SL6610 [ZARLINK]

Direct Conversion FSK Data Receiver; 直接转换FSK数据接收
SL6610
型号: SL6610
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Direct Conversion FSK Data Receiver
直接转换FSK数据接收

文件: 总20页 (文件大小:484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
This product is obsolete.  
This information is available for your  
convenience only.  
For more information on  
Zarlink’s obsolete products and  
replacement product lists, please visit  
http://products.zarlink.com/obsolete_products/  
SL6610  
Direct Conversion FSK Data Receiver  
Advance Information  
Supersedes the October 1994 edition, DS4003 - 1.4  
DS4003 - 2.2 September 1995  
This device is an advanced direct conversion receiver for  
operation up to 470MHz. The design is based on the SL6609A  
but is specifically designed for use in very small pagers i.e.  
credit card sized, where local oscillator re-radiation is a  
problem. This design has overcome this difficulty.  
TPX  
1
2
28  
27  
IAGCOUT  
IRFAMP  
MIXER DECOUPLE  
LOY  
GYRI  
3
4
26  
25  
24  
23  
22  
21  
20  
MIXA  
GND  
LOX  
5
MIXB  
The device also includes a 1 volt regulator capable of  
sourcing up to 5mA, a battery flag and the facility of incorporating  
a more complex post detection filter off-chip. Both battery flag  
and data outputs have open collector outputs to ease their  
interface with other devices.  
VR  
6
VREG  
REGCNT  
VCC1  
VBATT  
TPY  
7
GTHADJ  
TCADJ  
8
9
BEC  
10  
11  
12  
13  
14  
19  
18  
VBG  
BATTFL  
DIGGND  
Adjacent channel rejection is provided using tuneable  
gyrator filters. To assist operation in the presence of large  
interfering signals both RF and audio AGC functions are  
provided.  
TPLIMY  
VCC2  
17  
16  
15  
BRF1  
BRF2  
DATAOP  
TPLIMX  
NP28  
FEATURES  
Fig.1 Pin connections  
Very low power operation - typ 3.0mW  
Superior sensitivity of -130dBm  
Operation at wide range of paging data rates  
512, 1200, 2400 baud  
ABSOLUTE MAXIMUM RATINGS  
Supply voltage  
Storage temperature  
6V  
Small package offering SSOP  
Excellent performance of LO Rejection  
-55°C to +150°C  
Operating temperature  
-20°C to +70°C  
APPLICATIONS  
ORDERING INFORMATION  
SL6610 / KG / NPDS - SSOP devices in anti-static sticks  
SL6610 / KG / NPDE - SSOP devices in tape and reel  
Credit card pagers  
Watch pagers  
Small form factor pagers i.e. PCMCIA  
Fig.2 Block diagram of SL6610  
SL6610  
ELECTRICAL CHARACTERISTICS  
These characteristics are guaranteed over the following conditions unless otherwise stated:  
Tamb = 25°C, VCC1 = 1.3V, VCC2 = 2.7V  
Value  
Characteristics  
Pin  
Units  
Comments  
Typ  
1.3  
2.7  
1.5  
Max  
2.8  
3.5  
1.8  
Min  
0.95  
1.8  
21  
13  
VCC1 < VCC2 - 0.7 volts  
V
V
VCC1 - Supply voltage  
VCC2 - Supply voltage  
ICC1 - Supply current  
Includes IRF. Does not include  
regulator supply. Audio  
AGC inactive  
21,27,28  
mA  
11,13,14  
Batt flag & Data O/P high  
Pin 27 voltage: 0.3 - 1.3V  
550  
1.0  
700  
µA  
ICC2 - Supply current  
21,27,28  
11,13,14  
1
8
µA  
µA  
Power down ICC1  
Power down ICC2  
23  
I Load = 3mA. Ext PNP.  
ß >= 100, VCE = 0.1 volt  
1.05  
V
0.95  
1 volt regulator  
19  
19  
6
1.27  
20  
1.07  
10  
V
µA  
V
µA  
mA  
1.21  
1.0  
3
1.15  
0.93  
0.25  
Band gap voltage reference  
Band gap current source  
Voltage reference  
Voltage reference sink/source  
1 volt regulator load current  
VCC1 > 1.1V  
6
5
Stable data o/p when 3dB above  
sensitivity. CBG and CVR = 2.2µF  
5
ms  
ms  
µA  
Turn on Time  
Turn off Time  
Fall to 10% of steady state current  
CBG and CVR = 2.2µF  
1
17  
27  
+/-4  
Detector output current  
RF current source  
Current Source  
(IRF)  
Pin 27 voltage: 0.3 - 1.3V  
500  
600  
µA  
400  
40  
Decoder  
Signal injected at TPX and TPY  
B.E.R. < 1 in 30  
µVrms  
Sensitivity  
5KHz deviation @ 1200 bits/sec  
BRF capacitor = 1nF  
14  
14  
14  
9:7  
500  
1.0  
7:9  
100  
Output mark space ratio  
Data O/P Sink Current  
Data O/P Leakage Current  
Output logic low  
Output Iogic high  
µA  
µA  
2
SL6610  
ELECTRICAL CHARACTERISTICS  
These characteristics are guaranteed over the following conditions unless otherwise stated:  
Tamb = 25°C, VCC1 = 1.3V, VCC2 = 2.7V  
Value  
Characteristics  
Pin  
Units  
Comments  
Typ  
Min  
Max  
Battery Economy  
V
V
µA  
µA  
Input logic high  
Input logic low  
Input current  
Input current  
(VCC2 - 0.3)  
10  
10  
10  
10  
Powered Up  
Powered Down  
Powered Up  
Powered down transient initial  
µA  
0.3  
1
8
0.05  
6
Battery Flag Input  
Input current  
1
20  
Battery Flag Output  
Battfl Sink Current  
Battfl leakage current  
µA  
µA  
50  
34  
500  
1
11  
11  
(VBATT-VR) > 20mV  
(VBATT-VR) < -20mV  
Mixers  
Gain to "IF Test"  
dB  
41  
LO inputs driven in parallel with  
50mVRMS @ 50MHz.IF = 2kHz  
See Figs.8a, 8b  
See Fig.9  
Equal to Pin 21 (VCC1)  
RF input impedance  
LO input impedance  
LO DC bias voltage  
24, 26  
3, 5  
3, 5  
V
Audio AGC  
µA  
Max Audio AGC Sink Current  
65  
85  
45  
28  
RECEIVER CHARACTERISTICS (Demonstration board)  
Measurement conditions unless stated VCC1 = 1.3V, VCC2 = 2.7V, LNA = 18dB Power Gain, 2dB Noise figure,  
Carrier frequency 153MHz, BER 1 in 30, Tamb = 25°C  
(TPx/TPy typically:- 160mVPP ± 10% for - 73dBm RF input to the LNA)  
Value  
Characteristics  
Pin  
Units  
Comments  
Max  
Typ  
Min  
Sensitivity  
-125  
-128  
-130  
1200 bps Df = 4kHz  
LO = -18dBm  
dBm  
dB  
Intermodulation  
56  
73  
52  
68  
1200 bps Df = 4kHz  
LO = -18dBm  
Adjacent channel  
1200 bps Df = 4kHz  
LO = -18dBm  
dB  
Channel spacing 25kHz  
Centre frequency acceptance  
Deviation acceptance  
+/-2.3  
+/-2.2  
1200 bps Df = 4kHz  
LO = -18dBm  
kHz  
kHz  
1200 bps Df = 4kHz  
LO = -18dBm  
3
SL6610  
RECEIVER CHARACTERISTICS (Demonstration board)  
Measurement conditions unless stated VCC1 = 1.3V, VCC2 = 2.7V, LNA = 20dB Power Gain, 2dB Noise figure,  
Carrier frequency 282MHz, BER 1 in 30, Tamb = 25°C  
(TPx/TPy typically:- 160mVPP ± 10% for - 73dBm RF input to the LNA)  
Value  
Characteristics  
Units  
Comments  
Pin  
Max  
Min  
Typ  
Sensitivity  
-125  
-122  
-130  
-128  
-125.5  
1200 bps Df = 4kHz  
2400 bps Df = 4.5kHz  
dBm  
dBm  
LO = -15dBm  
Intermodulation (IP3)  
56  
53.5  
52  
49  
1200 bps Df = 4kHz  
2400 bps Df = 4.5kHz  
LO = -15dBm  
dB  
Intermodulation (IP2)  
Adjacent channel  
52  
47  
1200 bps Df = 4kHz  
LO = -15dBm  
dB  
dB  
72.5  
69.5  
67  
64  
1200 bps Df = 4kHz  
2400 bps Df = 4.5kHz  
LO = -15dBm  
Channel spacing 25kHz  
Centre frequency acceptance  
Deviation acceptance  
+/-2.3  
+/-2  
+/-1.9  
1200 bps Df = 4kHz  
2400 bps Df = 4.5kHz  
LO = -15dBm  
kHz  
kHz  
+/-2.2  
+/-2  
1200 bps Df = 4kHz  
2400 bps Df = 4.5kHz  
LO = -15dBm  
RECEIVER CHARACTERISTICS  
Measurement conditions unless stated VCC1 = 1.3V, VCC2 = 2.7V, LNA = 22dB Power Gain, 2dB Noise figure,  
Carrier frequency 470MHz, BER 1 in 30, Tamb = 25°C  
(TPx/TPy typically:- 140mVPP ± 10% for - 73dBm RF input to the LNA)  
Value  
Characteristics  
Pin  
Units  
Comments  
Max  
Min  
Typ  
Sensitivity  
-123  
-126  
-128  
1200 bps Df = 4kHz  
LO = -15dBm  
dBm  
dB  
Intermodulation  
55.5  
72.5  
50  
67  
1200 bps Df = 4kHz  
LO = -15dBm  
Adjacent channel  
1200 bps Df = 4kHz  
LO = -15dBm  
dB  
Channel spacing 25kHz  
Centre frequency acceptance  
Deviation acceptance  
+/- 2.3  
+/- 2.2  
1200 bps Df = 4kHz  
LO = -15dBm  
kHz  
kHz  
1200 bps Df = 4kHz  
LO = -15dBm  
4
SL6610  
RECEIVER CHARACTERISTICS (Demonstration board)  
Measurement conditions unless stated LNA = 18dB Power Gain, 2dB Noise figure,  
Carrier frequency 282MHz, BER 1 in 30, Tamb = 0 to 45°C, Vcc2 = 2.7V, Vcc1 = 1.2V to 1.6V  
(TPx/TPy typically:- 120mVPP ± 10% for - 73dBm RF input to the LNA)  
Value  
Characteristics  
Units  
Comments  
Pin  
Typ  
Max  
Min  
Sensitivity (Desense from 25°C,  
VCC1 = 1.3V)  
1200 bps Df = 4kHz  
LO = -15dBm  
1.5  
dB  
dB  
1200 bps Df = 4kHz  
LO = -15dBm  
Intermodulation (IP3)  
Intermodulation (IP2)  
Adjacent channel  
58  
53  
53  
47  
1200 bps Df = 4kHz  
LO = -15dBm  
dB  
1200 bps Df = 4kHz  
LO = -15dBm  
dB  
72.5  
66  
Channel spacing 25kHz  
kHz  
1200 bps Df = 4kHz  
LO = -15dBm  
Centre frequency acceptance  
Deviation acceptance  
+/-1.8  
+/-2.3  
+/-2.2  
kHz  
kHz  
1200 bps Df = 4kHz  
LO = -15dBm  
LO Rejection:-  
0.5dB Sensitivity loss  
3dB Sensitivity loss  
Level of local oscillator  
at the RF input to the LNA  
dBm  
dBm  
-55  
-48  
-59  
-52  
-44  
5
SL6610  
OPERATION OF SL6610  
The SL6610 is a Direct Converson Receiver designed for  
use up to 470MHz. It is available in a 28 pin SSOP package  
and it integrates all the facilities required for the conversion of  
an RF FSK signal to a base-band data signal.  
Gyrator Filters  
The on chip filters include an adjustable gyrator filter. This  
may be adjusted with the use of an additional resistor between  
pin 4 and GND. This allows flexibility of filter characterstics  
and also allows for compensation for possible process  
variations.  
Low Noise Amplifier  
To achieve optimum performance it is necessary to  
incorporate a Low Noise RF Amplifier at the front end of the  
receiver. This is easily biased using the on chip voltage and  
current sources provided.  
Audio AGC  
The Audio AGC fundamentally consists of a current sink  
which is controlled by the audio (baseband data) signal. It has  
three parameters that may be controlled by the user. These  
are the Attack (turn on) time, Decay (duration) time and  
Threshold level (see Fig.6 and 7). See Application note for  
details.  
All voltages and current sources used for bias of the RF  
amplifier, receiver and mixers should be RF decoupled using  
suitable capacitors (see fig.4 for a suitable Low-Noise-  
Amplifier).  
Regulator  
Local Oscillator  
The on chip regulator must be used in conjunction with a  
suitable PNP transistor to achieve regulation. As the  
transistor forms part of the regulator feedback loop the  
transistor should exhibit the following characteristics:-  
The Local Oscillator signal is applied to the device in phase  
quadrature. This can be achieved with the use of two RC  
networks operating at the -3dB/45° transfer characteristic,  
giving a full 90° phase differential between the LO ports of the  
device. Each LO port of the device also requires an equal level  
of drive from the Oscillator. (see Fig.5).  
HFE > = 100 for VCE > = 0.1V  
Pin Number  
Pin Name  
Pin Description  
1
2
3
4
5
6
7
8
TPX  
MIX-DEC  
LOY  
GYRI  
LOX  
X channel pre-gyrator filter test-point. This can be used for input and output  
Mixer bias de-couple pin  
LO input channel Y  
Gyrator current adjust pin  
LO input channel X  
VREF 1.0 V internal signal ground  
Y channel pre-gyrator filter test point, input or output  
Audio AGC gain and threshold adjust. RSSI signal indicator  
Audio AGC time constant adjust  
Battery economy control  
Battery flag output  
Y channel limiter (post gyrator filter) test point, output only  
Supply connection  
VR  
TPY  
GTHADJ  
TCADJ  
BEC  
BATTFL  
TPLIMY  
VCC2  
DATAOP  
TPLIMX  
BRF2  
BRF1  
DIG GND  
VBG  
VBATT  
VCC1  
REGCNT  
VREG  
MIXB  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Data output pin  
X channel limiter (post gyrator filter) test point, output only  
Bit rate filter 2, input to data output stage  
Bit rate filter 1, output from detector  
Digital ground  
Bandgap voltage output  
Battery flag input voltage  
Supply connection  
1V regulator control external PNP drive  
1V regulator output voltage  
Mixer input B  
Ground  
GND  
MIXA  
IRFAMP  
Mixer input A  
Current source for external LNA. Value of current output will decrease at high mixer  
input signal levels due to RF AGC  
Audio AGC output current  
28  
IAGCOUT  
6
SL6610  
Fig.3 Application circuit board  
7
SL6610  
COMPONENTS LIST FOR APPLICATION BOARD At 282MHz, 25kHz Channel Spacing.  
(LO Circuit in Fig.3)  
Resistors  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
VC1  
VC2  
VC3  
1n  
100n  
1n  
1n  
not used  
1n  
1n  
1n  
6p8  
1n  
1n  
100p  
2u2  
2u2  
4p7  
4p7  
3p3  
not used  
1-10p  
1-10p  
1-10p  
R1  
open circuit  
R2  
R3  
not used  
100  
R4  
R5  
100k  
1k  
R6  
1k  
R7  
100  
R8  
R9  
open circuit  
220k  
1M  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
100k (6)  
not used  
1k5(1)  
4k7  
4k7  
33k  
not used  
0R (3)  
10k  
620  
1k  
open circuit  
Inductors  
L1  
L2  
L3  
L4  
L5  
68n (4)  
not used (3)  
470n  
39n  
680n  
Capacitors  
C1  
1n  
C2  
C3  
C4  
2p7  
4p7  
1n  
C5  
C6  
C7  
C8  
2p7  
2u2  
1n  
100n  
1n (2)  
2u2  
100n  
1n  
1n  
1n  
1n  
1n  
Active Components  
Q1  
Q2  
Q3  
Q4  
Q5  
D1  
FMMT589  
2SC5065 (Toshiba)  
BFT25A (Philips)  
not used  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C17a  
2SC5065 (Toshiba)  
Panasonic MA862 (5)  
Misc  
T1  
30nH 1:1  
Coilcraft M1686-A  
5th Overtone  
94.075MHz  
Xtal  
1n  
1n  
Notes  
1.  
2.  
The values of R13 is determined by the set-up proce-  
dure. See Application Note.  
4.  
L1and C26 form the low noise matching network for the  
RF amplifier. The values given are for the RF amplifier  
specified in the Applications Circuit with no Audio AGC  
connected. i.e. R17 and D1 omitted.  
The value of C9 is determined by the output data rate.  
Use 2nF for 512bps, 1nF for 1200bps and 470pF for  
2400bps.  
5.  
6.  
Suggested diode for use with the Audio AGC circuit  
(see Fig.6) (D1 is not included on the general demon-  
stration circuit).  
3.  
L2 is used in the Audio AGC circuit (see Fig. 6). For the  
characteristics of the Audio AGC current source see  
Fig.7. If the audio AGC is not required then the current  
source (Pin 28) may be disabled by connecting Pin 9  
(TCADJ) to VR (Pin 6) and by connecting Pin 28  
(IAGCOUT) to Vcc1, (R18). The voltage at Pin 8 may  
still be used as an RSSI. R9, C8, C14, C19, R17 and  
D1 may then be omitted. See Fig.6 for AGC  
component values.  
The value of R11 is dependent on the data output load.  
R11 should allow sufficient current to drive the data  
output load.  
8
SL6610  
COMPONENTS LIST FOR APPLICATION BOARD At 470MHz, 25kHz Channel Spacing.  
(LO circuit is 50Wnetwork as in Fig.5 - crystal oscillator not specified)  
Resistors  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C34  
VC1  
1n  
1n  
1n  
1n  
1n  
100n  
1n  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
open circuit  
not used  
100  
100k  
100  
100  
100  
open circuit  
220k  
1n  
not used  
not used  
1n  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R22  
1M  
100k (2)  
300 (3)  
3k9 (1)  
4k7  
1n  
open circuit  
not used  
not used  
100p  
2u2  
2u2  
1p5  
1-3pF  
4k7  
33k  
open circuit (4)  
0R (4)  
open circuit  
Inductors  
Capacitors  
L1  
L2  
T1  
47nH (5)  
C1  
C2  
C3  
1n  
3.3pF  
1n  
not used (3)  
16nH 2 Turn 1:1 (Coilcraft) Q4123-A  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
1n  
Active Components  
3.9pF  
2u2  
1n  
100n  
1n (2)  
2u2  
100n  
1n  
Q1  
Q2  
Q3  
Q4  
Q5  
D1  
Zetex FMMT589  
Philips BFT25A  
Not Used  
Philips BFT25A(3)  
Philips BFT25A  
Panasonic MA862(6)  
1n  
Notes  
1.  
2.  
The values of R13 is determined by the set-up proce-  
dure. See Application Note.  
Pin 9 (TCADJ) to VR (Pin 6) and by connecting Pin 28  
(IAGCOUT) to Vcc1, (R18). The voltage at Pin 8 may  
still be used as an RSSI. R9, C8, C14, C19, R17 and  
D1 may then be omitted.  
The value of "C9" is determined by the output data rate.  
Use 2nF for 512bps, 1nF for 1200bps and 470pF for  
2400bps.  
5.  
L1and C26 form the low noise matching network for the  
RF amplifier. The values given are for the RF amplifier  
specified in the Applications Circuit with no Audio AGC  
connected. i.e. R17 and D1 omitted.  
3.  
4.  
R12 & Q4 form a dummy load for the regulator.  
Permitted load currents for the regulator are 250µA to  
5mA. The 1V regulator (output Pin 23) can be switched  
off by connecting Pin 23 directly to VCC2. Q1, Q4, R12  
and C12 must then be omitted  
6.  
7.  
Suggested diode for use with the Audio AGC circuit  
(D1 is not included on the general demonstration  
circuit).  
L2 is used in the Audio AGC circuit (see Fig.6). For the  
characteristics of the Audio AGC current source see  
figure 7. If the Audio AGC is not required then the  
current source (Pin 28) may be disabled by connecting  
The value of R11 is dependent on the data output load.  
R11 should allow sufficient current to drive the data  
output load.  
9
SL6610  
Fig.4 RF amplifier  
RF Amplifier Components Values  
Resistors  
R14, R15  
R13  
Capacitors  
4k7  
see note 1  
47k  
C13, C15  
C16, C17  
C20, C21  
C24, C25  
L2  
1nF  
1nF  
1nF see note 2  
1nF  
820nH  
Active components  
D1 MA862 (Panasonic)  
R22  
Notes:  
(1) The value of R13 is determined by the set up procedure (See "Set up for optimum performance").  
(2) C20 and C21 are purely for deomonstration purposes. Pin 24 and Pin 26 may be DC coupled provided that no DC voltage is applied to the  
mixer inputs.  
Frequency Dependent Components  
153MHz  
280MHz  
6.8p  
450MHz  
not used  
not used  
39nH  
C26  
C27  
L1  
not used  
not used  
150nH  
not used  
68nH  
C34  
T1  
3p3  
100nH  
2p2  
30nH  
1p5  
16nH  
Coilcraft N2261-A  
1-10pF  
Coilcraft M1686-A  
1-10pF  
Coilcraft Q4123-A  
1-3pF  
VC1  
Q4, Q5  
Toshiba 2SC5065  
Toshiba 2SC5065  
Philips BFT25A  
(See also Lo drive Network)  
Fig.5 Local oscillator drive network  
Higher Input Impedance (crystal oscillator input)  
LO Drive Network Component Values  
153MHz  
280MHz  
450MHz  
50Ohm input impedance (External LO injection)  
C3  
C2  
C5  
R3  
R7  
Set by load allowable on crystal oscillator (typical 4p7)  
153MHz  
10p  
10p  
280MHz  
5p6  
5p6  
450MHz  
3p3  
3p9  
10p  
10p  
100  
100  
5p6  
5p6  
100  
100  
3p3  
3p9  
100  
100  
C2  
C5  
C3, C4, C18 = 1n  
R3, R5, R6, R7 = 100Ohms  
R5, R6 = 1k  
C4, C18 = 1n  
10  
SL6610  
Fig.6 AGC Schematic  
Fig.7 Audio AGC current vs. IP power at 25°C  
11  
SL6610  
S11  
1
MAG  
0.969  
0.958  
0.942  
0.917  
0.893  
0.858  
0.832  
0.806  
0.781  
0.755  
0.743  
0.725  
0.703  
0.680  
0.666  
0.653  
0.636  
0.615  
0.604  
0.600  
ANG  
-7.20  
FREQ  
50.000  
2
-14.45  
-20.59  
-26.40  
-33.26  
-39.84  
-44.78  
-49.01  
-54.00  
-59.53  
-64-35  
-68.43  
-73.01  
-78.74  
-83.76  
-87.48  
-91.32  
-97.17  
-102.84  
-105.23  
.5  
100.000  
150.000  
200.000  
250.000  
300.000  
350.000  
400.000  
450.000  
500.000  
550.000  
600.000  
650.000  
700.000  
750.000  
800.000  
850.000  
900.000  
950.000  
1000.00  
.2  
50MHz  
1GHz  
Fig.8a SL6609A Mixer A input S-Parameters  
S11  
S11  
12  
1
MAG  
0.970  
0.960  
0.945  
0.919  
0.902  
0.872  
0.850  
0.825  
0.803  
0.776  
0.760  
0.739  
0.717  
0.698  
0.683  
0.666  
0.659  
0.647  
0.637  
0.634  
ANG  
-7.06  
-13.83  
-19.90  
-25.70  
-32.18  
FREQ  
50.000  
2
.5  
100.000  
150.000  
200.000  
250.000  
300.000  
350.000  
400.000  
450.000  
500.000  
550.000  
600.000  
650.000  
700.000  
750.000  
800.000  
850.000  
900.000  
950.000  
1000.00  
-38.03  
-43.07  
-48.27  
-53.58  
-58.49  
-63.08  
-67.98  
-72.63  
-76.96  
-81.09  
-85.49  
-89.51  
-93.90  
-98.42  
-102.40  
.2  
50MHz  
1GHz  
Fig.8b SL6609A Mixer B input S-Parameters  
1
MAG  
0.993  
0.995  
0.997  
0.997  
0.996  
0.986  
0.965  
0.936  
0.902  
0.872  
0.838  
0.804  
0.798  
0.810  
0.784  
0.779  
0.790  
0.788  
0.768  
0.743  
ANG  
-4.17  
-8.43  
-12.88  
-17.57  
-22.63  
FREQ  
50.000  
2
.5  
100.000  
150.000  
200.000  
250.000  
300.000  
350.000  
400.000  
450.000  
500.000  
550.000  
600.000  
650.000  
700.000  
750.000  
800.000  
850.000  
900.000  
950.000  
1000.00  
.2  
-28.16  
-33.87  
-39.17  
-43.88  
-48.54  
-52.81  
-56.60  
-59.47  
-65.19  
-71.49  
-75.97  
-82.54  
-91.16  
-100.20  
-108.52  
50MHz  
1GHz  
Fig.9 SL6609A LO X,Y inputs S-Parameters  
SL6610  
Fig.10a AC parameters vs. supply and temperature  
Conditions:- 282MHz demonstration board i.e. 20dB LNA, 2dB  
Vcc1 = 1.0V, Vcc2 = 1.8V  
Vcc1 = 1.3V, Vcc2 = 2.7V  
Vcc1 = 3.0V, Vcc2 = 4.0V  
noise figure, carrier frequency 282MHz, 1200bps  
baud rate, 4kHz deviation frequency, BER 1 in 30.  
13  
SL6610  
Fig.10b AC parameters vs. supply and temperature  
Conditions:- 282MHz demonstration board i.e. 20dB LNA, 2dB  
noise figure, carrier frequency 282MHz, 1200bps  
baud rate, 4kHz deviation frequency, BER 1 in 30.  
Vcc1 = 1.0V, Vcc2 = 1.8V  
Vcc1 = 1.3V, Vcc2 = 2.7V  
Vcc1 = 3.0V, Vcc2 = 4.0V  
14  
SL6610  
Fig.11 DC parameters vs. supply and temperature  
(IP3 vs audio AGC both on and off)  
Conditions:- ICC1 includes 500µA LNA current but does not  
Vcc1 = 0.98V, Vcc2 = 1.78V  
Vcc1 = 1.3V, Vcc2 = 2.7V  
Vcc1 = 3.0V, Vcc2 = 4.0V  
include the regulator supply (audio AGC inactive).  
ICC2 measured with BATT FLAG and DATA O/P  
HIGH, Fc = 282MHz.  
Note 1- IP3 is level above wanted needed to reduce  
receiver to 1 in 30 B.E.R.  
15  
SL6610  
Fig.12 Sensitivity, IP3 vs Receiver Gain  
Fig.13 Sensitivity, adjacent Channel vs Receiver Gain  
16  
SL6610  
- 1 2 2  
- 1 2 3  
- 1 2 4  
- 1 2 5  
- 1 2 6  
- 1 2 7  
- 1 2 8  
- 1 2 9  
5 6  
5 5  
5 4  
5 3  
5 2  
Se n s it ivit y  
IP3  
LO Dr iv e Le v e l ( d Bm )  
Fig.14 Sensitivity, IP3 vs LO level  
- 1 2 2  
- 1 2 3  
- 1 2 4  
- 1 2 5  
- 1 2 6  
- 1 2 7  
- 1 2 8  
- 1 2 9  
7 3 .5  
7 3  
Se n s it ivit y  
ACR  
7 2 .5  
7 2  
7 1 .5  
7 1  
LO Dr iv e Le v e l ( d Bm )  
Fig.15 Sensitivity, Adjacent Channel vs LO level  
17  
SL6610  
PACKAGE DETAILS  
Dimensions are shown thus: mm (in)  
HEADQUARTERS OPERATIONS  
MITEL SEMICONDUCTOR  
Cheney Manor, Swindon,  
Wiltshire SN2 2QW, United Kingdom.  
Tel: (01793) 518000  
Internet: http://www.gpsemi.com  
CUSTOMER SERVICE CENTRES  
FRANCE & BENELUX Les Ulis Cedex Tel: (1) 69 18 90 00 Fax : (1) 64 46 06 07  
GERMANY Munich Tel: (089) 419508-20 Fax : (089) 419508-55  
ITALY Milan Tel: (02) 6607151 Fax: (02) 66040993  
JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510  
KOREA Seoul Tel: (2) 5668141 Fax: (2) 5697933  
NORTH AMERICA Scotts Valley, USA Tel: (408) 438 2900 Fax: (408) 438 5576/6231  
SOUTH EAST ASIA Singapore Tel:(65) 3827708 Fax: (65) 3828872  
SWEDEN Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36  
Fax: (01793) 518411  
MITEL SEMICONDUCTOR  
1500 Green Hills Road,  
Scotts Valley, California 95066-4922  
United States of America.  
Tel (408) 438 2900  
TAIWAN, ROC Taipei Tel: 886 2 25461260 Fax: 886 2 27190260  
UK, EIRE, DENMARK, FINLAND & NORWAY  
Fax: (408) 438 5576/6231  
Swindon Tel: (01793) 726666 Fax : (01793) 518582  
These are supported by Agents and Distributors in major countries world-wide.  
© Mitel Corporation 1998 Publication No. DS4003 Issue No. 2.2 September 1995  
TECHNICAL DOCUMENTATION – NOT FOR RESALE. PRINTED IN UNITED KINGDOM  
This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded  
as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company  
reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any  
guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and  
to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury  
or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.  
All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

SL6610/KG/NPDS

Paging Receiver, Bipolar, PDSO28, PLASTIC, SSOP-28
MICROSEMI

SL6610/KG/NPDS

Paging Receiver, Bipolar, PDSO28,
DYNEX

SL6610/KG/NPDS

Paging Receiver, Bipolar, PDSO28, PLASTIC, SSOP-28
ZARLINK

SL6610KG

Direct Conversion FSK Data Receiver
ZARLINK

SL6610NPDE

Direct Conversion FSK Data Receiver
ZARLINK

SL6610NPDS

Direct Conversion FSK Data Receiver
ZARLINK

SL6619

Direct Conversion FSK Data Receiver
MITEL

SL6619

Direct Conversion FSK Data Receiver
ZARLINK

SL6619/KG/TP1N

Paging Receiver, Bipolar, PQFP32, 7 X 7 MM, 1.0 MM HEIGHT, MS-026ABA, TQFP-32
ZARLINK

SL6619/KG/TP1N

Paging Receiver, Bipolar, PQFP32, TQFP-32
MICROSEMI

SL6619/KG/TP1Q

Paging Receiver, PQFP32,
DYNEX

SL6619/KG/TP1Q

Paging Receiver, PQFP32, TQFP-32
MICROSEMI