGC REF  
41  
R/W  
67  
AGC REF[7:0]  
The AGC loop control in MT312 is designed to bring the mean square value of the I signal (or the Q signal) at  
the ADC output (prior to any digital ltering) to the value set by the AGC REF register.  
52  
Automatic Gain Control MT312  
8.2 Automatic Gain Control Read Registers  
8.2.1 Measured Signal Level at MT312 Input. Register 19 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SIG LEVEL  
19  
SIG LEVEL[11:4] - Signal level at MT312 input  
R
00  
B7-0:  
SIG LEVEL[11:4]:  
This register provides a measurement of the MT312 input signal level. It  
contains the 8 MSBs. The remaining 4 LSBs are contained in SIG LEV L  
register 107 together with the front end AGC lock status ag. In almost all  
conditions, it should only be necessary to read the high byte to determine the  
incoming signal level. If further accuracy is required, then the remaining bits of  
the lower byte should be read and the 12 bits combined into one number.  
When AGC is controlling the signal level, there is a direct relationship between SIG LEVEL and AGC REF:  
SIG LEVEL * 8 = AGC REF  
NOTE: the signal level is measured at the output of the ADC before any digital ltering takes place. Hence the  
reading includes all noise and other signal channels passed by the SAW or baseband lter.  
8.2.2 Measured AGC Feed Back Value. Registers 108 - 110 (R)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
AGC H  
AGC M  
AGC L  
108  
109  
110  
AGC[13:6] - Front end AGC (high byte)  
R
R
R
00  
00  
00  
AGC[5:0] - Front end AGC (low byte)  
ERR DB[9:8]  
ERR DB[7:0] - Error difference (low byte)  
AGC[13:0]:  
These two registers provide a measurement of the AGC error feed back value by the MT312 to  
the front end. Reading the bytes does NOT reset the value.This measurement can be used to  
provide an indication of the signal level at the input to the tuner.  
To avoid having too large a number, the following formula extracts a number less than 10000:  
Tuner input signal level = AGC[13-6] * 4 + AGC[5-4] / 64.  
ERR DB[9:0]: The ERR DB is the difference between the expected signal level dened by AGC REF and  
received signal level. This is in a non-linear logarithmic scale (hence the notation DB).  
The way H/M/L registers work within the QPSK block is as follows. When you read the H register the 24-bit  
value is dumped into a shadow register. You don't have to read M and L after this. However, what you must  
NOT do is to read M and L (or just L of a 24 or 16-bit register) without reading H. The safest solution is to read  
H/M/L in that order.  
53  
MT312 MPEG Packet Data Output  
9 MPEG Packet Data Ouput  
9.1 MPEG Clock Modes  
There are four MOCLK modes of operation, controlled by register bits.  
MANUAL MOCLK  
register 96 bit 7  
DIS SR  
register 97 bit 7  
MOCLK generation mode  
0
0
1
0
1
0
Use Symbol Rate for MOCLK generation.  
Disable use of Symbol Rate for MOCLK generation.  
Manually set MOCLK period from MOCLK RATIO  
(reg. 33).  
1
1
Use external MICLK (pin 14) signal for MOCLK.  
Table 5 - MPEG clock modes  
9.1.1 MANUAL MOCLK = 0 and DIS SR = 0.  
In this mode MOCLK is generated from the symbol clock . MOCLK will be a continuously running clock once  
symbol lock has been achieved in the QPSK block.  
9.1.2 MANUAL MOCLK = 0 and DIS SR = 1.  
In this mode MOCLK is not generated from the symbol clock but instead uses the data in the QPSK decimation  
ratio. This mode is not normally used but is available for engineering test purposes.  
9.1.3 MANUAL MOCLK = 1 and DIS SR = 0.  
This is the Programmable Clock Division Ratio mode of operation. MOCLK is generated by dividing the PLL  
clock frequency by the MOCLK RATIO + 6 see register 33 on 47.  
PLLfrequency  
MOCLK frequency = ---------------------------------------------------  
(MCLK_RATIO + 6)  
PLL frequency  
MOCLK RATIO + 6  
MOCLK frequency  
comment  
60MHz  
60MHz  
90MHz  
90MHz  
6
9
6
9
10.0MHz  
6.667 MHz  
15MHz  
maximum  
minimum  
maximum  
minimum  
10.0MHz  
Table 6 - MOCLK input minimum and maximum frequencies  
The range of values of 6 to 9 for (MOCLK RATIO + 6) will guarantee operation for 2 - 45 MSym/s. However, for  
a restricted range of symbol rates, higher (MOCLK RATIO + 6) values may be used with a lower MOCLK  
frequency. The equation in section 9.4 on 58 must be evaluated to ensure successful operation and avoid  
buffer overow in the MT312.  
54  
MPEG Packet Data Output MT312  
9.1.4 MANUAL MOCLK = 1 and DIS SR = 1.  
This is the External MPEG Clock mode of operation. The external MOCLK is input on the MICLK pin 14. The  
clock supplied must be a continuous clock, otherwise the data buffers in the MT312 would overow and data  
would be lost. The maximum permitted MICLK frequency is:  
PLLfrequency  
MICLK frequency maximum = ------------------------------------  
6.3  
Where PLL frequency is 60MHz the MICLK frequency maximum = 9.524MHz.  
Where PLL frequency is 90MHz the MICLK frequency maximum = 14.286MHz.  
As in the Programmable Clock Division Ratio mode, the minimum MICLK frequency must be high enough to  
clock the complete MPEG packet out before the next one arrives. For this reason, the minimum MICLK  
frequency recommended is 6.7MHz at 60MHz and 10MHz at 90MHz.  
The MCLKINV control bit in the Output Data Control register (96) will change the phase of the MICLK used to  
clock the data out. With MCLKINV = 0, data is clocked out on the positive edge of MICLK. If MCLKINV = 1, data  
is clocked out on the negative edge of MICLK.  
9.2 Data Output Header Format - DVB only  
188 byte packet output  
184 Transport packet bytes  
Transport  
Packet  
Header  
4 bytes  
0
1
0
0
0
1
1
1
1st byte  
2nd byte  
TEI  
MDO[7]  
MDO[0]  
Figure 22 - DVB Transport Packet Header bytes  
After decoding the 188 byte MPEG packet, it is output on the MDO pins in 188 consecutive clock cycles.  
Additionally, in DVB mode, when the EN TEI bit in the OP CTRL register (96) is set high (default), the TEI bit of  
any uncorrectable packet will automatically be set to 1, see 52. If EN TEI bit is low then TEI bit will not be  
changed (but note that if this bit is already 1, for example, due to a channel error which has not been corrected,  
it will remain high at output).  
55  
MT312 MPEG Packet Data Output  
9.3 MPEG/DSS Data Output Signals  
1st byte packet n  
MCLKIV=1  
188 (DVB) or 130 (DSS) byte packet n  
1st byte packet n+1  
MOCLK  
MDO7:0  
MOSTRT  
MOVAL  
ERR_IND = 0  
BKERR  
ERR_IND = 1  
BKERR  
Ti  
Tp  
Figure 23 - MT312 output data wave form diagram  
Figure 22 illustrates the case when ERR IND is set  
high and the De-scrambler lock remains high. If the  
rst packet shown is good, BKERR would remain  
high at the rst MOSTRT shown, going low at the  
second MOSTRT shown when that packet has  
uncorrected block errors. If the rst packet shown is  
bad, BKERR will go low at the rst MOSTRT shown  
and continue low until a good packed is received.  
All output data and signals (MDO[7:0], MOSTRT,  
MOVAL, BKERR) change on the negative edge of  
MOCLK (MCLKINV = 1) to present stable data and  
signals on the positive edge of the clock.  
A complete packet of data is output on MDO[7:0] on  
188 (DVB) or 130 (DSS) consecutive clocks and the  
MDO[7:0] pins will remain low during the inter packet  
gaps.  
MOCLK will be a continuously running clock once  
symbol lock has been achieved in the QPSK block  
and is derived from either the system clock or MICLK  
if external clock is selected. MOCLK shown in Figure  
24, Figure 25 and Figure 26 with MCLKINV = 1, the  
default state, see register 96 in 7.1.3 FEC Set Up.  
Register 97 (R/W) on page 51.  
MOSTRT goes high for the rst byte clock of a  
packet.  
MOVAL goes high on the rst byte of a packet and  
remains high until the 188th byte (DVB) or 130th byte  
(DSS) has been clocked out.  
MOCLK is the MPEG data byte rate clock, the  
internal rate is calculated from the formulae in  
section 9.4. The maximum movement in the packet  
synchronisation byte position is limited to ± one  
output clock period.  
BKERR has two modes of operation, selected by  
ERR IND bit 7 of MON CTRL register 103, see 59.  
56  
MPEG Packet Data Output MT312  
When ERR IND is High: BKERR remains high when error free MPEG packets are being output on the  
MDO[7:0] bus. BKERR goes low when there is no De-scrambler lock OR on the rst  
byte of a packet where uncorrectable bytes are detected. BKERR remains low until  
error free MPEG packets are being output on the MDO[7:0] bus.  
When ERR IND is Low: BKERR remains high when error free MPEG packets are being output on the  
MDO[7:0] bus. BKERR goes low on the rst byte of a packet where uncorrectable  
bytes are detected and will remain low until the 188th byte (DVB) or 130th byte  
(DSS) has been clocked out.  
Note: the signal on pin 75 can be inverted by setting the BKERIV bit 6 of OP CTRL register 96, see 48.  
1st byte packet n  
MCLKIV=1  
188 (DVB) or 130 (DSS) byte packet n  
1st byte packet n+1  
MOCLK  
MDO7:0  
MOSTRT  
MOVAL  
DS lock  
ERR_IND = 0  
BKERR  
ERR_IND = 1  
BKERR  
Ti  
Tp  
Figure 24 - MT312 output data wave form diagram 2  
Figure 23 illustrates the case when ERR IND is set high and the De-scrambler lock is lost during output of the  
rst packet. The rst packet shown is good, in which case BKERR would remain high at the rst MOSTRT  
shown, going low when De-scrambler lock goes low. Will go high at the next MOSTRT for a good packet.  
57  
MT312 MPEG Packet Data Output  
9.4 Data output timing  
Q*R*P PLL  
The number of PLL clocks per Byte clock is: N = ----------------- * ---------- truncated to an integer  
2*V RS  
Where: Q = 1 for QPSK, 2 for BPSK  
R = 204/193 for DVB, 147/135 for DSS  
P = 8 for parallel byte output, 1 for serial byte output  
V = Viterbi code rate, i.e. 3/4 for ASTRA  
PLL = Sampling frequency MHz  
RS = Symbol rate in MBaud, i.e. 27.5MBaud for ASTRA  
e.g. For DVB ASTRA  
N
N
= 1 * 204/193 * 8/2 * 4/3 *90E6/27.5E6  
= 18  
The transport Stream clock rate = PLL / N  
= 90E6 / 18  
= 5E6Hz  
The time to transmit a packet  
= 204 * 8/2 * 4/3 *1/RS  
= 1088 / RS  
= 3.9564E-5 sec  
Time to output 188 bytes  
The gap between packets  
= 188/5E6  
= 3.76E-5 sec  
= 3.9564E-5 - 3.76E-5  
= 1.936E-6 sec  
The gap as number of byte clocks = 1.936E-6 * 5E6  
= 9.82  
t
CLKP  
MCLKIV=1  
MOCLK  
t
CLKL  
t
OD  
MOSTRT  
MOVAL  
MDO7:0  
BKERR  
Figure 25 - MT312 output data wave form diagram 2  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Data output delay (when MCLKINV = 1)  
tOD  
±2  
±4  
ns  
58  
MPEG Packet Data Output MT312  
9.5 MPEG Packet Data Output Read/Write Registers  
9.5.1 Output Data Control. Register 96 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
OP CTRL  
96  
MANUAL  
MOCLK  
BKE  
RIV  
MCL  
KINV  
EN  
TEI  
BSO  
BA LK[2:0]  
R/W  
33  
B7:  
B6:  
MANUAL  
MOCLK  
Manual MOCLK mode selection, see register 97  
BKERIV  
High = Inverted signal on BKERR output pin.  
Low = Normal signal on BKERR output pin.  
B5:  
MCLKINV  
High = Normal signal on MOCLK output pin.  
Low = Inverted signal on MOCLK output pin.  
For a description of how to use these features, see section 9.1 MPEG Clock Modes on 55.  
With MCLKINV = 0, data is clocked out on the positive edge of MOCLK. If MCLKINV = 1, data is clocked out on  
the negative edge of MOCLK.  
B4:  
EN TEI  
High = Enable automatic setting of transport error indicator (TEI) bit in MPEG packet  
header byte 2 when the block is agged as uncorrectable by the Reed-Solomon  
decoder. See section 8.2 Data output header format - DVB only. (Not used in DSS).  
B3:  
BSO  
High = Bit serial output of the MPEG data on MDO0 pin.  
Low = Parallel output of the MPEG data on MDO[7:0] pins.  
B2 -0: BA LK[2:0] + 2 = Number of bytes for byte aligner to lock.  
The default register value of 3 is equivalent to 5 good sync words.  
9.5.2 Monitor Control. Register 103 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
MON CTRL  
103  
ERR  
IND  
Reserved  
MON CTRL[3:0]  
Monitor control  
R/W  
00  
B7:  
ERR IND  
Error Indicator.  
High  
BKERR remains high when error free MPEG packets are being output on the MDO[7:0] bus. BKERR  
goes low when there is no De-scrambler lock OR on the rst byte of a packet where uncorrectable  
bytes are detected. BKERR will remain low until error free MPEG packets are being output on the  
MDO[7:0] bus.  
Low  
BKERR remains high when error free MPEG packets are being output on the MDO[7:0] bus.  
BKERR goes low on the rst byte of a packet where uncorrectable bytes are detected and will remain  
low until the 188th byte (DVB) or 130th byte (DSS) has been clocked out.  
59  
MT312 MPEG Packet Data Output  
Note:  
the BKERR signal on pin 75 can be inverted by setting the BKERIV bit 6 of OP CTRL register 96, see  
page 37.  
B6-4:  
B3-0:  
Reserved, not used.  
MON CTRL[3:0] selects which pair of registers will be read from MONITOR H & L registers 123 and  
124, (see section 6.10 on page 48).  
MON CTRL[3:0]  
MONITOR H (123)  
MONITOR L (124)  
0
1
2
3
4
5
CS SYM I  
DC OFFSET I  
Reserved  
CS SYM Q  
DC OFFSET Q  
Reserved  
MBAUD OP H  
Reserved  
MBAUD OP L  
Reserved  
DEC RATIO[15:13]  
Reserved  
and the rest reserved  
6
7
M FLD[7:0]  
M TLD H  
M PLD H  
Not used  
M FLD7:0]  
M TLD L  
M PLD L  
Not used  
8
15 - 9  
I and Q input samples when MON CTRL[3:0] = 0.  
DC offset in the I and Q inputs when MON CTRL[3:0] = 1.  
Symbol Rate when MON CTRL[3:0] = 3, (see section 6.2.4 Monitor Registers. Registers 123 - 124 (R)).  
Decimation ratio when MON CTRL[3:0] = 5, (see 6.2.4 Monitor Registers. Registers 123 - 124 (R)).  
Timing synchroniser frequency lock detector value when MON CTRL[3:0] = 6, (see section 6.2.4 Monitor  
Registers. Registers 123 - 124 (R)).  
Timing lock detector value when MON CTRL[3:0] = 7, (see section 6.2.4 Monitor Registers. Registers 123 - 124  
(R)).  
Phase lock detector value when MON CTRL[3:0] = 8, (see section 6.2.4 Monitor Registers. Registers 123 - 124  
(R)).  
The remaining settings of MON CTRL[3:0] are either reserved for diagnostic purposes or not used.  
60  
Secondary Registers for Test and De-Bugging MT312  
10 Secondary Registers for Test and De-Bugging  
10.1 Read / Write Secondary Register Map  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Page  
AGC INIT  
AGC MAX  
40  
42  
43  
44  
45  
46  
47  
AGC INIT[7:0] Front end AGC initial value  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
3B  
FF  
00  
0A  
1E  
14  
00  
63  
63  
63  
63  
63  
63  
63  
AGC MAX[7:0] Front end AGC maximum value  
AGC MIN[7:0] Front end AGC minimum value  
AGC LK TH[7:0] Front end AGC lock threshold value  
TS AGC LK TH[7:0] Fine AGC lock threshold value  
AGC PWR SET[7:0] AGC power initial value  
AGC MIN  
AGC LK TH  
TS AGC LK TH  
AGC PWR SET  
QPSK MISC  
DAGC D  
A
MIX D CACC FOC  
TSLP CSLP ADC  
FM  
OPEN  
D
D
D
D
SNR THS LOW  
SNR THS HIGH  
TS SW RATE  
TS SW LIM L  
TS SW LIM H  
CS SW RATE 1  
CS SW RATE 2  
CS SW RATE 3  
CS SW RATE 4  
CS SW LIM  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
SNR THS LOW[7:0] SNR estimator low threshold  
SNR THS HIGH[7:0] SNR estimator high threshold  
TS SW RATE[7:0] TS sweep rate  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
5A  
46  
1E  
40  
84  
20  
48  
70  
90  
7C  
57  
85  
9B  
12  
96  
51  
3B  
27  
63  
64  
64  
64  
64  
64  
64  
64  
65  
65  
65  
65  
65  
65  
65  
66  
66  
66  
TS SW LIM L[7:0] TS sweep limit low  
TS SW LIM H[7:0] TS sweep limit high  
CS SW RATE 1[7:0] CS sweep rate  
CS-SW RATE 2[7:0] CS sweep rate  
CS SW RATE 3[7:0] CS sweep rate  
CS SW RATE 4[7:0] CS sweep rate  
CS SW LIM[7:0] CS sweep limit  
TS LPK  
TS KPROPE[11:4]  
TS LPK M  
TS KPROPE[3:0]  
TS KINTE[11:8]  
TS LPK L  
TS KINTE[7:0]  
CS KP2[4:0]  
CS KPROP H  
CS KPROP L  
CS KINT H  
NONSNR  
CS KP1[2:0]  
Reserved  
CS KI1[2:0]  
CS KP1[4:3]  
CS KI1[4:3]  
CS KP0[4:0]  
CS KI0[4:0]  
CS KI2[4:0]  
CS KINT L  
QPSK SCALE  
QPSK SCALE[7:0] QPSK output scale factor for IOUT and QOUT  
outputs  
TLD OUTLK TH  
TLD INLK TH  
FLD TH  
66  
67  
68  
69  
70  
71  
TLD OUTLK TH[7:0] TLD threshold when not in lock  
TLD INLK TH[7:0] TLD threshold when in lock  
FLD TH[7:0] Frequency lock threshold  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
82  
0A  
20  
AE  
E6  
40  
66  
66  
66  
66  
66  
66  
PLD OUTLK3  
PLD OUTLK2  
PLD OUTLK1  
SW R N MX[1:0]  
PLD OUTLK3[3:0]  
PLD OUTLK2[5:0]  
PLD OUTLK3[9:4]  
PLD OUTLK2[9:6]  
PLD O LK1  
[9:8]  
Read/Write Secondary register map  
61  
MT312 Secondary Registers for Test and De-Bugging  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Page  
PLD OUTLK0  
PLD INLK3  
PLD INLK2  
PLD INLK1  
72  
73  
74  
75  
PLD OUTLK1[7:0]  
PLD INLK3[9:4]  
PLD INLK2[9:6]  
R/W  
R/W  
R/W  
R/W  
7E  
01  
A0  
68  
66  
67  
67  
67  
Reserved  
PLD INLK3[3:0]  
PLD INLK2[5:0]  
PLD INLK1  
[9:8]  
PLD INLK0  
PLD ACC TIME  
SWEEP PAR  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
PLD INLK1[7:0]  
CS PLD MPLEN[3:0]  
SW LIM SC[1:0] TS NR SWEEP[2:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1A  
48  
49  
30  
21  
20  
10  
FF  
FF  
FF  
34  
67  
67  
68  
68  
68  
68  
69  
69  
69  
69  
69  
LOSSLOCK INT SW[3:0]  
CS NR SWEEP[2:0]  
STARTUP TIME  
LOSSLOCK TH  
FEC LOCK TM  
LOSSLOCK TM  
VIT ERRPER H  
VIT ERRPER M  
VIT ERRPER L  
VIT SETUP  
STARTUP INTERVAL[7:0]  
LOSSLOCK TH SPUR[3:0] LOSSLOCK TH SW[3:0]  
FEC LOCK TIME[7:0]  
LOSSLOCK TIME[7:0]  
VIT ERRPER[23:16] Viterbi error period (high byte)  
VIT ERRPER[15:8] Viterbi error period (middle byte)  
VIT ERRPER[7:0] Viterbi error period (low byte)  
FR AL TM O[1:0]  
SRCH CYC  
[1:0]  
SEARCH START  
[2:0]  
EX F  
LK  
VIT REF0  
VIT REF1  
VIT REF2  
VIT REF3  
VIT REF4  
VIT REF5  
VIT REF6  
VIT MAXERR  
BA SETUPT  
87  
88  
89  
90  
91  
92  
93  
94  
95  
VIT REF0[7:0] Viterbi reference byte 0  
VIT REF1[7:0] Viterbi reference byte 1  
VIT REF2[7:0] Viterbi reference byte 2  
VIT REF3[7:0] Viterbi reference byte 3  
VIT REF4[7:0] Viterbi reference byte 4  
VIT REF5[7:0] Viterbi reference byte 5  
VIT REF6[7:0] Viterbi reference byte 6  
VIT MAXERR [7:0] Viterbi max. error bit count  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
80  
14  
0A  
06  
04  
02  
01  
FF  
D4  
69  
70  
70  
70  
70  
70  
70  
70  
71  
BA FSM[1:0]  
BA MV  
[1:0]  
BA UNLK[3:0]  
PROG SYNC  
AFC SEAR TH  
CSACC DIF TH  
QPSK LK CT  
98  
99  
PROG SYNC BYTE[7:0] Enabled by FEC SETUP [2]  
AFC SEAR TH[7:0]  
R/W  
R/W  
R/W  
R/W  
47  
23  
20  
04  
71  
71  
71  
71  
100  
101  
ACC DIF TH[7:0]  
CS L LK  
HLD ST  
TS L  
LK  
ACC  
CK  
NUM PLD INT[4:0]  
QPSK ST CT  
QPSK RESET  
102  
104  
AFC  
RS  
M S  
RS  
NXT  
FR  
FCE  
ST  
FORCED ST[2:0]  
R/W  
R/W  
00  
00  
72  
72  
Reserved  
REL PR QP PR CS PR TS PR FE  
QP  
PR  
AGC  
QPSK TST CT  
QPSK TST ST  
TEST MODE  
105  
106  
125  
QPSK TEST CTRL[7:0]  
QPSK TEST TS[7:0]  
Test mode  
R/W  
R/W  
R/W  
00  
00  
00  
72  
73  
73  
Read/Write Secondary register map (continued)  
62  
Secondary Registers for Test and De-Bugging MT312  
10.2 Secondary Registers for Test and De-Bugging Read/Write Registers  
10.2.1 AGC Initial Value. Register 40 (R/W)  
AGC INIT (40)  
Default value  
Front End AGC initial value.  
59 dec.  
255 dec.  
0 dec.  
3B hex.  
FF hex.  
00 hex.  
0A hex.  
1E hex.  
AGC INIT[7:0]  
10.2.2 AGC Maximum Value. Register 42 (R/W)  
AGC MAX (42)  
Default value  
Front End AGC maximum value.  
AGC MAX[7:0]  
10.2.3 AGC Minimum Value. Register 43 (R/W)  
AGC MIN (43)  
Default value  
Front End AGC minimum value.  
AGC MIN[7:0]  
10.2.4 AGC Lock Threshold Value. Register 44 (R/W)  
AGC LK TH (44) Default value  
10 dec.  
AGC LK TH[7:0] Front End AGC lock threshold value.  
10.2.5 AGC Lock Threshold Value. Register 45 (R/W)  
TS AGC LK TH (45)  
Default value  
30 dec.  
TS AGC LK  
TH[7:0]  
Timing synchroniser ne AGC lock threshold value.  
10.2.6 AGC Power Setting Initial Value. Register 46 (R/W)  
AGC PWR SET (46) Default value  
AGC power setting initial value.  
20 dec.  
14 hex.  
AGC PWR  
SET[7:0]  
10.2.7 QPSK Miscellaneous. Register 47 (R/W)  
QPSK MISC (47)  
Default value  
Reserved, must be set low,  
0 dec.  
00 hex.  
QPSK  
MISC[B7-0]  
63  
MT312 Secondary Registers for Test and De-Bugging  
10.2.8 SNR Low Threshold Value. Register 48 (R/W)  
SNR THS LOW (48)  
Default value  
90 dec.  
5A hex.  
SNR THS  
LOW[7:0]  
SNR low threshold value.  
10.2.9 SNR HIGH Threshold Value. Register 49 (R/W)  
SNR THS HIGH (49) Default value  
Change to 50 dec. 32 hex. after a full reset.  
70 dec.  
46 hex.  
SNR THS  
HIGH[7:0]  
SNR high threshold  
value.  
10.2.10 Timing Synchronisation Sweep Rate. Register 50 (R/W)  
TS SW RATE (50)  
Default value  
30 dec.  
1E hex.  
TS SW  
Timing Synchronisation sweep rate.  
RATE[7:0]  
For DSS set the value to 20 dec. 14 hex. after a full reset.  
10.2.11 Timing Synchronisation Sweep Limit Low. Register 51 (R/W)  
TS SW LIM  
L (51)  
Default value  
64 dec.  
40 hex.  
TS SW LIM L[7:0]  
Timing Synchronisation sweep limit low.  
10.2.12 Timing Synchronisation Sweep Limit High. Register 52 (R/W)  
TS SW LIM H (52)  
Default value  
132 dec.  
84 hex.  
20 hex.  
48 hex.  
TS SW LIM  
H[7:0]  
Timing Synchronisation sweep limit high.  
10.2.13 Carrier Synchronisation Sweep Rate 1. Register 53 (R/W)  
CS SW RATE 1 (53) Default value 32 dec.  
Carrier Synchronisation sweep rate 1.  
CS SW  
RATE 1[7:0]  
10.2.14 Carrier Synchronisation Sweep Rate 2. Register 54 (R/W)  
CS SW  
Default value  
72 dec.  
RATE 2 (54)  
CS SW  
Carrier Synchronisation sweep rate 2.  
RATE 2[7:0]  
64  
Secondary Registers for Test and De-Bugging MT312  
10.2.15 Carrier Synchronisation Sweep Rate 3. Register 55 (R/W)  
CS SW  
Default value  
112 dec.  
70 hex.  
90 hex.  
7C hex.  
RATE 3 (55)  
CS SW  
Carrier Synchronisation sweep rate 3.  
RATE 3[7:0]  
10.2.16 Carrier Synchronisation Sweep Rate 4. Register 56 (R/W)  
CS SW  
Default value  
144 dec.  
RATE 4 (56)  
CS SW  
Carrier Synchronisation sweep rate 4.  
RATE 4[7:0]  
10.2.17 Carrier Synchronisation Sweep Limit. Register 57 (R/W)  
CS SW  
Default value  
124 dec.  
LIM (57)  
CS SW  
Carrier Synchronisation sweep limit.  
LIM[7:0]  
10.2.18 Timing Synchronisation Coefficients. Registers 58 - 60 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
TS LPK H  
TS LPK M  
TS LPK L  
58  
59  
60  
TS KPROPE[11:4]  
TS KINTE[7:0]  
R/W  
R/W  
R/W  
57  
85  
9B  
TS KPROPE93:0]  
TS KINTE[11:8]  
B23-12:  
B11-0:  
TS KPROPE[11:0]  
TS KINTE [11:0]  
Timing Synchronisation Proportional path coefcients.  
Timing Synchronisation Integration path coefcients.  
10.2.19 Carrier Synchronisation Proportional Part Coefficients. Registers 61 - 62 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
CS KPROP H  
61  
NON  
SNR  
CS KP2[4:0]  
CS KP1[4:3]  
R/W  
R/W  
12  
CS KROP L  
62  
CS KP1 [2:-0]  
CS KP0[p4:0]  
3B  
B15:  
NONSNR  
High = Non SNR sweep.  
B14-10:  
B9-5:  
B4-0:  
CS KP2[4:0]  
CS KP14:0]  
CS KP04:0]  
Carrier proportional tracking coefcients.  
Carrier proportional transition coefcients.  
Carrier proportional acquire coefcients.  
65  
MT312 Secondary Registers for Test and De-Bugging  
10.2.20 Carrier Synchronisation Integral Coefficients. Registers 63 - 64 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
CS KINT H  
CS KINT L  
63  
64  
Reserved  
CS KI2[4:0]  
CS KI1[4:3]  
R/W  
R/W  
51  
3B  
CS KI1[2:0]  
CS KI0[4:0]  
B15:  
Reserved  
B14-10:  
B9-5:  
CS KI2 [4:0]  
CS KI1 [4:0]  
CS KI0[4:0]  
Carrier integer tracking coefcients.  
Carrier integer transition coefcients.  
Carrier integer acquire coefcients.  
B4-0:  
10.2.21 QPSK Output Scale Factor. Register 65 (R/W)  
QPSK SCALE (65)  
Default value  
39 dec.  
27 hex.  
QPSK SCALE [7:0]  
QPSK output scale factor for IOUT and QOUT outputs.  
10.2.22 Timing Lock Detect Threshold out of lock. Register 66 (R/W)  
TLD OUTLK TH (66) Default value 130 dec.  
82 hex.  
0A hex.  
20 hex.  
TLD OUTLK TH [7:0] Timing Lock Detect threshold when not in lock.  
10.2.23 Timing Lock Detect Threshold in lock. Register 67 (R/W)  
TLD INLK TH (67)  
Default value  
10 dec.  
TLD INLK TH[7:0] Timing Lock Detect threshold when in lock.  
10.2.24 Frequency Lock Detect Threshold. Register 68  
FLD TH (68)  
Default value  
32 dec.  
FLD TH[7:0] Frequency lock detect threshold.  
66  
Secondary Registers for Test and De-Bugging MT312  
10.2.25 Phase Lock Detect Threshold out of lock. Registers 69 - 72 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
PLD OUTLK3  
69  
SW R N MX[1:0]  
PLD OUTLK3[9:4]  
R/W  
AE  
PLD OUTLK2  
PLD OUTLK1  
70  
71  
PLD OUTLK3[3:0]  
PLD OUTLK2[9:6]  
R/W  
R/W  
E6  
40  
PLD OUTLK2[5:0]  
PLD O  
LK1[9:8]  
PLD OUTLK0  
72  
PLD OUTLK1[7:0]  
R/W  
7E  
B31-30:  
SW R N MX[1:0]  
CS Sweep rate number max.  
B29-20:  
B19-10:  
B9-0:  
PLD OUTLK TH3[9:0]  
PLD OUTLK TH2[9:0]  
PLD OUTLK TH1[9:0]  
10.2.26 Phase Lock Detect Threshold in lock. Registers 73 - 76 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
PLD INLK3  
PLD INLK2  
PLD INLK1  
73  
74  
75  
Reserved  
R/W  
R/W  
01  
A0  
68  
PLD INLK3[3:0]  
PLD INLK2[5:0]  
PLD INLK2[9:6]  
PLD INLK1  
[9:8]  
PLD INLK0  
76  
PLD INLK1[7:0]  
R/W  
1A  
B31-30:  
Reserved  
B29-20:  
B19-10:  
B9-0:  
PLD INLK TH3[9:0]  
PLD INLK TH2[9:0]  
PLD INLK TH1[9:0]  
10.2.27 Phase Lock Detect Accumulator Time. Register 77 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
PLD ACC  
TIME  
77  
CS PLD MPLEN[3:0]  
LOSSLOCK INT SW[3:0]  
R/W  
48  
B7-4:  
B3-0:  
CS PLDMPLEN[3:0]  
Maximum value allowed is 8.  
LOSSLOCK INT SW[3:0]  
67  
MT312 Secondary Registers for Test and De-Bugging  
10.2.28 Sweep PAR. Register 78 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SWEEP PAR  
78  
SW LIM  
SC [1:0]  
TS NR SWEEP[2:0]  
CS NR SWEE{[2:0]  
R/W  
49  
B7-6:  
SW LIM SC[1:0]  
Frequency sweep limit scale.  
B5-3:  
B2-0:  
TS NR SWEEP[2:0]  
CS NR SWEEP[2:0]  
10.2.29 Start up Time. Register 79 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
STARTUP TIME  
79  
STARTUP INTERVAL[7:0]  
R/W  
30  
STARTUP INTERVAL[7:0]  
10.2.30 Loss Lock Threshold. Register 80 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
LOSSLOCK TH  
80  
LOSSLOCK TH SPUR[3:0]  
LOSSLOCK TH SW[3:0]  
R/W  
21  
B7-4:  
B3-0:  
LOSSLOCK TH SPUR[3:0]  
LOSSLOCK TH SW[3:0]  
10.2.31 FEC Lock Time. Register 81 (R/W)  
FEC LOCK TM (81).  
Default value  
32 dec.  
20 hex.  
FEC LOCK TM[7:0]  
The number of symbol periods which the QPSK allows for the FEC to lock after achieving carrier and timing  
synchronisation is given by :  
FEC LOCK TM * Search factor * 65536  
The parameter Search Factor is 1 if there is no code rate search and is 8 if there is a code rate search, i.e. the  
QPSK allows more time for the FEC to lock in the presence of a code rate search.  
If the FEC does not lock within the allotted number of symbol periods, then the QPSK resets the timing and  
carrier loops and resumes the search for a QPSK signal.  
68  
Secondary Registers for Test and De-Bugging MT312  
10.2.32 Loss Lock Time. Register 82 (R/W)  
LOSSLOCK TM (82)  
Default value  
16 dec.  
10 hex.  
LOSSLOCK TM[7:0]  
After the FEC locks it can unlock due to a signal fade or a cycle slip. Then the QPSK allows the following  
number of symbol periods for the FEC to regain lock :  
LOSSLOCK TM * 262144  
If the FEC does not regain lock during this number of symbol periods, then QPSK will re-acquire lock.  
10.2.33 Viterbi Error Period. Registers 83 - 85 (R/W)  
VIT ERRPER (83, 84 & 85)  
Default value  
16,777,215 dec.FF FF FF hex.  
VIT ERRPER  
[23:0]  
Viterbi error period. This is the period over which the Viterbi error count is measured. See  
registers 11, 12 & 13 on page 53.  
10.2.34 Viterbi Set up. Register 86 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
VIT SETUP  
86  
FR AL TM  
O[1:0]  
SRCH CYC  
[1:0]  
SEARCH START  
[2:0]  
EX F  
LK  
R/W  
34  
B7-6:  
FR AL TM O [1:0]  
SRCH CYC[2:0]  
Frame (or byte) align time out.  
B5-4:  
B3-1:  
Viterbi BER based search cycles.  
SEARCH START[2:0]  
Code rate search start, only one code rate may be selected.  
Code rate search start  
B6-4  
at:  
0
1
2
3
4
5
1/2  
2/3  
3/4  
5/6  
6/7  
7/8  
Table 7 - Viterbi code rate search start  
B0:  
EX F LK  
Exit false lock.  
69  
MT312 Secondary Registers for Test and De-Bugging  
10.2.35 Viterbi Reference Byte 0. Register 87 (R/W)  
VIT REF0 (87)  
Default value  
128 dec.  
20 dec.  
10 dec.  
6 dec.  
80 hex.  
14 hex.  
0A hex.  
06 hex.  
04 hex.  
02 hex.  
VIT REF0[7:0]  
Viterbi reference byte 0.  
10.2.36 Viterbi Reference Byte 1. Register 88 (R/W)  
VIT REF1 (88)  
Default value  
VIT REF1[7:0]  
Viterbi reference byte 1.  
10.2.37 Viterbi Reference Byte 2. Register 89 (R/W)  
VIT REF2 (89)  
Default value  
VIT REF2[7:0]  
Viterbi reference byte 2.  
10.2.38 Viterbi Reference Byte 3. Register 90 (R/W)  
VIT REF3 (90) Default value  
VIT REF3[7:0] Viterbi reference byte 3.  
10.2.39 Viterbi Reference Byte 4. Register 91 (R/W)  
VIT REF4 (91)  
Default value  
4 dec.  
VIT REF4[7:0] Viterbi reference byte 4.  
10.2.40 Viterbi Reference Byte 5. Register 92 (R/W)  
VIT REF5 (92)  
Default value  
2 dec.  
VIT REF5[7:0] Viterbi reference byte 5.  
10.2.41 Viterbi Reference Byte 6. Register 93 (R/W)  
VIT REF6 (93)  
Default value  
1 dec.  
01 hex.  
94 hex.  
VIT REF6[7:0] Viterbi reference byte 6.  
10.2.42 Viterbi Maximum Error. Register 94 (R/W)  
VIT MAXERR (94)  
Default value  
148 dec.  
VIT MAXERR[7:0]Viterbi maximum error.  
This register controls the frequency of the BER indication audio signal, output on the status pin when the FEC  
STAT EN register B0 is set high, see pages 11 and 50.  
70  
Secondary Registers for Test and De-Bugging MT312  
10.2.43 Byte Align Set up. Register 95 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
BA SETUP  
95  
BA FSM[1:0]  
BA MV[1:0]  
BA UNLK[3:0]  
R/W  
D4  
B7-6:  
BA FSM[1:0]  
Byte Align FSM mode.  
B5-4:  
B3-0:  
MA MV[2:0] + 5 =  
BA UNLK[3:0] +3 =  
Byte Align majority voting.  
Number of bad sync words to unlock the Byte Align. The default  
register value of 4 is equivalent to 7 bad sync words.  
10.2.44 Program Synchronising Byte. Register 98 (R/W)  
PROG SYNC (98)  
Default value  
71 dec.  
47 hex.  
PROG SYNC[7:0 ]  
If FEC SETUP[2] is high, use the PROG SYNC value to  
synchronise MPEG data packets.  
10.2.45 AFC Frequency Search Threshold. Register 99 (R/W)  
AFC SEAR TH (99)  
Default value  
35 dec.  
23 hex.  
20 hex.  
AFC SEAR TH[7:0]  
10.2.46 Accumulator Differential Threshold. Register 100 (R/W)  
CSACC DIFF TH (100)  
Default value  
32 dec.  
CSACC DIFF TH[7:0]  
10.2.47 QPSK Lock Control. Register 101 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QPSK LK CT  
101  
CS  
L LK  
TS  
L LK  
ACC  
CK  
NUM PLD INT[4:0]  
R/W  
04  
B7:  
CS L LK  
TS L LK  
ACC CK  
High = Use CS long lock.  
B6:  
High = Use TS long lock.  
B5:  
High = Disable Accumulator check option.  
Maximum value allowed is 29.  
B4-0:  
NUM PLD INT[4:0]  
71  
MT312 Secondary Registers for Test and De-Bugging  
10.2.48 QPSK State Control. Register 102 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QPSK ST CT  
102  
HLD  
ST  
AFC  
RS  
M S  
RS  
NXT  
FR  
FCE  
ST  
FORCED ST[2:0]  
R/W  
00  
B7:  
HLD ST  
AFC RS  
M S RS  
NXT FR  
FCE ST  
High = Hold state.  
High = AFC reset.  
B6:  
B5:  
High = Mixer scan reset.  
High = Get next frequency.  
High = Force state.  
Forced state.  
B4:  
B3:  
B2-0:  
FORCED ST[2:0]  
10.2.49 QPSK Reset. Register 104 (R/W)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QPSK RESET  
104  
Reserved  
REL  
QP  
PR  
QP  
PR  
CS  
PR  
TS  
PR  
FE  
PR  
AGC  
R/W  
00  
B7-6:  
Reserved Must be set low.  
B5:  
B4:  
B3:  
B2:  
B1:  
B0:  
REL QP  
PR QP  
PR CS  
PR TS  
High = Release QPSK FSM.  
High = Partial reset FSM (applies to QPSK control).  
High = Partial reset carrier synchroniser  
High = Partial reset timing synchroniser (includes ne AGC).  
High = Partial reset front-end logic.  
PR FE  
PR AGC  
High = Partial reset analogue AGC.  
10.2.50 QPSK Test Control. Register 105 (R/W)  
QPSK TST CT (105)  
Default value  
0 dec.  
00 hex.  
QPSK TEST CTRL[7:0]  
For factory test purposes only.  
72  
Secondary Registers for Test and De-Bugging MT312  
10.2.51 QPSK Test State. Register 106 (R/W)  
QPSK TEST ST (106)  
Default value  
0 dec.  
00 hex.  
QPSK TEST ST[7:0]  
For factory test purposes only.  
10.2.52 Test Mode. Register 125 (R/W)  
TEST MODE (125)  
Default value  
0 dec.  
00 hex.  
TEST MODE[7:0]:  
This register is for testing purposes only.  
10.3 Read only Secondary Register Map  
Writing to these registers will have no effect.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
TEST R  
107  
TEST R[7:0] Test Read, for test purposes only.  
R
00  
10.4 Secondary Registers for Test and De-Bugging Read Register  
10.4.1 Test Read. Register 107 (R)  
TEST R (107) Default value0 dec.00 hex.  
TEST R[7:0]For test purposes only.  
73  
MT312 Microprocessor Control  
11 Microprocessor Control  
11.1 Primary 2-Wire Bus Address  
The 2-wire bus Address is determined by applying VDD or VSS to the ADDR[7:1] pins. See 11.3 Primary 2-  
Wire Bus Interface.  
11.2 RADD: 2-Wire Register Address (W)  
RADD is the 2-wire register address. It is the rst byte written after the MT312 2-wire chip address when in  
write mode.  
To write to the chip, the microprocessor should send a START condition and the chip address with the write bit  
set, followed by the register address where subsequent data bytes are to be written. Finally, when the  
'message' has been sent, a STOP condition is sent to free the bus.  
To read from the chip from register address zero, the microprocessor should send a START condition and the  
chip address with the read bit set, followed by the requisite number of CLK1 clocks to read the bytes out.  
Finally a STOP condition is sent to free the bus. RADD is not sent in this case.  
To read from the chip from an address other than zero, the microprocessor should send the chip address with  
the write bit set, followed by the register address where subsequent data bytes are to be read. Then the  
microprocessor should send a START condition and the chip address with the read bit set, followed by the  
requisite number of CLK1 clocks to read the bytes out. Finally a STOP condition is sent to free the bus  
A STOP condition shall reset the RADD value to 00. For examples of use, see 74.  
RADD (virtual register, address none)  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RADD  
N/A  
IAI  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
W
-
B7:  
IAI  
High = Inhibit auto increment.  
Low = Increment addresses.  
B6-0:  
AD[6:0]  
2-wire register address, numbers in the range 0 to 127 are allowed.  
When the register address is incremented to 127 it stops and the bus will continue to write to or read from  
register 127 until a STOP condition is sent.  
11.3 Primary 2-Wire Bus Interface  
The primary 2-wire bus serial interface uses pins:  
DATA1 (pin 54) Serial data, the most signicant bit is sent rst.  
CLK1 (pin 53) Serial clock.  
The 2-wire bus Address is determined by applying VDD or VSS to the ADDR[7:1] pins.  
For compatibility with VP310, the 2-wire bus Address should be 0001 110 R/ and the pins connected as follows:  
74  
Microprocessor Control MT312  
ADDR[7]  
VSS  
ADDR[6]  
VSS  
ADDR[5]  
VSS  
ADDR[4]  
VDD  
ADDR[3]  
VDD  
ADDR[2]  
VDD  
ADDR[1]  
VSS  
When the MT312 is powered up, the RESET pin 49 should be maintained low for typically 250ms (minimum  
100ms) after VDD has reached normal operation levels. This is to ensure that the crystal oscillator and internal  
PLL have become fully established and that the internal reset signal is fully clocked into all parts of the circuit.  
As the reset pin is pulled high, the logic levels on ADDR[7:1] are latched to become the 2-wire bus address  
ADDR[7:1]. ADDR[0] is the R/W bit.  
IIN[5:1] are only used for test purposes and should be wired to VSS.  
The circuit works as a slave transmitter with the eighth bit set high or as a slave receiver with the eighth bit set  
low. In receive mode, the rst data byte is written to the RADD virtual register, which forms the register sub-  
address.  
Bit 7 of the RADD register, IAI is an Inhibit Auto Increment function. When the IAI bit is set high, the automatic  
incrementing of register addresses is inhibited. IAI set low is the normal situation so that data bytes sent on the  
2-wire bus after the RADD register data are loaded into successive registers. This automatic incrementing  
feature avoids the need to individually address each register.  
Following a valid chip address, the 2-wire bus STOP command resets the RADD register to 00. If the chip  
address is not recognised, the MT312 will ignore all activity until a valid chip address is received. The 2-wire  
bus START command does NOT reset the RADD register to 00. This allows a combined 2-wire bus message,  
to point to a particular read register with a write command, followed immediately with a read data command. If  
required, this could next be followed with a write command to continue from the latest address. RADD would  
not be sent in this case. Finally a STOP command should be sent to free the bus.  
When the 2-wire bus is addressed (after a recognised STOP command) with the read bit set, the rst byte read  
out shall be the content of register 00.  
11.4 Secondary 2-Wire Bus for Tuner Control  
The MT312 has a General Purpose Port that can be congured to provide a secondary 2-wire bus with full bi-  
directional operation. When pass-through is enabled, a transparent connection is made to the tuner. This  
innovative design simplies the software required to program the tuner to only ve data bytes.  
Pass-through mode is selected by setting register (20) GPP CTRL[B6] = 1.  
The allocation of the pins is: GPP[0] pin 44 = CLK2, GPP[1] pin 45 = DATA2.  
75  
MT312 Microprocessor Control  
11.5 Examples of 2-Wire Bus Messages  
KEY:  
S
P
A
Start condition  
Stop condition  
Acknowledge  
MT312 output  
W
R
Write (= 0)  
Read (= 1)  
NA  
NOT Acknowledge  
ITALICS  
RADD Register Address  
Write operation - as a slave receiver:  
S
DEVICE  
ADDRESS  
W
A
RADD  
(n)  
A
DATA  
(reg n)  
A
DATA  
(reg n+1)  
A
P
P
Read operation - MT312 as a slave transmitter:  
S
DEVICE  
R
A
DATA  
A
DATA  
A
DATA  
NA  
ADDRESS  
(reg 0)  
(reg 1)  
(reg 2)  
Write/read operation with repeated start - MT312 as a slave transmitter:  
S
DEVICE  
ADDRESS  
W
A
RADD  
(n)  
A
S
DEVICE  
ADDRESS  
R
A
DATA  
(reg n)  
A
DATA  
(reg n+1)  
NA  
P
Write / read / write operation with repeated start and auto increment off with IAI set high - MT312 as a slave  
transmitter. This example uses the GPP CTRL register where the register address is 20 + 128 (IAI). Data is rst  
read from the GPP CTRL register, then following a restart, data is written to the GPP CTRL register.  
S
DEVICE  
ADDRESS  
W
A
RADD  
(148)  
A
S
DEVICE  
ADDRESS  
R
A
DATA  
(reg 20)  
NA  
S
DEVICE  
ADDRESS  
W
A
DATA  
(reg 20)  
A
P
To program the Tuner, use the following sequence of three messages:  
Open secondary 2-wire port:  
S
MT312  
ADDRESS  
W
A
GPP CTRL  
(20)  
A
A
A
DATA  
(64)  
A
A
A
P
Program Tuner:  
S
TUNER  
ADDRESS  
W
A
DATA  
(BYTE 2)  
DATA  
(BYTE 3)  
DATA  
(BYTE 4)  
A
DATA  
A
P
(BYTE 5)  
Close secondary 2-wire port:  
S
MT312  
ADDRESS  
W
A
GPP CTRL  
(20)  
DATA  
(0)  
P
Always close the secondary 2-wire port after programming the Tuner, to avoid 2-wire bus clock interference in  
the Tuner.  
76  
Microprocessor Control MT312  
11.6 Primary 2-Wire Bus Timing  
t
BUFF  
Sr  
P
DATA1  
CLK1  
t
LOW  
t
R
t
F
P
S
t
HD;STA  
t
HD;DAT  
t
HIGH  
t
SU;DAT  
t
SU;STA  
t
SU;STO  
Figure 26 - One DiSEqCdata byte - 0x11 (hex) plus parity bit  
Where: S = Start  
Sr = Restart, i.e. Start without stopping rst.  
P = Stop.  
Value  
Parameter: Primary 2-wire bus only  
Symbol  
Unit  
Min  
Max  
CLK1 clock frequency  
fCLK  
tBUFF  
tHD;STA  
tLOW  
0
450  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bus free time between a STOP and START condition.  
Hold time (repeated) START condition.  
LOW period of CLK1 clock.  
200  
200  
450  
600  
200  
100  
100  
HIGH period of CLK1 clock.  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tR  
Set-up time for a repeated START condition.  
Data hold time (when input).  
Data set-up time  
Rise time of both CLK1 and DATA1 signals.  
Rise time of both CLK1 and DATA1 signals, (100pF to ground)  
Set-up time for a STOP condition.  
note 1  
tF  
20  
tSU;STO  
200  
Table 8 - Primary 2-wire bus timing  
Note 1.The rise time depends on the external bus pull up resistor.  
77  
MT312 Electrical Characteristics  
12 Electrical Characteristics  
12.1 Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Core power supply voltage  
Core power supply current  
Power supply voltage  
CVDD  
CIDD  
VDD  
1.62  
1.8  
130  
3.3  
1.98  
150  
3.6  
V
mA  
V
3.0  
9.99  
0
Power supply current  
IDD  
170  
180  
16.00  
450  
70  
mA  
MHz  
kHz  
°C  
Input clock frequency 1  
CLK1 clock frequency  
XTI  
FCLK1  
Ambient operating temperature  
Table 9 - Recommended operating conditions  
Note 1. When not using a crystal, XTI may be driven from an external source over the frequency range shown.  
12.2 Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Power supply  
VDD  
VI  
-0.3  
-0.3  
-0.3  
+3.6  
5.5  
V
V
V
Voltage on input pins (5 v rated)  
Voltage on input pins (3.3v rated)  
VI  
VDD +  
0.3  
Voltage on input pins (1.8v rated)  
VI  
-0.3  
CVDD +  
0.3  
V
Voltage on output pins (5v rated)  
Voltage on output pins (3.3v rated)  
VO  
VO  
-0.3  
-0.3  
5.5  
V
V
VDD +  
0.3  
Voltage on output pins (1.8v rated)  
VO  
-0.3  
CVDD +  
0.3  
V
Storage temperature  
TSTG  
TOP  
TJ  
-55  
0
150  
70  
°C  
°C  
°C  
Operating ambient temperature  
Junction temperature  
125  
Table 10 - Maximum operating conditions  
Note: Stresses exceeding these listed under Absolute Ratingsmay induce failure. Exposure to absolute  
maximum ratings for extended periods may reduce reliabilty. Functionality at or above these conditions is not  
implied.  
78  
Electrical Characteristics MT312  
12.3 Crystal Specication  
Parallel resonant fundamental frequency (preferred)  
Tolerance over operating temperature range  
Tolerance overall  
9.99 to 16.00MHz.  
±25ppm.  
±50ppm.  
30pF.  
Nominal load capacitance  
Equivalent series resistance  
<35  
XTI  
XTO  
33pF  
33pF  
GND  
Figure 27 - Crystal oscillator circuit  
NOTE: The crystal frequency should be chosen to ensure that the system clock would marginally exceed the  
maximum symbol rate required. See 59.  
12.4 DC Electrical Characteristics  
Parameter  
Conditions / Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Core operating voltage  
CVDD  
VDD  
1.62  
3.0  
1.8  
3.3  
130  
1.98  
3.6  
V
V
Peripheral operating voltage  
Average core power supply  
current  
CIDD  
150  
mA  
Average peripheral power  
supply current  
IDD  
170  
1
180  
2
mA  
mA  
V
Average supply current  
Stand-by Mode  
Output levels VOH  
Tri-state push pull  
1 mA drive current.  
VOH  
0.80  
VDD  
0.92  
VDD  
IIN, QIN, TESTCLK,  
MDO, MOVAL, MOSTRT,  
MOCLK, BKERR,  
DISECQ, STATUS  
Output levels VOL  
Tri-state push pull  
1 mA drive current,  
Pins as VOH.  
0.2  
0.4  
V
Output level open drain  
4 mA drive current.  
6 mA drive current.  
0.4  
0.6  
V
V
AGC, DATA1, IRQ,  
GPP<2:0>  
Input levels VIH CMOS  
Input levels VIH CMOS  
Input levels VIL CMOS  
Input leakage Current  
3.3V input  
5.0V input  
VIH  
VIH  
VIL  
0.7VDD  
0.7VDD  
V
V
0.3VDD  
10  
V
VIN = 0 and VDD  
µA  
Table 11 - DC electrical characteristics  
79  
MT312 Electrical Characteristics  
12.5 MT312 Pinout Description  
Pin  
Name  
Description  
I/O  
Note  
V
mA  
4,5,6,7,8,11,12 ADDR[7:1] Primary 2-wire bus address dening pins  
I/O  
I
CMOS  
CMOS  
3.3  
1
1
14  
MICLK  
MPEG clock input used to generate  
MOCLK. Enabled when both register 96  
bit 7 and register 97 bit 7 are set high. In  
this mode, MICLK must be continuous.  
5
16  
18  
19  
TESTCLK  
XTI  
External ADC mode clock.  
O
I
PECL  
CMOS  
CMOS  
Tri-  
state  
3.3  
Crystal clock input or external reference  
clock input.  
3.3  
3.3  
XTO  
Crystal output. An internal feedback  
resistor to XTI is included  
O
23  
26  
27  
28  
29  
32  
33  
34  
35  
38  
39  
PLL1  
VRT  
Phase Locked Loop test output  
ADC Voltage top reference level  
I channel de-coupling input  
I channel input  
23  
26  
IREF  
I
I
I
ISINGP  
NC  
No connection  
VRM  
ADC Voltage middle reference level  
Q channel input  
QSINGP  
QREF  
VRB  
I
I
Q channel de-coupling input  
ADC Voltage bottom reference level  
Bias level  
RREF  
TEST1  
For factory test only. This pin must be  
connected to VSS in normal operation  
I
I
CMOS  
CMOS  
3.3  
3.3  
40  
43  
TEST2  
AGC  
For factory test only. This pin must be  
connected to VSS in normal operation  
1
AGC sigma-delta output  
O
I/O  
Open  
drain  
5
6
6
1
46,45,44  
GPP[2:0]  
(DISEQC2) register dened.  
General Purpose Port for tuner control,  
Open  
drain  
5
GPP0 = secondary CLK2,  
GPP1 = secondary DATA2,  
GPP2 = DiSEqCv2.2 input signal.  
47  
48  
49  
52  
DISEQC1  
DISEQC0  
RESET  
DiSEqCHorizontal/Vertical control  
DiSEqCTM 22kHz output  
O
O
I
CMOS  
CMOS  
CMOS  
CMOS  
3.3  
3.3  
1
1
1
Active low reset input  
5
STATUS  
Audio BER or Status output, register  
O
3.3  
1
dened  
80  
Electrical Characteristics MT312  
Note 1.8V tolerant pins with thresholds related to 3.3V.  
Pin  
Name  
Description  
I/O  
Note  
V
mA  
1
53  
54  
CLK1  
2-wire serial bus clock  
I
CMOS  
5
5
1
1
DATA1  
2-wire serial bus data  
I/O  
Open  
drain  
6
6
57  
IRQ  
Active low interrupt output. A low output  
on this pin indicates an event has  
O
Open  
drain  
5
occurred and the microprocessor should  
read the interrupt registers. Reading all  
interrupt registers resets this pin.  
58  
MOCLK  
MDO[7:0]  
MDOEN  
MOVAL  
MPEG clock output at the data byte rate.  
O
O
I
CMOS  
Tri-  
state  
3.3  
3.3  
1
1
69,68,66,65,  
64,63,61,59  
MPEG transport packet data output bus.  
CMOS  
Tri-  
state  
1
71  
72  
75  
76  
Logic 1 = MPEG data and clock outputs  
disable - Tri-state. Logic 0 = MPEG data  
and clock outputs enable  
CMOS  
5
MPEG data output valid. This pin is high  
during the MOCLK clock cycles when  
valid data bytes are being output.  
O
O
O
CMOS  
Tri-  
state  
3.3  
3.3  
3.3  
1
1
1
BKERR  
Active low uncorrectable block indicator  
OR no signal indicator selected by ERR  
IND bit 7 of MON CTRL register.  
CMOS  
Tri-  
state  
MOSTRT  
MPEG output start signal, high on the  
rst byte of a packet.  
CMOS  
Tri-  
state  
2,9,17,42,50,  
55,62,67  
CVDD  
VDD  
Core Digital CVDD. All pins must be  
connected.  
1.8  
3.3  
1.8  
3.3  
3.3  
13,73  
Peripheral VDD. All pins must be  
connected.  
37  
ADCAVDD ADC core analogue VDD. All pins must  
be connected.  
30  
ADCDVDD ADC core digital VDD. All pins must be  
connected.  
25  
ADCFVDD ADC core front end VDD. All pins must  
be connected.  
21  
PLLVDD  
CVSS  
PLL VDD. All pins must be connected.  
Digital VSS. All pins must be connected.  
1.8  
0
1,10,20,41,51,  
60,70  
15,56,74  
VSS  
Peripheral VSS. All pins must be  
connected.  
0
0
0
36  
ADCAGND ADC core analogue VSS. Must be  
connected to analogue GND.  
31  
ADCDGND ADC core digital VSS. Must be  
connected to analogue GND.  
81  
MT312 Electrical Characteristics  
Pin  
Name  
Description  
I/O  
Note  
V
mA  
1
53  
24  
CLK1  
2-wire serial bus clock  
I
CMOS  
5
ADCFGND ADC core front end VSS. Must be  
connected to analogue GND.  
0
0
22  
PLLGND  
PLL VSS. Must be connected to  
analogue GND.  
77,78,79,80,3  
IIN[5:1]  
Test bus, all inputs must be connected to  
VSS.  
I/O  
CMOS  
3.3  
1
Note 1. 8V tolerant pins with thresholds related to 3.3V.  
12.6 Alphabetical Listing of Pin-Out  
FUNCTION  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
ADCAGND  
ADCAVDD  
ADCDVDD  
ADCDGND  
ADCFGND  
ADCFVDD  
ADDR[1]  
ADDR[2]  
ADDR[3]  
ADDR[4]  
ADDR[5]  
ADDR[6]  
ADDR[7]  
AGC  
36  
37  
30  
31  
24  
25  
12  
11  
8
CVDD  
CVDD  
17  
42  
50  
62  
67  
1
IIN[4]  
IIN[5]  
78  
77  
27  
57  
28  
59  
61  
63  
64  
65  
66  
68  
69  
71  
14  
PLLVDD  
QREF  
QSINGP  
RESET  
RREF  
STATUS  
TEST1  
TEST2  
TESTCLK  
VRB  
21  
34  
33  
49  
38  
52  
39  
40  
16  
35  
32  
26  
13  
55  
73  
CVDD  
IREF  
CVDD  
IRQ  
CVDD  
ISINGP  
MDO[0]  
MDO[1]  
MDO[2]  
MDO[3]  
MDO[4]  
MDO[5]  
MDO[6]  
MDO[7]  
MDOEN  
MICLK  
CVSS  
CVSS  
10  
20  
41  
51  
60  
70  
54  
45  
48  
CVSS  
CVSS  
7
CVSS  
6
CVSS  
VRM  
5
CVSS  
VRT  
4
DATA1  
DATA2/GPP1  
VDD  
43  
75  
CVDD  
VDD  
BKERR  
DISEQC0  
22kHz  
CLK1  
53  
44  
DISEQC1 HV  
47  
46  
MOCLK  
58  
76  
VSS  
VSS  
15  
56  
CLK2/GPP0  
DISEQC2/  
GPP2  
MOSTRT  
NC  
29  
2
IIN[1]  
IIN[2]  
IIN[3]  
3
MOVAL  
PLL1  
72  
23  
22  
VSS  
XTI  
74  
18  
19  
CVDD  
CVDD  
80  
79  
9
PLLGND  
XTO  
Table 12 - Alphabetical listing of pin-out  
82  
Application Diagram MT312  
13 Application Diagram  
C
E
I I N 5  
I I N 4  
I I N 3  
I I N 2  
I I N 1  
7 7  
7 8  
7 9  
8 0  
3
D A T A 2 / G P P 1  
4 5  
C L K 2 / G P P 0  
4 4  
D A T A 2  
A D D R 1  
V S S  
7 4  
C L K 2  
1 2  
1 1  
8
7
6
A D D R 2  
A D D R 3  
A D D R 4  
A D D R 5  
A D D R 6  
A D D R 7  
C V S S  
7 0  
C V S S  
6 0  
V S S  
5 6  
C V S S  
5 1  
C V S S  
4 1  
5
4
C V S S  
2 0  
V S S  
1 5  
T E S T 2  
4 0  
T E S T C L K  
T E S T 1  
3 9  
1 6  
P L L V D D  
P L L G N D  
P L L 1  
X T O  
1 9  
2 1  
2 2  
2 3  
X T I  
1 8  
C V S S  
1 0  
C V S S  
1
Figure 28 - Application Schematic  
83  
MT312 Register Map  
14 MT312 Register Map  
RADD is a virtual register with no address containing the address of the register to be accessed. It is written  
immediately after the 2-wire write address.  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RADD  
N/A  
IAI  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
W
-
14.1 Read / Write Register Map  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Page  
GPP CTRL  
RESET  
20  
21  
22  
23  
24  
25  
26  
Reserved 2W PAS  
GPP DIR[2:0]  
PR QP  
GPP PIN[2:0]  
PR BA  
R/W  
20  
00  
00  
1B  
80  
44  
00  
25  
21  
30  
36  
36  
38  
39  
FR 312  
PR 312  
HV  
FR QP  
FR VIT  
PR VIT  
PR DS R/W  
R/W  
DISEQC MODE  
SYM RATE H  
SYM RATE L  
VIT MODE  
Reserved  
DISEQC instruction length  
22kHz mode  
SEARCH Reserved  
SYM RATE[13:8] in MBaud )high byte)  
SYM RATE[7:0] in MBaud (low byte)  
CR 7/8 CR 6/7 CR 5/6 CR 3/4  
R/W  
R/W  
AUT IQ  
V IQ SP  
CR 2/3  
CR 1/2 R/W  
QPSK CTRL  
Reserved Q IQ SP Reserved Reserved Reserved AFC M Reserved ROLL R/W  
20  
GO  
27  
28  
29  
30  
31  
32  
33  
Reserved  
GO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00  
00  
00  
00  
00  
00  
14  
40  
40  
40  
40  
47  
41  
47  
IE QPSK H  
IE QPSK M  
IE QPSK L  
IE FEC  
IE QPSK[23:16] Interrupt enable QPSK (high byte)  
IE QPSK[15:8] Interrupt enable QPSK (middle byte)  
IE QPSK[7:0] Interrupt enable QPSK (low byte)  
IE FEC[7:0] Interrupt enable FEC  
QPSK STAT EN  
FEC STAT EN  
QPSK STAT EN[7:0] Enable various QPSK outputs on STATUS pin  
MOCLK RATIO[3:0]  
DS Lock BA lock VIT lock  
BER  
tog  
SYS CLK  
DISEQC RATIO  
DISEQC INSTR  
FR LIM  
34  
35  
36  
37  
38  
39  
SYS CLK[7:0] - System clock frequency x2 in MHz  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00  
00  
00  
00  
00  
26  
23  
30  
31  
26  
27  
52  
DISEQC RATIO[7:0]  
DISEQC Instruction[7:0]  
Reserved  
FR LIM[6:0] - Freq. Limit in MHz  
FR OFF[7:0] - Freq. Offset in MHz  
FR OFF  
AGC CTRL  
Reserved Reserved  
AGC SD[1:0]  
AGC BW[2:0]  
AGC  
SL  
AGC REF  
OP CTRL  
41  
96  
AGC REF[7:0] AGC reference level  
R/W  
R/W  
67  
03  
52  
59  
MANUAL BKERIV MCLKINV  
MOCLK  
EN TEI  
BSO  
BA LK[2:0]  
FEC SETUP  
97  
DIS SR  
ENCLKO  
DIS DS  
DIS RS  
DIS VIT  
EN  
PRS  
DS LK[1:0]  
R/W  
00  
48  
MON CTRL  
103 ERR IND  
121  
Reserved  
MON CTRL[3:0] Monitor control  
R/W  
R/W  
00  
00  
59  
31  
DISEQC2  
CTRL1  
DISEQC2 CTRL1[7:8]  
84  
Register Map MT312  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Page  
DISEQC2  
CTRL2  
122  
MIN PULS PER  
TONE EXT PER  
MAX TONE PER  
R/W  
R/W  
D4  
32  
CONFIG  
127  
312 EN  
DSS B  
DSS A  
BPSK  
PLL FACTOR[1:0]  
CRYS15  
ADC  
EXT  
08  
22  
14.2 Read Only Register Map  
Writing to these registers will have no effect  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Page  
QPSK INT H  
QPSK INT M  
QPSK INT L  
FEC INT  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
108  
109  
110  
QPSK INT[23:16] Interrupt QPSK (high byte)  
QPSK INT [15:8] Interrupt QPSK (middle byte)  
QPSK INT [7:0] Interrupt QPSK (low byte)  
FEC INT[7:0] Interrupt FEC  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
42  
42  
42  
48  
44  
44  
49  
27  
27  
49  
49  
50  
50  
50  
50  
50  
50  
51  
51  
53  
85  
85  
85  
28  
28  
28  
28  
28  
44  
44  
33  
QPSK STAT H  
QPSK STAT L  
FEC STATUS  
LNB FREQ H  
LNB FREQ L  
M SNR H  
QPSK STATUS[15:8] (high byte)  
QPSK STATUS[7:0] (low byte)  
FEC STATUS[7:0]  
LNB FREQ[15:8] Measured LNB frequency error (high byte)  
LNB FREQ [7:0] Measured LNB frequency error (low byte)  
M SNR[14:8] Measured SNR (high byte)  
Reserved  
M SNR L  
M SNR [7:0] Measured SNR (low byte)  
VIT ERRCNT H  
VIT ERRCNT M  
VIT ERRCNT L  
RS BERCNT H  
RS BERCNT M  
RS BERCNT L  
RS UBC H  
VIT ERRCNT[23:16] - Viterbi error count (high byte)  
VIT ERRCNT[15:8] - Viterbi error count (middle byte)  
VIT ERRCNT[7:0] - Viterbi error count (low byte)  
RS BERCNT[23:16] - Reed Solomon bit errors corrected (high byte)  
RS BERCNT[15:8] - Reed Solomon bit errors corrected (middle byte)  
RS BERCNT[7:0] - Reed Solomon bit errors corrected (low byte)  
RS UBC[15:8] - Reed Solomon uncorrected block errors (high byte)  
RS UBC[7:0] - Reed Solomon uncorrected block errors (low byte)  
SIG LEVEL[11:4] - Signal level at MT312 input  
RS UBC L  
SIG LEVEL  
AGC H  
AGC (23:16] - Front end AGC (high byte)  
AGC M  
AGC[15:8] - Front end AGC (middle byte)  
AGC L  
AGC[7:0] - Front end AGC (low byte)  
FREQ ERR1 H 111  
FREQ ERR1 M 112  
FREQ ERR1[23:16] Input frequency error course (high byte)  
FREQ ERR1[15:8] Input frequency error course (middle byte)  
FREQ ERR1[7:0] Input frequency error course (low byte)  
FREQ ERR2[15:8] Input frequency error ne (high byte)  
FREQ ERR2[7:0] Input frequency error ne (low byte)  
SYM RAT OP[15:8] Symbol Rate Output (high byte)  
SYM RAT OP[7:0] Symbol Rate Output (low byte)  
DISEQC2 INT[7:0]  
FREQ ERR1 L  
FREQ ERR2 H 114  
FREQ ERR2 L 115  
113  
SYM RAT OP H 116  
SYM RAT OP L 117  
DISEQC2 INT  
118  
85  
MT312 Register Map  
Def  
hex  
NAME  
ADR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Page  
DISEQC2 STAT 119  
DISEQC2 FIFO 120  
DISEQC2 STATUS[7:0]  
DISEQC2 FIFO[7:0]  
R
R
R
R
R
00  
00  
00  
00  
03  
34  
34  
45  
45  
23  
MONITOR H  
MONITOR L  
ID  
123  
124  
126  
MONITOR[15:8] Monitor (high byte)  
MONITOR[7:0] Monitor (low byte)  
ID[7:0] Chip identication.  
86  
Index MT312  
15 INDEX  
Numerics  
E
312_EN ................................................................ 22  
EN_ TE ................................................................59  
EN_PRS ..............................................................48  
EN_TEI ................................................................55  
ENCLKO ..............................................................48  
ERR_IND .............................................................84  
A
ADCEXT ........................................................ 19, 22  
AFC ..................................................................... 39  
AGC .............................................................. 52, 85  
AGC_SD .............................................................. 52  
F
FEC_INT ..............................................................85  
FEC_SETUP ..................................................48, 84  
FEC_STAT_EN ........................................12, 47, 84  
FEC_STATUS ..........................................16, 24, 85  
FIFO_BUFFER ....................................................33  
FR ........................................................................27  
FR_312 ................................................................84  
FR_LIM ..........................................................20, 84  
FR_OFF .........................................................27, 84  
FR_QP .................................................................21  
FR_VIT ................................................................21  
FREQ_ERR1 2 .......................................................8  
FREQ_ERR2 H ....................................................28  
B
BKERR ................................................................ 59  
BPSK ................................................................... 19  
BSO ..................................................................... 59  
C
CLK1 ................................................................... 74  
CONFIG .................................................. 19, 22, 85  
CR 1/2 ................................................................. 38  
CR 2/3 ................................................................. 38  
CR 3/4 ................................................................. 38  
CR 5/6 ................................................................. 38  
CR 6/7 ................................................................. 38  
CR 7/8 ................................................................. 38  
CRYS .................................................. 15 19, 22, 85  
CS_SYM .............................................................. 60  
G
GC .................................................................20, 84  
GO ...........................................................20, 40, 84  
GPP_CTRL ..............................................17, 25, 84  
D
DATA1 .................................................................. 74  
DC offset ............................................................. 60  
DEC_RATIO ........................................................ 60  
DIS_DS ............................................................... 48  
DIS_RS ............................................................... 48  
DIS_SR ............................................................... 54  
DIS_VIT ............................................................... 48  
DISEQC ............................................................... 17  
DISEQC_INSTR ...................................... 17, 30, 84  
DISEQC_MODE ................................ 17, 20, 31, 84  
DISEQC_RATIO ............................................ 30, 84  
DiSEqC.............................................. 1, 3, 10, 34  
DISEQC2 ............................................................. 17  
DISEQC2_ CTRL1 ............................................... 84  
DISEQC2_ CTRL2 ............................................... 85  
DISEQC2_CTRL1 ................................................ 17  
DISEQC2_FIFO ............................................. 17, 35  
DISEQC2_INT ............................................... 17, 85  
DISEQC2_STAT ................................................... 86  
DISEQC2_STATUS .............................................. 33  
DS_LK ........................................................... 48, 84  
DSS ............................................................... 14, 19  
DSS_A ................................................................ 19  
DSS_B .......................................................... 19, 22  
DVB ..................................................................... 14  
H
HV .......................................................................30  
I
IAI ........................................................................74  
ID .........................................................................86  
IE_FEC ....................................................11, 47, 84  
IE_QPSK .......................................................40, 84  
K
KERR ...................................................................56  
L
LNB .....................................................................85  
LNB_FREQ ..........................................................85  
M
M_FLD ...........................................................45, 60  
M_PLD .................................................................60  
M_SNR ................................................................85  
M_TLD ...........................................................45, 60  
MANUAL_MOCLK ..........................................54, 59  
MAX_TONE_PER ................................................32  
MBAUD_OP ...................................................45, 60  
87  
MT312 Index  
MCLKINV .......................................................56, 59  
MICLK ..................................................................48  
MIN_PULS ...........................................................85  
MOCLK ..........................................................48, 56  
MOCLK_RATIO ........................................ 47, 48, 54  
MON_CTRL .........................................................84  
MONITOR ............................................................86  
MOSTRT ..............................................................56  
MOVAL ................................................................56  
R
RADD .............................................................18, 74  
REL ..................................................................... 72  
RESET .....................................................80, 82, 84  
ROLL .............................................................39, 84  
RS BERCNT ..................................................50, 85  
RS UBC .............................................................. 51  
S
SEARCH ........................................................62, 69  
SIG LEVEL .....................................................53, 85  
SNR ...............................................................61, 64  
SYM RAT OP .................................................44, 85  
SYM RATE ...............................................36, 45, 84  
SYS ..................................................................... 84  
SYS CLK ............................................................. 84  
O
OP_CTRL ............................................................20  
P
Pass-through mode ..............................................75  
pass-through mode ..............................................25  
Pinout ..................................................................80  
PLL_FACTOR ................................................19, 22  
PR_ AGC .............................................................72  
PR_ BA ................................................................21  
PR_ QP ...............................................................21  
PR_ VIT ...............................................................21  
PR_312 ................................................................84  
PR_BA .................................................................84  
PRBS ...................................................................14  
T
TONE EXT PER .............................................32, 85  
V
V IQ SP ....................................................21, 38, 84  
VIT ERRCNT ..................................................50, 85  
VIT ERRPER ..................................................62, 69  
VIT MAXERR ...........................................12, 62, 70  
VIT MODE ................................................20, 38, 84  
Q
Q_IQ_SP .............................................................39  
QPSK STATUS .....................................................85  
QPSK_ CTRL ......................................................39  
QPSK_CTRL .................................................21, 84  
QPSK_INT ...........................................................85  
QPSK_STAT_EN ..................................................84  
88  
References MT312  
16 References  
1.  
European Digital Video Broadcast Standard, ETS 300 421 December 1994.  
ETS Secretariat  
06921 Sophia Antipolis Cedex  
France.  
2.  
Digital Satellite Equipment Control (DiSEqC)  
EUTELSAT  
European Telecommunications Satellite Organisation  
70, rue Balard - 75502 PARIS Cedex 15  
France.  
89  
MT312 Design Manual  
90  

相关型号:

MT312C

Satellite Channel Decoder
ZARLINK

MT312C/CG

Satellite Channel Decoder
ZARLINK

MT312CG

Satellite Channel Decoder
ZARLINK

MT312GP1N

Satellite Channel Decoder
ZARLINK

MT312T-Y

2x4mm Rectangular LED Lamps
MARKTECH

MT3130Y

Visible LED, Diffused
MARKTECH

MT3133-Y

Standard 10mm LED Lamps
MARKTECH

MT3146-Y

1X5 RECTANGULAR LED LAMPS
MARKTECH

MT3149

六路闪灯IC,可选外围元件改闪灯变顺序及状态。
ETC

MT3152-Y

2x5mm Rectangular LED Lamps
MARKTECH

MT315B-UGTR

ULTRA BRIGHT LEDs
MARKTECH

MT3163S2-Y

Packaged LEDS/PCB Mount Indicators
MARKTECH