MT352/CGGP2Q [ZARLINK]

COFDM Demodulator; COFDM解调器
MT352/CGGP2Q
型号: MT352/CGGP2Q
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

COFDM Demodulator
COFDM解调器

文件: 总24页 (文件大小:479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MT352  
COFDM Demodulator  
Data Sheet  
February 2005  
Features  
Nordig II and ETSI 300 744 compliant  
Ordering Information  
MT352/CG/GP1N 64 Pin LQFP Trays  
Superior Single Frequency Network performance  
Unique active Impulse-Noise filtering  
Single SAW operation  
MT352/CG/GP1Q 64 Pin LQFP Tape & Reel  
MT352/CG/GP2Q  
MT352/CG/GP2N  
64 Pin LQFP* Tape & Reel  
64 Pin LQFP* Trays  
Automatic co-channel and adjacent-channel  
* Pb Free Matte Tin  
0oC to +70oC  
interference suppression  
Clock generation from single low-cost 20.48 MHz  
crystal or external 4 or 27 MHz clock  
IF sampling at 4.57, 36.17 or 43.5 MHz from a  
Zarlink evaluation kits include application board, TNIM  
and supporting software based on industry standard  
operating systems. Device drivers are also available  
enabling rapid product development and reduction in  
time to market.  
single crystal frequency  
Channel bandwidth of 6, 7 & 8 MHz  
Blind acquisition capability (including 2 K / 8 K  
mode detect)  
Automatic spectral inversion detection  
Fast auto-scan and acquisition technology  
Very low software overhead  
Description  
MT352 is  
a
superior third generation Coded  
Dual AGC control option  
Orthogonal Frequency Division Multiplex (COFDM)  
television demodulator that is both Nordig II and DVB  
(as defined in ETS 300 744 specification) compliant. It  
can be used in either 2 K or 8 K modes with 6, 7 or  
8 MHz channels and is capable of addressing all  
modes of transmission.  
Access to channel SNR, pre- and post-Viterbi bit  
error rates  
Compact 64 pin LQFP  
Less than 0.22 W power consumption  
Standby and sleep options  
The device includes a high performance 10-bit A/D  
converter capable of accepting direct IF at 36.17 or  
43.75 MHz. Sampling rates required for both these  
frequencies in 6,7 or 8 MHz OFDM channels can be  
Applications  
Set-top boxes  
Integrated digital televisions  
Personal video recorders  
Terrestrial PC reception  
Mobile and portable applications  
generated from  
a
single 20.48 MHz crystal.  
Alternatively, there is provision to replace this crystal  
with a 4 or 27 MHz external clock input.  
ADC  
AGC  
IF to  
RF in  
Pilot &  
Channel  
Processor  
Symbol & Bit  
De-interleaver  
& Demapper  
Baseband  
conversion &  
Interpolator  
FFT  
FEC  
MPEG  
TS  
Symbol,  
Carrier &  
Timing  
Impulse  
Suppression  
Primary  
2-wire bus  
Recovery  
Secondary  
2-wire bus  
Control  
engine  
Tuner control  
Figure 1 - Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003-2005, Zarlink Semiconductor Inc. All Rights Reserved.  
MT352  
Data Sheet  
Unique algorithms that actively filter out impulse noise, without affecting normal performance, have been  
implemented. This reduces the interference effect from vehicles and electrical appliances, which is known to have  
significant detrimental effect on the quality of digital TV reception.  
Programming is simplified utilizing a high level command driven interface. A sophisticated engine controls all  
acquisition and tracking operations as well as controlling the tuner via a 2-wire bus. Any frequency range can be  
automatically scanned for digital TV channels. This mechanism ensures minimal interaction, maximum flexibility,  
fastest acquisition and the fastest auto scan capability of any chip in the market.  
Blind acquisition mode enables automatic detection of all OFDM signal parameters, including mode, guard and  
spectral inversion. The frequency capture range is sufficient to compensate for the combined offset introduced by  
the tuner and broadcaster.  
The device is packaged in a 64 pin LQFP and consumes less than 220 mW of power.  
MT352 CG  
YYWW*W  
Pin 1 Corner  
Figure 2 - Package Outline  
2
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
Pin Description  
Pin Description Table  
Pin No  
Name  
Description  
I/O  
Type  
V
mA  
MPEG pins  
47  
MOSTRT  
MOVAL  
MDO(0:7)  
MOCLK  
BKERR  
MICLK  
MPEG packet start  
MPEG data valid  
MPEG data bus  
MPEG clock out  
Block error  
O
O
O
O
O
I
3·3  
3·3  
3·3  
3·3  
3·3  
3·3  
3·3  
5
1
48  
1
1
1
1
CMOS Tristate  
49-53, 56-58  
61  
62  
63  
MPEG clock in  
Status output  
CMOS  
11  
STATUS  
IRQ  
O
O
1
6
6
Interrupt output  
Open drain  
CMOS  
Control pins  
4
CLK1  
DATA1  
XTI  
Serial clock  
Serial data  
I
5
5
5
I/O Open drain  
I
6
23  
Low phase noise  
oscillator  
CMOS  
O
24  
XTO  
10  
SLEEP  
Device power down  
Serial address set  
Scan mode enable  
Serial clock tuner  
Serial data tuner  
Primary AGC  
I
3·3  
3·3  
3·3  
5
12, 15-18  
SADD(4:0)  
SMTEST  
CLK2/GPP0  
DATA2/GPP1  
AGC1  
I
44  
I
35  
I/O  
6
6
6
6
6
36  
I/O  
O
5
Open drain  
42  
5
41  
AGC2/GPP2  
GPP(3)  
Secondary AGC  
General purpose I/O  
Device reset  
I/O  
I/O  
I
5
43  
5
9
RESET  
CMOS  
CMOS  
5
27  
OSCMODE  
PLLTEST  
Crystal oscillator mode  
PLL analogue test  
I
3·3  
26  
O
Analog inputs  
30  
VIN  
VIN  
positive input  
negative input  
I
I
31  
Supply pins  
3
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
Pin Description Table (continued)  
Pin No Name  
PLLVDD  
Description  
I/O  
Type  
V
mA  
21  
22  
PLL supply  
S
S
S
S
S
1·8  
0
PLLGND  
CVDD  
VDD  
7, 19, 37, 39, 59, 64  
2, 13, 45, 54,  
Core logic power  
I/O ring power  
1·8  
3·3  
0
1, 3, 8, 14, 20, 25, 38,  
40, 46, 55, 60  
GND  
Core and I/O ground  
28  
AVDD  
AGND  
DVDD  
DGND  
ADC analog supply  
ADC digital supply  
S
S
S
S
1·8  
0
29, 32  
33  
1·8  
0
34  
4
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.1 Analogue-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.2 Automatic Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.3 IF to Baseband Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.4 Adjacent Channel Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.5 Interpolation and Clock Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.6 Carrier Frequency Synchronisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.7 Symbol Timing Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.8 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.9 Common Phase Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.10 Channel Equalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.11 Impulse Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.12 Transmission Parameter Signalling (TPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.13 De-Mapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.14 Symbol and Bit De-Interleaving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.15 Viterbi Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.16 MPEG Frame Aligner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.17 De-interleaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.18 Reed-Solomon Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.19 De-scrambler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1.20 MPEG Transport Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.0 Software control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.0 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1 2-Wire Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.2 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.2.1 Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.2.2 Examples of 2-Wire Bus Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.2.3 Primary 2-Wire Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.3 MPEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.3.1 Data Output Header Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.3.2 MPEG data output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.3.3 MPEG Output Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.3.3.1 MOCLKINV = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.3.3.2 MOCLKINV = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.3 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.4 Crystal Specification and External Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.0 Application Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
List of Figures  
Figure 1 - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Figure 3 - OFDM Demodulator Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4 - FEC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5 - Primary Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 6 - Primary 2-Wire Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 7 - DVB Transport Packet Header Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 8 - MPEG Output Data Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 9 - MPEG Timing - MOCLKINV = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 10 - MPEG Timing - MOCLKINV = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11 - Crystal Oscillator Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12 - Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
List of Tables  
Table 1 - Programmable Address Details for 2-Wire Bus in TNIM Evaluation Application. . . . . . . . . . . . . . . . . . . 13  
Table 2 - Timing of 2-Wire Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3 - MOCLKINV = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 4 - MDOSWAP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 5 - MDOSWAP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
1.0 Functional Description  
A functional block diagram of the MT352 OFDM demodulator is shown in Figure 3. This accepts an IF analogue  
signal and delivers a stream of demodulated soft decision data to the on-chip Viterbi decoder. Clock, timing and  
frequency synchronization operations are all digital and there are no analogue control loops except the AGC. The  
frequency capture range is large enough for all practical applications. This demodulator has novel algorithms to  
combat impulse noise as well as co-channel and adjacent channel interference. If the modulation is hierarchical,  
the OFDM outputs both high and low priority data streams. Only one of these streams is FEC-decoded, but the FEC  
can be switched from one stream to another with minimal interruption to the transport stream.  
Figure 3 - OFDM Demodulator Diagram  
The FEC module shown in Figure 4 consists of a concatenated convolutional (Viterbi) and Reed-Solomon decoder  
separated by a depth-12 convolutional de-interleaver. The Viterbi decoder operates on 5-bit soft decisions to  
provide the best performance over a wide range of channel conditions. The trace-back depth of 128 ensures  
minimum loss of performance due to inevitable survivor truncation, especially at high code rates. Both the Viterbi  
and Reed-Solomon decoders are equipped with bit-error monitors. The former provides the bit error rate (BER) at  
the OFDM output. The latter is the more useful measure as it gives the Viterbi output BER. The error collecting  
intervals of these are programmable over a very wide range.  
Figure 4 - FEC Block Diagram  
The FSM controller shown in Figure 3 above controls both the demodulator and the FEC. It also drives the 2-wire  
bus to the tuner. The controller facilitates the automated search of all parameters or any sub-set of parameters of  
the received signal. It can also be used to scan any defined frequency range searching for OFDM channels. This  
8
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
mechanism provides the fast channel scan and acquisition performance, whilst requiring minimal software  
overhead in the host driver.  
The algorithms and architectures used in the MT352 have been heavily optimized to minimize hardware and chip  
area. This is proven by its 220 mW (typical) power consumption, which is the lowest of any OFDM device in the  
market today.  
1.1 Analogue-to-Digital Converter  
The MT352 has a high performance 10-bit analogue-to-digital converter (ADC) which can sample a 6, 7 or 8 MHz  
bandwidth OFDM signal, with its spectrum centred at:  
4.57 MHz near-zero IF  
36.17 MHz IF  
43.75 MHz IF  
The ADC can be clocked using:  
Crystal oscillator with a 20.48 MHz crystal  
4 MHz or 27 MHz clock input  
An on-chip programmable phase locked loop (PLL) is used to generate the ADC sampling clock. The crystal  
frequency of 20.48 MHz is used for 36.17 MHz IF sampling and 19.6267 MHz is used for 43.75 MHz IF sampling.  
Note that this 19.6267 MHz sampling clock can be generated from the 20.48 MHz crystal by appropriately  
programming the PLL. Hence the same 20.48 MHz crystal can support 6, 7 and 8 MHz OFDM as well as 36.17 and  
43.75 MHz IF.  
1.2 Automatic Gain Control  
An AGC module compares the absolute value of the digitized signal with a programmable reference. The error  
signal is filtered and is used to control the gain of the amplifier. A sigma-delta modulated output is provided, which  
has to be RC low-pass filtered to obtain the voltage to control the amplifier. Upper and lower limits can be set to the  
AGC control voltage using registers.  
The programmable AGC reference has been optimized. A large value for the reference leads to excessive ADC  
clipping and a small value results in excessive quantization noise. Hence the optimum value has been determined  
assuming the input signal amplitude to be Gaussian distributed. The latter is justified by applying the central limit  
theorem in statistics to the OFDM signal, which consists of a large number of randomly modulated carriers. This  
reference or target value may have to be lowered slightly for some applications. Slope control bits have been  
provided for the AGCs and these have to be set correctly depending on the Gain-versus-Voltage slope of the gain  
control amplifiers.  
The bandwidth of the AGC is set to a large value for quick acquisition then reduced to a small value for tracking.  
The AGC is free running during OFDM channel changes and locks to the new channel while the tuner lock is being  
established. This is one of the features of MT352 used to minimize acquisition time. A robust AGC lock mechanism  
is provided and the other parts of the MT352 begin to acquire only after the AGC has locked. Two AGC control  
outputs are available, one to drive an RF amplifier and the other to control an IF amplifier. The parameters for both  
loops are programmable. In the default mode, only the IF AGC loop is activated.  
1.3 IF to Baseband Conversion  
Sampling a 36.17 MHz IF signal at 20.48 MHz results in a spectrally inverted OFDM signal centred at 4.79 MHz.  
Sampling a 43.75 MHz IF signal at 19.6267 MHz gives a non-inverted signal at 4.5 MHz. The first step of the  
demodulation process is to convert this signal to a complex (in-phase and quadrature) signal in baseband. A  
correction for spectral inversion is implemented during this conversion process. Note also that the MT352 has  
control mechanisms to search automatically for an unknown spectral inversion status.  
9
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
1.4 Adjacent Channel Filtering  
Adjacent channels, in particular the Nicam digital sound signal associated with analogue channels, are filtered prior  
to the FFT.  
1.5 Interpolation and Clock Synchronisation  
MT352 uses digital timing recovery and this eliminates the need for an external VCXO. The ADC samples the  
signal at a fixed rate, for example, 20.48 MHz. Conversion of the 20.48 MHz signal to the OFDM sample rate is  
achieved using the time-varying interpolator. The OFDM sample rate is 64/7 MHz for 8 MHz and this is scaled by  
factors 6/8 and 7/8 for 6 and 7 MHz channel bandwidths. The nominal ratio of the ADC to OFDM sample rate is  
programmed in a MT352 register (defaults are for 20.48 MHz sampling and 8 MHz OFDM). The clock recovery  
phase locked loop in the MT352 compensates for inaccuracies in this ratio due to uncertainties of the frequency of  
the sampling clock.  
1.6 Carrier Frequency Synchronisation  
There can be frequency offsets in the signal at the input to OFDM, partly due to tuner step size and partly due to  
broadcast frequency shifts, typically 1/6 MHz. These are tracked out digitally, without the need for an analogue  
frequency control (AFC) loop.  
The default frequency capture range has been set to ±285 kHz in the 2 K mode and ±142 kHz in the 8 K mode.  
However, these values can be doubled, if necessary, by programming an on-chip register. It is recommended that  
this larger capture range be used for channel scan in order to find channels with broadcast frequency shifts, without  
having to adjust the tuner.  
After the OFDM module has locked, the frequency offset can be read from an on-chip register.  
1.7 Symbol Timing Synchronisation  
This module computes the optimum sample position to trigger the FFT in order to eliminate or minimize inter-  
symbol interference in the presence of multi-path distortion. Furthermore, this trigger point is continuously updated  
to dynamically adapt to time-variations in the transmission channel.  
1.8 Fast Fourier Transform  
The FFT module uses the trigger information from the timing synchronization module to set the start point for an  
FFT. It then uses either a 2 K or 8K FFT to transform the data from the time domain to the frequency domain. An  
extremely hardware-efficient and highly accurate algorithm has been used for this purpose.  
1.9 Common Phase Error Correction  
This module subtracts the common phase offset from all the carriers of the OFDM signal to minimize the effect of  
the tuner phase noise on system performance.  
1.10 Channel Equalisation  
This consists of two parts. The first part involves estimating the channel frequency response from pilot information.  
Efficient algorithms have been used to track time-varying channels with a minimum of hardware. The second part  
involves applying a correction to the data carriers based on the estimated frequency response of the channel. This  
module also generates dynamic channel state information (CSI) for every carrier in every symbol.  
1.11 Impulse Filtering  
MT352 contains several mechanisms to reduce the impact of impulse noise on system performance.  
10  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
1.12 Transmission Parameter Signalling (TPS)  
An OFDM frame consists of 68 symbols and a superframe is made up of four such frames. There is a set of TPS  
carriers in every symbol and all these carry one bit of TPS. These bits, when combined, include information about  
the transmission mode, guard ratio, constellation, hierarchy and code rate, as defined in ETS 300 744. In addition,  
the first eight bits of the cell identifier are contained in even frames and the second eight bits of the cell identifier are  
in odd frames. The TPS module extracts all the TPS data, and presents these to the host processor in a structured  
manner.  
1.13 De-Mapper  
This module generates soft decisions for demodulated bits using the channel-equalized in-phase and quadrature  
components of the data carriers as well as per-carrier channel state information (CSI). The de-mapping algorithm  
depends on the constellation (QPSK, 16QAM or 64QAM) and the hierarchy α = 0, 1, 2 or 3). Soft decisions for both  
low- and high-priority data streams are generated.  
1.14 Symbol and Bit De-Interleaving  
The OFDM transmitter interleaves the bits within each carrier and also the carriers within each symbol. The de-  
interleaver modules consist largely of memory to invert these interleaving functions and present the soft decisions  
to the FEC in the original order.  
1.15 Viterbi Decoder  
The Viterbi decoder accepts the 5-bit soft decision data from the OFDM demodulator and outputs a decoded bit-  
stream. The decoder does the de-puncturing of the input data for all code rates other than 1/2. It then evaluates the  
branch metrics and passes these to a 64-state path-metric updating unit, which in turn outputs a 64-bit word to the  
survivor memory. The Viterbi decoded bits are obtained by tracing back the survivor paths in this memory. A trace-  
back depth of 128 is used to minimize any loss in performance, especially at high code rates.  
The decoder re-encodes the decoded bits and compares these with received data (delayed) to compute bit errors  
at its input, on the assumption that the Viterbi output BER is significantly lower than its input BER.  
1.16 MPEG Frame Aligner  
The Viterbi decoded bit stream is aligned into 204-byte frames. A robust synchronization algorithm is used to  
ensure correct lock and to prevent loss of lock due to noise impulses.  
1.17 De-interleaver  
Errors at the Viterbi output occur in bursts and the function of the de-interleaver is to spread these errors over a  
number of 204-byte frames to give the Reed-Solomon decoder a better chance of correcting these. The de-  
interleaver is a memory unit which implements the inverse of the convolutional interleaving function introduced by  
the transmitter.  
1.18 Reed-Solomon Decoder  
Every 188-byte transport packet is encoded by the transmitter into a 204-byte frame, using a truncated version of a  
systematic (255,239) Reed-Solomon code. The corresponding (204,188) Reed-Solomon decoder is capable of  
correcting up to eight byte errors in a 204-byte frame. It may also detect frames with more than eight byte errors. In  
addition to efficiently performing this decoding function, the Reed-Solomon decoder in MT352 keeps a count of the  
number of bit errors corrected over a programmable period and the number of uncorrectable blocks. This  
information can be used to compute the post-Viterbi BER.  
11  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
1.19 De-scrambler  
The de-scrambler de-randomizes the Reed-Solomon decoded data by generating the exclusive-OR of this with a  
pseudo-random bit sequence (PRBS). This outputs 188-byte MPEG transports packets. The TEI bit of the packet  
header is set to indicate uncorrectable packets.  
1.20 MPEG Transport Interface  
MPEG data can be output in parallel or serial mode. The output clock frequency is automatically chosen to present  
the MPEG data as uniformly spaced as possible to the transport processor. This frequency depends on the guard  
ratio, constellation, hierarchy and code rate. There is also an option for the data to be extracted from the MT352  
with a clock provided by the user.  
2.0 Software control  
Acquisition of an OFDM channel and frequency scan for OFDM channels are controlled by an on-chip state  
machine, which minimizes the software requirement in the host processor. To acquire a channel, the host programs  
the channel frequency in the MT352. The on-chip state machine then writes the frequency information to the tuner,  
awaits tuner lock and acquires the OFDM channel to generate the transport stream. The controller can be made to  
automatically search for every parameter in the OFDM signal, including spectral inversion status. Furthermore, this  
controller will re-acquire the channel in the event of an interruption to the incoming signal.  
To scan a frequency range, the host programs the start and end frequencies for the search as well as the step size,  
which defaults to 8 MHz. The MT352 then automatically scans the frequency range by appropriately programming  
the tuner and searching for OFDM signals. Once a channel has been located, the host is interrupted to read the  
channel information from the MT352. Then MT352 continues the search. By default, only the channels which can  
generate a reliable transport stream are reported, but there is also provision for locating very weak channels. The  
frequency capture range of MT352 can be maximized to capture channels with frequency offsets without re-  
programming the tuner, in both 2 K and 8 K modes.  
The above approach to channel acquisition and scan has resulted in very fast acquisition and scan times whilst  
minimizing software overhead in the host processor. Furthermore, all this functionality has very efficiently been  
mapped into hardware to result in a device consuming less than 220 mW of power.  
3.0 Interfaces  
Figure 5 - Primary Interfaces  
The MT352 interfaces to other parts of a terrestrial receiver system can be partitioned into three groups: the host  
controller, the tuner and the MPEG decoder. One other pin, the Status output, is multi-functional and can directly  
12  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
drive a LED to show the status of a range of different internal lock flags. Alternatively, it can drive an audio  
transducer to give an audio frequency that is dependent upon the error rate of the received signal.  
This feature can be used for faster installation of a system where the aerial may need to be adjusted, as signal  
strength is not the best guide for the optimum aerial position for COFDM reception.  
3.1 2-Wire Bus  
3.2 Host  
The primary 2-wire bus serial interface uses pins:  
DATA1 (pin 5) serial data, the most significant bit is sent first.  
CLK1 (pin 4) serial clock.  
The 2-wire bus address is determined by applying VDD or VSS to the SADD[4:0] pins.  
In the current TNIM evaluation application, the 2-wire bus address is 0001 111 R/ W with the pins connected as  
follows:  
ADDR[7]  
Not programmable  
VSS VSS  
ADDR[6]  
ADDR[5]  
SADD[4]  
VSS  
ADDR[4]  
SADD[3]  
VDD  
ADDR[3]  
SADD[2]  
VDD  
ADDR[2]  
SADD[1]  
VDD  
ADDR[1]  
SADD[0]  
VDD  
Table 1 - Programmable Address Details for 2-Wire Bus in TNIM Evaluation Application  
When the MT352 is powered up, the RESET pin 28 should be held low for at least 50ms after VDD has reached  
normal operation levels. As the RESET pin goes high, the logic levels on SADD[4:0] are latched as the 2-wire bus  
address. ADDR[0] is the R/ W bit.  
The circuit works as a slave transmitter with the lsb set high or as a slave receiver with the lsb set low. In receive  
mode, the first data byte is written to the RADD virtual register, which forms the register sub-address. The RADD  
register takes an 8-bit value that determines which of 256 possible register addresses is written to by the following  
byte. Not all addresses are valid and many are reserved registers that must not be changed from their default  
values. Multiple byte reads or writes will auto-increment the value in RADD, but care should be taken not to access  
the reserved registers accidentally.  
Following a valid chip address, the 2-wire bus STOP command resets the RADD register to 00. If the chip address  
is not recognized, the MT352 will ignore all activity until a valid chip address is received. The 2-wire bus START  
command does NOT reset the RADD register to 00. This allows a combined 2-wire bus message, to point to a  
particular read register with a write command, followed immediately with a read data command. If required, this  
could next be followed with a write command to continue from the latest address. RADD would not be sent in this  
case. Finally, a STOP command should be sent to free the bus.  
When the 2-wire bus is addressed (after a recognized STOP command) with the read bit set, the first byte read out  
is the contents of register 00.  
3.2.1 Tuner  
The MT352 has a General Purpose Port that can be configured to provide a secondary 2-wire bus. Master control  
mode is selected by a single register control bit.  
The allocation of the pins is: GPP0 pin 35 = CLK2, GPP1 pin 36 = DATA2.  
13  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
3.2.2 Examples of 2-Wire Bus Messages  
KEY:  
S
P
A
Start Condition  
W
R
Write (=0)  
Read (= 1)  
Stop condition  
Acknowledge  
NA NOT Acknowledge  
RADD Register Address  
Italics MT352 output  
Write operation - as a slave receiver:  
S
DEVICE  
W
A
RADD  
(n)  
A
A
DATA  
A
DATA  
A
P
ADDRESS  
(reg n)  
(reg n+1)  
Read operation - MT352 as a slave transmitter:  
S
DEVICE  
R
A
DATA  
DATA  
A
DATA  
NA  
P
ADDRESS  
(reg 0)  
(reg 1)  
(reg 2)  
Write/read operation with repeated start - MT352 as a slave transmitter:  
S
DEVICE  
W
A
RADD  
(n)  
A
S
DEVICE  
R
A
DATA  
(reg n)  
A
DATA  
(reg n+1)  
NA  
P
ADDRESS  
ADDRESS  
3.2.3 Primary 2-Wire Bus Timing  
Figure 6 - Primary 2-Wire Bus Timing  
Where:  
S = Start  
Sr = Restart, i.e., start without stopping first.  
P = Stop.  
14  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
Value  
Max.  
450  
Parameter  
CLK clock frequency (Primary)  
Symbol  
fCLK  
Unit  
Min.  
0
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bus free time between a STOP and START condition  
Hold time (repeated) START condition  
LOW period of CLK clock  
tBUFF  
tHD;STA  
tLOW  
200  
200  
1300  
600  
200  
100  
100  
HIGH period of CLK clock  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tR  
Set-up time for a repeated START condition  
Data hold time (when input)  
Data set-up time  
Rise time of both CLK and DATA signal.  
Fall time of both CLK and DATA signals, (100 pF to ground)  
Set-up time for a STOP condition  
note 1  
tF  
20  
tSU;STO  
200  
Table 2 - Timing of 2-Wire Bus  
Note 1. The rise time depends on the external bus pull up resistor. Loading prevents full speed operation.  
3.3 MPEG  
3.3.1 Data Output Header Format  
Figure 7 - DVB Transport Packet Header Byte  
15  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
After decoding the 188-byte MPEG packet, it is output on the MDO pins in 188 consecutive clock cycles.  
Additionally when the ENTEI bit in the CONFIG register (0x8A) is set high (default), the TEI bit of any uncorrectable  
packet will automatically be set to '1'. If ENTEI bit is low then TEI bit will not be changed (but note that if this bit is  
already 1, for example, due to a channel error which has not been corrected, it will remain high at output).  
3.3.2 MPEG data output signals  
The MPEGEN bit in the CONFIG register must be set low to enable the MPEG data. The maximum movement in  
the packet synchronization byte position is limited to ±1 output clock period. MOCLK will be a continuously running  
clock once symbol lock has been achieved, and is derived from the symbol clock. In Figure 8, MOCLK is shown in  
with MOCLKINV = '1', the default state.  
All output data and signals (MDO[7:0], MOSTRT, MOVAL & BKERR) change on the negative edge of MOCLK  
(MOCLKINV = 1) to present stable data and signals on the positive edge of the clock.  
A complete packet is output on MDO[7:0] on 188 consecutive clocks and the MDO[7:0] pins will remain low during  
the inter-packet gaps. MOSTRT goes high for the first byte clock of a packet. MOVAL goes high on the first byte of  
a packet and remains high until the last byte has been clocked out. BKERR goes low on the first byte of a packet  
where uncorrectable bytes are detected and will remain low until the last byte has been clocked out.  
Figure 8 - MPEG Output Data Waveforms  
3.3.3 MPEG Output Timing  
Maximum delay conditions: VDD = 3.0 V, CVDD = 1.62 V, Tamb = 70oC, Output load = 10 pF  
Minimum delay conditions: VDD = 3.6 V, CVDD = 1.98 V, Tamb = 0oC, Output load = 10 pF  
MOCLK frequency = 61.44 MHz.  
16  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
3.3.3.1 MOCLKINV = 1  
Parameter  
Maximum Delay Conditions  
Minimum Delay Conditions  
0.3 ns  
Data output  
delay tD  
7 ns  
Setup Time  
tSU  
0.5 ns  
8 ns  
5 ns  
Hold Time tH  
8 ns  
Table 3 - MOCLKINV = 1  
The setup time is due to the delay on MOSTRT, MOVAL and BKERR. MDO[0] is faster since it uses a stronger  
output driver cell.  
Figure 9 - MPEG Timing - MOCLKINV = 1  
3.3.3.2 MOCLKINV = 0  
MDOSWAP = 0  
Parameter  
Maximum Delay Conditions Minimum Delay Conditions  
Data output delay tD  
Setup Time tSU  
Hold Time tH  
8 ns  
0.7 ns  
15 ns  
0.5 ns  
8 ns  
1.5 ns  
Table 4 - MDOSWAP = 0  
17  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
The hold time is due to the fast output on MDO[0]. If MDOSWAP is set to 1 the data output is on MDO[7] which has  
a slower driver. This improves the hold time:  
MDOSWAP = 1  
Parameter  
Maximum Delay Conditions Minimum Delay Conditions  
Data output delay tD  
Setup Time tSU  
Hold Time tH  
8 ns  
8 ns  
3 ns  
0.7 ns  
15 ns  
1.2 ns  
Table 5 - MDOSWAP = 1  
Figure 10 - MPEG Timing - MOCLKINV = 0  
18  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
4.0 Electrical Characteristics  
4.1 Recommended Operating Conditions  
Recommended Operating Conditions Table  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Power supply voltage:  
periphery  
core  
VDD  
CVDD  
IDDP  
IDDC  
XTI  
3·0  
3·3  
1·8  
1
3·6  
V
1·62  
1·98  
V
Power supply current:  
periphery 1  
mA  
mA  
MHz  
kHz  
°C  
core  
120  
Input clock frequency 2  
16·00  
0
20·48  
25·00  
450  
70  
CLK1 primary serial clock frequency  
Ambient operating temperature  
ADC Input Impedance @ 36 MHz  
fCLK  
2
kΩ  
1. Current from the 3·3 VV supply will be mainly dependent on the external loads.  
2. The min/max frequencies given are those supported by the oscillator cell. Frequencies outside these limits are acceptable with an  
external clock signal.  
4.2 Absolute maximum ratings  
Absolute Maximum Ratings Table  
Parameter  
Symbol  
VDD  
CVDD  
VI  
VI  
VO  
Min.  
-0.3  
Max.  
Unit  
Power supply  
+3.6  
+2.0  
5.5  
V
V
V
V
V
V
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-55  
0
Voltage on input pins (5 V rated)  
Voltage on input pins (3.3 V rated)  
Voltage on output pins (5 V rated)  
Voltage on output pins (3.3 V rated)  
Storage temperature  
VDD + 0.3  
5.5  
VDD + 0.3  
150  
VO  
TSTG  
TOP  
TJ  
°C  
°C  
°C  
Operating ambient temperature  
Junction temperature  
70  
125  
Note: Stresses exceeding these listed under absolute maximum ratings may induce failure. Exposure to absolute maximum ratings for  
extended periods may reduce reliability. Functionality at or above these conditions is not implied.  
19  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
4.3 DC Electrical Characteristics  
Parameter  
Operating  
Conditions  
Pins  
Symbol Min.  
Typ.  
Max.  
Unit  
periphery  
core  
VDD  
3.0  
3.3  
3.6  
V
voltage  
CVDD  
1.62 1.8  
120  
1.98  
V
1.62 > CVDD >  
1.98  
Supply current  
IDD-  
mA  
CORE  
Supply current sleep mode  
200  
µA  
Outputs  
IOH 2 mA  
MDO(7:0), MOVAL, VOH  
2.4  
V
3.0 > VDD > 3.6 MOSTRT, MOCLK,  
STATUS, BKERR  
IOL 2 mA  
3.0 > VDD > 3.6  
VOL  
VOL  
0.4  
0.4  
V
Output levels  
IOL 6 mA  
3.0 > VDD > 3.6  
GPP(3:0), DATA1,  
AGC1, AGC2, IRQ  
V
MDO(7:0), MOVAL,  
MOSTRT, MOCLK,  
STATUS, BKERR  
3.0  
3.6  
pF  
Not including  
track  
Output capacitance  
GPP(3:0), DATA1,  
AGC1, AGC2 IRQ  
pF  
Output leakage (tri-state)  
Inputs  
1
µA  
Input levels  
3.0 > VDD > 3.6 MICLK, SADD(4:0), VIH  
2.0  
2.0  
V
V
SLEEP, OSC-  
MODE  
-0.5 Vin ≥  
VDD+0.5 V  
Input levels  
3.0 > VDD > 3.6 GPP(3:0), CLK1,  
VIH  
VIL  
DATA1, RESET  
-0.5 Vin ≥  
+5.5 V  
Input levels  
All inputs  
0.8  
±1  
V
Input leakage Current  
3.0 > VDD >  
3.6  
SLEEP, SMTEST,  
MICLK, CLK1,  
OSCMODE  
µA  
pF  
Capacitances  
do not include  
track  
Input capacitance  
Input capacitance  
1.8  
3.6  
SADD(4:0), DATA1,  
GPP(3:0)  
pF  
20  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
4.4 Crystal Specification and External Clocking  
Parallel resonant fundamental frequency (preferred)  
Tolerance over operating temperature range  
Tolerance overall  
20.4800 MHz  
± 25 ppm  
± 50 ppm  
27 pF  
Typical load capacitance  
Drive level  
0.4 mW max.  
<50 Ω  
Equivalent series resistance  
XTI  
XTO  
OSCMODE  
XT1  
C1  
C2  
Figure 11 - Crystal Oscillator Circuit  
21  
Zarlink Semiconductor Inc.  
MT352  
Data Sheet  
5.0 Application Circuit  
Figure 12 - Typical Application Circuit  
22  
Zarlink Semiconductor Inc.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MT352/GC/GP1N

Consumer Circuit, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, LQFP-64
INTEL

MT352/GC/GP1N

Consumer Circuit, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, LQFP-64
ZARLINK

MT35212A

BELL 212A/CCITT V.22 Modem Filter
MITEL

MT35212AE

BELL 212A/CCITT V.22 Modem Filter
MITEL

MT35212AP

BELL 212A/CCITT V.22 Modem Filter
MITEL

MT352CG

COFDM Demodulator
ZARLINK

MT352CGGP1N

COFDM Demodulator
ZARLINK

MT352CGGP1Q

COFDM Demodulator
ZARLINK

MT352CGGP2N

COFDM Demodulator
ZARLINK

MT352CGGP2Q

COFDM Demodulator
ZARLINK

MT352GP1N

COFDM Demodulator
ZARLINK

MT3530

BELL 103/V.21 SINGLE CHIP MODEM
ZARLINK