ZL30102QDG [ZARLINK]

T1/E1 Stratum 4/4E Redundant System Clock Synchronizer for DS1/E1 and H.110; T1 / E1地层4 / 4E冗余系统时钟同步的DS1 / E1和H.110
ZL30102QDG
型号: ZL30102QDG
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

T1/E1 Stratum 4/4E Redundant System Clock Synchronizer for DS1/E1 and H.110
T1 / E1地层4 / 4E冗余系统时钟同步的DS1 / E1和H.110

时钟
文件: 总50页 (文件大小:479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL30102  
T1/E1 Stratum 4/4E Redundant System  
Clock Synchronizer for DS1/E1 and H.110  
Data Sheet  
October 2004  
Features  
Synchronizes to clock-and-sync-pair to maintain  
Ordering Information  
minimal phase skew between an H.110 primary  
master clock and a secondary master clock  
ZL30102QDG  
64 pin TQFP  
Supports Telcordia GR-1244-CORE Stratum 4 and  
4E  
-40°C to +85°C  
Supports ITU-T G.823 and G.824 for 2048 kbit/s  
and 1544 kbit/s interfaces  
Supports ANSI T1.403 and ETSI ETS 300 011 for  
ISDN primary rate interfaces  
Attenuates wander from 1.8 Hz  
Less than 0.6 nspp intrinsic jitter on all output  
clocks  
External master clock source: Clock Oscillator or  
Crystal  
Simple hardware control interface  
Manual and Automatic hitless reference switching  
Accepts three input references and synchronizes  
to any combination of 8 kHz, 1.544 MHz,  
Applications  
2.048 MHz, 8.192 MHz or 16.384 MHz inputs  
Synchronization and timing control for multi-trunk  
DS1/ E1 terminal systems such as DSLAMs,  
Gateways and PBXs  
Provides a range of clock outputs: 1.544 MHz,  
2.048 MHz, 3.088 MHz, 6.312 MHz, 16.384 MHz  
and either 4.096 MHz and 8.192 MHz or  
32.768 MHz and 65.536 MHz  
Clock and frame pulse source for H.110 CT Bus,  
ST-BUS, GCI and other time division multiplex  
(TDM) buses  
Provides 5 styles of 8 kHz framing pulses  
Holdover frequency accuracy of 1x10-7  
Provides Lock, Holdover and selectable Out of  
Range indication  
TIE_CLR  
OSCi OSCo  
Master Clock  
OUT_SEL  
FASTLOCK  
LOCK  
C2o  
Virtual  
REF0  
REF1  
REF2  
C4/C65o  
C8/C32o  
C16o  
F4/F65o  
F8/F32o  
F16o  
C1.5o  
C3o  
TIE  
Reference  
MUX  
Corrector  
Circuit  
E1  
DPLL  
Synthesizer  
REF2_SYNC  
Mode  
REF_FAIL0  
REF_FAIL1  
REF_FAIL2  
OOR_SEL  
Control  
TIE  
Reference  
Monitor  
Corrector  
Enable  
DS1  
Synthesizer  
DS2  
C6o  
Synthesizer  
REF_SEL1:0  
RST  
Frequency  
Select  
State Machine  
MUX  
IEEE  
TRST  
1149.1a  
MODE_SEL1S:E0C_MSTR  
HMS HOLDOVER  
TCK TDI TMS TDO  
Figure 1 - Functional Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2004, Zarlink Semiconductor Inc. All Rights Reserved.  
ZL30102  
Data Sheet  
Description  
The ZL30102 DS1/E1 Synchronizer contains a digital phase-locked loop (DPLL), which provides timing and  
synchronization for DS1/E1 transmission equipment deploying redundant network clocks.  
The ZL30102 generates ST-BUS and other TDM clock and framing signals that are phase locked to one of three  
network references or to another system master-clock reference. It helps ensure system reliability by monitoring its  
references for frequency accuracy and stability and by maintaining a tight phase alignment between the primary  
master-clock and secondary master clock outputs even in the presence of high network jitter.  
The ZL30102 is intended to be the central timing and synchronization resource for network equipment that  
complies with Telcordia, ETSI, ITU-T and ANSI network specifications.  
2
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Table of Contents  
1.0 Change Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.0 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1 Reference Select Multiplexer (MUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.2 Reference Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.3 Time Interval Error (TIE) Corrector Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.4 Digital Phase Lock Loop (DPLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.5 Frequency Synthesizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.6 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.7 Master Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.0 Control and Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.1 Out of Range Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.2 Loop Filter and Limiter Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.3 Output Clock and Frame Pulse Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.4 Modes of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.4.1 Freerun Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.4.2 Holdover Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.4.3 Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.4.4 Automatic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.5 Reference Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.5.1 Manual Reference Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.5.2 Automatic Reference Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.5.2.1 Automatic Reference Switching - Coarse Reference Failure . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.5.2.2 Automatic Reference Switching - Reference Frequency Out-of-Range. . . . . . . . . . . . . . . . . 27  
4.6 Clock Redundancy Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.0 Measures of Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.1 Jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.2 Jitter Generation (Intrinsic Jitter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.3 Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.4 Jitter Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.5 Frequency Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.6 Holdover Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.7 Pull-in Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.8 Lock Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.9 Phase Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.10 Time Interval Error (TIE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.11 Maximum Time Interval Error (MTIE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.12 Phase Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.13 Lock Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.0 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.1 Power Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.2 Master Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.2.1 Clock Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.2.2 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.3 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.4 Reset Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.5 Clock Redundancy System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.0 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.1 AC and DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Table of Contents  
7.2 Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
List of Figures  
Figure 1 - Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - Pin Connections (64 pin TQFP, please see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 3 - Reference Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 4 - Behaviour of the Dis/Re-qualify Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 5 - DS1 Out-of-Range Thresholds for OOR_SEL=0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 6 - E1 Out-of-Range Thresholds for OOR_SEL=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 7 - REF2_SYNC Reference Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 8 - Timing Diagram of Hitless Reference Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 9 - Timing Diagram of Hitless Mode Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10 - DPLL Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 11 - Mode Switching in Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12 - Reference Switching in Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 13 - Reference Selection in Automatic Mode (MODE_SEL=11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 14 - Mode Switching in Automatic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 15 - Automatic Reference Switching - Coarse Reference Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 16 - Automatic Reference Switching - Out-of-Range Reference Failure . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 17 - Examples of REF2 & REF2_SYNC to Output Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 18 - Clock Redundancy with Two Independent Timing Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 19 - Recommended Power Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 20 - Clock Oscillator Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 21 - Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 22 - Power-Up Reset Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 23 - Typical Clocking Architecture of an ECTF H.110 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 24 - Timing Parameter Measurement Voltage Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 25 - REF0/1/2 Input Timing and Input to Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 26 - REF2_SYNC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 27 - E1 Output Timing Referenced to F8/F32o. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 28 - DS1 Output Timing Referenced to F8/F32o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 29 - DS2 Output Timing Referenced to F8/F32o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
5
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
List of Tables  
Table 1 - Out of Range Limits Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 2 - Loop Filter and Limiter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 3 - Clock and Frame Pulse Selection with OUT_SEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 4 - Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 5 - Manual Reference Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 6 - The Reference Selection Pins in the Automatic Mode (MODE_SEL=11) . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 7 - Typical Clock Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 8 - Typical Crystal Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
1.0 Change Summary  
Changes from July 2004 Issue to October 2004 Issue. Page, section, figure and table numbers refer to this issue.  
Page Item  
Change  
8
Figure 2  
Section 3.3  
Added note specifying not e-Pad  
Changed 20 ns to 200 ns in "HMS=0" section  
19  
38  
Table “DC Electrical Characteristics*“ Corrected current consumption  
Corrected Vt- input voltage characteristic  
41  
Table “AC Electrical Characteristics* - Corrected Min. Max. values  
Input to output timing for REF0, REF1  
and REF2 references when  
TIE_CLR = 0 (see Figure 25).“  
42  
47  
Section 7.1  
Section 7.2  
Corrected pulse widths  
Corrected jitter numbers  
7
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
2.0 Physical Description  
2.1 Pin Connections  
48  
50  
46  
44  
42  
40  
38  
36  
34  
F4/F65o  
F16o  
AGND  
IC  
32  
30  
28  
C1.5o  
C3o  
C6o  
52  
54  
56  
AVDD  
IC  
IC  
REF_SEL0  
REF_SEL1  
OUT_SEL  
VDD  
REF0  
REF1  
REF2  
26  
24  
22  
20  
18  
ZL30102  
NC  
GND  
REF2_SYNC  
SEC_MSTR  
OOR_SEL  
VDD  
58  
60  
62  
64  
IC  
OSCi  
OSCo  
RST  
NC  
TIE_CLR  
FASTLOCK  
MODE_SEL1  
MODE_SEL0  
2
4
6
8
10  
12  
14  
16  
Figure 2 - Pin Connections (64 pin TQFP, please see Note 1)  
Note 1: The ZL30102 uses the TQFP shown in the package outline designated with the suffix QD, the ZL30102  
does not use the e-Pad TQFP.  
8
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
2.2 Pin Description  
Pin #  
Name  
Description  
1
2
3
GND  
VCORE  
LOCK  
Ground. 0 V  
Positive Supply Voltage. +1.8 VDC nominal  
Lock Indicator (Output). This output goes to a logic high when the PLL is frequency  
locked to the selected input reference.  
4
5
HOLDOVER Holdover (Output). This output goes to a logic high whenever the PLL goes into  
holdover mode.  
REF_FAIL0 Reference 0 Failure Indicator (Output). A logic high at this pin indicates that the REF0  
reference frequency has exceeded the out-of-range limit set by the OOR_SEL pin or that  
it is exhibiting abrupt phase or frequency changes.  
6
7
REF_FAIL1 Reference 1 Failure Indicator (Output). A logic high at this pin indicates that the REF1  
reference frequency has exceeded the out-of-range limit set by the OOR_SEL pin or that  
it is exhibiting abrupt phase or frequency changes.  
REF_FAIL2 Reference 2 Failure Indicator (Output). A logic high at this pin indicates that the REF2  
reference frequency has exceeded the out-of-range limit set by the OOR_SEL pin or that  
it is exhibiting abrupt phase or frequency changes.  
8
9
TDO  
Test Serial Data Out (Output). JTAG serial data is output on this pin on the falling edge  
of TCK. This pin is held in high impedance state when JTAG scan is not enabled.  
TMS  
Test Mode Select (Input). JTAG signal that controls the state transitions of the TAP  
controller. This pin is internally pulled up to VDD. If this pin is not used then it should be  
left unconnected.  
10  
TRST  
TCK  
Test Reset (Input). Asynchronously initializes the JTAG TAP controller by putting it in  
the Test-Logic-Reset state. This pin should be pulsed low on power-up to ensure that  
the device is in the normal functional state. This pin is internally pulled up to VDD. If  
this pin is not used then it should be connected to GND.  
11  
Test Clock (Input): Provides the clock to the JTAG test logic. If this pin is not used then it  
should be pulled down to GND.  
12  
13  
14  
15  
VCORE  
GND  
Positive Supply Voltage. +1.8 VDC nominal  
Ground. 0 V  
AVCORE  
TDI  
Positive Analog Supply Voltage. +1.8 VDC nominal  
Test Serial Data In (Input). JTAG serial test instructions and data are shifted in on this  
pin. This pin is internally pulled up to VDD. If this pin is not used then it should be left  
unconnected.  
16  
HMS  
Hitless Mode Switching (Input). The HMS input controls phase accumulation during the  
transition from Holdover or Freerun mode to Normal mode on the same reference. A logic  
low at this pin will cause the ZL30102 to maintain the delay stored in the TIE corrector  
circuit when it transitions from Holdover or Freerun mode to Normal mode. A logic high  
on this pin will cause the ZL30102 to measure a new delay for its TIE corrector circuit  
thereby minimizing the output phase movement when it transitions from Holdover or  
Freerun mode to Normal mode.  
17  
18  
MODE_SEL0 Mode Select 0 (Input). This input combined with MODE_SEL1 determines the mode of  
operation, see Table 4 on page 22.  
MODE_SEL1 Mode Select 1 (Input). See MODE_SEL0 pin description.  
9
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Pin #  
Name  
Description  
19  
RST  
Reset (Input). A logic low at this input resets the device. On power up, the RST pin  
must be held low for a minimum of 300 ns after the power supply pins have reached  
the minimum supply voltage. When the RST pin goes high, the device will transition  
into a Reset state for 3 ms. In the Reset state all outputs will be forced into high  
impedance.  
20  
21  
OSCo  
OSCi  
Oscillator Master Clock (Output). For crystal operation, a 20 MHz crystal is connected  
from this pin to OSCi. This output is not suitable for driving other devices. For clock  
oscillator operation, this pin must be left unconnected.  
Oscillator Master Clock (Input). For crystal operation, a 20 MHz crystal is connected  
from this pin to OSCo. For clock oscillator operation, this pin must be connected to a  
clock source.  
22  
23  
24  
25  
26  
IC  
GND  
Internal Connection. Leave unconnected.  
Ground. 0 V  
NC  
No internal bonding Connection. Leave unconnected.  
Positive Supply Voltage. +3.3 VDC nominal  
VDD  
OUT_SEL  
Output Selection (Input). This input selects the signals on the combined output clock  
and frame pulse pins, see Table 3 on page 21.  
27  
28  
29  
30  
31  
32  
IC  
IC  
Internal Connection. Connect this pin to ground.  
Internal Connection. Connect this pin to ground.  
AVDD  
C6o  
C3o  
C1.5o  
Positive Analog Supply Voltage. +3.3 VDC nominal  
Clock 6.312 MHz (Output). This output is used in DS2 applications.  
Clock 3.088 MHz (Output). This output is used in DS1 applications.  
Clock 1.544 MHz (Output). This output is used in DS1 applications.  
This clock output pad includes a Schmitt input which serves as a PLL feedback path;  
proper transmission-line termination should be applied to maintain reflections below  
Schmitt trigger levels.  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
AGND  
AGND  
AVCORE  
AVDD  
Analog Ground. 0 V  
Analog Ground. 0 V  
Positive Analog Supply Voltage. +1.8 VDC nominal  
Positive Analog Supply Voltage. +3.3 VDC nominal  
Positive Analog Supply Voltage. +3.3 VDC nominal  
No internal bonding Connection. Leave unconnected.  
No internal bonding Connection. Leave unconnected.  
Analog Ground. 0 V  
AVDD  
NC  
NC  
AGND  
AGND  
C4/C65o  
Analog Ground. 0 V  
Clock 4.096 MHz or 65.536 MHz (Output). This output is used for ST-BUS operation at  
2.048 Mbit/s, 4.096 Mbit/s or 65.536 MHz (ST-BUS 65.536 Mbit/s). The output frequency  
is selected via the OUT_SEL pin, see Table 3 on page 21.  
10  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Pin #  
Name  
Description  
43  
C8/C32o  
Clock 8.192 MHz or 32.768 MHz (Output). This output is used for ST-BUS and GCI  
operation at 8.192 Mb/s or for operation with a 32.768 MHz clock. The output frequency  
is selected via the OUT_SEL pin, see Table 3 on page 21.  
In C8 mode, this clock output pad uses an included Schmitt input as a PLL feedback  
path; proper transmission-line termination should be applied to maintain reflections below  
Schmitt trigger levels.  
44  
45  
46  
AVDD  
AVDD  
C2o  
Positive Analog Supply Voltage. +3.3 VDC nominal  
Positive Analog Supply Voltage. +3.3 VDC nominal  
Clock 2.048 MHz (Output). This output is used for standard E1 interface timing and for  
ST-BUS operation at 2.048 Mbit/s.  
This clock output pad includes a Schmitt input which serves as a PLL feedback path;  
proper transmission-line termination should be applied to maintain reflections below  
Schmitt trigger levels.  
47  
C16o  
Clock 16.384 MHz (Output). This output is used for ST-BUS operation with a  
16.384 MHz clock.  
This clock output pad includes a Schmitt input which serves as a PLL feedback path;  
proper transmission-line termination should be applied to maintain reflections below  
Schmitt trigger levels.  
48  
49  
F8/F32o  
F4/F65o  
Frame Pulse (Output). This is an 8 kHz 122 ns active high framing pulse or it is an 8 kHz  
31 ns active high framing pulse, which marks the beginning of a frame. The pulse width is  
selected via the OUT_SEL pin, see Table 3 on page 21.  
Frame Pulse ST-BUS 2.048 Mbit/s or ST-BUS at 65.536 MHz clock (Output). This  
output is an 8 kHz 244 ns active low framing pulse which marks the beginning of an ST-  
BUS frame. This is typically used for ST-BUS operation at 2.048 Mbit/s and 4.096 Mbit/s.  
Or this output is an 8 kHz 15 ns active low framing pulse, typically used for ST-BUS  
operation with a clock rate of 65.536 MHz. The pulse width is selected via the OUT_SEL  
pin, see Table 3 on page 21.  
50  
F16o  
Frame Pulse ST-BUS 8.192 Mbit/s (Output). This is an 8 kHz 61 ns active low framing  
pulse, which marks the beginning of an ST-BUS frame. This is typically used for ST-BUS  
operation at 8.192 Mbit/s.  
51  
52  
53  
AGND  
IC  
Analog Ground. 0 V  
Internal Connection. Connect this pin to ground.  
REF_SEL0 Reference Select 0 (Input/Output). In the manual mode of operation, REF_SEL0 is an  
input. As an input REF_SEL0 combined with REF_SEL1 selects the reference input that  
is used for synchronization, see Table 6 on page 25.  
In the Automatic mode of operation, REFSEL0 is an output indicating which of the input  
references is the being selected. This pin is internally pulled down to GND.  
54  
55  
REF_SEL1 Reference Select 1 (Input/Output). See REF_SEL0 pin description.  
REF0  
Reference (Input). This is one of three (REF0, REF1 and REF2) input reference sources  
used for synchronization. One of five possible frequencies may be used: 8 kHz,  
1.544 MHz, 2.048 MHz, 8.192 MHz or 16.384 MHz. This pin is internally pulled down to  
GND.  
56  
57  
REF1  
REF2  
Reference (Input). See REF0 pin description.  
Reference (Input). See REF0 pin description.  
11  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Pin #  
Name  
Description  
58  
REF2_SYNC REF2 Synchronization Frame Pulse (Input). This is the 8 kHz frame pulse  
synchronization input associated with the REF2 reference. While the PLL is locked to the  
REF2 input reference the output (multi) frame pulses are synchronized to this input. This  
pin is internally pulled down to GND.  
59  
SEC_MSTR Secondary Master Mode Selection (Input). A logic low at this pin selects the Primary  
Master mode of operation with 1.8 Hz DPLL loop filter bandwidth. A logic high selects  
Secondary Master mode which forces the PLL to clear its TIE corrector circuit and lock to  
the selected reference using a high bandwidth loop filter and a phase slope limiting of  
9.5 ms/s.  
60  
OOR_SEL  
Out Of Range Selection (Input). This input selects the frequency out of range limits of  
the reference inputs, see Table 1 on page 21.  
61  
62  
63  
VDD  
NC  
Positive Supply Voltage. +3.3 VDC nominal  
No internal bonding Connection. Leave unconnected.  
TIE_CLR  
TIE Circuit Reset (Input). A logic low at this input resets the Time Interval Error (TIE)  
correction circuit resulting in a realignment of input phase with output phase.  
64  
FASTLOCK Fast Lock (Input). Set temporarily high to allow the ZL30102 to quickly lock to the input  
reference (one second locking time).  
12  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
3.0 Functional Description  
The ZL30102 is an SDH/PDH Synchronizer for Redundant System Clocks, providing timing and synchronization  
signals to interface circuits for the following types of primary rate digital transmission links, see Table 1:  
DS1 compliant with ANSI T1.403 and Telcordia GR-1244-CORE Stratum 4/4E  
E1 compliant with ITU-T G.703 and ETSI ETS 300 011  
Figure 1 is a functional block diagram of the ZL30102 which is described in the following sections.  
3.1 Reference Select Multiplexer (MUX)  
The ZL30102 accepts three simultaneous reference input signals and operates on their rising edges. One of them,  
the primary reference (REF0), the secondary reference (REF1) or the tertiary reference (REF2) signal is selected  
as input to the TIE Corrector Circuit based on the Reference Selection (REF_SEL1:0) inputs.  
The use of the combined REF2 and REF2_SYNC inputs allows for a very accurate phase alignment of the output  
frame pulses to the 8 kHz frame pulse supplied to the REF2_SYNC input. This feature supports the implementation  
of Primary and Secondary Master system clocks in H.110 systems.  
3.2 Reference Monitor  
The input references are monitored by three independent reference monitor blocks, one for each reference. The  
block diagram of a single reference monitor is shown in Figure 3. For each reference clock, the frequency is  
detected and the clock is continuously monitored for three independent criteria that indicate abnormal behavior of  
the reference signal, for example; long term drift from its nominal frequency or excessive jitter. To ensure proper  
operation of the reference monitor circuit, the minimum input pulse width restriction of 15 nsec must be  
observed.  
Reference Frequency Detector (RFD): This detector determines whether the frequency of the reference  
clock is 8 kHz, 1.544 MHz, 2.048 MHz 8.192 MHz or 16.384 MHz and provides this information to the  
various monitor circuits and the phase detector circuit of the DPLL.  
Precise Frequency Monitor (PFM): This circuit determines whether the frequency of the reference clock  
is within the selected accuracy range, see Table 1.  
Coarse Frequency Monitor (CFM): This circuit monitors the reference frequency over intervals of  
approximately 30 µs to quickly detect large frequency changes.  
Single Cycle Monitor (SCM): This detector checks the period of a single clock cycle to detect large  
phase hits or the complete loss of the clock.  
13  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
REF_FAIL0 /  
REF_FAIL1 /  
REF_FAIL2  
OR  
OR  
Reference Frequency  
Detector  
Reference  
select  
REF_OOR  
REF_DIS  
REF0 /  
REF1 /  
REF2  
Precise Frequency  
Monitor  
REF_SEL1:0  
state machine  
Coarse Frequency  
Monitor  
dis/re-qualify  
timer  
Single Cycle  
Monitor  
Mode select  
OR  
HOLDOVER  
state machine  
REF_OOR = reference out of range.  
REF_DIS= reference disrupted.  
Both are internal signals.  
Figure 3 - Reference Monitor Circuit  
Exceeding the thresholds of any of the monitors forces the corresponding REF_FAIL pin to go high. The single  
cycle and coarse frequency failure flags force the DPLL into Holdover mode and feed a timer that disqualifies the  
reference input signal when the failures are present for more than 2.5 s. The single cycle and coarse frequency  
failures must be absent for 10 s to let the timer re-qualify the input reference signal as valid. Multiple failures of less  
than 2.5 s each have an accumulative effect and will disqualify the reference eventually. This is illustrated in Figure  
4 where REF0 experiences disruptions while REF1 is stable.  
SCM or CFM failure  
SCM or CFM failure  
REF0  
dis/re-qualify  
timer on REF0  
2.5 s  
10 s  
REF_OOR0  
(internal signal)  
REF_FAIL0  
HOLDOVER  
REF_SEL  
REF0  
REF1  
REF0  
REF1  
Figure 4 - Behaviour of the Dis/Re-qualify Timer  
14  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
When the incoming signal returns to normal (REF_FAIL=0), the DPLL returns to Normal mode with the output  
signal locked to the input signal. Each of the monitors has a built-in hysteresis to prevent flickering of the REF_FAIL  
status pin at the threshold boundaries. The precise frequency monitor and the timer do not affect the mode  
(Holdover/Normal) of the DPLL.  
If the device is set to Automatic mode (MODE_SEL1:0=11), then the state machine does not immediately switch to  
another reference. If the single cycle and/or coarse frequency failures persist for more than 2.5 s or the precise  
frequency monitor detects a failure, then the state machine will switch to another valid reference if that is available.  
If there no other reference available, it stays in Holdover mode.  
The precise frequency monitor’s failure thresholds are selected with the OOR_SEL input based on the ZL30102  
applications, Table 1. Figure 5 and Figure 6 show the out of range limits for various master clock accuracies. It will  
take the precise frequency monitor up to 10 s to qualify or disqualify the input reference.  
C20 Clock Accuracy  
Out of Range  
In Range  
C20  
0
0 ppm  
+32 ppm  
-32 ppm  
-83 -64  
64 83  
Out of Range  
In Range  
C20  
32  
96  
115  
-51 -32  
Out of Range  
In Range  
C20  
-32  
-115  
-96  
32  
51  
Frequency offset [ppm]  
100  
-75  
-50  
-25  
0
25  
50  
75  
-100  
C20: 20 MHz master oscillator clock  
Figure 5 - DS1 Out-of-Range Thresholds for OOR_SEL=0  
C20 Clock Accuracy  
0 ppm  
Out of Range  
C20  
0
In Range  
-130 -100  
100 130  
C20  
50  
Out of Range  
In Range  
+50 ppm  
-50 ppm  
-80  
150 180  
-50  
Out of Range  
In Range  
C20  
-50  
-180 -150  
-150 -100  
50 80  
50  
Frequency offset [ppm]  
200  
-50  
0
100  
150  
-200  
C20: 20 MHz master oscillator clock  
Figure 6 - E1 Out-of-Range Thresholds for OOR_SEL=1  
In addition to the monitoring of the REF2 reference signal the companion REF2_SYNC input signal is also  
monitored for failure (see Figure 7).  
15  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Sync Ratio Monitor (SRM): This monitor detects if the REF2_SYNC signal is an 8 kHz signal. It also checks the  
number of REF2 reference clock cycles in a single REF2_SYNC frame pulse period to determine the integrity of the  
REF2_SYNC signal, for example there must be exactly 256 clock cycles of a 2.048 MHz REF2 reference clock in a  
single REF2_SYNC 8 kHz frame pulse period to validate the REF2_SYNC signal. If the REF2 and REF2_SYNC  
inputs are selected for synchronization and the Sync Ratio Monitor detects a failure, the DPLL will abandon the  
mechanism of aligning the output frame pulse to the REF2_SYNC pulse. Instead only the REF2 reference will be  
used for synchronization.  
REF2_SYNC  
SYNC  
REF2  
Reference  
to DPLL  
Monitor  
Circuit  
REF2  
frequency  
Figure 7 - REF2_SYNC Reference Monitor  
3.3 Time Interval Error (TIE) Corrector Circuit  
The TIE Circuit eliminates phase transients on the output clock that may occur during reference switching or the  
recovery from Holdover mode to Normal mode.  
On recovery from Holdover mode (dependent on the HMS pin) or when switching to another reference input, the  
TIE corrector circuit measures the phase delay between the current phase (feedback signal) and the phase of the  
selected reference signal. This delay value is stored in the TIE corrector circuit. This circuit creates a new virtual  
reference signal that is at the same phase position as the feedback signal. By using the virtual reference, the PLL  
minimizes the phase transient it experiences when it recovers from Holdover mode.  
The delay value can be reset by setting the TIE Corrector Circuit Clear pin (TIE_CLR) low for at least 15 ns. This  
results in a phase alignment between the input reference signal and the output clocks and frame pulses as shown  
in Figure 25. The speed of the phase alignment correction is limited by the selected loop filter bandwidth and the  
phase slope limit (see Table 2). Convergence is always in the direction of least phase travel. TIE_CLR can be kept  
low continuously; in that case the output clocks will always align with the selected input reference. This is illustrated  
in Figure 8.  
16  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
TIE_CLR = 1  
TIE_CLR = 0  
locked to REF0  
locked to REF0  
REF0  
REF1  
REF0  
REF1  
Output  
Clock  
Output  
Clock  
locked to REF1  
locked to REF1  
REF0  
REF1  
REF0  
REF1  
Output  
Clock  
Output  
Clock  
Figure 8 - Timing Diagram of Hitless Reference Switching  
The Hitless Mode Switching (HMS) pin enables phase hitless returns from Freerun and Holdover modes to Normal  
mode in a single reference operation. A logic low at the HMS input disables the TIE circuit updating the delay value  
thereby forcing the output of the PLL to gradually move back to the original point before it went into Holdover mode.  
(see Figure 9). This prevents accumulation of phase in network elements. A logic high (HMS=1) enables the TIE  
circuit to update its delay value thereby preventing a large output phase movement after return to Normal mode.  
This causes accumulation of phase in network elements. In both cases the PLL’s output can be aligned with the  
input reference by setting TIE_CLR low. Regardless of the HMS pin state, reference switching in the ZL30102 is  
always hitless unless TIE_CLR is kept low continuously.  
17  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
HMS = 0  
HMS = 1  
Normal mode  
Normal mode  
REF  
REF  
Output  
Clock  
Output  
Clock  
Phase drift in Holdover mode  
Return to Normal mode  
TIE_CLR=0  
Phase drift in Holdover mode  
Return to Normal mode  
TIE_CLR=0  
REF  
REF  
Output  
Clock  
Output  
Clock  
REF  
REF  
Output  
Clock  
Output  
Clock  
REF  
REF  
Output  
Clock  
Output  
Clock  
Figure 9 - Timing Diagram of Hitless Mode Switching  
Examples:  
HMS=1: When ten Normal to Holdover to Normal mode transitions occur and in each case the Holdover mode was  
entered for 2 seconds then the accumulated phase change (MTIE) could be as large as 2.13 µs.  
-
-
-
Phaseholdover_drift = 0.1 ppm x 2 s = 200 ns  
Phasemode_change = 0 ns + 13 ns = 13 ns  
Phase10 changes = 10 x (200 ns + 13 ns) = 2.13 µs  
18  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
where:  
-
-
-
0.1 ppm is the accuracy of the Holdover mode  
0 ns is the maximum phase discontinuity in the transition from the Normal mode to the Holdover mode  
13 ns is the maximum phase discontinuity in the transition from the Holdover mode to the Normal mode  
when a new TIE corrector value is calculated  
HMS=0: When the same ten Normal to Holdover to Normal mode changes occur and in each case Holdover mode  
was entered for 2 seconds, then the overall MTIE would be 200 ns. As the delay value for the TIE corrector circuit is  
not updated, there is no 13 ns measurement error at this point. The phase can still drift for 200 ns when the PLL is  
in Holdover mode but when the PLL enters Normal mode again, the phase moves back to the original point so the  
phase is not accumulated.  
3.4 Digital Phase Lock Loop (DPLL)  
The DPLL of the ZL30102 consists of a phase detector, a limiter, a loop filter and a digitally controlled oscillator as  
shown in Figure 10. The data path from the phase detector to the limiter is tapped and routed to the lock detector  
that provides a lock indication which is output at the LOCK pin.  
Lock  
LOCK  
detector  
Virtual Reference  
from  
TIE Corrector Circuit  
Digitally  
Controlled  
Oscillator  
DPLL Reference to  
Phase  
Limiter  
Loop Filter  
Frequency Synthesizer  
Detector  
REF2_SYNC  
frame pulse  
State Select from  
Control State Machine  
Feedback signal from  
Frequency Select MUX  
feedback frame pulse; F8o or F2ko  
Figure 10 - DPLL Block Diagram  
Phase Detector - the phase detector compares the virtual reference signal from the TIE corrector circuit with the  
feedback signal and provides an error signal corresponding to the phase difference between the two. This error  
signal is passed to the limiter circuit.  
Limiter - the limiter receives the error signal from the phase detector and ensures that the DPLL responds to all  
input transient conditions with a maximum output phase slope compliant with the applicable standards. The phase  
slope limit is dependent on the SEC_MSTR pin and is listed in Table 2.  
Loop Filter - the loop filter is similar to a first order low pass filter with a bandwidth of 1.8 Hz suitable to provide  
Primary Master timing. When Secondary Master mode is selected (SEC_MSTR=1), the filter bandwidth is set to  
922 Hz. For stability reasons, the loop filter bandwidth for 8 kHz reference inputs is limited to a maximum of 58 Hz.  
19  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Digitally Controlled Oscillator (DCO) - the DCO receives the limited and filtered signal from the Loop Filter, and  
based on its value, generates a corresponding digital output signal. The synchronization method of the DCO is  
dependent on the state of the ZL30102.  
In Normal Mode, the DCO provides an output signal which is frequency and phase locked to the selected input  
reference signal.  
In Holdover Mode, the DCO is free running at a frequency equal to the frequency that the DCO was generating in  
Normal Mode. The frequency in Holdover mode is calculated from frequency samples stored 26 ms to 52 ms before  
the ZL30102 entered Holdover mode. This ensures that the coarse frequency monitor and the single cycle monitor  
have time to disqualify a bad reference before it corrupts the holdover frequency.  
In Freerun Mode, the DCO is free running with an accuracy equal to the accuracy of the OSCi 20 MHz source.  
Lock Indicator - the lock detector monitors if the output value of the phase detector is within the phase-lock-  
window for a certain time. The selected phase-lock-window guarantees the stable operation of the LOCK pin with  
maximum network jitter and wander on the reference input. If the DPLL goes into Holdover mode (auto or manual),  
the LOCK pin will initially stay high for 1 s in Primary Master mode. In Secondary Master mode, LOCK remains high  
for 0.1 s. If at that point the DPLL is still in holdover mode, the LOCK pin will go low; subsequently the LOCK pin will  
not return high for at least the full lock-time duration. In Freerun mode the LOCK pin will go low immediately.  
3.5 Frequency Synthesizers  
The output of the DCO is used by the frequency synthesizers to generate the output clocks and frame pulses which  
are synchronized to one of three reference inputs (REF0, REF1 or REF2). The frequency synthesizer uses digital  
techniques to generate output clocks and advanced noise shaping techniques to minimize the output jitter. The  
clock and frame pulse outputs have limited driving capability and should be buffered when driving high capacitance  
loads.  
3.6 State Machine  
As shown in Figure 1, the state machine controls the TIE Corrector Circuit and the DPLL. The control of the  
ZL30102 is based on the inputs MODE_SEL1:0, REF_SEL1:0 and HMS.  
3.7 Master Clock  
The ZL30102 can use either a clock or crystal as the master timing source. For recommended master timing  
circuits, see the Applications - Master Clock section.  
20  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
4.0 Control and Modes of Operation  
4.1 Out of Range Selection  
The out of range limits for the Precise Frequency Monitor in the 3 reference monitor blocks are selected through the  
OOR_SEL pin, see Table 1.  
OOR_SEL  
Application  
Applicable Standard  
Out Of Range Limits  
0
DS1  
ANSI T1.403  
Telcordia GR-1244-CORE Stratum 4/4E  
64 - 83 ppm  
1
E1  
ITU-T G.703  
ETSI ETS 300 011  
100 - 130 ppm  
Table 1 - Out of Range Limits Selection  
4.2 Loop Filter and Limiter Selection  
The loop filter and limiter settings are selected through the SEC_MSTR pin, see Table 2. The maximum loop filter  
bandwidth is also dependent on the frequency of the currently selected reference (REF0/1/2).  
SEC_MSTR Detected REF Frequency Loop Filter Bandwidth  
Phase Slope Limiting  
0
any  
1.8 Hz  
58 Hz  
61 µ/s  
8 kHz  
9.5 ms /s  
9.5 ms /s  
1
1.544 MHz, 2.048 MHz,  
8.192 MHz, 16.384 MHz  
922 Hz  
Table 2 - Loop Filter and Limiter Settings  
4.3 Output Clock and Frame Pulse Selection  
The output of the DCO is used by the frequency synthesizers to generate the output clocks and frame pulses which  
are synchronized to one of three reference inputs (REF0, REF1 or REF2). These signals are available in two  
groups controlled by the OUT_SEL pin, see Table 3.  
OUT_SEL  
Generated Clocks  
Generated Frame Pulses  
0
1
C2o, C4o, C8o, C16o  
C2o, C16o, C32, C65o  
F4o, F8o, F16o  
F16o, F32o, F65o  
Table 3 - Clock and Frame Pulse Selection with OUT_SEL Pin  
4.4 Modes of Operation  
The ZL30102 has three possible manual modes of operation; Normal, Holdover and Freerun. These modes are  
selected with mode select pins MODE_SEL1 and MODE_SEL0 as is shown in Table 4. Transitioning from one  
mode to the other is controlled by an external controller. The ZL30102 can be configured to automatically select a  
valid input reference under control of its internal state machine by setting MODE_SEL1:0 = 11. In this mode of  
operation, a state machine controls selection of references (REF0 or REF1) used for synchronization.  
21  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
MODE_SEL1  
MODE_SEL0  
Mode  
0
0
1
1
0
1
0
1
Normal (with automatic Holdover)  
Holdover  
Freerun  
Automatic  
(Normal with automatic Holdover and  
automatic reference switching)  
Table 4 - Operating Modes  
4.4.1 Freerun Mode  
Freerun mode is typically used when an independent clock source is required, or immediately following system  
power-up before network synchronization is achieved.  
In Freerun mode, the ZL30102 provides timing and synchronization signals which are based on the master clock  
frequency (supplied to OSCi pin) only, and are not synchronized to the reference input signals.  
The accuracy of the output clock is equal to the accuracy of the master clock (OSCi). So if a ±32 ppm output clock  
is required, the master clock must also be ±32 ppm. See Applications - Section 6.2, “Master Clock“.  
4.4.2 Holdover Mode  
Holdover Mode is typically used for short durations while network synchronization is temporarily disrupted.  
In Holdover Mode, the ZL30102 provides timing and synchronization signals, which are not locked to an external  
reference signal, but are based on storage techniques. The storage value is determined while the device is in  
Normal Mode and locked to an external reference signal.  
When in Normal Mode, and locked to the input reference signal, a numerical value corresponding to the ZL30102  
output reference frequency is stored alternately in two memory locations every 26 ms. When the device is switched  
into Holdover Mode, the value in memory from between 26 ms and 52 ms is used to set the output frequency of the  
device. The frequency accuracy of Holdover Mode is 0.1 ppm.  
Two factors affect the accuracy of Holdover mode. One is drift on the master clock while in Holdover mode, drift on  
the master clock directly affects the Holdover mode accuracy. Note that the absolute master clock (OSCi) accuracy  
does not affect Holdover accuracy, only the change in OSCi accuracy while in Holdover. For example, a ±32 ppm  
master clock may have a temperature coefficient of ±0.1 ppm per °C. So a ±10 °C change in temperature, while the  
ZL30102 is in Holdover mode may result in an additional offset (over the 0.1 ppm) in frequency accuracy of  
±1 ppm. Which is much greater than the 0.1 ppm of the ZL30102. The other factor affecting the accuracy is large  
jitter on the reference input prior to the mode switch.  
22  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
4.4.3 Normal Mode  
Normal mode is typically used when a system clock source, synchronized to the network is required. In Normal  
mode, the ZL30102 provides timing (C1.5o, C2o, C4o, C8o, C16o, C19o, C32 and C65o) and frame  
synchronization (F2ko, F4o, F8o, F16o, F32o and F65o) signals, which are synchronized to one of three reference  
inputs (REF0, REF1 or REF2). The input reference signal may have a nominal frequency of 8 kHz, 1.544 MHz,  
2.048 MHz, 8.192 MHz or 16.384 MHz. The frequency of the reference inputs are automatically detected by the  
reference monitors.  
When the ZL30102 comes out of RESET while Normal mode is selected by its MODE_SEL pins then it will initially  
go into Holdover mode and generate clocks with the accuracy of its freerunning local oscillator (see Figure 11). If  
the ZL30102 determines that its selected reference is disrupted (see Figure 3), it will remain in Holdover until the  
selected reference is no longer disrupted or the external controller selects another reference that is not disrupted. If  
the ZL30102 determines that its selected reference is not disrupted (see Figure 3) then the state machine will cause  
the DPLL to recover from Holdover via one of two paths depending on the logic level at the HMS pin. If HMS=0 then  
the ZL30102 will transition directly to Normal mode and it will align its output signals with its selected input  
reference (see Figure 9). If HMS=1 then the ZL30102 will transition to Normal mode via the TIE correction state and  
the phase difference between the output signals and the selected input reference will be maintained.  
When the ZL30102 is operating in Normal mode, if it determines that its selected reference is disrupted (Figure 3)  
then its state machine will cause it to automatically go to Holdover mode. When the ZL30102 determines that its  
selected reference is not disrupted then the state machine will cause the DPLL to recover from Holdover via one of  
two paths depending on the logic level at the HMS pin (see Figure 11). If HMS=0 then the ZL30102 will transition  
directly to Normal mode and it will align its output signals with its input reference (see Figure 9). If HMS=1 then the  
ZL30102 will transition to Normal mode via the TIE correction state and the phase difference between the output  
signals and the input reference will be maintained.  
If the reference selection changes because the value of the REF_SEL1:0 pins changes or because the reference  
selection state machine selected a different reference input, the ZL30102 goes into Holdover mode and returns to  
Normal mode through the TIE correction state regardless of the logic value on HMS pin.  
ZL30102 provides a fast lock pin (FASTLOCK), which, when set high enables the PLL to lock to an incoming  
reference within approximately 1 s.  
Normal  
(HOLDOVER=0)  
REF_CH=1  
REF_DIS=0 and  
REF_CH=0 and  
HMS=0  
REF_DIS=0  
REF_DIS=1  
RST  
REF_DIS=1  
TIE Correction  
(HOLDOVER=1)  
Holdover  
(HOLDOVER=1)  
(REF_DIS=0 and HMS=1) or  
REF_CH=1  
REF_DIS=1: Current selected reference disrupted (see Figure 3). REF_DIS is an internal signal.  
REF_CH= 1: Reference change, a transition in the reference selection (see Figure 13) or a change in the  
REF_SEL pins. REF_CH is an internal signal.  
Figure 11 - Mode Switching in Normal Mode  
23  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
4.4.4 Automatic Mode  
The Automatic mode combines the functionality of the Normal mode (automatic Holdover) with automatic reference  
switching. The automatic reference switching is described in more detail in section 4.5.2, “Automatic Reference  
Switching“.  
4.5 Reference Switching  
4.5.1 Manual Reference Switching  
In the manual modes of operation (MODE_SEL1:0 11) the active reference input (REF0, REF1 or REF2) is  
selected by the REF_SEL1 and REF_SEL0 pins as shown in Table 5. When the logic value of the REF_SEL pins is  
changed when the DPLL is in Normal mode, the ZL30102 will perform a hitless reference switch.  
REF_SEL1  
REF_SEL0  
Input Reference Selected  
0
0
1
1
0
1
0
1
REF0  
REF1  
REF2  
REF2  
Table 5 - Manual Reference Selection  
When the REF_SEL inputs are used in Normal mode to force a change from the currently selected reference to  
another reference, the action of the LOCK output will depend on the relative frequency and phase offset of the old  
and new references. Where the new reference has enough frequency offset and/or TIE-corrected phase offset to  
force the output outside the phase-lock-window, the LOCK output will de-assert, the lock-qualify timer is reset, and  
LOCK will stay de-asserted for the full lock-time duration. Where the new reference is close enough in frequency  
and TIE-corrected phase for the output to stay within the phase-lock-window, the LOCK output will remain asserted  
through the reference-switch process.  
REF_SEL  
LOCK  
REF0  
REF1  
Lock Time  
Note: LOCK pin behaviour depends on phase and frequency offset of REF1.  
Figure 12 - Reference Switching in Normal Mode  
24  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
4.5.2 Automatic Reference Switching  
In the automatic mode of operation (MODE_SEL1:0 = 11), the ZL30102 automatically selects a reference input that  
is not out-of-range (REF_OOR=0, see Figure 3). The state machine can only select REF0 or REF1; REF2 cannot  
be selected in the Automatic mode (see Figure 13).  
If the current reference (REF0 or REF1) used for synchronization fails, the state machine will switch to the other  
reference. If both references fail then the ZL30102 enters the Holdover mode without switching to another  
reference. When the ZL30102 comes out of reset or when REF2 is the current reference when the ZL30102 is put  
in the Automatic mode, then REF0 has priority over REF1. Otherwise there is no preference for REF0 or REF1  
which is referred to as non-revertive reference selection.  
RST && REF_OOR0=0  
RST && REF_OOR0=1 && REF_OOR1=0  
REF_OOR0=0&&  
REF_OOR1=1  
REF0  
REF1  
Reference  
Reference  
REF_OOR0=1&&  
REF_OOR1=0  
REF_OOR0=0  
REF_OOR0=1 && REF_OOR1=0  
REF2  
Reference  
REF_OOR = reference out of range, see Figure 3.  
This is an internal signal.  
Figure 13 - Reference Selection in Automatic Mode (MODE_SEL=11)  
In the automatic mode of operation, both pins REF_SEL1 and REF_SEL0 are configured as outputs. The logic level  
on the REF_SEL0 output indicates the current input reference being selected for synchronization (see Table 6).  
REF_SEL1  
REF_SEL0  
Input Reference  
(output pin)  
(output pin)  
0
0
0
1
REF0  
REF1  
Table 6 - The Reference Selection Pins in the Automatic Mode (MODE_SEL=11)  
25  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
The mode selection state machine behaves differently in Automatic mode in that when both reference REF0 and  
reference REF1 are out of range (REF_OOR=1), the state machine will select the Holdover state. In Normal mode  
the reference out of range (REF_OOR) status is ignored by the state machine. This is illustrated in Figure 14.  
Normal  
(HOLDOVER=0)  
REF_CH=1  
REF_DIS=0 and REF_OOR=0  
and REF_CH=0 and HMS=0  
REF_DIS=0  
and REF_OOR=0  
RST  
REF_DIS=1  
or REF_OOR=1  
TIE Correction  
Holdover  
(HOLDOVER=1)  
(HOLDOVER=1)  
(REF_DIS=0 and REF_OOR=0 and HMS=1)  
or REF_CH=1  
REF_DIS=1: Current selected reference disrupted (see Figure 3). REF_DIS is an internal signal.  
REF_OOR=1: Current selected reference out of range (see Figure 3). REF_OOR is an internal signal.  
REF_CH= 1: Reference change, a transition in the reference selection (see Figure 13). REF_CH is an internal signal.  
Figure 14 - Mode Switching in Automatic Mode  
4.5.2.1 Automatic Reference Switching - Coarse Reference Failure  
When the currently-active input reference in Automatic mode fails in a coarse manner, the REF_DIS internal signal  
places the device in holdover, with the HOLDOVER pin and the REF_FAIL pin asserted. This can occur through  
triggering the Single Cycle Monitor, or the Coarse Frequency Monitor, in the Reference Monitor block. If the  
reference does not correct itself within the lock-disqualify duration (1 second) the LOCK pin is de-asserted. If the  
reference does not correct itself within the reference-disqualify duration (2.5 seconds) the HOLDOVER pin is de-  
asserted and the REF_SEL outputs indicate that the device has switched to the other reference. The LOCK pin  
remains de-asserted for the full lock-time duration, regardless of the phase and frequency offset of the old and new  
references. Figure 15 illustrates this process.  
If the reference corrects itself within the lock-disqualify duration (< 1 second) the HOLDOVER pin is de-asserted,  
and the REF_FAIL pin is de-asserted. The LOCK pin remains asserted. No reference switching takes place, and  
the REF_SEL outputs indicate that the device has remained locked to the old reference.  
If the reference does not correct itself within the lock-disqualify duration (1 second), but does correct itself within the  
reference-disqualify duration (< 2.5 seconds) the HOLDOVER pin is de-asserted, the REF_FAIL pin is de-asserted,  
and the REF_SEL outputs indicate that the device has remained locked to the old reference. However the LOCK  
pin is de-asserted, the lock-qualify timer is reset, and the LOCK pin remains de-asserted for the full lock-time  
duration. See 7.2, “Performance Characteristics“ on page 46 for lock-time duration.  
26  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
SCM or CFM failure  
REF0  
REF_DIS0  
(internal signal)  
2.5 s  
10 s  
REF_OOR0  
(internal signal)  
REF_FAIL0  
HOLDOVER  
REF_SEL  
REF0  
REF1  
LOCK  
Lock Time  
1 s  
Note: this scenario is based on REF1 remaining good throughout the duration.  
Figure 15 - Automatic Reference Switching - Coarse Reference Failure  
4.5.2.2 Automatic Reference Switching - Reference Frequency Out-of-Range  
When the currently-active input reference in Automatic mode fails through a subtle frequency offset, the REF_FAIL  
output is asserted as soon as the Precise Frequency Monitor indicates an out-of-range reference (10 to 20  
seconds). The HOLDOVER output is briefly asserted (approximately three reference input cycles) and the  
REF_SEL outputs indicate that the device has switched to the other reference. Where the new reference is close  
enough in frequency and TIE-corrected phase for the output to stay within the phase-lock-window, the LOCK output  
will remain asserted through the reference-switch process. Where the new reference has enough frequency offset  
and/or TIE-corrected phase offset to force the output outside the phase-lock-window, the LOCK output will de-  
assert, the lock-qualify timer is reset, and LOCK will stay de-asserted for the full lock-time duration. Figure 16  
illustrates this process.  
27  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Frequency Precision failure  
REF0  
10 to 20 s  
REF_OOR0  
(internal signal)  
REF_FAIL0  
HOLDOVER  
REF_SEL  
REF0  
REF1  
LOCK  
Lock Time  
Note: This scenario is based on REF1 remaining good throughout the duration.  
LOCK pin behaviour depends on phase and frequency offset of REF1.  
Figure 16 - Automatic Reference Switching - Out-of-Range Reference Failure  
4.6 Clock Redundancy Support  
In general, clock redundancy implies that the redundant timing card DPLL tracks the output clock and/or frame  
pulse of the active timing card DPLL. In case that the active timing card fails, the devices that use the active clock  
and/or frame pulse must be able to switch to the redundant clock and/or frame pulse without experiencing  
disruptions. Therefore the redundant signals must closely track the active signals. The ZL30102 supports this kind  
of clock redundancy in various ways;  
Lock only to the active clock. The ZL30102 uses the 922 Hz loop filter bandwidth to closely track the active  
clock, even in the presence of jitter on the active clock. However the active and redundant frame pulse may  
not be aligned.  
Lock to the active frame pulse. Both the redundant clock and frame pulse will be aligned with the active clock  
and frame pulse. However the ZL30102 loop filter bandwidth is limited to 58 Hz for an 8 kHz frame pulse.  
Therefore the redundant clock and frame pulse will not track the active frame pulse as closely in the  
presence of jitter on the active frame pulse as with a 922 Hz loop filter bandwidth.  
Lock to both the active clock and associated frame pulse. The ZL30102 uses the 922 Hz loop filter  
bandwidth and thereby track the active clock and frame pulse in the presence of jitter on the active signals. It  
will also align the redundant frame pulse with the active frame pulse.  
The method of clock redundancy shown in Figure 18 is that the redundant timing card is frequency and phase  
locked to the active clock and frame pulse. The redundant card is configured as Secondary Master (SEC_MSTR=1)  
and continuously adjusts the phase of its output clocks and frame pulses to match that of the active clock and frame  
pulse. In this mode of operation, the bandwidth of the redundant timing card’s DPLL is much larger than that of the  
active timing card’s DPLL, 922 Hz versus 1.8 Hz. Therefore the redundant clocks and frame pulses will track the  
28  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
active clock and frame pulse closely even in the presence of the maximum tolerable input jitter and wander on the  
active timing card’s reference input.  
The method of synchronization using REF2 and REF2_SYNC is enabled as soon as a valid 8 kHz frame pulse is  
detected on the REF2_SYNC input. The REF2_SYNC pulse must be generated from the clock that is present on  
the REF2 input. The ZL30102 checks the number of REF2 cycles in the REF2_SYNC period. If this is not the  
nominal number of cycles, the REF2_SYNC pulse is considered invalid. For example, if REF2 is a 8.192 MHz clock  
and REF2_SYNC is a 8 kHz frame pulse, then there must be exactly 1024 REF2 cycles in a REF2_SYNC period. If  
a valid REF2_SYNC pulse is detected, the ZL30102 will align the rising edges of the REF2 clock and the  
corresponding output clock such that the rising edge of the F8o/F32o output frame pulse is aligned with the frame  
boundary indicated by the REF2_SYNC signal. The rising edges of the REF2 and the corresponding output clock  
that are aligned, are the ones that lag the rising edges of the REF2_SYNC and the F8o pulses respectively. This is  
illustrated in Figure 17. Many combinations of the ZL30102 clock and frame pulse outputs can be used as REF2  
and REF2_SYNC inputs. In general, the active low frame pulses F4o, F16o and F65o would be inverted first before  
used as a REF2_SYNC input.  
REF2_SYNC = 8 kHz  
REF2 = C8o  
aligned  
F8o  
C8o  
Figure 17 - Examples of REF2 & REF2_SYNC to Output Alignment  
29  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Active Timing Card  
MODE_SEL1:0=11  
SEC_MSTR=0  
OSC  
BITS 0 clock  
BITS 1 clock  
REF0  
REF1  
Output Clocks  
ZL30102  
REF2  
REF2_SYNC  
Redundant Frame Sync (optional)  
Redundant Clock  
Active Clock  
Active Frame Sync (optional)  
REF2_SYNC  
REF2  
BITS 0 clock  
BITS 1 clock  
ZL30102  
REF0  
Output Clocks  
REF1  
MODE_SEL1:0=00  
REF_SEL1:0=10  
SEC_MSTR=1  
OSC  
Redundant Timing Card  
Figure 18 - Clock Redundancy with Two Independent Timing Cards  
The following is an example of how active/redundant setup can be configured.  
The active timing card is set based on the desired application and is set to:  
Primary master mode, SEC_MSTR=0  
Normal Mode, MODE_SEL1:0=00 (forces device to the input reference set at REF_SEL)  
Automatic mode, MODE_SEL1:0=11 (allows device to auto-switch if reference fails)  
The HOLDOVER and REF_FAIL pins help evaluate quality of clocks and quality of redundant clock.  
The redundant timing card is set based on desired applications and is set to:  
Normal (manual) mode, MODE_SEL1:0=00  
REF2 and REF2_SYNC as the input reference, REF_SEL1=1 (forces redundant device to lock to output  
of active card)  
Secondary master mode, SEC_MSTR=1  
The HOLDOVER and REF_FAIL pins help evaluate quality of clocks and quality of redundant clock.  
30  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
When the redundant timing card is switched to becoming the active timing card, the system controller should do the  
following:  
select Primary Master mode, SEC_MSTR=0  
select Automatic mode, MODE_SEL1:0=11  
The new active timing card will automatically select a valid input reference REF0 or REF1. If both input references  
are available and valid, then REF0 will be chosen over REF1. If the new active timing card should use the same  
input reference (REF0 or REF1) as the old active timing card used before it failed, The system controller should do  
the following instead:  
select Holdover (manual) mode, MODE_SEL1:0=01  
select Primary Master mode, SEC_MSTR=0  
select the required reference (REF0 or REF1) as the input reference  
Normal Mode, MODE_SEL1:0=00 (forces device to the input reference set at REF_SEL)  
select Automatic mode, MODE_SEL1:0=11  
It is recommended to maintain HMS=1 when switching from redundant to active through the Holdover mode, to  
eliminate output phase transients.  
When the active timing card is switched to becoming the redundant timing card, the system controller should do the  
following:  
select Normal (manual) mode, MODE_SEL1:0=00  
select Secondary Master mode, SEC_MSTR=1  
select REF2 and REF2_SYNC as the input reference, REF_SEL1=1  
The ZL30102 allows for the switch from Secondary Master mode to Primary Master mode with no frequency or  
phase hits on the output clocks. The switch from Primary Master mode to Secondary Master mode may introduce a  
phase transient on the output clocks as the TIE correction circuit is disabled to allow the Secondary master device  
to track the active clocks closely.  
31  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
5.0 Measures of Performance  
The following are some PLL performance indicators and their corresponding definitions.  
5.1 Jitter  
Timing jitter is defined as the high frequency variation of the clock edges from their ideal positions in time. Wander  
is defined as the low-frequency variation of the clock edges from their ideal positions in time. High and low  
frequency variation imply phase oscillation frequencies relative to some demarcation frequency. (Often 10 Hz or  
20 Hz for DS1 or E1, higher for SONET/SDH clocks.) Jitter parameters given in this data sheet are total timing jitter  
numbers, not cycle-to-cycle jitter.  
5.2 Jitter Generation (Intrinsic Jitter)  
Jitter generation is the measure of the jitter produced by the PLL and is measured at its output. It is measured by  
applying a reference signal with no jitter to the input of the device, and measuring its output jitter. Jitter generation  
may also be measured when the device is in a non-synchronizing mode, such as free running or holdover, by  
measuring the output jitter of the device. Jitter is usually measured with various bandlimiting filters depending on  
the applicable standards.  
5.3 Jitter Tolerance  
Jitter tolerance is a measure of the ability of a PLL to operate properly (i.e., remain in lock and or regain lock in the  
presence of large jitter magnitudes at various jitter frequencies) when jitter is applied to its reference. The applied  
jitter magnitude and jitter frequency depends on the applicable standards.  
5.4 Jitter Transfer  
Jitter transfer or jitter attenuation refers to the magnitude of jitter at the output of a device for a given amount of jitter  
at the input of the device. Input jitter is applied at various amplitudes and frequencies, and output jitter is measured  
with various filters depending on the applicable standards.  
For the Zarlink digital PLLs two internal elements determine the jitter attenuation; the internal low pass loop filter  
and the phase slope limiter. The phase slope limiter limits the output phase slope to, for example, 61 µs/s.  
Therefore, if the input signal exceeds this rate, such as for very large amplitude low frequency input jitter, the  
maximum output phase slope will be limited (i.e., attenuated).  
Since intrinsic jitter is always present, jitter attenuation will appear to be lower for small input jitter signals than for  
large ones. Consequently, accurate jitter transfer function measurements are usually made with large input jitter  
signals (for example 75% of the specified maximum tolerable input jitter).  
5.5 Frequency Accuracy  
The Frequency accuracy is defined as the absolute accuracy of an output clock signal when it is not locked to an  
external reference, but is operating in a free running mode.  
5.6 Holdover Accuracy  
Holdover accuracy is defined as the absolute accuracy of an output clock signal, when it is not locked to an external  
reference signal, but is operating using storage techniques. For the ZL30102, the storage value is determined while  
the device is in Normal Mode and locked to an external reference signal.  
32  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
5.7 Pull-in Range  
Also referred to as capture range. This is the input frequency range over which the PLL must be able to pull into  
synchronization.  
5.8 Lock Range  
This is the input frequency range over which the synchronizer must be able to maintain synchronization.  
5.9 Phase Slope  
Phase slope is measured in seconds per second and is the rate at which a given signal changes phase with respect  
to an ideal signal. The given signal is typically the output signal. The ideal signal is of constant frequency and is  
nominally equal to the value of the final output signal or final input signal. Another way of specifying the phase slope  
is as the fractional change per time unit. For example; a phase slope of 61 µs/s can also be specified as 61 ppm.  
5.10 Time Interval Error (TIE)  
TIE is the time delay between a given timing signal and an ideal timing signal.  
5.11 Maximum Time Interval Error (MTIE)  
MTIE is the maximum peak to peak delay between a given timing signal and an ideal timing signal within a  
particular observation period.  
5.12 Phase Continuity  
Phase continuity is the phase difference between a given timing signal and an ideal timing signal at the end of a  
particular observation period. Usually, the given timing signal and the ideal timing signal are of the same frequency.  
Phase continuity applies to the output of the PLL after a signal disturbance due to a reference switch or a mode  
change. The observation period is usually the time from the disturbance, to just after the synchronizer has settled to  
a steady state.  
5.13 Lock Time  
This is the time it takes the PLL to frequency lock to the input signal. Phase lock occurs when the input signal and  
output signal are aligned in phase with respect to each other within a certain phase distance (not including jitter).  
Lock time is affected by many factors which include:  
initial input to output phase difference  
initial input to output frequency difference  
PLL loop filter bandwidth  
PLL phase slope limiter  
in-lock phase distance  
The presence of input jitter makes it difficult to define when the PLL is locked as it may not be able to align its output  
to the input within the required phase distance, dependent on the PLL bandwidth and the input jitter amplitude and  
frequency.  
Although a short lock time is desirable, it is not always possible to achieve due to other synchronizer requirements.  
For instance, better jitter transfer performance is achieved with a lower frequency loop filter which increases lock  
time. And better (smaller) phase slope performance (limiter) results in longer lock times.  
33  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
6.0 Applications  
This section contains ZL30102 application specific details for power supply decoupling, reset operation, clock and  
crystal operation.  
6.1 Power Supply Decoupling  
It is recommended to place a 100 nF decoupling capacitor close to each pair of power and ground pins as  
illustrated in Figure 19 to ensure optimal jitter performance.  
3.3 V  
1.8 V  
29 AVDD  
AVCORE 35  
AVCORE 14  
100 nF  
100 nF  
100 nF  
100 nF  
100 nF  
100 nF  
100 nF  
100 nF  
33 AGND  
44 AVDD  
100 nF  
VCORE 12  
GND 13  
41 AGND  
45 AVDD  
100 nF  
VCORE  
2
51 AGND  
37 AVDD  
100 nF  
GND 1  
40 GND  
ZL30102  
36 AV  
DD  
34 GND  
25 VDD  
23 GND  
61 VDD  
1 GND  
Figure 19 - Recommended Power Supply Decoupling  
6.2 Master Clock  
The ZL30102 can use either a clock or crystal as the master timing source. Zarlink application note ZLAN-68 lists a  
number of applicable oscillators and crystals that can be used with the ZL30102.  
34  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
6.2.1 Clock Oscillator  
When selecting a clock oscillator, numerous parameters must be considered. This includes absolute frequency,  
frequency change over temperature, output rise and fall times, output levels, duty cycle and phase noise.  
1
2
3
4
Frequency  
Tolerance  
20 MHz  
as required  
< 10 ns  
Rise & fall time  
Duty cycle  
40% to 60%  
Table 7 - Typical Clock Oscillator Specification  
The output clock should be connected directly (not AC coupled) to the OSCi input of the ZL30102, and the OSCo  
output should be left open as shown in Figure 20.  
ZL30102  
+3.3 V  
OSCi  
+3.3 V  
20 MHz OUT  
GND  
0.1 µF  
OSCo  
No Connection  
Figure 20 - Clock Oscillator Circuit  
6.2.2 Crystal Oscillator  
Alternatively, a Crystal Oscillator may be used. A complete oscillator circuit made up of a crystal, resistor and  
capacitors is shown in Figure 21.  
The accuracy of a crystal oscillator depends on the crystal tolerance as well as the load capacitance tolerance.  
Typically, for a 20 MHz crystal specified with a 32 pF load capacitance, each 1 pF change in load capacitance  
contributes approximately 9 ppm to the frequency deviation. Consequently, capacitor tolerances and stray  
capacitances have a major effect on the accuracy of the oscillator frequency.  
The crystal should be a fundamental mode type - not an overtone. The fundamental mode crystal permits a simpler  
oscillator circuit with no additional filter components and is less likely to generate spurious responses. A typical  
crystal oscillator specification and circuit is shown in Table 8 and Figure 21 respectively.  
.
1
2
3
4
5
6
Frequency  
20 MHz  
Tolerance  
as required  
fundamental  
parallel  
Oscillation mode  
Resonance mode  
Load capacitance  
Maximum series resistance  
as required  
50 Ω  
Table 8 - Typical Crystal Oscillator Specification  
35  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
20 MHz  
ZL30102  
OSCi  
1 MΩ  
OSCo  
100 Ω  
1 µH  
The 100 resistor and the 1 µH inductor may improve  
stability and are optional.  
Figure 21 - Crystal Oscillator Circuit  
6.3 Power Up Sequence  
The ZL30102 requires that the 3.3 V supply is not powered up after the 1.8 V supply. This is to prevent the risk of  
latch-up due to the presence of parasitic diodes in the IO pads.  
Two options are given:  
1. Power-up the 3.3 V supply fully first, then power up the 1.8 V supply  
2. Power up the 3.3 V supply and the 1.8 V supply simultaneously, ensuring that the 3.3 V supply is never lower  
than a few hundred millivolts below the 1.8 V supply (e.g., by using a schottky diode or controlled slew rate)  
6.4 Reset Circuit  
A simple power up reset circuit with about a 60 µs reset low time is shown in Figure 22. Resistor RP is for protection  
only and limits current into the RST pin during power down conditions. The reset low time is not critical but should  
be greater than 300 ns.  
ZL30102  
+3.3 V  
R
10 kΩ  
RST  
C
10 nF  
RP  
1 kΩ  
Figure 22 - Power-Up Reset Circuit  
36  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
6.5 Clock Redundancy System Architecture  
Carrier-Class Telecommunications Equipment deployed in today’s networks guarantee better than 99.999%  
operational availability (equivalent to less than 7 minutes of downtime per year). This high level of uninterrupted  
service is achieved by fully redundant architectures with hot swappable cards like an ECTF H.110 compliant  
system. Timing for these types of systems can be generated by the ZL30102 which supports primary/secondary  
master timing protection switching.  
The architecture shown in Figure 23 is based on the ZL30102 being deployed on two separate timing cards; the  
primary master timing card and the secondary master timing card. In normal operation the primary master timing  
card receives synchronization from the network and provides timing for the whole system. The redundant  
secondary master timing card is phase locked to the backplane clock and frame pulse through its REF2 and  
REF2_SYNC inputs. These two designated inputs allow the secondary master timing card to track the primary  
master timing card clocks with minimal phase skew. When the primary master timing card fails unexpectedly (this  
failure is not related to reference failure) then all switch cards or line cards will detect this failure and they will switch  
to the timing supplied by the secondary master timing card. The secondary master timing card will be promoted to  
primary master and switch from using the REF2 and REF2_SYNC inputs to one of the REF0 or REF1 inputs.  
Backplane  
CT_C8_A  
CT_FRAME_A  
CT_FRAME_B  
CT_C8_B  
CT_NETREF_2  
CT_NETREF_1  
ZL30102  
REF0  
REF1  
C8o  
F8o  
Switch Card or Line Card  
REF2  
REF2_SYNC  
SEC_MSTR  
0
Master/Slave  
Control  
Primary Master Timing Card  
Switch Card or Line Card  
ZL30102  
REF0  
REF1  
C8o  
F8o  
REF2  
REF2_SYNC  
SEC_MSTR  
1
Master/Slave  
Control  
Secondary Master Timing Card  
Figure 23 - Typical Clocking Architecture of an ECTF H.110 System  
37  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
7.0 Characteristics  
7.1 AC and DC Electrical Characteristics  
Absolute Maximum Ratings*  
Parameter  
Symbol  
Min.  
Max.  
Units  
1
2
3
4
5
6
7
8
Supply voltage  
VDD_R  
VCORE_R  
VPIN  
-0.5  
-0.5  
-0.5  
-0.3  
4.6  
2.5  
6
V
V
V
Core supply voltage  
Voltage on any digital pin  
Voltage on OSCi and OSCo pin  
Current on any pin  
VOSC  
IPIN  
VDD + 0.3  
V
30  
125  
500  
2
mA  
°C  
Storage temperature  
TST  
-55  
TQFP 64 pin package power dissipation  
ESD rating  
PPD  
mW  
kV  
VESD  
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
* Voltages are with respect to ground (GND) unless otherwise stated.  
Recommended Operating Conditions*  
Characteristics  
Supply voltage  
Sym.  
Min.  
Typ.  
Max.  
Units  
1
2
VDD  
2.97  
1.62  
3.30  
1.80  
3.63  
1.98  
V
V
Core supply voltage  
VCORE  
3
Operating temperature  
TA  
-40  
25  
85  
°C  
* Voltages are with respect to ground (GND) unless otherwise stated.  
DC Electrical Characteristics*  
Characteristics  
Sym.  
Min.  
Max.  
Units  
Notes  
1
2
3
4
5
6
Supply current with: OSCi = 0 V  
OSCi = Clock, OUT_SEL=0  
OSCi = Clock, OUT_SEL=1  
IDDS  
IDD  
1
30  
41  
0
9
mA  
mA  
mA  
µA  
mA  
V
outputs loaded  
with 30 pF  
60  
73  
30  
20  
1.5  
IDD  
Core supply current with: OSCi = 0 V ICORES  
OSCi = Clock ICORE  
14  
1.47  
Schmitt trigger Low to High threshold  
point  
Vt+  
All device inputs are  
Schmitt trigger type.  
7
Schmitt trigger High to Low threshold  
point  
Vt-  
0.80  
1.0  
V
8
9
Input leakage current  
IIL  
-105  
2.4  
105  
µA  
VI = VDD or 0 V  
High-level output voltage  
VOH  
V
IOH = 8 mA for clock and  
frame-pulse outputs,  
4 mA for status outputs  
38  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
DC Electrical Characteristics*  
Characteristics  
Sym.  
VOL  
Min.  
Max.  
Units  
Notes  
10 Low-level output voltage  
0.4  
V
IOL = 8 mA for clock and  
frame-pulse outputs,  
4 mA for status outputs  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
* Voltages are with respect to ground (GND) unless otherwise stated.  
AC Electrical Characteristics* - Timing Parameter Measurement Voltage Levels (see Figure 24).  
Characteristics  
Sym.  
CMOS  
Units  
1
2
3
Threshold Voltage  
VT  
0.5 · VDD  
0.7 · VDD  
0.3 · VDD  
V
V
V
Rise and Fall Threshold Voltage High  
Rise and Fall Threshold Voltage Low  
VHM  
VLM  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
* Voltages are with respect to ground (GND) unless otherwise stated.  
Timing Reference Points  
VHM  
VT  
ALL SIGNALS  
VLM  
t
IRF, tORF  
tIRF, tORF  
Figure 24 - Timing Parameter Measurement Voltage Levels  
AC Electrical Characteristics* - Input timing for REF0, REF1 and REF2 references (see Figure 25).  
Characteristics  
8 kHz reference period  
Symbol  
Min.  
Typ.  
Max.  
Units  
1
2
3
4
5
6
tREF8kP  
tREF1.5P  
tREF2P  
tREF8P  
tREF16P  
tREFW  
121  
338  
263  
63  
125  
648  
488  
122  
61  
128  
950  
712  
175  
75  
µs  
ns  
ns  
ns  
ns  
ns  
1.544 MHz reference period  
2.048 MHz reference period  
8.192 MHz reference period  
16.384 MHz reference period  
reference pulse width high or low  
38  
15  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
* Period Min/Max values are the limits to avoid a single-cycle fault detection. Short-term and long-term average periods must be within Out-of-  
Range limits.  
39  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
t
REF<xx>P  
t
t
REFW  
REFW  
REF0/1/2  
t
REF<xx>D  
output clock with the  
same frequency as  
REF  
t
, t  
REF8kD REF<xx>_F8D  
F8_32o  
Figure 25 - REF0/1/2 Input Timing and Input to Output Timing  
AC Electrical Characteristics* - Input timing for REF2_SYNC (see Figure 26).  
Characteristics  
REF2_SYNC lead time  
Symbol  
Min.  
Max.  
Units  
Notes  
1
2
tSYNC_LD  
tSYNC_LG  
12  
ns  
ns  
REF2_SYNC lag time  
tREFP - 28  
tREFP = minimum  
period of REF2 clock  
3
REF2_SYNC pulse width high or low  
tSYNC_W  
15  
ns  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
* See Figure 17, “Examples of REF2 & REF2_SYNC to Output Alignment” on page 29 for further explanation.  
edge used for alignment  
t
REFP  
REF2  
t
t
SYNC_LG  
SYNC_LD  
REF2_SYNC  
t
SYNC_W  
Note:  
REF2 can be 1.544 MHz, 2.048 MHz, 8.192 MHz or 16.384 MHz.  
REF2_SYNC is 8 kHz.  
Figure 26 - REF2_SYNC Timing  
40  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
AC Electrical Characteristics* - Input to output timing for REF0, REF1 and REF2 references when  
TIE_CLR = 0 (see Figure 25).  
Characteristics  
Symbol  
Min.  
Max.  
Units  
1
2
3
4
5
6
7
8
9
8 kHz reference input to F8/F32o delay  
1.544 MHz reference input to C1.5o delay  
1.544 MHz reference input to F8/F32o delay  
2.048 MHz reference input to C2o delay  
2.048 MHz reference input to F8/F32o delay  
8.192 MHz reference input to C8o delay  
8.192 MHz reference input to F8/F32o delay  
16.384 MHz reference input to C16o delay  
16.384 MHz reference input to F8/F32o delay  
tREF8kD  
tREF1.5D  
tREF1.5_F8D  
tREF2D  
-0.3  
-1.2  
-1.1  
-1.2  
-0.6  
-2.0  
-1.0  
-1.1  
29.0  
2.0  
0.2  
0.9  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tREF2_F8D  
tREF8D  
tREF8_F8D  
tREF16D  
0.8  
0.1  
1.8  
1.9  
30.6  
tREF16_F8D  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
41  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
AC Electrical Characteristics* - E1 output timing (see Figure 27).  
Characteristics  
Sym.  
Min.  
Max.  
Units  
Notes  
1
2
3
4
5
6
7
8
9
C2o delay  
tC2D  
tC2L  
-0.4  
243.0  
243.3  
121.5  
121.0  
-0.3  
0.3  
244.1  
244.3  
122.2  
122.4  
1.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C2o pulse width low  
F4o pulse width low  
F4o delay  
tF4L  
tF4D  
C4o pulse width low  
C4o delay  
tC4L  
tC4D  
tF8H  
F8o pulse width high  
C8o pulse width low  
C8o delay  
121.6  
60.3  
-0.4  
123.5  
61.3  
0.3  
tC8L  
tC8D  
tF16L  
tF16D  
tC16L  
tC16D  
tF32H  
tC32L  
tC32D  
tF65L  
tF65D  
tC65L  
tC65D  
tOR  
10 F16o pulse with low  
11 F16o delay  
60.3  
29.9  
28.7  
-0.5  
61.2  
30.8  
30.8  
1.5  
outputs loaded  
with 30 pF  
12 C16o pulse width low  
13 C16o delay  
14 F32o pulse width high  
15 C32o pulse width low  
16 C32o delay  
30.0  
14.7  
-0.5  
32.1  
15.5  
0.5  
17 F65o pulse with low  
18 F65o delay  
14.7  
7.1  
15.5  
8.0  
19 C65o pulse width low  
20 C65o delay  
7.2  
8.1  
-1.0  
1.0  
21 Output clock and frame pulse rise time  
22 Output clock and frame pulse fall time  
1.1  
2.0  
tOF  
1.2  
2.3  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
42  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
t
F8H  
F8o  
t
t
C2D  
C4D  
t
C2L  
C2o  
F4o  
t
F4D  
t
F4L  
t
C4L  
C4o  
C8o  
t
C8L  
t
C8D  
t
F16D  
t
F16L  
t
F16o  
C16o  
F32o  
C32o  
F65o  
C65o  
t
C16L  
C16D  
t
F32H  
t
C32L  
t
C32D  
t
F65D  
t
F65L  
t
C65D  
t
C65L  
F32o, C32o, F65o and C65o are drawn on a larger scale than the other waveforms in this diagram.  
Figure 27 - E1 Output Timing Referenced to F8/F32o  
43  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
AC Electrical Characteristics* - DS1 output timing (see Figure 28).  
Characteristics  
Sym.  
Min.  
Max.  
Units  
Notes  
1
2
3
4
5
6
C1.5o delay  
tC1.5D  
tC1.5L  
tC3D  
tC3L  
tOR  
-0.6  
323.1  
-0.7  
0.6  
324.0  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
C1.5o pulse width low  
outputsloaded  
with 30 pF  
C3o delay  
C3o pulse width low  
161.1  
1.1  
162.0  
2.0  
Output clock and frame pulse rise time  
Output clock and frame pulse fall time  
tOF  
1.2  
2.3  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
o
F8_32o  
t
t
C1.5D  
t
C1.5L  
C1.5o  
C3o  
C3D  
t
C3L  
Figure 28 - DS1 Output Timing Referenced to F8/F32o  
AC Electrical Characteristics* - DS2 output timing (see Figure 29).  
Characteristics  
Sym.  
Min.  
Max.  
Units  
Notes  
1
2
3
4
C6o delay  
tC6D  
tC6L  
tOR  
-0.70  
78.5  
1.1  
0.70  
79.3  
2.0  
ns  
ns  
ns  
ns  
C6o pulse width low  
outputs  
loaded with  
30 pF  
Output clock and frame pulse rise time  
Output clock and frame pulse fall time  
tOF  
1.2  
2.3  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
F8_32o  
t
C6D  
t
C6L  
C6o  
Figure 29 - DS2 Output Timing Referenced to F8/F32o  
44  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
AC Electrical Characteristics* - OSCi 20 MHz Master Clock Input  
Characteristics  
Min.  
Max.  
Units  
Notes  
1
2
3
4
5
Oscillator Tolerance - DS1  
Oscillator Tolerance - E1  
Duty cycle  
-32  
-50  
40  
+32  
+50  
60  
ppm  
ppm  
%
Rise time  
10  
ns  
Fall time  
10  
ns  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
45  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
7.2 Performance Characteristics  
Performance Characteristics* - Functional  
Characteristics  
Min.  
Max.  
Units  
Notes  
1
2
Holdover accuracy  
Holdover stability  
0.1  
0
ppm  
ppm  
Determined by stability of the  
20 MHz master clock oscillator  
3
4
Freerun accuracy  
Capture range  
0
ppm  
ppm  
Determined by accuracy of the  
20 MHz master clock oscillator  
-130  
+130  
The 20 MHz master clock oscillator  
set at 0 ppm  
Reference Out of Range Threshold  
(including hysteresis)  
5
6
DS1  
-64  
-83  
+64  
+83  
ppm  
ppm  
The 20 MHz master clock oscillator  
set at 0 ppm  
E1  
-100  
-130  
+100  
+130  
The 20 MHz master clock oscillator  
set at 0 ppm  
Lock Time  
7
8
9
1.8 Hz filter  
40  
15  
1
50  
15  
1
s
s
s
s
±64 ppm to ±100 ppm frequency  
offset, SEC_MSTR = 0, HMS = 1,  
TIE_CLR = 1 and FASTLOCK=0  
58 Hz filter (8 kHz reference)  
922 Hz filter  
±64 ppm to ±100 ppm frequency  
offset, SEC_MSTR = 1, HMS = 1,  
TIE_CLR = 1 and FASTLOCK=0  
±64 ppm to ±100 ppm frequency  
offset, SEC_MSTR = 1, HMS = 1,  
TIE_CLR = 1 and FASTLOCK=0  
10 fast lock  
Output Phase Continuity (MTIE)  
1
1
±64 ppm to ±100 ppm frequency  
offset and FASTLOCK=1  
11 Reference switching  
13  
0
ns  
ns  
TIE_CLR=1  
12 Switching from Normal mode to  
Holdover mode  
13 Switching from Holdover mode to  
Normal mode  
13  
ns  
TIE_CLR=1 and HMS=1  
Output Phase Slope  
14 primary master mode  
61  
µ/s  
SEC_MSTR=0  
SEC_MSTR=1  
15 secondary master mode  
9.5  
ms/s  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
46  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Performance Characteristics*: Input Wander and Jitter Tolerance Conformance  
Input reference  
Standard  
Interface  
frequency  
1
2
1.544 MHz  
Telcordia GR-1244-CORE  
DS1 Line timing,  
DS1 External timing  
2.048 MHz  
ITU-T G.823  
2048 kbit/s  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
Performance Characteristics*: Output Jitter Generation - ANSI T1.403 conformance  
ANSI T1.403  
Jitter Generation Requirements  
ZL30102  
maximum jitter  
generation  
Jitter  
measurement  
filter  
Equivalent  
limit in the  
time domain  
Limit in  
UI  
Signal  
Units  
DS1 Interface  
1
2
8 kHz to 40 kHz  
10 Hz to 40 kHz  
0.07 UIpp  
0.5 UIpp  
45.3  
324  
0.30  
0.32  
nspp  
nspp  
C1.5o (1.544 MHz)  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
Performance Characteristics*: Output Jitter Generation - ITU-T G.747 conformance  
ITU-T G.747  
Jitter Generation Requirements  
ZL30102  
maximum jitter  
generation  
Jitter  
measurement  
filter  
Equivalent  
limit in the  
time domain  
Limit in  
UI  
Signal  
Units  
DS2 Interface  
C6o (6.312 MHz)  
1
10 kHz to 60 kHz  
0.05 UIpp  
7.92  
0.20  
nspp  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
Performance Characteristics*: Output Jitter Generation - ITU-T G.812 conformance  
ITU-T G.812  
Jitter Generation Requirements  
ZL30102  
maximum jitter  
generation  
Jitter  
measurement  
filter  
Equivalent  
limit in the  
time domain  
Limit in  
UI  
Signal  
Units  
E1 Interface  
1
20 Hz to 100 kHz  
0.05 UIpp  
24.4  
0.36  
nspp  
C2o (2.048 MHz)  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
47  
Zarlink Semiconductor Inc.  
ZL30102  
Data Sheet  
Performance Characteristics* - Unfiltered Jitter Generation  
Max.  
Characteristics  
Notes  
[nspp]  
1
2
C1.5o (1.544 MHz)  
0.45  
0.47  
0.53  
0.42  
0.58  
0.42  
0.56  
0.46  
0.49  
0.43  
0.43  
0.44  
0.43  
0.46  
C2o (2.048 MHz)  
C3o (3.088 MHz)  
C4o (4.096 MHz)  
C6o (6.312 MHz)  
C8o (8.192 MHz)  
C16o (16.384 MHz)  
C32o (32.768 MHz)  
C65o (65.536 MHz)  
F4o (8 kHz)  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
F8o (8 kHz)  
F16o (8 kHz)  
F32o (8 kHz)  
F65o (8 kHz)  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
48  
Zarlink Semiconductor Inc.  
Package Code  
c
Zarlink Semiconductor 2002 All rights reserved.  
Previous package codes  
ISSUE  
ACN  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

ZL30102QDG1

T1/E1 Stratum 4/4E Redundant System Clock Synchronizer for DS1/E1 and H.110
ZARLINK

ZL30102_05

T1/E1 Stratum 4/4E Redundant System Clock Synchronizer for DS1/E1 and H.110
ZARLINK

ZL30105

T1/E1/SDH Stratum 3 Redundant System Clock Synchonizer for AdvancedTCA and H.110
ZARLINK

ZL30105QDG

T1/E1/SDH Stratum 3 Redundant System Clock Synchonizer for AdvancedTCA and H.110
ZARLINK

ZL30105QDG1

T1/E1/SDH Stratum 3 Redundant System Clock Synchronizer for AdvancedTC TM and H.110
ZARLINK

ZL30105_05

T1/E1/SDH Stratum 3 Redundant System Clock Synchronizer for AdvancedTC TM and H.110
ZARLINK

ZL30106

SONET/SDH/PDH Network Interface DPLL
ZARLINK

ZL30106QDG

SONET/SDH/PDH Network Interface DPLL
ZARLINK

ZL30106QDG1

SONET/SDH/PDH Network Interface DPLL
ZARLINK

ZL30106_05

SONET/SDH/PDH Network Interface DPLL
ZARLINK

ZL30107

GbE Line Card Synchronizer
ZARLINK

ZL30107GGG

GbE Line Card Synchronizer
ZARLINK