ZL30414 [ZARLINK]

SONET/SDH Clock Multiplier PLL; SONET / SDH时钟倍频PLL
ZL30414
型号: ZL30414
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

SONET/SDH Clock Multiplier PLL
SONET / SDH时钟倍频PLL

时钟
文件: 总24页 (文件大小:423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL30414  
SONET/SDH Clock Multiplier PLL  
Data Sheet  
February 2005  
Features  
Meets jitter requirements of Telcordia GR-253-  
Ordering Information  
CORE for OC-192, OC-48, OC-12, and OC-3  
rates  
ZL30414QGC 64 Pin TQFP Trays  
ZL30414QGC1 64 Pin TQFP* Trays  
*Pb Free Matte Tin  
Meets jitter requirements of ITU-T G.813 for STM-  
64, STM-16, STM-4 and STM-1 rates  
-40°C to +85°C  
Provides four LVPECL differential output clocks at  
622.08 MHz  
Description  
Provides a CML differential clock at 155.52 MHz  
The ZL30414 is an analog phase-locked loop (APLL)  
designed to provide jitter attenuation and rate  
conversion for SDH (Synchronous Digital Hierarchy)  
and SONET (Synchronous Optical Network)  
networking equipment. The ZL30414 generates very  
low jitter clocks that meet the jitter requirements of  
Telcordia GR-253-CORE OC-192, OC-48, OC-12, OC-  
3 rates and ITU-T G.813 STM-64, STM-16, STM-4 and  
STM-1 rates.  
Provides a single-ended CMOS clock at 19.44  
MHz  
Lock Indicator  
Provides enable/disable control of output clocks  
Accepts a CMOS reference at 19.44 MHz  
3.3 V supply  
Applications  
The ZL30414 accepts a CMOS compatible reference  
at 19.44 MHz and generates four LVPECL differential  
output clocks at 622.08 MHz, a CML differential  
clock at 155.52 MHz and a single-ended CMOS  
clock at 19.44 MHz. The output clocks can be  
individually enabled or disabled. The ZL30414  
provides a LOCK indication.  
SONET/SDH line cards  
Network Element timing cards  
C622oEN-A  
C622oEN-B  
C622oEN-C  
C622oEN-D  
LPF  
C622oP/N-A  
Frequency  
& Phase  
Detector  
C19i  
C622oP/N-B  
Frequency  
Loop  
Filter  
VCO  
Dividers  
and  
C622oP/N-C  
C622oP/N-D  
C155oP/N  
C19o  
Clock  
Drivers  
19.44MHz  
Reference  
and  
State  
Machine  
Bias Circuit  
C155oEN  
C19oEN  
VDD GND VCC  
LOCK  
BIAS  
05  
Figure 1 - Functional Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003-2005, Zarlink Semiconductor Inc. All Rights Reserved.  
ZL30414  
Data Sheet  
64  
62  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
38  
36  
34  
GND  
VCC1  
GND  
VCC  
VDD  
GND  
VCC  
GND  
VDD  
GND  
NC  
GND  
GND  
LOCK  
GND  
C19o  
VDD  
GND  
2
4
65 - EP_GND  
VCC  
C155oN  
C155oP  
GND  
6
8
VCC2  
LPF  
GND  
GND  
ZL30414  
10  
12  
14  
16  
BIAS  
C155oEN  
C622oEN-A  
C622oEN-B  
C622oEN-C  
C622oEN-D  
18  
20  
22  
24  
26  
28  
30  
32  
Figure 2 - TQFP 64 pin (Top View)  
Pin Description  
Pin Description Table  
Pin #  
Name  
Description  
1
GND  
VCC1  
VCC  
Ground. 0 volt  
2
3
Positive Analog Power Supply. +3.3 V ±10%.  
Positive Analog Power Supply. +3.3 V ±10%.  
4
5
C155oN  
C155oP  
C155 Clock Output (CML). These outputs provide a differential 155.52 MHz  
clock.  
6
7
GND  
Ground. 0 volt  
VCC2  
Positive Analog Power Supply. +3.3 V ±10%  
Low Pass Filter (Analog). Connect to this pin external RC network (RF and  
8
LPF  
CF) for the low pass filter.  
9
GND  
GND  
Ground. 0 volt  
Ground. 0 volt  
10  
2
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
Pin Description Table (continued)  
Pin #  
Name  
Description  
Bias. See Figure 13 for the recommended bias circuit.  
11  
BIAS  
12  
C155o Clock Enable (CMOS Input). If tied high this control pin enables the  
C155oP/N differential driver. Pulling this input low disables the output clock and  
deactivates differential drivers.  
C155oEN  
C622oEN-A  
C622oEN-B  
C622oEN-C  
C622oEN-D  
C622 Clock Output Enable A (CMOS Input). If tied high this control pin  
enables the C622oP/N-A output clock. Pulling this input low disables the output  
clock without deactivating differential drivers.  
13  
14  
15  
16  
C622 Clock Output Enable B (CMOS Input). If tied high this control pin  
enables the C622oP/N-B output clock. Pulling this input low disables the output  
clock without deactivating differential drivers.  
C622 Clock Output Enable C (CMOS Input). If tied high this control pin  
enables the C622oP/N-C output clock.Pulling this input low disables the output  
clock without deactivating differential drivers.  
C622 Clock Output Enable D (CMOS Input). If tied high this control pin  
enables the C622oP/N-D output clock.Pulling this input low disables the output  
clock without deactivating differential drivers.  
17  
18  
GND  
VDD  
Ground. 0 volt  
Positive Digital Power Supply. +3.3 V ±10%  
19  
20  
21  
22  
NC  
NC  
NC  
No internal bonding Connection. Leave unconnected.  
No internal bonding Connection. Leave unconnected.  
No internal bonding Connection. Leave unconnected.  
VDD  
IC  
Positive Digital Power Supply. +3.3 V ±10%  
23  
24  
25  
26  
Internal Connection. Connect this pin to Ground (GND).  
No internal bonding Connection. Leave unconnected.  
No internal bonding Connection. Leave unconnected.  
NC  
NC  
C19o Output Enable (CMOS Input). If tied high this control pin enables the  
C19o output clock. Pulling this pin low forces output driver into a high  
impedance state.  
C19oEN  
27  
28  
GND  
C19i  
VDD  
Ground. 0 volt  
C19 Reference Input (CMOS Input). This pin is a single-ended input reference  
source used for synchronization. This pin accepts 19.44 MHz.  
29  
30  
Positive Digital Power Supply. +3.3 V ±10%  
GND  
VDD  
GND  
Ground. 0 volt  
31  
32  
Positive Digital Power Supply. +3.3 V ±10%  
Ground. 0 volt  
3
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
Pin Description Table (continued)  
Pin #  
Name  
GND  
VDD  
Description  
33  
Ground. 0 volt  
Positive Digital Power Supply. +3.3 V ±10%  
34  
35  
C19 Clock Output (CMOS Output). This pin provides a single-ended CMOS  
C19o  
clock at 19.44 MHz.  
36  
37  
GND  
Ground. 0 volt  
LOCK  
Lock Indicator (CMOS Output). This output goes high when PLL is frequency  
locked to the input reference C19i.  
38  
39  
GND  
Ground. 0 volt  
GND  
NC  
Ground. 0 volt  
40  
41  
No internal bonding Connection. Leave unconnected.  
Ground. 0 volt  
GND  
42  
43  
44  
45  
46  
47  
48  
49  
VDD  
GND  
VCC  
GND  
VDD  
VCC  
GND  
VCC  
Positive Digital Power Supply. +3.3 V ±10%  
Ground. 0 volt  
Positive Analog Power Supply. +3.3 V ±10%  
Ground. 0 volt  
Positive Digital Power Supply. +3.3 V ±10%  
Positive Analog Power Supply. +3.3 V ±10%  
Ground. 0 volt  
Positive Analog Power Supply. +3.3 V ±10%.  
50  
51  
C622 Clock Output (LVPECL). These outputs provide a differential LVPECL  
clock at 622.08 MHz. Unused LVPECL port should be left unterminated to  
decrease supply current.  
C622oN-D  
C622oP-D  
52  
53  
GND  
VCC  
Ground. 0 volt  
Positive Analog Power Supply. +3.3 V ±10%.  
54  
55  
C622 Clock Output (LVPECL). These outputs provide a differential LVPECL  
clock at 622.08 MHz. Unused LVPECL port should be left unterminated to  
decrease supply current.  
C622oP-C  
C622oN-C  
56  
57  
GND  
VCC  
Ground. 0 volt  
Positive Analog Power Supply. +3.3 V ±10%.  
58  
59  
C622 Clock Output (LVPECL). These outputs provide a differential LVPECL  
clock at 622.08 MHz. Unused LVPECL port should be left unterminated to  
decrease supply current.  
C622oN-B  
C622oP-B  
4
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
Pin Description Table (continued)  
Pin #  
60  
Name  
GND  
VCC  
Description  
Ground. 0 volt  
Positive Analog Power Supply. +3.3 V ±10%.  
61  
C622 Clock Output (LVPECL). These outputs provide a differential LVPECL  
clock at 622.08 MHz. Unused LVPECL port should be left unterminated to  
decrease supply current.  
62  
63  
C622oP-A  
C622oN-A  
64  
65  
GND  
NC  
Ground. 0 volt  
No internal bonding Connection. Leave unconnected.  
1.0 Functional Description  
The ZL30414 is an analog phased-locked loop which provides rate conversion and jitter attenuation for  
SONET/SDH OC-192/STM-64, OC-48/STM-16, OC-12/STM-4 and OC-3/STM-1 applications. A functional block  
diagram of the ZL30414 is shown in Figure 1 and a brief description is presented in the following sections.  
1.1 Frequency/Phase Detector  
The Frequency/Phase Detector compares the frequency/phase of the input reference signal with the feedback  
signal from the Frequency Divider circuit and provides an error signal corresponding to the frequency/phase  
difference between the two. This error signal is passed to the Loop Filter circuit.  
1.2 Lock Indicator  
The ZL30414 has a built-in LOCK detector that measures frequency difference between input reference clock C19i  
and the VCO frequency. When the VCO frequency is less than ±300 ppm apart from the input reference frequency  
then the LOCK pin is set high. The LOCK pin is pulled low if the frequency difference exceeds ±1000 ppm.  
1.3 Loop Filter  
The Loop Filter is a low pass filter. This low pass filter ensures that the network jitter requirements are met for an  
input reference frequency of 19.44 MHz. The corner frequency of the Loop Filter is configurable with an external  
capacitor and resistor connected to the LPF pin and ground as shown in Figure 3.  
ZL30414  
Frequency  
and Phase  
Detector  
LPF  
Loop  
Filter  
RF=8.2 kΩ, CF=470 nF  
RF  
CF  
VCO  
Figure 3 - Loop Filter Elements  
5
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
1.4 VCO  
The voltage-controlled oscillator (VCO) receives the filtered error signal from the Loop Filter, and based on the  
voltage of the error signal generates a primary frequency. The VCO output is connected to the "Frequency Dividers  
and Clock Drivers" block that divides VCO frequency and buffer generated clocks.  
1.5 Output Interface Circuit  
The output of the VCO is used by the Output Interface Circuit to provide four LVPECL differential clocks at  
622.08 MHz, one CML differential clock at 155.52 MHz and a single-ended 19.44 MHz output clock. This block  
provides also a 19.44 MHz feedback clock that closes PLL loop. Each output clock can be enabled or disabled  
individually with the associated Output Enable pin.  
Output Clocks  
C622oP/N-A  
Output Enable Pins  
C622oEN-A  
C622oEN-B  
C622oEN-C  
C622oEN-D  
C155oEN  
C622oP/N-B  
C622oP/N-C  
C622oP/N-D  
C155oP/N  
C19o  
C19oEN  
Table 1 - Output Enable Control  
To reduce power consumption and achieve the lowest possible intrinsic jitter the unused output clocks must be  
disabled. If any of the LVPECL outputs are disabled they must be left open without any terminations.  
6
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
2.0 ZL30414 Performance  
The following are some of the ZL30414 performance indicators that complement results listed in the Characteristics  
section of this data sheet.  
2.1 Input Jitter Tolerance  
Jitter tolerance is a measure of the PLL’s ability to operate properly (i.e., remain in lock and/or regain lock in the  
presence of large jitter magnitudes at various jitter frequencies) when jitter is applied to its input reference. The  
input jitter tolerance of the ZL30414 is shown in Figure 4. On this graph, the single line at the top represents  
measured input jitter tolerance and the three overlapping lines below represent minimum input jitter tolerance for  
OC-192, OC-48, and OC-12 network interfaces. The jitter tolerance is expressed in picoseconds (pk-pk) to  
accommodate requirements for interfaces operating at different rates.  
Figure 4 - Input Jitter Tolerance  
7
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
2.2 Jitter Transfer Characteristic  
Jitter Transfer Characteristic represents a ratio of the jitter at the output of a PLL to the jitter applied to the input of a  
PLL. This ratio is expressed in dB and it characterizes the PLLs ability to attenuate (filter) jitter. The jitter transfer  
characteristic for the ZL30414 configured with recommended loop filter components (RF=8.2 kΩ, CF=470 nF) is  
shown in Figure 5. The plotted curves represent jitter transfer characteristics over the recommended voltage (3.0 V  
to 3.6 V) and temperature (-40C to 85C) ranges.  
Figure 5 - Jitter Transfer Characteristic  
8
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
3.0 Applications  
3.1 Ultra-Low Jitter SONET/SDH Equipment Clocks  
The ZL30414 functionality and performance complements the entire family of the Zarlink’s advanced network  
synchronization PLLs. Its superior jitter filtering characteristics exceed requirements of SONET/SDH optical  
interfaces operating up to OC-192/STM-64 rate (10 Gbit/s). The ZL30414 in combination with the MT90401 or the  
ZL30407 (SONET/SDH Network Element PLLs) provides the core building blocks for high quality equipment clocks  
suitable for network synchronization (see Figure 6) .  
C622oA  
C622oB  
C622oC  
C622oD  
C155o  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
CML  
622.08 MHz  
622.08 MHz  
622.08 MHz  
622.08 MHz  
155.52 MHz  
19.44 MHz  
C19i  
ZL30414  
C19o  
CMOS  
LPF  
CF  
RF  
C19o  
C155o  
C34o/C44o  
C16o  
C8o  
C6o  
C4o  
C2o  
CMOS  
LVDS  
19.44 MHz  
PRI  
SEC  
155.52 MHz  
34.368 MHz or 44.736 MHz  
16.384 MHz  
8.192 MHz  
6.312 MHz  
4.096 MHz  
2.048 MHz  
1.544 MHz  
8 kHz  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Synchronization  
Reference  
Clocks  
RefSel  
RefAlign  
ZL30407  
or  
PRIOR  
SECOR  
MT90401  
C1.5o  
F16o  
F8o  
LOCK  
8 kHz  
8 kHz  
HOLDOVER  
F0o  
CMOS  
20 MHz  
OCXO  
Data Port  
uP  
Controller Port  
Note: Only main functional connections are shown  
Figure 6 - SONET/SDH Equipment Clock  
9
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
The ZL30414 in combination with the MT9046 provides an optimum solution for SONET/SDH line cards (see Figure  
7).  
C622oA  
C622oB  
C622oC  
C622oD  
C155o  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
CML  
622.08 MHz  
622.08 MHz  
622.08 MHz  
622.08 MHz  
155.52 MHz  
19.44 MHz  
C19i  
ZL30414  
C19o  
CMOS  
LPF  
R1 = 680  
R1  
C1  
C1 = 820 nF  
C2 = 22 nF  
C2  
C19o  
C16o  
C8o  
C6o  
C4o  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
19.44 MHz  
16.384 MHz  
8.192 MHz  
6.312 MHz  
4.096 MHz  
2.048 MHz  
1.544 MHz  
8 kHz  
PRI  
SEC  
Synchronization  
Reference  
Clocks  
RSEL  
C2o  
MT9046  
LOCK  
HOLDOVER  
C1.5o  
F16o  
F8o  
8 kHz  
8 kHz  
C20i  
F0o  
CMOS  
20 MHz  
TCXO  
uC  
Hardware Control  
Note: Only main functional connections are shown  
Figure 7 - SONET/SDH Line Card  
10  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
3.2 Recommended Interface circuit  
3.2.1 LVPECL to LVPECL Interface  
The C622oP/N-A, C622oP/N-B, C622oP/N-B, and C622oP/N-D outputs provide differential LVPECL clocks at  
622.08 MHz. The LVPECL output drivers require a 50 termination connected to the Vcc-2V source for each  
output terminal at the terminating end as shown below. The terminating resistors should be placed as close as  
possible to the LVPECL receiver.  
+3.3 V  
0.1 uF  
VCC=+3.3 V  
R1  
ZL30414  
VCC  
LVPECL  
Receiver  
R1  
Z=50 Ω  
Z=50 Ω  
LVPECL  
Driver  
C622oP-A  
C622oN-A  
622.08 MHz  
R2  
R2  
GND  
Typical resistor values: R1 = 130 , R2 =82 Ω  
Figure 8 - LVPECL to LVPECL Interface  
3.2.2 CML to CML Interface  
The C155o output provides a differential CML/LVDS compatible clock at 155.52 MHz. The output drivers require a  
50 load at the terminating end if the receiver is CML type.  
+3.3 V  
Low impedance  
DC bias source  
0.1 uF  
VCC  
ZL30414  
CML  
Receiver  
50 Ω  
50 Ω  
0.1 uF  
0.1 uF  
Z=50 Ω  
Z=50 Ω  
CML  
C155oP  
C155oN  
Driver  
155.52 MHz  
GND  
Figure 9 - CML to CML Interface  
11  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
3.2.3 CML to LVDS Interface  
To configure the driver as an LVDS driver, external biasing resistors are required to set up the common mode  
voltage as specified by ANSI/TIA/EIA-644 LVDS standard. The standard specifies the VCM (common mode voltage)  
as minimum 1.125 V, typical 1.2 V, and maximum 1.375 V. The following figure provides a recommendation for  
LVDS applications.  
+3.3 V  
0.1 uF  
VCC=+3.3 V  
R1  
ZL30414  
VCC  
LVDS  
10 nF  
10 nF  
R1  
R2  
Receiver  
Z=50 Ω  
Z=50 Ω  
CML  
C155oP  
C155oN  
Driver  
100  
155.52 MHz  
R2  
GND  
Typical resistor values: R1 = 16 kΩ, R2 = 10 k  
Figure 10 - LVDS Termination  
3.2.4 CML to LVPECL Interface  
The CML output can drive LVPECL input as is shown in Figure 11. The terminating resistors should be placed as  
close as possible to the LVPECL receiver.  
+3.3 V  
0.1 uF  
VCC=+3.3 V  
R1  
ZL30414  
VCC  
LVPECL  
Receiver  
R1  
R2  
10 nF  
10 nF  
Z=50 Ω  
Z=50 Ω  
CML  
Driver  
C155oP  
C155oN  
155.52 MHz  
R2  
GND  
Typical resistor values: R1 = 82 , R2 =130  
Figure 11 - CML to LVPECL Interface  
12  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
3.3 Tristating LVPECL Outputs  
The ZL30414 has four differential 622.08 MHz LVPECL outputs, which can be used to drive four different OC-3/OC-  
12/OC-48/OC-192 devices such as framers, mappers and SERDES. In the case where fewer than four clocks are  
required, a user can disable unused LVPECL outputs on the ZL30414 by pulling the corresponding enable pins low.  
When disabled, voltage at the both pins of the differential LVPECL output will be pulled up to Vcc - 0.7 V.  
For applications requiring the LVPECL outputs to be in a tri-state mode, external AC coupling can be used as  
shown in Figure 12. Typically this might be required in hot swappable applications.  
Resistors R1 and R2 are required for DC bias of the LVPECL driver. Capacitors C1 and C2 are used as AC  
coupling capacitors. During disable mode (C622oEN pin pulled low) those capacitors present infinite impedance to  
the DC signal and to the receiving device this looks like a tristated (High-Z) output. Resistors R3, R4, R5 and R6  
are used to terminate the transmission line with 50 ohm impedance and to generate DC bias voltage for the  
LVPECL receiver. If the LVPECL receiver has an integrated 50 ohm termination and bias source, resistors R3, R4,  
R5 and R6 should not be populated.  
C622oEN  
3.3 V 3.3 V  
ZL30414  
R5  
R3  
C1  
127  
127  
0.1 u  
Z=50  
Z=50  
C2  
0.1 u  
R6  
R1  
R2  
R4  
82.5  
200  
200  
82.5  
Figure 12 - Tristatable LVPECL Outputs  
13  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
3.4 Power Supply and BIAS Circuit Filtering Recommendations  
Figure 13 presents a complete filtering arrangement that is recommended for applications requiring maximum jitter  
performance. The level of required filtering is subject to further optimization and simplification. Please check  
Zarlink’s web site for updates.  
0.1 uF  
0.1 uF  
0.1 uF  
0.1 uF  
0.1 uF  
+3.3 V Power Rail  
0.1 uF  
GND  
VCC1  
VCC  
Ferrite Bead  
64  
62  
60  
58  
56  
54  
52  
50  
4.7  
48  
46  
44  
42  
40  
38  
GND  
VCC  
VDD  
2
4
+
+
33 uF  
0.1 uF  
0.1 uF  
0.1 uF  
0.1 uF  
10 uF 0.1 uF  
0.1 uF  
GND  
GND  
GND  
VCC  
VDD  
6
8
GND  
VCC2  
0.1 uF  
+
+
ZL30414  
33 uF  
33 uF  
GND  
GND  
10  
11  
12  
220  
GND  
GND  
BIAS  
0.1 uF  
36  
34  
GND  
14  
16  
VDD  
GND  
0.1 uF  
30  
18  
20  
22  
24  
26  
28  
32  
0.1 uF  
0.1 uF  
0.1 uF  
Notes:  
1. All the ground pins (GND) and the Exposed die Pad (metal area at the back of the package) are connected to the same ground plane.  
2. Select Ferrite Bead with IDC > 400 mA and RDC in a range from 0.10 to 0.15  
Figure 13 - Power Supply and BIAS Circuit Filtering  
14  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
4.0 Characteristics  
Absolute Maximum Ratings†  
Characteristics  
Sym.  
DDR, VCCR  
VPIN  
Min.‡  
Max.‡  
Units  
1
2
Supply voltage  
V
TBD  
-0.5  
TBD  
V
V
Voltage on any pin  
VCC + 0.5  
V
DD + 0.5  
30  
3
4
5
6
Current on any pin  
ESD Rating  
IPIN  
VESD  
TST  
-0.5  
-55  
mA  
V
1250  
125  
Storage temperature  
Package power dissipation  
°C  
W
PPD  
1.8  
† Voltages are with respect to ground unless otherwise stated.  
‡ Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Recommended Operating Conditions†  
Characteristics  
Sym.  
Min.  
Typ.‡  
Max.  
Units  
Notes  
1
2
Operating Temperature  
Positive Supply  
TOP  
-40  
3.0  
25  
+85  
3.6  
°C  
VDD, VCC  
3.3  
V
† Voltages are with respect to ground unless otherwise stated.  
‡ Typical figures are for design aid only: not guaranteed and not subject to production testing.  
DC Electrical Characteristics†  
Characteristics  
Sym.  
Min.  
Typ.‡  
Max.  
Units  
Notes  
1
Supply Current  
IDD+ICC  
146  
mA  
LVPECL, CML  
drivers  
disabled and  
unterminated  
2
3
Incremental Supply Current to  
single LVPECL driver (driver  
enabled and terminated, see  
Figure 8)  
ILVPECL  
37  
26  
mA  
mA  
Note 1  
Note 2  
Incremental Supply Current to  
CML driver (driver enabled and  
terminated, see Figure 9)  
ICML  
Note 3  
4
5
6
CMOS: High-level input  
voltage  
VIH  
VIL  
IIL  
0.7VDD  
0
VDD  
0.3VDD  
5
V
V
CMOS: Low-level input  
voltage  
CMOS: Input leakage current  
1
uA  
VI = VDD  
or 0 V  
15  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
DC Electrical Characteristics(continued)  
Characteristics  
Sym.  
Min.  
Typ.‡  
Max.  
Units  
Notes  
7
CMOS: Input bias current for  
pulled-down inputs:  
IB-PU  
300  
uA  
VI = VDD  
C622oEN-A, C622oEN-C,  
C622oEN-D, OC-CLKoEN  
8
9
CMOS: Input bias current for  
pulled-up inputs: , C622oEN-B,  
C19oEN  
IB-PD  
90  
uA  
VI = 0V  
CMOS: High-level output  
voltage  
VOH  
VOL  
VOH  
VOL  
2.4  
2.4  
V
V
IOH = 8 mA  
IOL = 4 mA  
10 CMOS: Low-level output  
voltage  
0.4  
0.4  
11 LOCK pin: High-level output  
voltage  
IOH = 0.5 mA  
IOL = 0.5 mA  
12 LOCK pin: Low-level output  
voltage  
13 CMOS: C19o output rise time  
14 CMOS: C19o output fall time  
TR  
TF  
1.8  
1.1  
3.3  
1.4  
ns  
ns  
V
18 pF load  
18 pF load  
Note 2  
15 LVPECL: Differential output  
voltage (622.08 MHz)  
IVOD_LVPECL  
I
1.17  
16 LVPECL: Offset voltage  
(622.08 MHz)  
VOS_LVPECL  
Vcc-  
1.31  
Vcc-  
1.20  
Vcc-  
1.09  
V
Note 2  
17 LVPECL: Output rise/fall times  
(622.08 MHz)  
TRF  
170  
ps  
V
Note 2  
Note 3  
Note 3  
18 CML: Differential output  
voltage (155.52 MHz)  
IVOD_CMLI  
VOS_CML  
0.73  
19 CML: Offset voltage  
(155.52 MHz)  
Vcc-  
0.58  
Vcc-  
0.54  
Vcc-  
0.50  
V
20 CML: Output rise/fall times  
(155.52 MHz)  
TRF  
220  
ps  
Note 3  
-
-
-
-
: Voltages are with respect to ground unless otherwise stated.  
:Typical figures are for design aid only: not guaranteed and not subject to production testing.  
Supply voltage and operating temperature are as per Recommended Operating Conditions  
Note 1: The ILVPECL current is determined by the termination network connected to LVPECL outputs. More than 25% of this current  
flows outside the chip and it does not contribute to the internal power dissipation.  
-
-
Note 2: LVPECL outputs terminated with ZT = 50 resistors biased to VCC-2V (see Figure 8)  
Note 3: CML outputs terminated with ZT = 50 resistors connected to low impedance DC bias voltage source (see Figure 9)  
16  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
AC Electrical Characteristics- Output Timing Parameters Measurement Voltage Levels  
Characteristics  
Sym  
CMOS  
LVPECL  
CML  
Units  
1
Threshold Voltage  
VT-CMOS  
VT-LVPECL  
VT-CML  
0.5VDD  
0.5VOD_LVPECL  
0.5VOD_CML  
V
2
3
Rise and Fall Threshold Voltage High  
Rise and Fall Threshold Voltage Low  
VHM  
0.7VDD  
0.3VDD  
0.8VOD_LVPECL  
0.2VOD_LVPECL  
0.8VOD_CML  
0.2VOD_CML  
V
V
VLM  
† Voltages are with respect to ground unless otherwise stated.  
Timing Reference Points  
VHM  
VLM  
VT  
All Signals  
tIF, tOF  
tIR, tOR  
Figure 14 - Output Timing Parameter Measurement Voltage Levels  
17  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
AC Electrical Characteristics- C19i Input to C19o, C155o and C622o Output Timing  
Characteristics  
Sym.  
Min.  
Typ.‡  
Max.  
Units  
Notes  
1
2
3
4
5
C19i to C19o delay  
tC19D  
tc155D  
tC622D  
dC155L  
dC622L  
6.2  
3
7.2  
4
8.2  
5
ns  
ns  
ns  
%
C19i to C155o delay  
C19i to C622oA delay  
C155o duty cycle  
0
0.8  
50  
50  
1.6  
52  
52  
48  
48  
C622o duty cycle  
%
Supply voltage and operating temperature are as per Recommended Operating Conditions  
‡ Typical figures are for design aid only: not guaranteed and not subject to production testing.  
C19i  
(19.44 MHz)  
VT-CMOS  
tC19D  
C19o  
VT-CMOS  
(19.44 MHz)  
tC155D  
C155o  
(155.52 MHz)  
VT-CML  
tC622D  
C622oA  
(622.08 MHz)  
VT-LVPECL  
Figure 15 - C19i Input to C19o, C155o and C622o Output Timing  
18  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
AC Electrical Characteristics- C622 Clocks Output Timing  
Characteristics  
Sym.  
Min.  
Typ.‡  
Max. Units  
Notes  
1
2
3
C622oA to C622oB  
tC622D-AB  
tC622D-AC  
tC622D-AD  
-50  
-50  
-50  
0
0
0
+50  
+50  
+50  
ps  
ps  
ps  
C622oA to C622oC  
C622oA to C622oD  
Supply voltage and operating temperature are as per Recommended Operating Conditions  
‡ Typical figures are for design aid only: not guaranteed and not subject to production testing.  
C622oA  
VT-LVPECL  
tC622D-AB  
VT-LVPECL  
C622oB  
C622oC  
tC622D-AC  
VT-LVPECL  
tC622D-AD  
C622oD  
VT-LVPECL  
Note: All output clocks have nominal 50% duty cycle.  
Figure 16 - C622oB, C622oC, C622oD Outputs Timing  
19  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
Performance Characteristics - Functional (VCC = 3.3 V ±10%; TA = -40 to 85°C )  
Characteristics  
Pull-in range  
Min.  
Typ.  
Max.  
Units  
Notes  
1
2
±1000  
ppm  
At nominal input  
reference frequency  
C19i = 19.44 MHz  
Lock Time  
300  
ms  
Performance Characteristics : Output Jitter Generation - GR-253-CORE conformance (VCC = 3.3V ±10%;  
TA = -40 to 85°C )  
ZL30414 Jitter Generation  
GR-253-CORE Jitter Generation Requirements  
Performance  
Jitter  
Measurement  
Filter  
Equivalent  
limit in time  
domain  
Interface  
Limit in  
UI  
Typ.†  
Max.‡  
Units  
psP-P  
(Category II)  
1
2
3
OC-192  
50 kHz - 80 MHz 0.1 UIPP  
0.01 UIRMS  
12 kHz - 20 MHz 0.1 UIPP  
0.01 UIRMS  
0.1 UIPP  
0.01 UIRMS  
10.0  
1.0  
-
7.31  
0.94  
7.32  
0.83  
4.37  
0.60  
STS-192  
0.52  
-
psRMS  
psP-P  
OC-48  
40.2  
4.02  
161  
16.1  
STS-48  
0.58  
-
psRMS  
psP-P  
OC-12  
12 kHz - 5 MHz  
STS-12  
0.34  
psRMS  
† Typical figures are for design aid only: not guaranteed and not subject to production testing.  
‡ Loop Filter components: RF=8.2 kΩ, CF=470 nF  
20  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
Performance Characteristics : Output Jitter Generation - G.813 conformance (Option 1 and 2) (VCC = 3.3V  
±10%; TA = -40 to 85°C )  
ZL30414 Jitter Generation  
G.813 Jitter Generation Requirements  
Performance  
Jitter  
Measurement  
Filter  
Equivalent  
limit in time  
domain  
Limit in  
UI  
Interface  
Typ.†  
Max.‡  
Units  
Option 1  
1
2
3
STM-64  
4 MHz to 80 MHz  
0.1 UIpp  
0.5 UIpp  
0.1 UIpp  
0.5 UIpp  
0.1 UIpp  
0.5 UIpp  
10.0  
50.2  
40.2  
201  
161  
804  
-
0.49  
-
6.95  
0.89  
11.5  
1.04  
6.40  
0.68  
8.67  
1.06  
3.33  
0.42  
19.1  
2.88  
psP-P  
psRMS  
psP-P  
20 kHz to 80 MHz  
1 MHz to 20 MHz  
5 kHz to 20 MHz  
250 kHz to 5 MHz  
1 kHz to 5 MHz  
0.82  
-
psRMS  
psP-P  
STM-16  
STM-4  
0.50  
-
psRMS  
psP-P  
0.68  
-
psRMS  
psP-P  
0.26  
-
psRMS  
psP-P  
1.51  
psRMS  
Option 2  
5
STM-64  
4 MHz to 80 MHz  
0.1 UIpp  
0.3 UIpp  
0.1 UIpp  
0.1 UIpp  
10.0  
30.1  
40.2  
161  
-
0.49  
-
6.95  
0.89  
11.5  
1.04  
7.32  
0.83  
4.37  
0.60  
psP-P  
psRMS  
psP-P  
psRMS  
psP-P  
psRMS  
psP-P  
psRMS  
20 kHz to 80 MHz  
12 kHz - 20 MHz  
12 kHz - 5 MHz  
0.82  
-
6
7
STM-16  
STM-4  
0.58  
-
0.34  
† Typical figures are for design aid only: not guaranteed and not subject to production testing.  
‡ Loop Filter components: RF=8.2 kΩ, CF=470 nF  
21  
Zarlink Semiconductor Inc.  
ZL30414  
Data Sheet  
Performance Characteristics : Output Jitter Generation - ETSI EN 300 462-7-1conformance (VCC = 3.3V  
±10%; TA = -40 to 85°C )  
ZL30414 Jitter Generation  
EN 300 462-7-1 Jitter Generation Requirements  
Performance  
Jitter  
Measurement  
Filter  
Equivalent  
limit in time  
domain  
Limit in  
UI  
Interface  
Typ.†  
Max.‡  
Units  
psP-P  
1
2
STM-16  
1 MHz to 20 MHz  
0.1 UIpp  
0.5UIpp  
40.2  
201  
161  
804  
-
0.50  
-
6.40  
0.68  
8.67  
1.06  
3.33  
0.42  
19.1  
2.88  
psRMS  
psP-P  
5 kHz to 20 MHz  
0.68  
-
psRMS  
psP-P  
STM-4  
250 kHz to 5 MHz 0.1 UIpp  
0.26  
-
psRMS  
psP-P  
1 kHz to 5 MHz  
0.5 UIpp  
1.51  
psRMS  
† Typical figures are for design aid only: not guaranteed and not subject to production testing.  
‡ Loop Filter components: RF=8.2 kΩ, CF=470 nF  
22  
Zarlink Semiconductor Inc.  
Package Code  
c
Zarlink Semiconductor 2005 All rights reserved.  
Previous package codes  
ISSUE  
ACN  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

ZL30414QGC

SONET/SDH Clock Multiplier PLL
ZARLINK

ZL30414QGC1

SONET/SDH Clock Multiplier PLL
ZARLINK

ZL30414QGG1

Support Circuit, 1-Func, PQFP64, 10 X 10 MM, 1 MM HEIGHT, LEAD FREE, MS-026ACD, TQFP-64
MICROSEMI

ZL30414QGG1

Support Circuit, 1-Func, PQFP64, 10 X 10 MM, 1 MM HEIGHT, LEAD FREE, MS-026ACD, TQFP-64
ZARLINK

ZL30415

SONET/SDH Clock Multiplier PLL
ZARLINK

ZL30415GGC

SONET/SDH Clock Multiplier PLL
ZARLINK

ZL30415GGF

SONET/SDH Clock Multiplier PLL
ZARLINK

ZL30415GGF2

SONET/SDH Clock Multiplier PLL
ZARLINK

ZL30415GGG2

SONET/SDH Clock Multiplier PLL
ZARLINK

ZL30415_06

SONET/SDH Clock Multiplier PLL
ZARLINK

ZL30416

SONET/SDH Clock Multiplier PLL
ZARLINK

ZL30416GGG

SONET/SDH Clock Multiplier PLL
ZARLINK