ZL38002DGF1 [ZARLINK]

Digital Echo Canceller for Hands Free Communication; 数字回声消除免提通讯
ZL38002DGF1
型号: ZL38002DGF1
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Digital Echo Canceller for Hands Free Communication
数字回声消除免提通讯

数字传输接口 电信集成电路 电信电路 光电二极管 综合业务数字网
文件: 总51页 (文件大小:579K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL38002  
Digital Echo Canceller for Hands Free  
Communication  
Data Sheet  
January 2007  
Features  
Ordering Information  
112 ms acoustic echo canceller  
Up to 12 dB of noise reduction  
ZL38002QDG  
48 Pin TQFP  
Trays  
ZL38002QDG1 48 Pin TQFP* Trays  
ZL38002DGE1 36 Pin QSOP* Tubes, Bake & Drypack  
ZL38002DGF1 36 Pin QSOP* Tape & Reel,  
Bake & Drypack  
Works with low cost voice codec. ITU-T G.711 or  
signed mag µ/A-Law, or linear 2’s compliment  
Each port may operate independently in  
*Pb Free Matte Tin  
-40°C to 85°C  
companded format or linear format  
Advanced NLP design - full duplex speech with  
no switched loss on audio paths  
User gain control provided for speaker path  
(-24 dB to +21 dB in 3 dB steps)  
Adjustable gain pads from -24 dB to +21 dB at  
Xin, Sin and Sout to compensate for different  
system requirements  
Fast re-convergence time: tracks changing echo  
environment quickly  
Adaptation algorithm converges even during  
Double-Talk  
Designed for exceptional performance in high  
AGC on speaker path  
background noise environments  
Handles up to -6 dB acoustic echo return loss  
Provides protection against narrow-band signal  
divergence  
(with the appropriate gain pad settings)  
Transparent data transfer and mute options  
20 MHz master clock operation  
Low power mode during PCM Bypass  
Bootloadable for future factory software upgrades  
2.7 V to 3.6 V supply voltage; 5 V-tolerant inputs  
Howling prevention stops uncontrolled oscillation  
in high loop gain conditions  
Programmable offset nulling of all PCM channels  
Serial micro-controller interface  
Idle channel noise suppression  
ST-BUS, GCI, or variable-rate SSI PCM  
interfaces  
Limiter  
S1  
S2  
+
Noise  
Reduction  
µ/A-Law/  
Linear/  
ADV  
NLP  
Gain  
Pad  
HP  
Gain  
Pad  
+
Sin  
Sout  
Linear  
µ/A-Law  
Filter  
-
DATA1  
DATA2  
MD1  
Program  
RAM  
NBSD  
Micro  
Interface  
CONTROL  
UNIT  
Program  
ROM  
Adaptive  
Filter  
Double  
Talk  
Gain  
Pad  
Detector  
Howling  
Controller  
NBSD  
R1  
1  
SCLK  
CS  
MD2  
Rout  
-24 -> +21dB  
HP  
User  
Gain  
µ/A-Law/  
Linear/  
µ/A-Law  
Rin  
AGC  
Filter  
Linear  
Limiter  
VSS  
VDD  
BCLK/C4i  
FORMAT  
ENA1  
MCLK  
RESET  
ENA2  
LAW  
F0i  
Figure 1 - Functional Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2005-2007, Zarlink Semiconductor Inc. All Rights Reserved.  
ZL38002  
Data Sheet  
Applications  
Hands free car kits  
Full duplex speaker-phone for digital telephone  
Echo cancellation for video conferencing  
Security systems  
Intercom systems (door entry, elevator, and restaurant drive-through)  
MT93L16  
ZL38001  
ZL38002  
ZL38003  
Description AEC for analog hands- AEC for analog hands- AEC with noise reduction for digital  
AEC with noise reduction & codecs  
for digital hands-free communication  
free communication free communication hands-free communication  
Application Analog Desktop phone Analog Desktop phone Hands-free Car Kits  
Hands-free Car Kits  
Analog Intercom  
Analog Intercom  
Digital Desktop Phone Home Security Digital Desktop Phone Home Security  
Intercom & Pedestals  
Intercom & Pedestals  
Features  
AEC  
1 channel  
1 channel  
User Gain  
1 channel  
1 channel  
1 channel  
1 channel  
Custom Load  
LEC  
Custom Load  
Gains  
User Gain/18 dB  
Gain on Sout  
User Gain + System tuning gains  
User Gain + System tuning gains  
Noise  
N
N
N
Y
N
Y
Reduction  
Integrated  
Codecs  
N
dual channel  
Table 1 - Acoustic Echo Cancellation Family  
2
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
1
2
36 IC  
ENA1  
35  
IC  
MD1  
34  
33  
IC  
ENA2  
3
4
5
36  
38  
34  
32  
30  
28  
26  
MCLK2  
NC  
NC  
MCLK2  
IC  
24  
22  
20  
18  
16  
14  
MD2  
Sout  
VDD  
NC  
32  
31  
30  
Rin  
VSS  
VDD2  
VSS2  
IC  
Sin  
6
IC  
DATA1  
NC  
40  
42  
44  
46  
48  
7
IC  
IC  
NC  
ENA1  
NC  
MD1  
ENA2  
MD2  
Rin  
29  
28  
27  
MCLK  
8
DATA2  
NC  
IC  
IC  
IC  
9
QSOP  
TQFP  
IC  
10  
11  
12  
13  
14  
15  
CS  
26  
25  
24  
23  
BCLK/C4i  
F0i  
SCLK  
NC  
LAW  
FORMAT  
RESET  
NC  
Rout  
NC  
Sout  
RESETB  
22  
VDD  
2
4
6
8
10  
12  
21  
20  
19  
NC  
NC  
16  
17  
18  
DATA1  
DATA2  
SCLK  
CS  
Figure 2 - Pin Connections  
Pin Description  
QSOP  
Pin #  
TQFP  
Pin #  
Name  
Description  
1
43  
ENA1  
SSI Enable Strobe/ST-BUS & GCI Mode for Rin/Sout (Input). This pin  
has dual functions depending on whether SSI or ST-BUS/GCI is selected.  
For SSI, this strobe must be present for frame synchronization. This is an  
active high channel enable strobe, 8 or 16 data bits wide, enabling serial  
PCM data transfer for on Rin/Sout pins. Strobe period is 125 ms. For ST-  
BUS or GCI, this pin, in conjunction with the MD1 pin, selects the proper  
mode for Rin/Sout pins (see ST-BUS and GCI Operation description).  
2
3
45  
46  
MD1  
ST-BUS & GCI Mode for Rin/Sout (Input). When in ST-BUS or GCI  
operation, this pin, in conjunction with the ENA1 pin, will select the proper  
mode for Rin/Sout pins (see ST-BUS and GCI Operation description).  
Connect this pin to Vss in SSI mode.  
ENA2  
SSI Enable Strobe /ST-BUS & GCI Mode for Sin/Rout (Input). This pin  
has dual functions depending on whether SSI or ST-BUS/GCI is selected.  
For SSI, this is an active high channel enable strobe, 8 or 16 data bits wide,  
enabling serial PCM data transfer on Sin/Rout pins. Strobe period is  
125 ms. For ST-BUS/GCI, this pin, in conjunction with the MD2 pin, selects  
the proper mode for Sin/Rout pins (see ST-BUS and GCI Operation  
description).  
4
47  
MD2  
ST-BUS & GCI Mode for Sin/Rout (Input). When in ST-BUS or GCI  
operation, this pin in conjunction with the ENA2 pin, selects the proper  
mode for Sin/Rout pins (see ST-BUS and GCI Operation description).  
Connect this pin to Vss in SSI mode.  
3
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Pin Description (continued)  
QSOP  
Pin #  
TQFP  
Pin #  
Name  
Description  
5
48  
Rin  
Receive PCM Signal Input (Input). 128 kbps to 4096 kbps serial PCM  
input stream. Data may be in either companded or 2’s complement linear  
format. This is the Receive Input channel from the line (or network) side.  
Data bits are clocked in following SSI, GCI or ST-BUS timing requirements.  
6
2
Sin  
IC  
Send PCM Signal Input (Input). 128 kbps to 4096 kbps serial PCM input  
stream. Data may be in either companded or 2’s complement linear format.  
This is the Send Input channel (from the microphone). Data bits are  
clocked in following SSI, GCI or ST-BUS timing requirements.  
7
8
3
5
Internal Connection (Input). Must be tied to Vss.  
MCLK Master Clock (Input). Nominal 20 MHz Master Clock input (can be  
asynchronous relative to 8 KHz frame signal.) Tie together with MCLK2.  
9,10,11  
12  
6, 7, 8  
9
IC  
Internal Connection (Input). Must be tied to Vss.  
LAW  
A/µ Law Select (Input). When low, selects µ−Law companded PCM.  
When high, selects A-Law companded PCM. This control is for both serial  
pcm ports.  
13  
11  
FORMAT ITU-T/Sign Mag (Input). When low, selects sign-magnitude PCM code.  
When high, selects ITU-T (G.711) PCM code. This control is for both serial  
pcm ports.  
14  
17  
18  
19  
13  
16  
17  
19  
RESET Reset / Power-down (Input). An active low resets the device and puts the  
ZL38002 into a low-power stand-by mode.  
SCLK  
CS  
Serial Port Synchronous Clock (Input). Data clock for the serial  
microport interface.  
Serial Port Chip Select (Input). Enables serial microport interface data  
transfers. Active low.  
DATA2 Serial Data Receive (Input). In Motorola/National serial microport  
operation, the DATA2 pin is used for receiving data. In Intel serial microport  
operation, the DATA2 pin is not used and must be tied to Vss or Vdd.  
20  
21  
DATA1 Serial Data Port (Bidirectional). In Motorola/National serial microport  
operation, the DATA1 pin is used for transmitting data. In Intel serial  
microport operation, the DATA1 pin is used for transmitting and receiving  
data.  
22  
23  
23  
24  
VDD  
Sout  
Positive Power Supply (Input). Nominally 3.3 volts.  
Send PCM Signal Output (Output). 128 kbps to 4096 kbps serial PCM  
output stream. Data may be in either companded or 2’s complement linear  
PCM format. This is the Send Out signal after acoustic echo cancellation  
and non-linear processing. Data bits are clocked out following SSI, ST-  
BUS or GCI timing requirements.  
24  
26  
Rout  
Receive PCM Signal Output (Output). 128 kbps to 4096 kbps serial PCM  
output stream. Data may be in either companded or 2’s complement linear  
PCM format. This is the Receive out signal after the AGC and gain control.  
Data bits are clocked out following SSI, ST-BUS or GCI timing  
requirements.  
4
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Pin Description (continued)  
QSOP  
Pin #  
TQFP  
Pin #  
Name  
Description  
25  
27  
F0i  
Frame Pulse (Input). In ST-BUS (or GCI) operation, this is an active-low  
(or active-high) frame alignment pulse, respectively. SSI operation is  
enabled by connecting this pin to Vss.  
26  
29  
BCLK/C4i Bit Clock/ST-BUS Clock (Input). In SSI operation, BCLK pin is a 128 kHz  
to 4.096 MHz bit clock. This clock must be synchronous with ENA1 and  
ENA2 enable strobes.  
In ST-BUS or GCI operation, C4i pin must be connected to the 4.096 MHz  
(C4) system clock.  
27, 28  
29  
30, 31  
33  
IC  
Internal Connection (Input). Tie to Vss.  
Digital Ground (Input). Nominally 0 volts.  
VSS2  
30  
34  
VDD2 Positive Power Supply (Input). Nominally 3.3 volts (tie together with  
VDD).  
31  
33  
35  
38  
VSS  
Digital Ground (Input). Nominally 0 volts (tie together with VSS2).  
MCLK2 Master Clock (Input). Nominal 20 MHz master clock (tie together with  
MCLK).  
34,35,36  
39, 40, 41  
IC  
Internal Connection (Input). Tie to Vss.  
15, 16, 21, 1, 4, 10, 12,  
NC  
No Connect (Output). This pin should be left unconnected.  
32  
14, 15, 18,  
20, 22, 25,  
28, 32, 36,  
37, 42, 44  
5
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Table of Contents  
1.0 Changes Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1 Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.2 Noise Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.3 Adaptation Speed Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.4 Advanced Non-Linear Processor (ADV-NLP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.5 Narrow Band Signal Detector (NBSD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.6 Howling Detector (HWLD)1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.7 Programmable High Pass Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.8 Limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.9 User Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.10 AGC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.11 Programmable Gain Pad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.12 Mute Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.13 Master Bypass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.14 AEC Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.15 Adaptation Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.16 Throughput Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.17 Power Down / Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.0 PCM Data I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1 ST-BUS and GCI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.2 SSI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.3 PCM Law and Format Control (LAW, FORMAT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.4 Linear PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.5 Bit Clock (BCLK/C4i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.6 Master Clock (MCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.0 Microport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.0 Bootload Process and Execution from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.0 Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.0 Register Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
List of Figures  
Figure 1 - Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 3 - ST-BUS and GCI 8-Bit Companded PCM I/O on Timeslot 0 (Mode 1) . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 4 - ST-BUS and GCI 8-Bit Companded PCM I/O on Timeslot 2 (Mode 2) . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 5 - ST-BUS and GCI 8-Bit Companded PCM I/O with D and C channels (Mode 3) . . . . . . . . . . . . . . . . . . 15  
Figure 6 - ST-BUS and GCI 16-Bit 2’s Complement Linear PCM I/O (Mode 4). . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 7 - SSI Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 8 - Serial Microport Timing for Intel Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 9 - Serial Microport Timing for Motorola Mode 00 or National Microwire . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 10 - Automatic Rout Gain Reduction (RoutGR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 11 - Master Clock - MCLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 12 - GCI Data Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 13 - ST-BUS Data Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 14 - SSI Data Port Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 15 - INTEL Serial Microport Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 16 - Motorola Serial Microport Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
7
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
List of Tables  
Table 1 - Acoustic Echo Cancellation Family. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table 2 - Quiet PCM Code Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3 - ST-BUS & GCI Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 4 - SSI Enable Strobe Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 5 - Companded PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 6 - Bootload RAM Control (BRC) Register States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 7 - Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 8 - Reference Level Definition for Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
1.0 Changes Summary  
The following table captures the changes from the November 2005 issue.  
Page Item  
Change  
1
Updated Ordering Information  
2.0 Functional Description  
The ZL38002 device is comprised of an acoustic echo canceller and the necessary control functions for operation.  
The ZL38002 guarantees clear signal transmission in both transmit and receive audio path directions to ensure  
reliable voice communication, even when low level signals are provided. The ZL38002 does not use variable  
attenuators during double-talk or single-talk periods of speech, as do many other acoustic echo cancellers for  
speakerphones. Instead, the ZL38002 provides high performance full-duplex operation similar to network echo  
cancellers. This results in users experiencing clear speech and uninterrupted background signals during the  
conversation and prevents subjective sound quality problems associated with “noise gating” or “noise contrasting”.  
The ZL38002 uses an advanced adaptive filter algorithm that is double-talk stable, which means that convergence  
takes place even while both parties are talking. This algorithm allows continual tracking of changes in the echo  
path, regardless of double-talk, as long as a reference signal is available for the echo canceller.  
The echo tail cancellation capability of the acoustic echo canceller has been sized appropriately (112 ms) to cancel  
echo in an average sized office with a reverberation time of less than 112 ms.  
In addition to the echo cancellers, the following functions are supported:  
12 dB of noise reduction  
User gain pads at the Sin and Sout ports plus one at the input of adaptive filter (XRAM)  
Control of adaptive filter convergence speed during periods of double-talk, far end single-talk and near-end  
echo path changes  
Control of Non-Linear Processor thresholds for suppression of residual non-linear echo  
Howling detector to identify when instability is starting to occur and to take action to prevent oscillation  
Narrow-Band Detector for preventing adaptive filter divergence caused by narrow-band signals  
Programmable high pass filters at Rin and Sin for removal of DC components in PCM channels  
Limiters that introduce controlled saturation levels  
Serial controller interface compatible with Motorola, National and Intel microcontrollers  
PCM encoder/decoder compatible with m/A-Law ITU-T G.711, m/A-Law Sign-Mag or linear 2’s complement  
coding  
Automatic gain control on the receive speaker path  
Idle channel noise suppression  
2.1 Noise Reduction  
The ZL38002 incorporates a noise reduction circuit that reduces background noise up to 12 dB. The level of noise  
reduction is programmed allowing the user to adjust the level of noise cancellation according to system  
requirements. This is controlled through the NR register on page 3 address 16H. A larger value in this register will  
increase the amount of noise reduction. As the amount of noise reduction is increased the amount of distortion in  
the audio path also increases. The noise reduction can be bypassed by setting bit 4 in Control Register 1 (Address  
01H)  
9
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
2.2 Noise Suppression  
The ZL38002 also utilizes noise suppression which can be used to reduce idle channel noise from emanating from  
the acoustic end. By setting a threshold value in the lower nibble (bits 0-3) of the MCR2 register on page 0 address  
01H, idle channel noise below the threshold is zero-forced. The threshold limits ranges from 0 to 16 (based on a 16  
bit 2's complement) with a value of 0 disabling suppression.  
2.3 Adaptation Speed Control  
The adaptation speed of the acoustic echo canceller is designed to optimize the convergence speed versus  
divergence caused by interfering near-end signals. Adaptation speed algorithm takes into account many different  
factors such as relative double-talk condition, far end signal power, echo path change and noise levels to achieve  
fast convergence.  
2.4 Advanced Non-Linear Processor (ADV-NLP)  
After echo cancellation, there is likely to be residual echo which needs to be removed so that it will not be audible.  
The ZL38002 uses an NLP to remove low level residual echo signals which are not comprised of background noise.  
The operation of the NLP depends upon a dynamic activation threshold, as well as a double-talk detector which  
disables the NLP during double-talk periods.  
The ZL38002 keeps the perceived noise level constant, without the need for any variable attenuators or gain  
switching that causes audible “noise gating”. The noise level is constant and identical to the original background  
noise even when the NLP is activated.  
The NLP can be disabled by setting the NLP- bit to 1 in the AEC control registers.  
2.5 Narrow Band Signal Detector (NBSD)1  
Single or multi-frequency tones (e.g,. DTMF, or signalling tones) present in the reference input of an echo canceller  
for a prolonged period of time may cause the adaptive filter to diverge. The Narrow Band Signal Detector (NBSD) is  
designed to prevent this divergence by detecting single or multi-tones of arbitrary frequency, phase, and amplitude.  
When narrow band signals are detected, the filter adaptation process is stopped but the echo canceller continues to  
cancel echo.  
The NBSD can be disabled by setting the NB- bit to 1 in the MC control registers.  
2.6 Howling Detector (HWLD)1  
The Howling detector is part of an Anti-Howling control, designed to prevent oscillation as a result of positive  
feedback in the audio paths.  
The HWLD can be disabled by setting the AH- bit to 1 in the (MC) control register.  
2.7 Programmable High Pass Filter  
Programmable high pass filters are place at the Sin and Rin ports. These filters have two functions, one to remove  
any DC offset that may be present on either the Rin or the Sin port and two, to filter low frequency noise such as  
road noise (below 300 Hz).  
The offset null filters can be disabled by setting the HPF- bit to 1 in the AEC control registers.  
1. Patented  
10  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
2.8 Limiters  
To prevent clipping in the echo paths, two limiters with variable thresholds are provided at the outputs.  
2.9 User Gain  
The user gain function provides the ability for users to adjust the audio gain on all paths. This gain is adjustable  
from -24 dB to +21 dB in 3 dB steps for the Sout and Rout paths. It is important to use ONLY this user gain function  
to adjust the speaker volume. The user gain function in the ZL38002 is optimally placed outside the echo path such  
that no reconvergence is necessary after gain changes, avoiding a burst of each overtime the speaker gain is  
changed.  
2.10 AGC  
The AGC function is provided to limit the volume in the speaker path. The gain of the speaker path is automatically  
reduced during the following conditions:  
When clipping of the receive signal occurs  
When initial convergence of the acoustic echo canceller detects unusually large echo return  
When howling is detected  
The AGC can be disabled by setting the AGC- bit to 1 in MC control register  
2.11 Programmable Gain Pad  
The ZL38002 has three gain pads located at Sin, Sout and at the adaptive filter (Xin). These gain pads are intended  
to be set once during initialization and not be used as dynamic gain adjustments. The purpose of theses gainpads  
are to help fine tune the performance of the acoustic echo canceller for a particular system.  
For example, the gain pad can be used to improve the subjective quality in low ERL environments. The ZL38002  
can cancel echo with a ERL as low as 0 dB (attenuation from Rout to Sin). In many hand free applications, the ERL  
can be low (or negative). This is due to both speaker and microphone gain setting. The speaker gain has to be set  
high enough for the speaker to be heard properly and the microphone gain needs to be set high enough to ensure  
sufficient signal is sent to the far end. If the ERL (Acoustic Attenuation - speaker gain - microphone gain) is greater  
than 0 dB, then the echo canceller cannot cancel echo. To overcome this limitation, the gain pad at Sin and Sout  
can be used to lower the Sin level (and therefore the ERL) by 6 dB, perform the echo cancellation then amplify it at  
Sout by 6 dB. This will have the effect having 0dB gain between Sin and Sout for double talk signals while injecting  
a additional 6 dB attenuation for the echo return. It is important to reduce the DTDT threshold (Page 0 address 30)  
to match the Sin/Sout gain settings.  
The gain can be accessed through Customer Gain Control Registers 1 - 2 (Page 0, Address 1CH - 1DH).  
2.12 Mute Function  
A pcm mute function is provided for independent control of the Receive and Send audio paths. Setting the MUTE_R  
or MUTE_S bit in the MC register, causes quiet code to be transmitted on the Rout or Sout paths respectively. The  
ZL38002 has an optional DC offset control. The user can add a positive offset to the mute value. This is controlled  
through the DC offset register (Page 0, Address 03h)  
Quiet code is defined according to the following table.  
11  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
LINEAR  
16 bits  
2’s complement  
SIGN/  
MAGNITUDE  
µ-Law  
CCITT (G.711)  
µ-Law  
A-Law  
A-Law  
+Zero  
0000h  
80h  
FFh  
D5h  
(quiet code)  
Table 2 - Quiet PCM Code Assignment  
2.13 Master Bypass  
A PCM bypass function is provided to allow transparent transmission of pcm data through the ZL38002. When the  
bypass function is active, PCM data passes transparently from Rin to Rout and from Sin to Sout, with bit-wise  
integrity preserved.  
When the Bypass function is selected, most internal functions are powered down to provide low power  
consumption.  
The BYPASS control bit is located in the main control MC register.  
2.14 AEC Bypass  
An AEC bypass function is provided to allow the user to bypass only the AEC (i.e the echo estimate from the  
adaptive filter is not subtracted from the Send path). This bypass does not effect any other function in the ZL38002.  
The AEC BYPASS control bit is located in the Acoustic Echo Canceller Control Register (AECCR).  
2.15 Adaptation Control  
Adaptation control bit is located in the Acoustic Echo Canceller Control Register (Page 0, Address 21h). When the  
ADAPT- bit is set to 1, the adaptive filter is frozen at the current state. In this state, the device continues to cancel  
echo with the current echo model.  
When the ADAPT- bit is set to 0, the adaptive filter is continually updated allowing the echo cancellor to adapt and  
track changes in the echo path. This is the normal operating state ZL38002  
2.16 Throughput Delay  
In all modes, except ST-BUS/GCI operation, voice channels have 2 frames of constant delay. In ST-BUS/GCI  
operation, the D and C channels have a delay of one frame.  
2.17 Power Down / Reset  
Holding the RESET pin at logic low will keep the ZL38002 device in a power-down state. In this state all internal  
clocks are halted, and the DATA1, Sout and Rout pins are tristated.  
The user should hold the RESET pin low for at least 200 msec following power-up. This will insure that the device  
powers up in a proper state. Following any return of RESET to logic high, the user must wait for 8 complete 8 KHz  
frames prior to writing to the device registers. During this time, the initialization routines will execute and set the  
ZL38002 to default operation based on the installed algorithm.  
12  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
3.0 PCM Data I/O  
The PCM data transfer for the ZL38002 is provided through two PCM ports. One port consists of Rin and Sout pins  
while the second port consists of Sin and Rout pins. The data are transferred through these ports according to  
either ST-BUS, GCI or SSI conventions detected automatically by the device. The ZL38002 determines the  
convention by monitoring the signal applied to the F0i pin. When a valid ST-BUS (active low) frame pulse is applied  
to the F0i pin, the ZL38002 will assume ST-BUS operation. When a valid GCI (active high) frame pulse is applied to  
the F0i pin, the device will assume GCI operation. If F0i is tied continuously to Vss, the device is set to SSI  
operation. Figures 3 to 6 show timing diagrams of these 3 PCM-interface operation conventions.  
3.1 ST-BUS and GCI Operation  
The ST-BUS PCM interface conforms to Zarlink’s ST-BUS standard with an active-low frame pulse. Input data is  
clocked in by the rising edge of the bit clock (C4i) three-quarters of the way into the bit cell and output data bit  
boundaries (Rout, Sout) occur every second falling edge of the bit clock (see Figure 11.) The GCI PCM interface  
corresponds to the GCI standard commonly used in Europe with an active-high frame pulse. Input data is clocked in  
by the falling edge of the bit clock (C4i) three-quarters of the way into the bit cell and output data bit boundaries  
(Rout, Sout) occur every second rising edge of the bit clock (see Figure 12.)  
Either of these interfaces (ST-BUS or GCI) can be used to transport 8 bit companded PCM data (using one  
timeslot) or 16 bit 2’s complement linear PCM data (using two timeslots). The MD1/ENA1 pins select the timeslot on  
the Rin/Sout port while the MD2/ENA2 pin selects the timeslot on the Sin/Rout port, as in Table 2. Figures 3 to 6  
illustrate the timeslot allocation for each of these four modes.  
C4i  
start of frame (stbus & GCI)  
F0i (ST-BUS)  
0
1
2
3
4
B
F0i (GCI)  
PORT1  
Rin  
7 6 5 4 3 2 1 0  
EC  
Sout  
7 6 5 4 3 2 1 0  
PORT2  
Sin  
7 6 5 4 3 2 1 0  
EC  
7 6 5 4 3 2 1 0  
Rout  
outputs = High impedance  
inputs = don’t care  
In ST-BUS/GCI Mode 1, echo canceller I/O channels are assigned to ST-BUS/GCI timeslot 0. Note that the user can configure PORT1  
and PORT2 into different modes.  
Figure 3 - ST-BUS and GCI 8-Bit Companded PCM I/O on Timeslot 0 (Mode 1)  
13  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
C4i  
start of frame (stbus & GCI)  
F0i (ST-BUS)  
F0i (GCI)  
0
1
2
B
3
4
PORT1  
Rin  
7 6 5 4 3 2 1 0  
EC  
Sout  
7 6 5 4 3 2 1 0  
PORT2  
Sin  
7 6 5 4 3 2 1 0  
EC  
7 6 5 4 3 2 1 0  
Rout  
outputs = High impedance  
inputs = don’t care  
In ST-BUS/GCI Mode 2, echo canceller I/O channels are assigned to ST-BUS/GCI timeslot 2. Note that the user can configure PORT1  
and PORT2 into different modes.  
Figure 4 - ST-BUS and GCI 8-Bit Companded PCM I/O on Timeslot 2 (Mode 2)  
14  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
C4i  
start of frame (stbus & GCI)  
F0i (ST-BUS)  
0
1
2
3
4
B
C
D
F0i (GCI)  
PORT1  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
Rin  
EC  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
Sout  
PORT2  
Sin  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
EC  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
Rout  
outputs = High impedance  
inputs = don’t care  
indicates that an input channel is bypassed to an output channel  
ST-BUS/GCI Mode 3 supports connection to 2 B+D devices where timeslots 0 and 1 transport D and C channels and echo canceller  
(EC) I/O channels are assigned to ST-BUS timeslot 2 (B). Both PORT1 and PORT2 must be configured in Mode 3.  
Figure 5 - ST-BUS and GCI 8-Bit Companded PCM I/O with D and C channels (Mode 3)  
15  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
C4i  
start of frame (stbus & GCI)  
F0i (stbus)  
F0i (GCI)  
Rin  
S 141312 1110 9 8 7 6 5 4 3 2 1 0  
PORT1  
EC  
S 141312 1110 9 8 7 6 5 4 3 2 1 0  
Sout  
Sin  
S 141312 1110 9 8 7 6 5 4 3 2 1 0  
PORT2  
EC  
S 141312 1110 9 8 7 6 5 4 3 2 1 0  
Rout  
outputs = High impedance  
inputs = don’t care  
ST-BUS/GCI Mode 4 allows 16 bit 2’s complement linear data to be transferred using ST-BUS/GCI I/O timing. Note that PORT1 and  
PORT2 need not necessarily both be in mode 4.  
Figure 6 - ST-BUS and GCI 16-Bit 2’s Complement Linear PCM I/O (Mode 4)  
PORT1  
Rin/Sout  
ST-BUS/GCI Mode  
Selection  
PORT2  
Sin/Rout  
Enable Pins  
Enable Pins  
MD1  
ENA1  
MD2  
ENA2  
0
0
Mode 1. 8 bit companded PCM I/O on timeslot 0  
Mode 2. 8 bit companded PCM I/O on timeslot 2.  
0
0
0
1
1
0
0
1
1
0
Mode 3. 8 bit companded PCM I/O on timeslot 2.  
Includes D & C channel bypass in timeslots 0 & 1.  
1
1
Mode 4. 16-bit 2’s complement linear PCM I/O on  
timeslots 0 & 1.  
1
1
Table 3 - ST-BUS & GCI Mode Select  
3.2 SSI Operation  
The SSI PCM interface consists of data input pins (Rin, Sin), data output pins (Sout, Rout), a variable rate bit clock  
(BCLK), and two enable pins (ENA1, ENA2) to provide strobes for data transfers. The active high enable may be  
either 8 or 16 BCLK cycles in duration. Automatic detection of the data type (8 bit companded or 16-bit 2’s  
complement linear) is accomplished internally. The data type cannot change dynamically from one frame to the  
next.  
16  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
In SSI operation, the frame boundary is determined by the rising edge of the ENA1 enable strobe (see Figure 7).  
The other enable strobe (ENA2) is used for parsing input/output data and it must pulse within 125 microseconds of  
the rising edge of ENA1.  
In SSI operation, the enable strobes may be a mixed combination of 8 or 16 BCLK cycles allowing the flexibility to  
mix 2’s complement linear data on one port (e.g., Rin/Sout) with companded data on the other port (e.g., Sin/Rout).  
Enable Strobe Pin  
Designated PCM I/O Port  
ENA1  
ENA2  
Line Side Echo Path (PORT 1)  
Acoustic Side Echo Path (PORT 2)  
Table 4 - SSI Enable Strobe Pins  
3.3 PCM Law and Format Control (LAW, FORMAT)  
The PCM companding/coding law used by the ZL38002 is controlled through the LAW and FORMAT pins. ITU-T  
G.711 companding curves for m-Law and A-Law are selected by the LAW pin. PCM coding ITU-T G.711 and Sign-  
Magnitude are selected by the FORMAT pin. See Table 4.  
BCLK  
start of frame (SSI)  
PORT1  
ENA1  
8 or 16 bits  
Rin  
EC  
Sout  
8 or 16 bits  
PORT2  
ENA2  
8 or 16 bits  
Sin  
EC  
8 or 16 bits  
Rout  
outputs = High impedance  
inputs = don’t care  
Note that the two ports are independent so that, for example, PORT1 can operate with 8-bit enable strobes and PORT2 can operate  
with 16-bit enable strobes.  
Figure 7 - SSI Operations  
17  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Sign-Magnitude  
ITU-T (G.711)  
FORMAT=1  
FORMAT=0  
PCM Code  
µ/A-LAW  
µ-LAW  
A-LAW  
LAW = 0 or 1  
1111 1111  
LAW = 0  
1000 0000  
1111 1111  
0111 1111  
0000 0000  
LAW =1  
+ Full Scale  
+ Zero  
1010 1010  
1101 0101  
0101 0101  
0010 1010  
1000 0000  
0000 0000  
0111 1111  
- Zero  
- Full Scale  
Table 5 - Companded PCM  
3.4 Linear PCM  
The 16-bit 2’s complement PCM linear coding permits a dynamic range beyond that which is specified in ITU-T  
G.711 for companded PCM. The echo-cancellation algorithm will accept 16-bits 2’s complement linear code which  
gives a maximum signal level of +15 dBm0.  
3.5 Bit Clock (BCLK/C4i)  
The BCLK/C4i pin is used to clock the PCM data for GCI and ST-BUS (C4i) interfaces, as well as for the SSI  
(BCLK) interface.  
In SSI operation, the bit rate is determined by the BCLK frequency. This input must contain either eight or sixteen  
clock cycles within the valid enable strobe window. BCLK may be any rate between 128 KHz to 4.096 MHz and can  
be discontinuous outside of the enable strobe windows defined by ENA1, ENA2 pins. Incoming PCM data (Rin, Sin)  
are sampled on the falling edge of BCLK while outgoing PCM data (Sout, Rout) are clocked out on the rising edge  
of BCLK. See Figure 13.  
In ST-BUS and GCI operation, connect the system C4 (4.096 MHz) clock to the C4i pin.  
3.6 Master Clock (MCLK)  
A nominal 20 MHz, continuously-running master clock (MCLK) is required. MCLK may be asynchronous with the  
8 KHz frame.  
4.0 Microport  
The serial microport provides access to all ZL38002 internal read and write registers, plus write-only access to the  
bootloadable program RAM (see next section for bootload description). This microport is compatible with Intel  
MCS-51 (mode 0), Motorola SPI (CPOL=0, CPHA=0) and National Semiconductor Microwire specifications. The  
microport consists of a transmit/receive data pin (DATA1), a receive data pin (DATA2), a chip select pin (CS) and a  
synchronous data clock pin (SCLK).  
The ZL38002 automatically adjusts its internal timing and pin configuration to conform to Intel or Motorola/National  
specifications. The microport dynamically senses the state of the SCLK pin each time the CS pin becomes active  
(i.e., high to low transition). If the SCLK pin is high during a CS activation, then the Intel mode 0 timing is assumed.  
In this case the DATA1 pin is defined as a bi-directional (transmit/receive) serial port and DATA2 is internally  
disconnected. If SCLK is low during a CS activation, then Motorola/National timing is assumed and DATA1 is  
defined as the data transmit pin while DATA2 becomes the data receive pin. The ZL38002 supports Motorola half-  
18  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
duplex processor mode (CPOL=0 and CPHA=0). This means that during a write to the ZL38002, via a Motorola  
processor, output data from the DATA1 pin is disregarded. This also means that input data on the DATA2 pin is  
ignored by the ZL38002 during a valid read by the Motorola processor.  
All data transfers through the microport are two bytes long. This requires the transmission of a Command/Address  
byte followed by the data byte to be written to or read from the addressed register. CS must remain low for the  
duration of this two-byte transfer. As shown in Figures 8 and 9, the falling edge of CS indicates to the ZL38002 that  
a microport transfer is about to begin. The first 8 clock cycles of SCLK after the falling edge of CS are always used  
to receive the Command/Address byte from the microcontroller. The Command/Address byte contains information  
detailing whether the second byte transfer will be a read or a write operation and at what address. The next 8 clock  
cycles are used to transfer the data byte between the ZL38002 and the microcontroller. At the end of the two-byte  
transfer, CS is brought high again to terminate the session. The rising edge of CS will tri-state the DATA1 pin. The  
DATA1 pin will remain tri-stated as long as CS is high.  
Intel processors utilize Least Significant Bit (LSB) first transmission while Motorola/National processors use Most  
Significant Bit (MSB) first transmission. The ZL38002 microport automatically accommodates both schemes for  
normal data bytes. However, to ensure timely decoding of the R/W and address information, the  
Command/Address byte is defined differently for Intel and Motorola/National operations. Refer to the relative timing  
diagrams of Figure 6 and Figure 7. Receive data bits are sampled on the rising edge of SCLK while transmit data is  
clocked out on the falling edge of SCLK. Detailed microport timing is shown in Figure 13 and Figure 14.  
5.0 Bootload Process and Execution from RAM  
A bootloadable program RAM (BRAM) is available on the ZL38002 to support factory-issued software upgrades to  
the built-in algorithm. To make use of this bootload feature, users must include 4096 X 8 bits of memory in their  
microcontroller system (i.e., external to the ZL38002), from which the ZL38002 can be bootloaded. Registers and  
program data are loaded into the ZL38002 in the same fashion via the serial microport. Both employ the same  
command / address / data byte specification described in the previous section on serial microport. Either intel or  
motorola mode may be transparently used for bootloading. There are also two registers relevant to bootloading  
(BRC=control and SIG=signature, see Register Summary). The effect of these register values on device operation  
is summarized in Table 5.  
Bootload mode is entered and exited by writing to the bootload bit in the Bootload RAM Control (BRC) register at  
address 3fh (see Register Summary). During bootload mode, any serial microport “write” (R/W command bit =0) to  
an address other than that of the BRC register will contribute to filling the program BRAM. Call these transactions  
"BRAM-fill" writes. Although a command/address byte must still precede each data byte (as described for the serial  
microport), the values of the address fields for these “BRAM-fill” writes are ignored (except for the value 3fh, which  
designates the BRC register.) Instead, addresses are internally generated by the ZL38002 for each “BRAM-fill”  
write. Address generation for “BRAM-fill” writes resumes where it left off following any read transaction while  
bootload mode is enabled. The first 4096 "BRAM-fill" writes while bootload is enabled will load the memory, filling  
the BRAM and ignoring further writes. Before bootload mode is disabled, it is recommended that users then read  
back the value from the signature register (SIG) and compare with the one supplied by the factory along with the  
code. Equality verifies that the correct data has been loaded. The signature calculation uses an 8-bit MISR which  
only incorporates input from “BRAM-fill” writes. Resetting the bootload bit (C2) in the BRC register to 0 (see  
Register Summary) exits bootload mode, resetting the signature (SIG) register and internal address generator for  
the next bootload. A hardware reset (RESET=0) similarly returns the ZL38002 to the ready state for the start of a  
bootload.  
19  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
FUNCTIONAL DESCRIPTION FOR USING THE BOOTABLE RAM  
BOOTLOAD MODE - Microport Access is to bootload RAM (BRAM)  
R/W  
W
Address  
Data  
3fh  
Writes "data" to BRC reg.  
- Bootload frozen; BRAM contents are NOT affected.  
(= 1 1 1 1 1 1 b)  
BRC Register  
Bits  
C3C2C1C0  
W
R
other than 3fh  
1 x x x x x b  
Writes "data" to next byte in BRAM (bootloading.)  
Reads back "data" = BRC reg value.  
- Bootload frozen; BRAM contents are NOT affected.  
X 1 0 0  
R
0 x x x x x b  
Reads back "data" = SIG reg value.  
- Bootload frozen; BRAM contents are NOT affected.  
NON-BOOTLOAD MODE - Microport Access is to device registers (DREGs)  
BRC Register  
Bits  
C3C2C1C0  
R/W  
W
Address  
Data  
any  
Writes "data" to corresponding DREG.  
(= a5 a4 a3 a2 a1 a0 b)  
R
any  
Reads back "data" = corresponding DREG value.  
X 0 0 0  
(= a5 a4 a3 a2 a1 a0 b)  
PROGRAM EXECUTION MODES  
C3C2C1C0  
0 0 0 0  
Execute program in ROM, bootload mode disabled.  
- BRAM address counter reset to initial (ready) state.  
- SIG register reseeded to initial (ready) state  
C3C2C1C0  
0 1 0 0  
Execute program in ROM, while bootloading the RAM.  
- BRAM address counter increments on microport writes (except to 3fh)  
- SIG register recalculates signature on microport writes (except to 3fh)  
C3C2C1C0  
1 0 0 0  
Execute program in RAM, bootload mode disabled.  
- BRAM address counter reset to initial (ready) state.  
- SIG register reseeded to initial (ready) state  
C3C2C1C0  
1 1 0 0  
- INVALID -  
Table 6 - Bootload RAM Control (BRC) Register States  
Note: bits C1 C0 are reserved, and must be set to zero.  
20  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
To begin execution from the RAM once the program has been loaded, the bootload mode must be disabled (BOOT  
bit, C2=0) and execution from RAM enabled (RAM_ROMb bit, C3=1) by setting the appropriate bits in the BRC  
register. During the bootload process, however, ROM program execution (RAM_ROMb bit, C3=0) should be  
selected. See Table 5 for the effect of the BRC register settings on Microport accesses and on program execution.  
Following program loading and enabling of execution from RAM, it is recommended that the user set the software  
reset bit in the Main Control (MC) register, to ensure that the device updates the default register values to those of  
the new program in RAM. Note: it is important to use a software reset rather than a hardware (RESET=0) reset, as  
the latter will return the device to its default settings (which includes execution from program ROM instead of RAM.)  
To verify which code revision is currently running, users can access the Firmware Revision Code (FRC) register  
(see Register Summary). This register reflects the identity code (revision number) of the last program to run register  
initialization (which follows a software or hardware reset.)  
ƒ
COMMAND/ADDRESS  
DATA INPUT/OUTPUT  
A0 A1 A2 A3 A4 A5  
X
D0 D1 D2 D3 D4 D5 D6 D7  
R/W  
DATA 1  
¿
¡
SCLK  
CS  
Ð
¬
¿
¡
This delay is due to internal processor timing and is equal to Tsch time. The delay is transparent to ZL38002.  
The ZL38002: latches receive data on the rising edge of SCLK  
outputs transmit data on the falling edge of SCLK  
¬
The falling edge of CS indicates that a COMMAND/ADDRESS byte will be transmitted from the microprocessor. The subsequent  
byte is always data followed by CS returning high.  
A new COMMAND/ADDRESS byte may be loaded only by CS cycling high then low again.  
Ð
ƒ
The COMMAND/ADDRESS byte contains: 1 bit - Read/Write  
6 bits - Addressing Data  
1 bit - Unused  
Figure 8 - Serial Microport Timing for Intel Mode 0  
21  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
COMMAND/ADDRESS ƒ  
DATA INPUT  
DATA 2  
Receive  
R/W A5 A4 A3 A2 A1 A0  
X
D7 D6 D5 D4 D3 D2 D1 D0  
DATA OUTPUT  
DATA 1  
D7 D6 D5 D4 D3 D2 D1 D0  
High Impedance  
Transmit  
¿
¡
SCLK  
CS  
Ð
¬
¿
¡
This delay is due to internal processor timing and is equal to Tsch time. The delay is transparent to ZL38002.  
The ZL38002: latches receive data on the rising edge of SCLK  
outputs transmit data on the falling edge of SCLK  
¬
The falling edge of CS indicates that a COMMAND/ADDRESS byte will be transmitted from the microprocessor. The subsequent  
byte is always data followed by CS returning high.  
A new COMMAND/ADDRESS byte may be loaded only by CS cycling high then low again.  
Ð
ƒ
The COMMAND/ADDRESS byte contains: 1 bit - Read/Write  
6 bits - Addressing Data  
1 bit - Unused  
Figure 9 - Serial Microport Timing for Motorola Mode 00 or National Microwire  
22  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
6.0 Register Summary  
Any register not described in the following section should be labels reserved for internal use.  
CPU  
Reset  
Value  
Address  
Page  
Description  
Access  
00H  
01H  
02H  
03H  
04H  
05H  
07H  
08H  
09H  
12H  
1CH  
1DH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
30H  
31H  
32H  
34H  
35H  
36H  
37H  
38H  
39H  
R/W  
R/W  
Read  
R/W  
R/W  
R/W  
Read  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read  
Read  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read  
Read  
Read  
Read  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00H  
00H  
Main Control Register 1 (MCR1)  
Main Control Register 2 (MCR2)  
Status Register (SR)  
00H  
A1H  
08H  
A6H  
80H  
04H  
00H  
88H  
08H  
6DH  
00H  
00H  
00H  
80H  
3EH  
3DH  
06H  
96H  
04H  
80H  
21H  
2AH  
AAH  
01H  
00H  
00H  
00H  
00H  
DC Offset Register  
High Pass Filter Constant Register (FLTSH)  
Mu Constant  
Bootload RAM Signature Register (SIG)  
Slow Adaptation Threshold Register 1 (SATR1)  
Slow Adaptation Threshold Register 2 (SATR2)  
Automatic Sout Gain Reduction (SoutGR)  
Customer Gain Control Register 1 (CGCR1)  
Customer Gain Control Register 2 (CGCR2)  
Receive Gain Control Register (RGCR)  
Acoustic Echo Canceller Control Register (AECCR)  
Acoustic Echo Canceller Status Register 1 (ARCSR1)  
Acoustic Echo Canceller Status Register 2 (AECSR2)  
Acoustic LMS Filter Length Register 1 (ALMSFR1)  
Acoustic LMS Filter Length Register 2 (ALMSFR2)  
Decay Step Size Control Register (DSSCR)  
Decay Step Number Register (DSNR)  
Near-End Speech Detection Threshold 1 (NESDT1)  
Near-End Speech Detection Threshold 2 (NESDT2)  
Double-Talk Hand-Over Time 1 (DTHOT1)  
Double-Talk Hand-Over Time 2 (DTHOT2)  
Automatic Rout Gain Reduction Register (RoutGR)  
NLP Threshold Register  
Send (Sin) Peak Detect Register 1 (SPDR1)  
Send (Sin) Peak Detect Register 2 (SPDR2)  
Send Error Peak Detect Register 1 (SEPDR1)  
Send Error Peak Detect Register 2 (SEPDR2)  
Table 7 - Address Map  
23  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
CPU  
Reset  
Address  
Page  
Description  
Access  
Value  
3AH  
3BH  
3CH  
3DH  
3FH  
1AH  
1BH  
3AH  
3BH  
1CH  
1DH  
15H  
17H  
Read  
Read  
Read  
Read  
R/W  
0
00H  
00H  
00H  
10H  
08H  
00H  
00H  
00H  
00H  
00H  
08H  
20H  
20H  
Receive (Rout) Peak Detect Register 1 (RPDR1)  
Receive (Rout) Peak Detect Register 2 (RPDR2)  
0
0
Adaptation Speed Register 1 (ASR1)  
Adaptation Speed Register 2 (ASR2)  
0
0/1/2/3  
BRC Bootload RAM Control Register (BRCR)  
Read  
Read  
Read  
Read  
R/W  
1
1
1
1
2
2
3
3
Noise Level R Path Register 1 (NLRPR1)  
Noise Level R Path Register 2 (NLRPR2)  
Noise Level S Path Register 1 (NLSPR1)  
Noise Level S Path Register 2 (NLSPR2)  
AGC Gain Register 1 (AGCGR1)  
AGC Gain Register 2 (AGCGR2)  
R/W  
R/W  
Noise Threshold for Noise Reduction Register (NRTH)  
Minimum Noise Reduction Level Register(Beta)  
R/W  
Table 7 - Address Map (continued)  
24  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
7.0 Register Definitions  
Read/Write Page 0, Address: 00H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
LIMIT  
MUTE_R  
MUTE_S  
BYPASS  
NB-  
AGC-  
AH-  
RESET  
Bit  
Name  
Description  
7
LIMIT  
When high, Rin and Sin signals are limited to 0.25 in amplitude.  
When low, no limit is imposed on the inputs.  
6
5
4
3
MUTE_R  
MUTE_S  
BYPASS  
NB-  
When high, the Rin path is muted to quiet code (after the NLP) and when low  
the Rin path is not muted.  
When high, the Sin path is muted to quiet code (after the NLP) and when low  
the Sin path is not muted.  
When high, the Send and Receive paths are transparently by-passed from  
input to output and when low the Send and Receive paths are not bypassed.  
When high, Narrowband signal detectors in Rin and Sin paths are disabled  
and when low the signal detectors are enabled.  
2
1
AGC-  
AH-  
When high, AGC is disabled and when low AGC is enabled.  
When high, the Howling detector is disabled and when low the Howling  
detector is enabled.  
0
RESET  
When high, the power initialization routine is executed presetting all registers  
to default values.  
This bit automatically clears itself to’0’ when reset is complete.  
Register Table 1 - Main Control Register 1 (MC1)  
Read/Write Address: 01H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
SHFT  
Reserved  
Reserved  
NRdis  
NSUP3  
NSUP2  
NSUP1  
NSUP0  
Bit  
Name  
Description  
7
SHFT  
When high and in 16-bit linear mode, this bit enables shift right by 2 on inputs  
Sin, Rin, and shift left by 2 on outputs Sout, Rout, for codec. If not in 16-bit  
linear mode for both I/O ports, this bit is ignored.  
When low, =default, no shift.  
Reserved: Must be set to low  
Reserved: Must be set to low  
6
5
Reserved  
Reserved  
Register Table 2 - Main Control Register 2 (MC2)  
25  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Address: 01H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
SHFT  
Reserved  
Reserved  
NRdis  
NSUP3  
NSUP2  
NSUP1  
NSUP0  
Bit  
Name  
Description  
4
NRDIS  
When high, noise reduction is disabled.  
When low, noise reduction is enabled.  
3-0  
NSUP  
Noise Suppression Threshold - Any value below this threshold in the send  
path will be suppressed (reset)  
Register Table 2 - Main Control Register 2 (MC2)  
Read/Write Page 0, Address:02H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
HFLAG  
Reserved  
Reserved  
Reserved  
NB  
NBR  
Bit  
Name  
Description  
7-6  
5
Reserved  
Reserved: Must be set to low  
HFLAG  
False howling detect bit.’1’ indicates’ false howling’ detected (music or  
sinusoidal match).’0’ indicates no ’false howling’, i.e. howling is not ruled out  
(by any matches to music or speech). The final howling decision is in bit 5 of  
ASR (HWLNG).  
4-2  
1
Reserved  
Reserved: Must be set to low  
NB  
This bit indicates a LOGICAL-OR of status bits NBR + NBS (from ASR  
register).  
When high, a narrowband signal has been detected in the Receive (Rin/Rout)  
0
NBR  
path.  
Register Table 3 - Acoustic Echo Canceller Status Register  
Read/Write Page 0, Address: 03H  
Reset Value: 60H  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
DC4  
DC3  
DC2  
DC1  
DC0  
Bit  
Name  
Description  
7-5  
4-0  
Reserved  
Reserved: Must be set to low  
DC4-DC0  
DC offset value in mute condition.  
Register Table 4 - DC Offset Register  
26  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 04H  
Reset Value: A1H  
7
6
5
4
3
2
1
0
FR2  
FR1  
FR0  
FS4  
FS3  
FS2  
FS1  
FS0  
Bit  
Name  
Description  
7-5  
4-0  
FR2-FR0  
FS4-FS0  
These four bits control the cut-off frequency of HPF at Rin.  
These four bits control the cut-off frequency of HPF at Sin.  
3 dB frequency and bit 0-4 for Sin  
00: 2 KHz; 08: 2.65 Hz; 10: 3 KHz; 18: 3.6 Hz  
01: 820 Hz; 09: 1.1 KHz; 11: 1.2 KHz; 19: 1.6 KH  
02: 350 Hz; 0A: 450 Hz; 12: 580 Hz; 1A: 700 Hz  
03: 160 Hz; 0B: 200 Hz; 13: 250 Hz; 1B: 300 Hz  
04: 80 Hz; 0C: 100 Hz; 14: 125 Hz; 1C: 150 Hz  
05: 40 Hz; 0D: 50 Hz; 15: 60 Hz; 1D: 70 Hz  
06: 20 Hz; 0E: 25 Hz; 16: 30 Hz; 1E: 38 Hz  
07: 10 Hz; 0F: 14 Hz; 17: 15 Hz; 1F: 18 Hz  
3dB frequency and bit 5-7 for Rin  
0: 2 KHz; 1; 820 Hz; 2: 350 Hz; 3: 160 Hz; 4: 80 Hz; 5: 40 Hz; 6: 20 Hz; 7: 10 Hz  
Register Table 5 - High Pass Filter Constant Register (FLTSH)  
Read/Write Page 0, Address:05H  
Reset Value: 08H  
7
6
5
4
3
2
1
0
RESV  
RESV  
MU5  
MU4  
MU3  
MU2  
MU1  
MU0  
Bit  
7-0  
Name  
Description  
MU5-0  
This register allows the user to program control the adaptation speed. This  
register allows a maximum value of 3Fh. The default value is 08h  
corresponding to decimal value of 2.0. Decimal value of 1.0 is 04h. Lower  
values correspond to slower adaptation speed.  
Reserved. Write’0’.  
Register Table 6 - Mu Constant Register  
27  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 07H  
Reset Value: FFH  
7
6
5
4
3
2
1
0
SIG7  
SIG6  
SIG5  
SIG4  
SIG3  
SIG2  
SIG1  
SIG0  
Bit  
7-0  
Name  
Description  
SIG7-0  
This register provides the signature of the bootloaded data to verify error-free  
delivery into the device.  
Note: this register is only accessible if BOOT bit is high (bootload mode  
enabled) in the above BRC register. While bootload is disabled, the register  
value is held constant at its reset seed value of FFh.  
Register Table 7 - Bootload RAM Signature Register (SIG)  
Read/Write Page 0, Address: 09H  
Reset Value: 04H  
7
6
5
4
3
2
1
0
SAT15  
SAT14  
SAT13  
SAT12  
SAT11  
SAT10  
SAT9  
SAT8  
Read/Write Page 0, Address: 08H  
Reset Value: 80H  
7
6
5
4
3
2
1
0
SAT7  
SAT6  
SAT5  
SAT4  
SAT3  
SAT2  
SAT1  
SAT0  
Bit  
15-0  
Name  
Description  
SAT15-SAT0  
Threshold for deciding low adaptation speed. 8000h = 1.0.  
Register Table 8 - Slow Adaptation Threshold Registers (SATR1) & (SATR2)  
28  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 12H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
SoutGR  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
7 - 1  
0
Reserved  
SoutGR  
Reserved: Must be set to low  
This bit will provide an automatic signal reduction on Sout by 12 dB (far-end  
speaker) when double talk is present with this bit set to 1.  
Register Table 9 - Sout Gain Reduction (SoutGR)  
Read/Write Page 0, Address: 1DH  
Reset Value: 08H  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Reserved  
Reserved  
Reserved  
XRAMGain3  
XRAMGain2  
XRAMGain1  
XRAMGain0  
Read/Write Page 0, Address: 1CH  
Reset Value: 88H  
7
6
5
4
3
2
1
0
SoutGain3  
SoutGain2  
SoutGain1  
SoutGain0  
SinGain3  
SinGain3  
SinGain3  
SinGain3  
Bit  
Name  
Description  
15-12  
11-8  
Reserved  
Reserved: Must be set to low  
XRAMGain3-0  
Gain control for ROUT to Xram, range from -24 dB to 21 dB. (1111=+21dB,  
0000=-24 dB)  
7-4  
3-0  
SoutGain3-0  
SinGain3-0  
Gain control for SOUT, range from -24 dB to 21 dB. (1111=+21dB, 0000=-  
24 dB)  
Gain control for SIN, range from -24 dB to 21 dB. (1111=+21dB, 0000=-  
24 dB)  
Register Table 10 - Customer Gain Control Registers (CGCR1) & (CGCR2)  
29  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 20H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
G3  
G2  
G1  
G0  
Bit  
Name  
Description  
7-4  
3
Reserved  
G3  
Reserved: Must be set to low  
User Gain Control on Rin/Rout path. (Tolerance of gain values: +/- 0.15 dB  
2
G2  
1
G1  
0
G0  
Gain Code: G4-G0  
Gain(dB) data  
sheet  
Gain(dB) actual  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-3  
+0  
+3  
+6  
+9  
+12  
+15  
+18  
+21  
-24.08  
-21.31  
-18.06  
-14.91  
-12.04  
-9.08  
-6.02  
-3.06  
+0  
+3.01  
+5.99  
+9.01  
+12.01  
+15.03  
+18.03  
+21.05  
Register Table 11 - Receive Gain Control (RCGR)  
30  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 21H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
Reserved  
ASC-  
NLP-  
INJ-  
HPF-  
HCLR  
ADAPT-  
ECBY  
Bit  
Name  
Description  
7
6
Reserved  
ASC-  
Reserved: Must be set to low  
When high, internal adaptation speed control is disabled.  
When low, internal adaptation speed control is enabled.  
5
4
3
NLP-  
NJ-  
When high, the non-linear processor in the Sin/Sout path is disabled.  
When low, the non-linear processor in the Sin/Sout path is enabled.  
When high, the noise filtering process is disabled in the NLP.  
When low, the noise filtering process is enabled in the NLP.  
HPF-  
When high, the offset nulling filter is bypassed in the Sin/Sout path.  
When low, the offset nulling filter in the Sin/Sout path is active and will  
remove DC offset on the Rin input signal.  
2
1
0
HCLR  
ADAPT-  
ECBY  
When high, the H register in the adaptive filter is cleared.  
When low, the H register is not cleared  
When high, echo canceller adaptation is disabled.  
When low, the echo canceller adapts to the echo path characteristics.  
When high, the echo estimate from the adaptive filter is not subtracted from  
the Send path.  
When low, the echo estimate is subtracted from the Send path.  
Register Table 12 - Acoustic Echo Canceller Control Register (AECCR)  
31  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read Page 0, Address: 22H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
ACMUTH  
ACMUND  
HWLNG  
NLPUTH  
NLPDCW  
DT  
NB  
NBS  
Bit  
Name  
Description  
7
6
5
ACMUTH  
ACMUND  
HWLNG  
Energy comparison for mu value.’1’ indicates enough echo suppression.  
When low, indicates that the Rin/Rout Receive path has no active signal.  
When high indicates that howling is occurring in the loop. A related ’false  
howling’ bit (HFLAG) in bit 5 of LSR is created as part of the howling-detect  
decision making.  
4
NLPUTH  
Peak comparison with NLP up threshold.’1’ indicates not enough echo  
suppression.  
3
2
1
NLPDC  
DT  
When high indicates that the NLP is activated.  
When high, double-talk is present.  
NB  
This bit indicates a LOGICAL-OR of status bits NBS + NBR (from LSR  
register).  
0
NBS  
When high, a narrowband signal has been detected in the Send (Sin/Sout)  
path.  
Register Table 13 - STATUS Acoustic Echo Canceller Status Register (AECSR1)  
Read Page 0, Address: 23H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
DHCLR  
ACMUFL  
ACMULOW  
ACMUNSP  
NLPDCLD  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
7-4  
4
Reserved  
DHCLR  
Indicate the divergence of adaptation. "1" indicates that strong divergence  
occurs with error energy is at least double the input signal energy.  
Reserved (anything written on it will be overwritten by temporary variable in  
the program).  
3
ACMUFL  
Adaptation floor decision. ’1’ indicates the reference is below the adaptation  
floor, no adaptation.  
2
1
0
Reserved  
ACMUNSP  
Reserved  
Indicates strong near-end speech.  
Register Table 14 - Acoustic Echo Canceller Status register 2 (AECSR2)  
32  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 25H  
Reset Value: 3EH  
15  
14  
13  
12  
11  
10  
9
8
L7  
L6  
L5  
L5  
L4  
L3  
L2  
L1  
Read/Write Page 0, Address: 24H  
Reset Value: 80H  
7
6
5
4
3
2
1
0
L0  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
Bit  
Name  
Description  
6-0  
F6-F0  
Allows the acoustic LMS filter length to be reduced. The register value is in  
terms of milliseconds.  
15-7  
L7-L0  
Maps to Rout limiter value, Limit = 0L8L7L6 L5L4L3L2 L1L000 0000, Range:  
040h - 7FC0h, plus 00h point value. Default: 1F40h  
Register Table 15 - Acoustic LMS Filter Length Registers (ALMSFR1) & (ALMSFR2)  
Read/Write Page 0, Address: 26H  
Reset Value: 3DH  
7
6
5
4
3
2
1
0
L4  
L3  
L2  
L1  
L0  
SSC2  
SSC1  
SSC0  
Bit  
Name  
Description  
7-3  
L4-L0  
Sout Limit Value: Stores the variable limit for Sout. The interpretation of  
these bits is not direct: 00111 maps to default value = 1F40h.  
Limit level =  
0L4L3L2 L1L011 0100 0000, range: 0340h - 7F40h.  
2-0  
SSC2-SSC0  
Decay Step Size Control: This register controls the step size (SS) to be  
used during the exponential decay of MU.  
Register Table 16 - Decay Step Size Control Register (DSSCR)  
33  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 27H  
Reset Value: 06H  
7
6
5
4
3
2
1
0
NS7  
NS6  
NS5  
NS4  
NS3  
NS2  
NS1  
NS0  
Bit  
7-0  
Name  
Description  
NS7-NS0  
Decay Step Number: This register defines the number of steps to be used  
for the decay of MU where each step has a period of SS taps (see SSC2-0).  
Register Table 17 - Decay Step Number Register (DSNR)  
Amplitude of MU  
FIR Filter Length (896 taps)  
Step Size (SS)  
1.0  
2-16  
Time  
Number of Steps (NS7-0  
)
The Exponential Decay registers (Decay Step Number and Decay Step Size) allow the LMS adaptation step-size (MU) to be  
programmed over the length of the FIR filter. A programmable MU profile allows the performance of the echo canceller to be  
optimized for specific applications. For example, if the characteristic of the echo response is known to have a roughly exponential  
decay of the echo impulse response, then the MU profile can be programmed to approximate this expected impulse response  
thereby improving the convergence characteristics of the adaptive filter. Note that in the following register descriptions, one tap is  
equivalent to 125 ms.  
SSC2-0  
Decay Step Size Control: This register controls the step size (SS) to be used during the exponential decay of MU. The  
decay rate is defined as a decrease of MU by a factor of 2 every SS taps of the FIR filter, where SS = 4 x2SSC2-0. For  
example; If SSC2-0 = 4, then MU is reduced by a factor of 2 every 64 taps of the FIR filter. The default value of SSC2-0  
is 05h.  
L4-0  
Sout Limit Value: Stores the variable limit for Sout. The interpretation of these bits is not direct: 00111 maps to  
default value = 1F40h. Limit level = 0L4L3L2 L1L011 0100 0000 , range: 0340h - 7F40h.  
NS7-0  
Decay Step Number: This register defines the number of steps to be used for the decay of MU where each step has a  
period of SS taps (see SSC2-0). The start of the exponential decay is defined as:  
Filter Length (896) - [Decay Step Number (NS7-0) x Step Size (SS)] where SS = 4 x2SSC  
.
2-0  
For example, if NS7-0=4 and SSC2-0=4, then the exponential decay start value is 896 - [NS7-0 x SS] = 896 - [4 x (4x24)] =  
640 taps for a filter length of 896 taps.  
34  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 29H  
Reset Value: 04H  
15  
14  
13  
12  
11  
10  
9
8
MUURAT15  
MUURAT14  
MUURAT13  
MUURAT12  
MUURAT11  
MUURAT10  
MUURAT9  
MUURAT8  
Read/Write Page 0, Address: 28H  
Reset Value: 96H  
7
6
5
4
3
2
1
0
MUURAT7  
MUURAT6  
MUURAT15  
MUURAT4  
MUURAT3  
MUURAT2  
MUURAT1  
MUURAT0  
Bit  
Name  
Description  
15-0  
MUURAT15-  
MUURAT0  
Threshold for deciding near end speech (mu = 0). 1000h = 1.0.  
Register Table 18 - Near-End Speech Detection Threshold Registers (NESDT1) & (NESDT2)  
Read/Write Page 0, Address: 31H  
Reset Value: 04H  
15  
14  
13  
12  
11  
10  
9
8
DTTH2  
DTTH1  
DTTH1  
DTHOT12  
DTHOT11  
DTHOT10  
DTHOT9  
DTHOT8  
Read/Write Page 0, Address: 30H  
Reset Value: 96H  
7
6
5
4
3
2
1
0
DTHOT7  
DTHOT6  
DTHOT5  
DTHOT4  
DTHOT3  
DTHOT2  
DTHOT1  
DTHOT0  
Bit  
Name  
Description  
13-15  
DTTH2DTTH0  
Double Talk Threshold- in 6 dB increments from -30 dB to (0h = -30 dB, 7h  
= +12 dB  
12-0  
DTHOT12-DTHOT0  
Double-Talk hand-over time  
Register Table 19 - Near-End Speech Detection Threshold Registers (DTHOT1) & (DTHOT2)  
35  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 32H  
Reset Value: 2AH  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RoutGR  
Bit  
Name  
Description  
0
This bit will provide an automatic signal reduction on Rout by 12 db when  
double talk is present with this bit set to 1.  
RoutGR  
Figure 10 - Automatic Rout Gain Reduction (RoutGR)  
Read/Write Page 01, Address: 35H  
Reset Value: 01H  
15  
14  
13  
12  
11  
10  
9
8
NLPTH15  
NLPTH14  
NLPTH13  
NLPTH12  
NLPTH11  
NLPTH10  
NLPTH9  
NLPTH8  
Read/Write Page AA, Address: 34H  
Reset Value: AAH  
7
6
5
4
3
2
1
0
NLPTH7  
NLPTH6  
NLPTH15  
NLPTH4  
NLPTH3  
NLPTH2  
-NLPTH1  
NLPTH0  
Bit  
15-0  
Name  
Description  
NLPTH15-  
NLPTH0  
This register allows the user to program the level of the Non-Linear  
Processor Threshold. The 16 bit 2’s complement linear value defaults to  
1AAh. The maximum value is 7FFFh = 0.9999. Higher value corresponds  
to higher threshold. The high byte is in Register 2 and the low byte is in  
Register 1.  
Register Table 20 - NLP Threshold Register  
36  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 37H  
Reset Value: 00H  
15  
14  
13  
12  
11  
10  
9
8
SIPD15  
SIPD14  
SIPD13  
SIPD12  
SIPD11  
SIPD10  
SIPD9  
SIPD8  
Read/Write Page 0, Address: 36H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
SIPD7  
SIPD6  
SIPD15  
SIPD4  
SIPD3  
SIPD2  
SIPD1  
SIPD0  
Bit  
15-0  
Name  
Description  
SIPD15-SIPD0  
These peak detector registers allow the user to monitor the send in signal  
(Sin) peak signal level at reference point S1 (see Figure 1). The information  
is in 16-bit 2’s complement linear coded format presented in two 8 bit  
registers. The high byte is in Register 2 and the low byte is in Register 1.  
Register Table 21 - Send (Sin) Peak Detect Registers (SPDR1) & (SPDR2)  
Read/Write Page 0, Address: 39H  
Reset Value: 00H  
15  
14  
13  
12  
11  
10  
9
8
SEPD15  
SEPD14  
SEPD13  
SEPD12  
SEPD11  
SEPD10  
SEPD9  
SEPD8  
Read/Write Page 0, Address: 38H  
Reset Value: 00H  
7
6
5
4
3
2
1
0
SEPD7  
SEPD6  
SEPD15  
SEPD4  
SEPD3  
SEPD2  
SEPD1  
SEPD0  
Bit  
15-0  
Name  
Description  
SEPD15-SEPD0 These peak detector registers allow the user to monitor the error signal  
peak level in the Send path at reference point S2 (see Figure 1). The  
information is in 16-bit 2’s complement linear coded format presented in  
two 8 bit registers. The high byte is in Register 2 and the low byte is in  
Register 1.  
Register Table 22 - Send Error Peak Detect Registers (SEPDR1) & (SEPDR2)  
37  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0, Address: 3BH  
Reset Value: 00H  
15  
14  
13  
12  
11  
10  
9
8
ROPD15  
ROPD14  
ROPD13  
ROPD12  
ROPD11  
ROPD10  
ROPD9  
ROPD8  
Read/Write Page 0, Address: 3AH  
Reset Value: 00H  
7
6
5
4
3
2
1
0
ROPD7  
ROPD6  
ROPD15  
ROPD4  
ROPD3  
ROPD2  
ROPD1  
ROPD0  
Bit  
15-0  
Name  
Description  
ROPD15-  
ROPD0  
These peak detector registers allow the user to monitor the receive out  
signal (Rout) peak signal level at reference point R1 (see Figure 1). The  
information is in 16-bit 2’s complement linear coded format presented in  
two 8 bit registers. The high byte is in Register 2 and the low byte is in  
Register 1.  
Register Table 23 - Receive (Rout) Peak Detect Registers (RPDR1) & (RPDR2)  
Read/Write Page 0, Address: 3DH  
Reset Value: 10H  
15  
14  
13  
12  
11  
10  
9
8
A_AS15  
A_AS14  
A_AS13  
A_AS12  
A_AS11  
A_AS10  
A_AS9  
A_AS8  
Read/Write Page 0, Address: 3CH  
Reset Value: 00H  
7
6
5
4
3
2
1
0
A_AS7  
A_AS6  
A_AS5  
A_AS4  
A_AS3  
A_AS2  
A_AS1  
A_AS0  
Bit  
15-0  
Name  
Description  
A_AS15-0  
Actual mu sent to acoustic LMS. This register is where we can feed  
externally calculated mu value. This register allows the user to program  
control the adaptation speed. The default value is 1000h corresponding to  
decimal value of 2.0. The high byte is in Register 2 and the low byte is in  
Register 1. Smaller values correspond to slower adaptation speed.  
Register Table 24 - Adaptation Speed Registers (ASR1) & (ASR2)  
38  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 0/1/2/3, Address: 3FH  
Reset Value: 00H  
7
6
5
4
3
2
1
0
-
-
-
-
ROM/RAM  
BOOT BIT  
PAGEH  
PAGEL  
Bit  
Name  
Description  
7-4  
3
Unused  
Must be set to 0  
RAM/ROM  
When high, device executes from RAM. When low, device executes from  
ROM.  
2
1
0
BOOT BIT  
PAGE H  
PAGE L  
When high, puts device in bootload mode. When low, bootload is disabled.  
Controls the register page being accessed by address 00h-3Fh. 00 = page  
0 (default), 01 = page 1, 10= page 2, 11 = page 3  
Register Table 25 - BRC Bootload RAM Control Register (BRCR)  
Read/Write Page 1, Address: 1BH  
Reset Value: 10H  
15  
14  
13  
12  
11  
10  
9
8
NLVRL15  
NLVRL14  
NLVRL13  
NLVRL12  
NLVRL11  
NLVRL10  
NLVRL9  
NLVRL8  
Read/Write Page 1, Address: 1AH  
Reset Value: 00H  
7
6
5
4
3
2
1
0
NLVRL7  
NLVRL6  
NLVRL5  
NLVRL4  
NLVRL3  
NLVRL2  
NLVRL1  
NLVRL0  
Bit  
15-0  
Name  
Description  
NLVRL15-0  
Estimated noise level in R path.  
Register Table 26 - Noise Level Registers R Path (NLRPR1) & (NLRPR2)  
39  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 1, Address: 3BH  
Reset Value: 00H  
15  
14  
13  
12  
11  
10  
9
8
NLVSL15  
NLVSL14  
NLVSL13  
NLVSL12  
NLVSL11  
NLVSL10  
NLVSL9  
NLVSL8  
Read/Write Page 1, Address: 3AH  
Reset Value: 00H  
7
6
5
4
3
2
1
0
NLVSL7  
NLVSL6  
NLVSL5  
NLVSL4  
NLVSL3  
NLVSL2  
NLVSL1  
NLVSL0  
Bit  
15-0  
Name  
Description  
NLVRL15-0  
Estimated noise level in S path.  
Register Table 27 - Noise Level S Path Registers (NLSPR1) & (NLSPR2)  
Read/Write Page 2, Address: 1DH  
Reset Value: 08H  
15  
14  
13  
12  
11  
10  
9
8
AGCGN15  
AGCGN14  
AGCGN13  
AGCGN12  
AGCGN11  
AGCGN10  
AGCGN9  
AGCGN8  
Read/Write Page 2, Address: 1CH  
Reset Value: 00H  
7
6
5
4
3
2
1
0
AGCGN7  
AGCGN6  
AGCGN5  
AGCGN4  
AGCGN3  
AGCGN2  
AGCGN1  
AGCGN0  
Bit  
15-0  
Name  
Description  
AGCGN15-0  
AGC gain value (1=4000h)  
Register Table 28 - AGC Gain Register (AGCGR1) & (AGCGR2)  
40  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Read/Write Page 3, Address: 15H  
Reset Value: 20H  
7
6
5
4
3
2
1
0
NRTH7  
NRTH6  
NRTH5  
NRTH4  
NRTH3  
NRTH2  
NRTH1  
NRTH0  
Bit  
7-0  
Name  
Description  
NRTH7-0  
This register scales the noise threshold for noise reduction.  
Register Table 29 - Noise Threshold for Noise Reduction Register (NRTH)  
Read/Write Page 3, Address: 17H  
Reset Value: 20H  
7
6
5
4
3
2
1
0
BETA7  
BETA6  
BETA5  
BETA4  
BETA3  
BETA2  
BETA1  
BETA0  
Bit  
7-0  
Name  
Description  
BETA7-0  
This register sets the minimum noise reduction for each sample.  
Register Table 30 - Noise reduction Register  
41  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
8.0 Electrical Characteristics  
Absolute Maximum Ratings*  
Parameter  
Symbol  
Min.  
Max.  
Units  
1
2
3
4
5
6
Supply Voltage  
V
DD-VSS  
Vi  
-0.5  
5.0  
5.5  
V
V
Input Voltage  
VSS-0.3  
VSS-0.3  
Output Voltage Swing  
Continuous Current on any digital pin  
Storage Temperature  
Package Power Dissipation  
Vo  
5.5  
V
Ii/o  
±20  
mA  
°C  
mW  
TST  
PD  
-65  
150  
90 (typ)  
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Recommended Operating Conditions - Voltages are with respect to ground (VSS) unless otherwise stated.  
Characteristics  
Supply Voltage  
Sym.  
Min.  
Typ. Max. Units  
Test Conditions  
1
2
3
4
VDD  
2.7  
1.4  
VSS  
-40  
3.3  
3.6  
VDD  
0.4  
V
V
Input High Voltage  
Input Low Voltage  
V
Operating Temperature  
TA  
+85  
°C  
Echo Return Limits  
Characteristics  
Acoustic Echo Return  
Min.  
Typ.  
Max. Units  
dB  
Test Conditions  
1
6
Measured from Rout -> Sin (using the  
Customer Gain Control registers)  
DC Electrical Characteristics*- Voltages are with respect to ground (VSS) unless otherwise stated.  
Characteristics  
Sym.  
Min.  
Typ.‡  
Max.  
Units  
Conditions/Notes  
RESET = 0  
Standby Supply Current:  
Operating Supply Current:  
Input HIGH voltage  
ICC  
IDD  
VIH  
VIL  
3
70  
µA  
mA  
V
1
20  
RESET = 1, clocks active  
2
3
4
5
6
7
8
9
0.7VDD  
0.8VDD  
Input LOW voltage  
0.3VDD  
10  
V
Input leakage current  
High level output voltage  
Low level output voltage  
High impedance leakage  
Output capacitance  
IIH/IIL  
VOH  
VOL  
IOZ  
0.1  
µA  
V
VIN=VSS to VDD  
IOH=2.5 mA  
0.4V  
10  
V
IOL=5.0 mA  
1
10  
8
µA  
pF  
pF  
VIN=VSS to VDD  
Co  
Input capacitance  
Ci  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
*DC Electrical Characteristics are over recommended temperature and supply voltage.  
42  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
AC Electrical Characteristics- Serial Data Interfaces - Voltages are with respect to ground (VSS) unless otherwise stated.  
Characteristics  
MCLK Frequency  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Notes  
1
2
fCLK  
19.15  
90  
20.5  
MHz  
ns  
BCLK/C4i Clock High  
BCLK/C4i Clock Low  
BCLK/C4i Period  
tBCH,  
tC4H  
3
tBLL,  
tC4L  
90  
ns  
4
5
tBCP  
tSD  
240  
80  
7900  
ns  
ns  
SSI Enable Strobe to Data Delay (first  
bit)  
CL = 150 pF  
CL = 150 pF  
CL = 150 pF  
6
SSI Data Output Delay (excluding  
first bit)  
tDD  
80  
ns  
7
8
SSI Output Active to High Impedance  
SSI Enable Strobe Signal Setup  
tAHZ  
tSSS  
80  
10  
ns  
ns  
tBCP  
-15  
9
SSI Enable Strobe Signal Hold  
tSSH  
15  
tBCP  
-10  
ns  
10 SSI Data Input Setup  
11 SSI Data Input Hold  
tDIS  
tDIH  
10  
15  
20  
20  
80  
80  
ns  
ns  
ns  
ns  
ns  
ns  
12 ST-BUS/GCI F0i Setup  
13 ST-BUS/GCI F0i Hold  
14 ST-BUS/GCI Data Output delay  
tF0iS  
tF0iH  
tDSD  
tASHZ  
150  
150  
CL = 150 pF  
CL = 150 pF  
15 ST-BUS/GCI Output Active to High  
Impedance  
16 ST-BUS/GCI Data Input Hold time  
tDSH  
tDSS  
20  
20  
ns  
ns  
17 ST-BUS/GCI Data Input Setup time  
† Timing is over recommended temperature and power supply voltages.  
43  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
AC Electrical Characteristics- Microport Timing  
Characteristics  
Input Data Setup  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Notes  
1
2
3
4
5
6
7
8
9
tIDS  
tIDH  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input Data Hold  
Output Data Delay  
Serial Clock Period  
SCLK Pulse Width High  
SCLK Pulse Width Low  
CS Setup-Intel  
tODD  
tSCP  
tSCH  
tSCL  
100  
CL = 150 pF  
500  
250  
250  
200  
100  
100  
100  
tCSSI  
tCSSM  
tCSH  
tOHZ  
CS Setup-Motorola  
CS Hold  
10 CS to Output High Impedance  
† Timing is over recommended temperature range and recommended power supply voltages.  
CL = 150 pF  
Characteristic  
CMOS reference level  
Symbol  
CMOS Level  
Units  
VCT  
VH  
0.5*VDD  
0.9*VDD  
0.1*VDD  
0.7*VDD  
0.3*VDD  
V
V
V
V
V
Input HIGH level  
Input LOW level  
VL  
Rise/Fall HIGH measurement point  
Rise/Fall LOW measurement point  
VHM  
VLM  
Table 8 - Reference Level Definition for Timing Measurements  
T=1/fCLK  
VH  
VL  
MCLK (I)  
V
CT  
Notes: O. CMOS output  
I. CMOS input (5 V tolerant)  
(see Table 8 for symbol definitions)  
Figure 11 - Master Clock - MCLK  
44  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Bit 7  
Bit 6  
Sout/Rout (O)  
V
CT  
tASHZ  
tDSD  
tC4H  
VH  
VL  
C4i (I)  
V
CT  
tF0iS tF0iH  
tC4L  
VH  
VL  
F0i (I)  
V
CT  
tDSS tDSH  
start of frame  
VH  
VL  
Rin/Sin (I)  
V
CT  
Bit 6  
Bit 7  
Figure 12 - GCI Data Port Timing  
Bit 7  
Bit 6  
Sout/Rout (O)  
V
CT  
tDSD  
tC4H  
tASHZ  
VH  
VL  
C4i (I)  
V
CT  
tF0iS tF0iH  
tC4L  
VH  
VL  
F0i (I)  
V
CT  
start of frame  
tDSS tDSH  
VH  
VL  
Rin/Sin (I)  
V
CT  
Bit 6  
Bit 7  
Figure 13 - ST-BUS Data Port Timing  
45  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
Bit 7  
Bit 6  
Bit 5  
Sout/Rout (O)  
BCLK (I)  
CT  
CT  
CT  
CT  
V
V
V
V
tAHZ  
tSD  
tDD  
tBCH  
VH  
VL  
tSSS  
tBCP  
tBCL  
tSSH  
VH  
VL  
ENA1 (I)  
or  
ENA2 (I)  
tDIS  
tDIH  
start of frame  
VH  
VL  
Rin/Sin (1)  
Bit 7  
Bit 6  
Bit 5  
Notes: O. CMOS output  
I. CMOS input (5 V tolerant)  
(see Table 8 for symbol definitions)  
Figure 14 - SSI Data Port Timing  
DATA OUTPUT  
DATA INPUT  
DATA1 (I,O)  
V
V
V
CT  
CT  
CT  
tIDS tIDH  
tSCH  
tODD  
tOHZ  
VH  
SCLK (I)  
VL  
tCSSI  
tSCL  
tSCP  
tCSH  
VH  
(
I)  
CS  
VL  
Notes: O. CMOS output  
I. CMOS input (5 V tolerant)  
(see Table 8 for symbol definitions)  
Figure 15 - INTEL Serial Microport Timing  
46  
Zarlink Semiconductor Inc.  
ZL38002  
Data Sheet  
VH  
VL  
DATA2 (I)  
(Input)  
V
CT  
CT  
CT  
CT  
tIDS tIDH  
tSCH  
tSCP  
VH  
VL  
SCLK (I)  
V
V
V
tCSSM  
tSCL  
tCSH  
VH  
VL  
CS (I)  
tODD  
tOHZ  
DATA1 (O)  
(Output)  
Notes: O. CMOS output  
I. CMOS input (5 V tolerant)  
(see Table 8 for symbol definitions)  
Figure 16 - Motorola Serial Microport Timing  
47  
Zarlink Semiconductor Inc.  
Package Code  
c
Zarlink Semiconductor 2004. All rights reserved.  
Previous package codes  
ISSUE  
ACN  
DATE  
APPRD.  
Package Code  
c Zarlink Semiconductor 2003 All rights reserved.  
Previous package codes  
ISSUE  
ACN  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

ZL38002QDG

Low-Voltage Acoustic Echo Canceller With Noise Reduction
ZARLINK

ZL38002QDG1

Low-Voltage Acoustic Echo Canceller With Noise Reduction
ZARLINK

ZL38002_07

Digital Echo Canceller for Hands Free Communication
ZARLINK

ZL38003

Digital Echo Canceller for Hands Free Communication
ZARLINK

ZL38003GMG

AEC with Noise Reduction & Codecs for Digital Hands-Free Communication
ZARLINK

ZL38003GMG2

AEC with Noise Reduction & Codecs for Digital Hands-Free Communication
ZARLINK

ZL38003_06

AEC with Noise Reduction & Codecs for Digital Hands-Free Communication
ZARLINK

ZL38004

Dedicated Voice Processor with Dual Channel Codec
ZARLINK

ZL38004GGG2

ADPCM Codec, 1-Func, PBGA96, 7 X 7 MM, 0.91 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, VFBGA-96
ZARLINK

ZL38004QCG1

Dedicated Voice Processor with Dual Channel Codec
ZARLINK

ZL38005

Enhanced Voice Processor with Dual Wideband Codecs
ZARLINK

ZL38005GGG2

ADPCM Codec, 1-Func, PBGA96, 7 X 7 MM, 0.91 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, VFBGA-96
MICROSEMI