MVTX2601AG [ZARLINK]

Unmanaged 24-Port 10/100 Mbps Ethernet Switch; 非网管型24端口10/100 Mbps以太网交换机
MVTX2601AG
型号: MVTX2601AG
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Unmanaged 24-Port 10/100 Mbps Ethernet Switch
非网管型24端口10/100 Mbps以太网交换机

网络接口 电信电路 以太网 局域网(LAN)标准
文件: 总91页 (文件大小:679K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MVTX2601  
Unmanaged 24-Port 10/100 Mbps  
Ethernet Switch  
Data Sheet  
February 2004  
Features  
Ordering Information  
Ιntegrated Single-Chip 10/100 Mbps Ethernet  
Switch  
MVTX2601AG  
553 Pin HSBGA  
24 10/100 Mbps Autosensing, Fast Ethernet  
Ports with RMII or Serial Interface (7WS). Each  
port can independently use one of the two  
interfaces  
-40°C to 85°C  
Port Mirroring to a dedicated mirroring port or  
port 23 in unmanaged mode  
Full set of LED signals provided by a serial  
Serial interface  
Supports one Frame Buffer Memory domain with  
SRAM at 100 MHz  
interface  
Supports SRAM domain memory size 1 MB or  
2 MB  
2 port trunking groups with up to 4 10/100 ports  
per group  
Built-In Self Test for internal and external SRAM  
Traffic Classification  
• 4 transmission priorities for Fast Ethernet ports with  
2 dropping levels  
Applies centralized shared memory architecture  
Up to 64 K MAC addresses  
Maximum throughput is 2.4 Gbps non-blocking  
High performance packet forwarding (7.143 M  
packets per second) at full wire speed  
• Classification based on:  
-Port based priority  
Full Duplex Ethernet IEEE 802.3x Flow Control  
Backpressure flow control for Half Duplex ports  
-VLAN Priority field in VLAN tagged frame  
- DS/TOS field in IP packet  
- UDP/TCP logical ports: 8 hard-wired and 8  
programmable ports, including one pro-  
Supports Ethernet multicasting and broadcasting  
and flooding control  
Supports per-system option to enable flow  
control for best effort frames even on QoS-  
enabled ports  
grammable range  
• The precedence of the above classifications is  
programmable  
Load sharing among trunked ports can be based  
on source MAC and/or destination MAC  
Frame Data Buffer A  
SRAM (1 M / 2 M)  
FDB Interface  
LED  
Search  
Engine  
MCT  
Link  
FCB  
Frame Engine  
24 x 10 / 100  
Management  
Module  
Parallel /  
Serial  
RMII  
Ports 0 - 23  
Figure 1 - MVTX260 1 System Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003-2004, Zarlink Semiconductor Inc. All Rights Reserved.  
MVTX2601  
Data Sheet  
QoS Support  
Supports IEEE 802.1p/Q Quality of Service with 4 transmission priority queues with delay bounded, strict  
priority, and WFQ service disciplines  
• Provides 2 levels of dropping precedence with WRED mechanism  
• User controls the WRED thresholds  
• Buffer management: per class and per port buffer reservations  
• Port-based priority: VLAN priority in a tagged frame can be overwritten by the priority of Port VLAN ID  
Hardware auto-negotiation through serial management interface (MDIO) for Ethernet ports  
Built-in reset logic triggered by system malfunction  
2
I C EEPROM for configuration  
Description  
The MVTX2601 is a high density, low cost, high performance, non-blocking Ethernet switch chip. A single chip  
provides 24 ports at 10/100 Mbps, and a CPU interface for managed and unmanaged switch applications.  
The chip supports up to 64 K MAC addresses. The centralized shared memory architecture permits a very high  
performance packet forwarding rate at up to 3.57 1 M packets per second at full wire speed. The chip is optimized  
to provide low-cost, high-performance workgroup switching.  
The Frame Buffer Memory domains utilize cost-effective, high-performance synchronous SRAM with aggregate  
bandwidth of 6.4 Gbps to support full wire speed on all ports simultaneously.  
With delay bounded, strict priority, and/or WFQ transmission scheduling, and WRED dropping schemes, the  
MVTX2601 provides powerful QoS functions for various multimedia and mission-critical applications. The chip  
provides 4 transmission priorities and two levels of dropping precedence. Each packet is assigned a transmission  
priority and dropping precedence based on the VLAN priority field in a VLAN tagged frame, or the DS/TOS field, or  
the UDP/TCP logical port fields in IP packets. The MVTX2601 recognizes a total of 16 UDP/TCP logical ports, 8  
hard-wired and 8 programmable (including one programmable range).  
The MVTX2601 supports two groups of port trunking/load sharing. Each 10/100 group can contain up to 4 ports.  
Port trunking/load sharing can be used to group ports between interlinked switches to increase the effective  
network bandwidth.  
In half-duplex mode, all ports support backpressure flow control to minimize the risk of losing data during long  
activity bursts. In full-duplex mode IEEE 802.3x flow control is provided. The MVTX2601 also supports a per-  
system option to enable flow control for best effort frames, even on QoS-enabled ports.  
The MVTX2601 is fabricated using 0.25 micron technology. Inputs, however, are 3.3 V tolerant, and the outputs are  
capable of directly interfacing to LVTTL levels. The MVTX2601 is packaged in a 553-pin Ball Grid Array package.  
2
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Table of Contents  
1.0 Block Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.2 10/100 MAC Module (RMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.3 Configuration Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.4 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.5 Search Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.6 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.7 Internal Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.0 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1 Configuration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2
2.2 I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.3 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.3.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.3.2 Read Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.0 MVTX2601 Data Forwarding Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.2 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.3 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1 Search Engine Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.3 Search, Learning and Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.4 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.5 Priority Classification Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.6 Port Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.7 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.2.1 FCB Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.2.2 Rx Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.2.3 RxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Table of Contents  
7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.6 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.7 Buffer Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.7.1 Dropping When Buffers Are Scarce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.8 MVTX2601 Flow Control Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.8.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.8.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.9 Mapping to IETF Diffserv Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.2 Unicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.4 Trunking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.0 Port Mirroring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.1 Port Mirroring Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.2 Setting Registers for Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
10.0 GPSI (7WS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10.1 GPSI connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10.2 SCAN LINK and SCAN COL interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
11.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
11.1 LED Interface Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
11.2 Port Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
11.3 LED Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
12.0 Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
12.1 MVTX2601 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
12.2 Group 0 Address MAC Ports Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
12.2.1 ECR1Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
12.2.2 ECR2Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
12.3 Group 1 Address VLAN Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
12.3.1 AVTCL – VLAN Type Code Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
12.3.2 AVTCH – VLAN Type Code Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
12.3.3 PVMAP00_0 – Port 00 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
12.3.4 PVMAP00_1 – Port 00 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
12.3.5 PVMAP00_2 – Port 00 Configuration Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
12.3.6 PVMAP00_3 – Port 00 Configuration Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
12.4 Port Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
12.4.1 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
12.5 Group 2 Address Port Trunking Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
12.5.1 TRUNK0_MODE– Trunk group 0 mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
12.5.2 TRUNK1_MODE – Trunk group 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
12.6 Group 4 Address Search Engine Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
12.6.1 TX_AGE – Tx Queue Aging timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
12.6.2 AGETIME_LOW – MAC address aging time Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
12.6.3 AGETIME_HIGH –MAC address aging time High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
12.6.4 SE_OPMODE – Search Engine Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
12.7 Group 5 Address Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
12.7.1 FCBAT – FCB Aging Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
12.7.2 QOSC – QOS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
12.7.3 FCR – Flooding Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
12.7.4 AVPML – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
4
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Table of Contents  
12.7.5 AVPMM – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
12.7.6 AVPMH – VLAN Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
12.7.7 TOSPML – TOS Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
12.7.8 TOSPMM – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
12.7.9 TOSPMH – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
12.7.10 AVDM – VLAN Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
12.7.11 TOSDML – TOS Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
12.7.12 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
12.7.13 UCC – Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
12.7.14 MCC – Multicast Congestion Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
12.7.15 PR100 – Port Reservation for 10/100 ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
12.7.16 SFCB – Share FCB Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
12.7.17 C2RS – Class 2 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
12.7.18 C3RS – Class 3 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
12.7.19 C4RS – Class 4 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
12.7.20 C5RS – Class 5 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
12.7.21 C6RS – Class 6 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
12.7.22 C7RS – Class 7 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
12.7.23 Classes Byte Limit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
12.7.24 Classes Byte Limit Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
12.7.25 Classes Byte Limit Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
12.7.26 Classes Byte Limit Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
12.7.27 Classes WFQ Credit Set 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
12.7.28 Classes WFQ Credit Set 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
12.7.29 Classes WFQ Credit Set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
12.7.30 Classes WFQ Credit Set 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
12.7.31 RDRC0 – WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12.7.32 RDRC1 – WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12.7.33 User Defined Logical Ports and Well Known Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12.7.33.1 USER_PORT0_(0~7) – User Define Logical Port (0~7). . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
12.7.33.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority. . . . . . . . . . . . . 54  
12.7.33.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority. . . . . . . . . . . . . 55  
12.7.33.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority. . . . . . . . . . . . . 55  
12.7.33.5 USER_PORT_[7:6]_PRIORITY - User Define Logic Port 7 and 6 Priority. . . . . . . . . . . . . 55  
12.7.33.6 USER_PORT_ENABLE [7:0] – User Define Logic 7 to 0 Port Enables . . . . . . . . . . . . . . . 55  
12.7.33.7 WELL_KNOWN_PORT [1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority . . . . . . 55  
12.7.33.8 WELL_KNOWN_PORT [3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority . . . . . . 56  
12.7.33.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority . . . . . . 56  
12.7.33.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority . . . . . 56  
12.7.33.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables. . . . . . . 56  
12.7.33.12 RLOWL – User Define Range Low Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
12.7.33.13 RLOWH – User Define Range Low Bit 15:8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
12.7.33.14 RHIGHL – User Define Range High Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
12.7.33.15 RHIGHH – User Define Range High Bit 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
12.7.33.16 RPRIORITY – User Define Range Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
12.8 Group 6 Address MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
12.8.1 MII_OP0 – MII Register Option 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
12.8.2 MII_OP1 – MII Register Option 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
12.8.3 FEN – Feature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
12.8.4 MIIC0 – MII Command Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
12.8.5 MIIC1 – MII Command Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
12.8.6 MIIC2 – MII Command Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
5
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Table of Contents  
12.8.7 MIIC3 – MII Command Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
12.8.8 MIID0 – MII Data Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
12.8.9 MIID1 – MII Data Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
12.8.10 LED Mode – LED Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
12.8.11 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
12.9 Group 7 Address Port Mirroring Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
12.9.1 MIRROR1_SRC – Port Mirror source port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
12.9.2 MIRROR1_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
12.9.3 MIRROR2_SRC – Port Mirror source port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
12.9.4 MIRROR2_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
12.10 Group F Address CPU Access Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
12.10.1 GCR-Global Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
12.10.2 DCR-Device Status and Signature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
12.10.3 DCR1-Chip status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
12.10.4 DPST – Device Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
12.10.5 DTST – Data read back register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
12.10.6 PLLCR - PLL Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
12.10.7 LCLK - LA_CLK delay from internal OE_CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
12.10.8 OECLK - Internal OE_CLK delay from SCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
12.10.9 DA – DA Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
13.0 BGA and Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
13.1 BGA Views (Top-View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
13.1.1 Encapsulated View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
13.2 Ball – Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
13.2.1 Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
13.3 Ball – Signal Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
13.4 AC/DC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
13.4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
13.4.2 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
13.4.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
13.4.4 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
13.5 Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
13.5.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
13.6 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
13.6.1 Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
13.6.2 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
13.6.3 SCANLINK SCANCOL Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
13.6.4 MDIO Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
2
13.6.5 I C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
13.6.6 Serial Interface Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
6
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
List of Figures  
Figure 1 - MVTX260 1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - Data Transfer Format for I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 3 - MVTX2601 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only) . . . . . . . . . . . . . . . . . . . . 13  
Figure 4 - Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 5 - Priority Classification Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 6 - Memory Configuration for 1 Bank, 1 Layer, 1 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 7 - Memory Configuration for 1 Bank, 2 Layers, 2 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 8 - Memory Configuration for 1 Bank, 1 Layer, 2 MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 9 - Buffer Partition Scheme Used to Implement MVTX2601 Buffer Management . . . . . . . . . . . . . . . . . . . 26  
Figure 10 - GPSI (7WS) Mode Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 11 - SCAN LINK and SCAN COLLISON Status Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 12 - Timing Diagram of LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 13 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 14 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 15 - Local Memory Interface - Output Valid Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 16 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 17 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 18 - AC Characteristics – LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 19 - SCANLINK SCANCOL Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 20 - SCANLINK, SCANCOL Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 21 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 22 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
2
Figure 23 - I C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
2
Figure 24 - I C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 25 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 26 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
7
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
List of Tables  
Table 1 - Memory Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 2 - PVMAP Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 3 - Supported Memory Configurations (SBRAM Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 4 - Options for Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 5 - Two Dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 6 - Four QoS Configurations for a 10/100Mbps Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 7 - WRED Drop Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 8 - Mapping between MVTX2601 and IETF Diffserv Classes for 10/100 Ports . . . . . . . . . . . . . . . . . . . . . . 27  
Table 9 - MVTX2601 Features Enabling IETF Diffserv Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 10 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Table 11 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table 12 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Table 13 - SCANLINK, SCANCOL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Table 14 - MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Table 15 - I2C Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table 16 - Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
8
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
1.0 Block Functionality  
1.1 Frame Data Buffer (FDB) Interfaces  
The FDB interface supports pipelined synchronous burst SRAM (SBRAM) memory at 100 MHz. To ensure a non-  
blocking switch, one memory domain with a 64 bit wide memory bus is required. At 100 MHz, the aggregate  
memory bandwidth is 6.4 Gbps, which is enough to support 24 10/100 Mbps.  
The Switching Database is also located in the external SBRAM; it is used for storing MAC addresses and their  
physical port number.  
1.2 10/100 MAC Module (RMAC)  
The 10/100 Media Access Control module provides the necessary buffers and control interface between the Frame  
Engine (FE) and the external physical device (PHY). The MVTX2601 has two interfaces, RMII or Serial (only for  
10 M). The 10/100 MAC of the MVTX2601 device meets the IEEE 802.3 specification. It is able to operate in either  
Half or Full Duplex mode with a back pressure/flow control mechanism. In addition, it will automatically retransmit  
upon collision for up to 16 total transmissions. The PHY addresses for 24 10/100 MAC are from 08h to 1Fh.  
1.3 Configuration Interface Module  
2
The MVTX2601 supports a serial and an I C interface, which provides an easy way to configure the system. Once  
2
configured, the resulting configuration can be stored in an I C EEPROM.  
1.4 Frame Engine  
The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame  
arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request, sent to the  
search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch  
response from the search engine, the frame engine performs transmission scheduling based on the frame’s priority.  
The frame engine forwards the frame to the MAC module when the frame is ready to be sent.  
1.5 Search Engine  
The Search Engine resolves the frame’s destination port or ports according to the destination MAC address (L2). It  
also performs MAC learning, priority assignment and trunking functions.  
1.6 LED Interface  
The LED interface provides a serial interface for carrying 24 port status signals.  
1.7 Internal Memory  
Several internal tables are required and are described as follows:  
Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame  
stored in the FDB, e.g., frame size, read/write pointer, transmission priority, etc.  
MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the  
external MAC Table. The external MAC table is located in the FDB Memory.  
Note: the external MAC table is located in the external SBRAM Memory.  
9
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
2.0 System Configuration  
2.1 Configuration Mode  
2
The MVTX2601 can be configured by EEPROM (24C02 or compatible) via an I C interface at boot time or via a  
synchronous serial interface during operation.  
2.2 I2C Interface  
2
The I C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the  
control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and  
bidirectional, at 50 Kbps. Data transfer is performed between master and slave IC using a request /  
acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer.  
Figure 2 depicts the data transfer format.  
START  
SLAVE ADDRESS  
R/W  
ACK  
DATA 1 (8 bits)  
ACK  
DATA 2  
ACK  
DATA M  
ACK  
STOP  
2
Figure 2 - Data Transfer Format for I C Interface  
2.2.1 Start Condition  
Generated by the master (in our case, the MVTX2601). The bus is considered to be busy after the Start condition is  
generated. The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line.  
Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High  
2
period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I C bus is  
free, both lines are High.  
2.2.2 Address  
The first byte after the Start condition determines which slave the master will select. The slave in our case is the  
EEPROM. The first seven bits of the first data byte make up the slave address.  
2.2.3 Data Direction  
The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master  
transmitter sets this bit to W; a master receiver sets this bit to R.  
2.2.4 Acknowledgment  
Like all clock pulses, the acknowledgment-related clock pulse is generated by the master. However, the transmitter  
releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the  
SDA line during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An  
acknowledgment pulse follows every byte transfer.  
If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the  
transfer.  
If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let  
the master generate the Stop condition.  
2.2.5 Data  
After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an  
acknowledge bit. Data is transferred MSB first.  
10  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
2.2.6 Stop Condition  
Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition  
occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line.  
2
The I C interface serves the function of configuring the MVTX2601 at boot time. The master is the MVTX2601 and  
the slave is the EEPROM memory.  
2.3 Synchronous Serial Interface  
The synchronous serial interface serves the function of configuring the MVTX2601 not at boot time but via a PC.  
The PC serves as master and the MVTX2601 serves as slave. The protocol for the synchronous serial interface is  
2
nearly identical to the I C protocol. The main difference is that there is no acknowledgment bit after each byte of  
data transferred.  
The unmanaged MVTX2601 uses a synchronous serial interface to program the internal registers. To reduce the  
number of signals required, the register address, command and data are shifted in serially through the D0 pin.  
STROBE- pin is used as the shift clock. AUTOFD- pin is used as data return path.  
Each command consists of four parts.  
START pulse  
Register Address  
Read or Write command  
Data to be written or read back  
Any command can be aborted in the middle by sending a ABORT pulse to the MVTX2601.  
A START command is detected when D0 is sampled high when STROBE- rise and D0 is sampled low when  
STROBE- fall.  
An ABORT command is detected when D0 is sampled low when STROBE- rise and D0 is sampled high when  
STROBE- fall.  
2.3.1 Write Command  
STROBE-  
2 extra clock cycles after  
last transfer  
D0  
W
A0 A1 A2 ... A9 A10 A11  
D0 D1 D2 D3 D4 D5 D6 D7  
DATA  
COMMAND  
START  
ADDRESS  
11  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
2.3.2 Read Command  
STROBE-  
R
A10 A11  
D0  
...  
A9  
A0 A1 A2  
A9 A10 A11  
START  
ADDRESS  
COMMAND  
D0
DATA  
D4  
D7  
D5 D6  
D7  
AUTOFD-  
D2 D3  
D0 D1 D2 D3 D4 D5 D6  
All registers in MVTX2601 can be modified through this synchronous serial interface.  
3.0 MVTX2601 Data Forwarding Protocol  
3.1 Unicast Data Frame Forwarding  
When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An  
FCB handle will always be available because of advance buffer reservations.  
The memory (SRAM) interface consists of a 64-bit bus connected to SRAM bank. The Receive DMA (RxDMA) is  
responsible for multiplexing the data and the address. On a port’s “turn,” the RxDMA will move 8 bytes (or up to the  
end-of-frame) from the port’s associated RxFIFO into memory (Frame Data Buffer, or FDB).  
Once an entire frame has been moved to the FDB and a good end-of-frame (EOF) has been received, the Rx  
interface makes a switch request. The RxDMA arbitrates among multiple switch requests.  
The switch request consists of the first 64 bytes of a frame, containing among other things, the source and  
destination MAC addresses of the frame. The search engine places a switch response in the switch response  
queue of the frame engine when done. Among other information, the search engine will have resolved the  
destination port of the frame and will have determined that the frame is unicast.  
After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is  
responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to  
decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy  
at the destination. If the frame is not dropped, then the TxQ manager links the frame’s FCB to the correct per-port-  
per-class TxQ. Unicast TxQ’s are linked lists of transmission jobs, represented by their associated frames’ FCB’s.  
There is one linked list for each transmission class for each port. There are 4 transmission classes for each of the  
24 10/ 100 ports  
The TxQ manager is responsible for scheduling transmission among the queues representing different classes for a  
port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for  
another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among  
the head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor scheduling  
algorithm.  
The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port’s turn, the  
TxDMA will move 8 bytes (or up to the EOF) from memory into the port’s associated TxFIFO. After reading the EOF,  
the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer release  
requests.  
The frame is transmitted from the TxFIFO to the line.  
12  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
3.2 Multicast Data Frame Forwarding  
After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop  
can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is  
dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of the  
multicast packet’s destinations. If so, then the frame is dropped at some destinations but not others and the FCB is  
not released.  
If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the multicast  
queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast frames).  
There are 2 multicast queues for each of the 24 10/100 ports. The queue with higher priority has room for 32 entries  
and the queue with lower priority has room for 64 entries. There is one multicast queue for every two priority  
classes. For the 10/100 ports to map the 8 transmit priorities into 2 multicast queues, the 2 LSB are discarded.  
During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one  
logical queue. The older head of line of the two queues is forwarded first.  
The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to  
which the frame is destined.  
4.0 Memory Interface  
4.1 Overview  
The MVTX2601 provides a 64-bit wide SRAM bank. Each DMA can read and write from the SRAM bank. The  
following figure provides an overview of the MVTX2601 SRAM bank.  
SRAM  
TX DMA  
0-7  
TX DMA  
8-15  
TX DMA  
16-23  
RX DMA  
0-7  
RX DMA  
8-15  
RX DMA  
16-23  
Figure 3 - MVTX2601 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only)  
4.2 Detailed Memory Information  
Because the bus for each bank is 64 bits wide, frames are broken into 8-byte granules, written to and read from  
memory.  
4.3 Memory Requirements  
To support 64 K MAC address, 2 MB memory is required. When VLAN support is enabled, 512 entries of the MAC  
address table are used for storing the VLAN ID at VLAN Index Mapping Table.  
13  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Up to 1 K Ethernet frame buffers are supported and they will use 1.5 MB of memory. Each frame uses 1536 bytes.  
The maximum system memory requirement is 2 MB. If less memory is desired, the configuration can scale down.  
Memory Bank  
Frame Buffer  
Max MAC Address  
1 M  
2 M  
1 K  
2 K  
32 K  
64 K  
Table 1 - Memory Configuration  
1 M Bank  
2 M Bank  
0.75 M  
1.5 M  
0.25 M  
0.5 M  
Frame Data Buffer (FDR) Area  
MAC Address Control Table (MCT) Area  
Figure 4 - Memory Map  
5.0 Search Engine  
5.1 Search Engine Overview  
The MVTX2601 search engine is optimized for high throughput searching, with enhanced features to support:  
Up to 64 K MAC addresses  
2 groups of port trunking  
Traffic classification into 4 transmission priorities, and 2 drop precedence levels  
Flooding, Broadcast, Multicast Storm Control  
MAC address learning and aging  
Port based VLAN  
5.2 Basic Flow  
Shortly after a frame enters the MVTX2601 and is written to the Frame Data Buffer (FDB), the frame engine  
generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of  
the frame, which contain all the necessary information for the search engine to perform its task. When the search  
engine is done, it writes to the Switch Response Queue and the frame engine uses the information provided in that  
queue for scheduling and forwarding.  
In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch  
request. Among the information extracted are the source and destination MAC addresses, the transmission and  
discard priorities, whether the frame is unicast or multicast. Requests are sent to the external SRAM to locate the  
associated entries in the external hash table.  
14  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
When all the information has been collected from external SRAM, the search engine has to compare the MAC  
address on the current entry with the MAC address for which it is searching. If it is not a match, the process is  
repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal to  
the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address  
unknown) or flooding (destination MAC address unknown).  
In addition, port based VLAN information is used to select the correct set of destination ports for the frame (for  
multicast) or to verify that the frame’s destination port is associated with the VLAN (for unicast).  
If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port  
number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the  
source and destination MAC addresses.  
As stated earlier, when all the information is compiled the switch response is generated. The search engine also  
interacts with the CPU with regard to learning and aging.  
5.3 Search, Learning and Aging  
5.3.1 MAC Search  
The search block performs source MAC address and destination MAC address searching. As we indicated earlier,  
if a match is not found, then the next entry in the linked list must be examined and so on until a match is found or  
the end of the list is reached.  
The port based VLAN bitmap is used to determine whether the frame should be forwarded to the outgoing port.  
When the egress port is not included in the ingress port VLAN bitmap, the packet is discarded.  
The MAC search block is also responsible for updating the source MAC address timestamp and the VLAN port  
association timestamp, used for aging.  
5.3.2 Learning  
The learning module learns new MAC addresses and performs port change operations on the MCT database. The  
goal of learning is to update this database as the networking environment changes over time. Learning and port  
change will be performed based on memory slot availability only.  
5.3.3 Aging  
Aging time is controlled by register 400h and 401h.  
The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated  
earlier, the search module updates the source MAC address timestamps for each frame it processes. When an  
entry is ready to be aged, the entry is removed from the table.  
5.4 Quality of Service  
Quality of Service (QoS) refers to the ability of a network to provide better service to selected network traffic over  
various technologies. Primary goals of QoS include dedicated bandwidth, controlled jitter and latency (required by  
some real-time and interactive traffic) and improved loss characteristics.  
Traditional Ethernet networks have had no prioritization of traffic. Without a protocol to prioritize or differentiate  
traffic, a service level known as “best effort” attempts to get all the packets to their intended destinations with  
minimum delay; however, there are no guarantees. In a congested network or when a low-performance  
switch/router is overloaded, “best effort” becomes unsuitable for delay-sensitive traffic and mission-critical data  
transmission.  
15  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
The advent of QoS for packet-based systems accommodates the integration of delay-sensitive video and  
multimedia traffic onto any existing Ethernet network. It also alleviates the congestion issues that have previously  
plagued such “best effort” networking systems. QoS provides Ethernet networks with the breakthrough technology  
to prioritize traffic and ensure that a certain transmission will have a guaranteed minimum amount of bandwidth.  
Extensive core QoS mechanisms are built into the MVTX2601 architecture to ensure policy enforcement and  
buffering of the ingress port, as well as weighted fair-queue (WFQ) scheduling at the egress port.  
In the MVTX2601, QoS-based policies sort traffic into a small number of classes and mark the packets accordingly.  
The QoS identifier provides specific treatment to traffic in different classes, so that different quality of service is  
provided to each class. Frame and packet scheduling and discarding policies are determined by the class to which  
the frames and packets belong. For example, the overall service given to frames and packets in the premium class  
will be better than that given to the standard class; the premium class is expected to experience lower loss rate or  
delay.  
The MVTX2601 supports the following QoS techniques:  
In a port-based setup, any station connected to the same physical port of the switch will have the same  
transmit priority  
In a tag-based setup, a 3-bit field in the VLAN tag provides the priority of the packet. This priority can be  
mapped to different queues in the switch to provide QoS.  
In a TOS/DS-based set up, TOS stands for “Type of Service” that may include “minimize delay,” “maximize  
throughput” or “maximize reliability.” Network nodes may select routing paths or forwarding behaviours that  
are suitably engineered to satisfy the service request.  
In a logical port-based set up, a logical port provides the application information of the packet. Certain  
applications are more sensitive to delays than others; using logical ports to classify packets can help speed  
up delay sensitive applications such as VoIP.  
5.5 Priority Classification Rule  
Figure 5 shows the MVTX2601 priority classification rule.  
Yes  
Use Default Port Settings  
Fix Port Priority ?  
No  
Yes  
TOS Precedence over LAN?  
(FCR Regiser, Bit 7)  
Use Default Port Settings  
No  
No  
No  
No  
IP Frame ?  
IP  
VLAN Tag ?  
Yes  
Yes  
Yes  
No  
Use TOS  
Yes  
Use VLAN Priority  
Use Logical Port  
Figure 5 - Priority Classification Rule  
16  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
5.6 Port Based VLAN  
An administrator can use the PVMAP Registers to configure the MVTX2601 for port-based VLAN. For example,  
ports 1-3 might be assigned to the Marketing VLAN, ports 4-6 to the Engineering VLAN, and ports 7-9 to the  
Administrative VLAN. The MVTX2601 determines the VLAN membership of each packet by noting the port on  
which it arrives. From there, the MVTX2601 determines which outgoing port(s) is/are eligible to transmit each  
packet, or whether the packet should be discarded.  
Destination Port Numbers Bit Map  
Port Registers  
23  
0
2
1
1
1
0
0
Register for Port #0  
PVMAP00_0[7:0] to PVMAP00_2[7:0]  
Register for Port #1  
0
0
1
0
0
0
1
0
PVMAP01_0[7:0] to PVMAP01_2[7:0]  
Register for Port #2  
PVMAP02_0[7:0] to PVMAP02_2[7:0]  
Register for Port #23  
0
0
0
0
PVMAP23_0[7:0] to PVMAP23_2[7:0]  
Table 2 - PVMAP Register  
For example, in the above table, a "1" denotes that an outgoing port is eligible to receive a packet from an incoming  
port. A 0 (zero) denotes that an outgoing port is not eligible to receive a packet from an incoming port.  
In this example:  
Data packets received at port #0 are eligible to be sent to outgoing ports 1 and 2  
Data packets received at port #1 are eligible to be sent to outgoing ports 0, and 2  
Data packets received at port #2 are not eligible to be sent to ports 0 and 1  
5.7 Memory Configurations  
The MVTX2601 supports the following memory configurations. It supports 1 M and 2 M configurations.  
1 M  
2 M  
Configuration  
(Bootstrap pin  
TSTOUT7 = open)  
(Bootstrap pin  
Connections  
TSTOUT7 = pull down)  
Single Layer  
(Bootstrap pin  
Two 128 K x 32  
SRAM/bank  
Two 256 K x 32  
SRAM/bank  
Connect 0E# and WE#  
TSTOUT13 = open)  
or  
One 128 K x 64 SRAM/bank  
Double Layer  
(Bootstrap pin  
NA  
Four 128 K x 32  
SRAM/bank  
Connect 0E0# and WE0#  
Connect 0E1# and WE1#  
TSTOUT13 = pull down)  
or  
Two 128 K x 64 SRAM/bank  
Table 3 - Supported Memory Configurations (SBRAM Mode)  
17  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Frame data Buffer  
Only Bank A  
Bank A and Bank B  
1 M/bank 2 M/bank  
Bank A and Bank B  
1 M/bank 2 M/bank  
1 M  
2 M  
(SRAM)  
(SRAM)  
(SRAM)  
(SRAM)  
(ZBT SRAM) (ZBT SRAM)  
MVTX2601  
MVTX2602  
MVTX2603  
X
X
X
X
X
X
MVTX2603  
X (125 Mhz)  
X (125 Mhz)  
X (125 Mhz)  
X (125 Mhz)  
(Gigabit ports in 2 giga  
mode)  
MVTX2604  
X
X
MVTX2604 (Gigabit ports in  
2 giga mode)  
Table 4 - Options for Memory Configuration  
Bank A (1 M One Layer)  
Data LA_D[63:32]  
Data LA_D[31:0]  
SRAM  
Memory  
128 K  
Memory  
128 K  
32 bits  
32 bits  
Address LA_A[19:3]  
Bootstraps: TSTOUT7 = Open, TSTOUT13 = Open, TSTOUT4 = Open  
Figure 6 - Memory Configuration for 1 Bank, 1 Layer, 1 MB Total  
18  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Bank A (2 M Two Layers)  
Data LA_D[63:32]  
Data LA_D[31:0]  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
32 bits  
32 bits  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
32 bits  
32 bits  
Address LA_A[19:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Pull Down, TSTOUT4 = Open  
Figure 7 - Memory Configuration for 1 Bank, 2 Layers, 2 MB Total  
19  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Bank A (2 M One Layer)  
Data LA_D[63:32]  
Data LA_D[31:0]  
SRAM  
Memory  
256 K  
Memory  
256 K  
32 bits  
32 bits  
Address LA_A[20:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open  
Figure 8 - Memory Configuration for 1 Bank, 1 Layer, 2 MB  
6.0 Frame Engine  
6.1 Data Forwarding Summary  
When a frame enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB.  
Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface.  
A switch request is sent to the Search Engine. The Search Engine processes the switch request.  
A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast and its  
destination port or ports.  
A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon receiving a  
Transmission Scheduling Request, the device will format an entry in the appropriate Transmission Scheduling  
Queue (TxSch Q) or Queues. There are four TxSch Q for each 10/100, one for each priority. Creation of a queue  
entry either involves linking a new job to the appropriate linked list if unicast or adding an entry to a physical queue  
if multicast.  
When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of one of  
the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality of service).  
The unicast linked list and the multicast queue for the same port-class pair are treated as one logical queue. The  
older HOL between the two queues goes first. For 10/100 ports multicast queue 0 is associated with unicast queue  
0 and multicast queue 1 is associated with unicast queue 2.  
The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of the  
destination port.  
20  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
6.2 Frame Engine Details  
This section briefly describes the functions of each of the modules of the MVTX2601 frame engine.  
6.2.1 FCB Manager  
The FCB manager allocates FCB handles to incoming frames and releases FCB handles upon frame departure.  
The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be  
determined by referring to Chapter 8. In addition, the FCB manager is responsible for buffer aging and for linking  
unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin  
and the aging time is defined in register FCBAT.  
6.2.2 Rx Interface  
The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of  
frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch  
request.  
6.2.3 RxDMA  
The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each  
frame for use by the search engine when the switch request has been made.  
6.2.4 TxQ Manager  
First, the TxQ manager checks the per-class queue status and global reserved resource situation and using this  
information, makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the  
TxQ manager requests that the FCB manager link the unicast frame’s FCB to the correct per-port-per-class TxQ. If  
multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger  
source port flow control for the incoming frame’s source if that port is flow control enabled. Second, the TxQ  
manager handles transmission scheduling; it schedules transmission among the queues representing different  
classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to  
the correct port control module.  
6.3 Port Control  
The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes  
start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control  
module requests that the buffer be released.  
6.4 TxDMA  
The TxDMA multiplexes data and address from port control and arbitrates among buffer release requests from the  
port control modules.  
7.0 Quality of Service and Flow Control  
7.1 Model  
Quality of service is an all-encompassing term for which different people have different interpretations. In general,  
the approach to quality of service described here assumes that we do not know the offered traffic pattern. We also  
assume that the incoming traffic is not policed or shaped. Furthermore, we assume that the network manager  
knows his applications, such as voice, file transfer or web browsing and their relative importance. The manager can  
then subdivide the applications into classes and set up a service contract with each. The contract may consist of  
21  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to  
the switch. As an added bonus, although we do not assume anything about the arrival pattern, if the incoming traffic  
is policed or shaped, we may be able to provide additional assurances about our switch’s performance.  
Table 5 shows examples of QoS applications with three transmission priorities, but best effort (P0) traffic may form  
a fourth class with no bandwidth or latency assurances.  
Total  
Low Drop Probability  
(low-drop)  
High Drop Probability  
(high-drop)  
Goals  
Assured Bandwidth  
(user defined)  
Highest transmission  
priority, P3  
50 Mbps  
Apps: phone calls, circuit  
emulation.  
Apps: training video.  
Latency: < 1 ms.  
Latency: < 1 ms.  
Drop: No drop if P3 not  
oversubscribed.  
Drop: No drop if P3 not  
oversubscribed; first P3 to  
drop otherwise.  
Middle transmission  
priority, P2  
37.5 Mbps  
Apps: interactive apps, Web  
business.  
Apps: non-critical interactive  
apps.  
Latency: < 4-5 ms.  
Drop: No drop if P2 not  
oversubscribed.  
Latency: < 4-5 ms.  
Drop: No drop if P2 not  
oversubscribed; firstP2 to  
drop otherwise.  
Low transmission  
priority, P1  
12.5 Mbps  
Apps: emails, file backups.  
Latency: < 16 ms desired,  
but not critical.  
Apps: casual web browsing.  
Latency: < 16 ms desired,  
but not critical.  
Drop: No drop if P1 not  
oversubscribed.  
Drop: No drop if P1 not  
oversubscribed; first to drop  
otherwise.  
Total  
100 Mbps  
Table 5 - Two Dimensional World Traffic  
A class is capable of offering traffic that exceeds the contracted bandwidth. A well-behaved class offers traffic at a  
rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed-  
upon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link  
utilization, a misbehaving class is allowed to use any idle bandwidth. However, such leniency must not degrade the  
quality of service (QoS) received by well-behaved classes.  
As Table 6 illustrates, the six traffic types may each have their own distinct properties and applications. As shown,  
classes may receive bandwidth assurances or latency bounds. In the table, P3, the highest transmission class,  
requires that all frames be transmitted within 1 ms, and receives 50% of the 100 Mbps of bandwidth at that port.  
Best-effort (P0) traffic forms a fourth class that only receives bandwidth when none of the other classes have any  
traffic to offer. It is also possible to add a fourth class that has strict priority over the other three; if this class has  
even one frame to transmit, then it goes first. In the MVTX2601, each 10/100 Mbps port will support four total  
classes, and each 1000 Mbps port will support eight classes. We will discuss the various modes of scheduling  
these classes in the next section.  
In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should rarely  
lose packets. But poorly behaved users – users who send frames at too high a rate – will encounter frame loss and  
the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some  
low-drop frames are dropped and then all frames in the worst case.  
22  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Table 6 shows that different types of applications may be placed in different boxes in the traffic table. For example,  
casual web browsing fits into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the  
category of low-loss, low-latency traffic.  
7.2 Four QoS Configurations  
There are four basic pieces to QoS scheduling in the MVTX2601: strict priority (SP), delay bound, weighted fair  
queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation, as shown  
in Tables 4 and 5. For 10/100 Mbps ports, these modes are selected by the following registers:  
QOSC24 [7:6]  
QOSC28 [7:6]  
QOSC32 [7:6]  
QOSC36 [7:6]  
CREDIT_C00  
CREDIT_C10  
CREDIT_C20  
CREDIT_C30  
P3  
P2  
P1  
P0  
Op1 (default)  
Op2  
Delay Bound  
BE  
BE  
SP  
SP  
Delay Bound  
WFQ  
Op3  
Op4  
WFQ  
Table 6 - Four QoS Configurations for a 10/100Mbps Port  
The default configuration for a 10/100 Mbps port is three delay-bounded queues and one best-effort queue. The  
delay bounds per class are 0.8 ms for P3, 2 ms for P2, and 12.8 ms for P1. Best effort traffic is only served when  
there is no delay-bounded traffic to be served.  
We have a second configuration for a 10/100 Mbps port in which there is one strict priority queue, two delay  
bounded queues and one best effort queue. The delay bounds per class are 3.2 ms for P2 and 12.8 ms for P1. If  
the user is to choose this configuration, it is important that P3 (SP) traffic be either policed or implicitly bounded  
(e.g., if the incoming P3 traffic is very light and predictably patterned). Strict priority traffic, if not admission-  
controlled at a prior stage to the MVTX2601 can have an adverse effect on all other classes’ performance.  
The third configuration for a 10/100 Mbps port contains one strict priority queue and three queues receiving a  
bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled. In  
the fourth configuration, all queues are served using a WFQ service discipline.  
7.3 Delay Bound  
In the absence of a sophisticated QoS server and signaling protocol, the MVTX2601 may not know the mix of  
incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically adjusts its  
scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL)  
frames. As a result, we assure latency bounds for all admitted frames with high confidence, even in the presence of  
system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards frames at no  
detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop traffic with a  
weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping  
a percentage of high-drop frames even before the chip’s buffers are completely full, while still largely sparing low-  
drop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. Finally,  
the delay bound algorithm also achieves bandwidth partitioning among classes.  
23  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
7.4 Strict Priority and Best Effort  
When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two  
of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF  
expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that  
strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes.  
When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other  
classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for best  
effort classes to be used for non-essential traffic, because we provide no assurances about best effort performance.  
However, in a typical network setting, much best effort traffic will indeed be transmitted and with an adequate  
degree of expediency.  
Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best  
effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the  
MVTX2601, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping to  
enforce bandwidth or delay does not apply to strict priority or best effort queues. We only drop frames from best  
effort and strict priority queues when global buffer resources become scarce.  
7.5 Weighted Fair Queuing  
In some environments – for example, in an environment in which delay assurances are not required, but precise  
bandwidth partitioning on small time scales is essential, WFQ may be preferable to a delay-bounded scheduling  
discipline. The MVTX2601 provides the user with a WFQ option with the understanding that delay assurances can  
not be provided if the incoming traffic pattern is uncontrolled. The user sets four WFQ “weights” such that all  
weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with error within 2%.  
In WFQ mode, though we do not assure frame latency, the MVTX2601 still retains a set of dropping rules that helps  
to prevent congestion and trigger higher level protocol end-to-end flow control.  
As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority  
queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do  
indeed drop frames from SP queues for global buffer management purposes. In addition, queue P0 for a 10/100  
port are treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth  
from a WFQ scheduling perspective. What this means is that these particular queues are only affected by dropping  
when the global buffer count becomes low.  
7.6 WRED Drop Threshold Management Support  
To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified  
parameters. The following table summarizes the behavior of the WRED logic.  
In KB (kilobytes)  
P3  
P2  
P1  
High Drop  
Low Drop  
Level 1  
X%  
0%  
N 120  
P3 AKB  
P2 AKB  
P1 AKB  
Level 2  
Y%  
Z%  
N 140  
Level 3  
100%  
100%  
N 160  
Table 7 - WRED Drop Thresholds  
Px is the total byte count, in the priority queue x. The WRED logic has three drop levels, depending on the value of  
N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals  
P3*16+P2*4+P1. If using WFQ scheduling, N equals P3+P2+P1. Each drop level from one to three has defined  
24  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
high-drop and low-drop percentages, which indicate the minimum and maximum percentages of the data that can  
be discarded. The X, Y Z percent can be programmed by the register RDRC0, RDRC1. In Level 3, all packets are  
dropped if the bytes in each priority queue exceed the threshold. Parameters A, B, C are the byte count thresholds  
for each priority queue. They can be programmed by the QOS control register (refer to the register group 5). See  
Programming Qos Registers Application Note for more information.  
7.7 Buffer Management  
Because the number of FDB slots is a scarce resource and because we want to ensure that one misbehaving  
source port or class cannot harm the performance of a well-behaved source port or class, we introduce the concept  
of buffer management into the MVTX2601. Our buffer management scheme is designed to divide the total buffer  
space into numerous reserved regions and one shared pool as shown in Figure 9 on page 26.  
As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores  
frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first  
enters the MVTX2601, its destination port and class are as yet unknown and so the decision to drop or not needs to  
be temporarily postponed. This ensures that every frame can be received first before subjecting them to the frame  
drop discipline after classifying.  
Six reserved sections, one for each of the first six priority classes, ensure a programmable number of FDB slots per  
class. The lowest two classes do not receive any buffer reservation. Furthermore, even for 10/100 Mbps ports, a  
frame is stored in the region of the FDB corresponding to its class. As we have indicated, the eight classes use only  
four transmission scheduling queues for 10/100 Mbps ports, but as far as buffer usage is concerned, there are still  
eight distinguishable classes.  
Another segment of the FDB reserves space for each of the 24 ports. One parameter can be set for the source port  
reservation for 10/100 Mbps. These 24 reserved regions make sure that no well-behaved source port can be  
blocked by another misbehaving source port.  
In addition, there is a shared pool which can store any type of frame. The frame engine allocates the frames first in  
the six priority sections. When the priority section is full or the packet has priority 1 or 0, the frame is allocated in the  
shared poll. Once the shared poll is full the frames are allocated in the section reserved for the source port.  
The following registers define the size of each section of the frame data buffer:  
PR100 - Port Reservation for 10/100 Ports  
SFCB - Share FCB Size  
C2RS - Class 2 Reserve Size  
C3RS - Class 3 Reserve Size  
C4RS - Class 4 Reserve Size  
C5RS - Class 5 Reserve Size  
C6RS - Class 6 Reserve Size  
C7RS- Class 7 Reserve Size  
25  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
temporary  
reservation  
shared pool  
S
per-class  
reservation  
per-source  
reservations  
(24 10/100 M, CPU)  
Figure 9 - Buffer Partition Scheme Used to Implement MVTX2601 Buffer Management  
7.7.1 Dropping When Buffers Are Scarce  
Summarizing the two examples of local dropping discussed earlier in this chapter:  
If a queue is a delay-bounded queue, we have a multi level WRED drop scheme, designed to control delay  
and partition bandwidth in case of congestion  
If a queue is a WFQ-scheduled queue, we have a multi level WRED drop scheme, designed to prevent  
congestion  
In addition to these reasons for dropping, we also drop frames when global buffer space becomes scarce. The  
function of buffer management is to make sure that such dropping causes as little blocking as possible.  
7.8 MVTX2601 Flow Control Basics  
Because frame loss is unacceptable for some applications, the MVTX2601 provides a flow control option. When  
flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a  
source port that is sending a packet to this switch to temporarily hold off.  
While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When  
a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not are  
halted. A single packet destined for a congested output can block other packets destined for uncongested outputs.  
The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high  
confidence when flow control is enabled.  
In the MVTX2601, each source port can independently have flow control enabled or disabled. For flow control  
enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so  
that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to  
only one queue at the destination, the queue of lowest priority. What this means is that if flow control is enabled for  
a given source port, then we can guarantee that no packets originating from that port will be lost, but at the possible  
26  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
expense of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only  
use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not  
use reserved FDB slots for the highest six classes (P2-P7).  
The MVTX2601 does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for  
frames originating from flow control enabled ports. When this programmable option is active, it is possible that  
some packets may be dropped even though flow control is on. The reason is that intelligent packet dropping is a  
major component of the MVTX2601’s approach to ensuring bounded delay and minimum bandwidth for high priority  
flows.  
7.8.1 Unicast Flow Control  
For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2601’s buffer  
management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a  
source port’s reserved FDB slots have been used then flow control Xoff is triggered.  
Xon is triggered when a port is currently being flow controlled and all of that port’s reserved FDB slots have been  
released.  
Note that the MVTX2601’s per-source-port FDB reservations assure that a source port that sends a single frame to  
a congested destination will not be flow controlled.  
7.8.2 Multicast Flow Control  
In unmanaged mode, flow control for multicast frames is triggered by a global buffer counter. When the system  
exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is triggered when the system returns  
below this threshold.  
In addition, each source port has a 23-bit port map recording which port or ports of the multicast frame’s fanout  
were congested at the time Xoff was triggered. All ports are continuously monitored for congestion and a port is  
identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were  
originally marked as congested in the port map have become uncongested, then Xon is triggered and the 23-bit  
vector is reset to zero.  
7.9 Mapping to IETF Diffserv Classes  
For 10/100 Mbps ports, the classes of Table 6 are merged in pairs—one class corresponding to NM+EF, two AF  
classes and a single BE class.  
P3  
P2  
P1  
P0  
VTX  
NM+EF  
AF0 AF1  
BE0  
IETF  
Table 8 - Mapping between MVTX2601 and IETF Diffserv Classes for 10/100 Ports  
27  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Features of the MVTX2601 that correspond to the requirements of their associated IETF classes are summarized in  
the table below.  
Network management  
(NM) and Expedited  
forwarding (EF)  
Global buffer reservation for NM and EF  
Option of strict priority scheduling  
No dropping if admission controlled  
Assured forwarding  
(AF)  
Programmable bandwidth partition, with option of WFQ service  
Option of delay-bounded service keeps delay under fixed levels even if not  
admission-controlled  
Random early discard, with programmable levels  
Global buffer reservation for each AF class  
Best effort (BE)  
Service only when other queues are idle means that QoS not adversely affected  
Random early discard, with programmable levels  
Traffic from flow control enabled ports automatically classified as BE  
Table 9 - MVTX2601 Features Enabling IETF Diffserv Standards  
8.0 Port Trunking  
8.1 Features and Restrictions  
A port group (i.e., trunk) can include up to 4 physical ports but all of the ports in a group must be in the same  
MVTX2601.  
Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address  
and destination MAC address. Three other options include source MAC address only, destination MAC address  
only and source port (in bidirectional ring mode only). Load distribution for multicast is performed similarly.  
The MVTX2601 also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking  
group goes down, the MVTX2601 will automatically redistribute the traffic over to the remaining ports in the trunk.  
8.2 Unicast Packet Forwarding  
The search engine finds the destination MCT entry and if the status field says that the destination port found  
belongs to a trunk then the group number is retrieved instead of the port number. In addition, if the source address  
belongs to a trunk then the source port’s trunk membership register is checked.  
A hash key, based on some combination of the source and destination MAC addresses for the current packet,  
selects the appropriate forwarding port.  
8.3 Multicast Packet Forwarding  
For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the  
packet based on the VLAN index and hash key.  
Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port  
trunking environment.  
Determining one forwarding port per group. For multicast packets, all but one port per group, the forwarding port,  
must be excluded.  
Preventing the multicast packet from looping back to the source trunk.  
28  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with  
the source port. This is because when we select the primary forwarding port for each group, we do not take the  
source port into account. To prevent this, we simply apply one additional filter, so as to block that forwarding port for  
this multicast packet.  
8.4 Trunking  
2 trunk groups are supported. Groups 0 and 1 can trunk up to 4 10/100 ports. The supported combinations are  
shown in the following table.  
Group 0  
Port 0  
Port 1  
Port 2  
Port 3  
9
9
9
9
9
9
9
9
9
Select via trunk0_mode register  
Group 1  
Port 4  
Port 5  
Port 6  
Port 7  
9
9
9
9
9
9
Select via trunk1_mode register  
The trunks are individually enabled/disabled by controlling pin trunk 0,1.  
9.0 Port Mirroring  
9.1 Port Mirroring Features  
The received or transmitted data of any 10/100 port in the MVTX2601 chip can be “mirrored” to any other port. We  
support two such mirrored source-destination pairs. A mirror port cannot also serve as a data port. Please refer to  
the Port Mirroring Application Note for further details.  
9.2 Setting Registers for Port Mirroring  
MIRROR1_SRC: Sets the source port for the first port mirroring pair. Bits [4:0] select the source port to be  
mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to  
select between ingress (Rx) or egress (Tx) data.  
MIRROR1_DEST: Sets the destination port for the first port mirroring pair. Bits [4:0] select the destination  
port to be mirrored. The default is port 23.  
MIRROR2_SRC: Sets the source port for the second port mirroring pair. Bits [4:0] select the source port to  
be mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used  
to select between ingress (Rx) or egress (Tx) data.  
MIRROR2_DEST: Sets the destination port for the second port mirroring pair. Bits [4:0] select the  
destination port to be mirrored. The default is port 0.  
29  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
10.0 GPSI (7WS) Interface  
10.1 GPSI connection  
The 10/100 RMII ethernet port can function in GPSI (7WS) mode when the corresponding TXEN pin is strapped  
low with a 1 K pull down resistor. In this mode, the TXD[0], TXD[1], RXD[0] and RXD[1] serve as TX data, TX clock,  
RX data and RX clock respectively. The link status and collision from the PHY are multiplexed and shifted into the  
switch device through external glue logic. The duplex of the port can be controlled by programming the ECR  
register.  
The GPSI interface can be operated in port based VLAN mode only.  
crs  
rxd  
CRS_DV  
RXD[0]  
RXD[1]  
TXD[1]  
rx_clk  
tx_clk  
txd  
link0  
col0  
Port 0  
Ethernet  
PHY  
TXD[0]  
TXEN  
txen  
link1  
link2  
col1  
col2  
260X  
link23  
col23  
Port 23  
Ethernet  
PHY  
Link  
Serializer  
(CPLD)  
Collision  
Serializer  
(CPLD)  
Figure 10 - GPSI (7WS) Mode Connection Diagram  
30  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
10.2 SCAN LINK and SCAN COL interface  
An external CPLD logic is required to take the link signals and collision signals from the GPSI PHYs and shift them  
into the switch device. The switch device will drive out a signature to indicate the start of the sequence. After that,  
the CPLD should shift in the link and collision status of the PHYS as shown in the figure. The extra link status  
indicates the polarity of the link signal. One indicates the polarity of the link signal is active high.  
scan_clk  
scan_link/  
scan_col  
25 cycles for link /  
24 cycles for col  
Drived by VTX260x  
Drived by CPLD  
Total 32 cycles period  
Figure 11 - SCAN LINK and SCAN COLLISON Status Diagram  
11.0 LED Interface  
11.1 LED Interface Introduction  
A serial output channel provides port status information from the MVTX2601 chips. It requires three additional pins.  
LED_CLK at 12.5 MHz  
LED_SYN a sync pulse that defines the boundary between status frames  
LED_DATA a continuous serial stream of data for all status LEDs that repeats once every frame time  
A low cost external device (44 pin PAL) is used to decode the serial data and to drive an LED array for display. This  
device can be customized for different needs.  
11.2 Port Status  
In the MVTX2601, each port has 8 status indicators, each represented by a single bit. The 8 LED status indicators  
are:  
Bit 0: Flow control  
Bit 1:Transmit data  
Bit 2: Receive data  
Bit 3: Activity (where activity includes either transmission or reception of data)  
Bit 4: Link up  
Bit 5: Speed (1= 100 Mb/s; 0= 10 Mb/s)  
Bit 6: Full-duplex  
Bit 7: Collision  
Eight clocks are required to cycle through the eight status bits for each port.  
When the LED_SYN pulse is asserted, the LED interface will present 256 LED clock cycles with the clock cycles  
providing information for the following ports.  
31  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Port 0 (10/100): cycles #0 to cycle #7  
Port 1 (10/100): cycles#8 to cycle #15  
Port 2 (10/100): cycle #16 to cycle #23  
...  
Port 22 (10/100): cycle #176 to cycle #183  
Port 23 (10/100): cycle #184 to cycle #191  
Reserved: cycle #192 to cycle #199  
Reserved: cycle #200 to cycle #207  
Byte 26 (additional status): cycle #208 to cycle #215  
Byte 27 (additional status): cycle #216 to cycle #223  
Cycles #224 to 256 present data with a value of zero.  
Byte 26 and byte 27 provides bist status  
26[0]: Reserved  
26[1]: Reserved  
26[2]: initialization done  
26[3]: initialization start  
26[4]: checksum ok  
26[5]: link_init_complete  
26[6]: bist_fail  
26[7]: ram_error  
27[0]: bist_in_process  
27[1]: bist_done  
11.3 LED Interface Timing Diagram  
The signal from the MVTX2601 to the LED decoder is shown in Figure 12.  
Figure 12 - Timing Diagram of LED Interface  
32  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.0 Register Definition  
12.1 MVTX2601 Register Description  
2
CPU Addr  
(Hex)  
I C Addr  
Register  
Description  
R/W  
Default Notes  
(Hex)  
ETHERNET Port Control Registers Substitute [N] with Port number (0..17h)  
ECR1P”N”  
ECR2P”N”  
Port Control Register 1 for Port N 000 + 2 x N  
Port Control Register 2 for Port N 001 + 2 x N  
R/W  
R/W  
000-018  
01B-033  
020  
000  
VLAN Control Registers Substitute [N] with Port number (0..17h)  
AVTCL  
VLAN Type Code Register Low  
VLAN Type Code Register High  
Port “N” Configuration Register 0  
Port “N” Configuration Register 1  
Port “N” Configuration Register 2  
Port “N” Configuration Register 3  
VLAN Operating Mode  
100  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
036  
000  
081  
0FF  
0FF  
0FF  
007  
000  
AVTCH  
101  
037  
PVMAP”N”_0  
PVMAP”N”_1  
PVMAP”N”_2  
PVMAP”N”_3  
PVMODE  
102 + 4N  
103 + 4N  
104 + 4N  
105 + 4N  
170  
038-050  
053-06B  
06E-086  
089-0A1  
0A4  
TRUNK Control Registers  
TRUNK0_MODE  
TRUNK1_ MODE  
Trunk Group 0 Mode  
Trunk Group 1 Mode  
203  
20B  
R/W  
R/W  
0A5  
0A6  
003  
003  
Search Engine Configurations  
TX_AGE  
Transmission Queue Aging Time  
325  
400  
R/W  
R/W  
0A7  
0A8  
008  
AGETIME_LOW  
MAC Address Aging Time Low  
2M:05C  
/
4M:02E  
AGETIME_ HIGH  
SE_OPMODE  
MAC Address Aging Time High  
Search Engine Operating Mode  
401  
403  
R/W  
R/W  
0A9  
NA  
000  
000  
Buffer Control and QOS Control  
FCBAT  
QOSC  
FCR  
FCB Aging Timer  
500  
501  
502  
503  
504  
505  
506  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0AA  
0AB  
0AC  
0AD  
0AE  
0AF  
0B0  
0FF  
000  
008  
000  
000  
000  
000  
QOS Control  
Flooding Control Register  
VLAN Priority Map Low  
VLAN Priority Map Middle  
VLAN Priority Map High  
TOS Priority Map Low  
AVPML  
AVPMM  
AVPMH  
TOSPML  
33  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
2
CPU Addr  
(Hex)  
I C Addr  
Register  
TOSPMM  
Description  
R/W  
Default Notes  
(Hex)  
TOS Priority Map Middle  
TOS Priority Map High  
VLAN Discard Map  
507  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0B1  
0B2  
0B3  
0B4  
0B5  
0B6  
000  
000  
000  
000  
000  
TOSPMH  
AVDM  
508  
509  
50A  
50B  
50C  
TOSDML  
BMRC  
TOS Discard Map  
Broadcast/Multicast Rate Control  
Unicast Congestion Control  
UCC  
1M:008  
/
2M:010  
MCC  
Multicast Congestion Control  
50D  
R/W  
R/W  
0B7  
0B8  
050  
PR100  
Port Reservation for 10/100 Ports 50E  
1M:035  
/
2M:058  
SFCB  
Share FCB Size  
510  
R/W  
0BA  
1M:046  
/
2M:0E6  
C2RS  
Class 2 Reserve Size  
Class 3 Reserve Size  
Class 4 Reserve Size  
Class 5 Reserve Size  
Class 6 Reserve Size  
Class 7 Reserve Size  
QOS Control (N=0 39)  
WRED Drop Rate Control 0  
WRED Drop Rate Control 1  
511  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0BB  
0BC  
000  
000  
000  
000  
000  
000  
000  
08F  
088  
000  
C3RS  
512  
C4RS  
513  
0BD  
C5RS  
514  
0BE  
C6RS  
515  
0BF  
C7RS  
516  
0C0  
QOSC”N”  
RDRC0  
RDRC1  
517-53E  
553  
0C1-0D2  
0FB  
554  
0FC  
USER_  
User Define Logical Port “N” Low  
(N=0-7)  
580 + 2N  
R/W 0D6-0DD  
PORT”N”_LOW  
USER_  
User Define Logical Port “N” High 581 + 2N  
R/W  
R/W  
R/W  
R/W  
0DE-0E5  
0E6  
000  
000  
000  
000  
PORT”N”_HIGH  
USER_ PORT1:0_  
PRIORITY  
User Define Logic Port 1 and 0  
Priority  
590  
591  
592  
USER_ PORT3:2_  
PRIORITY  
User Define Logic Port 3 and 2  
Priority  
0E7  
USER_ PORT5:4_  
PRIORITY  
User Define Logic Port 5 and 4  
Priority  
0E8  
34  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
2
CPU Addr  
(Hex)  
I C Addr  
Register  
Description  
R/W  
Default Notes  
(Hex)  
USER_  
User Define Logic Port 7 and 6  
Priority  
593  
R/W  
0E9  
000  
PORT7:6_PRIORIT  
Y
USER_PORT_  
ENABLE  
User Define Logic Port Enable  
594  
R/W  
R/W  
R/W  
R/W  
R/W  
0EA  
0EB  
0EC  
0ED  
0EE  
000  
000  
000  
000  
000  
WLPP10  
WLPP32  
WLPP54  
WLPP76  
Well known Logic Port Priority for 595  
1 and 0  
Well known Logic Port Priority for 596  
3 and 2  
Well known Logic Port Priority for 597  
5 and 4  
Well-known Logic Port Priority for 598  
7 & 6  
WLPE  
Well known Logic Port Enable  
User Define Range Low Bit7:0  
User Define Range Low Bit 15:8  
User Define Range High Bit 7:0  
User Define Range High Bit 15:8  
User Define Range Priority  
599  
59A  
59B  
59C  
59D  
59E  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0EF  
0F4  
0F5  
0D3  
0D4  
0D5  
000  
000  
000  
000  
000  
000  
RLOWL  
RLOWH  
RHIGHL  
RHIGHH  
RPRIORITY  
MISC Configuration Registers  
MII_OP0  
MII_OP1  
FEN  
MII Register Option 0  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
60B  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0F0  
0F1  
0F2  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0F3  
0FF  
000  
000  
010  
000  
000  
000  
000  
N/A  
N/A  
000  
000  
MII Register Option 1  
Feature Registers  
MIIC0  
MIIC1  
MIIC2  
MIIC3  
MIID0  
MIID1  
LED  
MII Command Register 0  
MII Command Register 1  
MII Command Register 2  
MII Command Register 3  
MII Data Register 0  
MII Data Register 1  
RO  
LED Control Register  
EEPROM Checksum Register  
R/W  
R/W  
SUM  
Port Mirroring Controls  
MIRROR1_SRC Port Mirror 1 Source Port  
700  
R/W  
N/A  
07F  
35  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
2
CPU Addr  
(Hex)  
I C Addr  
Register  
Description  
R/W  
Default Notes  
(Hex)  
N/A  
MIRROR1_ DEST  
MIRROR2_SRC  
MIRROR2_ DEST  
Port Mirror 1 Destination Port  
Port Mirror 2 Source Port  
701  
R/W  
R/W  
R/W  
017  
0FF  
000  
702  
703  
N/A  
Port Mirror 2 Destination Port  
N/A  
Device Configuration Register  
GCR  
DCR  
Global Control Register  
F00  
F01  
R/W  
RO  
N/A  
N/A  
000  
N/A  
Device Status and Signature  
Register  
DCR1  
DPST  
DTST  
DA  
Chip status  
F02  
F03  
F04  
FFF  
RO  
R/W  
RO  
N/A  
N/A  
N/A  
N/A  
N/A  
000  
N/A  
DA  
Device Port Status Register  
Data read back register  
DA Register  
RO  
12.2 Group 0 Address MAC Ports Group  
12.2.1 ECR1Pn: Port N Control Register  
2
I C Address 000-018; CPU Address:0000+2xN (N = port number)  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
2
1
0
3
Sp State  
Bit [0]  
A-FC  
Port Mode  
1 - Flow Control Off  
0 - Flow Control On  
When Flow Control On:  
In half duplex mode, the MAC transmitter applies back pressure for flow  
control  
In full duplex mode, the MAC transmitter sends Flow Control frames when  
necessary. The MAC receiver interprets and processes incoming flow control  
frames. The Flow Control Frame Received counter is incremented whenever a  
flow control is received.  
When Flow Control off:  
In half duplex mode, the MAC Transmitter does not assert flow control by sending  
flow control frames or jamming collision.  
In full duplex mode, the Mac transmitter does not send flow control frames. The  
MAC receiver does not interpret or process the flow control frames. The Flow  
Control Frame Received counter is not incremented.  
Bit [1]  
1 - Half Duplex - Only 10/100 mode  
0 - Full Duplex  
36  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Bit [2]  
1 - 10 Mbps  
0 - 100 Mbps  
Bit [4:3]  
00 - Automatic Enable Auto Neg. This enables hardware state machine for  
auto-negotiation.  
01 - Limited Disable auto Neg. This disables hardware for speed auto-  
negotiation. Poll MII for link status.  
10 - Link Down. Disable auto Neg. state machine and force link down  
(disable the port)  
11 - Link Up. User ERC1 [2:0] for config.  
Bit [5]  
Asymmetric Flow Control Enable  
0 - Disable asymmetric flow control  
1 - Enable asymmetric flow control  
Asymmetric Flow Control Enable. When this bit is set and flow control is on  
(bit [0] = 0, don't send out a flow control frame. But MAC receiver interprets  
and process flow control frames. Default is 0  
Bit [7:6]  
SS - Spanning tree state Default is 11  
00 – Blocking: Frame is dropped  
01 - Listening:  
10 - Learning:  
Frame is dropped  
Frame is dropped. Source MAC address is learned.  
11 - Forwarding: Frame is forwarded. Source MAC address is learned.  
12.2.2 ECR2Pn: Port N Control Register  
2
I C Address: 01B-035; CPU Address:0001+2xN  
2
Accessed by and serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
QoS Sel  
Reserve  
DisL  
Ftf  
Futf  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Filter untagged frame (Default 0)  
• 0: Disable  
• 1: All untagged frames from this port are discarded  
Filter Tag frame (Default 0)  
• 0: Disable  
• 1: All tagged frames from this port are discarded  
Learning Disable (Default 0)  
• 1 Learning is disabled on this port  
• 0 Learning is enabled on this port  
Must be set to ‘1’  
37  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Bit [5:4:]  
QOS mode selection (Default 00)  
Determines which of the 4 sets of QoS settings is used for 10/100 ports.  
Note that there are 4 sets of per-queue byte thresholds, and 4 sets of WFQ  
ratios programmed. These bits select among the 4 choices for each 10/100  
port. Refer to QoS Application Note.  
00: select class byte limit set 0 and classes WFQ credit set 0  
01: select class byte limit set 1 and classes WFQ credit set 1  
10: select class byte limit set 2 and classes WFQ credit set 2  
11: select class byte limit set 3 and classes WFQ credit set 3  
Bit [7:6]  
Reserved  
12.3 Group 1 Address VLAN Group  
12.3.1 AVTCL – VLAN Type Code Register Low  
2
I C Address 036; CPU Address:h100  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
LANType_LOW: Lower 8 bits of the VLAN type code (Default 00)  
12.3.2 AVTCH – VLAN Type Code Register High  
2
I C Address 037; CPU Address:h101  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81)  
12.3.3 PVMAP00_0 – Port 00 Configuration Register 0  
2
I C Address 038, CPU Address:h102)  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
VLAN Mask for ports 7 to 0 (Default FF)  
This register indicates the legal egress ports. A “1” on bit 7 means that the packet can be sent to port 7. A “0” on  
bit 7 means that any packet destined to port 7 will be discarded. This register works with registers 1 and 2 to form  
a 24-bit mask to all egress ports.  
12.3.4 PVMAP00_1 – Port 00 Configuration Register 1  
2
I C Address h53, CPU Address:h103  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
VLAN Mask for ports 15 to 8 (Default is FF)  
38  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.3.5 PVMAP00_2 – Port 00 Configuration Register 2  
2
I C Address h6E, CPU Address:h104  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
VLAN Mask for ports 23 to 16 (Default FF)  
12.3.6 PVMAP00_3 – Port 00 Configuration Register 3  
2
I C Address h89, CPU Address:h105)  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
0
FP en  
Drop  
Default tx priority  
Bit [2:0]:  
Bit [5:3]:  
Reserved (Default 7)  
Default Transmit priority. Used when Bit [7] = 1 (Default 0)  
000 Transmit Priority Level 0 (Lowest)  
001 Transmit Priority Level 1  
010 Transmit Priority Level 2  
011 Transmit Priority Level 3  
100 Transmit Priority Level 4  
101 Transmit Priority Level 5  
110 Transmit Priority Level 6  
111 Transmit Priority Level 7 (Highest)  
Bit [6]:  
Bit [7]:  
Default Discard priority (Default 0)  
0 – Discard Priority Level 0 (Lowest)  
1 – Discard Priority Level 7(Highest)  
Enable Fix Priority (Default 0)  
0 Disable fix priority. All frames are analyzed. Transmit Priority and  
Discard Priority are based on VLAN Tag, TOS field or Logical Port.  
1 Transmit Priority and Discard Priority are based on values programmed  
in bit [6:3]  
12.4 Port Configuration Register  
2
PVMAP01_0,1,2,3 I C Address h39,54,6F,8A; CPU Address:h106,107,108,109)  
2
PVMAP02_0,1,2,3 I C Address h3A,55,70,8B; CPU Address:h10A, 10B, 10C, 10D)  
2
PVMAP03_0,1,2,3 I C Address h3B,56,71,8C; CPU Address:h10E, 10F, 110, 111)  
2
PVMAP04_0,1,2,3 I C Address h3C,57,72,8D; CPU Address:h112, 113, 114, 115)  
2
PVMAP05_0,1,2,3 I C Address h3D,58,73,8E; CPU Address:h116, 117, 118, 119)  
2
PVMAP06_0,1,2,3 I C Address h3E,59,74,8F; CPU Address:h11A, 11B, 11C, 11D)  
2
PVMAP07_0,1,2,3 I C Address h3F,5A,75,90; CPU Address:h11E, 11F, 120, 121)  
2
PVMAP08_0,1,2,3 I C Address h40,5B,76,91; CPU Address:h122, 123, 124, 125)  
2
PVMAP09_0,1,2,3 I C Address h41,5C,77,92; CPU Address:h126, 127, 128, 129)  
2
PVMAP10_0,1,2,3 I C Address h42,5D,78,93; CPU Address:h12A, 12B, 12C, 12D)  
2
PVMAP11_0,1,2,3 I C Address h43,5E,79,94; CPU Address:h12E, 12F, 130, 131)  
2
PVMAP12_0,1,2,3 I C Address h44,5F,7A,95; CPU Address:h132, 133, 134, 135)  
39  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
2
PVMAP13_0,1,2,3 I C Address h45,60,7B,96; CPU Address:h136, 137, 138, 139)  
2
PVMAP14_0,1,2,3 I C Address h46,61,7C,97; CPU Address:h13A, h13B, 13C, 13D)  
2
PVMAP15_0,1,2,3 I C Address h47,62,7D,98; CPU Address:h13E, 13F, 140, 141)  
2
PVMAP16_0,1,2,3 I C Address h48,63,7E,99; CPU Address:h142, 143, 144, 145)  
2
PVMAP17_0,1,2,3 I C Address h49,64,7F,9A; CPU Address:h146, 147, 148, 149)  
2
PVMAP18_0,1,2,3 I C Address h4A,65,80,9B; CPU Address:h14A, 14B, 14C, 14D)  
2
PVMAP19_0,1,2,3 I C Address h4B,66,81,9C; CPU Address:h14E, 14F, 150, 151)  
2
PVMAP20_0,1,2,3 I C Address h4C,67,82,9D; CPU Address:h152, 153, 154, 155)  
2
PVMAP21_0,1,2,3 I C Address h4D,68,83,9E; CPU Address:h156, 157, 158, 159)  
2
PVMAP22_0,1,2,3 I C Address h4E,69,84,9F; CPU Address:h15A, 15B, 15C, 15D)  
2
PVMAP23_0,1,2,3 I C Address h4F,6A,85,A0; CPU Address:h15E, 15F, 160, 161)  
12.4.1 PVMODE  
2
I C Address: h0A4, CPU Address:h170  
2
Accessed by serial interface, and I C (R/W)  
7
5
4
3
2
1
0
SM0  
DF  
SL  
Bit [0]:  
Bit [1]:  
Reserved  
Must be ‘0’  
Slow learning  
• Same function as SE_OP MODE bit 7. Either bit can enable the function; both  
need to be turned off to disable the feature.  
Bit [2]:  
Disable dropping of frames with destination MAC addresses  
0180C2000001 to 0180C200000F (Default = 0)  
• 0: Drop all frames in this range  
• 1: Disable dropping of frames in this range  
Bit [3]:  
Bit [4]:  
Reserved  
Support MAC address 0  
• 0: MAC address 0 is not learned.  
• 1: MAC address 0 is learned.  
Bit [7:5]:  
Reserved  
12.5 Group 2 Address Port Trunking Group  
12.5.1 TRUNK0_MODE– Trunk group 0 mode  
2
I C Address h0A5; CPU Address:203  
2
Accessed by serial interface and I C (R/W)  
7
4
3
2
1
0
Hash Select  
Port Select  
40  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Bit [1:0]:  
Bit [3:2]  
Port selection in unmanaged mode. Input pin TRUNK0 enable/disable  
trunk group 0.  
• 00 Reserved  
• 01 Port 0 and 1 are used for trunk0  
• 10 Port 0,1 and 2 are used for trunk0  
• 11 Port 0,1,2 and 3 are used for trunk0  
Hash Select. The Hash selected is valid for Trunk 0, 1 and 2.  
(Default 00)  
• 00 Use Source and Destination Mac Address for hashing  
• 01 Use Source Mac Address for hashing  
• 10 Use Destination Mac Address for hashing  
• 11 Use source destination MAC address and ingress physical port number  
for hashing  
12.5.2 TRUNK1_MODE – Trunk group 1 mode  
2
I C Address h0A6; CPU Address:20B  
2
Accessed by serial interface and I C (R/W)  
7
2
1
0
Port Select  
Bit [1:0]:  
Port selection in unmanaged mode. Input pin TRUNK1  
enable/disable trunk group 1.  
• 00 Reserved  
• 01 Port 4 and 5 are used for trunk1  
• 10 Reserved  
• 11 Port 4, 5, 6 and 7 are used for trunk1  
12.6 Group 4 Address Search Engine Group  
12.6.1 TX_AGE – Tx Queue Aging timer  
2
I C Address: h07;CPU Address:h325  
Accessed by serial interface (RW)  
7
6
5
0
Tx Queue Agent  
Bit [5:0]: Unit of 100 ms (Default 8)  
Disable transmission queue aging if value is zero. Aging timer for all ports and queues.  
For no packet loss flow control, this register must be set to 0  
12.6.2 AGETIME_LOW – MAC address aging time Low  
2
I C Address h0A8; CPU Address:h400  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0] Low byte of the MAC address aging timer  
MAC address aging is enable/disable by boot strap TSTOUT9  
41  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.6.3 AGETIME_HIGH –MAC address aging time High  
2
I C Address h0A9; CPU Address h401  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]: High byte of the MAC address aging timer  
The default setting provide 300 seconds aging time. Aging time is based on the following equation:  
{AGETIME_TIME,AGETIME_LOW} X (# of MAC address entries in the memory x 100 µsec). Number of  
MAC entries = 32 K when 1 MB is used. Number of MAC entries = 64 K when 2 MB is used.  
12.6.4 SE_OPMODE – Search Engine Operation Mode  
CPU Address:h403  
Accessed by serial interface (R/W)  
{SE_OPMODE} X(# of entries 100 usec)  
7
6
5
0
SL  
DMS  
Bit [5:0]:  
Bit [6]:  
Reserved  
Disable MCT speedup aging  
• 1 – Disable speedup aging when MCT resource is low  
• 0 – Enable speedup aging when MCT resource is low  
Bit [7]:  
Slow Learning  
• 1– Enable slow learning. Learning is temporary disabled when search  
demand is high  
• 0 – Learning is performed independent of search demand  
42  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.7 Group 5 Address Buffer Control/QOS Group  
12.7.1 FCBAT – FCB Aging Timer  
2
I C Address h0AA; CPU Address:h500  
7
0
FCBAT  
Bit [7:0]:  
FCB Aging time. Unit of 1ms. (Default FF)  
This function is for buffer aging control. It is used to configure the aging  
time, and can be enabled/ disabled through bootstrap pin. It is not  
recommended to use this function for normal operation.  
12.7.2 QOSC – QOS Control  
I²C Address h0AB; CPU Address:h501  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
1
0
Tos-d  
Tos-p  
VF1c  
L
Bit [0]:  
QoS frame lost is OK. Priority will be available for flow control enabled  
source only when this bit is set (Default 0)  
Bit [4]:  
Per VLAN Multicast Flow Control (Default 0)  
0 – Disable  
1 – Enable  
Bit [5]:  
Bit [6]:  
Reserved  
Select TOS bits for Priority (Default 0)  
0 - Use TOS [4:2] bits to map the transmit priority  
1 - Use TOS [7:5] bits to map the transmit priority  
Bit [7]:  
Select TOS bits for Drop Priority (Default 0)  
0 - Use TOS[4:2] bits to map the drop priority  
1 - Use TOS[7:5] bits to map the drop priority  
12.7.3 FCR – Flooding Control Register  
2
I C Address h0AC; CPU Address:h502  
2
Accessed by serial interface and I C (R/W)  
7
6
4
3
0
Tos  
TimeBase  
U2MR  
43  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Bit [3:0]:  
Bit [6:4]:  
U2MR: Unicast to Multicast Rate. Units in terms of time base defined in  
bits [6:4]. This is used to limit the amount of flooding traffic. The value  
in U2MR specifies how many packets are allowed to flood within the  
time specified by bit [6:4]. To disable this function, program U2MR to  
0. (Default = 8)  
TimeBase:  
000 = 100 us  
001 = 200 us  
010 = 400 us  
011 = 800 us  
100 = 1.6 ms  
101 = 3.2 ms  
110 = 6.4 ms  
111 = 100 us (same as 000)  
(Default = 000)  
Bit [7]:  
Select VLAN tag or TOS (IP packets) to be preferentially picked to map  
transmit priority and drop priority (Default = 0).  
• 0 – Select VLAN Tag priority field over TOS  
• 1 – Select TOS over VLAN tag priority field  
12.7.4 AVPML – VLAN Priority Map  
2
I C Address h0AD; CPU Address:h503  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
0
VP2  
VP1  
VP0  
Registers AVPML, AVPMM, and AVPMH allow the eight VLAN priorities to map into eight internal level transmit  
priorities. Under the internal transmit priority, seven is highest priority where as zero is the lowest. This feature  
allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7 into bit 2:0  
of the AVPML register would map VLAN priority 0 into internal transmit priority 7. The new priority is used inside the  
2601. When the packet goes out it carries the original priority.  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Priority when the VLAN tag priority field is 0 (Default 0)  
Priority when the VLAN tag priority field is 1 (Default 0)  
Priority when the VLAN tag priority field is 2 (Default 0)  
44  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.7.5 AVPMM – VLAN Priority Map  
2
I C Address h0AE, CPU Address:h504  
2
Accessed by serial interface and I C (R/W)  
7
6
4
3
1
0
VP5  
VP4  
VP3  
VP2  
Map VLAN priority into eight level transmit priorities:  
Bit [0]:  
Priority when the VLAN tag priority field is 2 (Default 0)  
Priority when the VLAN tag priority field is 3 (Default 0)  
Priority when the VLAN tag priority field is 4 (Default 0)  
Priority when the VLAN tag priority field is 5 (Default 0)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
12.7.6 AVPMH – VLAN Priority Map  
2
I C Address h0AF, CPU Address:h505  
2
Accessed by serial interface and I C (R/W)  
7
5
4
2
1
0
VP7  
VP6  
VP5  
Map VLAN priority into eight level transmit priorities:  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Priority when the VLAN tag priority field is 5 (Default 0)  
Priority when the VLAN tag priority field is 6 (Default 0)  
Priority when the VLAN tag priority field is 7 (Default 0)  
12.7.7 TOSPML – TOS Priority Map  
2
I C Address h0B0, CPU Address:h506  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
0
TP2  
TP1  
TP0  
Map TOS field in IP packet into eight level transmit priorities  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Priority when the TOS field is 0 (Default 0)  
Priority when the TOS field is 1 (Default 0)  
Priority when the TOS field is 2 (Default 0)  
45  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.7.8 TOSPMM – TOS Priority Map  
2
I C Address h0B1, CPU Address:h507  
2
Accessed by serial interface and I C (R/W)  
7
6
4
3
1
0
TP5  
TP4  
TP3  
TP2  
Map TOS field in IP packet into four level transmit priorities  
Bit [0]:  
Priority when the TOS field is 2 (Default 0)  
Priority when the TOS field is 3 (Default 0)  
Priority when the TOS field is 4 (Default 0)  
Priority when the TOS field is 5 (Default 0)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
12.7.9 TOSPMH – TOS Priority Map  
2
I C Address h0B2, CPU Address:h508  
2
Accessed by serial interface and I C (R/W)  
7
5
4
2
1
0
TP7  
TP6  
TP5  
Map TOS field in IP packet into four level transmit priorities:  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Priority when the TOS field is 5 (Default 0)  
Priority when the TOS field is 6 (Default 0)  
Priority when the TOS field is 7 (Default 0)  
12.7.10 AVDM – VLAN Discard Map  
2
I C Address h0B3, CPU Address:h509  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
FDV7  
FDV6  
FDV5  
FDV4  
FDV3 FDV2 FDV1 FDV0  
Map VLAN priority into frame discard when low priority buffer usage is above threshold  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Frame drop priority when VLAN tag priority field is 0 (Default 0)  
Frame drop priority when VLAN tag priority field is 1 (Default 0)  
Frame drop priority when VLAN tag priority field is 2 (Default 0)  
Frame drop priority when VLAN tag priority field is 3 (Default 0)  
Frame drop priority when VLAN tag priority field is 4 (Default 0)  
Frame drop priority when VLAN tag priority field is 5 (Default 0)  
46  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Bit [6]:  
Bit [7]:  
Frame drop priority when VLAN tag priority field is 6 (Default 0)  
Frame drop priority when VLAN tag priority field is 7 (Default 0)  
12.7.11 TOSDML – TOS Discard Map  
2
I C Address h0B4, CPU Address:h50A  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
FDT7  
FDT6  
FDT5  
FDT4  
FDT3  
FDT2  
FDT1  
FDT0  
Map TOS into frame discard when low priority buffer usage is above threshold  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame drop priority when TOS field is 0 (Default 0)  
Frame drop priority when TOS field is 1 (Default 0)  
Frame drop priority when TOS field is 2 (Default 0)  
Frame drop priority when TOS field is 3 (Default 0)  
Frame drop priority when TOS field is 4 (Default 0)  
Frame drop priority when TOS field is 5 (Default 0)  
Frame drop priority when TOS field is 6 (Default 0)  
Frame drop priority when TOS field is 7 (Default 0)  
12.7.12 BMRC - Broadcast/Multicast Rate Control  
2
I C Address h0B5, CPU Address:h50B)  
2
Accessed by serial interface and I C (R/W)  
7
4
3
0
Broadcast Rate  
Multicast Rate  
This broadcast and multicast rate defines for each port the number of packet allowed to be forwarded within  
a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit,  
program the field to 0. Timebase is based on register 502 [6:4].  
Bit [3:0] :  
Multicast Rate Control Number of multicast packets allowed within the  
time defined in bits 6 to 4 of the Flooding Control Register (FCR).  
(Default 0).  
Bit [7:4] :  
Broadcast Rate Control Number of broadcast packets allowed within  
the time defined in bits 6 to 4 of the Flooding Control Register (FCR).  
(Default 0)  
47  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.7.13 UCC – Unicast Congestion Control  
2
I C Address h0B6, CPU Address: 50C  
2
Accessed by serial interface and I C (R/W)  
7
0
Unicast congest threshold  
Bit [7:0] :  
Number of frame count. Used for best effort dropping at B% when  
destination port’s best effort queue reaches UCC threshold and shared  
pool is all in use. Granularity 1 frame. (Default: h10 for 2 MB or h08 for  
1 MB)  
12.7.14 MCC – Multicast Congestion Control  
2
I C Address h0B7, CPU Address: 50D  
2
Accessed by serial interface and I C (R/W)  
7
5
4
0
FC reaction prd  
Multicast congest threshold  
Bit [4:0]:  
Bit [7:5]:  
In multiples of two. Used for triggering MC flow control when  
destination multicast port’s best effort queue reaches MCC threshold.  
(Default 0x10)  
Flow control reaction period (Default 2) Granularity 4 uSec.  
12.7.15 PR100 – Port Reservation for 10/100 ports  
2
I C Address h0B8, CPU Address 50E  
2
Accessed by serial interface and I C (R/W)  
7
4
3
0
Buffer low thd  
SP Buffer reservation  
Bit [3:0]:  
Per port buffer reservation.  
Define the space in the FDB reserved for each 10/100 port. Expressed  
in multiples of 4 packets. For each packet 1536 bytes are reserved in  
the memory.  
Bits [7:4]:  
Expressed in multiples of 4 packets. Threshold for dropping all best  
effort frames when destination port best efforts queues reach UCC  
threshold and shared pool all used and source port reservation is at or  
below the PR100[7:4] level. Also the threshold for initiating UC flow  
control.  
Default:  
• h58 for configuration with 2 MB;  
• h35 for configuration with 1 MB;  
48  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.7.16 SFCB – Share FCB Size  
2
I C Address h0BA), CPU Address 510  
2
Accessed by serial interface and I C (R/W)  
7
0
Shared buffer size  
Bits [7:0]:  
Expressed in multiples of 4 packets. Buffer reservation for shared pool.  
Default:  
• hE6 for configuration with memory of 2 MB;  
• h46 for configuration with memory of 1 MB;  
12.7.17 C2RS – Class 2 Reserve Size  
2
I C Address h0BB, CPU Address 511  
2
Accessed by serial interface and I C (R/W)  
7
0
Class 2 FCB Reservation  
Buffer reservation for class 2 (third lowest priority). Granularity 1. (Default 0)  
12.7.18 C3RS – Class 3 Reserve Size  
2
ƒ
ƒ
I C Address h0BC, CPU Address 512  
2
Accessed by serial interface and I C (R/W)  
7
0
0
Class 3 FCB Reservation  
Buffer reservation for class 3. Granularity 1. (Default 0)  
12.7.19 C4RS – Class 4 Reserve Size  
2
I C Address h0BD, CPU Address 513  
Accessed by serial interface and I C (R/W)  
2
7
Class 4 FCB Reservation  
Buffer reservation for class 4. Granularity 1. (Default 0)  
49  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.7.20 C5RS – Class 5 Reserve Size  
2
I C Address h0BE; CPU Address 514  
2
Accessed by serial interface and I C (R/W)  
7
0
0
Class 5 FCB Reservation  
Buffer reservation for class 5. Granularity 1. (Default 0)  
12.7.21 C6RS – Class 6 Reserve Size  
2
I C Address h0BF; CPU Address 515  
Accessed by serial interface and I C (R/W)  
2
7
Class 6 FCB Reservation  
Buffer reservation for class 6 (second highest priority). Granularity 1. (Default 0)  
12.7.22 C7RS – Class 7 Reserve Size  
2
I C Address h0C0; CPU Address 516  
2
Accessed by serial interface and I C (R/W)  
7
0
Class 7 FCB Reservation  
Buffer reservation for class 7 (highest priority). Granularity 1. (Default 0)  
12.7.23 Classes Byte Limit Set 0  
2
Accessed by serial interface and I C (R/W):  
2
C — QOSC00 – BYTE_C01 (I C Address h0C1, CPU Address 517)  
2
B — QOSC01 – BYTE_C02 (I C Address h0C2, CPU Address 518)  
2
A — QOSC02 – BYTE_C03 (I C Address h0C3, CPU Address 519)  
QOSC00 through QOSC02 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Drop (WRED) Scheme described in Chapter 7.7. There are four such sets of values A-C specified in Classes  
Byte Limit Set 0, 1, 2 and 3.  
Each 10/ 100 port can choose one of the four Byte Limit Sets as specified by the QoS Select field located in bits 5  
to 4 of the ECR2n register. The values A-C are per-queue byte thresholds for random early drop. QOSC02  
represents A and QOSC00 represents C.  
Granularity when Delay bound is used: QOSC02: 128 bytes, QOSC01: 256 bytes. QOSC00: 512 bytes.  
Granularity when WFQ is used: QOSC02: 512 bytes, QOSC01: 512 bytes, QOSC00: 512 bytes.  
50  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.7.24 Classes Byte Limit Set 1  
2
Accessed by serial interface and I C (R/W):  
2
C - QOSC03 – BYTE_C11 (I C Address h0C4, CPU Address 51a)  
2
B - QOSC04 – BYTE_C12 (I C Address h0C5, CPU Address 51b)  
2
A - QOSC05 – BYTE_C13 (I C Address h0C6, CPU Address 51c)  
QOSC03 through QOSC05 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Detect (WRED) Scheme.  
Granularity when Delay bound is used: QOSC05: 128 bytes, QOSC04: 256 bytes. QOSC03: 512 bytes.  
Granularity when WFQ is used: QOSC05: 512 bytes, QOSC04: 512 bytes, QOSC03: 512 bytes.  
12.7.25 Classes Byte Limit Set 2  
2
Accessed by serial interface and I C (R/W):  
C - QOSC06 – BYTE_C21 (CPU Address 51d)  
B - QOSC07 – BYTE_C22 (CPU Address 51e)  
A - QOSC08 – BYTE_C23 (CPU Address 51f)  
QOSC06 through QOSC08 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Detect (WRED) Scheme.  
Granularity when Delay bound is used: QOSC08: 128 bytes, QOSC07: 256 bytes. QOSC06: 512 bytes.  
Granularity when WFQ is used: QOSC08: 512 bytes, QOSC07: 512 bytes, QOSC06: 512 bytes.  
12.7.26 Classes Byte Limit Set 3  
2
Accessed by serial interface and I C (R/W):  
C - QOSC09 – BYTE_C31 (CPU Address 520)  
B - QOSC10 – BYTE_C32 (CPU Address 521)  
A - QOSC11 – BYTE_C33 (CPU Address 522)  
QOSC09 through QOSC011 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Detect (WRED) Scheme.  
Granularity when Delay bound is used: QOSC11: 128 bytes, QOSC10: 256 bytes. QOSC09: 512 bytes.  
Granularity when WFQ is used: QOSC11: 512 bytes, QOSC10: 512 bytes, QOSC09: 512 bytes.  
12.7.27 Classes WFQ Credit Set 0  
Accessed by serial interface (R/W)  
W0 - QOSC24[5:0] – CREDIT_C00 (CPU Address 52f)  
W1 - QOSC25[5:0] – CREDIT_C01 (CPU Address 530)  
W2 - QOSC26[5:0] – CREDIT_C02 (CPU Address 531)  
W3 - QOSC27[5:0] – CREDIT_C03 (CPU Address 532)  
QOSC24 through QOSC27 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1 and their sum must be 64. QOSC27 corresponds to W3 and QOSC24  
corresponds to W0.  
QOSC24[7:6]: Priority service type for the ports select this parameter set. Option 1 to 4.  
51  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
QOSC25[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC25[6]: Flow control pause best effort traffic only  
Both flow control allow and flow control best effort only can take effect only the priority type is WFQ.  
12.7.28 Classes WFQ Credit Set 1  
Accessed by serial interface (R/W)  
W0 - QOSC28[5:0] – CREDIT_C10 (CPU Address 533)  
W1 - QOSC29[5:0] – CREDIT_C11 (CPU Address 534)  
W2 - QOSC30[5:0] – CREDIT_C12 (CPU Address 535)  
W3 - QOSC31[5:0] – CREDIT_C13 (CPU Address 536)  
QOSC28 through QOSC31 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1 and their sum must be 64. QOSC31 corresponds to W3 and QOSC28  
corresponds to W0.  
QOSC28[7:6]: Priority service type for the ports select this parameter set. Option 1 to 4.  
QOSC29[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC29[6]: Flow control pause best effort traffic only  
12.7.29 Classes WFQ Credit Set 2  
Accessed by serial interface (R/W)  
W0 - QOSC32[5:0] – CREDIT_C20 (CPU Address 537)  
W1 - QOSC33[5:0] – CREDIT_C21 (CPU Address 538)  
W2 - QOSC34[5:0] – CREDIT_C22 (CPU Address 539)  
W3 - QOSC35[5:0] – CREDIT_C23 (CPU Address 53a)  
QOSC35 through QOSC32 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1 and their sum must be 64. QOSC35 corresponds to W3 and QOSC32  
corresponds to W0.  
QOSC32[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.  
QOSC33[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC33[6]: Flow Control pause best effort traffic only  
12.7.30 Classes WFQ Credit Set 3  
Accessed by serial interface (R/W)  
W0 - QOSC36[5;0] – CREDIT_C30 (CPU Address 53b)  
W1 - QOSC37[5:0] – CREDIT_C31 (CPU Address 53c)  
W2 - QOSC38[5:0] – CREDIT_C32 (CPU Address 53d)  
W3 - QOSC39[5:0] – CREDIT_C33 (CPU Address 53e)  
QOSC39 through QOSC36 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1 and their sum must be 64. QOSC39 corresponds to W3 and QOSC36  
corresponds to W0.  
QOSC36[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.  
52  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
QOSC37[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC37[6]: Flow Control pause best effort traffic only  
12.7.31 RDRC0 – WRED Rate Control 0  
2
I C Address 0FB, CPU Address 553  
c
Accessed by serial Interface and I C (R/W)  
7
4
3
0
X Rate  
Y Rate  
Bits [7:4]:  
Bits [3:0]:  
Corresponds to the frame drop percentage X% for WRED. Granularity  
6.25%.  
Corresponds to the frame drop percentage Y% for WRED. Granularity  
6.25%.  
See Programming QoS Registers application note for more information.  
12.7.32 RDRC1 – WRED Rate Control 1  
2
I C Address 0FC, CPU Address 554  
2
Accessed by serial Interface and I C (R/W)  
7
4
3
0
Z Rate  
B Rate  
Bits [7:4]:  
Bits [3:0]:  
Corresponds to the frame drop percentage Z% for WRED. Granularity  
6.25%.  
Corresponds to the best effort frame drop percentage B%, when  
shared pool is all in use and destination port best effort queue reaches  
UCC. Granularity 6.25%.  
See Programming QoS Register Application Note for more information.  
12.7.33 User Defined Logical Ports and Well Known Ports  
The MVTX2601 supports classifying packet priority through layer 4 logical port information. It can be setup by 8  
Well Known Ports, 8 User Defined Logical Ports and 1 User Defined Range. The 8 Well Known Ports supported  
are:  
0:23  
1:512  
2:6000  
3:443  
4:111  
5:22555  
6:22  
7:554  
53  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Their respective priority can be programmed via Well_Known_Port [7:0] priority register. Well_Known_Port_  
Enable can individually turn on/off each Well Known Port if desired.  
Similarly, the User Defined Logical Port provides the user programmability to the priority, plus the flexibility to select  
specific logical ports to fit the applications. The 8 User Logical Ports can be programmed via User_Port 0-7  
registers. Two registers are required to be programmed for the logical port number. The respective priority can be  
programmed to the User_Port [7:0] priority register. The port priority can be individually enabled/disabled via  
User_Port_Enable register.  
The User Defined Range provides a range of logical port numbers with the same priority level. Programming is  
similar to the User Defined Logical Port. Instead of programming a fixed port number, an upper and lower limit need  
to be programmed, they are: {RHIGHH, RHIGHL} and {RLOWH, RLOWL} respectively. If the value in the upper  
limit is smaller or equal to the lower limit, the function is disabled. Any IP packet with a logical port that is less than  
the upper limit and more than the lower limit will use the priority specified in RPRIORITY.  
12.7.33.1 USER_PORT0_(0~7) – User Define Logical Port (0~7)  
2
USER_PORT_0 - I C Address h0D6 + 0DE; CPU Address 580(Low) + 581(High)  
2
USER_PORT_1 - I C Address h0D7 + 0DF; CPU Address 582 + 583  
2
USER_PORT_2 - I C Address h0D8 + 0E0; CPU Address 584 + 585  
2
USER_PORT_3 - I C Address h0D9 + 0E1; CPU Address 586 + 587  
2
USER_PORT_4 - I C Address h0DA + 0E2; CPU Address 588 + 589  
2
USER_PORT_5 - I C Address h0DB + 0E3; CPU Address 58a + 58b  
2
USER_PORT_6 - I C Address h0DC + 0E4; CPU Address 58c + 58d  
2
USER_PORT_7 - I C Address h0DD + 0E5; CPU Address 58e + 58f  
2
Accessed by serial interface and I C (R/W)  
7
0
0
TCP/UDP Logic Port Low  
7
TCP/UDP Logic Port High  
(Default 00) This register is duplicated eight times from PORT 0 through PORT 7 and allows the definition of  
eight separate ports.  
12.7.33.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority  
2
I C Address h0E6, CPU Address 590  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 1  
Drop Priority 0  
Drop  
The chip allows the definition of the priority  
Bits [3:0]:  
Bits [7:4]:  
Priority setting, transmission + dropping, for logic port 0  
Priority setting, transmission + dropping, for logic port 1 (Default 00)  
54  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.7.33.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority  
2
I C Address h0E7, CPU Address 591  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 3  
Drop  
Priority 2  
Drop  
12.7.33.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority  
2
I C Address h0E8, CPU Address 592  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 5  
Drop  
Priority 4  
Drop  
(Default 00)  
12.7.33.5 USER_PORT_[7:6]_PRIORITY - USER DEFINE LOGIC PORT 7 AND 6 PRIORITY  
2
I C Address h0E9, CPU Address 593  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 7  
Drop  
Priority 6  
Drop  
(Default 00)  
12.7.33.6 USER_PORT_ENABLE [7:0] – User Define Logic 7 to 0 Port Enables  
2
I C Address h0EA, CPU Address 594  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
(Default 00)  
12.7.33.7 WELL_KNOWN_PORT [1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority  
2
I C Address h0EB, CPU Address 595  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 1  
Drop Priority 0  
Drop  
Priority 0 - Well known port 23 for telnet applications.  
Priority 1 - Well known port 512 for TCP/UDP  
(Default 00)  
55  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.7.33.8 WELL_KNOWN_PORT [3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority  
2
I C Address h0EC, CPU Address 596  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 3  
Drop  
Priority 2  
Drop  
Priority 2 - Well known port 6000 for XWIN.  
Priority 3 - Well known port 443 for http. sec  
(Default 00)  
12.7.33.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority  
2
I C Address h0ED, CPU Address 597  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 5  
Drop  
Priority 4  
Drop  
Priority 4 - Well known port 111 for sun rpe.  
Priority 5 - Well known port 22555 for IP Phone call setup.  
(Default 00)  
12.7.33.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority  
2
I C Address h0EE, CPU Address 598  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 7  
Drop  
Priority 6  
Drop  
Priority 6 - Well known port 22 for ssh.  
Priority 7 - Well known port 554 for rtsp.  
(Default 00)  
12.7.33.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables  
2
I C Address h0EF, CPU Address 599  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
• 1 - Enable  
• 0 - Disable  
Default 00)  
56  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.7.33.12 RLOWL – User Define Range Low Bit 7:0  
2
I C Address h0F4, CPU Address: 59a  
2
Accessed by serial interface and I C (R/W)  
(Default 00)  
12.7.33.13 RLOWH – User Define Range Low Bit 15:8  
2
I C Address h0F5, CPU Address: 59b  
2
Accessed by serial interface and I C (R/W)  
(Default 00)  
12.7.33.14 RHIGHL – User Define Range High Bit 7:0  
2
I C Address h0D3, CPU Address: 59c  
2
Accessed by serial interface and I C (R/W)  
(Default 00)  
12.7.33.15 RHIGHH – User Define Range High Bit 15:8  
2
I C Address h0D4, CPU Address: 59d  
2
Accessed by serial interface and I C (R/W)  
(Default 00)  
12.7.33.16 RPRIORITY – User Define Range Priority  
2
I C Address h0D5, CPU Address: 59e  
2
Accessed by serial interface and I C (R/W)  
7
4
3
0
Range Transmit Priority  
Drop  
RLOW and RHIGH form a range for logical ports to be classified with priority specified in RPRIORITY.  
Bit [3:1]  
Bits [0]:  
Transmit Priority  
Drop Priority  
12.8 Group 6 Address MISC Group  
12.8.1 MII_OP0 – MII Register Option 0  
2
I C Address F0, CPU Address:h600  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
0
hfc  
1prst  
DisJ Vendor Spc. Reg Addr  
57  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Bits [7]:  
Half duplex flow control feature  
• 0 = Half duplex flow control always enable  
• 1 = Half duplex flow control by negotiation  
Bits [6]:  
Bits [5]:  
Link partner reset auto-negotiate disable  
Disable jabber detection. This is for HomePNA application or any serial  
operation slower than 10 Mbps.  
• 1 = disable  
• 0 = enable  
Bit [4:0]:  
Vendor specified link status register address (null value means don’t  
use it) (Default 00); used when the Linkup bit position in the PHY is  
non-standard.  
12.8.2 MII_OP1 – MII Register Option 1  
2
I C Address F1, CPU Address:h601  
2
Accessed by serial interface and I C (R/W)  
7
4
3
0
Speed bit location  
Duplex bit location  
Bits [3:0]:  
Bits [7:4]:  
Duplex bit location in vendor specified register  
Speed bit location in vendor specified register  
(Default 00)  
12.8.3 FEN – Feature Register  
2
I C Address F2, CPU Address:h602)  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
1
0
DML MII  
DS  
Bits [1:0]:  
Reserved (Default 0)  
Support DS EF Code. (Default 0)  
Bit [2]:  
When 101110 is detected in DS field (TOS [7:2]), the frame priority is  
set for 110 and drop is set for 0.  
Bit [5:3]:  
Bit [6]:  
Reserved (Default 010)  
Disable MII Management State Machine  
• 0: Enable MII Management State Machine (Default 0)  
• 1: Disable MII Management State Machine  
Bit [7]:  
Disable using MCT link list structure  
• 0: Enable using MCT Link List structure (Default 0)  
• 1: Disable using MCT Link List structure  
58  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.8.4 MIIC0 – MII Command Register 0  
CPU Address:h603  
Accessed by serial interface only (R/W)  
Bit [7:0] MII Data [7:0]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then  
program MII command.  
12.8.5 MIIC1 – MII Command Register 1  
CPU Address:h604  
Accessed by serial interface only (R/W)  
Bit [7:0] MII Data [15:8]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
12.8.6 MIIC2 – MII Command Register 2  
CPU Address:h605  
Accessed by serial interface only (R/W)  
7
6
5
4
0
Mii OP  
Register address  
• REG_AD – Register PHY Address  
Bits [4:0]:  
Bit [6:5]  
• OP – Operation code “10” for read command and “01” for write command  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command. Writing to this register will initiate a serial management cycle to the MII management  
interface. For detail information, please refer to the PHY Control Application Note.  
12.8.7 MIIC3 – MII Command Register 3  
CPU Address:h606  
Accessed by serial interface only (R/W)  
7
6
5
4
0
Rdy Valid  
PHY address  
Bits [4:0]:  
PHY_AD – 5 Bit PHY Address  
Bit [6]  
Bit [7]  
VALID – Data Valid from PHY (Read Only)  
RDY – Data is returned from PHY (Ready Only)  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
59  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.8.8 MIID0 – MII Data Register 0  
CPU Address:h607  
Accessed by serial interface only (RO)  
Bit [7:0] MII Data [7:0]  
12.8.9 MIID1 – MII Data Register 1  
CPU Address:h608  
Accessed by serial interface only (RO)  
Bit [7:0] MII Data [15:8]  
12.8.10 LED Mode – LED Control  
CPU Address:h609  
Accessed by serial interface and I C (R/W)  
2
7
5
4
3
2
1
0
Clock rate  
Hold Time  
Bit [0]  
Reserved (Default 0)  
Bit [2:1]:  
Hold time for LED signal (Default= 00)  
00 = 8 msec  
01 = 16 msec  
11 = 64 msec  
10 = 32 msec  
Bit [4:3]:  
LED clock frequency (Default 0)  
For 100 MHz SCLK,  
00 = 100 M/8 = 12.5 MHz  
01 = 100 M/16 = 6.25 MHz  
10 = 100 M/32 = 3.125 MHz 11 = 100 M/64 = 1.5625 MHz  
For 125 MHz SCLK  
00 = 125 M/64 = 1953 KHz 01 = 125 M/128 = 977 KHz  
10 = 125 M/512 = 244 KHz 11 = 125 M/1024 = 122 KHz  
Bit [7:6]:  
Reserved. Must be 0. (Default 0)  
12.8.11 CHECKSUM - EEPROM Checksum  
2
I C Address FF, CPU Address:h60b  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
(Default 0)  
Before requesting that the MVTX2601 updates the EEPROM device, the correct checksum needs to be calculated  
and written into this checksum register. When the MVTX2601 boots from the EEPROM the checksum is calculated  
and the value must be zero. If the checksum is not zeroed the MVTX2601 does not start and pin CHECKSUM_OK  
is set to zero.  
The checksum formula is:  
Σ I2C register = 0  
FF  
I=0  
60  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.9 Group 7 Address Port Mirroring Group  
12.9.1 MIRROR1_SRC – Port Mirror source port  
CPU Address 700  
Accessed by serial interface (R/W) (Default 7F)  
7
6
5
4
0
I/O Src Port Select  
Bit [4:0]:  
Bit [5]:  
Source port to be mirrored. Use illegal port number to disable mirroring.  
1 – select ingress data  
0 – select egress data  
Bit [7]:  
Must be ‘1’  
12.9.2 MIRROR1_DEST – Port Mirror destination  
CPU Address 701  
Accessed by serial interface (R/W) (Default 17)  
7
5
4
0
Dest Port Select  
Bit [4:0]:  
Port Mirror Destination  
12.9.3 MIRROR2_SRC – Port Mirror source port  
CPU Address 702  
Accessed by serial interface (R/W) (Default FF)  
7
6
5
4
0
I/O Src Port Select  
Bit [4:0]:  
Bit [5]:  
Source port to be mirrored. Use illegal port number to disable mirroring.  
1 – select ingress data  
0 – select egress data  
Bit [7]  
Must be 1  
61  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.9.4 MIRROR2_DEST – Port Mirror destination  
CPU Address 703  
Accessed by serial interface (R/W) (Default 00)  
7
5
4
0
Dest Port Select  
Bit [4:0]:  
Port Mirror Destination  
12.10 Group F Address CPU Access Group  
12.10.1 GCR-Global Control Register  
CPU Address: hF00  
Accessed by serial interface. (R/W)  
7
4
3
2
1
0
Reset  
Bist  
SR  
SC  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Store configuration (Default = 0)  
Write ‘1’ followed by ‘0’ to store configuration into external EEPROM  
Store configuration and reset (Default = 0)  
Write ‘1’ to store configuration into external EEPROM and reset chip  
Start BIST (Default = 0)  
Write ‘1’ followed by ‘0’ to start the device’s built-in self-test. The result  
is found in the DCR register.  
Bit [3]:  
Soft Reset (Default = 0)  
Write ‘1’ to reset chip  
Bit [7:4]:  
Reserved  
62  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.10.2 DCR-Device Status and Signature Register  
CPU Address: hF01  
Accessed by serial interface. (RO)  
7
6
5
4
3
2
1
0
Revision  
Signature  
RE  
BinP  
BR  
BW  
2
Bit [0]:  
1: Busy writing configuration to I C  
2
0: Not busy writing configuration to I C  
2
Bit [1]:  
1: Busy reading configuration from I C  
2
0: Not busy reading configuration from I C  
Bit [2]:  
1: BIST in progress  
0: BIST not running  
Bit [3]:  
1: RAM Error  
0: RAM OK  
Bit [5:4]:  
Bit [7:6]:  
Device Signature  
01: MVTX2601 device  
Revision  
00: Initial Silicon  
01: XA1 Silicon  
12.10.3 DCR1-Chip status  
CPU Address: hF02  
Accessed by serial interface (RO)  
7
6
0
CIC  
Bit [7]  
Chip initialization completed  
63  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.10.4 DPST – Device Port Status Register  
CPU Address:hF03  
Accessed by serial interface (R/W)  
Bit [4:0]:  
Read back index register. This is used for selecting what to read back  
from DTST. (Default 00)  
- 5’b00000 - Port 0 Operating mode and Negotiation status  
- 5’b00001 - Port 1 Operating mode/Neg status  
- 5’b00010 - Port 2 Operating mode/Neg status  
- 5’b00011 - Port 3 Operating mode/Neg status  
- 5’b00100 - Port 4 Operating mode/Neg status  
- 5’b00101 - Port 5 Operating mode/Neg status  
- 5’b00110 - Port 6 Operating mode/Neg status  
- 5’b00111 - Port 7 Operating mode/Neg status  
- 5’b01000 - Port 8 Operating mode/Neg status  
- 5’b01001 - Port 9 Operating mode/Neg status  
- 5’b01010 - Port 10 Operating mode/Neg status  
- 5’b01011 - Port 11 Operating mode/Neg status  
- 5’b01100 - Port 12 Operating mode/Neg status  
- 5’b01101 - Port 13 Operating mode/Neg status  
- 5’b01110 - Port 14 Operating mode/Neg status  
- 5’b01111 - Port 15 Operating mode/Neg status  
- 5’b10000 - Port 16 Operating mode/Neg status  
- 5’b10001 - Port 17 Operating mode/Neg status  
- 5’b10010 - Port 18 Operating mode/Neg status  
- 5’b00011 - Port 19 Operating mode/Neg status  
- 5’b10100 - Port 20 Operating mode/Neg status  
- 5’b10101 - Port 21 Operating mode/Neg status  
- 5’b10110 - Port 22 Operating mode/Neg status  
- 5’b10111 - Port 23 Operating mode/Neg status  
64  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.10.5 DTST – Data read back register  
CPU Address: hF04  
Accessed by serial interface (RO)  
This register provides various internal information as selected in DPST bit [4:0]. Refer to the PHY Control  
Application Note.  
7
4
3
2
1
0
FE  
Fdpx  
FcEn  
Inkdn  
When bit is 1:  
Bit [0] – Flow control enable  
Bit [1] – Full duplex port  
Bit [2] – Fast Ethernet port  
Bit [3] – Link is down  
Bit [7:4] – Reserved  
12.10.6 PLLCR - PLL Control Register  
CPU Address: hF05  
Accessed by serial interface (RW)  
Bit [3] Must be '1'  
Bit [7] Selects strap option or LCLK/OECLK registers  
0 - Strap option (default)  
1 - LCLK/OECLK registers  
12.10.7 LCLK - LA_CLK delay from internal OE_CLK  
CPU Address: hF06  
Accessed by serial interface (RW)  
PD[12:10]  
000b  
001b  
010b  
011b  
LCLK  
80h  
40h  
20h  
10h  
08h  
04h  
02h  
01h  
Delay  
8 Buffers Delay  
7 Buffers Delay  
6 Buffers Delay  
5 Buffers Delay (Recommend)  
4 Buffers Delay  
3 Buffers Delay  
2 Buffers Delay  
1 Buffers Delay  
100b  
101b  
110b  
111b  
The LCLK delay from SCLK is the sum of the delay programmed in here and the delay in OECLK register.  
65  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
12.10.8 OECLK - Internal OE_CLK delay from SCLK  
CPU Address: hF07  
Accessed by serial interface (RW)  
The OE_CLK is used for generating the OE0 and OE1 signals.  
PD[15:13]  
000b  
001b  
010b  
011b  
OECLK Delay  
80h  
40h  
20h  
10h  
08h  
04h  
02h  
01h  
8 Buffers Delay  
7 Buffers Delay (Recommend)  
6 Buffers Delay  
5 Buffers Delay  
100b  
101b  
110b  
4 Buffers Delay  
3 Buffers Delay  
2 Buffers Delay  
111b  
1 Buffers Delay  
12.10.9 DA – DA Register  
CPU Address: hFFF  
Accessed by CPU and serial interface (RO)  
Always return 8’h DA. Indicate the serial port connection is good.  
66  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
13.0 BGA and Ball Signal Descriptions  
13.1 BGA Views (Top-View)  
13.1.1 Encapsulated View  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 3  
1 2  
1 6  
1 3  
1 9  
1 4  
3 3  
1 5  
3 6  
1 6  
3 9  
1 7  
4 2  
1 8  
4 5  
1 9  
2 0  
2 1  
K 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D L A _ D O E _ C L A _ C T R U N M I R R M I R R  
S T R O T S T O  
A
B
C
S C L S D A  
4
7
1 0  
1 3  
1 5  
4
E 0 _  
8
L K 0 L K 0  
O R 4 O R 1  
B E  
D 0  
U T 7  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D L A _ D O E _ C L A _ C L A _ D M I R R M I R R R E S E R E S E  
T S T O T S T O  
U T 8 U T 3  
1
3
6
9
1 2  
1 4 D S C _ E 1 _  
7
1 2  
1 5  
1 8  
3 2  
3 5  
3 8  
4 1  
4 4  
L K 1 L K 1  
6 2  
O R 5 O R 2 R V E D R V E D  
L A _ C L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ W T _ M O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D O E _ C L A _ C  
T R U N M I R R M I R R A U T O T S T O T S T O T S T O T S T O  
P _ D  
L K  
0
2
5
8
1 1  
3
E _ E _  
D E 1  
1 1  
1 4  
1 7  
2 0  
3 4  
3 7  
4 0  
4 3  
L K 2 L K 2  
K 0  
O R 3 O R 0  
F D U T 1 1 U T 9 U T 4 U T 0  
A G N L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ A L A _ W L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D S C A N S C A N T S T O T S T O T S T O T S T O T S T O T S T O  
D
E
F
D
1 7  
1 9  
2 1  
2 3  
2 5  
2 7  
2 9  
3 1  
6
1 0  
E 0 _  
4 9  
5 1  
5 3  
5 5  
5 7  
5 9  
6 1  
6 3  
4 7  
C O L C L K U T 1 4 U T 1 3 U T 1 2 U T 1 0 U T 5 U T 1  
S C A N  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ A L A _ W L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D R E S E L A _ D  
S C A N T S T O R E S E R E S E  
L I N K U T 1 5 R V E D R V E D  
T S T O T S T O  
U T 6 U T 2  
S C L K  
M O D  
E
1 6  
1 8  
2 0  
2 2  
2 4  
2 6  
2 8  
3 0  
5
9
E 1 _  
4 8  
5 0  
5 2  
5 4  
5 6  
5 8  
6 0 R V E D 4 6  
A V C R E S I S C A N R E S E R E S E  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
V C C V C C V C C V C C V C C  
C
N _  
E N R V E D R V E D  
R E S E  
T O U T  
_
R E S E  
R V E D  
R E S E R E S E R E S E  
R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
G
H
J
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
K
L
V D D V D D  
V D D V D D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
M
N
P
V D D  
V D D  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V D D  
V D D  
R E S E  
R E S E  
R E S E R E S E R E S E R E S E  
R E S E  
R V E D  
R E S E  
R V E D  
R V E V C C  
D
V C C R V E  
D
R V E D R V E D R V E D R V E D  
R E S E  
R E S E  
V C C R V E  
D
R E S E  
V C C R V E  
D
R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D  
R E S E  
R V E D  
R E S E  
R V E D  
R V E V C C  
D
M D I O  
M D C  
R E S E  
R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D  
R E S E  
R V E D  
M _ C L  
K
R
T
R V E V C C  
D
R E S E  
R E S E  
V C C R V E  
D
R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D  
R V E V C C  
D
R E S E  
R E S E  
V C C R V E  
D
R E S E R E S E T _ M O R E S E  
R V E D R V E D D E 0 R V E D  
R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D  
U
V
R V E V C C  
D
V D D  
V D D  
V D D  
V D D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
W
Y
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
V D D V D D  
V D D V D D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
A
A
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
A
B
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E M 2 3 _ M 2 3 _ M 2 3 _  
R V E D R V E D C R S R X D 0 R X D 1  
A
C
R E S E R E S E R E S E R E S E R E S E  
R V E D R V E D R V E D R V E D R V E D  
R E S E R E S E M 2 3 _ M 2 3 _ M 2 3 _  
R V E D R V E D T X D 1 T X D 0 T X E N  
A
D
V C C V C C V C C V C C V C C  
M 0 _ T M 0 _ T M 0 _ T M 3 _ T M 3 _ T M 3 _ R M 5 _ T M 5 _ T M 5 _ R M 8 _ T M 8 _ T M 8 _ R M 1 0 _ M 1 0 _ M 1 0 _ M 1 3 _ M 1 6 _ M 1 5 _ M 1 6 _ M 1 5 _ M 1 5 _ M 1 8 _ M 1 8 _ M 1 8 _ M 2 0 _ M 2 0 _ M 2 0 _ M 2 2 _  
X E N X D 0 X D 1 X D 1 X E N X D 0 X D 1 X E N X D 0 X D 1 X E N X D 0 T X D 1 T X E N R X D 0 T X D 1 T X D 0 T X D 1 R X D 1 T X E N R X D 0 T X D 1 T X E N R X D 0 T X D 1 T X E N R X D 0 R X D 1  
A
E
M 0 _ R M 0 _ R M 0 _ C M 3 _ T M 3 _ C M 3 _ R M 5 _ T M 5 _ C M 5 _ R M 8 _ T M 8 _ C M 8 _ R M 1 0 _ M 1 0 _ M 1 0 _ M 1 3 _ M 1 3 _ M 1 3 _ M 1 4 _ M 1 6 R M 1 5 _ M 1 7 _ M 1 7 _ M 1 8 _ M 2 0 _ M 2 0 _ M 2 0 _ M 2 2 _ M 2 2 _  
A F  
X D 1 X D 0  
R S  
X D 0  
R S  
X D 1 X D 0  
R S  
X D 1 X D 0  
R S  
X D 1 T X D 0 C R S R X D 1 T X D 0 C R S R X D 1 C R S X D 0 R X D 1 R X D 0 C R S R X D 1 T X D 0 C R S R X D 1 R X D 0 C R S  
M 1 _ T M 1 _ T M 1 _ T M 2 _ T M 2 _ C M 4 _ T M 4 _ C M 6 _ T M 6 _ C M 7 _ T M 7 _ C M 9 _ T M 9 _ C M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 5 _ M 1 6 _ M 1 6 _ M 1 8 _ M 1 8 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _ M 2 2 _ M 2 2 _  
A
G
X E N X D 0 X D 1 X D 1  
R S  
X D 1  
R S  
X D 1  
R S  
X D 1  
R S  
X D 1  
R S T X D 1 C R S T X D 1 C R S T X D 1 T X D 0 T X D 1 C R S T X D 0 C R S T X D 1 C R S T X D 1 C R S T X E N T X D 0  
M 1 _ R M 1 _ C M 2 _ T M 2 _ R M 4 _ T M 4 _ R M 6 _ T M 6 _ R M 7 _ T M 7 _ R M 9 _ T M 9 _ R M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 4 _ M 1 3 _ M 1 5 _ M 1 7 _ M 1 7 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _ M 2 2 _  
A
H
X D 0  
R S  
X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 T X D 0 R X D 0 T X D 0 R X D 0 T X D 0 R X D 0 R X D 0 C R S T X D 0 R X D 1 T X D 0 R X D 0 T X D 0 R X D 0 T X D 1  
M 1 _ R M 2 _ T M 2 _ R M 4 _ T M 4 _ R M 6 _ T M 6 _ R M 7 _ T M 7 _ R M 9 _ T M 9 _ R M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 4 _ M 1 6 _ M 1 3 _ M 1 7 _ M 1 7 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _  
X D 1 X E N X D 1 X E N X D 1 X E N X D 1 X E N X D 1 X E N X D 1 T X E N R X D 1 T X E N R X D 1 T X E N R X D 1 T X E N T X E N T X E N T X D 1 T X E N R X D 1 T X E N R X D 1  
A J  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
67  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
13.2 Ball – Signal Descriptions  
All pins are CMOS type; all Input Pins are 5 Volt tolerance; and all Output Pins are 3.3 CMOS drive.  
13.2.1 Ball Signal Descriptions  
Ball No(s)  
Symbol  
I/O  
Description  
2
2
I C Interface Note: Use I C and Serial control interface to configure the system  
2
A24  
SCL  
SDA  
Output  
I C Data Clock  
2
A25  
I/O-TS with pull up  
I C Data I/O  
Serial Control Interface  
A26  
STROBE  
Input with weak  
internal pull up  
Serial Strobe Pin  
Serial Data Input  
B26  
C25  
D0  
Input  
AUTOFD  
Output with pull up  
Serial Data Output (AutoFD)  
Frame Buffer Interface  
D20, B21, D19, E19,D18, LA_D[63:0]  
E18, D17, E17, D16, E16,  
D15, E15, D14, E14, D13,  
E13, D21, E21, A18, B18,  
C18, A17, B17, C17, A16,  
B16, C16, A15, B15, C15,  
A14, B14, D9, E9, D8,  
I/O-TS with pull up  
Frame Bank A– Data Bit [63:0]  
E8, D7, E7, D6, E6, D5,  
E5, D4, E4, D3, E3, D2,  
E2, A7, B7, A6, B6, C6,  
A5, B5, C5, A4, B4, C4,  
A3, B3, C3, B2, C2  
C14, A13, B13, C13, A12, LA_A[20:3]  
B12, C12, A11, B11, C11,  
D11, E11, A10, B10, D10,  
E10, A8, C7  
Output  
Frame Bank A – Address Bit  
[20:3]  
B8  
LA_ADSC#  
Output with pull up  
Frame Bank A Address Status  
Control  
C1  
C9  
LA_CLK  
LA_WE#  
Output  
Frame Bank A Clock Input  
Output with pull up  
Frame Bank A Write Chip Select  
for one layer SRAM application  
D12  
E12  
LA_WE0#  
LA_WE1#  
Output with pull up  
Output with pull up  
Frame Bank A Write Chip Select  
for lower layer of two layers  
SRAM application  
Frame Bank A Write Chip Select  
for upper layer of two layers  
SRAM application  
68  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No(s)  
Symbol  
LA_OE#  
I/O  
Description  
C8  
A9  
B9  
Output with pull up  
Output with pull up  
Output with pull up  
Frame Bank A Read Chip  
Select for one layer SRAM  
application  
LA_OE0#  
LA_OE1#  
Frame Bank A Read Chip  
Select for lower layer of two  
layers SRAM application  
Frame Bank A Read Chip  
Select for upper layer of two  
layers SRAM application  
Fast Ethernet Access Ports [23:0] RMII  
R28  
P28  
R29  
M_MDC  
Output  
MII Management Data Clock –  
(Common for all MII Ports  
[23:0])  
M_MDIO  
I/O-TS with pull up  
Input  
MII Management Data I/O –  
(Common for all MII Ports –  
[23:0]))  
M_CLKI  
Reference Input Clock  
AC29, AE28, AJ27,  
M[23:0]_RXD[1]  
Input with weak  
internal pull up  
resistors.  
Ports [23:0] – Receive Data Bit  
[1]  
AF27, AJ25, AF24, AH23,  
AE19, AF21, AJ19, AF18,  
AJ17, AJ15, AF15, AJ13,  
AF12, AJ11, AJ9, AF9,  
AJ7, AF6, AJ5, AJ3, AF1  
AC28, AF28, AH27,  
AE27, AH25, AE24,  
AF22, AF20, AE21,  
AH19, AH20, AH17,  
AH15, AE15, AH13,  
AE12, AH11, AH9, AE9,  
AH7, AE6, AH5, AH2,  
AF2  
M[23:0]_RXD[0]  
M[23:0]_CRS_DV  
M[23:0]_TXEN  
Input with weak  
internal pull up  
resistors  
Ports [23:0] – Receive Data Bit  
[0]  
AC27, AF29, AG27,  
AF26, AG25, AG23,  
AF23, AG21, AH21,  
AF19, AF17, AG17,  
AG15, AF14, AG13,  
AF11, AG11, AG9, AF8,  
AG7, AF5, AG5, AH3,  
AF3  
Input with weak  
internal pull down  
resistors.  
Ports [23:0] – Carrier Sense and  
Receive Data Valid  
AD29, AG28, AJ26,  
I/O- TS with pull up,  
slew  
Ports [23:0] – Transmit Enable  
Strap option for RMII/GPSI  
AE26, AJ24, AE23, AJ22,  
AJ20, AE20, AJ18, AJ21,  
AJ16, AJ14, AE14, AJ12,  
AE11, AJ10, AJ8, AE8,  
AJ6, AE5, AJ4, AG1, AE1  
69  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
AD27, AH28, AG26,  
AE25, AG24, AE22,  
AJ23, AG20, AE18,  
AG18, AE16, AG16,  
AG14, AE13, AG12,  
AE10, AG10, AG8, AE7,  
AG6, AE4, AG4, AG3,  
AE3  
M[23:0]_TXD[1]  
Output, slew  
Ports [23:0] – Transmit Data Bit  
[1]  
AD28, AG29, AH26,  
AF25, AH24, AG22,  
AH22, AE17, AG19,  
AH18, AF16, AH16,  
AH14, AF13, AH12,  
AF10, AH10, AH8, AF7,  
AH6, AF4, AH4, AG2,  
AE2  
M[23:0]_TXD[0]  
Output, slew  
Ports [23:0] – Transmit Data Bit  
[0]  
LED Interface  
C29  
LED_CLK/TSTOUT0  
LED_SYN/TSTOUT1  
LED_BIT/TSTOUT2  
I/O- TS with pull up  
I/O- TS with pull up  
LED Serial Interface Output  
Clock  
D29  
E29  
LED Output Data Stream  
Envelope  
I/O- TS with pull up  
I/O- TS with pull up  
LED Serial Data Output Stream  
(Reserved)  
B27, A27, E28, D28, C28, TSTOUT[8:3]  
B28  
C27  
D27  
C26  
D26  
D25  
D24  
E24  
INIT_DONE/TSTOUT I/O- TS with pull up  
9
System start operation  
Start initialization  
INIT_START/TSTOU  
T10  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
CHECKSUM_OK/TS  
TOUT11  
EEPROM read OK  
FCB_ERR/TSTOUT1  
2
FCB memory self test fail  
MCT memory self test fail  
Processing memory self test  
Memory self test done  
MCT_ERR/TSTOUT1 I/O- TS with pull up  
3
BIST_IN_PRC/TSTO  
UT14  
I/O- TS with pull up  
BIST_DONE/TSTOU  
T15  
I/O- TS with pull up  
Trunk Enable  
C22  
TRUNK0  
Input w/ weak internal  
pull down resistors  
Trunk Port Enable  
70  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No(s)  
Symbol  
TRUNK1  
I/O  
Description  
Trunk Port Enable  
A21  
Input w/ weak internal  
pull down resistors  
Test Facility  
U3  
T_MODE0  
T_MODE1  
I/O-TS  
I/O-TS  
Test Pin – Set Mode upon  
Reset, and provides NAND Tree  
test output during test mode  
(Pull Up)  
C10  
Test Pin – Set Mode upon  
Reset, and provides NAND Tree  
test output during test mode  
(Pull Up)  
T_MODE1 T_MODE0  
0
0
1
1
0
1
NandTree  
Reserved  
reserved  
Regular  
0
1
operation  
T_MODE0 and T_MODE1 are  
used for manufacturing tests.  
The signals should both be set  
to 1 for regular operation.  
F3  
SCAN_EN  
Input with pull down  
Input with pull down  
Scan Enable  
0 - Normal mode (unconnected)  
E27  
SCANMODE  
1 - Enables Test mode  
0 - Normal mode (unconnected)  
System Clock, Power and Ground Pins  
E1  
SCLK  
VDD  
Input  
System Clock at 100 MHz  
+2.5 Volt DC Supply  
K12, K13, K17,K18 M10,  
N10, M20, N20, U10,  
V10, U20, V20, Y12, Y13,  
Y17, Y18  
Power  
F13, F14, F15, F16, F17,  
N6, P6, R6, T6, U6, N24,  
P24, R24, T24, U24,  
AD13, AD14, AD15,  
AD16, AD17  
VCC  
Power  
+3.3 Volt DC Supply  
71  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
M12, M13, M14, M15,  
M16, M17, M18, N12,  
N13, N14, N15, N16,  
VSS  
Power Ground  
Ground  
N17, N18, P12, P13, P14,  
P15, P16, P17, P18, R12,  
R13, R14, R15, R16,  
R17, R18, T12, T13, T14,  
T15, T16, T17, T18, U12,  
U13, U14, U15, U16,  
U17, U18, V12, V13, V14,  
V15, V16, V17, V18,  
F1  
AVCC  
AGND  
Analog Power  
Analog Ground  
Analog +2.5 Volt DC Supply  
Analog Ground  
D1  
MISC  
D22  
SCANCOL  
SCANCLK  
Input  
Scans the Collision signal of  
Home PHY  
D23  
Input/ output  
Clock for scanning Home PHY  
collision and link  
E23  
F2  
SCANLINK  
RESIN#  
Input  
Link up signal from Home PHY  
Reset Input  
Input  
G2  
RESETOUT#  
Output  
Reset PHY  
72  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No(s)  
Symbol  
Reserved  
I/O  
Description  
B22, F4, F5, G4, G5, H4,  
H5, J4, J5, K4, K5, L4,  
L5, M4, M5, N4, N5, G3,  
H1, H2, H3, J1, J2, J3,  
K1, K2, K3, L1, L2, L3,  
M1, M2, M3, U4, U5, V4,  
V5, W4, W5, Y4, Y5,  
AA4, AA5, AB4, AB5,  
AC4, AC5, AD4, AD5,  
W1, Y1, Y2, Y3, AA1,  
AA2, AA3, AB1, AB2,  
AB3, AC1, AC2, AC3,  
AD1, AD2, AD3, N3, N2,  
N1, P3, P2, P1, R5, R4,  
R3, R2, R1, T5, T4, T3,  
T2, T1, W3, W2, V1, G1,  
V3, P4, P5, V2, U1, U2,  
U26, U25, V26, V25,  
W26, W25, Y27, Y26,  
AA26, AA25, AB26,  
I/O-TS  
Reserved Pins. Leave  
unconnected.  
AB25, AC26, AC25,  
AD26, AD25, T28, U28,  
R25, U29, T29, U27, V29,  
V28, V27, W29, W28,  
W27, Y29, Y28, Y25,  
AA29, AA28, AA27,  
AB29, AB28, AB27, T26,  
R26, T27, T25, P29, G26,  
G25, H26, H25, J26, J25,  
K25, K26, M25, L26,  
M26, L25, N26, N25, P26,  
P25, F28, G28, E25, G29,  
F29, G27,H29, H28, H27,  
J29, J28, J27, K29, K28,  
K27, L29, L28, L27, M29,  
M28, M27, F26, E26,  
F27, F25, N29,B24, E20,  
B25  
Bootstrap Pins (Default= pull up, 1= pull up 0= pull down)  
After reset TSTOUT0 to TSTOUT15 are used by the LED interface.  
C29  
D29  
TSTOUT0  
TSTOUT1  
Reserved  
Default: Enable (1)  
RMII MAC Power Saving  
Enable  
0 - No power saving  
1 - Power saving  
C28, B28, E29  
D28  
TSTOUT[4:2]  
TSTOUT5  
Reserved  
Default: SCLK (1)  
Scan Speed  
0 - ¼ SCLK(HPNA)  
1 - SCLK  
73  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No(s)  
Symbol  
TSTOUT6  
I/O  
Description  
E28  
A27  
Reserved  
TSTOUT7  
Default: 128 K x 32 or  
128 K x 64 (1)  
Memory Size  
0 - 256 K x 32 or 256 K x 64  
(4 M total)  
1 - 128 K x 32 or 128 K x 64  
(2 M total)  
B27  
C27  
D27  
C26  
TSTOUT8  
TSTOUT9  
TSTOUT10  
TSTOUT11  
Default: Not Installed  
(1)  
EEPROM Installed  
0 - EEPROM installed  
1 - EEPROM not installed  
Default: MCT aging  
enable (1)  
MCT Aging  
0 - MCT aging disable  
1 - MCT aging enable  
Default: FCB aging  
enable (1)  
FCB Aging  
0 - FCB aging disable  
1 - FCB aging enable  
Default: Timeout reset Timeout Reset  
enable (1)  
0 - Time out reset disable  
1 - Time out reset enable. Issue  
reset if any state machine did  
not go back to idle for 5 Sec.  
D26  
D25  
TSTOUT12  
TSTOUT13  
Reserved  
Default: Single depth  
(1)  
FDB RAM depth (1 or 2 layers)  
0 - Two layers  
1 - One layer  
D24  
E24  
TSTOUT14  
TSTOUT15  
Reserved  
Default: Normal  
operation  
SRAM Test Mode  
0 - Enable test mode  
1 - Normal operation  
AD29, AG28, AJ26,  
AE26, AJ24, AE23, AJ22,  
AJ20, AE20, AJ18, AJ21,  
AJ16, AJ14, AE14, AJ12,  
AE11, AJ10, AJ8, AE8,  
AJ6, AE5, AJ4, AG1,  
AE1,  
M[23:0]_TXEN  
Default: RMII  
0 – GPSI  
1 - RMII  
C21  
P_D  
Must be pulled-down  
Default: 111  
Reserved - Must be pulled-  
down.  
C19, B19, A19  
OE_CLK[2:0]  
Programmable delay for internal  
OE_CLK from SCLK input. The  
OE_CLK is used for generating  
the OE0 and OE1 signals  
Suggested value is 001.  
74  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No(s)  
C20, B20, A20  
Symbol  
LA_CLK[2:0]  
I/O  
Description  
Default: 111  
Programmable delay for  
LA_CLK from internal OE_CLK.  
The LA_CLK delay from SCLK  
is the sum of the delay  
programmed in here and the  
delay in P_D[15:13].  
Suggested value is 011.  
B22, A22, C23, B23,  
A23, C24  
MIRROR[5:0]  
Default: 111111  
Dedicated Port Mirror Mode.  
The first 5 bits select the port to  
be mirrored. The last bit selects  
either ingress or egress data.  
Note:  
# = Active low signal  
Input = Input signal  
In-ST = Input signal with Schmitt-Trigger  
Output = Output signal (Tri-State driver)  
Out-OD = Output signal with Open-Drain driver  
I/O-TS = Input & Output signal with Tri-State driver  
I/O-OD = Input & Output signal with Open-Drain driver  
75  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
13.3 Ball – Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
D20  
B21  
D19  
E19  
D18  
E18  
D17  
E17  
D16  
E16  
D15  
E15  
D14  
E14  
D13  
E13  
D21  
E21  
A18  
B18  
C18  
A17  
B17  
C17  
A16  
B16  
C16  
A15  
B15  
C15  
A14  
B14  
D9  
LA_D[63]  
LA_D[62]  
LA_D[61]  
LA_D[60]  
LA_D[59]  
LA_D[58]  
LA_D[57]  
LA_D[56]  
LA_D[55]  
LA_D[54]  
LA_D[53]  
LA_D[52]  
LA_D[51]  
LA_D[50]  
LA_D[49]  
LA_D[48]  
LA_D[47]  
LA_D[46]  
LA_D[45]  
LA_D[44]  
LA_D[43]  
LA_D[42]  
LA_D[41]  
LA_D[40]  
LA_D[39]  
LA_D[38]  
LA_D[37]  
LA_D[36]  
LA_D[35]  
LA_D[34]  
LA_D[33]  
LA_D[32]  
LA_D[31]  
D3  
E3  
LA_D[19]  
LA_D[18]  
LA_D[17]  
LA_D[16]  
LA_D[15]  
LA_D[14]  
LA_D[13]  
LA_D[12]  
LA_D[11]  
LA_D[10]  
LA_D[9]  
LA_D[8]  
LA_D[7]  
LA_D[6]  
LA_D[5]  
LA_D[4]  
LA_D[3]  
LA_D[2]  
LA_D[1]  
LA_D[0]  
LA_A[20]  
LA_A[19]  
LA_A[18]  
LA_A[17]  
LA_A[16]  
LA_A[15]  
LA_A[14]  
LA_A[13]  
LA_A[12]  
LA_A[11]  
LA_A[10]  
LA_A[9]  
A9  
B9  
F4  
F5  
G4  
G5  
H4  
H5  
J4  
LA_OE0#  
LA_OE1#  
D2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
E2  
A7  
B7  
A6  
B6  
C6  
A5  
J5  
B5  
K4  
K5  
L4  
L5  
M4  
M5  
N4  
N5  
G3  
H1  
H2  
H3  
J1  
C5  
A4  
B4  
C4  
A3  
B3  
C3  
B2  
C2  
C14  
A13  
B13  
C13  
A12  
B12  
C12  
A11  
B11  
C11  
D11  
E11  
A10  
J2  
J3  
K1  
K2  
K3  
L1  
L2  
L3  
M1  
M2  
LA_A[8]  
76  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
E9  
D8  
LA_D[30]  
LA_D[29]  
B10  
D10  
E10  
LA_A[7]  
LA_A[6]  
M3  
U4  
RESERVED  
RESERVED  
E8  
LA_D[28]  
LA_A[5]  
U5  
RESERVED  
D7  
LA_D[27]  
A8  
LA_A[4]  
V4  
RESERVED  
E7  
LA_D[26]  
C7  
LA_A[3]  
V5  
RESERVED  
D6  
LA_D[25]  
B8  
LA_DSC#  
W4  
RESERVED  
E6  
LA_D[24]  
C1  
LA_CLK  
W5  
RESERVED  
D5  
LA_D[23]  
C9  
LA_WE#  
Y4  
RESERVED  
E5  
LA_D[22]  
D12  
E12  
LA_WE0#  
Y5  
RESERVED  
D4  
LA_D[21]  
LA_WE1#  
AA4  
AA5  
AH7  
AE6  
AH5  
AH2  
AF2  
RESERVED  
E4  
LA_D[20]  
C8  
LA_OE#  
RESERVED  
AB4  
AB5  
AC4  
AC5  
AD4  
AD5  
W1  
Y1  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
U2  
RESERVED  
MDC  
M[4]_RXD[0]  
R28  
P28  
M[3]_RXD[0]  
MDIO  
M[2]_RXD[0]  
R29  
AC29  
AE28  
AJ27  
AF27  
AJ25  
AF24  
AH23  
AE19  
AF21  
AJ19  
AF18  
AJ17  
AJ15  
AF15  
AJ13  
AF12  
AJ11  
AJ9  
M_CLK  
M[1]_RXD[0]  
M[23]_RXD[1]  
M[22]_RXD[1]  
M[21]_RXD[1]  
M[20]_RXD[1]  
M[19]_RXD[1]  
M[18]_RXD[1]  
M[17]_RXD[1]  
M[16]_RXD[1]  
M[15]_RXD[1]  
M[14]_RXD[1]  
M[13]_RXD[1]  
M[12]_RXD[1]  
M[11]_RXD[1]  
M[10]_RXD[1]  
M[9]_RXD[1]  
M[8]_RXD[1]  
M[7]_RXD[1]  
M[6]_RXD[1]  
M[5]_RXD[1]  
M[4]_RXD[1]  
M[0]_RXD[0]  
AC27  
AF29  
AG27  
AF26  
AG25  
AG23  
AF23  
AG21  
AH21  
AF19  
AF17  
AG17  
AG15  
AF14  
AG13  
AF11  
AG11  
AG9  
AF8  
M[23]_CRS_DV  
M[22]_CRS_DV  
M[21]_CRS_DV  
M[20]_CRS_DV  
M[19]_CRS_DV  
M[18]_CRS_DV  
M[17]_CRS_DV  
M[16]_CRS_DV  
M[15]_CRS_DV  
M[14]_CRS_DV  
M[13]_CRS_DV  
M[12]_CRS_DV  
M[11]_CRS_DV  
M[10]_CRS_DV  
M[9]_CRS_DV  
M[8]_CRS_DV  
M[7]_CRS_DV  
M[6]_CRS_DV  
M[5]_CRS_DV  
Y2  
Y3  
AA1  
AA2  
AA3  
AB1  
AB2  
AB3  
AC1  
AC2  
AC3  
AD1  
AD2  
AD3  
N3  
AF9  
AJ7  
N2  
77  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
N1  
P3  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
M[5]_TXEN  
M[4]_TXEN  
M[3]_TXEN  
M[2]_TXEN  
M[1]_TXEN  
M[0]_TXEN  
M[23]_TXD[1]  
M[22]_TXD[1]  
M[21]_TXD[1]  
M[20]_TXD[1]  
M[19]_TXD[1]  
M[18]_TXD[1]  
AF6  
AJ5  
M[3]_RXD[1]  
M[2]_RXD[1]  
M[1]_RXD[1]  
M[0]_RXD[1]  
M[23]_RXD[0]  
M[22]_RXD[0]  
M[21]_RXD[0]  
M[20]_RXD[0]  
M[19]_RXD[0]  
M[18]_RXD[0]  
M[17]_RXD[0]  
M[16]_RXD[0]  
M[15]_RXD[0]  
M[14]_RXD[0]  
M[13]_RXD[0]  
M[12]_RXD[0]  
M[11]_RXD[0]  
M[10]_RXD[0]  
M[9]_RXD[0]  
M[8]_RXD[0]  
M[7]_RXD[0]  
M[6]_RXD[0]  
M[5]_RXD[0]  
M[6]_TXD[0]  
M[5]_TXD[0]  
M[4]_TXD[0]  
M[3]_TXD[0]  
M[2]_TXD[0]  
M[1]_TXD[0]  
M[0]_TXD[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
AG7  
AF5  
M[4]_CRS_DV  
M[3]_CRS_DV  
M[2]_CRS_DV  
M[1]_CRS_DV  
M[0]_CRS_DV  
M[23]_TXEN  
M[22]_TXEN  
M[21]_TXEN  
M[20]_TXEN  
M[19]_TXEN  
M[18]_TXEN  
M[17]_TXEN  
M[16]_TXEN  
M[15]_TXEN  
M[14]_TXEN  
M[13]_TXEN  
M[12]_TXEN  
M[11]_TXEN  
M[10]_TXEN  
M[9]_TXEN  
P2  
AJ3  
AG5  
AH3  
AF3  
P1  
AF1  
R5  
AC28  
AF28  
AH27  
AE27  
AH25  
AE24  
AF22  
AF20  
AE21  
AH19  
AH20  
AH17  
AH15  
AE15  
AH13  
AE12  
AH11  
AH9  
R4  
AD29  
AG28  
AJ26  
AE26  
AJ24  
AE23  
AJ22  
AJ20  
AE20  
AJ18  
AJ21  
AJ16  
AJ14  
AE14  
AJ12  
AE11  
AJ10  
AJ8  
R3  
R2  
R1  
T5  
T4  
T3  
T2  
T1  
W3  
W2  
V1  
G1  
V3  
P4  
P5  
M[8]_TXEN  
V2  
M[7]_TXEN  
U1  
AE9  
M[6]_TXEN  
AE8  
AJ6  
AE5  
AJ4  
AG1  
AE1  
AD27  
AH28  
AG26  
AE25  
AG24  
AE22  
AH8  
G27  
H29  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
AF7  
AH6  
H28  
AF4  
H27  
AH4  
J29  
AG2  
AE2  
J28  
J27  
U26  
K29  
U25  
K28  
V26  
K27  
V25  
L29  
W26  
L28  
78  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
AJ23  
AG20  
AE18  
AG18  
AE16  
AG16  
AG14  
AE13  
AG12  
AE10  
AG10  
AG8  
M[17]_TXD[1]  
M[16]_TXD[1]  
M[15]_TXD[1]  
M[14]_TXD[1]  
M[13]_TXD[1]  
M[12]_TXD[1]  
M[11]_TXD[1]  
M[10]_TXD[1]  
M[9]_TXD[1]  
M[8]_TXD[1]  
M[7]_TXD[1]  
M[6]_TXD[1]  
M[5]_TXD[1]  
M[4]_TXD[1]  
M[3]_TXD[1]  
M[2]_TXD[1]  
M[1]_TXD[1]  
M[0]_TXD[1]  
M[23]_TXD[0]  
M[22]_TXD[0]  
M[21]_TXD[0]  
M[20]_TXD[0]  
M[19]_TXD[0]  
M[18]_TXD[0]  
M[17]_TXD[0]  
M[16]_TXD[0]  
M[15]_TXD[0]  
M[14]_TXD[0]  
M[13]_TXD[0]  
M[12]_TXD[0]  
M[11]_TXD[0]  
M[10]_TXD[0]  
M[9]_TXD[0]  
W25  
Y27  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
L27  
M29  
M28  
M27  
G26  
G25  
H26  
H25  
J26  
RESERVED  
RESERVED  
Y26  
RESERVED  
AA26  
AA25  
AB26  
AB25  
AC26  
AC25  
AD26  
AD25  
U27  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
J25  
RESERVED  
K25  
K26  
M25  
L26  
M26  
L25  
N26  
N25  
P26  
P25  
F28  
G28  
E25  
G29  
F29  
F26  
E26  
F25  
E24  
D24  
D25  
D26  
C26  
RESERVED  
RESERVED  
AE7  
V29  
RESERVED  
AG6  
V28  
RESERVED  
AE4  
V27  
RESERVED  
AG4  
W29  
W28  
W27  
Y29  
RESERVED  
AG3  
RESERVED  
AE3  
RESERVED  
AD28  
AG29  
AH26  
AF25  
AH24  
AG22  
AH22  
AE17  
AG19  
AH18  
AF16  
AH16  
AH14  
AF13  
AH12  
RESERVED  
Y28  
RESERVED  
Y25  
RESERVED  
AA29  
AA28  
AA27  
AB29  
AB28  
AB27  
R26  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
T25  
BIST_DONE/TSTOUT[15]  
BIST_IN_PRC/TST0UT[14]  
MCT_ERR/TSTOUT[13]  
FCB_ERR/TSTOUT[12]  
T26  
T28  
U28  
R25  
CHECKSUM_OK/TSTOUT[1  
1]  
AF10  
M[8]_TXD[0]  
U29  
RESERVED  
D27  
INIT_START/TSTOUT[10]  
79  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
AH10  
B27  
A27  
E28  
D28  
C28  
B28  
E29  
D29  
M[7]_TXD[0]  
TSTOUT[8]  
T29  
U18  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
RESERVED  
VSS  
C27  
N12  
N13  
K17  
K18  
M10  
N10  
M20  
N20  
INIT_DONE/TSTOUT[9]  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
TSTOUT[7]  
VSS  
TSTOUT[6]  
VSS  
TSTOUT[5]  
VSS  
TSTOUT[4]  
VSS  
TSTOUT[3]  
VSS  
LED_BIT/TSTOUT[2]  
VSS  
LED_SYN/TSTOUT[1  
]
VSS  
C29  
LED_CLK/TSTOUT[0  
]
N14  
VSS  
U10  
VDD  
N29  
P29  
F3  
RESERVED  
RESERVED  
SCAN_EN  
SCLK  
N15  
N16  
N17  
N18  
P12  
P13  
P14  
P15  
P16  
C19  
B19  
A19  
R13  
R14  
R15  
R16  
R17  
R18  
T12  
T13  
T14  
T15  
T16  
VSS  
VSS  
V10  
U20  
V20  
Y12  
Y13  
Y17  
Y18  
K12  
K13  
M16  
M17  
M18  
F16  
F17  
N6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
E1  
VSS  
U3  
T_MODE0  
T_MODE1  
RESERVED  
TRUNK1  
TRUNK0  
STROBE  
D0  
VSS  
C10  
B24  
A21  
C22  
A26  
B26  
C25  
A24  
A25  
F1  
VSS  
VSS  
VSS  
VSS  
OE_CLK2  
OE_CLK1  
OE_CLK0  
VSS  
AUTOFD  
SCL  
SDA  
VSS  
AVCC  
VSS  
D1  
AGND  
VSS  
P6  
D22  
E23  
E27  
N28  
N27  
F2  
SCANCOL  
SCANLINK  
SCANMODE  
VSS  
R6  
VSS  
T6  
VSS  
U6  
VSS  
N24  
P24  
R24  
T24  
VSS  
RESIN#  
VSS  
G2  
RESETOUT#  
VSS  
80  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
B22  
A22  
C23  
B23  
A23  
C24  
D23  
T27  
F27  
C20  
B20  
A20  
C21  
E20  
B25  
MIRROR5  
MIRROR4  
MIRROR3  
MIRROR2  
MIRROR1  
MIRROR0  
SCANCLK  
RESERVED  
RESERVED  
LA_CLK2  
LA_CLK1  
LA_CLK0  
P_D  
T17  
T18  
U12  
U13  
U14  
U15  
U16  
U17  
M12  
M13  
M14  
M15  
P17  
P18  
R12  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
U24  
AD13  
AD14  
AD15  
AD16  
AD17  
F13  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
F14  
F15  
RESERVED  
RESERVED  
13.4 AC/DC Timing  
13.4.1 Absolute Maximum Ratings  
Storage Temperature  
-65°C to +150°C  
-40°C to +85°C  
+125°C  
Operating Temperature  
Maximum Junction Temperature  
Supply Voltage VCC with Respect to VSS  
Supply Voltage VDD with Respect to VSS  
Voltage on Input Pins  
+3.0 V to +3.6 V  
+2.38 V to +2.75 V  
-0.5 V to (VCC + 3.3 V)  
Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for  
extended periods may affect device reliability. Functionality at or above these limits is not implied.  
13.4.2 DC Electrical Characteristics  
VCC = 3.0 V to 3.6 V (3.3v +/- 10%)T  
VDD = 2.5V +10% - 5%  
= -40°C to +85°C  
AMBIENT  
81  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
13.4.3 Recommended Operating Conditions  
Symbol  
Parameter Description  
Frequency of Operation  
Supply Current – @ 100 MHz (VCC=3.3 V)  
Supply Current – @ 100 MHz (VDD=2.5 V)  
Output High Voltage (CMOS)  
Output Low Voltage (CMOS)  
Input High Voltage (TTL 5 V tolerant)  
Input Low Voltage (TTL 5 V tolerant)  
Min.  
Typ.  
Max.  
Unit  
f
I
I
V
V
V
V
100  
MHz  
mA  
mA  
V
V
V
V
osc  
450  
1500  
CC  
DD  
2.4  
2.0  
OH  
0.4  
VCC + 2.0  
OL  
IH-TTL  
IL-TTL  
0.8  
10  
I
Input Leakage Current (0.1 V < V < VCC)(all  
µA  
IL  
IN  
pins except those with internal pull-up/pull-down  
resistors)  
I
Output Leakage Current (0.1 V < V  
Input Capacitance  
Output Capacitance  
I/O Capacitance  
< VCC)  
OUT  
10  
5
5
µA  
pF  
pF  
OL  
C
C
C
IN  
OUT  
I/O  
7
pF  
θ
θ
θ
θ
θ
Thermal resistance with 0 air flow  
Thermal resistance with 1 m/s air flow  
Thermal resistance with 2 m/s air flow  
Thermal resistance between junction and case  
Thermal resistance between junction and board  
11.2  
10.2  
8.9  
3.1  
6.6  
C/W  
C/W  
C/W  
C/W  
C/W  
ja  
ja  
ja  
jc  
jb  
13.4.4 Typical Reset & Bootstrap Timing Diagram  
RESIN#  
RESETOUT#  
Tri-Stated  
R1  
R3  
Bootstrap Pins  
Outputs  
Inputs  
Outputs  
R2  
Figure 13 - Typical Reset & Bootstrap Timing Diagram  
82  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
Symbol  
Parameter  
Min.  
Typ.  
Note  
R1  
Delay until RESETOUT# is tri-stated  
10ns  
10 µs  
2 ms  
RESETOUT# state is then determined  
by the external pull-up/down resistor  
R2  
R3  
Bootstrap stabilization  
RESETOUT# assertion  
1 µs  
Bootstrap pins sampled on rising edge  
a
of RESIN#  
Table 10 - Reset & Bootstrap Timing  
a. The TSTOUT[8:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after RESIN# goes high  
13.5 Local Frame Buffer SBRAM Memory Interface  
13.5.1 Local SBRAM Memory Interface  
LA_CLK  
L1  
L2  
LA_D[63:0]  
Figure 14 - Local Memory Interface – Input Setup and Hold Timing  
LA_CLK  
L3-max  
L3-min  
LA_D[63:0]  
L4-max  
L4-min  
LA_A[20:3]  
L6-max  
L6-min  
LA_ADSC#]  
L3-max  
L3-min  
LA_WE[1:0]#  
####  
L3-max  
L3-min  
LA_OE[1:0]#  
L3-max  
L3-min  
LA_WE#  
L3-max  
L3-min  
LA_OE#  
Figure 15 - Local Memory Interface - Output Valid Delay Timing  
83  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
AC Characteristics – Local frame buffer SBRAM Memory Interface  
-100 MHz  
Symbol  
Parameter  
Note  
Min. (ns) Max. (ns)  
L1  
LA_D[63:0] input set-up time  
LA_D[63:0] input hold time  
LA_D[63:0] output valid delay  
LA_A[20:3] output valid delay  
LA_ADSC# output valid delay  
LA_WE[1:0]#output valid delay  
LA_OE[1:0]# output valid delay  
LA_WE# output valid delay  
LA_OE# output valid delay  
4
L2  
L3  
L4  
L6  
L7  
L8  
L9  
L10  
1.5  
1.5  
2
7
7
7
7
1
7
5
C = 25 pf  
L
C = 30 pf  
L
1
C = 30 pf  
L
1
C = 25 pf  
L
-1  
1
C = 25 pf  
L
C = 25 pf  
L
1
C = 25 pf  
L
13.6 AC Characteristics  
13.6.1 Reduced Media Independent Interface  
-50 MHz  
Symbol  
M2  
Parameter  
Note  
Min. (ns)  
Max. (ns)  
M[23:0]_RXD[1:0] Input Setup Time  
M[23:0]_RXD[1:0] Input Hold Time  
M[23:0]_CRS_DV Input Setup Time  
M[23:0]_CRS_DV Input Hold Time  
M[23:0]_TXEN Output Delay Time  
M[23:0]_TXD[1:0] Output Delay Time  
4
1
4
1
2
2
M3  
M4  
M5  
M6  
M7  
11  
11  
C = 20 pF  
L
C = 20 pF  
L
Table 11 - AC Characteristics – Reduced Media Independent Interface  
M_CLKI  
M6-max  
M6-min  
M[23:0]_TXEN  
M7-max  
M7-min  
M[23:0]_TXD[1:0]  
Figure 16 - AC Characteristics – Reduced Media Independent Interface  
84  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
M_CLKI  
M2  
M[23:0]_RXD  
M3  
M5  
M4  
M[23:0]_CRS_DV  
Figure 17 - AC Characteristics – Reduced Media Independent Interface  
13.6.2 LED Interface  
LED_CLK  
LE5-max  
LE5-min  
LED_SYN  
LED_BIT  
LE6-max  
LE6-min  
Figure 18 - AC Characteristics – LED Interface  
Variable FREQ.  
Parameter  
Symbol  
Note  
C = 30 pf  
Min. (ns)  
Max. (ns)  
LE5  
LE6  
LED_SYN Output Valid Delay  
LED_BIT Output Valid Delay  
-1  
-1  
7
7
L
C = 30 pf  
L
Table 12 - AC Characteristics – LED Interface  
13.6.3 SCANLINK SCANCOL Output Delay Timing  
SCANCLK  
C5-max  
C5-min  
SCANLINK  
SCANCOL  
C7-max  
C7-min  
Figure 19 - SCANLINK SCANCOL Output Delay Timing  
85  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
SCANCLK  
C1  
C2  
SCANLINK  
SCANCOL  
C3  
C4  
Figure 20 - SCANLINK, SCANCOL Setup Timing  
-25 MHz  
Parameter  
Symbol  
C1  
Note  
Min. (ns) Max (ns)  
SCANLINK input set-up time  
20  
2
C2  
C3  
C4  
C5  
C7  
SCANLINK input hold time  
SCANCOL input setup time  
SCANCOL input hold time  
SCANLINK output valid delay  
SCANCOL output valid delay  
20  
1
0
10  
10  
C = 30 pf  
L
0
C = 30 pf  
L
Table 13 - SCANLINK, SCANCOL Timing  
86  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
13.6.4 MDIO Input Setup and Hold Timing  
MDC  
D1  
D3  
MDIO  
Figure 21 - MDIO Input Setup and Hold Timing  
MDC  
D3-max  
D3-min  
MDIO  
Figure 22 - MDIO Output Delay Timing  
1 MHz  
Parameter  
Symbol  
D1  
Note  
Min. (ns) Max. (ns)  
MDIO input setup time  
10  
2
D2  
D3  
MDIO input hold time  
MDIO output delay time  
1
20  
C = 50 pf  
L
Table 14 - MDIO Timing  
87  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
13.6.5 I2C Input Setup Timing  
SCL  
S1  
S2  
SDA  
2
Figure 23 - I C Input Setup Timing  
SCL  
S3-max  
S3-min  
SDA  
2
Figure 24 - I C Output Delay Timing  
50 KHz  
Symbol  
S1  
Parameter  
Note  
Min. (ns) Max. (ns)  
SDA input setup time  
SDA input hold time  
SDA output delay time  
20  
1
S2  
S3*  
4 usec  
6 usec  
C = 30 pf  
L
* Open Drain Output. Low to High transistor is controlled by external pullup resistor.  
2
Table 15 - I C Timing  
88  
Zarlink Semiconductor Inc.  
MVTX2601  
Data Sheet  
13.6.6 Serial Interface Setup Timing  
D4  
STROBE  
D5  
D1  
D2  
D2  
D1  
D0  
Figure 25 - Serial Interface Setup Timing  
STROBE  
D3-max  
D3-min  
AutoFd  
Figure 26 - Serial Interface Output Delay Timing  
Symbol  
D1  
Parameter  
Min. (ns) Max. (ns)  
Note  
D0 setup time  
D0 hold time  
20  
D2  
D3  
D4  
D5  
3 µs  
AutoFd output delay time  
Strobe low time  
1
50  
C = 100 pf  
L
5 µs  
5 µs  
Strobe high time  
Table 16 - Serial Interface Timing  
89  
Zarlink Semiconductor Inc.  
DIMENSION  
MIN  
MAX  
A
A1  
A2  
D
D1  
E
2.20  
0.50  
2.46  
0.70  
1.17 REF  
37.70  
37.30  
37.30  
34.50 REF  
37.70  
E1  
E
E1  
b
e
34.50 REF  
0.60  
0.90  
1.27  
553  
Conforms to JEDEC MS - 034  
e
D
D1  
A2  
b
NOTE:  
1. CONTROLLING DIMENSIONS ARE IN MM  
2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER  
3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.  
4. N IS THE NUMBER OF SOLDER BALLS  
5. NOT TO SCALE.  
6. SUBSTRATE THICKNESS IS 0.56 MM  
Package Code  
Previous package codes:  
ISSUE  
ACN  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MVTX2601AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FRFEE, MS-034, HSBGA-553
MICROSEMI

MVTX2602

Managed 24 Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2602A

MVTX260x Port Mirroring
ETC

MVTX2602AG

Managed 24 Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2602AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FREE, MS-034, HSBGA-553
MICROSEMI

MVTX2603

Unmanaged 24-Port 10/100 Mb + 2-Port 1 Gb Ethernet Switch
ZARLINK

MVTX2603A

Unmanaged 24 port 10/100Mb + 2 port 1Gb Ethernet switch
ETC

MVTX2603AG

Unmanaged 24-Port 10/100 Mb + 2-Port 1 Gb Ethernet Switch
ZARLINK

MVTX2603AG

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, MS-034, HSBGA-553
MICROSEMI

MVTX2603AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FREE, MS-034, HSBGA-553
MICROSEMI

MVTX2604

Managed 24-Port 10/100 Mb + 2 Port 1 Gb Ethernet Switch
ZARLINK

MVTX2604A

MVTX260x Physical Port Control
ETC