ZL30121GGG2 [ZARLINK]

SONET/SDH Low Jitter System Synchronizer; SONET / SDH的低抖动同步器系统
ZL30121GGG2
型号: ZL30121GGG2
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

SONET/SDH Low Jitter System Synchronizer
SONET / SDH的低抖动同步器系统

文件: 总30页 (文件大小:344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL30121  
SONET/SDH  
Low Jitter System Synchronizer  
Data Sheet  
May 2006  
A full Design Manual is available to qualified customers.  
To  
register,  
please  
send  
an  
email  
to  
Ordering Information  
TimingandSync@Zarlink.com.  
ZL30121GGG  
100 Pin CABGA  
Trays  
Trays  
ZL30121GGG2 100 Pin CABGA*  
Features  
*Pb Free Tin/Silver/Copper  
Supports the requirements of Telcordia GR-253 and  
GR-1244 for Stratum 3, 4E, 4 and SMC clocks, and  
the requirements of ITU-T G.781 SETS, G.813  
SEC, G.823, G.824 and G.825 clocks  
Internal APLL provides standard output clock  
frequencies up to 622.08 MHz with jitter < 3 ps  
RMS suitable for GR-253-CORE OC-12 and G.813  
STM-16 interfaces  
-40oC to +85oC  
Provides 8 reference inputs which support clock  
frequencies with any multiples of 8 kHz up to  
77.76 MHz in addition to 2 kHz  
Supports master/slave configuration for  
AdvancedTCATM  
Programmable output synthesizers generate clock  
frequencies from any multiple of 8 kHz up to  
77.76 MHz in addition to 2 kHz  
Configurable input to output delay and output to  
output phase alignment  
Optional external feedback path provides dynamic  
Provides two DPLLs which are independently  
input to output delay compensation  
configurable through a serial software interface  
Provides 3 sync inputs for output frame pulse  
alignment  
DPLL1 provides all the features necessary for  
generating SONET/SDH compliant clocks including  
automatic hitless reference switching, automatic  
mode selection (locked, free-run, holdover),  
selectable loop bandwidth and pull-in range  
Generates several styles of output frame pulses  
with selectable pulse width, polarity and frequency  
Flexible input reference monitoring automatically  
disqualifies references based on frequency and  
phase irregularities  
Supports IEEE 1149.1 JTAG Boundary Scan  
DPLL2 provides a comprehensive set of features  
necessary for generating derived output clocks and  
other general purpose clocks  
dpll2_ref  
dpll1_holdover diff0_en diff1_en  
trst_b tck tdi tms tdo  
dpll1_hs_en  
dpll1_lock  
p0_clk0  
p0_clk1  
p0_fp0  
p0_fp1  
p1_clk0  
p1_clk1  
osco  
osci  
Master  
Clock  
IEEE 1449.1  
JTAG  
P0  
DPLL2  
Synthesizer  
ref  
ref  
ref0  
ref1  
ref2  
ref3  
ref4  
ref5  
ref6  
ref7  
P1  
Synthesizer  
ref7:0  
diff0_p/n  
diff1_p/n  
sdh_clk0  
sdh_clk1  
sdh_fp0  
sdh_fp1  
SONET/SDH  
APLL  
DPLL1  
sync0  
sync1  
sync2  
sync2:0  
sync  
fb_clk  
Feedback  
fb_clk  
fb_fp  
ref_&_sync_status  
Reference  
Monitors  
Synthesizer  
ext_fb_fp  
ext_fb_clk  
Controller &  
int_b  
SPI Interface  
State Machine  
sdh_filter filter_ref0 filter_ref1  
sck  
si  
so cs_b  
rst_b slave_en dpll1_mod_sel1:0  
Figure 1 - Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2006, Zarlink Semiconductor Inc. All Rights Reserved.  
ZL30121  
Data Sheet  
Applications  
AdvancedTCATM Systems  
Multi-Service Edge Switches or Routers  
Multi-Service Provisioning Platforms (MSPPs)  
Add-Drop Multiplexers (ADMs)  
Wireless/Wireline Gateways  
Wireless Base Stations  
DSLAM / Next Gen DLC  
Core Routers  
2
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Table of Contents  
1.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.1 DPLL Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.2 DPLL Mode Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1.3 Ref and Sync Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.4 Ref and Sync Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1.5 Output Clocks and Frame Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.6 Configurable Input-to-Output and Output-to-Output Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
1.7 Master/Slave Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
1.8 External Feedback Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.0 Software Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.0 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
List of Figures  
Figure 1 - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - Automatic Mode State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 3 - Reference and Sync Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 4 - Output Frame Pulse Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 5 - Behaviour of the Guard Soak Timer during CFM or SCM Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 6 - Output Clock Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 7 - Phase Delay Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 8 - Typical Master/Slave Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 9 - External Feedback Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
List of Tables  
Table 1 - DPLL1 and DPLL2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 2 - Set of Pre-Defined Auto-Detect Clock Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3 - Set of Pre-Defined Auto-Detect Sync Frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 4 - Output Clock and Frame Pulse Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 5 - Register Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Pin Description  
I/O  
Pin #  
Name  
Description  
Type  
Input Reference  
C1  
B2  
A3  
C3  
B3  
B4  
C4  
A4  
ref0  
ref1  
ref2  
ref3  
ref4  
ref5  
ref6  
ref7  
Id  
Input References (LVCMOS, Schmitt Trigger). These are input references  
available to both DPLL1 and DPLL2 for synchronizing output clocks. All eight  
input references can be automatically or manually selected using software  
registers. These pins are internally pulled down to Vss.  
B1  
A1  
A2  
sync0  
sync1  
sync2  
Id  
Frame Pulse Synchronization References (LVCMOS, Schmitt Trigger).  
These are the frame pulse synchronization inputs associated with input  
references 0, 1 and 2. These inputs accept frame pulses in a clock format (50%  
duty cycle) or a basic frame pulse format with minimum pulse width of 5 ns.  
These pins are internally pulled down to Vss.  
C5  
B5  
ext_fb_clk  
ext_fb_fp  
Id  
External DPLL Feedback Clock (LVCMOS, Schmitt Trigger). External  
feedback clock input. This allows DPLL1 to adjust for PCB trace propagation  
delays. This pin is internally pulled down to Vss. Leave open when not is use.  
Id  
External DPLL Feedback Frame Pulse (LVCMOS, Schmitt Trigger). External  
feedback frame pulse input. This allows DPLL1 to adjust for PCB trace  
propagation delays. This pin is internally pulled down to Vss. Leave open when  
not is use.  
Output Clocks and Frame Pulses  
D10  
G10  
E10  
sdh_clk0  
sdh_clk1  
sdh_fp0  
O
O
O
SONET/SDH Output Clock 0 (LVCMOS). This output can be configured to  
provide any one of the SONET/SDH clock outputs up to 77.76 MHz. The default  
frequency for this output is 77.76 MHz.  
SONET/SDH Output Clock 1 (LVCMOS). This output can be configured to  
provide any one of the SONET/SDH clock outputs up to 77.76 MHz. The default  
frequency for this output is 19.44 MHz.  
SONET/SDH Output Frame Pulse 0 (LVCMOS). This output can be configured  
to provide virtually any style of output frame pulse synchronized with an  
associated SONET/SDH family output clock. The default frequency for this frame  
pulse output is 8 kHz.  
F10  
sdh_fp1  
O
SONET/SDH Output Frame Pulse 1 (LVCMOS). This output can be configured  
to provide virtually any style of output frame pulse synchronized with an  
associated SONET/SDH family output clock. The default frequency for this frame  
pulse output is 2 kHz.  
K9  
K7  
p0_clk0  
p0_clk1  
O
O
Programmable Synthesizer 0 - Output Clock 0 (LVCMOS). This output can be  
configured to provide any frequency with a multiple of 8 kHz up to 77.76 MHz in  
addition to 2 kHz. The default frequency for this output is 2.048 MHz.  
Programmable Synthesizer 0 - Output Clock 1 (LVCMOS). This is a  
programmable clock output configurable as a multiple or division of the p0_clk0  
frequency within the range of 2 kHz to 77.76 MHz. The default frequency for this  
output is 8.192 MHz.  
6
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
I/O  
Pin #  
Name  
Description  
Type  
K8  
p0_fp0  
O
O
O
O
Programmable Synthesizer 0 - Output Frame Pulse 0 (LVCMOS). This output  
can be configured to provide virtually any style of output frame pulse associated  
with the p0 clocks. The default frequency for this frame pulse output is 8 kHz.  
J7  
p0_fp1  
p1_clk0  
p1_clk1  
Programmable Synthesizer 0 - Output Frame Pulse 1 (LVCMOS). This output  
can be configured to provide virtually any style of output frame pulse associated  
with the p0 clocks. The default frequency for this frame pulse output is 8 kHz  
J10  
K10  
Programmable Synthesizer 1 - Output Clock 0 (LVCMOS). This output can be  
configured to provide any frequency with a multiple of 8 kHz up to 77.76 MHz in  
addition to 2 kHz. The default frequency for this output is 1.544 MHz (DS1).  
Programmable Synthesizer1 - Output Clock 1 (LVCMOS). This is a  
programmable clock output configurable as a multiple or division of the p1_clk0  
frequency within the range of 2 kHz to 77.76 MHz. The default frequency for this  
output is 3.088 MHz (2x DS1).  
H10  
E1  
fb_clk  
O
O
O
O
Feedback Clock (LVCMOS). This output is a buffered copy of the feedback  
clock for DPLL1. The frequency of this output always equals the frequency of the  
selected reference.  
dpll2_ref  
DPLL2 Selected Output Reference (LVCMOS). This is a buffered copy of the  
output of the reference selector for DPLL2. Switching between input reference  
clocks at this output is not hitless.  
A9  
diff0_p  
diff0_n  
Differential Output Clock 0 (LVPECL). This output can be configured to provide  
any one of the available SDH clocks. The default frequency for this clock output  
is 155.52 MHz  
B10  
A10  
B9  
diff1_p  
diff1_n  
Differential Output Clock 1 (LVPECL). This output can be configured to provide  
any one of the available SDH clocks. The default frequency for this clock output  
is 622.08 MHz clock  
Control  
H5  
rst_b  
I
Reset (LVCMOS, Schmitt Trigger). A logic low at this input resets the device. To  
ensure proper operation, the device must be reset after power-up. Reset should  
be asserted for a minimum of 300 ns.  
J5  
dpll1_hs_en  
Iu  
DPLL1 Hitless Switching Enable (LVCMOS, Schmitt Trigger). A logic high at  
this input enables hitless reference switching. A logic low disables hitless  
reference switching and re-aligns DPLL1’s output phase to the phase of the  
selected reference input. This feature can also be controlled through software  
registers. This pin is internally pulled up to Vdd.  
C2 dpll1_mod_sel0  
D2 dpll1_mod_sel1  
Iu  
DPLL1 Mode Select 1:0 (LVCMOS, Schmitt Trigger). During reset, the levels  
on these pins determine the default mode of operation for DPLL1 (Automatic,  
Normal, Holdover or Freerun). After reset, the mode of operation can be  
controlled directly with these pins, or by accessing the dpll1_modesel register  
(0x1F) through the serial interface. This pin is internally pulled up to Vdd.  
D1  
slave_en  
Iu  
Master/Slave control (LVCMOS, Schmitt Trigger). This pin selects the mode of  
operation for the device. If set high, slave mode is selected. If set low, master  
mode is selected. This feature can also be controlled through software registers.  
This pin is internally pulled up to Vdd.  
7
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
I/O  
Pin #  
Name  
Description  
Type  
K1  
diff0_en  
Iu  
Differential Output 0 Enable (LVCMOS, Schmitt Trigger). When set high, the  
differential LVPECL output 0 driver is enabled. When set low, the differential  
driver is tristated reducing power consumption. This pin is internally pulled up to  
Vdd.  
D3  
diff1_en  
Iu  
Differential Output 1 Enable (LVCMOS, Schmitt Trigger). When set high, the  
differential LVPECL output 1 driver is enabled. When set low, the differential  
driver is tristated reducing power consumption.This pin is internally pulled up to  
Vdd.  
Status  
H1  
dpll1_lock  
O
O
Lock Indicator (LVCMOS). This is the lock indicator pin for DPLL1. This output  
goes high when DPLL1’s output is frequency and phase locked to the input  
reference.  
J1  
dpll1_holdover  
Holdover Indicator (LVCMOS). This pin goes high when DPLL1 enters the  
holdover mode.  
Serial Interface  
E2  
F1  
G1  
E3  
sck  
I
I
Clock for Serial Interface (LVCMOS). Serial interface clock.  
Serial Interface Input (LVCMOS). Serial interface data input pin.  
Serial Interface Output (LVCMOS). Serial interface data output pin.  
si  
so  
O
Iu  
cs_b  
Chip Select for Serial Interface (LVCMOS). Serial interface chip select. This  
pin is internally pulled up to Vdd.  
G2  
int_b  
O
Interrupt Pin (LVCMOS). Indicates a change of device status prompting the  
processor to read the enabled interrupt service registers (ISR). This pin is an  
open drain, active low and requires an external pulled up to VDD.  
APLL Loop Filter  
A6  
B6  
C6  
sdh_filter  
filter_ref0  
filter_ref1  
A
A
A
External Analog PLL Loop Filter terminal.  
Analog PLL External Loop Filter Reference.  
Analog PLL External Loop Filter Reference.  
JTAG and Test  
J4  
K2  
H4  
tdo  
O
Iu  
Iu  
Test Serial Data Out (Output). JTAG serial data is output on this pin on the  
falling edge of tck. This pin is held in high impedance state when JTAG scan is  
not enabled.  
tdi  
Test Serial Data In (Input). JTAG serial test instructions and data are shifted in  
on this pin. This pin is internally pulled up to Vdd. If this pin is not used then it  
should be left unconnected.  
trst_b  
Test Reset (LVCMOS). Asynchronously initializes the JTAG TAP controller by  
putting it in the Test-Logic-Reset state. This pin should be pulsed low on power-  
up to ensure that the device is in the normal functional state. This pin is internally  
pulled up to Vdd. If this pin is not used then it should be connected to GND.  
K3  
tck  
I
Test Clock (LVCMOS): Provides the clock to the JTAG test logic. If this pin is not  
used then it should be pulled down to GND.  
8
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
I/O  
Pin #  
Name  
Description  
Type  
J3  
tms  
Iu  
Test Mode Select (LVCMOS). JTAG signal that controls the state transitions of  
the TAP controller. This pin is internally pulled up to VDD. If this pin is not used  
then it should be left unconnected.  
Master Clock  
K4  
osci  
I
Oscillator Master Clock Input (LVCMOS). This input accepts a 20 MHz  
reference from a clock oscillator (TCXO, OCXO). The stability and accuracy of  
the clock at this input determines the free-run accuracy and the long term  
holdover stability of the output clocks.  
K5  
osco  
O
Oscillator Master Clock Output (LVCMOS). This pin must be left unconnected  
when the osci pin is connected to a clock oscillator.  
Miscellaneous  
J2  
H7  
J6  
IC  
Internal Connection. Connect to ground.  
G3  
K6  
IC  
Internal Connection. Leave unconnected.  
No Connection. Leave unconnected.  
F2  
F3  
NC  
Power and Ground  
D9  
E4  
G8  
G9  
J8  
VDD  
P
P
P
P
P
P
P
P
Positive Supply Voltage. +3.3VDC nominal.  
J9  
H6  
H8  
E8  
F4  
VCORE  
AVDD  
P
P
Positive Supply Voltage. +1.8VDC nominal.  
A5  
A8  
P
P
P
Positive Analog Supply Voltage. +3.3VDC nominal.  
C10  
B7  
B8  
H2  
AVCORE  
P
P
P
Positive Analog Supply Voltage. +1.8VDC nominal.  
9
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
I/O  
Pin #  
Name  
Description  
Type  
D4  
D5  
D6  
D7  
E5  
E6  
E7  
F5  
F6  
F7  
G4  
G5  
G6  
G7  
E9  
F8  
F9  
H9  
VSS  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
Ground. 0 Volts.  
A7  
C7  
C8  
C9  
D8  
H3  
AVSS  
G
G
G
G
G
G
Analog Ground. 0 Volts.  
I -  
Id -  
Input  
Input, Internally pulled down  
Iu -  
Input, Internally pulled up  
O - Output  
A -  
P -  
Analog  
Power  
G - Ground  
10  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
1.0 Functional Description  
The ZL30121 SONET/SDH System Synchronizer is a highly integrated device that provides the functionality  
required for synchronizing network equipment. It incorporates two independent DPLLs, each capable of locking to  
one of eight input references and provides a wide variety of synchronized output clocks and frame pulses.  
1.1 DPLL Features  
The ZL30121 provides two independently controlled Digital Phase-Locked Loops (DPLL1, DPLL2) for clock and/or  
frame pulse synchronization. Table 1 shows a feature summary for both DPLLs.  
Feature  
DPLL1  
DPLL2  
Modes of Operation  
Loop Bandwidth  
Free-run, Normal (locked), Holdover  
Free-run, Normal (locked), Holdover  
User selectable: 0.1 Hz, 1.7 Hz, 3.5 Hz, Fixed: 14 Hz  
fast lock (7 Hz), 14 Hz, 28 Hz1, or  
wideband2 (890 Hz / 56 Hz / 14 Hz)  
Phase Slope Limiting  
Pull-in Range  
User selectable: 885 ns/s, 7.5 µs/s,  
61 µs/s, or unlimited  
User selectable: 61 µs/s, or unlimited  
User selectable: 12 ppm, 52 ppm,  
83 ppm, 130 ppm  
Fixed: 130 ppm  
Holdover Parameters  
Selectable Update Times: 26 ms, 1 s,  
10 s, 60 s, and Selectable Holdover  
Post Filter BW: 18 mHz, 2.5 Hz, 10 Hz.  
Fixed Update Time: 26 ms  
No Holdover Post Filtering  
Holdover Frequency  
Accuracy  
Better than 1 ppb (Stratum 3E) initial  
frequency offset. Frequency drift  
depends on the 20 MHz external  
oscillator.  
Better than 50 ppb (Stratum 3) initial  
frequency offset. Frequency drift  
depends on the 20 MHz external  
oscillator.  
Reference Inputs  
Sync Inputs  
Ref0 to Ref7  
Ref0 to Ref7  
Sync0, Sync1, Sync2  
2 kHz, N * 8 kHz up to 77.76 MHz  
Sync inputs are not supported.  
2 kHz, N * 8 kHz up to 77.76 MHz  
Sync inputs are not supported.  
Input Ref Frequencies  
Supported Sync Input  
Frequencies  
166.67 Hz, 400 Hz, 1 kHz, 2 kHz,  
8 kHz, 64 kHz.  
Input Reference  
Automatic (based on programmable  
priority and revertiveness), or manual  
Automatic (based on programmable  
priority and revertiveness), or manual  
Selection/Switching  
Hitless Ref Switching  
Output Clocks  
Can be enabled or disabled  
Can be enabled or disabled  
diff0_p/n, diff1_p/n, sdh_clk0, sdh_clk1, p0_clk0, p0_clk1, p1_clk0, p1_clk1.  
p0_clk0, p0_clk1, p1_clk0, p1_clk1,  
fb_clk.  
Output Frame Pulses  
sdh_fp0, sdh_fp1, p0_fp0, p0_fp1  
p0_fp0, p0_fp1 not synchronized to sync  
reference.  
synchronized to active sync reference.  
Supported Output Clock As listed in Table 4  
Frequencies  
As listed in Table 4 for p0_clk0, p0_clk1,  
p1_clk0, p1_clk1  
Table 1 - DPLL1 and DPLL2 Features  
11  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Feature  
DPLL1  
As listed in Table 4  
DPLL2  
Supported Output  
Frame Pulse  
As listed in Table 4 for p0_fp0, p0_fp not  
synchronized to sync reference.  
Frequencies  
External Status Pin  
Indicators  
Lock, Holdover  
None  
Table 1 - DPLL1 and DPLL2 Features  
1. Limited to 14 Hz for 2 kHz references)  
2. In the wideband mode, the loop bandwidth depends on the frequency of the reference input. For reference frequencies greater than  
8 kHz, the loop bandwidth = 890 Hz. For reference frequencies equal to 8 kHz, the loop bandwidth = 56 Hz. The loop bandwidth is  
equal to 14 Hz for reference frequencies of 2 kHz.  
1.2 DPLL Mode Control  
Both DPLL1 and DPLL2 independently support three modes of operation - free-run, normal, and holdover. The  
mode of operation can be manually set or controlled by an automatic state machine as shown in Figure 2.  
All references are monitored for  
frequency accuracy and phase  
regularity, and at least one  
reference is qualified.  
Reset  
Free-Run  
Lock  
Another reference is  
qualified and available  
for selection  
Acquisition  
Phase lock on  
the selected  
reference is  
achieved  
No references are  
qualified and available  
for selection  
Holdover  
Selected reference  
fails  
Normal  
(Locked)  
Figure 2 - Automatic Mode State Machine  
Free-run  
The free-run mode occurs immediately after a reset cycle or when the DPLL has never been synchronized to a  
reference input. In this mode, the frequency accuracy of the output clocks is equal to the frequency accuracy of the  
external master oscillator.  
Lock Acquisition  
The input references are continuously monitored for frequency accuracy and phase regularity. If at least one of the  
input references is qualified by the reference monitors, then the DPLL will begin lock acquisition on that input. Given  
a stable reference input, the ZL30121 will enter in the Normal (locked) mode.  
12  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Normal (locked)  
The usual mode of operation for the DPLL is the normal mode where the DPLL phase locks to a selected qualified  
reference input and generates output clocks and frame pulses with a frequency accuracy equal to the frequency  
accuracy of the reference input. While in the normal mode, the DPLL’s clock and frame pulse outputs comply with  
the MTIE and TDEV wander generation specifications as described in Telcordia and ITU-T telecommunication  
standards.  
Holdover  
When the DPLL operating in the normal mode loses its reference input, and no other qualified references are  
available, it will enter the holdover mode and continue to generate output clocks based on historical frequency data  
collected while the DPLL was synchronized. The transition between normal and holdover modes is controlled by  
the DPLL so that its initial frequency offset is better than 1 ppb which meets the requirement of Stratum 3E. The  
frequency drift after this transition period is dependant on the frequency drift of the external master oscillator.  
1.3 Ref and Sync Inputs  
There are eight reference clock inputs (ref0 to ref7) available to both DPLL1 and DPLL2. The selected reference  
input is used to synchronize the output clocks. Each of the DPLLs have independent reference selectors which can  
be controlled using a built-in state machine or set in a manual mode.  
DPLL2  
ref7:0  
DPLL1  
sync2:0  
Figure 3 - Reference and Sync Inputs  
Each of the ref inputs accept a single-ended LVCMOS clock with a frequency ranging from 2 kHz to 77.76 MHz.  
Built-in frequency detection circuitry automatically determines the frequency of the reference if its frequency is  
within the set of pre-defined frequencies as shown in Table 2. Custom frequencies definable in multiples of 8 kHz  
are also available.  
2 kHz  
8 kHz  
16.384 MHz  
19.44 MHz  
38.88 MHz  
77.76 MHz  
64 kHz  
1.544 MHz  
2.048 MHz  
6.48 MHz  
8.192 MHz  
Table 2 - Set of Pre-Defined Auto-Detect Clock Frequencies  
13  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
In addition to the reference inputs, DPLL1 has three optional frame pulse synchronization inputs (sync0 to sync2)  
used to align the output frame pulses. The syncn input is selected with its corresponding refn input, where n = 0, 1,  
or 2. Note that the sync input cannot be used to synchronize the DPLL, it only determines the alignment of the  
frame pulse outputs. An example of output frame pulse alignment is shown in Figure 4.  
refn  
n = 0, 1, 2  
x = 0, 1  
Without a frame pulse  
signal at the sync  
input, the output  
syncn - no frame pulse signal present  
frame pulses will align  
to any arbitrary cycle  
of its associated  
diffx/sdh_clkx/p0_clkx/p1_clkx  
sdh_fpx/p0_fpx  
output clock.  
When a frame pulse  
signal is present at  
the sync input, the  
DPLL will align the  
output frame pulses  
to the output clock  
edge that is aligned  
to the input frame  
pulse.  
refn  
n = 0, 1, 2  
x = 0, 1  
syncn  
diffx/sdh_clkx/p0_clkx/p1_clkx  
sdh_fpx/p0_fpx  
Figure 4 - Output Frame Pulse Alignment  
Each of the sync inputs accept a single-ended LVCMOS frame pulse. Since alignment is determined from the rising  
edge of the frame pulse, there is no duty cycle restriction on this input, but there is a minimum pulse width  
requirement of 5 ns. Frequency detection for the sync inputs is automatic for the supported frame pulse frequencies  
shown in Table 3.  
166.67 Hz  
(48x 125 µs frames)  
400 Hz  
1 kHz  
2 kHz  
8 kHz  
64 kHz  
Table 3 - Set of Pre-Defined Auto-Detect Sync Frequencies  
14  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
1.4 Ref and Sync Monitoring  
All input references (ref0 to ref7) are monitored for frequency accuracy and phase regularity. New references are  
qualified before they can be selected as a synchronization source and qualified references are continuously  
monitored to ensure that they are suitable for synchronization. The process of qualifying a reference depends on  
four levels of monitoring.  
Single Cycle Monitor (SCM)  
The SCM block measures the period of each reference clock cycle to detect phase irregularities or a missing clock  
edge. In general, if the measured period deviates by more than 50% from the nominal period, then an SCM failure  
(scm_fail) is declared.  
Coarse Frequency Monitor (CFM)  
The CFM block monitors the reference frequency over a measurement period of 30 µs so that it can quickly detect  
large changes in frequency. A CFM failure (cfm_fail) is triggered when the frequency has changed by more than 3%  
or approximately 30000 ppm.  
Precise Frequency Monitor (PFM)  
The PFM block measures the frequency accuracy of the reference over a 10 second interval. To ensure an  
accurate frequency measurement, the PFM measurement interval is re-initiated if phase or frequency irregularities  
are detected by the SCM or CFM. The PFM provides a level of hysteresis between the acceptance range and the  
rejection range to prevent a failure indication from toggling between valid and invalid for references that are on the  
edge of the acceptance range.  
When determining the frequency accuracy of the reference input, the PFM uses the external oscillator’s output  
frequency (focsi) as its point of reference.  
Guard Soak Timer (GST)  
The GST block mimics the operation of an analog integrator by accumulating failure events from the CFM and the  
SCM blocks and applying a selectable rate of decay when no failures are detected.  
As shown in Figure 5, a GST failure (gst_fail) is triggered when the accumulated failures have reached the upper  
threshold during the disqualification observation window. When there are no CFM or SCM failures, the accumulator  
decrements until it reaches its lower threshold during the qualification window.  
CFM or SCM failures  
ref  
upper threshold  
lower threshold  
td  
tq  
td - disqualification time  
tq - qualification time = n * td  
gst_fail  
Figure 5 - Behaviour of the Guard Soak Timer during CFM or SCM Failures  
15  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
All sync inputs (sync0 to sync2) are continuously monitored to ensure that there is a correct number of reference  
clock cycles within the frame pulse period.  
1.5 Output Clocks and Frame Pulses  
The ZL30121 offers a wide variety of outputs including two low-jitter differential LVPECL clocks (diff0_p/n,  
diff1_p/n), two SONET/SDH LVCMOS (sdh_clk0, sdh_clk1) output clocks, and four programmable LVCMOS  
(p0_clk0, p0_clk1, p1_clk0, p1_clk1) output clocks. In addition to the clock outputs, two LVCMOS SONET/SDH  
frame pulse outputs (sdh_fp0, sdh_fp1) and two LVCMOS programmable frame pulses (p0_fp0, p0_fp1) are also  
available.  
The feedback clock (fb_clk) of DPLL1 is available as an output clock. Its output frequency is always equal to  
DPLL1’s selected input frequency.  
The output clocks and frame pulses derived from the SONET/SDH APLL are always synchronous with DPLL1, and  
the clocks and frame pulses generated from the programmable synthesizers can be synchronized to either DPLL1  
or DPLL2. This allows the ZL30121 to have two independent timing paths.  
p0_clk0  
p0_fp0  
p0_clk1  
p0_fp1  
P0  
Synthesizer  
DPLL2  
DPLL1  
P1  
p1_clk0  
p1_clk1  
Synthesizer  
diff0  
diff1  
SONET/SDH  
APLL  
sdh_clk0  
sdh_fp0  
sdh_clk1  
sdh_fp1  
Feedback  
fb_clk  
Synthesizer  
Figure 6 - Output Clock Configuration  
16  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
The supported frequencies for the output clocks and frame pulses are shown in Table 4.  
diff0_p/n,  
diff1_p/n  
(LVPECL)  
sdh_clk0,  
sdh_clk1  
(LVCMOS)  
p0_clk0, p1_clk0  
(LVCMOS)  
p0_clk1, p1_clk1  
(LVCMOS)  
sdh_fp0, shd_fp1,  
p0_fp0, p0_fp1  
(LVCMOS)  
6.48 MHz  
6.48 MHz  
2 kHz  
px_clk0  
px_clk1 =  
166.67 Hz  
(48x 125 µs frames)  
2M  
19.44 MHz  
9.72 MHz  
N * 8 kHz  
400 Hz  
(Up to 77.76 MHz)1  
(up to 77.76 MHz)2  
38.88 MHz  
51.84 MHz  
77.76 MHz  
155.52 MHz  
311.04 MHz  
622.08 MHz  
12.96 MHz  
19.44 MHz  
25.92 MHz  
38.88 MHz  
51.84 MHz  
77.76 MHz  
1 kHz  
2 kHz  
4 kHz  
8 kHz  
32 kHz  
64 kHz  
Table 4 - Output Clock and Frame Pulse Frequencies  
1. M= -128 to 127 defined as an 8-bit two’s complement value. +ve values divide, -ve values multiply  
2. N = 0 to 9270, N = 0 selects 2 kH  
17  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
1.6 Configurable Input-to-Output and Output-to-Output Delays  
The ZL30121 allows programmable static delay compensation for controlling input-to-output and output-to-output  
delays of its clocks and frame pulses.  
All of the output synthesizers (SONET/SDH, P0, P1, Feedback) locked to DPLL1 can be configured to lead or lag  
the selected input reference clock using the DPLL1 Fine Delay. The delay is programmed in steps of 119.2 ps with  
a range of -128 to +127 steps giving a total delay adjustment in the range of -15.26 ns to +15.14 ns. Negative  
values delay the output clock, positive values advance the output clock. Synthesizers that are locked to DPLL2 are  
unaffected by this delay adjustment.  
In addition to the fine delay introduced in the DPLL1 path, the SONET/SDH, P0, and P1 synthesizers have the  
ability to add their own fine delay adjustments using the P0 Fine Delay, P1 Fine Delay, and SDH Fine Delay.  
These delays are also programmable in steps of 119.2 ps with a range of -128 to +127 steps.  
In addition to these delays, the single-ended output clocks of the SONET/SDH, P0, and P1 synthesizers can be  
independently offset by 90, 180 and 270 degrees using the Coarse Delay, and the SONET/SDH differential outputs  
can be independently delayed by -1.6 ns, 0 ns, +1.6 ns or +3.2 ns using the Diff Delay. The output frame pulses  
(SONET/SDH, P0) can be independently offset with respect to each other using the FP Delay.  
p0_clk0  
p0_clk1  
p0_fp0  
p0_fp1  
p1_clk0  
p1_clk1  
Coarse Delay  
Coarse Delay  
P0  
P0 Fine Delay  
P1 Fine Delay  
Synthesizer  
DPLL2  
FP Delay  
FP Delay  
Coarse Delay  
Coarse Delay  
P1  
Synthesizer  
diff0  
diff1  
Diff Delay  
Diff Delay  
SONET/SDH  
APLL  
sdh_clk0  
sdh_clk1  
sdh_fp0  
sdh_fp1  
Coarse Delay  
Coarse Delay  
SDH Fine Delay  
DPLL1  
FP Delay  
FP Delay  
Feedback  
Synthesizer  
DPLL1 Fine Delay  
fb_clk  
Figure 7 - Phase Delay Adjustments  
18  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
1.7 Master/Slave Configuration  
In systems that provide redundant timing sources, it is desirable to minimize the output skew between the master  
and the slave’s output clocks. This can be achieved by synchronizing the slave to one of the master’s output clocks  
instead of synchronizing the slave to an external reference. If frame pulse alignment between the timing sources is  
required, then the crossover link should consist of a clk/fp pair.  
One method of connecting two ZL30121 devices in a master/slave configuration is shown in Figure 8 where there is  
a dedicated crossover link between timing cards. Any of the master’s unused outputs and the slave’s unused inputs  
can be used as a crossover link.  
External  
External  
References  
References  
ref0 ref1  
ref0 ref1  
Crossover Link  
sdh_clk0  
sdh_fp0  
ref2  
sync2  
ZL30121  
(Master)  
ZL30121  
(Slave)  
sdh_clk0  
sdh_fp0  
ref2  
sync2  
sdh_fp0  
sdh_fp0  
sdh_clk0  
sdh_clk0  
clk bus 1  
fp bus 1  
clk bus 2  
fp bus 2  
ref0 sync0  
ref1 sync1  
ref0 sync0  
ref1 sync1  
Line Card DPLL  
(ZL30119,  
Line Card DPLL  
(ZL30119,  
ZL30117,  
ZL30106)  
ZL30117,  
ZL30106)  
Figure 8 - Typical Master/Slave Configuration  
19  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
1.8 External Feedback Inputs  
In addition to the static delay compensation described in the “External Feedback Inputs” section on page 20, the  
ZL30121 also provides the option of dynamic delay compensation to minimize path delay variation associated with  
external clock drivers and long PCB traces. This is accomplished by re-directing the internal DPLL1 feedback path  
to external pins and closing the loop externally as shown in Figure 9.  
ZL30121  
DPLL1  
clk_out  
fp_out  
clk  
fp  
SONET/P0/P1  
Synthesizers  
clk_in  
fp_in  
Path Delay  
ref  
sync  
fb_clk  
fb_fp  
Feedback  
Synthesizer  
fb_clk  
fb_fp  
ext_fb_fp  
ext_fb_clk  
realignment of input and output clocks  
clk_in  
fp_in  
clk_out  
fp_out  
Figure 9 - External Feedback Configuration  
20  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
2.0 Software Configuration  
The ZL30121 is mainly controlled by accessing software registers through the serial peripheral interface (SPI). The  
device can be configured to operate in a highly automated manner which minimizes its interaction with the system’s  
processor, or it can operate in a manual mode where the system processor controls most of the operation of the  
device.  
The following table provides a summary of the registers available for status updates and configuration of the device.  
.
Reset  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Description  
Type  
Miscellaneous Registers  
00  
01  
id_reg  
A5  
00  
Chip and version identification and reset ready  
indication register  
R
use_hw_ctrl  
Allows some functions of the device to be  
controlled by hardware pins  
R/W  
Interrupts  
02  
03  
ref_fail_isr  
dpll1_isr  
FF  
70  
Reference failure interrupt service register  
DPLL1 interrupt service register  
R
Sticky  
R
04  
05  
06  
07  
08  
09  
dpll2_isr  
00  
FF  
FF  
FF  
FF  
00  
DPLL2 interrupt service register  
Ref0 and ref1 failure indications  
Ref2 and ref3 failure indications.  
Ref4 and ref5 failure indications  
Ref6 and ref7 failure indications  
Sticky  
R
ref_mon_fail_0  
ref_mon_fail_1  
ref_mon_fail_2  
ref_mon_fail_3  
ref_fail_isr_mask  
Sticky  
R
Sticky  
R
Sticky  
R
Sticky  
R
Reference failure interrupt service register  
mask  
R/W  
0A  
0B  
0C  
dpll1_isr_mask  
00  
00  
FF  
DPLL1 interrupt service register mask  
DPLL2 interrupt service register mask  
R/W  
R/W  
R/W  
dpll2_isr_mask  
ref_mon_fail_mask_0  
Control register to mask each failure indicator  
for ref0 and ref1  
0D  
0E  
ref_mon_fail_mask_1  
ref_mon_fail_mask_2  
FF  
FF  
Control register to mask each failure indicator  
for ref2 and ref3  
R/W  
R/W  
Control register to mask each failure indicator  
for ref4 and ref5  
Table 5 - Register Map  
21  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Reset  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Description  
Type  
0F  
ref_mon_fail_mask_3  
FF  
Control register to mask each failure indicator  
for ref6 and ref7  
R/W  
Reference Monitor Setup  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
detected_ref_0  
detected_ref_1  
detected_ref_2  
detected_ref_3  
detected_sync_0  
detected_sync_1  
oor_ctrl_0  
FF  
FF  
FF  
FF  
EE  
0E  
33  
33  
33  
33  
FF  
FF  
1A  
Ref0 and ref1 auto-detected frequency value  
status register  
R
R
R
R
R
Ref2 and ref3 auto-detected frequency value  
status register  
Ref4 and ref5 auto-detected frequency value  
status register  
Ref6 and ref7 auto-detected frequency value  
status register  
Sync0 and sync1 auto-detected frequency  
value and sync failure status register  
Sync2 auto-detected frequency value and sync  
valid status register  
R
Control register for the ref0 and ref1 out of  
range limit  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
oor_ctrl_1  
Control register for the ref2 and ref3 out of  
range limit  
oor_ctrl_2  
Control register for the ref4 and ref5 out of  
range limit  
oor_ctrl_3  
Control register for the ref6 and ref7 out of  
range limit  
gst_mask_0  
Control register to mask the inputs to the guard  
soak timer for ref0 to ref3  
gst_mask_1  
Control register to mask the inputs to the guard  
soak timer for ref4 to ref7  
gst_qualif_time  
Control register for the guard_soak_timer  
qualification time and disqualification time for  
the references  
DPLL1 Control  
1D  
1E  
dpll1_ctrl_0  
dpll1_ctrl_1  
See  
Register  
Description  
Control register for the DPLL1 filter control;  
phase slope limit, bandwidth and hitless  
switching  
R/W  
R/W  
See  
Register  
Description  
Holdover update time, filter_out_en,  
freq_offset_en, revert enable  
Table 5 - Register Map (continued)  
22  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Reset  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Description  
Type  
1F  
dpll1_modesel  
See  
Register  
Description  
Control register for the DPLL1 mode of  
operation  
R/W  
20  
21  
dpll1_refsel  
00  
DPLL1 reference selection or reference  
selection status  
R/W  
R/W  
dpll1_ref_fail_mask  
3C  
Control register to mask each failure indicator  
(SCM, CFM, PFM and GST) used for automatic  
reference switching and automatic holdover  
22  
23  
24  
25  
26  
27  
dpll1_wait_to_restore  
dpll1_ref_rev_ctrl  
00  
00  
10  
32  
54  
76  
Control register to indicate the time to restore a  
previous failed reference  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Control register for the ref0 to ref7 enable  
revertive signals  
dpll1_ref_pri_ctrl_0  
dpll1_ref_pri_ctrl_1  
dpll1_ref_pri_ctrl_2  
dpll1_ref_pri_ctrl_3  
Control register for the ref0 and ref1 priority  
values  
Control register for the ref2 and ref3 priority  
values  
Control register for the ref4 and re5 priority  
values  
Control register for the ref6 and ref7 priority  
values  
28  
29  
dpll1_lock_holdover_status  
dpll1_pullinrange  
04  
03  
DPLL1 lock and holdover status register  
Control register for the pull-in range  
R
R/W  
DPLL2 Control  
2A  
dpll2_ctrl_0  
00  
Control register to program the DPLL2: hitless  
switching, the phase slope limit and DPLL  
enable  
R/W  
2B  
2C  
dpll2_ctrl_1  
04  
02  
Control register to program the DPLL2:  
filter_out_en, freq_offset_en, revert enable  
R/W  
R/W  
dpll2_modesel  
Control register to select the mode of operation  
of the DPLL2  
2D  
2E  
dpll2_refsel  
00  
DPLL2 reference selection or reference  
selection status  
R/W  
R/W  
dpll2_ref_fail_mask  
3C  
Control register to mask each failure indicator  
(SCM, CFM, PFM and GST) used for automatic  
reference switching and automatic holdover  
2F  
30  
dpll2_wait_to_restore  
dpll2_ref_rev_ctrl  
00  
00  
Control register to indicate the time to restore a  
previous failed reference for the DPLL2 path  
R/W  
R/W  
Control register for the ref0 to ref7 enable  
revertive signals  
Table 5 - Register Map (continued)  
23  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Reset  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Description  
Type  
31  
32  
33  
34  
35  
dpll2_ref_pri_ctrl_0  
dpll2_ref_pri_ctrl_1  
dpll2_ref_pri_ctrl_2  
dpll2_ref_pri_ctrl_3  
dpll2_lock_holdover_status  
10  
32  
54  
76  
04  
Control register for the ref0 and ref1 priority  
values  
R/W  
R/W  
R/W  
R/W  
R
Control register for the ref2 and ref3 priority  
values  
Control register for the ref4 and re5 priority  
values  
Control register for the ref6 and ref7 priority  
values  
DPLL2 lock and holdover status register  
P0 Configuration Registers  
36  
p0_enable  
8F  
Control register to enable p0_clk0, p0_clk1,  
p0_fp0, p0_fp1, the P0 synthesizer and select  
the source  
R/W  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
p0_run  
0F  
00  
01  
00  
3E  
00  
00  
05  
Control register to generate p0_clk0, p0_clk1,  
p0_fp0 and p0_fp1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
p0_freq_0  
Control register for the [7:0] bits of the N of  
N*8k clk0  
p0_freq_1  
Control register for the [13:8] bits of the N of  
N*8k clk0  
p0_clk0_offset90  
p0_clk1_div  
p0_clk1_offset90  
p0_offset_fine  
p0_fp0_freq  
Control register for the p0_clk0 phase position  
coarse tuning  
Control register for the p0_clk1 frequency  
selection  
Control register for the p0_clk1 phase position  
coarse tuning  
Control register for the output/output phase  
alignment fine tuning for p0 path  
Control register to select the p0_fp0 frame  
pulse frequency  
3F  
40  
p0_fp0_type  
83  
00  
Control register to select fp0 type  
R/W  
R/W  
p0_fp0_fine_offset_0  
Bits [7:0] of the programmable frame pulse  
phase offset in multiples of 1/262.14 MHz  
41  
42  
43  
p0_fp0_fine_offset_1  
p0_fp0_coarse_offset  
p0_fp1_freq  
00  
00  
05  
Bits [15:8] of the programmable frame pulse  
phase offset in multiples of 1/262.14 MHz  
R/W  
R/W  
R/W  
Programmable frame pulse phase offset in  
multiples of 8 kHz cycles  
Control register to select p0_fp1 frame pulse  
frequency  
Table 5 - Register Map (continued)  
24  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Reset  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Description  
Type  
44  
45  
p0_fp1_type  
11  
00  
Control register to select fp1 type  
R/W  
R/W  
p0_fp1_fine_offset_0  
p0_fp1_fine_offset_1  
p0_fp1_coarse_offset  
Bits [7:0] of the programmable frame pulse  
phase offset in multiples of 1/262.144 MHz  
46  
47  
00  
00  
Bits [15:8] of the programmable frame pulse  
phase offset in multiples of 1/262.144 MHz  
R/W  
R/W  
Programmable frame pulse phase offset in  
multiples of 8 kHz cycles  
P1 Configuration Registers  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
p1_enable  
83  
03  
C1  
00  
00  
3F  
00  
00  
Control register to enable p1_clk0, p1_clk1, the  
P1 synthesizer and select the source  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
p1_run  
Control register to generate enable/disable  
p1_clk0 and p1_clk1  
p1_freq_0  
Control register for the [7:0] bits of the N of  
N*8k clk0  
p1_freq_1  
Control register for the [13:8] bits of the N of  
N*8k clk0  
p1_clk0_offset90  
p1_clk1_div  
p1_clk1_offset90  
p1_offset_fine  
Control register for the p1_clk0 phase position  
coarse tuning  
Control register for the p1_clk1 frequency  
selection  
Control register for the p1_clk1 phase position  
coarse tuning  
Control register for the output/output phase  
alignrment fine tuning  
SDH Configuration Registers  
50  
51  
52  
53  
54  
55  
sdh_enable  
8F  
0F  
42  
00  
00  
00  
Control register to enable sdh_clk0, sdh_clk1,  
sdh_fp0, sdh_fp1 and the SDH PLL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
sdh_run  
Control register to generate sdh_clk0,  
sdh_clk1, sdh_fp0 and sdh_fp1  
sdh_clk_div  
Control register for the sdh_clk0 and sdh_clk1  
frequency selection  
sdh_clk0_offset90  
sdh_clk1_offset90  
sdh_offset_fine  
Control register for the sdh_clk0 phase position  
coarse tuning  
Control register for the sdh_clk1 phase position  
coarse tuning  
Control register for the output/output phase  
alignrment fine tuning for sdh path  
Table 5 - Register Map (continued)  
25  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Reset  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Description  
Type  
56  
57  
sdh_fp0_freq  
05  
Control register to select the sdh_fp0 frame  
pulse frequency  
R/W  
R/W  
sdh_fp0_type  
23  
Control register to select fp0 type  
58  
59  
5A  
5B  
sdh_fp0_fine_offset_0  
sdh_fp0_fine_offset_1  
sdh_fp0_coarse_offset  
sdh_fp1_freq  
00  
00  
00  
03  
Bits [7:0] of the programmable frame pulse  
phase offset in multiples of 1/311.04 MHz  
R/W  
R/W  
R/W  
R/W  
Bits [15:8] of the programmable frame pulse  
phase offset in multiples of 1/311.04 MHz  
Programmable frame pulse phase offset in  
multiples of 8 kHz cycles  
Control register to select sdh_fp1 frame pulse  
frequency  
5C  
5D  
sdh_fp1_type  
03  
00  
Control register to select fp1 type  
R/W  
R/W  
sdh_fp1_fine_offset_0  
Bits [7:0] of the programmable frame pulse  
phase offset in multiples of 1/311.04 MHz  
5E  
5F  
sdh_fp1_fine_offset_1  
sdh_fp1_coarse_offset  
00  
00  
Bits [15:8] of the programmable frame pulse  
phase offset in multiples of 1/311.04 MHz  
R/W  
R/W  
Programmable frame pulse phase offset in  
multiples of 8 kHz cycles  
Differential Output Configuration  
60  
61  
diff_ctrl  
diff_sel  
A3  
53  
Control register to enable diff0, diff1  
R/W  
R/W  
Control register to select the diff0 and diff1  
frequencies  
External Feedback Configuration  
62  
63  
64  
fb_control  
fb_offset_fine  
reserved  
80  
Control register to enable fb_clk and the FB  
R/W  
R/W  
PLL, int/ext feedback select  
F5  
Control register for the output/output phase  
alignment fine tuning  
N * 8 kHz Reference Control  
65  
66  
67  
ref_freq_mode_0  
ref_freq_mode_1  
custA_mult_0  
00  
00  
00  
Control register to set whether to use auto  
R/W  
R/W  
R/W  
detect, CustomA or CustomB for ref0 to ref3  
Control register to set whether to use auto  
detect, CustomA or CustomB for ref4 to ref7  
Control register for the [7:0] bits of the custom  
configuration A. This is the N integer for the  
N*8kHz reference monitoring.  
Table 5 - Register Map (continued)  
26  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Reset  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Description  
Type  
68  
custA_mult_1  
00  
Control register for the [13:8] bits of the custom  
configuration A. This is the N integer for the  
N*8kHz reference monitoring.  
R/W  
69  
6A  
6B  
custA_scm_low  
custA_scm_high  
custA_cfm_low_0  
00  
00  
00  
Control register for the custom configuration A:  
single cycle SCM low limiter  
R/W  
R/W  
R/W  
Control register for the custom configuration  
A: single cycle SCM high limiter  
Control register for the custom configuration  
A: The [7:0] bits of the single cycle CFM low  
limit  
6C  
6D  
6E  
custA_cfm_low_1  
custA_cfm_hi_0  
custA_cfm_hi_1  
00  
00  
00  
Control register for the custom configuration  
A: The [15:0] bits of the single cycle CFM low  
limit  
R/W  
R/W  
R/W  
Control register for the custom configuration  
A: The [7:0] bits of the single cycle CFM high  
limit  
Control register for the custom configuration  
A: The [15:0] bits of the single cycle CFM high  
limiter  
6F  
70  
custA_cfm_cycle  
custA_div  
00  
00  
Control register for the custom configuration  
A: CFM reference monitoring cycles - 1  
R/W  
R/W  
Control register for the custom configuration  
A: enable the use of ref_div4 for the CFM and  
PFM inputs  
71  
72  
custB_mult_0  
custB_mult_1  
00  
00  
Control register for the [7:0] bits of the custom  
configuration B. This is the 8 k integer for the  
N*8kHz reference monitoring.  
R/W  
R/W  
Control register for the [13:8] bits of the custom  
configuration B. This is the 8 k integer for the  
N*8kHz reference monitoring.  
73  
74  
75  
custB_scm_low  
custB_scm_high  
custB_cfm_low_0  
00  
00  
00  
Control register for the custom configuration B:  
single cycle SCM low limiter  
R/W  
R/W  
R/W  
Control register for the custom configuration  
B: single cycle SCM high limiter  
Control register for the custom configuration  
B: The [7:0] bits of the single cycle CFM low  
limiter.  
76  
custB_cfm_low_1  
00  
Control register for the custom configuration  
B: The [15:0] bits of the single cycle CFM low  
limiter.  
R/W  
Table 5 - Register Map (continued)  
27  
Zarlink Semiconductor Inc.  
ZL30121  
Data Sheet  
Reset  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Description  
Type  
77  
custB_cfm_hi_0  
00  
Control register for the custom configuration  
B: The [7:0] bits of the single cycle CFM high  
limiter.  
R/W  
78  
custB_cfm_hi_1  
00  
Control register for the custom configuration  
B: The [15:0] bits of the single cycle CFM high  
limiter.  
R/W  
79  
7A  
custB_cfm_cycle  
custB_div  
00  
00  
Control register for the custom configuration  
B: CFM reference monitoring cycles - 1  
R/W  
R/W  
Control register for the custom configuration  
B: enable the use of ref_div4 for the CFM and  
PFM inputs  
7B -  
7F  
Reserved  
Table 5 - Register Map (continued)  
3.0 References  
AdvancedTCA, ATCA and the AdvancedTCA and ATCA logos are trademarks of the PCI Industrial Computer  
Manufacturers Group.  
28  
Zarlink Semiconductor Inc.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

ZL30121GGGV2

Support Circuit, 1-Func, PBGA100, 9 X 9 MM, 0.80 MM PITCH, CABGA-100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL30122

SONET/SDH Low Jitter Line Card Synchronizer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL30122GGG

SONET/SDH Low Jitter Line Card Synchronizer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL30122GGG2

SONET/SDH Low Jitter Line Card Synchronizer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL30123

Low Jitter Line Card Synchronizer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL30123GGG

Low Jitter Line Card Synchronizer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL30123GGG2

Low Jitter Line Card Synchronizer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL30131

OC-192/STM-64 SONET/SDH/10GbE Network Interface Synchronizer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL30131GGG

OC-192/STM-64 SONET/SDH/10GbE Network Interface Synchronizer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL30131GGG2

OC-192/STM-64 SONET/SDH/10GbE Network Interface Synchronizer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL30132GGG

Support Circuit, 1-Func, PBGA64, 9 X 9 MM, 1 MM PITCH, CABGA-64

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSEMI

ZL30132GGG2

Support Circuit, 1-Func, PBGA64, 9 X 9 MM, 1 MM PITCH, LEAD FREE, CABGA-64

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSEMI