ZL50019QCC [ZARLINK]

Enhanced 2 K Digital Switch with Stratum 4E DPLL; 增强型2 k数字交换机与地层4E DPLL
ZL50019QCC
型号: ZL50019QCC
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Enhanced 2 K Digital Switch with Stratum 4E DPLL
增强型2 k数字交换机与地层4E DPLL

文件: 总115页 (文件大小:858K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL50019  
Enhanced 2 K Digital Switch with  
Stratum 4E DPLL  
Data Sheet  
October 2004  
Features  
2048 channel x 2048 channel non-blocking digital  
Ordering Information  
Time Division Multiplex (TDM) switch at 8.192  
and 16.384 Mbps or using a combination of ports  
running at 2.048, 4.096, 8.192 and 16.384 Mbps  
ZL50019GAC 256-ball PBGA  
ZL50019QCC 256-lead LQFP  
32 serial TDM input, 32 serial TDM output  
streams  
Integrated Digital Phase-Locked Loop (DPLL)  
exceeds Telcordia GR-1244-CORE Stratum 4E  
specifications  
-40°C to +85°C  
Output streams can be configured as bi-  
directional for connection to backplanes  
Output clocks have less than 1 ns of jitter (except  
for the 1.544 MHz output)  
Per-stream input and output data rate conversion  
selection at 2.048, 4.096, 8.192 or 16.384 Mbps.  
Input and output data rates can differ  
DPLL provides holdover, freerun and jitter  
attenuation features with four independent  
reference source inputs  
Per-stream high impedance control outputs  
(STOHZ) for 16 output streams  
Per-stream input bit delay with flexible sampling  
point selection  
Exceptional input clock cycle to cycle variation  
tolerance (20 ns for all rates)  
VDD_COREA  
VDD_IOA  
RESET  
VDD_CORE  
VDD_IO  
VSS  
ODE  
P/S Converter  
STio[31:0]  
S/P Converter  
Input Timing  
Data Memory  
STi[31:0]  
FPi  
CKi  
Output HiZ  
Control  
STOHZ[15:0]  
MODE_4M0  
MODE_4M1  
Connection Memory  
REF0  
REF1  
REF2  
REF3  
FPo[3:0]  
CKo[5:0]  
FPo_OFF[2:0]  
Output Timing  
Test Port  
DPLL  
OSC  
REF_FAIL0  
REF_FAIL1  
REF_FAIL2  
REF_FAIL3  
Internal Registers &  
Microprocessor Interface  
OSC_EN  
Figure 1 - ZL50019 Functional Block Diagram  
Zarlink Semiconductor US Patent No. 5,602,884, UK Patent No. 0772912,  
France Brevete S.G.D.G. 0772912; Germany DBP No. 69502724.7-08  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2004, Zarlink Semiconductor Inc. All Rights Reserved.  
ZL50019  
Data Sheet  
Per-stream output bit and fractional bit advancement  
Per-channel ITU-T G.711 PCM A-Law/µ-Law Translation  
Four frame pulse and six reference clock outputs  
Three programmable delayed frame pulse outputs  
Input clock: 4.096 MHz, 8.192 MHz, 16.384 MHz  
Input frame pulses: 61 ns, 122 ns, 244 ns  
Per-channel constant or variable throughput delay for frame integrity and low latency applications  
Per Stream (32) Bit Error Rate Test circuits complying to ITU-O.151  
Per-channel high impedance output control  
Per-channel message mode  
Control interface compatible with Intel and Motorola 16-bit non-multiplexed buses  
Connection memory block programming  
Supports ST-BUS and GCI-Bus standards for input and output timing  
IEEE-1149.1 (JTAG) test port  
3.3 V I/O with 5 V tolerant inputs; 1.8 V core voltage  
Applications  
PBX and IP-PBX  
Small and medium digital switching platforms  
Remote access servers and concentrators  
Wireless base stations and controllers  
Multi service access platforms  
Digital Loop Carriers  
Computer Telephony Integration  
2
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
Description  
The ZL50019 is a maximum 2,048 x 2,048 channel non-blocking digital Time Division Multiplex (TDM) switch. It has  
thirty-two input streams (STi0 - 31) and thirty-two output streams (STio0 - 31). The device can switch 64 kbps and  
Nx64 kbps TDM channels from any input stream to any output stream. Each of the input and output streams can be  
independently programmed to operate at any of the following data rates: 2.048, 4.096, 8.192 or 16.384 Mbps. The  
ZL50019 provides up to sixteen high impedance control outputs (STOHZ0 - 15) to support the use of external  
tristate drivers for the first sixteen output streams (STio0 - 15). The output streams can be configured to operate in  
bi-directional mode, in which case STi0 - 31 will be ignored.  
The device contains two types of internal memory - data memory and connection memory. There are four modes of  
operation - Connection Mode, Message Mode, BER mode and high impedance mode. In Connection Mode, the  
contents of the connection memory define, for each output stream and channel, the source stream and channel  
(the actual data to be output is stored in the data memory). In Message Mode, the connection memory is used for  
the storage of microprocessor data. Using Zarlink's Message Mode capability, microprocessor data can be  
broadcast to the data output streams on a per-channel basis. This feature is useful for transferring control and  
status information for external circuits or other TDM devices. In BER mode the output channel data is replaced with  
a pseudorandom bit sequence (PRBS) from one of 32 PRBS generators that generates a 215-1 pattern. On the  
input side channels can be routed to one of 32 bit error detectors. In high impedance mode the selected output  
channel can be put into a high impedance state.  
When the device is operating as a timing master, the internal digital PLL is in use. In this mode, an external  
20.000 MHz crystal is required for the on-chip crystal oscillator. The DPLL is phase-locked to one of four input  
reference signals (which can be 8 kHz, 1.544 MHz, 2.048 MHz, 4.096 MHz, 8.192 MHz, 16.384 MHz or 19.44 MHz  
provided on REF0 - 3). The on-chip DPLL operates in normal, holdover or freerun mode and offers jitter  
attenuation. The jitter attenuation function exceeds the Stratum 4E specification.  
The configurable non-multiplexed microprocessor port allows users to program various device operating modes  
and switching configurations. Users can employ the microprocessor port to perform register read/write, connection  
memory read/write and data memory read operations. The port is configurable to interface with either Motorola or  
Intel-type microprocessors.  
The device also supports the mandatory requirements of the IEEE-1149.1 (JTAG) standard via the test port.  
3
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
Table of Contents  
1.0 Changes Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.0 Pinout Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1 BGA Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2 QFP Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.0 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.0 Device Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.0 Data Rates and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.1 External High Impedance Control, STOHZ0 - 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.2 Input Clock (CKi) and Input Frame Pulse (FPi) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.0 ST-BUS and GCI-Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.0 Output Timing Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.0 Data Input Delay and Data Output Advancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.1 Input Bit Delay Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.2 Input Bit Sampling Point Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.3 Output Advancement Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8.4 Fractional Output Bit Advancement Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
8.5 External High Impedance Control Advancement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.0 Data Delay Through the Switching Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.1 Variable Delay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.2 Constant Delay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
10.0 Connection Memory Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
11.0 Connection Memory Block Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
11.1 Memory Block Programming Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
12.0 Device Performance in Master Mode and Slave Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
12.1 Master Mode Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
12.2 Divided Slave Mode Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
12.3 Multiplied Slave Mode Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
13.0 Overall Operation of the DPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
13.1 DPLL Functional Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
13.1.1 Normal Operating Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
13.1.2 Holdover Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
13.1.3 Automatic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
13.1.4 Freerun Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
13.1.5 DPLL Internal Reset Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
14.0 DPLL Frequency Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
14.1 Input Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
14.2 Input Frequencies Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
14.3 Output Frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
14.4 Pull-In/Hold-In Range (also called Locking Range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
15.0 Jitter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
15.1 Input Clock Cycle to Cycle Timing Variation Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
15.2 Input Jitter Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
15.3 Jitter Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
16.0 DPLL Specific Functions and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
16.1 Lock Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
16.2 Maximum Time Interval Error (MTIE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
16.3 Phase Alignment Speed (Phase Slope) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
16.4 Reference Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
16.5 Single Period Reference Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
16.6 Multiple Period Reference Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
Table of Contents  
17.0 Microprocessor Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
18.0 Device Reset and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
18.1 Power-up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
18.2 Device Initialization on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
18.3 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
19.0 Pseudo Random Bit Generation and Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
20.0 PCM A-law/m-law Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
21.0 Quadrant Frame Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
22.0 JTAG Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
22.1 Test Access Port (TAP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
22.2 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
22.3 Test Data Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
22.4 BSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
23.0 Register Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
24.0 Detailed Register Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
25.0 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
25.1 Memory Address Mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
25.2 Connection Memory Low (CM_L) Bit Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
25.3 Connection Memory High (CM_H) Bit Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
26.0 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
26.1 OSCi Master Clock Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
26.1.1 External Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
26.1.2 External Clock Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
27.0 DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
28.0 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
5
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
List of Figures  
Figure 1 - ZL50019 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - ZL50019 256-Ball 17 mm x 17 mm PBGA (as viewed through top of package) . . . . . . . . . . . . . . . . . . 10  
Figure 3 - ZL50019 256-Lead 28 mm x 28 mm LQFP (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 4 - Input Timing when CKIN1 - 0 bits = “10” in the CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 5 - Input Timing when CKIN1 - 0 bits = “01” in the CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 6 - Input Timing when CKIN1 - 0 = “00” in the CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 7 - Output Timing for CKo0 and FPo0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 8 - Output Timing for CKo1 and FPo1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 9 - Output Timing for CKo2 and FPo2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 10 - Output Timing for CKo3 and FPo3 with CK0FPo3SEL1-0=”11” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 11 - Output Timing for CKo4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 12 - Output Timing for CKo5 and FPo5 (FPo_OFF2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 13 - Input Bit Delay Timing Diagram (ST-BUS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 14 - Input Bit Sampling Point Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 15 - Input Bit Delay and Factional Sampling Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 16 - Output Bit Advancement Timing Diagram (ST-BUS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 17 - Output Fractional Bit Advancement Timing Diagram (ST-BUS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 18 - Channel Switching External High Impedance Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 19 - Data Throughput Delay for Variable Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 20 - Data Throughput Delay for Constant Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 21 - Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 22 - Clock Oscillator Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 23 - Timing Parameter Measurement Voltage Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 24 - Motorola Non-Multiplexed Bus Timing - Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 25 - Motorola Non-Multiplexed Bus Timing - Write Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 26 - Intel Non-Multiplexed Bus Timing - Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 27 - Intel Non-Multiplexed Bus Timing - Write Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 28 - JTAG Test Port Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 29 - Frame Pulse Input and Clock Input Timing Diagram (ST-BUS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 30 - Frame Pulse Input and Clock Input Timing Diagram (GCI-Bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 31 - ST-BUS Input Timing Diagram when Operated at 2 Mbps, 4 Mbps, 8 Mbps. . . . . . . . . . . . . . . . . . . . 95  
Figure 32 - ST-BUS Input Timing Diagram when Operated at 16 Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 33 - GCI-Bus Input Timing Diagram when Operated at 2 Mbps, 4 Mbps, 8 Mbps . . . . . . . . . . . . . . . . . . . 96  
Figure 34 - GCI-Bus Input Timing Diagram when Operated at 16 Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 35 - ST-BUS Output Timing Diagram when Operated at 2, 4, 8 or 16 Mbps . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 36 - GCI-Bus Output Timing Diagram when Operated at 2, 4, 8 or 16 Mbps . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 37 - Serial Output and External Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 38 - Output Drive Enable (ODE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 39 - Input and Output Frame Boundary Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 40 - FPo0 and CKo0 or FPo3 and CKo3 (4.096 MHz) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 41 - FPo1 and CKo1 or FPo3 and CKo3 (8.192 MHz) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 42 - FPo2 and CKo2 or FPo3 and CKo3 (16.384 MHz) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 43 - FPo3 and CKo3 (32.768 MHz) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 44 - FPo4 and CKo4 Timing Diagram (1.544/2.048 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 45 - CKo5 Timing Diagram (19.44 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 46 - REF0 - 3 Reference Input/Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 47 - Output Timing (ST-BUS Format) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
6
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
List of Tables  
Table 1 - CKi and FPi Configurations for Master and Divided Slave Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 2 - CKi and FPi Configurations for Multiplied Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 3 - Output Timing Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 4 - Delay for Variable Delay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 5 - Connection Memory Low After Block Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 6 - Connection Memory High After Block Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 7 - ZL50019 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 8 - DPLL Input Reference Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 9 - Generated Output Frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 10 - Values for Single Period Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 11 - Multi-Period Hysteresis Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 12 - Input and Output Voice and Data Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 13 - Definition of the Four Quadrant Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 14 - Quadrant Frame Bit Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 15 - Address Map for Registers (A13 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 16 - Control Register (CR) Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 17 - Internal Mode Selection Register (IMS) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 18 - Software Reset Register (SRR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 19 - Output Clock and Frame Pulse Control Register (OCFCR) Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 20 - Output Clock and Frame Pulse Selection Register (OCFSR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 21 - FPo_OFF[n] Register (FPo_OFF[n]) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 22 - Internal Flag Register (IFR) Bits - Read Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 23 - BER Error Flag Register 0 (BERFR0) Bits - Read Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 24 - BER Error Flag Register 1 (BERFR1) Bits - Read Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 25 - BER Receiver Lock Register 0 (BERLR0) Bits - Read Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 26 - BER Receiver Lock Register 1 (BERLR1) Bits - Read Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 27 - DPLL Control Register (DPLLCR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 28 - Reference Frequency Register (RFR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 29 - Centre Frequency Register - Lower 16 Bits (CFRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 30 - Centre Frequency Register - Upper 10 Bits (CFRU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 31 - Frequency Offset Register (FOR) Bits - Read Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 32 - Lock Detector Threshold Register (LDTR) Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 33 - Lock Detector Interval Register (LDIR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 34 - Slew Rate Limit Register (SRLR) Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 35 - Reference Change Control Register (RCCR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 36 - Reference Change Status Register (RCSR) Bits - Read Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 37 - Interrupt Register (IR) Bits - Read Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 38 - Interrupt Mask Register (IMR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 39 - Interrupt Clear Register (ICR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 40 - Reference Failure Status Register (RSR) Bits - Read Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 41 - Reference Mask Register (RMR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 42 - Reference Frequency Status Register (RFSR) Bits - Read only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 43 - Output Jitter Control Register (OJCR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 44 - Stream Input Control Register 0 - 31 (SICR0 - 31) Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 45 - Stream Input Quadrant Frame Register 0 - 31 (SIQFR0 - 31) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 46 - Stream Output Control Register 0 - 31 (SOCR0 - 31) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 47 - BER Receiver Start Register [n] (BRSR[n]) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 48 - BER Receiver Length Register [n] (BRLR[n]) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
7
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
List of Tables  
Table 49 - BER Receiver Control Register [n] (BRCR[n]) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 50 - BER Receiver Error Register [n] (BRER[n]) Bits - Read Only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 51 - Address Map for Memory Locations (A13 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Table 52 - Connection Memory Low (CM_L) Bit Assignment when CMM = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Table 53 - Connection Memory Low (CM_L) Bit Assignment when CMM = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 54 - Connection Memory High (CM_H) Bit Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
8
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
1.0 Changes Summary  
Page  
Item  
Change  
10  
Figure 2, “ZL50019 256-Ball 17 mm x  
17 mm PBGA (as viewed through top of  
package)  
Re-labeled IC_OPEN to MODE_4M0 Location:  
Ball M14  
Re-labeled IC_OPEN to MODE_4M1 Location:  
Ball R13  
11  
Figure 3, “ZL50019 256-Lead 28 mm x  
28 mm LQFP (top view)  
Re-labeled IC_OPEN to MODE_4M0 Location:  
Pin 46  
Re-labeled IC_OPEN to MODE_4M1 Location:  
Pin 48  
12  
19  
35  
37  
37  
37  
3.0, “Pin Description“  
4.0, “Device Overview“  
Added MODE_4M0 & MODE_4M1  
descriptions  
Added reference to ZLAN-120 "Mid-Density  
Digital Switches Timing Modes”  
12.0, “Device Performance in Master Mode  
and Slave Modes“  
Added Table 7 "Operating Modes" along with  
description of table  
13.0, “Overall Operation of the DPLL“  
13.1, “DPLL Functional Modes“  
13.1.2, “Holdover Mode“  
Removed reference to programmable locking  
range of DPLL  
Removed reference to software controlled  
mode  
Removed reference to Stratum 4E holdover  
requirements of 0.05 ppm  
38  
46  
48  
14.2, “Input Frequencies Selection“  
23.0, “Register Address Mapping“  
24.0, “Detailed Register Description“  
Changed reference from Table 31 to Table 36  
Changed from R/W to R Only  
Updated Bits 12-11 description. Removed  
Table  
Changed Bits 6-5 Description - Added MODE  
4M0/1 reference  
84  
85  
26.1, “OSCi Master Clock Requirement“  
26.1.2, “External Clock Oscillator“  
Added Reference to ZLAN-68  
Removed reference to Fox Oscillator  
Updated text & removed reference to Raltron  
Oscillators  
9
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
2.0 Pinout Diagrams  
2.1 BGA Pinout  
1
2
3
4
5
6
7
8
9
10  
STio22  
FPi  
11  
STio23  
CKi  
12  
13  
14  
15  
16  
A
B
A
B
VSS  
STi29  
STi10  
STi9  
STi28  
STi5  
STi27  
STi4  
STi25  
CKo2  
STi6  
STi2  
VSS  
STi26  
STi0  
STi1  
CKo4  
STi24  
CKo0  
CKo1  
REF3  
NC  
NC  
STio21  
STio20  
NC  
NC  
VSS  
VDD_  
COREA  
IC_  
IC_  
STi31  
STi30  
STi17  
STi16  
STi19  
REF2  
OSCi  
VSS  
ODE  
STio19  
OPEN  
OPEN  
REF_  
FAIL2  
IC_  
IC_  
C
D
E
F
C
D
E
F
VSS  
STi7  
VSS  
OSCo IC_GND  
STio15  
STio14  
FPo2  
STio18  
OPEN  
OPEN  
REF_  
FAIL0  
FPo_  
OFF1  
OSC_  
STio13  
EN  
STi11  
STi14  
STi15  
VDD_IO  
STi8  
STi3  
REF1  
VSS  
NC  
VDD_IO  
STio12  
FPo3  
FPo1  
STio16  
VDD_  
CORE  
REF_  
FAIL3  
REF_  
FAIL1  
VDD_  
CORE  
VDD_IO  
STi13  
REF0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D10  
D11  
D14  
D12  
NC  
VSS  
VDD_IO  
A12  
A9  
VDD_IO  
STio17  
VDD_  
CORE  
VDD_  
CORE  
VDD_  
CORE  
VDD_  
CORE  
IC_  
FPo_  
OFF2  
STi12  
VDD_IO  
TDo  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D6  
STOHZ15  
STOHZ14  
STOHZ12  
STOHZ13  
STOHZ11  
STOHZ10  
STOHZ9  
OPEN  
IC_  
G
H
G
H
STi18 RESET IC_GND  
VDD_IO  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD_IO  
A13  
A10  
FPo0  
A11  
OPEN  
VDD_  
COREA  
FPo_  
OFF0  
STi21  
VSS  
VSS  
CKo5  
VSS  
VSS  
A7  
J
J
STi20 VDD_IOA VDD_IOA  
VSS  
VSS  
TCK  
D0  
CKo3  
VDD_IO  
A3  
A4  
A5  
A8  
A2  
A6  
VDD_  
COREA  
IC_  
K
K
STi22  
STi23  
STio25  
STio24  
STio26  
STio27  
VSS  
VSS  
TMS  
TRST  
TDi  
VDD_IO  
A0  
A1  
OPEN  
VDD_  
COREA  
VDD_  
CORE  
VDD_  
CORE  
VDD_  
CORE  
VDD_  
CORE  
L
M
N
L
M
N
VDD_IO  
VDD_IO  
STio10  
STio11  
STio9  
STio8  
VDD_  
CORE  
VDD_  
CORE  
VDD_  
CORE  
VDD_  
CORE  
MOT  
MODE_  
4M0  
NC  
NC  
VSS  
VSS  
_INTEL  
R/W  
DTA_  
RDY  
VDD_IO  
STio0 STOHZ3  
D1  
D5  
D3  
D4  
NC  
7
D7  
D13  
IRQ  
D15  
NC  
STio4  
VDD_IO STOHZ5 STOHZ8  
_WR  
P
R
P
R
NC  
VSS  
STio1  
STio3 STOHZ1  
D8  
STio5 STOHZ4 STOHZ6  
VSS  
STio6  
NC  
STOHZ7  
STio7  
NC  
NC  
NC  
VSS  
16  
MODE_  
NC  
STOHZ0 STio2 STOHZ2  
D2  
NC  
6
D9  
CS  
NC  
11  
DS_RD  
NC  
4M1  
NC  
T
T
STio28  
2
STio29  
3
STio31  
4
STio30  
5
NC  
8
1
9
10  
12  
13  
14  
15  
Note: A1 corner identified by metallized marking.  
Note: Pinout is shown as viewed through top of package.  
Figure 2 - ZL50019 256-Ball 17 mm x 17 mm PBGA (as viewed through top of package)  
10  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
2.2 QFP Pinout  
192 190 188 186 184 182 180 178 176 174 172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130  
194  
STi28  
STi29  
STio_19  
STio_18  
STio_17  
STio_16  
STOHZ_15  
VSS  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
98  
VDD_IO  
STi30  
196  
198  
200  
202  
204  
206  
208  
210  
212  
214  
216  
218  
220  
222  
224  
226  
228  
230  
232  
234  
236  
238  
240  
242  
244  
246  
248  
250  
252  
254  
256  
STi31  
STi_8  
VSS  
STOHZ_14  
VDD_IO  
STOHZ_13  
STOHZ_12  
STio_15  
STio_14  
STio_13  
STio_12  
VSS  
STi_9  
STi_10  
STi_11  
STi_12  
STi_13  
STi_14  
STi_15  
VDD_IO  
IC_GND  
VDD_IO  
FPo3  
VSS  
IC_OPEN  
RESET  
TDo  
VSS  
FPo2  
VDD_CORE  
VDD_CORE  
VSS  
FPo_OFF2  
OSC_EN  
FPo1  
NC  
VSS  
IC_OPEN  
FPo_OFF1  
VSS  
VDD_COREA  
VSS  
NC  
FPo0  
VDD_IOA  
CKO5  
VDD_IO  
FPo_OFF0  
A13  
VSS  
VSS  
VDD_COREA  
NC  
A12  
VSS  
96  
A11  
VDD_IOA  
CKo3  
VDD_CORE  
A10  
94  
VSS  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
NC  
92  
VSS  
VDD_COREA  
VSS  
90  
VDD_CORE  
88  
TMS  
VSS  
NC  
A2  
86  
VSS  
A1  
NC  
TCK  
84  
VDD_CORE  
TRST  
TDi  
A0  
82  
VSS  
VDD_IO  
IC_OPEN  
80  
VSS  
STi_16  
STi_17  
STi_18  
STi_19  
STi_20  
STi_21  
VDD_IO  
STi_22  
VSS  
VDD_IO  
STOHZ_11  
STOHZ_10  
STOHZ_9  
STOHZ_8  
STio_11  
78  
76  
74  
STio_10  
STio_9  
72  
VSS  
STio_8  
70  
STi_23  
STio_24  
STio_25  
STio_26  
STio_27  
VDD_IO  
NC  
68  
NC  
NC  
66  
NC  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64  
Figure 3 - ZL50019 256-Lead 28 mm x 28 mm LQFP (top view)  
11  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
3.0 Pin Description  
PBGA Pin  
Number  
LQFPPin  
Number  
Pin Name  
Description  
E6, E11, F6,  
F7, F10,  
F11, L6, L7,  
L10, L11,  
M6, M7,  
19, 33,  
45, 83,  
95, 109,  
146, 173,  
213, 233  
VDD_CORE  
Power Supply for the core logic: +1.8 V  
M10, M11  
H4, K5, B9,  
L2  
217, 231,  
157, 224  
VDD_COREA  
VDD_IO  
Power Supply for analog circuitry: +1.8 V  
Power Supply for I/O: +3.3 V  
D3, D14, E4,  
E13, F5,  
F12, G6,  
G11, K6,  
K11, L5,  
L12, N3,  
N14  
5, 15, 29,  
49, 57,  
69, 79,  
101, 113,  
121, 133,  
143, 160,  
169, 177,  
186, 195,  
207, 241,  
249  
J2, J3  
220, 226  
VDD_IOA  
VSS  
Power Supply for the CKo5 and CKo3 outputs: +3.3 V  
A1, A16, C3,  
C9, C14,  
8, 17, 21,  
31, 35,  
Ground  
D10, E5,  
47, 50,  
60, 71,  
81, 85,  
E12, F8, F9,  
G7, G8, G9,  
G10, H2,  
H3, H6, H7,  
H8, H9,  
H10, J4, J5,  
J7, J8, J9,  
J10, K2, K4,  
K7, K8, K9,  
K10, L8, L9,  
M5, M12,  
97, 103,  
111, 114,  
123, 142,  
145, 147,  
156, 158,  
162, 171,  
175, 178,  
188, 199,  
209, 214,  
216, 218,  
222, 223,  
228, 230,  
232, 235,  
242, 251  
P3, P14, T1,  
T16  
12  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
PBGA Pin  
Number  
LQFPPin  
Number  
Pin Name  
Description  
K3  
234  
TMS  
Test Mode Select (5 V-Tolerant Input with Internal Pull-up)  
JTAG signal that controls the state transitions of the TAP controller.  
This pin is pulled high by an internal pull-up resistor when it is not  
driven.  
L4  
L3  
238  
239  
TCK  
Test Clock (5 V-Tolerant Schmitt-Triggered Input with Internal  
Pull-up)  
Provides the clock to the JTAG test logic.  
TRST  
Test Reset (5 V-Tolerant Input with Internal Pull-up)  
Asynchronously initializes the JTAG TAP controller by putting it in  
the Test-Logic-Reset state. This pin should be pulsed low during  
power-up to ensure that the device is in the normal functional  
mode. When JTAG is not being used, this pin should be pulled low  
during normal operation.  
M3  
G5  
240  
212  
TDi  
TDo  
Test Serial Data In (5 V-Tolerant Input with Internal Pull-up)  
JTAG serial test instructions and data are shifted in on this pin.  
This pin is pulled high by an internal pull-up resistor when it is not  
driven.  
Test Serial Data Out (5 V-Tolerant Three-state Output)  
JTAG serial data is output on this pin on the falling edge of TCK.  
This pin is held in high impedance state when JTAG is not  
enabled.  
B12, B13,  
C10, C11,  
F13, G4,  
K12  
80, 105,  
150, 151,  
152, 153,  
210  
IC_OPEN  
Internal Test Mode (5 V-Tolerant Input with Internal Pull-down)  
These pins may be left unconnected.  
C13, G3  
144, 208  
IC_GND  
NC  
Internal Test Mode Enable (5 V-Tolerant Input)  
These pins MUST be low.  
A8, A9, A14,  
A15, E10,  
M2, N2, P2,  
P16, R2,  
61, 62,  
63, 64,  
65, 66,  
No Connect  
These pins MUST be left unconnected.  
67, 68,  
R16, T6, T7,  
T8, T9, T10,  
T11, T12,  
T13, T14,  
T15  
134, 135,  
136, 137,  
138, 139,  
140, 215,  
219, 225,  
229, 236,  
237  
13  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
PBGA Pin  
Number  
LQFPPin  
Number  
Pin Name  
Description  
M14, R13  
46, 48  
MODE_4M0,  
MODE_4M1  
4M Input Clock Mode 0 to 1 (5 V-Tolerant Input with internal  
pull-down)  
These two pins should be tied together and are typically used to  
select CKi = 4.096 MHz operation. See Table 7, “ZL50019  
Operating Modes” on page 36 for a detailed explanation.  
See Table 16, “Control Register (CR) Bits” on page 48 for CKi and  
FPi selection using the CKIN1 - 0 bits.  
D12  
107  
OSC_EN  
Oscillator Enable (5 V-Tolerant Input with Internal Pull-down) If  
tied high, this pin indicates that there is a 20 MHz external  
oscillator interfacing with the device. If tied low, there is no  
oscillator and CKi will be used for master clock generation.  
If the device is in master mode, an external oscillator is required  
and this pin MUST be tied high.  
C12  
B14  
149  
148  
OSCo  
OSCi  
Oscillator Clock Output (3.3 V Output)  
If OSC_EN = ‘1’, this pin should be connected to a 20 MHz crystal  
(see Figure 21 on page 84) or left unconnected if a clock oscillator  
is connected to OSCi pin under normal operation (see Figure 22  
on page 85). If OSC_EN = 0, this pin MUST be left unconnected.  
Oscillator Clock Input (3.3 V Input)  
If OSC_EN = ‘1’, this pin should be connected to a 20 MHz crystal  
(see Figure 21 on page 84) or to a clock oscillator under normal  
operation (see Figure 22 on page 85). If OSC_EN = 0, this pin  
MUST be driven high or low by connecting either to VDD_IO or to  
ground.  
E9, D8, B8,  
D7  
161, 164,  
166, 168  
REF0 - 3  
DPLL Reference Inputs 0 to 3 (5 V-Tolerant Schmitt-Triggered  
Inputs)  
If the device is in Master mode, these input pins accept 8 kHz,  
1.544 MHz, 2.048 MHz, 4.096 MHz, 8.192 MHz, 16.384 MHz or  
19.44 MHz timing references independently. One of these inputs is  
defined as the preferred or forced input reference for the DPLL.  
The Reference Change Control Register (RCCR) selects the  
control of the preferred reference.These pins are ignored if the  
device is in slave mode unless SLV_DPLLEN (bit 13) in the  
Control Register (CR) is set. When these input pins are not in use,  
they MUST be driven high or low by connecting either to VDD_IO or  
to ground.  
D9, E8, C8,  
E7  
159, 163,  
165, 167  
REF_FAIL0 - 3 Failure Indication for DPLL References 0 to 3 (5 V-Tolerant  
Three-state Outputs)  
These output pins are used to indicate input reference failure when  
the device is in master mode.  
If REF0 fails, REF_FAIL0 will be driven high.  
If REF1 fails, REF_FAIL1 will be driven high.  
If REF2 fails, REF_FAIL2 will be driven high.  
If REF3 fails, REF_FAIL3 will be driven high.  
If the device is in slave mode, these pins are driven low, unless  
SLV_DPLLEN (bit 13) in the Control Register (CR) is set.  
14  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
PBGA Pin  
Number  
LQFPPin  
Number  
Pin Name  
Description  
G15, G14,  
E15, F14  
102, 106,  
110, 112  
FPo0 - 3  
ST-BUS/GCI-Bus Frame Pulse Outputs 0 to 3 (5 V-Tolerant  
Three-state Outputs)  
FPo0: 8 kHz frame pulse corresponding to the 4.096 MHz output  
clock of CKo0.  
FPo1: 8 kHz frame pulse corresponding to the 8.192 MHz output  
clock of CKo1.  
FPo2: 8 kHz frame pulse corresponding to 16.384 MHz output  
clock of CKo2.  
FPo3: Programmable 8 kHz frame pulse corresponding to  
4.096 MHz, 8.192 MHz, 16.384 MHz, or 32.768 MHz output clock  
of CKo3.  
In Divided Slave modes, the frame pulse width of FPo0 - 3 cannot  
be narrower than the input frame pulse (FPi) width.  
H14, D11  
F15  
100, 104  
108  
FPo_OFF0 - 1 Generated Offset Frame Pulse Outputs 0 to 1 (5 V-Tolerant  
Three-state Outputs)  
Individually programmable 8 kHz frame pulses, offset from the  
output frame boundary by a programmable number of channels.  
FPo_OFF2  
or  
Generated Offset Frame Pulse Output 2 or 19.44 MHz Frame  
Pulse Output (5 V-Tolerant Three-state Output)  
As FPo_OFF2, this is an individually programmable 8 kHz frame  
pulse, offset from the output frame boundary by a programmable  
number of channels.  
FPo5  
By programming the FP19EN (bit 10) of FPOFF2 register to high,  
this signal becomes FPo5, a non-offset frame pulse corresponding  
to the 19.44 MHz clock presented on CKo5. FPo5 is only available  
in Master mode or when the SLV_DPLLEN bit in the Control  
Register is set high while the device is in one of the slave modes.  
B7, C7, B5,  
J6, D6, H5  
170, 172,  
174, 227,  
176, 221  
CKo0 - 5  
ST-BUS/GCI-Bus Clock Outputs 0 to 5 (5 V-Tolerant  
Three-state Outputs)  
CKo0: 4.096 MHz output clock.  
CKo1: 8.192 MHz output clock.  
CKo2: 16.384 MHz output clock.  
CKo3: 4.096 MHz, 8.192 MHz, 16.384 MHz or 32.768 MHz  
programmable output clock.  
CKo4: 1.544 MHz or 2.048 MHz programmable output clock.  
CKo5: 19.44 MHz output clock.  
See Section 7.0 on page 23 for details. In Divided Slave mode, the  
frequency of CKo0 - 3 cannot be higher than input clock (CKi).  
CKo4 and CKo5 are only available in Master mode or when the  
SLV_DPLLEN bit in the Control Register is set high while the  
device is in one of the slave modes.  
15  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
PBGA Pin  
Number  
LQFPPin  
Number  
Pin Name  
Description  
Frame Pulse  
B10  
155  
FPi  
ST-BUS/GCI-Bus  
Input  
(5 V-Tolerant  
Schmitt-Triggered Input)  
This pin accepts the frame pulse which stays active for 61 ns,  
122 ns or 244 ns at the frame boundary. The frame pulse  
frequency is 8 kHz. The frame pulse associated with the highest  
input or output data rate must be applied to this pin when the  
device is operating in Divided Slave mode or Master mode. The  
exception is if the device is operating in Master mode with  
loopback (i.e., CKi_LP is set in the Control Register). In that case,  
this input must be tied high or low externally. When the device is  
operating in Multiplied Slave mode, the frame pulse associated  
with the highest input data rate must be applied to this pin. For all  
modes (except Master mode with loopback), if the data rate is  
16.384 Mbps, a 61 ns wide frame pulse must be used. By default,  
the device accepts a negative frame pulse in ST-BUS format, but it  
can accept a positive frame pulse instead if the FPINP bit is set  
high in the Control Register (CR). It can accept a GCI-formatted  
frame pulse by programming the FPINPOS bit in the Control  
Register (CR) to high.  
B11  
154  
CKi  
ST-BUS/GCI-Bus Clock Input (5 V-Tolerant Schmitt Triggered  
The Input)  
This pin accepts a 4.096 MHz, 8.192 MHz or 16.384 MHz clock.  
The clock frequency associated with twice the highest input or  
output data rate must be applied to this pin when the device is  
operating in either Divided Slave mode or Master mode. The  
exception is if the device is operating in Master mode with  
loopback (i.e., CKi_LP is set in the Control Register). In that case,  
this input must be tied high or low externally. The clock frequency  
associated with twice the highest input data rate must be applied  
to this pin when the device is operating in Multiplied Slave mode.  
In all modes of operation (except Master mode with loopback),  
when data is running at 16.384 Mbps, a 16.384 MHz clock must be  
used. By default, the clock falling edge defines the input frame  
boundary, but the device allows the clock rising edge to define the  
frame boundary by programming the CKINP bit in the Control  
Register (CR).  
16  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
PBGA Pin  
Number  
LQFPPin  
Number  
Pin Name  
Description  
B6, C6, D5,  
D4, B4, B3,  
C5, C4, E3,  
C2, B2, D2,  
F3, F4, E2,  
F2, E1, D1,  
G1, F1, J1,  
H1, K1, L1,  
A7, A5, A6,  
A4, A3, A2,  
C1, B1  
179, 180,  
181, 182,  
183, 184,  
185, 187,  
198, 200,  
201, 202,  
203, 204,  
205, 206,  
243, 244,  
245, 246,  
247, 248,  
250, 252,  
189, 190,  
191, 192,  
193, 194,  
196, 197  
STi0 - 31  
Serial Input Streams 0 to 31 (5 V-Tolerant Inputs with Enabled  
Internal Pull-downs)  
The data rate of each input stream can be selected independently  
using the Stream Input Control Registers (SICR[n]). In the  
2.048 Mbps mode, these pins accept serial TDM data streams at  
2.048 Mbps with 32 channels per frame. In the 4.096 Mbps mode,  
these pins accept serial TDM data streams at 4.096 Mbps with 64  
channels per frame. In the 8.192 Mbps mode, these pins accept  
serial TDM data streams at 8.192 Mbps with 128 channels per  
frame. In the 16.384 Mbps mode, these pins accept TDM data  
streams at 16.384 Mbps with 256 channels per frame.  
N4, P4, R4,  
P5, N13,  
P11, R14,  
R15, M15,  
L15, L13,  
L14, E14,  
D13, D15,  
C15, D16,  
E16, C16,  
B16, A13,  
A12, A10,  
A11, N1,  
6, 7, 9,  
10, 51,  
52, 53,  
54, 70,  
72, 73,  
74, 115,  
116, 117,  
118, 125,  
126, 127,  
128, 129,  
130, 131,  
132, 253,  
254, 255,  
256, 1, 2,  
3, 4  
STio0 - 31  
Serial Output Streams 0 to 31 (5 V-Tolerant Slew-Rate-Limited  
Three-state I/Os with Enabled Internal Pull-downs)  
The data rate of each output stream can be selected  
independently using the Stream Output Control Registers  
(SOCR[n]). In the 2.048 Mbps mode, these pins output serial TDM  
data streams at 2.048 Mbps with 32 channels per frame. In the  
4.096 Mbps mode, these pins output serial TDM data streams at  
4.096 Mbps with 64 channels per frame. In the 8.192 Mbps mode,  
these pins output serial TDM data streams at 8.192 Mbps with 128  
channels per frame. In the 16.384 Mbps mode, these pins output  
serial TDM data streams at 16.384 Mbps with 256 channels per  
frame. These output streams can be used as bi-directionals by  
programming BDH (bit 7) and BDL (bit 6) of Internal Mode  
Selection (IMS) register.  
M1, P1, R1,  
T2, T3, T5,  
T4  
R3, P6, R5,  
N5, P12,  
N15, P13,  
P15, N16,  
M16, L16,  
K16, H16,  
J16, G16,  
F16  
11, 12,  
13, 14,  
55, 56,  
58, 59,  
75, 76,  
77, 78,  
119, 120,  
122, 124  
STOHZ0 - 15  
Serial Output Streams High Impedance Control 0 to 15  
(5 V-Tolerant Slew-Rate-Limited Three-state Outputs)  
These pins are used to enable (or disable) external three-state  
buffers. When an output channel is in the high impedance state,  
the STOHZ drives high for the duration of the corresponding output  
channel. When the STio channel is active, the STOHZ drives low  
for the duration of the corresponding output channel. STOHZ  
outputs are available for STio0 - 157 only.  
17  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
PBGA Pin  
Number  
LQFPPin  
Number  
Pin Name  
Description  
B15  
141  
ODE  
Output Drive Enable (5 V-Tolerant Input with Internal Pull-up)  
This is the output enable control for STio0 - 31 and the  
output-driven-high control for STOHZ0 - 15. When it is high, STio0  
- 31 and STOHZ0 - 15 are enabled. When it is low, STio0 - 31 are  
tristated and STOHZ0 - 15 are driven high.  
M4, N6, R6,  
P7, R7, N7,  
M8, N8, P8,  
R8, M9, N9,  
R9, N10, P9,  
R10  
16, 18,  
20, 22,  
23, 24,  
25, 26,  
27, 28,  
30, 32,  
34, 36,  
37, 38  
D0 - 15  
Data Bus 0 to 15 (5 V-Tolerant Slew-Rate-Limited Three-state  
I/Os)  
These pins form the 16-bit data bus of the microprocessor port.  
N12  
44  
DTA_RDY  
Data Transfer Acknowledgment_Ready (5 V-Tolerant  
Three-state Output)  
This active low output indicates that a data bus transfer is  
complete for the Motorola interface. For the Intel interface, it  
indicates a transfer is completed when this pin goes from low to  
high. An external pull-up resistor MUST hold this pin at HIGH level  
for the Motorola mode. An external pull-down resistor MUST hold  
this pin at LOW level for the Intel mode.  
R11  
N11  
40  
39  
CS  
Chip Select (5 V-Tolerant Input)  
Active low input used by the Motorola or Intel microprocessor to  
enable the microprocessor port access.  
R/W_WR  
Read/Write_Write (5 V-Tolerant Input)  
This input controls the direction of the data bus lines (D0 - 15)  
during a microprocessor access. For the Motorola interface, this  
pin is set high and low for the read and write access respectively.  
For the Intel interface, a write access is indicated when this pin  
goes low.  
R12  
42  
DS_RD  
A0 - 13  
Data Strobe_Read (5 V-Tolerant Input)  
This active low input works in conjunction with CS to enable the  
microprocessor port read and write operations for the Motorola  
interface. A read access is indicated when it goes low for the Intel  
interface.  
K13, K15,  
K14, J11,  
J12, J13,  
J15, H11,  
J14, H12,  
H13, H15,  
G12, G13  
82, 84,  
86, 87,  
88, 89,  
90, 91,  
92, 93,  
94, 96,  
98, 99  
Address 0 to 13 (5 V-Tolerant Inputs)  
These pins form the 14-bit address bus to the internal memories  
and registers.  
18  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
PBGA Pin  
Number  
LQFPPin  
Number  
Pin Name  
Description  
M13  
41  
MOT_INTEL  
Motorola_Intel (5 V-Tolerant Input with Enabled Internal  
Pull-up)  
This pin selects the Motorola or Intel microprocessor interface to  
be connected to the device. When this pin is unconnected or  
connected to high, Motorola interface is assumed. When this pin is  
connected to ground, Intel interface should be used.  
P10  
G2  
43  
IRQ  
Interrupt (5 V-Tolerant Three-state Output)  
This programmable active low output indicates that the internal  
operating status of the DPLL has changed. An external pull-up  
resistor MUST hold this pin at HIGH level.  
211  
RESET  
Device Reset (5 V-Tolerant Input with Internal Pull-up)  
This input (active LOW) puts the device in its reset state that  
disables the STio0 - 31 drivers and drives the STOHZ0 - 15  
outputs to high. It also preloads registers with default values and  
clears all internal counters. To ensure proper reset action, the reset  
pin must be low for longer than 1 µs. Upon releasing the reset  
signal to the device, the first microprocessor access cannot take  
place for at least 600 µs due to the time required to stabilize the  
device and the crystal oscillator from the power-down state. Refer  
to Section Section 18.2 on page 42 for details.  
4.0 Device Overview  
The device has thirty-two ST-BUS/GCI-Bus inputs (STi0 - 31) and thirty-two ST-BUS/GCI-Bus outputs (STio0 - 31).  
STio0 - 31 can also be configured as bi-directional pins, in which case STi0 - 31 will be ignored. It is a non-blocking  
digital switch with 2048 64 kbps channels and is capable of performing rate conversion between ST-BUS/GCI-Bus  
inputs and ST-BUS/GCI-Bus outputs. The ST-BUS/GCI-Bus inputs accept serial input data streams with data rates  
of 2.048 Mbps, 4.096 Mbps, 8.192 Mbps and 16.384 Mbps on a per-stream basis. The ST-BUS/GCI-Bus outputs  
deliver serial data streams with data rates of 2.048 Mbps, 4.096 Mbps and, 8.192 Mbps and 16.384 Mbps on a  
per-stream basis. The device also provides sixteen high impedance control outputs (STOHZ0 - 15) to support the  
use of external ST-BUS/GCI-Bus tristate drivers for the first sixteen ST-BUS/GCI-Bus outputs (STio0 -15).  
By using Zarlink’s message mode capability, microprocessor data stored in the connection memory can be  
broadcast to the output streams on a per-channel basis. This feature is useful for transferring control and status  
information for external circuits or other ST-BUS/GCI-Bus devices.  
The device uses the ST-BUS/GCI-Bus input frame pulse (FPi) and the ST-BUS/GCI-Bus input clock (CKi) to define  
the input frame boundary and timing for sampling the ST-BUS/GCI-Bus input streams with various data rates. The  
output data streams will be driven by and have their timing defined by FPi and CKi in Divided Slave mode. In  
Multiplied Slave mode, the output data streams will be driven by an internally generated clock, which is multiplied  
from CKi internally. In Master mode, the on-chip DPLL will drive the output data streams and provide output clocks  
and frame pulses. Refer to Application Note ZLAN-120 (Mid Density Digital Switches Timing Modes) for further  
explanation of the different modes of operation.  
When the device is in Master mode, the DPLL is phase-locked to one of four DPLL reference signals, REF0 - 3,  
which are sourced by an external 8 kHz, 1.544 MHz, 2.048 MHz, 4.096 MHz, 8.192 MHz, 16.384 MHz or  
19.44 MHz reference signal. The on-chip DPLL also offers jitter attenuation, reference switching, reference  
monitoring, freerun and holdover functions. The jitter performance exceeds the Stratum 4E specification. The  
intrinsic jitter of all output clocks is less than 1 ns (except for the 1.544 MHz output).  
19  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
There are two slave modes for this device:  
The first is the Divided Slave mode. In this mode, output streams are clocked by input CKi. Therefore the output  
streams have exactly the same jitter as the input streams. The output data rate can be the same as or lower than  
the input data rate, but the output data rate cannot be higher than what CKi can drive. For example, if CKi is  
4.096 MHz, the output data rate cannot be higher than 2.048 Mbps. For the Divided Slave mode, the core master  
clock can be either 98.304 MHz, which is multiplied from CKi, or 100 MHz, which is multiplied from a 20 MHz  
oscillator. The Divided Slave mode with 98.304 MHz core master clock is called Divided Slave with CKi mode, and  
the mode with 100 MHz core master clock is called Divided Slave with OSC mode.  
The second slave mode is called Multiplied Slave mode. In this mode, CKi is used to generate a 16.384 MHz clock  
internally, and output streams are driven by this 16.384 MHz clock. In Multiplied Slave mode, the data rate of output  
streams can be any rate, but output jitter may not be exactly the same as input jitter.  
A Motorola or Intel compatible non-multiplexed microprocessor port allows users to program the device to operate  
in various modes under different switching configurations. Users can use the microprocessor port to perform  
internal register and memory read and write operations. The microprocessor port has a 16-bit data bus, a 14-bit  
address bus and six control signals (MOT_INTEL, CS, DS_RD, R/W_WR, IRQ and DTA_RDY).  
The device supports the mandatory requirements of the IEEE-1149.1 (JTAG) standard via the test port.  
5.0 Data Rates and Timing  
The ZL50019 has 32 serial data inputs and 32 serial data outputs. Each stream can be individually programmed to  
operate at 2.048 Mbps, 4.096 Mbps, 8.192 Mbps or 16.384 Mbps. Depending on the data rate there will be 32  
channels, 64 channels, 128 channels or 256 channels, respectively, during a 125 µs frame.  
The output streams can be programmed to operate as bi-directional streams. The output streams are divided into  
two groups to be programmed into bi-directional mode. By setting BDL (bit 6) in the Internal Mode Selection (IMS)  
register, input streams 0 - 15 (STi0 - 15) are internally tied low, and output streams 0 - 15 (STio0 - 15) are set to  
operate in a bi-directional mode. Similarly, when BDH (bit 7) in the Internal Mode Selection (IMS) register is set,  
input streams 16 - 31 (STi16 - 31) are internally tied low, and output streams 16 - 31 (STio16 - 31) are set to operate  
in bi-directional mode. The groups do not have to be set into the same mode. Therefore it is possible to have half of  
the streams operating in bi-directional mode while the other half is operating in normal input/output mode.  
The input data rate is set on a per-stream basis by programming STIN[n]DR3 - 0 (bits 3 - 0) in the Stream Input  
Control Register 0 - 31 (SICR0 - 31). The output data rate is set on a per-stream basis by programming STO[n]DR3  
- 0 (bits 3 - 0) in the Stream Output Control Register 0 - 31 (SOCR0 - 31). The output data rates do not have to  
match or follow the input data rates. The maximum number of channels switched is limited to 2048 channels. If all  
32 input streams were operating at 16.384 Mbps (256 channels per stream), this would result in 8192 channels.  
Memory limitations prevent the device from operating at this capacity. A maximum capacity of 2048 channels will  
occur if eight of the streams are operating at 16.384 Mbps, half of the streams are operating at 8.192 Mbps or all  
streams operating at 4.096 Mbps. With all streams operating at 2.048 Mbps, the capacity will be reduced to 1024  
channels. However, as each stream can be programmed to a different data rate, any combination of data rates can  
be achieved, as long as the total channel count does not exceed 2048 channels. It should be noted that only full  
stream can be programmed for use. The device does not allow fractional streams.  
5.1 External High Impedance Control, STOHZ0 - 15  
There are 16 external high impedance control signals, STOHZ0 - 15, that are used to control the external drivers for  
per-channel high impedance operations. Only the first sixteen ST-BUS/GCI-Bus (STio0 - 15) outputs are provided  
with corresponding STOHZ signals. The STOHZ outputs deliver the appropriate number of control timeslot  
channels based on the output stream data rate. Each control timeslot lasts for one channel time. When the ODE pin  
is high and the OSB (bit 2) of the Control Register (CR) is also high, STOHZ0 - 15 are enabled. When the ODE pin,  
OSB (bit 2) of the Control Register (CR) or the RESET pin is low, STOHZ0 - 15 are driven high, together with all the  
ST-BUS/GCI-Bus outputs being tristated. Under normal operation, the corresponding STOHZ outputs of any  
20  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
unused ST-BUS/GCI-Bus channel (high impedance) are driven high. Refer to Figure 18 on page 32 for a  
diagrammatical explanation.  
5.2 Input Clock (CKi) and Input Frame Pulse (FPi) Timing  
The input clock for the ZL50019 can be arranged in one of three different ways. These different ways will be  
explained further in Section 12.1 to Section 12.3 on page 37. Depending on the mode of operation, the input clock,  
CKi, will be based on the highest data rate of either the input or both the input and output data rates. The user has  
to program the CKIN1 - 0 (bits 6 - 5) in the Control Register (CR) to indicate the width of the input frame pulse and  
the frequency of the input clock supplied to the device.  
In Master mode and Divided Slave mode, the input clock, CKi, must be at least twice the highest input or output  
data rate. For example, if the highest input data rate is 4.096 Mbps and the highest output data rate is 8.192 Mbps,  
the input clock, CKi, must be 16.384 MHz, which is twice the highest overall data rate. The only exception to this is  
for 16.384 Mbps input or output data. In this case, the input clock, CKi, is equal to the data rate. The input frame  
pulse, FPi, must always follow CKi.  
In Master mode, CKo2 and FPo2 can be programmed to be used as CKi and FPi by setting CKi_LP (bit 10) in the  
Control Register (CR). This will internally loop back the CKo2 and FPo2 timing. When this bit is set, CKi and FPi  
must be tied low or high externally.  
Highest Input or Output  
CKIN 1-0 Bits  
Input Clock Rate (CKi)  
Input Frame Pulse (FPi)  
Data Rate  
16.384 Mbps or 8.192 Mbps  
4.096 Mbps  
00  
01  
10  
16.384 MHz  
8.192 MHz  
4.096 MHz  
8 kHz (61 ns wide pulse)  
8 kHz (122 ns wide pulse)  
8 kHz (244 ns wide pulse)  
2.048 Mbps  
Table 1 - CKi and FPi Configurations for Master and Divided Slave Modes  
In Multiplied Slave mode, the input clock, CKi, must be at least twice the highest input data rate, regardless of the  
output data rate. Following the example above, if the highest input data rate is 4.096 Mbps, the input clock, CKi,  
must be 8.192 MHz, regardless of the output data rate. The only exception to this is for 16.384 Mbps input data. In  
this case, the input clock, CKi, is equal to the data rate. The input frame pulse, FPi, must always follow CKi.  
Highest Input Data Rate  
CKIN 1-0 Bits  
Input Clock Rate (CKi)  
Input Frame Pulse (FPi)  
16.384 Mbps or 8.192 Mbps  
4.096 Mbps  
00  
01  
10  
16.384 MHz  
8.192 MHz  
4.096 MHz  
8 kHz (61 ns wide pulse)  
8 kHz (122 ns wide pulse)  
8 kHz (244 ns wide pulse)  
2.048 Mbps  
Table 2 - CKi and FPi Configurations for Multiplied Slave Mode  
The ZL50019 accepts positive and negative ST-BUS/GCI-Bus input clock and input frame pulse formats via the  
programming of CKINP (bit 8) and FPINP (bit 7) in the Control Register (CR). By default, the device accepts the  
negative input clock format and ST-BUS format frame pulses. However, the switch can also accept a positive-going  
clock format by programming CKINP (bit 8) in the Control Register (CR). A GCI-Bus format frame pulse can be  
used by programming FPINPOS (bit 9) and FPINP (bit 7) in the Control Register (CR).  
21  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
FPi (244 ns)  
FPINP = 0  
FPINPOS = 0  
FPi (244 ns)  
FPINP = 1  
FPINPOS = 0  
FPi (244 ns)  
FPINP = 0  
FPINPOS = 1  
FPi (244 ns)  
FPINP = 1  
FPINPOS = 1  
CKi  
(4.096 MHz)  
CKINP = 0  
CKi  
(4.096 MHz)  
CKINP = 1  
Channel 0  
Channel 31  
STi  
0
7
6
1
0
7
(2.048 Mbps)  
Figure 4 - Input Timing when CKIN1 - 0 bits = “10” in the CR  
FPi (122 ns)  
FPINP = 0  
FPINPOS = 0  
FPi (122 ns)  
FPINP = 1  
FPINPOS = 0  
FPi (122 ns)  
FPINP = 0  
FPINPOS = 1  
FPi (122 ns)  
FPINP = 1  
FPINPOS = 1  
CKi  
(8.192 MHz)  
CKINP = 0  
CKi  
(8.192 MHz)  
CKINP = 1  
Channel 0  
Channel 63  
STi  
1
0
7
6
5
4
2
1
0
7
6
(4.096 Mbps)  
Figure 5 - Input Timing when CKIN1 - 0 bits = “01” in the CR  
22  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
FPi (61 ns)  
FPINP = 0  
FPINPOS = 0  
FPi (61 ns)  
FPINP = 1  
FPINPOS = 0  
FPi (61 ns)  
FPINP = 0  
FPINPOS = 1  
FPi (61 ns)  
FPINP = 1  
FPINPOS = 1  
CKi  
(16.384 MHz)  
CKINP = 0  
CKi  
(16.384 MHz)  
CKINP = 1  
Channel N = 127  
Channel 0  
STi  
1
4 3 2 1  
5
3
5
2 1 0 7 6  
0 7 6 5  
4
(8.192 Mbps)  
Channel 0  
Channel N = 255  
STi  
321076543210765432  
321076543210765432  
(16.384 Mbps)  
Figure 6 - Input Timing when CKIN1 - 0 = “00” in the CR  
6.0 ST-BUS and GCI-Bus Timing  
The ZL50019 is capable of operating using either the ST-BUS or GCI-Bus standards. The output timing that the  
device generates is defined by the bus standard. In the ST-BUS standard, the output frame boundary is defined by  
the falling edge of CKo while FPo is low. In the GCI-Bus standard, the frame boundary is defined by the rising edge  
of CKo while FPo goes high. The data rates define the number of channels that are available in a 125 µs frame  
pulse period.  
By default, the ZL50019 is configured for ST-BUS input and output timing. To set the input timing to conform to the  
GCI-Bus standard, FPINPOS (bit 9) and FPINP (bit 7) in the Control Register (CR) must be set. To set output timing  
to conform to the GCI-Bus standard, FPO[n]P and FPO[n]POS must be set in the Output Clock and Frame Pulse  
Selection Register (OCFSR). The CKO[n]P bits in the Output Clock and Frame Pulse Selection Register control the  
polarity (positive-going or negative-going) of the output clocks.  
7.0 Output Timing Generation  
The ZL50019 generates frame pulse and clock timing. There are five output frame pulse pins (FPo0 - 3, 5) and six  
output clock pins (CKo0 - 5). All output frame pulses are 8 kHz output signals. By default, the output frame  
boundary is defined by the falling edge of the CKo0, while FPo0 is low. At the output frame boundary, the CKo1,  
CKo2 and CKo3 output clocks will by default have a falling edge, while FPo1, FPo2 and FPo3 will be low. At the  
output frame boundary, CKo4 will by default have a falling edge while FPo0 is low (CKo4 has no corresponding  
output frame pulse). At the output frame boundary, CKo5 will by default have a rising edge while FPo5 (FPo_OFF2)  
will be low. The duration of the frame pulse low cycle and the frequency of the corresponding output clock are  
shown in Table 3 on page 24. Every frame pulse and clock output can be tristated by programming the enable bits  
in the Internal Mode Selection (IMS) register.  
23  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
Pin Name  
Output Timing Rate  
Output Timing Unit  
FPo0 pulse width  
CKo0  
244  
ns  
MHz  
ns  
4.096  
FPo1 pulse width  
CKo1  
122  
8.192  
MHz  
ns  
FPo2 pulse width  
CKo2  
61  
16.384  
244, 122, 61 or 30  
4.096, 8.192, 16.384 or 32.768  
1.544 or 2.048  
MHz  
ns  
FPo3 pulse width  
CKo3  
MHz  
MHz  
ns  
CKo4  
FPo5 pulse width  
CKo5  
51  
19.44  
MHz  
Table 3 - Output Timing Generation  
The output timing is dependent on the timing mode that is selected. When the device is in Divided Slave mode, the  
frequencies on CKo0 - 3 cannot be greater than the input clock, CKi. For example, if the input clock is 8.192 MHz,  
the CKo2 pin will not produce a valid output clock and the CKo3 pin can only be programmed to output a  
4.096 MHz or 8.192 MHz clock signal. The output clocks CKo4 - 5 will not generate valid outputs unless the  
SLV_DPLLEN (bit 13) of the Control Register (CR) is set.  
In Master mode there are programmable output frame pulse, FPo3, and clock pins, CKo3 and CKo4. The outputs  
from FPo3 and CKo3 are programmed by the CKOFPO3SEL1 - 0 (bits 13 - 12) in the Output Clock and Frame  
Pulse Selection (OCFSR) register. The output clock pin, CKo4, is controlled by setting the CKO4SEL (bit 14) in the  
OCFSR register.  
In Multiplied Slave mode, CKo4 and CKo5 are not available unless SLV_DPLLEN is set in the Control Register. All  
other clocks and frame pulses correspond to the timing shown in Table 3 above.  
The device also delivers positive or negative output frame pulse and ST-BUS/GCI-Bus output clock formats via the  
programming of various bits in the Output Clock and Frame Pulse Selection Register (OCFSR). By default, the  
device delivers the negative output clock format. The ZL50019 can also deliver GCI-Bus format output frame pulses  
by programming bits of the Output Clock and Frame Pulse Selection Register (OCFSR). As there is a separate bit  
setting for each frame pulse output, some of the outputs can be set to operate in ST-BUS mode and others in  
GCI-Bus mode.  
The following figures describe the usage of the FPO0P, FPO1P, FPO2P, FPO3P, CKO0P, CKO1P, CKO2P, CKO3P,  
CKO4P and CKO5P bits to generate the FPo0 - 3 and CKo0 - 5 timing. FPo_OFF2 is configured to provide the  
non-offset frame pulse corresponding to the 19.44 MHz clock on CKo5 by setting the FP19EN (bit 10) in the  
FPOFF2 register. In this instance, FPo_OFF2 can be labeled as FPo5.  
24  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
CKOFPO0EN = 1  
FPO0P = 0  
FPO0POS = 0  
CKOFPO0EN = 1  
FPO0P = 1  
FPO0POS = 0  
CKOFPO0EN = 1  
FPO0P = 0  
FPO0POS = 1  
CKOFPO0EN = 1  
FPO0P = 1  
FPO0POS = 1  
CKOFPO0EN = 1  
CKO0P = 0  
CKo0 = 4.096 MHz  
CKOFPO0EN = 1  
CKO0P = 1  
CKo0 = 4.096 MHz  
Figure 7 - Output Timing for CKo0 and FPo0  
CKOFPO1EN = 1  
FPO1P = 0  
FPO1POS = 0  
CKOFPO1EN = 1  
FPO1P = 1  
FPO1POS = 0  
CKOFPO1EN = 1  
FPO1P = 0  
FPO1POS = 1  
CKOFPO1EN = 1  
FPO1P = 1  
FPO1POS = 1  
CKOFPO1EN = 1  
CKO1P = 0  
CKo1 = 8.192 MHz  
CKOFPO1EN = 1  
CKO1P = 1  
CKo1 = 8.192 MHz  
Figure 8 - Output Timing for CKo1 and FPo1  
25  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
CKOFPO2EN = 1  
FPO2P = 0  
FPO2POS = 0  
CKOFPO2EN = 1  
FPO2P = 1  
FPO2POS = 0  
CKOFPO2EN = 1  
FPO2P = 0  
FPO2POS = 1  
CKOFPO2EN = 1  
FPO2P = 1  
FPO2POS = 1  
CKOFPO2EN = 1  
CKO2P = 0  
CKo2 = 16.384 MHz  
CKOFPO2EN = 1  
CKO2P = 1  
CKo2 = 16.384 MHz  
Figure 9 - Output Timing for CKo2 and FPo2  
CKOFPO3EN = 1  
CKOFPO3SEL1-0 = 11  
FPO3P = 0  
FPO3POS = 0  
CKOFPO3EN = 1  
CKOFPO3SEL1-0 = 11  
FPO3P = 1  
FPO3POS = 0  
CKOFPO3EN = 1  
CKOFPO3SEL1-0 = 11  
FPO3P = 0  
FPO3POS = 1  
CKOFPO3EN = 1  
CKOFPO3SEL1-0 = 11  
FPO3P = 1  
FPO3POS = 1  
CKOFPO3EN = 1  
CKOFPO3SEL1-0 = 11  
CKO3P = 0  
CKo3 = 32.768 MHz  
CKOFPO3EN = 1  
CKOFPO3SEL1-0 = 11  
CKO3P = 1  
CKo3 = 32.768 MHz  
NOTE:  
When CKOFPO3SEL1-0 = “00,” the output for FPo3 and CKo3 follow the same as Figure 7: Output Timing for CKo0 and FPo0  
When CKOFPO3SEL1-0 = “01,” the output for FPo3 and CKo3 follow the same as Figure 8: Output Timing for CKo1 and FPo1  
When CKOFPO3SEL1-0 = “10,” the output for FPo3 and CKo3 follow the same as Figure 9: Output Timing for CKo2 and FPo2  
Figure 10 - Output Timing for CKo3 and FPo3 with CK0FPo3SEL1-0=”11”  
26  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
CKOFPO0EN = 1  
FPO0P = 0  
FPO0POS = 0  
CKOFPO0EN = 1  
FPO0P = 1  
FPO0POS = 0  
CKOFPO0EN = 1  
FPO0P = 0  
FPO0POS = 1  
CKOFPO0EN = 1  
FPO0P = 1  
FPO0POS = 1  
CKOFPO4EN = 1  
CKO4P = 0  
CKO4SEL = 0  
CKo4 = 2.048 MHz  
CKO4EN = 1  
CKO4P = 1  
CKO4SEL = 0  
CKo4 = 2.048 MHz  
CKOFPO4EN = 1  
CKO4P = 0  
CKO4SEL = 1  
CKo4 = 1.544 MHz  
CKO4EN = 1  
CKO4P = 1  
CKO4SEL = 1  
CKo4 = 1.544 MHz  
Note:  
While there is no frame pulse output directly tied to the CKo4, the output clocks are based on the frame pulse generated by FPo0  
Figure 11 - Output Timing for CKo4  
FPo5 (FPo_OFF2)  
FP19EN = 1  
CKO5EN = 1  
CK5 = 19.44 MHz  
Figure 12 - Output Timing for CKo5 and FPo5 (FPo_OFF2)  
27  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
8.0 Data Input Delay and Data Output Advancement  
Various registers are provided to adjust the input delay and output advancement for each input and output data  
stream. The input bit delay and output bit advancement can vary from 0 to 7 bits for each individual stream.  
If input delay of less than a bit is desired, different sampling points can be used to handle the adjustments. The  
sampling point can vary from 1/4 to 4/4 with a 1/4-bit increment for all input streams, unless the stream is operating  
at 16.384 Mbps, in which case the fractional bit delay has a 1/2-bit increment. By default, the sampling point is set  
to the 3/4-bit location for non-16.384 Mbps data rates and the 1/2-bit location for the 16.384 Mbps data rate.  
The fractional output bit advancement can vary from 0 to 3/4 bits, again with a 1/4-bit increment unless the output  
stream is operating at 16.384 Mbps, in which case the output bit advancement has a 1/2-bit increment from 0 to 1/2  
bit. By default, there is 0 output bit advancement.  
Although input delay or output advancement features are available on streams which are operating in bi-directional  
mode it is not recommended, as it can easily cause bus contention. If users require this function, special attention  
must be given to the timing to ensure contention is minimized.  
8.1 Input Bit Delay Programming  
The input bit delay programming feature provides users with the flexibility of handling different wire delays when  
designing with source streams for different devices.  
By default, all input streams have zero bit delay, such that bit 7 is the first bit that appears after the input frame  
boundary (assuming ST-BUS formatting). The input delay is enabled by STIN[n]BD2-0 (bits 8 - 6) in the Stream  
Input Control Register 0 - 31 (SICR0 - 31) as described in Section 44 on page 73. The input bit delay can range  
from 0 to 7 bits.  
FPi  
Channel 2  
Last Channel  
Channel 0  
Channel 1  
STi[n]  
7
0
5
7
0
5
7
0
5
4 3  
4 3  
1
6
7
4 3  
1
2
6
7
4 3  
1
2
6
7
2
0
1
2
0
1
2
0
1
2
Bit Delay = 0  
(Default)  
Bit Delay = 1  
Last Channel  
Channel 2  
Channel 0  
Channel 1  
STi[n]  
5
5
5
6 4 3  
4 3  
6
4 3  
6
4 3  
2
5
Bit Delay = 1  
Note: Last Channel = 31, 63, 127 and 255 for 2.048, 4.096, 8.192 and 16.384 Mbps modes respectively.  
Figure 13 - Input Bit Delay Timing Diagram (ST-BUS)  
28  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
8.2 Input Bit Sampling Point Programming  
In addition to the input bit delay feature, the ZL50019 allows users to change the sampling point of the input bit by  
programming STIN[n]SMP 1-0 (bits 5 - 4) in the Stream Input Control Register 0 - 31 (SICR0 - 31). For input  
streams operating at any rate except 16.384 Mbps, the default sampling point is at 3/4 bit and users can change the  
sampling point to 1/4, 1/2, 3/4 or 4/4 bit position. When the stream is operating at 16.384 Mbps, the default  
sampling point is 1/2 bit and can be adjusted to a 4/4 bit position.  
FPi  
Sampling Point = 3/4 Bit  
Channel 0  
6
STi[n]  
Last Channel  
STIN[n]SMP1-0 = 00  
1
5
2
0
7
(2,  
4
or 8 Mbps  
-
Default)  
Sampling Point = 1/4 Bit  
Channel 0  
Last Channel  
STi[n]  
STIN[n]SMP1-0 = 01  
(2, 4 or 8 Mbps)  
1
5
6
0
7
Sampling Point = 1/2 Bit  
Channel 0  
STi[n]  
Last Channel  
STIN[n]SMP1-0 = 10  
(2, 4 or 8 Mbps)  
STIN[n]SMP1-0 = 00  
(16 Mbps - Default)  
1
5
6
0
7
Sampling Point = 4/4 Bit  
Channel 0  
Last Channel  
STi[n]  
STIN[n]SMP1-0 = 11  
(2, 4 or 8 Mbps)  
STIN[n]SMP1-0 = 10  
(16 Mbps)  
1
5
2
6
0
7
Note: Last Channel = 31, 63, 127 and 255 for 2.048, 4.096, 8.192 and 16.384 Mbps mode respectively  
Figure 14 - Input Bit Sampling Point Programming  
29  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
The input delay is controlled by STIN[n]BD2-0 (bits 8 - 6) to control the bit shift and STIN[n]SMP1 - 0 (bits 5 - 4) to  
control the sampling point in the Stream Input Control Register 0 - 31 (SICR0 - 31).  
Nominal Channel n Boundary  
Nominal Channel n+1 Boundary  
STi[n]  
0
7
6
5
4
3
2
1
0
7
000 01  
111 11  
111 00  
111 10  
111 01  
110 11  
110 00  
110 10  
110 01  
101 11  
101 00  
101 10  
101 01  
100 11  
100 00  
100 10  
100 01  
000 10  
000 00 (Default)  
000 11  
001 01  
001 10  
001 00  
001 11  
010 01  
010 10  
010 00  
010 11  
011 01  
011 10  
011 00  
011 11  
The first 3 bits represent STIN[n]BD2 - 0 for setting the bit delay  
The second set of 2 bits represent STIN[n]SMP1 - 0 for setting the sampling point offset  
Example: With a setting of 011 10 the offset will be 3 bits at a 1/2 sampling point  
Note: Italic settings can be used in 16 Mbps mode (1/2 and 4/4 sampling point)  
Figure 15 - Input Bit Delay and Factional Sampling Point  
8.3 Output Advancement Programming  
This feature is used to advance the output data of individual output streams with respect to the output frame  
boundary. Each output stream has its own bit advancement value which can be programmed in the Stream Output  
Control Register 0 - 31 (SOCR0 - 31).  
By default, all output streams have zero bit advancement such that bit 7 is the first bit that appears after the output  
frame boundary (assuming ST-BUS formatting). The output advancement is enabled by STO[n]AD 2 - 0 (bits 6 - 4)  
of the Stream Output Control Register 0 - 31 (SOCR0 - 31) as described in Table 46 on page 77. The output bit  
advancement can vary from 0 to 7 bits.  
FPi  
Channel 2  
Last Channel  
Channel 0  
Channel 1  
STio[n]  
7
6
5
4 3  
4
1
6
1
2
2
0
7
7
6
5
7
6
5
4 3  
3
6
5
4 3  
1
0
6
5
0
7
2
1
0
7
2
1
Bit Adv = 0  
(Default)  
Bit Advancement = 1  
Channel 0  
Channel 2  
Last Channel  
Channel 1  
STio[n]  
5
3
1
4 3  
1
4 3  
2
4 3 2  
Bit Adv = 1  
2
0
2
0
Note: Last Channel = 31, 63, 127 and 255 for 2.048, 4.096, 8.192 and 16.384 Mbps modes respectively.  
Figure 16 - Output Bit Advancement Timing Diagram (ST-BUS)  
30  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
8.4 Fractional Output Bit Advancement Programming  
In addition to the output bit advancement, the device has a fractional output bit advancement feature that offers  
better resolution. The fractional output bit advancement is useful in compensating for varying parasitic load on the  
serial data output pins.  
By default all of the streams have zero fractional bit advancement such that bit 7 is the first bit that appears after the  
output frame boundary. The fractional output bit advancement is enabled by STO[n]FA 1 - 0 (bits 8 - 7) in the  
Stream Output Control Register 0 - 31 (SOCR0 - 31). For all streams running at any data rate except 16.384 Mbps  
the fractional bit advancement can vary from 0, 1/4, 1/2 to 3/4 bits. For streams operating at 16.384 Mbps, the  
fractional bit advancement can be set to either 0 or 1/2 bit.  
FPi  
Last Channel  
Channel 0  
STio[n]  
7
5
0
6
1
STo[n]FA1-0 = 00  
(Default 2, 4, 8 or  
16Mb/s)  
2
Fractional Bit Advancement = 1/4 Bit  
Channel 0  
Last Channel  
STio[n]  
7
5
0
6
4
1
STo[n]FA1-0  
=
01  
(2, 4 or 8 Mbps)  
Fractional Bit Advancement = 1/2 Bit  
Channel 0  
STio[n]  
Last Channel  
STo[n]FA1-0  
=
10  
(2,  
4
or 8Mbps)  
7
5
4
0
6
1
STo[n]FA1-0 = 01  
(16 Mbps)  
Fractional Bit Advancement = 3/4 Bit  
Channel 0  
Last Channel  
STio[n]  
7
5
4
0
6
1
STo[n]FA1-0 = 11  
(2, 4 or 8 Mbps)  
Note: Last Channel = 31, 63, 127 and 255 for 2.048, 4.096, 8.192 and 16.384 Mbps modes respectively.  
Figure 17 - Output Fractional Bit Advancement Timing Diagram (ST-BUS)  
31  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
8.5 External High Impedance Control Advancement  
The external high impedance signals can be programmed to better match the timing required by the external  
buffers. By default, the output timing of the STOHZ signals follows the programmed channel delay and bit offset of  
their corresponding ST-BUS/GCI-Bus output streams. In addition, for all high impedance streams operating at any  
data rate except 16.384 Mbps, the user can advance the STOHZ signals a further 0, 1/4, 1/2, 3/4 or 4/4 bits by  
programming STOHZ[n]A 2 - 0 (bit 11 - 9) in the Stream Output Control Register. When the stream is operating at  
16.384 Mbps, the additional STOHZ advancement can be set to 0, 1/2 or 4/4 bits by programming the same  
register.  
FPi  
HiZ  
CH2  
STio[n]  
Last  
CH0  
CH1  
CH3  
Last-1  
Last  
CH0  
Last-2  
STOHZ Advancement (Programmable in 4 steps of 1/4 bit  
for 2.048 Mbps, 4.096 Mbps and 8.192 Mbps  
Programmable in 2 steps of 1/2 bit for 16.384 Mbps)  
STOHZ[n]  
(Default = No Advancement)  
STOHZ[n]  
(with Advancement)  
Output Frame Boundary  
Note: n = 0 to 15  
Note: Last = Last Channel of 31, 63, 127 and 255 for 2.048 Mbps, 4.096 Mbps. 8.192 Mbps and 16.384 Mbps modes respectively.  
Figure 18 - Channel Switching External High Impedance Control Timing  
9.0 Data Delay Through the Switching Paths  
The switching of information from the input serial streams to the output serial streams results in a throughput delay.  
The device can be programmed to perform timeslot interchange functions with different throughput delay  
capabilities on a per-channel basis. For voice applications, select variable throughput delay to ensure minimum  
delay between input and output data. In wideband data applications, select constant delay to maintain the frame  
integrity of the information through the switch. The delay through the device varies according to the type of  
throughput delay selected by the V/C (bit 14) in the Connection Memory Low when CMM = 0.  
9.1 Variable Delay Mode  
Variable delay mode causes the output channel to be transmitted as soon as possible. This is a useful mode for  
voice applications where the minimum throughput delay is more important than frame integrity. The delay through  
the switch can vary from 7 channels to 1 frame + 7 channels. To set the device into variable delay mode, VAREN  
(bit 4) in the Control Register (CR) must be set before V/C (bit 14) in the Connection Memory Low when CMM = 0.  
If the VAREN bit is not set and the device is programmed for variable delay mode, the information read on the  
output stream will not be valid.  
32  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
In variable delay mode, the delay depends on the combination of the source and destination channels of the input  
and output streams.  
m = input channel number  
n = output channel number  
n-m <= 0  
0 < n-m < 7  
n-m = 7  
STio >= STi  
n-m  
n-m > 7  
STio < STi  
1 frame + (n-m)  
Table 4 - Delay for Variable Delay Mode  
T = Delay between input and output 1 frame - (m-n)  
For example, if Stream 4 Channel 2 is switched to Stream 5 Channel 9 with variable delay, the data will be output in  
the same 125 µs frame. Contrarily, if Stream 6 Channel 1 is switched to Stream 9 Channel 3, the information will  
appear in the following frame.  
Frame N + 1  
Frame N  
STi4  
CH2  
L-2 L-1 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9  
L-2 L-1 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9  
L-2 L-1 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9  
L-2 L-1 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9  
L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
STio5  
CH9  
STi6  
CH1  
STio9  
CH3  
L = last channel = 31, 63, 127, or 255 for 2.048 Mbps, 4.096 Mbps 8.192 Mbps, or 16.384 Mbps respectively  
Figure 19 - Data Throughput Delay for Variable Delay  
9.2 Constant Delay Mode  
In this mode, frame integrity is maintained in all switching configurations. The delay though the switch is 2 frames -  
Input Channel + Output Channel. This can result in a minimum of 1 frame + 1 channel delay if the last channel on a  
stream is switched to the first channel of a stream. The maximum delay is 3 frames - 1 channel. This occurs when  
the first channel of a stream is switched to the last channel of a stream. The constant delay mode is available for all  
output channels.  
The data throughput delay is expressed as a function of ST-BUS/GCI-Bus frames, input channel number (m) and  
output channel number (n). The data throughput delay (T) is:  
T = 2 frames + (n - m)  
The constant delay mode is controlled by V/C (bit 14) in the Connection Memory Low when CMM = 0. When this bit  
is set low, the channel is in constant delay mode. If VAREN (bit 4) in the Control Register (CR) is set (to enable  
variable throughput delay on a chip-wide basis), the device can still be programmed to operate in constant delay  
mode.  
33  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
Frame N + 2  
Frame N  
Frame N + 1  
STi L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
L-2 L-1 CH0 CH1 CH2 CH3  
STio L-2 L-1 CH0 CH1 CH2 CH3  
STi L-2 L-1 CH0 CH1 CH2 CH3  
STio L-2 L-1 CH0 CH1 CH2 CH3  
L = last channel = 31, 63, 127, or 255 for 2.048 Mbps, 4.096 Mbps 8.192 Mbps, or 16.384 Mbps respectively  
Figure 20 - Data Throughput Delay for Constant Delay  
10.0 Connection Memory Description  
The connection memory consists of two blocks, Connection Memory Low (CM_L) and Connection Memory High  
(CM_H). The CM_L is 16-bits wide and is used for channel switching and other special modes. The CM_H is 5-bits  
wide and is used for the voice coding function. When UAEN (bit 15) of the Connection Memory Low (CM_L) is low,  
µ-law/A-law conversion will be turned off and the contents of CM_H will be ignored. Each connection memory  
location of the CM_L or CM_H can be read or written via the 16 bit microprocessor port within one microprocessor  
access cycle. See Table 51 on page 80 for the address mapping of the connection memory. Any unused bits will be  
reset to zero on the 16-bit data bus.  
For the normal channel switching operation, CMM (bit 0) of the Connection Memory Low (CM_L) is programmed  
low. SCA7 - 0 (bits 8 - 1) indicate the source (input) channel address and SSA4 - 0 (bits 13 - 9) indicate the source  
(input) stream address. The 5-bit contents of the CM_H will be ignored during the normal channel switching mode  
without the µ-law/A-law conversion when UAEN (bit 15) of the Connection Memory Low (CM_L) is set to zero. If  
µ-law/A-law conversion is required, the CM_H bits must be programmed first to provide the voice/data information,  
the input coding law and the output coding law before the assertion of UAEN (bit 15) in the Connection Memory  
Low.  
When CMM (bit 0) of the Connection Memory Low (CM_L) is programmed high, the ZL50019 will operate in one of  
the special modes described in Table 53 on page 81. When the per-channel message mode is enabled, MSG7 - 0  
(bit 10 - 3) in the Connection Memory Low (CM_L) will be output via the serial data stream as message output data.  
When the per-channel message mode is enabled, the µ-law/A-law conversion can also be enabled as required.  
34  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
11.0 Connection Memory Block Programming  
This feature allows for fast initialization of the connection memory after power up.  
11.1 Memory Block Programming Procedure  
1. Set MBPE (bit 3) in the Control Register (CR) from low to high.  
2. Configure BPD2 - 0 (bits 3 - 1) in the Internal Mode Selection (IMS) register to the desired values to be loaded  
into CM_L.  
3. Start the block programming by setting MBPS (bit 0) in the Internal Mode Selection Register (IMS) high. The val-  
ues stored in BPD2 - 0 will be loaded into bits 2 - 0 of all CM_L positions. The remaining CM_L locations (bits 15  
- 3) and the programmable values in the CM_H (bits 4 - 0) will be loaded with zero values.  
The following tables show the resulting values that are in the CM_L and CM_H connection memory locations.  
Bit  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
1
0
Value  
BPD2 BPD1 BPD0  
Table 5 - Connection Memory Low After Block Programming  
Bit  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Value  
Table 6 - Connection Memory High After Block Programming  
Note: Bits 15 to 5 are reserved in Connection Memory High and should always be 0.  
It takes at least two frame periods (250 µs) to complete a block program cycle.  
MBPS (bit 0) in the Control Register (CR) will automatically reset to a low position after the block programming  
process has completed.  
MBPE (bit 3) in the Internal Mode Selection (IMS) register must be cleared from high to low to terminate the block  
programming process. This is not an automatic action taken by the device and must be performed manually.  
Note: Once the block program has been initiated, it can be terminated at any time prior to completion by setting  
MBPS (bit 0) in the Control Register (CR) or MBPE (bit 3) in the Internal Mode Selection (IMS) register to low. If the  
MBPE bit was used to terminate the block programming, the MBPS bit will have to be set low before enabling other  
device operations.  
12.0 Device Performance in Master Mode and Slave Modes  
This device has two main operating modes - Master mode and Slave mode.  
If the device is programmed to work in Master mode, it is expected that the input clock and frame pulse will be  
supplied from the embedded DPLL, either directly (using loopback mode) or outside the device. Sources and  
destinations of the device’s serial input and output data, respectively, have to be synchronized with the device’s  
output clock and frame pulse. In Master mode, output clocks and frame pulses are driven by the DPLL and they are  
always available with any of the specified frequencies.  
In addition to Master mode, there are two main Slave modes: Divided Slave mode and Multiplied Slave mode. If the  
device is in Slave mode, output clocks and frame pulses are generated based on CKi and FPi. In Divided Slave  
mode, output clocks and frame pulses are directly divided from CKi/FPi; therefore, the output clock rate cannot  
exceed the CKi rate. In Multiplied Slave mode, the output clocks and frame pulses are generated from a clock  
35  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
internal to the device and are synchronized to CKi and FPi. All specified frequencies are available on CKo[0:3] in  
Multiplied Slave mode.  
By default, the DPLL is disabled if the device is in Slave mode. However, the DPLL can be activated by  
programming the SLV_DPLLEN bit in the Control Register. When the DPLL is enabled, CKo4, CKo5 and FPo5 will  
be generated from the DPLL, while the other clocks and frame pulses will be generated based on CKi/FPi. In this  
case the DPLL will be fully functional, including its capability of reference monitoring.  
Note that an external oscillator is required whenever the DPLL is used.  
Table 7, “ZL50019 Operating Modes” on page 36 summarizes the different modes of operation available within the  
ZL50019. Each Major mode (explained below) has an associated Minor mode that is determined by setting the  
relevant Input Control pins and Control Register bits (Table 16, “Control Register (CR) Bits” on page 48) indicated in  
the table.  
Device  
Input Pins  
CR Register  
Bits  
Output Clock Pins  
Reference Lock Enabled  
Data Pins  
Operating Mode  
Control  
Signal  
OSCi CKi  
Clock Source  
Major  
Minor  
OSC_EN MODE_4M  
[1:0]  
OPM SLV_DPLLEN CKi_LP  
[1:0]  
CKo0-3 CKo4-5 CKo0-3 CKo4-5 STi  
STo  
Master  
CKi  
Loopback  
4 M  
1
1
0
1
0
00  
2 0MHz 4/8/16 M 00  
X
X
1
0
1
0
0
1
X
Freerun, Holdover  
or REF0-3  
Yes  
Yes  
Yes  
No  
CKi*  
Cko2  
CKi  
Cko2  
(DPLL)  
Divided  
Slave  
11  
00  
11  
00  
11  
00  
11  
00  
20 MHz  
4 M  
8/16 M  
4 M  
01  
X0  
11  
CKi  
REF0-3  
CKo0-3  
(CKi)  
8/16 M  
4 M  
X
20 MHz  
X
X
8/16 M  
4 M  
8/16 M  
4 M  
Multiplied  
Slave  
CKi MULT REF0-3  
X
Yes  
No  
CKo0-3  
(CKi MULT)  
8/16 M  
4 M  
8/16 M  
4 M  
X1  
8/16 M  
8/16 M  
Legend:  
X
Don’t care or not applicable.  
Reference Lock  
Refers to what signal the output pins are locked to:  
REF0-3 = Normal  
Cki = Bypass. Cki is passed directly through to CKo0-3.  
Cki MULT = Cki is passed through clock multiplier to CKo0-3.  
* CKi must be phase aligned (edge synchronous) to CLo0-3.  
Clock Source  
Refers to which clock samples STi and which clock outputs STo; STi applies when STio is input; STo applies when STio is output.  
Table 7 - ZL50019 Operating Modes  
12.1 Master Mode Performance  
When the device is in Master mode, the DPLL is phase-locked to the one of four DPLL reference signals, REF0 to  
REF3, which are sourced by an external 8 kHz, 1.544 MHz, 2.048 MHz, 4.096 MHz, 8.192 MHz, 16.384 MHz or  
19.44 MHz signal. The on-chip DPLL also offers reference switching and monitoring, jitter attenuation, freerun and  
holdover functions. In this mode, STio0 - 31 are driven by a clock generated by the DPLL, which also provides all  
the output clocks (CKo0 - 5) and frame pulses (FPo0 - 3 and FPo_OFF0 - 2).  
12.2 Divided Slave Mode Performance  
When the device is in Divided Slave mode, STio0 - 31 are driven by CKi. In this mode, the output streams and  
clocks have the same amount of jitter as the input clock (CKi), but the output data rate cannot exceed the input data  
rate defined by CKi. For example, if CKi is 4.096 MHz, the output data rate cannot be higher than 2.048 Mbps, and  
the generated output clock rates cannot exceed 4.096 MHz. If the DPLL is not enabled, an external oscillator is  
optional in Divided Slave mode.  
36  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
12.3 Multiplied Slave Mode Performance  
When the device is in Multiplied Slave mode, device hardware is used to multiply CKi internally. STio0 - 31 are  
driven by this internally generated clock. In this mode, the output data rate can be any specified data rate, but the  
output streams and clocks may have different jitter characteristics from the input clock (CKi). If the DPLL is not  
enabled, an external oscillator is not required in Multiplied Slave mode.  
13.0 Overall Operation of the DPLL  
The DPLL accepts four input references and delivers six output clocks and five output frame pulses. The DPLL  
meets or exceeds all of the requirements of the Telcordia GR-1244-CORE standard for a Stratum 4E compliant  
PLL. This includes the freerun, reference switching and monitoring, jitter/wander attenuation and holdover  
functions. The intrinsic output jitter of the DPLL does not exceed 1 ns (except for the 1.544 MHz output).  
The DPLL is able to lock to an input reference presented on the REF0 - 3 inputs. It is possible to force the DPLL  
module to lock to a selected reference, to prefer one reference, to enter holdover mode or to freerun.  
13.1 DPLL Functional Modes  
There are four functional modes for the DPLL: normal, holdover, automatic and freerun modes. In addition to these  
four functional modes, the DPLL can also be programmed to internal reset mode.  
13.1.1 Normal Operating Mode  
In the normal operating mode, the DPLL generates clocks and frame pulses that are phase locked to the active  
input reference. Jitter on the input clock is attenuated by the DPLL.  
13.1.2 Holdover Mode  
In holdover mode, the DPLL no longer synchronizes the output clock to any input reference. It maintains the  
frequency that it was at prior to entering holdover mode. The holdover operation typically happens when the input  
clock becomes unreliable or is lost altogether. It takes some time for the system to realize that the input clock is  
unreliable. Meanwhile, the DPLL tracks an unreliable clock. Therefore the DPLL could hold to an invalid frequency  
when it enters holdover mode. In order to prevent this situation, the DPLL stores the current frequency at regular  
intervals in holdover memory so that it can restore the frequency of the input clock just after the input clock became  
unreliable.  
13.1.3 Automatic Mode  
In this mode, the state machine controls the DPLL based on the settings in the registers and the quality of the  
reference input clocks. The DPLL is internally either in normal or in holdover mode.  
13.1.4 Freerun Mode  
In freerun mode, the DPLL generates a fixed output frequency based on the crystal oscillator frequency. To meet  
Stratum 4E, the accuracy of the circuitry for the freerunning output clock must be 32 ppm or better.  
13.1.5 DPLL Internal Reset Mode  
DPLL_IRM (bit 0) in the DPLL Control Register (DPLLCR) enables the internal reset mode. In the internal reset  
mode, the DPLL module is disabled to save power. The circuit will be reset continuously and no output clocks will  
be generated. When the internal DPLL module is in the internal reset mode, all registers remain accessible. Note  
that applying the DPLL reset does not reset the DPLL registers: they preserve the values that they had prior to  
entering reset.  
37  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
14.0 DPLL Frequency Behaviour  
14.1 Input Frequencies  
The DPLL is capable of synchronizing to one of the following input frequencies:  
8 kHz  
1.544 MHz (DS1)  
2.048 MHz (E1)  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44 MHz  
Table 8 - DPLL Input Reference Frequencies  
14.2 Input Frequencies Selection  
The input frequencies of REF 0 - 3 can be automatically detected or programmed independently by the Reference  
Frequency Register (RFR) if RFRE (bit 1) in the DPLL Control Register (DPLLCR) is set. The detected frequency of  
the selected reference is indicated in the Reference Change Status Register (RCSR). In addition, the detected  
frequencies of all four references are indicated in the Reference Frequency Status Register (RFSR). See Table 27  
on page 58, Table 28 on page 59, Table 36 on page 65 and Table 42 on page 71 for the detailed bit description of  
the DPLL Control Register (DPLLCR), Reference Frequency Register (RFR), Reference Change Status Register  
(RCSR) and Reference Frequency Status Register (RFSR), respectively.  
14.3 Output Frequencies  
The DPLL generates a limited number of output signals. All signals are synchronous to each other and in the  
normal operating mode, are locked to the selected input reference. The DPLL provides outputs with the following  
frequencies:  
CKo0  
CKo1  
CKo2  
CKo3  
CKo4  
CKo5  
FPo0  
FPo1  
FPo2  
FPo3  
FPo5  
4.096 MHz  
8.192 MHz  
16.384 MHz  
4.096 MHz, 8.192 MHz, 16.384 MHz or 32.768 MHz  
1.544 MHz or 2.048 MHz  
19.44 MHz  
8 kHz (244 ns wide pulse)  
8 kHz (122 ns wide pulse)  
8 kHz (61 ns wide pulse)  
8 kHz (244 ns, 122 ns, 61 ns or 30 ns wide pulse)  
8 kHz (51 ns wide pulse)  
Table 9 - Generated Output Frequencies  
38  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
14.4 Pull-In/Hold-In Range (also called Locking Range)  
The widest tolerance required for any of the given input clock frequencies is ±130 ppm for the T1 clock  
(1.544 MHz). If the system clock (crystal/oscillator) accuracy is ±30 ppm, it requires a minimum pull-in range of  
±160 ppm. Users who do not require the ±30 ppm freerun accuracy of the DPLL can use a ±100 ppm system clock.  
Therefore the pull-in range is a minimal ±230 ppm. The pull-in range of this device is ±260 ppm.  
15.0 Jitter Performance  
15.1 Input Clock Cycle to Cycle Timing Variation Tolerance  
The ZL50019 has an exceptional cycle to cycle timing variation tolerance of 20 ns. This allows the ZL50019  
to synchronize off a low cost DPLL when it is in either Divided Slave mode or Multiplied Slave mode.  
15.2 Input Jitter Acceptance  
The input jitter acceptance is specified in standards as the minimum amount of jitter of a certain frequency on the  
input clock that the DPLL must accept without making cycle slips or losing lock. The lower the jitter frequency, the  
larger the jitter acceptance. For jitter frequencies below a tenth of the cut-off frequency of the DPLL's jitter transfer  
function, any input jitter will be followed by the DPLL. The maximum value of jitter tolerance for the DPLL is  
±1023UIp-p  
.
15.3 Jitter Transfer Function  
The corner frequency (-3 dB) of the Stratum 4E DPLL is 15.2 Hz.  
16.0 DPLL Specific Functions and Requirements  
16.1 Lock Detector  
To determine if the DPLL is locked to the input clock, a lock detector monitors the phase value output of the phase  
detector, which represents the difference between input reference and output feedback clock. If the phase value is  
below a certain threshold for a certain interval, the DPLL is pronounced locked to the input clock. The monitoring is  
done in intervals of 4 ms. The lock detector threshold and the interval are programmable by the user through the  
Lock Detector Threshold Register (LDTR) and the Lock Detector Interval Register (LDIR) respectively. See  
Table 32 on page 62 and Table 33 on page 63 for the bit descriptions of the Lock Detector Threshold Register  
(LDTR) and Lock Detector Interval Register (LDIR) respectively. The value of the Lock Detector Threshold Register  
(LDTR) should be programmed with respect to the maximum expected jitter frequency and amplitude on the  
selected input references.  
The lock status can be monitored through the Reference Change Status Register (RCSR). See Table 36 on  
page 65 for the bit description of the Reference Change Status Register (RCSR).  
16.2 Maximum Time Interval Error (MTIE)  
Several standards require that the output clock of the DPLL may not move in phase more than a certain amount. In  
order to meet those standards, a special circuit maintains the phase of the DPLL output clock during reference and  
mode rearrangements. The total output phase change or Maximum Timing Interval Error (MTIE) during  
rearrangements is less than 31 ns per rearrangement, exceeding Stratum 4E requirements. After a large number of  
reference switches, the accumulated phase error can become significant, so it is recommended to use MTIE reset  
in such situations, to realign outputs to the nearest edge of the selected reference. The MTIE reset can be  
programmed by setting MTR (bit 7) in the Reference Change Control Register (RCCR), as described in Table 35 on  
page 63.  
39  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
16.3 Phase Alignment Speed (Phase Slope)  
Besides total phase change, standards also require a certain rate of the phase change of the output clock. The  
phase alignment speed is programmable by the user through a value in the Slew Rate Limit Register (SRLR) as  
described in Table 34 on page 63. Stratum 4E requires that the phase alignment speed not exceed 81 ns per  
1.326 ms (61ppm). The width of the register and the limiter circuitry provide a maximum phase change alignment  
speed of 186 ppm. The phase alignment speed default value is 56 ppm.  
16.4 Reference Monitoring  
The quality of the four input reference clocks is continuously monitored by the reference monitors. There are  
separate reference monitor circuits for the four DPLL references. References are checked for short phase (single  
period) deviations as well as for frequency (multi-period) deviations with hysteresis.  
The Reference Status Register (RSR) reports the status of the reference monitors. The register bits are described  
in Table 40 on page 68. The Reference Mask Register (RMR) allows users to ignore the monitoring features of the  
reference monitors. See Table 41 on page 69 for details.  
16.5 Single Period Reference Monitoring  
Values for short phase deviations (upper and lower limit) are programmable through registers. The unit of the binary  
values of these numbers is 100 MHz clock period (10 ns). Single period deviation limits are more relaxed than multi  
period limits, and are used for early detection of the reference loss, or huge phase jumps.  
The values for the upper and lower limits are shown in the following table:  
Reference  
Frequency  
Comment  
8 kHz  
10 UIp-p  
0.3 UIp-p  
0.2 UIp-p  
0.2 UIp-p  
0.2 UIp-p  
0.2 UIp-p  
0.2 UIp-p  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44 MHz  
Table 10 - Values for Single Period Limits  
16.6 Multiple Period Reference Monitoring  
To monitor reference failure based on frequency offset, multi period checking is performed. Reference validation  
time is prescribed by Telcordia GR-1244-CORE and is between 10 and 30 seconds. To meet the criteria for  
reference validation time, the time base for multi period monitoring has to be big enough. To implement hysteresis,  
the upper limits are split into near upper and far upper limits and the lower limits are split into near lower and far  
lower limits. The reference failure is detectable only when the reference passes far limits, but passing is not  
detected until the reference is within near limits. The zone between near and far limits, called the “grey zone”, is  
required by standards and prevents unnecessary reference switching when the selected reference is close to the  
boundary of failure.  
The monitor makes a decision about reference validity after two consecutive measurements with respect to its time  
base. The time base for multi-period monitoring is 10 seconds. The time base is defined in the number of reference  
clock cycles.  
40  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
The device has two sets of limits the Stratum 4E default limits and the Relaxed Stratum 4E limits (see Table 11 on  
page 41). The ST4_LIM bit in Table 27, DPLL Control Register (DPLLCR) Bits is used to select between the two  
sets of limits.  
Stratum 4E Default Limits  
(in 10 ns units)  
Relaxed Stratum 4E Limits  
(in 10 ns units)  
Far Upper Limit  
Near Upper Limit  
Nominal Value  
-82.487 ppm  
-64.713 ppm  
-250 ppm  
-240 ppm  
0 ppm  
Near Lower Limit  
Far Lower Limit  
64.713 ppm  
82.487 ppm  
240 ppm  
250 ppm  
Table 11 - Multi-Period Hysteresis Limits  
17.0 Microprocessor Port  
The device provides access to the internal registers, connection memories and data memories via the  
microprocessor port. The microprocessor port is capable of supporting both Motorola and Intel non-multiplexed  
microprocessors. The microprocessor port consists of a 16-bit parallel data bus (D15 - 0), 14 bit address bus (A13 -  
0) and six control signals (MOT_INTEL, CS, DS_RD, R/W_WR, IRQ and DTA_RDY).  
The data memory can only be read from the microprocessor port. For a data memory read operation, D7 - 0 will be  
used and D15 - 8 will output zeros.  
For a CM_L read or write operation, all bits (D15 - 0) of the data bus will be used. For a CM_H write operation, D4 -  
0 of the data bus must be configured and D15 - 5 are ignored. D15 - 5 must be driven either high or low. For a  
CM_H read operation, D4 - 0 will be used and D15 - 5 will output zeros.  
Refer to Figure 24 on page 88, Figure 25 on page 89, Figure 26 on page 90 and Figure 27 on page 91 for the  
microprocessor timing.  
18.0 Device Reset and Initialization  
The RESET pin is used to reset the ZL50019. When this pin is low, the following functions are performed:  
synchronously puts the microprocessor port in a reset state  
tristates the STio0 - 31 outputs  
drives the STOHZ0 - 15 outputs to high  
preloads all internal registers with their default values (refer to the individual registers for default values)  
clears all internal counters  
18.1 Power-up Sequence  
The recommended power-up sequence is for the VDD_IO supply (normally +3.3 V) to be established before the  
power-up of the VDD_CORE supply (normally +1.8 V). The VDD_CORE supply may be powered up at the same time  
as VDD_IO, but should not “lead” the VDD_IO supply by more than 0.3 V.  
41  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
18.2 Device Initialization on Reset  
Upon power up, the ZL50019 should be initialized as follows:  
Set the ODE pin to low to disable the STio0 - 31 outputs and to drive STOHZ0 - 15 to high  
Set the TRST pin to low to disable the JTAG TAP controller  
Reset the device by pulsing the RESET pin to zero for longer than 1 µs  
After releasing the RESET pin from low to high, wait for a certain period of time (see Note below) for the  
device to stabilize from the power down state before the first microprocessor port access can occur  
Program CKIN1 - 0 (bit 6 -5) in the Control Register (CR) to define the frequency of the CKi and FPi inputs  
Wait at least 500 µs prior to the next microport access (see Note below)  
Use the block programming mode to initialize the connection memory  
Release the ODE pin from low to high after the connection memory is programmed  
Note: If an external oscillator is used, the waiting time is 500 µs. Without the external oscillator, if CKi is  
16.384 MHz, the waiting time is 500 µs; if CKi is 8.192 MHz, the waiting time is 1 ms; if CKi is 4.096 MHz, the  
waiting time is 2 ms.  
18.3 Software Reset  
In addition to the hardware reset from the RESET pin, the device can also be reset by using software reset. There  
are two software reset bits in the Software Reset Register (SRR). SRSTDPLL (bit 0) is used to reset the DPLL while  
SRSTSW (bit 1) resets the rest of the switch.  
19.0 Pseudo Random Bit Generation and Error Detection  
The ZL50019 has one Bit Error Rate (BER) transmitter and one BER receiver for each pair of input and output  
streams, resulting in 32 transmitters connected to the output streams and 32 receivers associated with the input  
streams. Each transmitter can generate a BER sequence with a pattern of 215-1 pseudorandom code (ITU O.151).  
Each transmitter can start at any location on the stream and will last for a minimum of 1 channel to a maximum of 1  
frame time (125 µs). The BER receivers and transmitters are enabled by programming the RBEREN (bit 5) and  
TBEREN (bit 4) in the IMS register. In order to save power, the 32 transmitters and/or receivers can be disabled.  
(This is the default state.)  
Multiple connection memory locations can be programmed for BER tests such that the BER patterns can be  
transmitted for multiple consecutive output channels. If consecutive input channels are not selected, the BER  
receiver will not compare the bit patterns correctly. The number of output channels which the BER pattern occupies  
has to be the same as the number of channels defined in the BER Length Register (BRLR) which defines how  
many BER channels are to be monitored by the BER receiver.  
For each input stream, there is a set of registers for the BER test. The registers are as follows:  
BER Receiver Control Register (BRCR) - ST[n]CBER (bit 1) is used to clear the Bit Receiver Error Register  
(BRER). ST[n]SBER (bit 0) is used to enable the per-stream BER receiver.  
BER Receiver Start Register (BRSR) - ST[n]BRS7 - 0 (bit 7 - 0) defines the input channel from which the  
BER sequence will start to be compared.  
BER Receiver Length Register (BRLR) - ST[n]BL8 - 0 (bit 8 - 0) define how many channels the sequence  
will last. Depending on the data rate being used, the BER test can last for a maximum of 32, 64, 128 or 256  
channels at the data rates of 2.048, 4.096, 8.192 or 16.384 Mbps, respectively. The minimum length of the  
BER test is a single channel. The user must take care to program the correct channel length for the BER test  
so that the channel length does not exceed the total number of channels available in the stream.  
42  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
BER Receiver Error Register (BRER) - This read-only register contains the number of counted errors. When  
the error count reaches 0xFFFF, the BER counter will stop updating so that it will not overflow. ST[n]CBER  
(bit 1) in the BER Receiver Control Register is used to reset the BRER register.  
For normal BER operation, CMM (bit 0) must be 1 in the Connection Memory Low (CM_L). PCC1 - 0 (bits 2 - 1) in  
the Connection Memory Low must be programmed to “10” to enable the per-stream based BER transmitters. For  
each stream, the length (or total number of channels) of BER testing can be as long as one whole frame, but the  
channels MUST be consecutive. Upon completion of programming the connection memory, the corresponding BER  
receiver can be started by setting ST[n]SBER (bit 0) in the BRCR to high. There must be at least 2 frames (250 µs)  
between completion of connection memory programming and starting the BER receiver before the BER receiver  
can correctly identify BER errors. A 16 bit BER counter is used to count the number of bit errors.  
20.0 PCM A-law/µ-law Translation  
The ZL50019 provides per-channel code translation to be used to adapt pulse code modulation (PCM) voice or  
data traffic between networks which use different encoding laws. Code translation is valid in both Connection Mode  
and Message Mode.  
In order to use this feature, the Connection Memory High (CM_H) entry for the output channel must be  
programmed. V/D (bit 4) defines if the traffic in the channel is voice or data. Setting ICL1 - 0 (bits 3 - 2) programs the  
input coding law and OCL1 - 0 (bits 1- 0) programs the output coding law as shown in Table 12.  
The different code options are:  
Input Coding  
(ICL1- 0)  
Output Coding  
(OCL1 - 0)  
Voice Coding  
(V/D bit = 0)  
Data Coding  
(V/D bit = 1)  
00  
01  
10  
00  
01  
10  
ITU-T G.711 A-law  
ITU-T G.711 µ-law  
A-law without Alternate Bit  
Inversion (ABI)  
No code  
Alternate Bit Inversion (ABI)  
Inverted Alternate Bit  
Inversion (ABI)  
11  
11  
µ-law without Magnitude  
All bits inverted  
Inversion (MI)  
Table 12 - Input and Output Voice and Data Coding  
For voice coding options, the ITU-T G.711 A-law and ITU-T G.711 µ-law are the standard rules for encoding. A-law  
without Alternate Bit Inversion (ABI) is an alternative code that does not invert the even bits (6, 4, 2, 0). µ-law  
without Magnitude Inversion (MI) is an alternative code that does not perform inversion of magnitude bits (6, 5, 4, 3,  
2, 1, 0).  
When transferring data code, the option “no code” does not invert the bits. The Alternate Bit Inversion (ABI) option  
inverts the even bits (6, 4, 2, 0) while the Inverted Alternate Bit Inversion (ABI) inverts the odd bits (7, 5, 3, 1). When  
the “All bits inverted” option is selected, all of the bits (7, 6, 5, 4, 3, 2, 1, 0) are inverted.  
The input channel and output channel encoding law are configured independently. If the output channel coding is  
set to be different from the input channel, the ZL50019 performs translation between the two standards. If the input  
and output encoding laws are set to the same standard, no translation occurs. As the V/D (bit 4) of the Connection  
Memory High (CM_H) must be set on a per-channel basis, it is not possible to translate between voice and data  
encoding laws.  
43  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
21.0 Quadrant Frame Programming  
By programming the Stream Input Quadrant Frame Registers (SIQFR0 - 31), users can divide one frame of input  
data into four quadrant frames and can force the LSB or MSB of every input channel in these quadrants to one or  
zero for robbed-bit signaling. The four quadrant frames are defined as follows:  
Data Rate  
Quadrant 0  
Quadrant 1  
Quadrant 2  
Quadrant 3  
2.048 Mbps  
4.096 Mbps  
8.192 Mbps  
16.384 Mbps  
Channel 0 - 7  
Channel 0 - 15  
Channel 0 - 31  
Channel 0 - 63  
Channel 8 - 15  
Channel 16 - 31  
Channel 32 - 63  
Channel 16 - 23  
Channel 32 - 47  
Channel 64 - 95  
Channel 24 - 31  
Channel 48 - 63  
Channel 96 - 127  
Channel 64 - 127 Channel 128 - 191 Channel 192 - 255  
Table 13 - Definition of the Four Quadrant Frames  
When the quadrant frame control bits, STIN[n]Q3C2 - 0 (bit 11 - 9), STIN[n]Q2C2 - 0 (bit 8 - 6), STIN[n]Q1C2 - 0 (bit  
5 - 3) or STIN[n]Q1C2 - 0 (bit 2 - 0), are set, the LSB or MSB of every input channel in the quadrant is forced to “1”  
or “0” as shown by the following table:  
STIN[n]Q[y]C[2:0]  
Action  
0xx  
Normal Operation  
100  
101  
110  
111  
Replaces LSB of every channel in Quadrant y with ‘0’  
Replaces LSB of every channel in Quadrant y with ‘1’  
Replaces MSB of every channel in Quadrant y with ‘0’  
Replaces MSB of every channel in Quadrant y with ‘1’  
Note: y = 0, 1, 2, 3  
Table 14 - Quadrant Frame Bit Replacement  
Note that Quadrant Frame Programming and BER reception cannot be used simultaneously on the same input  
stream.  
22.0 JTAG Port  
The JTAG test port is implemented to meet the mandatory requirements of the IEEE-1149.1 (JTAG) standard. The  
operation of the boundary-scan circuitry is controlled by an external Test Access Port (TAP) Controller.  
22.1 Test Access Port (TAP)  
The Test Access Port (TAP) accesses the ZL50019 test functions. It consists of three input pins and one output pin  
as follows:  
Test Clock Input (TCK) - TCK provides the clock for the test logic. TCK does not interfere with any on-chip  
clock and thus remains independent in the functional mode. TCK permits shifting of test data into or out of  
the Boundary-Scan register cells concurrently with the operation of the device and without interfering with  
the on-chip logic.  
Test Mode Selection Inputs (TMS) - The TAP Controller uses the logic signals received at the TMS input to  
control test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is  
internally pulled to high when it is not driven from an external source.  
44  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
Test Data Input (TDi) - Serial input data applied to this port is fed either into the instruction register or into a  
test data register, depending on the sequence previously applied to the TMS input. The registers are  
described in a subsequent section. The received input data is sampled at the rising edge of the TCK pulse.  
This pin is internally pulled to high when it is not driven from an external source.  
Test Data Output (TDo) - Depending on the sequence previously applied to the TMS input, the contents of  
either the instruction register or test data register are serially shifted out towards TDo. The data from TDo is  
clocked on the falling edge of the TCK pulses. When no data is shifted through the boundary scan cells, the  
TDo driver is set to a high impedance state.  
Test Reset (TRST) - Resets the JTAG scan structure. This pin is internally pulled to high when it is not  
driven from an external source.  
22.2 Instruction Register  
The ZL50019 uses the public instructions defined in the IEEE-1149.1 standard. The JTAG interface contains a  
four-bit instruction register. Instructions are serially loaded into the instruction register from the TDi when the TAP  
Controller is in its shifted-OR state. These instructions are subsequently decoded to achieve two basic functions: to  
select the test data register that may operate while the instruction is current and to define the serial test data  
register path that is used to shift data between TDi and TDo during data register scanning.  
22.3 Test Data Registers  
As specified in the IEEE-1149.1 standard, the ZL50019 JTAG interface contains three test data registers:  
The Boundary-Scan Register - The Boundary-Scan register consists of a series of boundary-scan cells  
arranged to form a scan path around the boundary of the ZL50019 core logic.  
The Bypass Register - The Bypass register is a single stage shift register that provides a one-bit path from  
TDi to TDo.  
The Device Identification Register - The JTAG device ID for the ZL50019 is 0C36314BH  
Version  
<31:28>  
<27:12>  
<11:1>  
<0>  
0000  
Part Number  
Manufacturer ID  
LSB  
1100 0011 0110 0011  
0001 0100 101  
1
22.4 BSDL  
A Boundary Scan Description Language (BSDL) file is available from Zarlink Semiconductor to aid in the use of the  
IEEE-1149.1 test interface.  
45  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
23.0 Register Address Mapping  
Address  
A13 - A0  
CPU  
Access  
Register  
Name  
Abbreviation  
Reset By  
0000H  
0001H  
0002H  
0003H  
0004H  
R/W  
R/W  
R/W  
R/W  
R/W  
Control Register  
CR  
Switch/Hardware  
Switch/Hardware  
Hardware Only  
DPLL/Hardware  
DPLL/Hardware  
Internal Mode Selection Register  
Software Reset Register  
IMS  
SRR  
Output Clock and Frame Pulse Control Register OCFCR  
Output Clock and Frame Pulse Selection  
Register  
OCFSR  
0005H  
0006H  
0007H  
0010H  
0011H  
0012H  
0013H  
0014H  
0040H  
0041H  
0042H  
0043H  
0045H  
0047H  
0048H  
0049H  
004BH  
004CH  
0066H  
0067H  
0068H  
0069H  
006AH  
006BH  
006CH  
R/W  
FPo_OFF0 Register  
FPOFF0  
FPOFF1  
FPOFF2  
IFR  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
Switch/Hardware  
Switch/Hardware  
Switch/Hardware  
Switch/Hardware  
Switch/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
DPLL/Hardware  
R/W  
FPo_OFF1 Register  
R/W  
FPo_OFF2 Register  
R Only  
R Only  
R Only  
R Only  
R Only  
R/W  
Internal Flag Register  
BER Error Flag Register 0  
BER Error Flag Register 1  
BER Receiver Lock Register 0  
BER Receiver Lock Register 1  
DPLL Control Register  
BERFR0  
BERFR1  
BERLR0  
BERLR1  
DPLLCR  
RFR  
R/W  
Reference Frequency Register  
Centre Frequency Register - Lower 16 Bits  
Centre Frequency Register - Upper 10 Bits  
Frequency Offset Register  
Lock Detector Threshold Register  
Lock Detector Interval Register  
Slew Rate Limit Register  
R/W  
CFRL  
CFRU  
FOR  
R/W  
R Only  
R/W  
LDTR  
LDIR  
R/W  
R/W  
SRLR  
RCCR  
RCSR  
IR  
R/W  
Reference Change Control Register  
Reference Change Status Register  
Interrupt Register  
R Only  
R Only  
R/W  
Interrupt Mask Register  
IMR  
R/W  
Interrupt Clear Register  
ICR  
R Only  
R/W  
Reference Failure Status Register  
Reference Mask Register  
RSR  
RMR  
R Only  
R/W  
Reference Frequency Status Register  
Output Jitter Control Register  
RFSR  
OJCR  
Table 15 - Address Map for Registers (A13 = 0)  
46  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
Address  
A13 - A0  
CPU  
Access  
Register  
Name  
Abbreviation  
Reset By  
0100H -  
011FH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R Only  
Stream Input Control Registers 0 - 31  
SICR0 - 31  
SIQFR0 - 31  
SOCR0 - 31  
BRSR0 - 31  
BRLR0 - 31  
BRCR0 - 31  
BRER0 - 31  
Switch/Hardware  
Switch/Hardware  
Switch/Hardware  
Switch/Hardware  
Switch/Hardware  
Switch/Hardware  
Switch/Hardware  
0120H -  
013FH  
Stream Input Quadrant Frame Registers 0 - 31  
Stream Output Control Registers 0 - 31  
BER Receiver Start Registers 0 - 31  
BER Receiver Length Registers 0 - 31  
BER Receiver Control Registers 0 - 31  
BER Receiver Error Registers 0 - 31  
0200H -  
021FH  
0300H -  
031FH  
0320H -  
033FH  
0340H -  
035FH  
0360H -  
037FH  
Table 15 - Address Map for Registers (A13 = 0) (continued)  
47  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
24.0 Detailed Register Description  
External Read/Write Address: 0000H  
Reset Value: 0000H  
15  
0
14  
0
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SLV_  
OPM  
1
OPM  
0
CKi_  
LP  
FPIN  
POS  
CKINP  
FPINP  
CKIN  
1
CKIN  
0
VAR  
EN  
MBPE  
OSB  
MS1  
MS0  
DPLLEN  
Bit  
Name  
Description  
15 - 14  
13  
Unused  
Reserved. In normal functional mode, these bits MUST be set to zero.  
SLV_  
DPLL Enable in Slave Mode (ignored in Master Mode).  
When this bit is low, DPLL is disabled in Slave mode.  
DPLLEN  
When this bit is high and OSC_EN = 1, the DPLL is enabled in Slave mode.  
When SLV_DPLLEN is set in Slave mode, CKo[3:0] and FPo[3:0] are generated from  
CKi and FPi. CKo[5:4] and FPo[5] are locked to the selected input reference (one of  
REF[3:0]). In this mode of operation, the DPLL retains its functionality, including the  
generation of the REF_FAIL[3:0] output signals. See Table 7, “ZL50019 Operating  
Modes” on page 36 for more details.  
12 - 11 OPM1 - 0 Operation Mode.  
These bits are used to set the device in Master/Slave operation. Refer to Table 7,  
“ZL50019 Operating Modes” on page 36 for more details.  
10  
CKi_LP  
CKi and FPi Loopback (Ignored in Slave mode)  
When this bit is low, CKi and FPi are used as input pins.  
When this bit is high, CKi and FPi are internally looped back from CKo2 (16.384 MHz)  
and FPo2 respectively, and CKi pin and FPi pin should be tied low or high externally;  
CKIN1 - 0 (bits 6 - 5) of this register should be programmed to be 00. See Table 7,  
“ZL50019 Operating Modes” on page 36 for more details.  
9
8
FPINPOS Input Frame Pulse (FPi) Position  
When this bit is low, FPi straddles frame boundary (as defined by ST-BUS).  
When this bit is high, FPi starts from frame boundary (as defined by GCI-Bus)  
CKINP  
FPINP  
Clock Input (CKi) Polarity  
When this bit is low, the CKi falling edge aligns with the frame boundary.  
When this bit is high, the CKi rising edge aligns with the frame boundary.  
7
Frame Pulse Input (FPi) Polarity  
When this bit is low, the input frame pulse FPi has the negative frame pulse format.  
When this bit is high, the input frame pulse FPi has the positive frame pulse format.  
6 - 5  
CKIN1 - 0 Input Clock (CKi) and Frame Pulse (FPi) Selection  
CKIN1 - 0  
FPi Active Period  
CKi  
00  
01  
10  
11  
61 ns  
122 ns  
244 ns  
16.384 MHz  
8.192 MHz  
4.096 MHz  
Reserved  
The MODE_4M0 and MODE_4M1 pins, as described in “Pin Description” on page 12,  
should also be set to define the input clock mode.  
Table 16 - Control Register (CR) Bits  
48  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0000H  
Reset Value: 0000H  
15  
0
14  
0
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SLV_  
OPM  
1
OPM  
0
CKi_  
LP  
FPIN  
POS  
CKINP  
FPINP  
CKIN  
1
CKIN  
0
VAR  
EN  
MBPE  
OSB  
MS1  
MS0  
DPLLEN  
Bit  
Name  
Description  
4
VAREN  
Variable Delay Mode Enable  
When this bit is low, the variable delay mode is disabled on a device-wide basis.  
When this bit is high, the variable delay mode is enabled on a device-wide basis.  
3
2
MBPE  
Memory Block Programming Enable  
When this bit is high, the connection memory block programming mode is enabled to  
program the connection memory. When it is low, the memory block programming mode is  
disabled.  
OSB  
Output Stand By Bit:  
This bit enables the STio0 - 31 and the STOHZ0 -15 serial outputs. The following table  
describes the HiZ control of the serial data outputs:  
RESET SRSTSW ODE  
OSB  
Bit  
STio0 - 31  
STOHZ0 - 15  
Pin  
(in SRR)  
Pin  
0
1
1
1
1
X
1
0
0
0
X
X
0
1
1
X
X
X
0
HiZ  
HiZ  
HiZ  
HiZ  
Driven High  
Driven High  
Driven High  
Driven High  
1
Active  
(Controlled by CM)  
Active  
(Controlled by CM)  
Note: Unused output streams are tristated (STio = HiZ, STOHZ = Driven High). Refer to  
SOCR0 - 31 (bit 2 - 0).  
1 - 0  
MS1 - 0  
Memory Select Bits  
These two bits are used to select connection memory low, connection high or data mem-  
ory for access by CPU:  
MS1 - 0  
Memory Selection  
00  
01  
10  
11  
Connection Memory Low Read/Write  
Connection Memory High Read/Write  
Data Memory Read  
Reserved  
Table 16 - Control Register (CR) Bits (continued)  
49  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0001H  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
STIO_  
BDH  
BDL  
RBER  
EN  
TBER  
EN  
BPD  
2
BPD  
1
BPD  
0
MBPS  
PD_EN  
Bit  
Name  
Description  
Reserved. In normal functional mode, these bits MUST be set to zero.  
15 - 9  
8
Unused  
STIO_PD_ STio Pull-down Enable  
EN  
When this bit is low, the pull-down resistors on all STio pads will be disabled.  
When this bit is high, the pull-down resistors on all STio pads will be enabled.  
7
BDH  
Bi-directional Control for Streams 16-31  
BDH  
STio16 - 31 Operation  
0
normal operation:  
STi16-31 are inputs  
STio16-31 are outputs  
1
bi-directional operation:  
STi16-31 tied low internally  
STio16-31 are bi-directional  
6
BDL  
Bi-directional Control for Streams 0-15  
BDL  
STio0 - 15 Operation  
0
normal operation:  
STi0-15 are inputs  
STio0-15 are outputs  
1
bi-directional operation:  
STi0-15 tied low internally  
STio0-15 are bi-directional  
5
4
RBEREN  
TBEREN  
BPD2 - 0  
PRBS Receiver Enable  
When this bit is low, all the BER receivers are disabled. To enable any BER receivers,  
this bit MUST be high.  
PRBS Transmitter Enable  
When this bit is low, all the BER transmitters are disabled. To enable any BER  
transmitters, this bit MUST be high.  
3 - 1  
Block Programming Data  
These bits refer to the value to be loaded into the connection memory, whenever the  
memory block programming feature is activated. After the MBPE bit in the Control  
Register is set to high and the MBPS bit in this register is set to high, the contents of  
the bits BPD2 - 0 are loaded into bits 2 - 0 of the Connection Memory Low. Bits 15 - 3  
of the Connection Memory Low and bits 15 - 0 of Connection Memory High are  
zeroed.  
Table 17 - Internal Mode Selection Register (IMS) Bits  
50  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0001H  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
STIO_  
BDH  
BDL  
RBER  
EN  
TBER  
EN  
BPD  
2
BPD  
1
BPD  
0
MBPS  
PD_EN  
Bit  
Name  
Description  
Memory Block Programming Start:  
0
MBPS  
A zero to one transition of this bit starts the memory block programming function. The  
MBPS and BPD2 - 0 bits in this register must be defined in the same write operation.  
Once the MBPE bit in the Control Register is set to high, the device requires two  
frames to complete the block programming. After the programming function has fin-  
ished, the MBPS bit returns to low, indicating the operation is completed. When MBPS  
is high, MBPS or MBPE can be set to low to abort the programming operation.  
Whenever the microprocessor writes a one to the MBPS bit, the block programming  
function is started. As long as this bit is high, the user must maintain the same logical  
value to the other bits in this register to avoid any change in the device setting.  
Table 17 - Internal Mode Selection Register (IMS) Bits (continued)  
External Read/Write Address: 0002H  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
SRST  
SW  
SRST  
DPLL  
Bit  
Name  
Description  
15 - 2  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
1
0
SRSTSW  
Software Reset Bit for Switch  
When this bit is low, switching blocks are in normal operation. When this bit is high,  
switching blocks are in software reset state. Refer to Table 15, “Address Map for  
Registers (A13 = 0)” on page 46 for details regarding which registers are affected.  
SRSTDPLL Software Reset Bit for DPLL  
When this bit is low, the DPLL block is in normal operation. When this bit is high, the  
DPLL block is in software reset state. Refer to Table 15, “Address Map for Registers  
(A13 = 0)” on page 46 for details regarding which registers are affected.  
Table 18 - Software Reset Register (SRR) Bits  
51  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0003H  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
FPOF2  
EN  
FPOF1  
EN  
FPOF0  
EN  
CKO5  
EN  
CKO4  
EN  
CKO  
FPO3  
EN  
CKO  
FPO2  
EN  
CKO  
FPO1  
EN  
CKO  
FPO0  
EN  
Bit  
Name  
Description  
15 - 9  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
8
7
6
5
FPOF2EN  
FPOF1EN  
FPOF0EN  
CKO5EN  
FPo_OFF2/FPo5 Enable  
When this bit is high, output frame pulse FPo_OFF2/FPo5 is enabled.  
When this bit is low, output frame pulse FPo_OFF2/FPo5 is in high impedance state.  
FPo_OFF1 Enable  
When this bit is high, output frame pulse FPo_OFF1 is enabled.  
When this bit is low, output frame pulse FPo_OFF1 is in high impedance state.  
FPo_OFF0 Enable  
When this bit is high, output frame pulse FPo_OFF0 is enabled.  
When this bit is low, output frame pulse FPo_OFF0 is in high impedance state.  
CKo5 Enable  
When this bit is high, output clock CKo5 is enabled.  
When this bit is low, output clock CKo5 is in high impedance state.  
CKo5 is available in Master mode or in Slave mode with SLV_DPLLEN set.  
4
CKO4EN  
CKo4 Enable  
When this bit is high, output clock CKo4 is enabled.  
When this bit is low, output clock CKo4 is in high impedance state.  
CKo4 is available in Master mode or in Slave mode with SLV_DPLLEN set.  
3
2
1
0
CKOFPO3 CKo3 and FPo3 Enable  
When this bit is high, output clock CKo3 and output frame pulse FPo3 are enabled.  
When this bit is low, CKo3 and FPo3 are in high impedance state.  
EN  
CKOFPO2 CKo2 and FPo2 Enable  
When this bit is high, output clock CKo2 and output frame pulse FPo2 are enabled.  
When this bit is low, CKo2 and FPo2 are in high impedance state.  
EN  
CKOFPO1 CKo1 and FPo1 Enable  
When this bit is high, output clock CKo1 and output frame pulse FPo1 are enabled.  
When this bit is low, CKo1 and FPo1 are in high impedance state.  
EN  
CKOFPO0 CKo0 and FPo0 Enable  
When this bit is high, output clock CKo0 and output frame pulse FPo0 are enabled.  
When this bit is low, CKo0 and FPo0 are in high impedance state.  
EN  
Table 19 - Output Clock and Frame Pulse Control Register (OCFCR) Bits  
52  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0004H  
Reset Value: 0000H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CKO4  
P
CKO4  
SEL  
CKO  
FPO3  
SEL1  
CKO  
FPO3  
SEL0  
CKO3  
P
FPO3  
P
FPO3  
POS  
CKO2  
P
FPO2  
P
FPO2  
POS  
CKO1  
P
FPO1  
P
FPO1  
POS  
CKO0  
P
FPO0  
P
FPO0  
POS  
Bit  
Name  
Description  
Output Clock (CKo4) Polarity Selection  
15  
CKO4P  
When this bit is low, the output clock CKo4 falling edge aligns with the frame  
boundary. When this bit is high, the output clock CKo4 rising edge aligns with the  
frame boundary.  
CKo4 is available in Master mode or in Slave mode with SLV_DPLLEN set.  
14  
CKO4SEL  
Output Clock (CKo4) Frequency Selection  
When this bit is low, the output clock CKo4 is 2.048 MHz.  
When this bit is high, the output clock CKo4 is 1.544 MHz.  
CKo4 is available in Master mode or in Slave mode with SLV_DPLLEN set.  
13 - 12  
CKOFPO3 Output Clock (CKo3) Frequency and Output Frame Pulse (FPo3) Pulse Cycle  
SEL1 - 0 Selection  
CKOFPO3  
FPo3  
CKo3  
SEL1 - 0  
00  
01  
10  
11  
244 ns  
122 ns  
61 ns  
4.096 MHz  
8.192 MHz  
16.384 MHz  
32.768 MHz  
30 ns  
11  
CKO3P  
Output Clock (CKo3) Polarity Selection  
When this bit is low, the output clock CKo3 falling edge aligns with the frame  
boundary. When this bit is high, the output clock CKo3 rising edge aligns with the  
frame boundary.  
10  
9
FPO3P  
FPO3POS  
CKO2P  
Output Frame Pulse (FPo3) Polarity Selection  
When this bit is low, the output frame pulse FPo3 has the negative frame pulse format.  
When this bit is high, the output frame pulse FPo3 has the positive frame pulse format.  
Output Frame Pulse (FPo3) Position  
When this bit is low, FPo3 straddles frame boundary (as defined by ST-BUS).  
When this bit is high, FPo3 starts from frame boundary (as defined by GCI-Bus).  
8
Output Clock (CKo2) Polarity Selection  
When this bit is low, the output clock CKo2 falling edge aligns with the frame  
boundary. When this bit is high, the output clock CKo2 rising edge aligns with the  
frame boundary.  
7
FPO2P  
Output Frame Pulse (FPo2) Polarity Selection  
When this bit is low, the output frame pulse FPo2 has the negative frame pulse format.  
When this bit is high, the output frame pulse FPo2 has the positive frame pulse format.  
Table 20 - Output Clock and Frame Pulse Selection Register (OCFSR) Bits  
53  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0004H  
Reset Value: 0000H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CKO4  
P
CKO4  
SEL  
CKO  
FPO3  
SEL1  
CKO  
FPO3  
SEL0  
CKO3  
P
FPO3  
P
FPO3  
POS  
CKO2  
P
FPO2  
P
FPO2  
POS  
CKO1  
P
FPO1  
P
FPO1  
POS  
CKO0  
P
FPO0  
P
FPO0  
POS  
Bit  
Name  
Description  
6
FPO2POS  
Output Frame Pulse (FPo2) Position  
When this bit is low, FPo2 straddles frame boundary (as defined by ST-BUS).  
When this bit is high, FPo2 starts from frame boundary (as defined by GCI-Bus).  
5
CKO1P  
Output Clock (CKo1) Polarity Selection  
When this bit is low, the output clock CKo1 falling edge aligns with the frame  
boundary. When this bit is high, the output clock CKo1 rising edge aligns with the  
frame boundary.  
4
3
2
FPO1P  
FPO1POS  
CKO0P  
Output Frame Pulse (FPo1) Polarity Selection  
When this bit is low, the output frame pulse FPo1 has the negative frame pulse format.  
When this bit is high, the output frame pulse FPo1 has the positive frame pulse format.  
Output Frame Pulse (FPo1) Position  
When this bit is low, FPo1 straddles frame boundary (as defined by ST-BUS).  
When this bit is high, FPo1 starts from frame boundary (as defined by GCI-Bus).  
Output Clock (CKo0) Polarity Selection  
When this bit is low, the output clock CKo0 falling edge aligns with the frame  
boundary. When this bit is high, the output clock CKo0 rising edge aligns with the  
frame boundary.  
1
0
FPO0P  
Output Frame Pulse (FPo0) Polarity Selection  
When this bit is low, the output frame pulse FPo0 has the negative frame pulse format.  
When this bit is high, the output frame pulse FPo0 has the positive frame pulse format.  
FPO0POS  
Output Frame Pulse (FPo0) Position  
When this bit is low, FPo0 straddles frame boundary (as defined by ST-BUS).  
When this bit is high, FPo0 starts from frame boundary (as defined by GCI-Bus).  
Note: In Divided Slave modes, CKo3 - 1 cannot exceed frequency of CKi.  
Note: CKo[5:4] are available in Master mode or in Slave mode with SLV_DPLLEN set.  
Table 20 - Output Clock and Frame Pulse Selection Register (OCFSR) Bits (continued)  
54  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0005H - 0007H  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
9
8
7
6
5
4
3
2
1
0
FP19  
EN  
FOF[n]  
OFF7  
FOF[n]  
OFF6  
FOF[n]  
OFF5  
FOF[n]  
OFF4  
FOF[n]  
OFF3  
FOF[n]  
OFF2  
FOF[n]  
OFF1  
FOF[n]  
OFF0  
FOF[n]  
C1  
FOF[n]  
C0  
Bit  
Name  
Description  
15 - 11  
10  
Unused  
FP19EN  
Reserved. In normal functional mode, these bits MUST be set to zero.  
19.44 MHz Frame Pulse Output Enable. (For FPo_OFF2 only)  
This bit is a reserved bit for FPo_OFF0 and FPo_OFF1, and MUST be set to zero.  
When this bit is high, FPo_OFF2 is negative frame pulse output corresponding to  
19.44 MHz without channel offset.  
When this bit is low, FPo_OFF2 is output frame pulse with channel offset.  
FOF[n]OFF7 - 0  
FOF[n]C1 - 0  
9 - 2  
1 - 0  
FPo_OFF[n] Channel Offset  
The binary value of these bits refers to the channel offset from original frame bound-  
ary. Permitted channel offset values depend on bits 1-0 of this register.  
FPo_OFF[n] Control bits  
FOF[n]OFF7 - 0  
FOF[n]C  
1-0  
Data Rate  
(Mbps)  
FPo_OFF[n]  
Polarity  
Control  
Position  
Control  
Permitted  
Pulse Cycle Width  
Channel Offset  
00  
01  
10  
2.048  
4.096  
8.192  
one 4.096 MHz clock  
one 8.192 MHz clock  
one 16.384 MHz  
clock  
0 - 31  
0 - 63  
0 - 127  
FPO0P FPO0POS  
FPO1P FPO1POS  
FPO2P FPO2POS  
11  
16.384  
one 16.384 MHz  
clock  
0 - 255  
FPO2P FPO2POS  
Note: [n] denotes output offset frame pulse from 0 to 2.  
Table 21 - FPo_OFF[n] Register (FPo_OFF[n]) Bits  
55  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read Address: 0010H  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
OUT  
ERR  
IN  
ERR  
Bit  
Name  
Description  
15 - 2  
Unused  
Reserved  
In normal functional mode, these bits are zero.  
1
0
OUTERR  
INERR  
Output Error (Read Only)  
This bit is set high when the total number of output channels is programmed to be  
more than the maximum capacity of 2048, in which case the output channels beyond  
the maximum capacity should be disabled.  
This bit will be cleared automatically after programming is corrected.  
Input Error (Read Only)  
This bit is set high when the total number of input channels is programmed to be more  
than the maximum capacity of 2048, in which case the input channels beyond the  
maximum capacity should be disabled.This bit will be cleared automatically after pro-  
gramming is corrected.  
Table 22 - Internal Flag Register (IFR) Bits - Read Only  
External Read Address: 00011H  
Reset Value: 0000H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BER  
F15  
BER  
F14  
BER  
F13  
BER  
F12  
BER  
F11  
BER  
F10  
BER  
F9  
BER  
F8  
BER  
F7  
BER  
F6  
BER  
F5  
BER  
F4  
BER  
F3  
BER  
F2  
BER  
F1  
BER  
F0  
Bit  
15 - 0  
Name  
Description  
BERF[n]  
BER Error Flag[n]:  
If BERF[n] is high, it indicates that BER Receiver Error Register [n] (BRER[n]) is not  
zero.  
If BERF[n] is low, it indicates that BER Receiver Error Register [n] (BRER[n]) is zero.  
Note: [n] denotes input stream from 0 - 15.  
Table 23 - BER Error Flag Register 0 (BERFR0) Bits - Read Only  
56  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 00012H  
Reset Value: 0000H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BER  
F31  
BER  
F30  
BER  
F29  
BER  
F28  
BER  
F27  
BER  
F26  
BER  
F25  
BER  
F24  
BER  
F23  
BER  
F22  
BER  
F21  
BER  
F20  
BER  
F19  
BER  
F18  
BER  
F17  
BER  
F16  
Bit  
15 - 0  
Name  
Description  
BERF[n]  
BER Error Flag[n]:  
If BERF[n] is high, it indicates that BER Receiver Error Register [n] (BRER[n]) is not  
zero.  
If BERF[n] is low, it indicates that BER Receiver Error Register [n] (BRER[n]) is zero.  
Note: [n] denotes input stream from 16 - 31.  
Table 24 - BER Error Flag Register 1 (BERFR1) Bits - Read Only  
External Read Address: 00013H  
Reset Value: 0000H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BER  
L15  
BER  
L14  
BER  
L13  
BER  
L12  
BER  
L11  
BER  
L10  
BER  
L9  
BER  
L8  
BER  
L7  
BER  
L6  
BER  
L5  
BER  
L4  
BER  
L3  
BER  
L2  
BER  
L1  
BER  
L0  
Bit  
15 - 0  
Name  
Description  
BERL[n]  
BER Receiver Lock[n]  
If BERL[n] is high, it indicates that BER Receiver of STi[n] is locked.  
If BERL[n] is low, it indicates that BER Receiver of STi[n] is not locked.  
Note: [n] denotes input stream from 0 - 15.  
Table 25 - BER Receiver Lock Register 0 (BERLR0) Bits - Read Only  
57  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read Address: 00014H  
Reset Value: 0000H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BER  
L31  
BER  
L30  
BER  
L29  
BER  
L28  
BER  
L27  
BER  
L26  
BER  
L25  
BER  
L24  
BER  
L23  
BER  
L22  
BER  
L21  
BER  
L20  
BER  
L19  
BER  
L18  
BER  
L17  
BER  
L16  
Bit  
15 - 0  
Name  
Description  
BERL[n]  
BER Receiver Lock[n]:  
If BERL[n] is high, it indicates that BER Receiver of STi[n] is locked.  
If BERL[n] is low, it indicates that BER Receiver of STi[n] is not locked.  
Note: [n] denotes input stream from 16 - 31.  
Table 26 - BER Receiver Lock Register 1 (BERLR1) Bits - Read Only  
External Read/Write Address: 0040H  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
0
3
0
2
0
1
0
ST4_  
LIM  
RFRE  
DPLL  
_IRM  
Bit  
Name  
Description  
15-6  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
5
ST4_LIM Stratum 4E Limits Select Bit  
When this bit is high, the stratum 4E limits are used for reference monitoring (i.e.,  
+/-64.713 ppm and +/-82.487 ppm over 10 seconds).When this bit is low, more relaxed  
Relaxed Stratum 4E limits are used for reference monitoring (i.e., +/-240 ppm and  
+/-250 ppm over 10 seconds). This is used in applications where a low quality clock  
(+/-100 ppm) is used as a reference.  
4-2  
1
Unused  
RFRE  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
Reference Frequency Register Enable  
When this bit is low, the reference frequency value used in the DPLL comes from  
appropriate reference frequency detector. When this bit is high, the reference frequency  
value comes from Reference Frequency Register (RFR).  
0
DPLL_  
IRM  
DPLL Internal Reset Mode  
When this bit is low, the DPLL module is in the operational state. When this bit is high,  
the DPLL module is in the power saving mode. Registers are not reset and are still  
accessible in the power saving mode.  
Table 27 - DPLL Control Register (DPLLCR) Bits  
58  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0041H  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
R3F2  
R3F1  
R3F0  
R2F2  
R2F1  
R2F0  
R1F2  
R1F1  
R1F0  
R0F2  
R0F1  
R0F0  
Bit  
Name  
Description  
15-12  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
11 - 9  
R3F2 - 0  
Reference 3 Frequency Bits  
When the RFRE bit of the DPLLCR register is high, these bits are used to select the  
REF3 input frequency. When the RFRE bit is low, these bits are ignored.  
R3F2  
R3F1  
R3F0  
REF 3 Input Frequency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8 kHz  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44 MHz  
Reserved  
8 - 6  
R2F2 - 0  
Reference 2 Frequency Bits: When the RFRE bit of the DPLLCR register is high, these  
bits are used to select the REF2 input frequency. When the RFRE bit is low, these bits  
are ignored.  
R2F2  
R2F1  
R2F0  
REF 2 Input Frequency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8 kHz  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44 MHz  
Reserved  
Table 28 - Reference Frequency Register (RFR) Bits  
59  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0041H  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
R3F2  
R3F1  
R3F0  
R2F2  
R2F1  
R2F0  
R1F2  
R1F1  
R1F0  
R0F2  
R0F1  
R0F0  
Bit  
Name  
Description  
5 - 3  
R1F2 - 0  
Reference 1 Frequency Bits  
When the RFRE bit of the DPLLCR register is high, these bits are used to select the  
REF1 input frequency. When the RFRE bit is low, these bits are ignored.  
R1F2  
R1F1  
R1F0  
REF 1 Input Frequency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8 kHz  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44 MHz  
Reserved  
2 - 0  
R0F2 - 0  
Reference 0 Frequency Bits  
When the RFRE bit of the DPLLCR register is high, these bits are used to select the  
REF0 input frequency. When the RFRE bit is low, these bits are ignored.  
R0F2  
R0F1  
R0F0  
REF 0 Input Frequency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8 kHz  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44 MHz  
Reserved  
Table 28 - Reference Frequency Register (RFR) Bits (continued)  
60  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0042H  
Reset Value: 16B1H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CFN  
15  
CFN  
14  
CFN  
13  
CFN  
12  
CFN  
11  
CFN  
10  
CFN  
9
CFN  
8
CFN  
7
CFN  
6
CFN  
5
CFN  
4
CFN  
3
CFN  
2
CFN  
1
CFN  
0
Bit  
Name  
Description  
15 - 0  
CFN15 - 0 Center Frequency Number (CFN) Lower 16 Bits: The total binary value of these bits  
and the CFRU register bits defines the output center frequency number according to the  
following formula:  
CFN  
-----------  
fOUT =  
× fMCLK  
226  
where, fOUT is desired output center frequency, while fMCLK is frequency of DPLL master  
clock. For given master clock frequency of 100 MHz, and desired output center fre-  
quency of 65.536 MHz, the CFN has the value of:  
26  
26  
65.536MHz  
-------------------------------  
CFN = 2  
×
= 2 × 0.65536 = 43980465 = 29F16B1H  
100MHz  
The register contents should be changed only if compensation for input oscillator (or  
crystal) frequency offset is required.  
e.g., if master clock frequency is off by +20 ppm (100.002 MHz -> 5 times multiplied c20i  
of 20.0004 MHz), the CFN should be programmed to be:  
26  
26  
65.536MHz  
----------------------------------  
CFN = 2  
×
= 2 × 0.65534689 = 43979585 = 29F1341H  
100.002MHz  
The default value of this register SHOULD NOT be changed in any other circumstances.  
Table 29 - Centre Frequency Register - Lower 16 Bits (CFRL)  
External Read/Write Address: 0043H  
Reset Value: 029FH  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
CFN  
25  
CFN  
24  
CFN  
23  
CFN  
22  
CFN  
21  
CFN  
20  
CFN  
19  
CFN  
18  
CFN  
17  
CFN  
16  
Bit  
Name  
Description  
Reserved. In normal functional mode, these bits MUST be set to zero.  
15 - 10  
9 - 0  
Unused  
CFN25 - 16 Center Frequency Number (CFN) Upper 10 Bits: The total binary value of these bits  
and the CFRL register bits represents the center frequency number (CFN) explained  
under CFRL register bits explanation.  
The default value of this register should be changed only if compensation for input oscil-  
lator (or crystal) frequency offset is required, and SHOULD NOT be changed in any other  
circumstances.  
Table 30 - Centre Frequency Register - Upper 10 Bits (CFRU)  
61  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read Only Address: 0045H  
15  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FOF  
14  
FOF  
13  
FOF  
12  
FOF  
11  
FOF  
10  
FOF  
9
FOF  
8
FOF  
7
FOF  
6
FOF  
5
FOF  
4
FOF  
3
FOF  
2
FOF  
1
FOF  
0
Bit  
Name  
Unused  
Description  
Reserved. In normal functional mode, this bit is zero.  
15  
14 - 0  
FOF14 - 0 Frequency Offset Bits: The binary value of these bits represents the current deviation  
of the DPLL output from its center frequency. Defined in same units as CFN in the 2's  
complement format.  
Note 1: Output frequency offset, relative to master clock, will be represented as the following:  
+10 ppm: CFN x 0.00001 = 440 = 01B8H  
-10 ppm: CFN x (-0.00001) = -440 = 7E48H  
Table 31 - Frequency Offset Register (FOR) Bits - Read Only  
External Read/Write Address: 0047H  
Reset Value: 000FH  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LDT  
15  
LDT  
14  
LDT  
13  
LDT  
12  
LDT  
11  
LDT  
10  
LDT  
9
LDT  
8
LDT  
7
LDT  
6
LDT  
5
LDT  
4
LDT  
3
LDT  
2
LDT  
1
LDT  
0
Bit  
Name  
LDT15 - 0 Lock Detect Threshold Bits  
Description  
15 - 0  
The binary value of these bits defines the upper limit of the absolute phase from the  
phase detector output for lock detection.  
When the value of the absolute phase is less than or equal to LDT for duration of time  
defined by the LDIR register, the DPLL locks.  
When the value of the absolute phase is greater than LDT for duration of time defined by  
the LDIR register divided by 256, the DPLL does not lock.  
Note: LDT should be calculated as per the maximum expected amplitude of jitter on the active input reference  
using the following formula:  
LDT = MAX_EXP_JITTER (ms) x 2  
1.52 (ms)  
Example: If maximum expected jitter amplitude on 2.048 MHz reference is 10UI (i.e., 10 x 488.2 ns = 4882 ns)  
(assuming the jitter frequency where DPLL attenuation is big), the LDT should be programmed to be (4882/15.2)  
x 2 = 642 = 0282H  
Table 32 - Lock Detector Threshold Register (LDTR) Bits  
62  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0048H  
Reset Value: 2C00H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LDI  
15  
LDI  
14  
LDI  
13  
LDI  
12  
LDI  
11  
LDI  
10  
LDI  
9
LDI  
8
LDI  
7
LDI  
6
LDI  
5
LDI  
4
LDI  
3
LDI  
2
LDI  
1
LDI  
0
Bit  
Name  
Description  
15 - 0  
LDI15 - 0 Lock Detector Interval Bits  
The binary value of these bits defines the time interval that the output phase detector  
must be below the lock detect threshold to declare lock. Unsigned representation of the  
LDI bits is defined in 4 ms intervals.  
Table 33 - Lock Detector Interval Register (LDIR) Bits  
External Read/Write Address: 0049H  
Reset Value: 099FH (see Note)  
15  
0
14  
0
13  
0
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SRL  
12  
SRL  
11  
SRL  
10  
SRL  
9
SRL  
8
SRL  
7
SRL  
6
SRL  
5
SRL  
4
SRL  
3
SRL  
2
SRL  
1
SRL  
0
Bit  
Name  
Description  
15 - 13  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
12 - 0  
SRL12 - 0 Slew Rate Limit Bits  
The binary value of these bits defines the maximum rate of DPLL phase change (phase  
slope), where the phase represents difference between the input reference and output  
feedback clock. Defined in same units as CFN (unsigned).  
Note: The default value is ±56 ppm (’h099F/CFN = 56 ppm).  
Table 34 - Slew Rate Limit Register (SRLR) Bits  
External Read/Write Address: 004BH  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
1
0
MTR  
PRS  
1
PRS  
0
PMS  
2
PMS  
1
PMS  
0
FDM  
1
FDM  
0
Bit  
Name  
Description  
15 - 8  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
Table 35 - Reference Change Control Register (RCCR) Bits  
63  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 004BH  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
1
0
MTR  
PRS  
1
PRS  
0
PMS  
2
PMS  
1
PMS  
0
FDM  
1
FDM  
0
Bit  
Name  
Description  
7
MTR  
MTIE Reset  
When this bit is low, the MTIE circuit applies a phase offset between the reference input  
clock and the DPLL output clock and the phase offset value is maintained. When this bit  
is high, MTIE circuit is in its reset state and the phase offset value is reset to zero,  
causing alignment of the DPLL output clocks to nearest edge of the selected input  
reference.  
6 - 5  
PRS1 - 0 Preferred Reference Selection Bits  
These bits select the preferred reference from one of the input references.  
PRS1  
PRS0  
Preferred Reference Selection  
0
0
1
1
0
1
0
1
REF0  
REF1  
REF2  
REF3  
4 - 2  
PMS2 - 0 Preference Mode Selection Bits  
These bits select one of the preference modes:  
PMS2  
PMS1  
PMS0  
Preference Mode  
No Preference  
Preference as per the setting  
of the PRS1 - 0 bits  
0
0
0
0
0
1
0
0
1
1
1
1
0
0
0
1
0
1
Force REF0  
Force REF1  
Force REF2  
Force REF3  
Reserved  
110 - 111  
1 - 0  
FDM1 - 0 Force DPLL Mode  
These bits force the DPLL into one of the valid operation modes.  
FDM1  
FDM0  
Operation Mode  
0
0
1
1
0
1
0
1
Automatic  
Normal  
Holdover  
Freerun  
Table 35 - Reference Change Control Register (RCCR) Bits (continued)  
64  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read Only Address: 004CH  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
SLM  
LST  
RFR2  
RFR1  
RFR0  
RES1  
RES0  
DPM1  
DPM0  
Bit  
Name  
Description  
15 - 9  
Unused  
Reserved  
In normal functional mode, these bits are zero.  
8
7
SLM  
LST  
Slew Rate Limiter Status Bit  
If the device sets this bit to high, the DPLL phase difference between the input and output  
clocks is changing at the slew rate limit defined in the Slew Rate Limit Register (SRLR).  
Lock Status Bit  
If the device sets this bit to high, while the LDTR and LDIR registers are programmed  
properly, the DPLL output clocks are locked to the selected input reference.  
If this bit is low, the DPLL output clocks are not yet locked to the selected input reference.  
6 - 4  
RFR2 - 0 Reference Frequency Indicator Bits  
These bits represent the frequency of the selected reference indicated by the reference  
bits (RES1 - 0) in this register.  
Frequency of the Selected  
RFR2  
RFR1  
RFR0  
Reference  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8 kHz  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44MHz  
Reserved  
3 - 2  
RES1 - 0 Reference Select Indicator Bits: These bits indicate which one of the four reference  
inputs (REF0 - 3 pins) is being selected by the device.  
RES1  
RES0  
Input Reference in use  
0
0
1
1
0
1
0
1
REF 0  
REF 1  
REF 2  
REF 3  
Table 36 - Reference Change Status Register (RCSR) Bits - Read Only  
65  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read Only Address: 004CH  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
SLM  
LST  
RFR2  
RFR1  
RFR0  
RES1  
RES0  
DPM1  
DPM0  
Bit  
Name  
Description  
1 - 0  
DPM1 - 0 DPLL Mode Bits  
These bits indicate the DPLL operation mode.  
DPM1  
DPM0  
DPLL Operation Mode  
0
0
1
1
0
1
0
1
MTIE  
Normal  
Holdover  
Freerun  
Table 36 - Reference Change Status Register (RCSR) Bits - Read Only (continued)  
External Read Only Address: 0066H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
0
LCI  
RCI  
HOI  
Bit  
Name  
Description  
15 - 4  
Unused  
Reserved  
In normal functional mode, this bit is zero.  
3
2
1
LCI  
RCI  
HOI  
Lock Change Interrupt Bit  
If the device sets this bit to high, the device lock status has changed.  
Reference Change Interrupt Bit  
If the device sets this bit to high, the selected reference has changed.  
Holdover Interrupt Bit  
If the device sets this bit to high, the device has entered or recovered from the  
holdover/MTIE mode.  
0
Unused  
Reserved  
In normal functional mode, this bit is zero.  
Note 1: If any of these bits are set, the interrupt output will become active unless the Interrupt Mask Register (IMR) has a high  
value for that particular bit.  
Note 2: Any of these bits can be cleared by setting the appropriate bit in the Interrupt Clear Register.  
Table 37 - Interrupt Register (IR) Bits - Read Only  
66  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0067H  
Reset Value: 000FH  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
LIM  
RIM  
HIM  
1
Bit  
Name  
Description  
15 - 4  
Unused Reserved  
In normal functional mode, these bits MUST be set to zero.  
3
2
1
0
LIM  
RIM  
HIM  
Lock Interrupt Mask Bit  
When this bit is high, it masks the lock status change interrupt.  
Reference Change Interrupt Mask Bit  
When this bit is high, it masks the reference change interrupt.  
Holdover Interrupt Mask Bit  
When this bit is high, it masks the holdover entry/exit interrupt.  
Unused Reserved  
In normal functional mode, this bit MUST be set to one.  
Table 38 - Interrupt Mask Register (IMR) Bits  
External Read/Write Address: 0068H  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
1
ICB  
3
ICB  
2
ICB  
1
Bit  
Name  
Description  
15 - 4  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
3 - 1  
0
ICB3 - 1  
Unused  
Interrupt Clear Bits  
Writing a “1” to any bit in this register will clear the corresponding bit in the Interrupt  
Register (IR). The Interrupt Clear Register is self-clearing, i.e. once it has completed  
its action, the ICR register bit returns to 0.  
Reserved  
In normal functional mode, this bit MUST be set to one.  
Table 39 - Interrupt Clear Register (ICR) Bits  
67  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read Only Address: 0069H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R3  
R3  
R3  
FL  
R3  
FU  
R2  
R2  
R2  
FL  
R2  
FU  
R1  
R1  
R1  
FL  
R1  
FU  
R0  
R0  
R0  
FL  
R0  
FU  
FML  
FMU  
FML  
FMU  
FML  
FMU  
FML  
FMU  
Bit  
Name  
Description  
15  
14  
13  
12  
11  
10  
9
R3FML  
Reference 3 Multi-period Lower Limit Fail Bit  
f the device sets this bit to high, the input REF3 fails the multi-period lower limit check.  
(See Table 11, “Multi-Period Hysteresis Limits” on page 41)  
R3FMU  
R3FL  
Reference 3 Multi-period Upper Limit Fail Bit  
If the device sets this bit to high, the input REF3 fails the multi-period upper limit  
check. (See Table 11, “Multi-Period Hysteresis Limits” on page 41)  
Reference 3 Single Period Lower Limit Fail Bit  
If the device sets this bit to high, the input REF3 fails the single-period lower limit  
check. (See Table 10, “Values for Single Period Limits” on page 40)  
R3FU  
Reference 3 Single Period Upper Limit Fail Bit  
If the device sets this bit to high, the input REF3 fails the single-period upper limit  
check. (See Table 10, “Values for Single Period Limits” on page 40)  
R2FML  
R2FMU  
R2FL  
Reference 2 Multi-period Lower Limit Fail Bit  
If the device sets this bit to high, the input REF2 fails the multi-period lower limit check.  
(See Table 11, “Multi-Period Hysteresis Limits” on page 41)  
Reference 2 Multi-period Upper Limit Fail Bit  
If the device sets this bit to high, the input REF2 fails the multi-period upper limit  
check. (See Table 11, “Multi-Period Hysteresis Limits” on page 41)  
Reference 2 Single Period Lower Limit Fail Bit  
If the device sets this bit to high, the input REF2 fails the single-period lower limit  
check. (See Table 10, “Values for Single Period Limits” on page 40)  
8
R2FU  
Reference 2 Single Period Upper Limit Fail Bit  
If the device sets this bit to high, the input REF2 fails the single-period upper limit  
check. (See Table 10, “Values for Single Period Limits” on page 40)  
7
R1FML  
R1FMU  
R1FL  
Reference 1 Multi-period Lower Limit Fail Bit  
If the device sets this bit to high, the input REF1 fails the multi-period lower limit check.  
(See Table 11, “Multi-Period Hysteresis Limits” on page 41)  
6
Reference 1 Multi-period Upper Limit Fail Bit  
If the device sets this bit to high, the input REF1 fails the multi-period upper limit  
check. (See Table 11, “Multi-Period Hysteresis Limits” on page 41)  
5
Reference 1 Single Period Lower Limit Fail Bit  
If the device sets this bit to high, the input REF1 fails the single-period lower limit  
check. (See Table 10, “Values for Single Period Limits” on page 40)  
4
R1FU  
Reference 1 Single Period Upper Limit Fail Bit  
If the device sets this bit to high, the input REF1 fails the single-period upper limit  
check. (See Table 10, “Values for Single Period Limits” on page 40)  
Table 40 - Reference Failure Status Register (RSR) Bits - Read Only  
68  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read Only Address: 0069H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R3  
R3  
R3  
FL  
R3  
FU  
R2  
R2  
R2  
FL  
R2  
FU  
R1  
R1  
R1  
FL  
R1  
FU  
R0  
R0  
R0  
FL  
R0  
FU  
FML  
FMU  
FML  
FMU  
FML  
FMU  
FML  
FMU  
Bit  
Name  
Description  
3
2
1
0
R0FML  
Reference 0 Multi-period Lower Limit Fail Bit  
If the device sets this bit to high, the input REF0 fails the multi-period lower limit check.  
(See Table 11, “Multi-Period Hysteresis Limits” on page 41)  
R0FMU  
R0FL  
Reference 0 Multi-period Upper Limit Fail Bit  
If the device sets this bit to high, the input REF0 fails the multi-period upper limit  
check. (See Table 11, “Multi-Period Hysteresis Limits” on page 41)  
Reference 0 Single Period Lower Limit Fail Bit  
If the device sets this bit to high, the input REF0 fails the single-period lower limit  
check. (See Table 10, “Values for Single Period Limits” on page 40)  
R0FU  
Reference 0 Single Period Upper Limit Fail Bit  
If the device sets this bit to high, the input REF0 fails the single-period upper limit  
check. (See Table 10, “Values for Single Period Limits” on page 40)  
Table 40 - Reference Failure Status Register (RSR) Bits - Read Only (continued)  
External Read/Write Address: 006AH  
Reset Value: 0000H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R3  
R3  
R3  
ML  
R3  
R2  
R2  
R2  
ML  
R2  
R1  
R1  
R1  
ML  
R1  
R0  
R0  
R0  
ML  
R0  
MML  
MMU  
MU  
MML  
MMU  
MU  
MML  
MMU  
MU  
MML  
MMU  
MU  
Bit  
Name  
Description  
15  
14  
13  
12  
R3MML  
Reference 3 Multi-period Lower Limit Mask Bit  
When this bit is high, it masks the multi-period lower limit check (or forces pass) for  
REF3.  
R3MMU  
R3ML  
Reference 3 Multi-period Upper Limit Mask Bit  
When this bit is high, it masks the multi-period upper limit check (or forces pass) for  
REF3.  
Reference 3 Single-period Lower Limit Mask Bit  
When this bit is high, it masks the single-period lower limit check (or forces pass) for  
REF3.  
R3MU  
Reference 3 Single-period Upper Limit Mask Bit  
When this bit is high, it masks the single-period upper limit check (or forces pass) for  
REF3.  
Table 41 - Reference Mask Register (RMR) Bits  
69  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 006AH  
Reset Value: 0000H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R3  
R3  
R3  
ML  
R3  
R2  
R2  
R2  
ML  
R2  
R1  
R1  
R1  
ML  
R1  
R0  
R0  
R0  
ML  
R0  
MML  
MMU  
MU  
MML  
MMU  
MU  
MML  
MMU  
MU  
MML  
MMU  
MU  
Bit  
Name  
Description  
11  
10  
9
R2MML  
Reference 2 Multi-period Lower Limit Mask Bit  
When this bit is high, it masks the multi-period lower limit check (or forces pass) for  
REF2.  
R2MMU  
R2ML  
Reference 2 Multi-period Upper Limit Mask Bit  
When this bit is high, it masks the multi-period upper limit check (or forces pass) for  
REF2.  
Reference 2 Single-period Lower Limit Mask Bit  
When this bit is high, it masks the single-period lower limit check (or forces pass) for  
REF2.  
8
R2MU  
Reference 2 Single-period Upper Limit Mask Bit  
When this bit is high, it masks the single-period upper limit check (or forces pass) for  
REF2.  
7
R1MML  
R1MMU  
R1ML  
Reference 1 Multi-period Lower Limit Mask Bit  
When this bit is high, it masks the multi-period lower limit check (or forces pass) for  
REF1.  
6
Reference 1 Multi-period Upper Limit Mask Bit  
When this bit is high, it masks the multi-period upper limit check (or forces pass) for  
REF1.  
5
Reference 1 Single-period Lower Limit Mask Bit  
When this bit is high, it masks the single-period lower limit check (or forces pass) for  
REF1.  
4
R1MU  
Reference 1 Single-period Upper Limit Mask Bit  
When this bit is high, it masks the single-period upper limit check (or forces pass) for  
REF1.  
3
R0MML  
R0MMU  
R0ML  
Reference 0 Multi-period Lower Limit Mask Bit  
When this bit is high, it masks the multi-period lower limit check (or forces pass) for  
REF0.  
2
Reference 0 Multi-period Upper Limit Mask Bit  
When this bit is high, it masks the multi-period upper limit check (or forces pass) for  
REF0.  
1
Reference 0 Single-period Lower Limit Mask Bit  
When this bit is high, it masks the single-period lower limit check (or forces pass) for  
REF0.  
Table 41 - Reference Mask Register (RMR) Bits (continued)  
70  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 006AH  
Reset Value: 0000H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R3  
R3  
R3  
ML  
R3  
R2  
R2  
R2  
ML  
R2  
R1  
R1  
R1  
ML  
R1  
R0  
R0  
R0  
ML  
R0  
MML  
MMU  
MU  
MML  
MMU  
MU  
MML  
MMU  
MU  
MML  
MMU  
MU  
Bit  
Name  
Description  
0
R0MU  
Reference 0 Single-period Upper Limit Mask Bit  
When this bit is high, it masks the single-period upper limit check (or forces pass) for  
REF0.  
Table 41 - Reference Mask Register (RMR) Bits (continued)  
External Read Only Address: 006BH  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
R3FS  
2
R3FS  
1
R3FS  
0
R2FS  
2
R2FS  
1
R2FS  
0
R1FS  
2
R1FS  
1
R1FS  
0
R0FS  
2
R0FS  
1
R0FS  
0
Bit  
Name  
Description  
Reserved. In normal functional mode, these bits are zero.  
15 - 12  
11 - 9  
Unused  
R3FS2 - 0 Reference 3 Frequency Status Bits  
These bits report detected frequency of REF3.  
R3FS2  
R3FS1  
R3FS0  
REF3 Frequency Measurement  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8 kHz  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44 MHz  
Reserved  
Table 42 - Reference Frequency Status Register (RFSR) Bits - Read only  
71  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read Only Address: 006BH  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
R3FS  
2
R3FS  
1
R3FS  
0
R2FS  
2
R2FS  
1
R2FS  
0
R1FS  
2
R1FS  
1
R1FS  
0
R0FS  
2
R0FS  
1
R0FS  
0
Bit  
Name  
Description  
8 - 6  
R2FS2 - 0 Reference 2 Frequency Status Bits: These bits report detected frequency of REF2.  
R2FS2  
R2FS1  
R2FS0  
REF 2 Frequency Measurement  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8 kHz  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44 MHz  
Reserved  
5 - 3  
R1FS2 - 0 Reference 1 Frequency Status Bits: These bits report detected frequency of REF1.  
R1FS2  
R1FS1  
R1FS0  
REF1 Frequency Measurement  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8 kHz  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44 MHz  
Reserved  
2 - 0  
R0FS2 - 0 Reference 0 Frequency Status Bits: These bits report detected frequency of REF0.  
R0FS2  
R0FS1  
R0FS0  
REF0 Frequency Measurement  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8 kHz  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
19.44 MHz  
Reserved  
Table 42 - Reference Frequency Status Register (RFSR) Bits - Read only (continued)  
72  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 006CH  
Reset Value: 0002H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
1
0
OJP2  
OJP1  
OJP0  
Bit  
Name  
Description  
15 - 3  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
2 - 0  
OJP2 - 0  
Output Jitter Performance Bits  
These bits are used to control the DPLL output jitter performance with respect to the  
noise received through the output pins. The higher value (unsigned) means more  
filtering, while zero means filter bypass. The default value of 2H gives the best  
performance for most circumstances.  
Table 43 - Output Jitter Control Register (OJCR) Bits  
External Read/Write Address: 0100H - 011FH  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
0
STIN[n]  
BD2  
STIN[n]  
BD1  
STIN[n]  
BD0  
STIN[n]  
SMP1  
STIN[n]  
SMP0  
STIN[n]  
DR3  
STIN[n]  
DR2  
STIN[n]  
DR1  
STIN[n]  
DR0  
Bit  
Name  
Description  
15 - 9  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
8 - 6  
STIN[n]BD2 - 0  
Input Stream[n] Bit Delay Bits.  
The binary value of these bits refers to the number of bits that the input stream  
will be delayed relative to FPi. The maximum value is 7. Zero means no delay.  
Input Data Sampling Point Selection Bits  
5 - 4  
STIN[n]SMP1 - 0  
Sampling Point  
(2.048 Mbps, 4.096 Mbps, 8.192 Mbps  
streams)  
Sampling Point  
(16.384 Mbps  
streams)  
STIN[n]SMP1-0  
00  
01  
10  
11  
3/4 point  
1/4 point  
2/4 point  
4/4 point  
2/4 point  
4/4 point  
Table 44 - Stream Input Control Register 0 - 31 (SICR0 - 31) Bits  
73  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0100H - 011FH  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
0
STIN[n]  
BD2  
STIN[n]  
BD1  
STIN[n]  
BD0  
STIN[n]  
SMP1  
STIN[n]  
SMP0  
STIN[n]  
DR3  
STIN[n]  
DR2  
STIN[n]  
DR1  
STIN[n]  
DR0  
Bit  
3 - 0  
Name  
Description  
STIN[n]DR3 - 0  
Input Data Rate Selection Bits:  
STIN[n]DR3-0  
Data Rate  
0000  
0001  
0010  
0011  
0100  
Stream Unused  
2.048 Mbps  
4.096 Mbps  
8.192 Mbps  
16.384 Mbps  
Reserved  
0101 - 1111  
Note: [n] denotes input stream from 0 - 31.  
Table 44 - Stream Input Control Register 0 - 31 (SICR0 - 31) Bits (continued)  
74  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0120H - 013FH  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
STIN[n]  
Q3C2  
STIN[n]  
Q3C1  
STIN[n]  
Q3C0  
STIN[n]  
Q2C2  
STIN[n]  
Q2C1  
STIN[n]  
Q2C0  
STIN[n]  
Q1C2  
STIN[n]  
Q1C1  
STIN[n]  
Q1C0  
STIN[n]  
Q0C2  
STIN[n]  
Q0C1  
STIN[n]  
Q0C0  
Bit  
Name  
Description  
15 - 12  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
11 - 9  
STIN[n]Q3C2 - 0 Quadrant Frame 3 Control Bits  
These three bits are used to control STi[n]’s quadrant frame 3, which is defined  
as Ch24 to 31, Ch48 to 63, Ch96 to 127 and Ch192 to 255 for the 2.048 Mbps,  
4.096 Mbps, 8.192 Mbps, and 16.384 Mbps modes respectively.  
STIN[n]Q3C  
Operation  
2-0  
0xx  
100  
101  
110  
111  
normal operation  
LSB of each channel is replaced by “0”  
LSB of each channel is replaced by “1”  
MSB of each channel is replaced by “0”  
MSB of each channel is replaced by “1”  
8 - 6  
STIN[n]Q2C2 - 0 Quadrant Frame 2 Control Bits  
These three bits are used to control STi[n]’s quadrant frame 2, which is defined  
as Ch16 to 23, Ch32 to 47, Ch64 to 95 and Ch128 to 191 for the 2.048 Mbps,  
4.096 Mbps 8.192 Mbps, and 16.384 Mbps modes respectively.  
STIN[n]Q2C  
Operation  
2-0  
0xx  
100  
101  
110  
111  
normal operation  
LSB of each channel is replaced by “0”  
LSB of each channel is replaced by “1”  
MSB of each channel is replaced by “0”  
MSB of each channel is replaced by “1”  
Table 45 - Stream Input Quadrant Frame Register 0 - 31 (SIQFR0 - 31) Bits  
75  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0120H - 013FH  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
STIN[n]  
Q3C2  
STIN[n]  
Q3C1  
STIN[n]  
Q3C0  
STIN[n]  
Q2C2  
STIN[n]  
Q2C1  
STIN[n]  
Q2C0  
STIN[n]  
Q1C2  
STIN[n]  
Q1C1  
STIN[n]  
Q1C0  
STIN[n]  
Q0C2  
STIN[n]  
Q0C1  
STIN[n]  
Q0C0  
Bit  
5 - 3  
Name  
Description  
STIN[n]Q1C2 - 0 Quadrant Frame 1 Control Bits  
These three bits are used to control STi[n]’s quadrant frame 1, which is defined  
as Ch8 to 15, Ch16 to 31, Ch32 to 63 and Ch64 to 127 for the 2.048 Mbps,  
4.096 Mbps, 8.192 Mbps, and 16.384 Mbps modes respectively.  
STIN[n]Q1C  
Operation  
2-0  
0xx  
100  
101  
110  
111  
normal operation  
LSB of each channel is replaced by “0”  
LSB of each channel is replaced by “1”  
MSB of each channel is replaced by “0”  
MSB of each channel is replaced by “1”  
2 - 0  
STIN[n]Q0C2 - 0 Quadrant Frame 0 Control Bits  
These three bits are used to control STi[n]’s quadrant frame 0, which is defined  
as Ch0 to 7, Ch0 to 15, Ch0 to 31 and Ch0 to 63 for the 2.048 Mbps,  
4.096 Mbps, 8.192 Mbps, and 16.384 Mbps modes respectively.  
STIN[n]Q0C2-0  
Operation  
0xx  
100  
101  
110  
111  
normal operation  
LSB of each channel is replaced by “0”  
LSB of each channel is replaced by “1”  
MSB of each channel is replaced by “0”  
MSB of each channel is replaced by “1”  
Note: [n] denotes input stream from 0 - 31.  
Table 45 - Stream Input Quadrant Frame Register 0 - 31 (SIQFR0 - 31) Bits (continued)  
76  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0200H - 021FH  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
STOHZ  
[n]A2  
STOHZ  
[n]A1  
STOHZ  
[n]A0  
STO[n]  
FA1  
STO[n]  
FA0  
STO[n]  
AD2  
STO[n]  
AD1  
STO[n]  
AD0  
STO[n]  
DR3  
STO[n]  
DR2  
STO[n]  
DR1  
STO[n]  
DR0  
Bit  
Name  
Description  
15 - 12  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
STOHZ Additional Advancement Bits  
11 - 9  
STOHZ[n]A2 - 0  
Additional Advancement  
(2.048 Mbps, 4.096 Mbps,  
8.192 Mbps)  
Additional Advancement  
(16.384 Mbps streams)  
(Valid only for  
STio0-15)  
STOHZ[n]A2-0  
000  
001  
0 bit  
1/4 bit  
0 bit  
2/4 bit  
010  
011  
2/4 bit  
3/4 bit  
4/4 bit  
Reserved  
100  
101-111  
4/4 bit  
Reserved  
Output Stream[n] Fractional Advancement Bits  
8 - 7  
STO[n]FA1 - 0  
Advancement  
(2.048 Mbps, 4.096 Mbps,  
8.192 Mbps streams)  
Advancement  
(16.384 Mbps streams)  
STO[n]FA1-0  
00  
01  
10  
11  
0
0
2/4  
Reserved  
1/4 bit  
2/4 bit  
3/4 bit  
6 - 4  
3 - 0  
STO[n]AD2 - 0  
STO[n]DR3 - 0  
Output Stream[n] Bit Advancement Selection Bits  
The binary value of these bits refers to the number of bits that the output stream  
is to be advanced relative to FPo. The maximum value is 7. Zero means no  
advancement.  
Output Data Rate Selection Bits  
Data Rate  
STIN[n]DR3 - 0  
0000  
disabled: STio HiZ  
(STOHZ driven high)  
0001  
0010  
0011  
2.048 Mbps  
4.096 Mbps  
8.192 Mbps  
16.384 Mbps  
Reserved  
0100  
0101 - 1111  
Note: [n] denotes output stream from 0 - 31.  
Table 46 - Stream Output Control Register 0 - 31 (SOCR0 - 31) Bits  
77  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0300H - 031FH  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
1
0
ST[n]  
BRS7  
ST[n]  
BRS6  
ST[n]  
BRS5  
ST[n]  
BRS4  
ST[n]  
BRS3  
ST[n]  
BRS2  
ST[n]  
BRS1  
ST[n]  
BRS0  
Bit  
Name  
Description  
15 - 8  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
7 - 0  
ST[n]  
Stream[n] BER Receive Start Bits  
BRS7 - 0  
The binary value of these bits refers to the input channel in which the BER data starts  
to be compared.  
Note: [n] denotes input stream from 0 - 31.  
Table 47 - BER Receiver Start Register [n] (BRSR[n]) Bits  
External Read/Write Address: 0320H - 033FH  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
ST[n]  
BL8  
ST[n]  
BL7  
ST[n]  
BL6  
ST[n]  
BL5  
ST[n]  
BL4  
ST[n]  
BL3  
ST[n]  
BL2  
ST[n]  
BL1  
ST[n]  
BL0  
Bit  
Name  
Description  
15 - 9  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
8 - 0  
ST[n]  
Stream[n] BER Length Bits  
The binary value of these bits refers to the number of consecutive channels expected  
to receive the BER pattern. The maximum number of BER channels is 32, 64, 128 and  
256 for the data rates of 2.048 Mbps, 4.096 Mbps, 8.192 Mbps and 16.384 Mbps  
respectively. The minimum number of BER channels is 1. If these bits are set to zero,  
no BER test will be performed.  
BL8 - 0  
Note: [n] denotes input stream from 0 - 31.  
Table 48 - BER Receiver Length Register [n] (BRLR[n]) Bits  
78  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
External Read/Write Address: 0340H - 035FH  
Reset Value: 0000H  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
ST[n]  
ST[n]  
SBER  
CBER  
Bit  
Name  
Description  
15 - 2  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
1
0
ST[n]  
Stream[n] Bit Error Rate Counter Clear  
When this bit is high, it resets the internal bit error counter and the stream BER  
Receiver Error Register to zero.  
CBER  
ST[n]  
Stream[n] Bit Error Rate Test Start  
When this bit is high, it enables the BER receiver; starts the bit error rate test. The bit  
error test result is kept in the BER Receiver Error (BRER[n]) register. Upon the  
completion of the BER test, set this bit to zero. Note that the RBEREB bit must be set  
in the IMS Register first.  
SBER  
Note: [n] denotes input stream from 0 - 31.  
Table 49 - BER Receiver Control Register [n] (BRCR[n]) Bits  
External Read Address: 0360H - 037FH  
Reset Value: 0000H  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ST[n]  
BC15  
ST[n]  
BC14  
ST[n]  
BC13  
ST[n]  
BC12  
ST[n]  
BC11  
ST[n]  
BC10  
ST[n]  
BC9  
ST[n]  
BC8  
ST[n]  
BC7  
ST[n]  
BC6  
ST[n]  
BC5  
ST[n]  
BC4  
ST[n]  
BC3  
ST[n]  
BC2  
ST[n]  
BC1  
ST[n]  
BC0  
Bit  
Name  
Description  
15 - 0  
ST[n]  
Stream[n] BER Count Bits (Read Only)  
BC15 - 0  
The binary value of these bits refers to the bit error counts. When it reaches its maxi-  
mum value of 0xFFFF, the value will be held and will not rollover.  
Note: [n] denotes input stream from 0 - 31.  
Table 50 - BER Receiver Error Register [n] (BRER[n]) Bits - Read Only  
79  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
25.0 Memory  
25.1 Memory Address Mappings  
When A13 is high, the data or connection memory can be accessed by the microprocessor port. Bit 1 - 0 in the  
Control Register determine the access to the data or connection memory (CM_L or CM_H).  
MSB  
Stream Address  
(St0 - 31)  
Channel Address  
(Ch0 - 255)  
(Note 1)  
A12  
A11  
A10  
A9  
A8  
Stream [n]  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Channel [n]  
A13  
1
1
1
1
1
1
1
1
1
.
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
1
.
0
0
0
0
1
1
1
1
0
.
0
0
1
1
0
0
1
1
0
.
0
1
0
1
0
1
0
1
0
.
Stream 0  
0
0
.
0
0
.
0
0
.
0
0
.
0
0
.
0
0
.
0
0
.
0
1
.
Ch 0  
Stream 1  
Ch 1  
Stream 2  
.
Stream 3  
.
.
.
.
.
.
.
.
.
Stream 4  
0
0
0
0
.
0
0
0
0
.
0
0
1
1
.
1
1
0
0
1
1
0
0
.
1
1
0
0
.
1
1
0
0
0
1
0
1
.
Ch 30  
Stream 5  
Ch 31 (Note 2)  
Stream 6  
Ch 32  
Stream 7  
Ch 33  
Stream 8  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
0
.
0
0
.
1
1
.
1
1
.
1
1
.
1
1
.
1
1
.
0
1
.
Ch 62  
.
.
.
.
.
.
.
Ch 63 (Note 3)  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
.
0
0
.
1
1
.
1
1
.
1
1
.
0
1
.
Stream 14  
.
.
.
.
.
.
.
.
.
Stream 15  
.
.
.
.
.
.
.
.
.
.
0
0
.
1
1
.
1
1
.
1
1
.
1
1
.
1
1
.
1
1
.
0
1
.
Ch126  
.
.
.
.
.
.
.
Ch 127 (Note 4)  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
0
1
Stream 30  
Stream 31  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
Ch 254  
Ch 255 (Note 5)  
Notes:  
1. A13 must be high for access to data and connection memory positions. A13 must be low to access internal registers.  
2. Channels 0 to 31 are used when serial stream is at 2.048 Mbps.  
3. Channels 0 to 63 are used when serial stream is at 4.096 Mbps.  
4. Channels 0 to 127 are used when serial stream is at 8.192 Mbps.  
5. Channels 0 to 255 are used when serial stream is at 16.384 Mbps.  
Table 51 - Address Map for Memory Locations (A13 = 1)  
25.2 Connection Memory Low (CM_L) Bit Assignment  
When the CMM bit (bit 0) in the connection memory low is zero, the per-channel transmission is set to the normal  
channel-switching. The connection memory low bit assignment for the channel transmission mode is shown in  
Table 52 on page 80.  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
UA  
EN  
V/C  
SSA  
4
SSA  
3
SSA  
2
SSA  
1
SSA  
0
SCA  
7
SCA  
6
SCA  
5
SCA  
4
SCA  
3
SCA  
2
SCA  
1
SCA  
0
CMM  
=0  
Bit  
Name  
Description  
15  
UAEN  
Conversion between µ-law and A-law Enable  
When this bit is low, normal switch without µ-law/A-law conversion. Connec-  
tion memory high will be ignored.  
When this bit is high, switch with µ-law/A-law conversion, and connection  
memory high controls the conversion method.  
Table 52 - Connection Memory Low (CM_L) Bit Assignment when CMM = 0  
80  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
UA  
EN  
V/C  
SSA  
4
SSA  
3
SSA  
2
SSA  
1
SSA  
0
SCA  
7
SCA  
6
SCA  
5
SCA  
4
SCA  
3
SCA  
2
SCA  
1
SCA  
0
CMM  
=0  
Bit  
Name  
Description  
14  
V/C  
Variable/Constant Delay Control  
When this bit is low, the output data for this channel will be taken from con-  
stant delay memory.  
When this bit is set to high, the output data for this channel will be taken from  
variable delay memory. Note that VAREN must be set in Control Register  
first.  
13 - 9  
8 - 1  
0
SSA4 - 0 Source Stream Address  
The binary value of these 5 bits represents the input stream number.  
SCA7 - 0 Source Channel Address  
The binary value of these 8 bits represents the input channel number.  
CMM = 0 Connection Memory Mode = 0  
If this is low, the connection memory is in the normal switching mode. Bit13 -  
1 are the source stream number and channel number.  
Note: For proper µ-law/A-law conversion, the CM_H bits should be set before Bit 15 (UAEN bit) is set to high.  
Table 52 - Connection Memory Low (CM_L) Bit Assignment when CMM = 0  
When CMM is one, the device is programmed to perform one of the special per-channel transmission modes. Bits  
PCC0 and PCC1 from connection memory are used to select the per-channel tristate, message or BER test mode  
as shown in Table 53 on page 81.  
15  
14  
0
13  
0
12  
0
11  
0
10  
9
8
7
6
5
4
3
2
1
0
UA  
EN  
MSG  
7
MSG  
6
MSG  
5
MSG  
4
MSG  
3
MSG  
2
MSG  
1
MSG  
0
PCC  
1
PCC  
0
CMM  
=1  
Bit  
Name  
Description  
15  
UAEN  
Conversion between µ-law and A-law Enable (Message mode only)  
When this bit is low, message mode has no µ-law/A-law conversion. Connec-  
tion memory high will be ignored.  
When this bit is high, message mode has µ-law/A-law conversion, and con-  
nection memory high controls the conversion method.  
14 - 11  
10 - 3  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
MSG7 - 0 Message Data Bits  
8-bit data for the message mode. Not used in the per-channel tristate and  
BER test modes.  
Table 53 - Connection Memory Low (CM_L) Bit Assignment when CMM = 1  
81  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
15  
14  
0
13  
0
12  
0
11  
0
10  
9
8
7
6
5
4
3
2
1
0
UA  
EN  
MSG  
7
MSG  
6
MSG  
5
MSG  
4
MSG  
3
MSG  
2
MSG  
1
MSG  
0
PCC  
1
PCC  
0
CMM  
=1  
Bit  
2 - 1  
Name  
Description  
PCC1 - 0  
Per-Channel Control Bits  
These two bits control the corresponding entry’s value on the STio stream.  
PC  
C1  
PC  
C0  
Channel Output Mode  
0
0
1
1
0
1
0
1
Per Channel Tristate  
Message Mode  
BER Test Mode  
Reserved  
0
CMM = 1  
Connection Memory Mode = 1  
If this is high, the connection memory is in the per-channel control mode  
which is per-channel tristate, per-channel message mode or per-channel BER  
mode.  
Note: For proper µ-law/A-law conversion, the CM_H bits should be set before Bit 15 (UAEN bit) is set to high.  
Table 53 - Connection Memory Low (CM_L) Bit Assignment when CMM = 1  
82  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
25.3 Connection Memory High (CM_H) Bit Assignment  
Connection memory high provides the detailed information required for µ-law and A-law conversion. ICL and OCL  
bits describe the Input Coding Law and the Output Coding Law, respectively. They are used to select the expected  
PCM coding laws for the connection, on the TDM inputs, and on the TDM outputs. The V/D bit is used to select the  
class of coding law. If the V/D bit is cleared (to select a voice connection), the ICL and OCL bits select between  
A-law and µ-law specifications related to G.711 voice coding. If the V/D bit is set (to select a data connection), the  
ICL and OCL bits select between various bit inverting protocols. These coding laws are illustrated in the following  
table. If the ICL is different than the OCL, all data bytes passing through the switch on that particular connection are  
translated between the indicated laws. If the ICL and the OCL are the same, no coding law translation is performed.  
The ICL, the OCL bits and V/D bit only have an effect on PCM code translations for constant delay connections,  
variable delay connections and per-channel message mode.  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
V/D  
ICL  
1
ICL  
0
OCL  
1
OCL  
0
Bit  
Name  
Description  
15 - 5  
Unused  
Reserved  
In normal functional mode, these bits MUST be set to zero.  
4
V/D  
Voice/Data Control  
When this bit is low, the corresponding channel is for voice.  
When this bit is high, the corresponding channel is for data.  
3 - 2  
ICL1 - 0  
Input Coding Law.  
Input Coding Law  
ICL1-0  
For Voice (V/D bit = 0)  
For Data (V/D bit = 1)  
00  
01  
10  
11  
CCITT.ITU A-law  
CCITT.ITU µ-law  
A-law w/o ABI  
No code  
ABI  
Inverted ABI  
All Bits Inverted  
µ-law w/o Magnitude  
Inversion  
1 - 0  
OCL1 - 0 Output Coding Law  
Output Coding Law  
OCL1-0  
For Voice (V/D bit = 0)  
For Data (V/D bit = 1)  
00  
01  
10  
11  
CCITT.ITU A-law  
CCITT.ITU µ-law  
A-law w/o ABI  
No code  
ABI  
Inverted ABI  
All Bits Inverted  
µ-law w/o Magnitude  
Inversion  
Note 1: For proper µ-law/A-law conversion, the CM_H bits should be set before Bit 15 of CM_L is set to high.  
Note 2: Refer to G.711 standard for detail information of different laws.  
Table 54 - Connection Memory High (CM_H) Bit Assignment  
83  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
26.0 Applications  
This section contains application-specific details for clock and crystal operation and power supply decoupling.  
26.1 OSCi Master Clock Requirement  
The device requires a 20 MHz master clock source at the OSCi pin when operating in Master mode or in Divided  
Slave with OSC mode. The clock source may be either an external clock oscillator connected to the OSCi pin, or an  
external crystal connected between the OSCi and OSCo pins. If an external clock source is present, OSC_EN must  
be tied high.  
Note that using a crystal is only suitable for wider tolerance applications (i.e., ±100 ppm). For stratum 4E  
applications a clock oscillator with a tolerance of ±32 ppm should be used. See Application Note ZLAN-68 for a list  
of Oscillators and Crystals that can be used with Zarlink PLL’s and Digital Switches with embedded PLL’s.  
26.1.1 External Crystal Oscillator  
When an external crystal oscillator is used, a complete oscillator circuit made up of a crystal, resistor and capacitors  
is shown in Figure 21 on page 84. XC is a buffered version of the 20 MHz input clock connected to the internal  
circuitry.  
OSCi  
2 K DX  
20 MHz  
1 MΩ  
25 pF  
25 pF  
OSCo  
XC  
Figure 21 - Crystal Oscillator Circuit  
The accuracy of a crystal oscillator circuit depends on the crystal tolerance as well as the load capacitance  
tolerance. Typically, for a 20 MHz crystal specified with a 32 pF load capacitance, each 1 pF change in load  
capacitance contributes approximately 9 ppm to the frequency deviation. Consequently, capacitor tolerances and  
stray capacitances have a major effect on the accuracy of the oscillator frequency. The trimmer capacitor shown in  
Figure 21 on page 84 may be used to compensate for capacitive effects.  
The crystal should be a fundamental mode type - not an overtone. The fundamental mode crystal permits a simpler  
oscillator circuit with no additional filter components and is less likely to generate spurious responses. The crystal  
accuracy only affects the output clock accuracy in the freerun or the holdover mode. The crystal specification is as  
follows:  
Frequency  
20 MHz  
Tolerance  
As required  
Fundamental  
Parallel  
Oscillation Mode  
Resonance Mode  
Load Capacitance  
20 pF - 32 pF  
84  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
Maximum Series Resistance  
Approximate Drive Level  
35 Ω  
1 mW  
26.1.2 External Clock Oscillator  
When an external clock oscillator is used, numerous parameters must be considered. They include absolute  
frequency, frequency change over temperature, output rise and fall times, output levels and duty cycle.  
The output clock should be connected directly (not AC coupled) to the OSCi input of the device, and the OSCo  
output should be left open as shown in Figure 22 on page 85. XC is a buffered version of the 20 MHz input clock  
connected to the internal circuitry.  
+3.3 V  
OSCi  
2 K DX  
+3.3 V  
20 MHz OUT  
GND  
0.1 uF  
OSCo  
XC  
No Connection  
Figure 22 - Clock Oscillator Circuit  
For applications requiring ±32 ppm clock accuracy, the following requirements should be met:  
Frequency  
20.000 MHz  
±32 ppm  
Tolerance  
Rise and Fall Time  
Duty Cycle  
10 ns  
40% to 60%  
85  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
27.0 DC Parameters  
Absolute Maximum Ratings*  
Parameter  
Symbol  
Min.  
Max.  
Units  
1
2
3
4
5
6
7
I/O Supply Voltage  
Core Supply Voltage  
Input Voltage  
Input Voltage (5 V-tolerant inputs)  
Continuous Current at Digital Outputs  
Package Power Dissipation  
Storage Temperature  
VDD_IO  
VDD_CORE  
VI_3V  
VI_5V  
Io  
-0.5  
-0.5  
-0.5  
-0.5  
5.0  
2.5  
VDD + 0.5  
7.0  
V
V
V
V
mA  
W
°C  
15  
1.5  
+125  
PD  
TS  
- 55  
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Recommended Operating Conditions - Voltages are with respect to ground (VSS) unless otherwise stated.  
Characteristics  
Operating Temperature  
Positive Supply  
Positive Supply  
Input Voltage  
Sym.  
Min.  
Typ.‡  
Max.  
Units  
1
2
3
4
5
TOP  
VDD_IO  
VDD_CORE  
VI  
-40  
3.0  
1.71  
0
25  
3.3  
1.8  
3.3  
5.0  
+85  
3.6  
1.89  
VDD_IO  
5.5  
°C  
V
V
V
V
Input Voltage on 5 V-Tolerant Inputs  
VI_5V  
0
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
DC Electrical Characteristics- Voltages are with respect to ground (V ) unless otherwise stated.  
ss  
Characteristics  
Sym.  
Min.  
Typ.‡  
Max.  
Units  
Test Conditions  
1
2
3
4
5
Supply Current - VDD_CORE  
Supply Current - VDD_IO  
Input High Voltage  
IDD_CORE  
IDD_IO  
VIH  
165  
75  
mA  
mA CL = 30 pF  
V
V
µA  
µA  
2.0  
Input Low Voltage  
VIL  
0.8  
5
5
Input Leakage (input pins)  
IIL  
0<VINVDD_IO  
Input Leakage (bi-directional pins)  
IBL  
See Note 1  
6
7
8
9
Weak Pullup Current  
Weak Pulldown Current  
Input Pin Capacitance  
Output High Voltage  
IPU  
IPD  
CI  
VOH  
VOL  
IOZ  
CO  
-33  
33  
3
µA  
µA  
pF  
V
V
µA  
pF  
Input at 0 V  
Input at VDD_IO  
2.4  
IOH = 10 mA  
IOL = 10 mA  
0 < V < VDD  
10 Output Low Voltage  
11 Output High Impedance Leakage  
12 Output Pin Capacitance  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
0.4  
5
10  
5
* Note 1: Maximum leakage on pins (output or I/O pins in high impedance state) is over an applied voltage (VIN).  
86  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
28.0 AC Parameters  
AC Electrical Characteristics- Timing Parameter Measurement Voltage Levels  
Characteristics  
CMOS Threshold  
Rise/Fall Threshold Voltage High  
Rise/Fall Threshold Voltage Low  
Sym.  
Level  
Units  
Conditions  
1
2
3
VCT  
VHM  
VLM  
0.5 VDD_IO  
0.7 VDD_IO  
0.3 VDD_IO  
V
V
V
† Characteristics are over recommended operating conditions unless otherwise stated.  
Timing Reference Points  
VHM  
VCT  
VLM  
ALL SIGNALS  
Figure 23 - Timing Parameter Measurement Voltage Levels  
87  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- Motorola Non-Multiplexed Bus Mode - Read Access  
Characteristics  
CS de-asserted time  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions2  
1
2
3
4
5
6
7
8
9
tCSD  
tDSD  
tCSS  
tRWS  
tAS  
15  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DS de-asserted time  
CS setup to DS falling  
R/W setup to DS falling  
Address setup to DS falling  
CS hold after DS rising  
R/W hold after DS rising  
Address hold after DS rising  
Data setup to DTA Low  
10  
5
0
0
0
tCSH  
tRWH  
tAH  
tDS  
8
CL = 50 pF  
CL = 50 pF, RL = 1 K  
(Note 1)  
10 Data hold after DS rising  
tDH  
7
11 Acknowledgement delay time.  
From DS low to DTA low:  
Registers  
tAKD  
Memory  
CL = 50 pF  
CL = 50 pF  
75  
185  
ns  
ns  
12 Acknowledgement hold time.  
From DS high to DTA high  
13 DTA drive high to HiZ  
tAKH  
tAKZ  
4
12  
ns  
CL = 50 pF, RL = 1 K  
(Note 1)  
8
ns  
Note 1: High impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to  
discharge CL.  
Note 2: A delay of 500 µs to 2 ms (see Section 18.2 on page 42) must be applied before the first microprocessor access is  
performed after the RESET pin is set high.  
† Characteristics are over recommended operating conditions unless otherwise stated.  
tCSD  
tCSS  
tCSH  
CS  
VCT  
tDSD  
VCT  
VCT  
DS  
t
RWS  
tRWH  
R/W  
tAS  
tAH  
tDH  
VALID READ DATA  
VCT  
VALID ADDRESS  
A0-A13  
D0-D15  
VCT  
tDS  
tAKZ  
VCT  
DTA  
tAKH  
tAKD  
Figure 24 - Motorola Non-Multiplexed Bus Timing - Read Access  
88  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- Motorola Non-Multiplexed Bus Mode - Write Access  
Characteristics  
CS de-asserted time  
DS de-asserted time  
CS setup to DS falling  
R/W setup to DS falling  
Address setup to DS falling  
Data setup to DS falling  
CS hold after DS rising  
R/W hold after DS rising  
Address hold after DS rising  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions2  
1
2
3
4
5
6
7
8
9
tCSD  
tDSD  
tCSS  
tRWS  
tAS  
15  
15  
0
10  
5
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
CL = 50 pF  
tCSH  
tRWH  
tAH  
10 Data hold from DS rising  
tDH  
5
CL = 50 pF, RL = 1 K  
(Note 1)  
11 Acknowledgement delay time.  
From DS low to DTA low:  
Registers  
tAKD  
Memory  
CL = 50 pF  
CL = 50 pF  
55  
150  
ns  
ns  
12 Acknowledgement hold time.  
From DS high to DTA high  
13 DTA drive high to HiZ  
tAKH  
tAKZ  
4
12  
ns  
CL = 50 pF, RL = 1 K  
(Note 1)  
8
ns  
Note 1: High impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to  
discharge CL.  
Note 2: A delay of 500 µs to 2 ms (see Section 18.2 on page 42) must be applied before the first microprocessor access is  
performed after the RESET pin is set high.  
† Characteristics are over recommended operating conditions unless otherwise stated.  
tCSD  
tCSS  
tCSH  
CS  
VCT  
tDSD  
VCT  
VCT  
DS  
tRWH  
tRWS  
R/W  
tAH  
tAS  
VCT  
VALID ADDRESS  
A0-A13  
D0-D15  
tDS  
tDH  
VCT  
VALID WRITE DATA  
tAKZ  
VCT  
DTA  
tAKH  
tAKD  
Figure 25 - Motorola Non-Multiplexed Bus Timing - Write Access  
89  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- Intel Non-Multiplexed Bus Mode - Read Access  
Characteristics  
CS de-asserted time  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions2  
1
2
3
4
5
6
7
8
9
tCSD  
tRS  
tWS  
tAS  
15  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD setup to CS falling  
WR setup to CS falling  
Address setup to CS falling  
RD hold after CS rising  
WR hold after CS rising  
Address hold after CS rising  
Data setup to RDY high  
Data hold after CS rising  
tRH  
tWH  
tAH  
tDS  
tDH  
0
0
0
8
CL = 50 pF  
CL = 50 pF, RL = 1 K  
(Note 1)  
7
10 Acknowledgement delay time.  
From CS low to RDY high:  
Registers  
tAKD  
Memory  
CL = 50 pF  
CL = 50 pF  
75  
185  
ns  
ns  
11 Acknowledgement hold time.  
From CS high to RDY low  
12 RDY drive low to HiZ  
tAKH  
tAKZ  
4
12  
ns  
CL = 50 pF, RL = 1 K  
(Note 1)  
8
ns  
Note 1: High impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to  
discharge CL.  
Note 2: A delay of 500 µs to 2 ms (see Section 18.2 on page 42) must be applied before the first microprocessor access is  
performed after the RESET pin is set high.  
† Characteristics are over recommended operating conditions unless otherwise stated.  
tCSD  
VCT  
CS  
RD  
tRH  
tRS  
VCT  
tWH  
tWS  
VCT  
WR  
tAH  
tAS  
VCT  
VALID ADDRESS  
A0-A13  
D0-D15  
tDH  
VALID READ DATA  
VCT  
tDS  
tAKZ  
VCT  
RDY  
tAKD  
tAKH  
Figure 26 - Intel Non-Multiplexed Bus Timing - Read Access  
90  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- Intel Non-Multiplexed Bus Mode - Write Access  
Characteristics  
CS de-asserted time  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions2  
1
2
3
4
5
6
7
8
9
tCSD  
tWS  
tRS  
tAS  
15  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR setup to CS falling  
RD setup to CS falling  
Address setup to CS falling  
Data setup to CS falling  
WR hold after CS rising  
RD hold after CS rising  
Address hold after CS rising  
Data hold after CS rising  
tDS  
tWH  
tRH  
tAH  
tDH  
0
0
0
10  
5
CL = 50 pF  
CL = 50 pF, RL = 1 K  
(Note 1)  
10 Acknowledgement delay time.  
From CS low to RDY high:  
Registers  
tAKD  
Memory  
CL = 50 pF  
CL = 50 pF  
55  
150  
ns  
ns  
11 Acknowledgement hold time.  
From CS high to RDY low  
12 RDY drive low to HiZ  
tAKH  
tAKZ  
4
12  
ns  
CL = 50 pF, RL = 1 K  
(Note 1)  
8
ns  
Note 1: High impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to  
discharge CL.  
Note 2: A delay of 500 µs to 2 ms (Section 18.2 on page 42) must be applied before the first microprocessor access is performed  
after the RESET pin is set high.  
† Characteristics are over recommended operating conditions unless otherwise stated.  
tCSD  
VCT  
CS  
tWH  
tWS  
VCT  
WR  
tRH  
tRS  
VCT  
RD  
tAH  
tAS  
VCT  
VALID ADDRESS  
A0-A13  
D0-D15  
tDH  
tDS  
VCT  
VALID WRITE DATA  
tAKZ  
VCT  
RDY  
tAKD  
tAKH  
Figure 27 - Intel Non-Multiplexed Bus Timing - Write Access  
91  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- JTAG Test Port Timing  
Characteristic  
TCK Clock Period  
TCK Clock Pulse Width High  
TCK Clock Pulse Width Low  
TMS Set-up Time  
Sym.  
Min.  
Typ. Max.  
Units  
Notes  
1
2
3
4
5
6
7
8
9
tTCKP  
tTCKH  
tTCKL  
tTMSS  
tTMSH  
tTDIS  
100  
20  
20  
10  
10  
20  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TMS Hold Time  
TDi Input Set-up Time  
TDi Input Hold Time  
TDo Output Delay  
tTDIH  
tTDOD  
30  
CL = 30 pF  
TRST pulse width  
tTRSTW  
200  
† Characteristics are over recommended operating conditions unless otherwise stated.  
tTCKL  
tTCKH  
tTCKP  
TCK  
TMS  
tTMSH  
tTMSS  
tTDIS  
tTDIH  
TDi  
tTDOD  
TDo  
tTRSTW  
TRST  
Figure 28 - JTAG Test Port Timing Diagram  
AC Electrical Characteristics- OSCi 20 MHz Input Timing  
Characteristic  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes‡  
Stratum 4E  
1
Input frequency accuracy  
-32  
-100  
32  
100  
ppm  
ppm  
Relaxed Stratum 4E  
2
3
Duty cycle  
Input rise or fall time  
40  
60  
3
%
ns  
1
14  
tIR, IF  
t
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ See “Performance Characteristics Notes” on page 112.  
92  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- FPi and CKi Timing when CKIN1-0 bits = 00 (16.384 MHz)  
Characteristic  
FPi Input Frame Pulse Width  
FPi Input Frame Pulse Setup Time  
FPi Input Frame Pulse Hold Time  
CKi Input Clock Period  
CKi Input Clock High Time  
CKi Input Clock Low Time  
CKi Input Clock Rise/Fall Time  
CKi Input Clock Cycle to Cycle Variation  
Sym.  
Min. Typ.Max. Units Notes  
1
2
3
4
5
6
7
8
tFPIW  
tFPIS  
tFPIH  
tCKIP  
tCKIH  
40  
20  
20  
55  
27  
27  
61  
115  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
61  
67  
34  
34  
3
tCKIL  
trCKi, tfCKi  
tCVC  
0
20  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
AC Electrical Characteristics- FPi and CKi Timing when CKIN1-0 bits = 01 (8.192 MHz)  
Characteristic  
Sym.  
Min. Typ.Max. Units Notes  
1
2
3
4
5
6
7
8
FPi Input Frame Pulse Width  
tFPIW  
tFPIS  
tFPIH  
tCKIP  
tCKIH  
90  
45  
45  
110  
55  
55  
122  
220  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FPi Input Frame Pulse Setup Time  
FPi Input Frame Pulse Hold Time  
CKi Input Clock Period  
CKi Input Clock High Time  
CKi Input Clock Low Time  
122  
135  
69  
69  
3
tCKIL  
trCKi, tfCKi  
tCVC  
CKi Input Clock Rise/Fall Time  
CKi Input Clock Cycle to Cycle Variation  
0
20  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
AC Electrical Characteristics- FPi and CKi Timing when CKIN1-0 bits = 10 (4.096 MHz)  
Characteristic  
FPi Input Frame Pulse Width  
FPi Input Frame Pulse Setup Time  
FPi Input Frame Pulse Hold Time  
CKi Input Clock Period  
CKi Input Clock High Time  
CKi Input Clock Low Time  
CKi Input Clock Rise/Fall Time  
CKi Input Clock Cycle to Cycle Variation  
Sym.  
Min. Typ.Max. Units Notes  
1
2
3
4
5
6
7
8
tFPIW  
tFPIS  
tFPIH  
tCKIP  
tCKIH  
90  
244  
420  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
110  
110  
220  
110  
110  
244  
270  
135  
135  
3
tCKIL  
trCKi, tfCKi  
tCVC  
0
20  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
93  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
tFPIW  
FPi  
CKi  
tFPIS  
tFPIH  
tCKIP  
tCKIH  
tCKIL  
trCKI  
tfCKI  
Input Frame Boundary  
Figure 29 - Frame Pulse Input and Clock Input Timing Diagram (ST-BUS)  
tFPIW  
FPi  
tFPIS  
tFPIH  
tCKIP  
tCKIH  
tCKIL  
CKi  
trCKI  
tfCKI  
Input Frame Boundary  
Figure 30 - Frame Pulse Input and Clock Input Timing Diagram (GCI-Bus)  
94  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- ST-BUS/GCI-Bus Input Timing  
Characteristic  
STi Setup Time  
2.048 Mbps  
4.096 Mbps  
8.192 Mbps  
16.384 Mbps  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
1
tSIS2  
tSIS4  
tSIS8  
tSIS16  
5
5
5
5
ns  
ns  
ns  
ns  
2
STi Hold Time  
tSIH2  
tSIH4  
tSIH8  
tSIH16  
2.048 Mbps  
4.096 Mbps  
8.192 Mbps  
16.384 Mbps  
8
8
8
8
ns  
ns  
ns  
ns  
† Characteristics are over recommended operating conditions unless otherwise stated.  
FPi  
CKi  
(16.384 MHz)  
FPi  
CKi  
(8.192 MHz)  
FPi  
CKi  
(4.096 MHz)  
tSIS2  
tSIH2  
STi0 - 31  
Bit0  
Bit6  
Ch0  
Bit7  
Ch0  
tSIS4  
tSIH4  
VCT  
Ch31  
2.048 Mbps  
STi0 - 31  
Bit0  
Bit7  
Ch0  
Bit6  
Ch0  
Bit5  
Ch0  
Bit4  
Ch0  
VCT  
Ch63  
4.096 Mbps  
tSIS8  
tSIH8  
STi0 - 31  
Bit1  
Ch127  
Bit0  
Ch127  
Bit7  
Ch0  
Bit6  
Bit5  
Ch0  
Bit4  
Ch0  
Bit3  
Ch0  
Bit2  
Ch0  
Bit1  
Ch0  
Bit0  
Ch0  
VCT  
Ch0  
8.192 Mbps  
Input Frame Boundary  
Figure 31 - ST-BUS Input Timing Diagram when Operated at 2 Mbps, 4 Mbps, 8 Mbps  
95  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
FPi  
CKi  
(16.384 MHz)  
tSIS16  
tSIH16  
STi0 - 31  
Bit1  
Bit0  
Bit7  
Ch0  
Bit6  
Bit5  
Ch0  
Bit4  
Ch0  
Bit3  
Ch0  
Bit2  
Ch0  
Bit1  
Ch0  
Bit0  
Ch0  
VCT  
Ch255  
Ch255  
Ch0  
16.384 Mbps  
Input Frame Boundary  
Figure 32 - ST-BUS Input Timing Diagram when Operated at 16 Mbps  
FPi  
CKi  
(16.384 MHz)  
FPi  
CKi  
(8.192 MHz)  
FPi  
CKi  
(4.096 MHz)  
tSIS2  
tSIH2  
STi0 - 31  
Bit7  
Bit1  
Ch0  
Bit0  
Ch0  
tSIS4  
tSIH4  
VCT  
Ch31  
2.048 Mbps  
STi0 - 31  
Bit7  
Bit0  
Ch0  
Bit1  
Ch0  
Bit2  
Ch0  
Bit3  
Ch0  
VCT  
Ch63  
4.096 Mbps  
tSIS8  
tSIH8  
STi0 - 31  
Bit7  
Ch127  
Bit6  
Ch127  
Bit0  
Ch0  
Bit1  
Bit2  
Ch0  
Bit3  
Ch0  
Bit4  
Ch0  
Bit5  
Ch0  
Bit6  
Ch0  
Bit7  
Ch0  
VCT  
Ch0  
8.192 Mbps  
Input Frame Boundary  
Figure 33 - GCI-Bus Input Timing Diagram when Operated at 2 Mbps, 4 Mbps, 8 Mbps  
96  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
FPi  
CKi  
(16.384 MHz)  
tSIS16  
tSIH16  
STi0 - 31  
Bit6  
Bit7  
Bit0  
Ch0  
Bit1  
Bit2  
Ch0  
Bit3  
Ch0  
Bit4  
Ch0  
Bit5  
Ch0  
Bit6  
Ch0  
Bit7  
Ch0  
VCT  
Ch255  
Ch255  
Ch0  
16.384 Mbps  
Input Frame Boundary  
Figure 34 - GCI-Bus Input Timing Diagram when Operated at 16 Mbps  
97  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- ST-BUS/GCI-Bus Output Timing  
Characteristic  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
CL = 30 pF  
Master Mode  
1
STio Delay - Active to Active  
@2.048 Mbps  
@4.096 Mbps  
@8.192 Mbps  
@16.384 Mbps  
tSOD2  
tSOD4  
tSOD8  
tSOD16  
1
1
1
1
8
8
8
8
ns  
ns  
ns  
ns  
@2.048 Mbps  
@4.096 Mbps  
@8.192 Mbps  
@16.384 Mbps  
tSOD2  
tSOD4  
tSOD8  
tSOD16  
0
0
0
0
6
6
6
6
ns  
ns  
ns  
ns  
Multiplied Slave Mode  
Divided Slave Mode  
@2.048 Mbps  
@4.096 Mbps  
@8.192 Mbps  
@16.384 Mbps  
tSOD2  
tSOD4  
tSOD8  
tSOD16  
-6  
-6  
-6  
-6  
0
0
0
0
ns  
ns  
ns  
ns  
† Characteristics are over recommended operating conditions unless otherwise stated.  
FPo0  
CKo0  
(4.096 MHz)  
tSOD2  
STio0 - 31  
Bit0  
Bit7  
Ch0  
Bit6  
Ch0  
VCT  
Ch31  
2.048 Mbps  
tSOD4  
STio0 - 31  
Bit0  
Ch63  
Bit7  
Ch0  
Bit6  
Ch0  
Bit5  
Ch0  
Bit4  
Ch0  
VCT  
4.096 Mbps  
tSOD8  
STio0 - 31  
Bit0  
Ch127  
Bit7  
Ch0  
Bit6  
Ch0  
Bit5  
Ch0  
Bit4  
Ch0  
Bit3  
Ch0  
Bit2  
Ch0  
Bit1  
Ch0  
Bit0  
Ch0  
VCT  
8.192 Mbps  
tSOD16  
STio0 - 31  
Bit2 Bit1  
Bit0 Bit7  
Bit6 Bit5  
Bit4 Bit3  
Bit2 Bit1 Bit0 Bit7  
Bit6 Bit5 Bit4  
Bit3 Bit2  
Bit1  
VCT  
Ch255Ch255 Ch255 Ch0 Ch0 Ch0 Ch0 Ch0 Ch0 Ch0 Ch0 Ch1 Ch1 Ch1 Ch1 Ch1 Ch1 Ch1  
16.384 Mbps  
Output Frame Boundary  
Figure 35 - ST-BUS Output Timing Diagram when Operated at 2, 4, 8 or 16 Mbps  
98  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
FPo0  
CKo0  
(4.096 MHz)  
tSOD2  
STio0 - 31  
Bit7  
Bit0  
Ch0  
Bit1  
Ch0  
VCT  
Ch31  
2.048 Mbps  
tSOD4  
STio0 - 31  
Bit7  
Ch63  
Bit0  
Ch0  
Bit1  
Ch0  
Bit2  
Ch0  
Bit3  
Ch0  
VCT  
4.096 Mbps  
tSOD8  
STio0 - 31  
Bit7  
Ch127  
Bit0  
Ch0  
Bit1  
Ch0  
Bit2  
Ch0  
Bit3  
Ch0  
Bit4  
Ch0  
Bit5  
Ch0  
Bit6  
Ch0  
Bit7  
Ch0  
VCT  
8.192 Mbps  
tSOD16  
STio0 - 31  
Bit5 Bit6  
Bit7 Bit0  
Bit1 Bit2  
Bit3 Bit4  
Bit5 Bit6 Bit7 Bit0  
Bit1 Bit2 Bit3  
Bit4 Bit5  
Bit6  
VCT  
Ch255Ch255 Ch255 Ch0 Ch0 Ch0 Ch0 Ch0 Ch0 Ch0 Ch0 Ch1 Ch1 Ch1 Ch1 Ch1 Ch1 Ch1  
16.384 Mbps  
Output Frame Boundary  
Figure 36 - GCI-Bus Output Timing Diagram when Operated at 2, 4, 8 or 16 Mbps  
99  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- ST-BUS/GCI-Bus Output Tristate Timing  
Characteristic  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions*  
1
2
3
STio Delay - Active to High-Z  
tDZ  
-2  
-3  
-8  
-2  
-3  
-8  
8
7
0
8
7
0
ns  
ns  
ns  
ns  
ns  
ns  
Master Mode  
Multiplied Slave Mode  
Divided Slave Mode  
STio Delay - High-Z to Active  
tZD  
Master Mode  
Multiplied Slave Mode  
Divided Slave Mode  
Output Drive Enable (ODE) Delay  
- High-Z to Active  
tZD_ODE  
Master or  
77  
ns  
Multiplied Slave Mode  
CKi @ 4.096 MHz  
CKi @ 8.192 MHz  
CKi @ 16.384 MHz  
260  
138  
77  
ns  
ns  
ns  
Divided Slave Mode  
4
Output Drive Enable (ODE) Delay  
- Active to High-Z  
tDZ_ODE  
Master or  
77  
ns  
Multiplied Slave Mode  
CKi @ 4.096 MHz  
CKi @ 8.192 MHz  
CKi @ 16.384 MHz  
260  
138  
77  
ns  
ns  
ns  
Divided Slave Mode  
† Characteristics are over recommended operating conditions unless otherwise stated.  
* Test condition is RL = 1 k, CL = 30 pF; high impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel  
the time taken to discharge CL.  
VCT  
FPo0  
CKo0  
VCT  
tDZ  
VCT  
Tristate  
Valid Data  
STio  
STio  
tZD  
VCT  
Tristate  
Valid Data  
Figure 37 - Serial Output and External Control  
VCT  
ODE  
STio  
tZD_ODE  
HiZ  
tDZ_ODE  
Valid Data  
VCT  
HiZ  
Figure 38 - Output Drive Enable (ODE)  
100  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- Slave Mode Input/Output Frame Boundary Alignment  
Characteristic  
Sym.  
Min. Typ.  
Max.  
Units  
Notes  
t
1
2
Input and Output Frame Offset in  
Divided Slave Mode  
5
13  
ns  
FBOS  
t
Input and Output Frame Offset in  
2
10  
ns  
Input reference jitter is  
equal to zero.  
FBOS  
Multiplied Slave Mode  
† Characteristics are over recommended operating conditions unless otherwise stated.  
FPi  
CKi  
(16.384 MHz)  
FPi  
CKi  
(8.192 MHz)  
FPi  
CKi  
(4.096 MHz)  
Input Frame Boundary  
t
FBOS  
Output Frame Boundary  
FPo0  
CKo0  
(4.096 MHz)  
Figure 39 - Input and Output Frame Boundary Offset  
101  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
tFPW0  
VCT  
FPo0/FPo3  
CKo0/CKo3  
tFODF0  
tFODR0  
tCKP0  
tCKH0  
tCKL0  
VCT  
trCK0  
tfCK0  
Output Frame Boundary  
Figure 40 - FPo0 and CKo0 or FPo3 and CKo3 (4.096 MHz) Timing Diagram  
AC Electrical Characteristics- FPo0 and CKo0 or FPo3 and CKo3 (4.096 MHz) Timing (Master Mode,  
Divided Slave Mode, or Multiplied Slave Mode with less than 10 ns of Cycle to Cycle Variation on CKi)  
Characteristic  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
FPo0 Output Pulse Width  
FPo0 Output Delay from the FPo0 falling edge  
to the output frame boundary  
tFPW0  
tFODF0  
239  
117  
244  
249  
127  
ns  
ns  
CL = 30 pF  
3
FPo0 Output Delay from the output frame  
boundary to the FPo0 rising edge  
tFODR0  
117  
127  
ns  
4
5
6
7
CKo0 Output Clock Period  
CKo0 Output High Time  
CKo0 Output Low Time  
CKo0 Output Rise/Fall Time  
tCKP0  
tCKH0  
tCKL0  
239  
117  
117  
244  
249  
127  
127  
5
ns  
ns  
ns  
ns  
CL = 30 pF  
t
rCK0, tfCK0  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
AC Electrical Characteristics- FPo0 and CKo0 or FPo3 and CKo3 (4.096 MHz) Timing (Multiplied Slave  
Mode with more than 10 ns of Cycle to Cycle Variation on CKi)  
Characteristic  
FPo0 Output Pulse Width  
FPo0 Output Delay from the FPo0 falling edge  
to the output frame boundary  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
tFPW0  
tFODF0  
218  
117  
244  
270  
127  
ns  
ns  
CL = 30 pF  
3
FPo0 Output Delay from the output frame  
boundary to the FPo0 rising edge  
tFODR0  
97  
146  
ns  
4
5
6
7
CKo0 Output Clock Period  
CKo0 Output High Time  
CKo0 Output Low Time  
CKo0 Output Rise/Fall Time  
tCKP0  
tCKH0  
tCKL0  
218  
117  
97  
244  
270  
127  
146  
5
ns  
ns  
ns  
ns  
CL = 30 pF  
t
rCK0, tfCK0  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
102  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
tFPW1  
VCT  
FPo1/FPo3  
CKo1/CKo3  
tFODF1  
tFODR1  
tCKP1  
tCKH1  
tCKL1  
VCT  
trCK1  
tfCK1  
Output Frame Boundary  
Figure 41 - FPo1 and CKo1 or FPo3 and CKo3 (8.192 MHz) Timing Diagram  
AC Electrical Characteristics- FPo1 and CKo1 or FPo3 and CKo3 (8.192 MHz) Timing (Master Mode,  
Divided Slave Mode, or Multiplied Slave Mode with less than 10 ns of Cycle to Cycle Variation on CKi)  
Characteristic  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
FPo1 Output Pulse Width  
FPo1 Output Delay from the FPo1 falling edge  
to the output frame boundary  
tFPW1  
tFODF1  
117  
56  
122  
127  
66  
ns  
ns  
CL = 30 pF  
3
FPo1 Output Delay from the output frame  
boundary to the FPo1 rising edge  
tFODR1  
56  
66  
ns  
4
5
6
7
CKo1 Output Clock Period  
CKo1 Output High Time  
CKo1 Output Low Time  
CKo1 Output Rise/Fall Time  
tCKP1  
tCKH1  
tCKL1  
117  
56  
56  
122  
127  
66  
66  
5
ns  
ns  
ns  
ns  
CL = 30 pF  
t
rCK1, tfCK1  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
AC Electrical Characteristics- FPo1 and CKo1 or FPo3 and CKo3 (8.192 MHz) Timing (Multiplied Slave  
Mode with more than 10 ns of Cycle to Cycle Variation on CKi)  
Characteristic  
FPo1 Output Pulse Width  
FPo1 Output Delay from the FPo1 falling edge  
to the output frame boundary  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
tFPW1  
tFODF1  
106  
56  
122  
127  
66  
ns  
ns  
CL = 30 pF  
3
FPo1 Output Delay from the output frame  
boundary to the FPo1 rising edge  
tFODR1  
46  
66  
ns  
4
5
6
7
CKo1 Output Clock Period  
CKo1 Output High Time  
CKo1 Output Low Time  
CKo1 Output Rise/Fall Time  
tCKP1  
tCKH1  
tCKL1  
106  
46  
46  
122  
148  
87  
66  
5
ns  
ns  
ns  
ns  
CL = 30 pF  
t
rCK1, tfCK1  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
103  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
tFPW2  
VCT  
FPo2/FPo3  
CKo2/CKo3  
tFODF2  
tFODR2  
tCKP2  
tCKH2  
tCKL2  
VCT  
trCK2  
tfCK2  
Output Frame Boundary  
Figure 42 - FPo2 and CKo2 or FPo3 and CKo3 (16.384 MHz) Timing Diagram  
AC Electrical Characteristics- FPo2 and CKo2 or FPo3 and CKo3 (16.384 MHz) Timing (Master Mode,  
Divided Slave Mode, or Multiplied Slave Mode with less than 10 ns of Cycle to Cycle Variation on CKi)  
Characteristic  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
FPo2 Output Pulse Width  
FPo2 Output Delay from the FPo2 falling edge  
to the output frame boundary  
tFPW2  
tFODF2  
56  
25  
61  
66  
36  
ns  
ns  
CL = 30 pF  
3
FPo2 Output Delay from the output frame  
boundary to the FPo2 rising edge  
tFODR2  
25  
36  
ns  
4
5
6
7
CKo2 Output Clock Period  
CKo2 Output High Time  
CKo2 Output Low Time  
CKo2 Output Rise/Fall Time  
tCKP2  
tCKH2  
tCKL2  
56  
25  
25  
61  
66  
36  
36  
5
ns  
ns  
ns  
ns  
CL = 30 pF  
t
rCK2, tfCK2  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
AC Electrical Characteristics- FPo2 and CKo2 or FPo3 and CKo3 (16.384 MHz) Timing (Multiplied Slave  
Mode with more than 10 ns of Cycle to Cycle Variation on CKi)  
Characteristic  
FPo2 Output Pulse Width  
FPo2 Output Delay from the FPo2 falling edge  
to the output frame boundary  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
tFPW2  
tFODF2  
56  
25  
61  
66  
36  
ns  
ns  
CL = 30 pF  
3
FPo2 Output Delay from the output frame  
boundary to the FPo2 rising edge  
tFODR2  
25  
36  
ns  
4
5
6
7
CKo2 Output Clock Period  
CKo2 Output High Time  
CKo2 Output Low Time  
CKo2 Output Rise/Fall Time  
tCKP2  
tCKH2  
tCKL2  
47  
17  
17  
61  
76  
43  
43  
5
ns  
ns  
ns  
ns  
CL = 30 pF  
t
rCK2, tfCK2  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
104  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
tFPW3  
VCT  
FPo3  
CKo3  
tFODF3  
tFODR3  
tCKP3  
tCKH3  
tCKL3  
VCT  
trCK3  
tfCK3  
Output Frame Boundary  
Figure 43 - FPo3 and CKo3 (32.768 MHz) Timing Diagram  
AC Electrical Characteristics- FPo3 and CKo3 (32.768 MHz) Timing (Master Mode, Divided Slave Mode, or  
Multiplied Slave Mode with less than 10 ns of Cycle to Cycle Variation on CKi)  
Characteristic  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
FPo3 Output Pulse Width  
FPo3 Output Delay from the FPo3 falling edge  
to the output frame boundary  
tFPW3  
tFODF3  
27  
10  
30.5  
34  
18  
ns  
ns  
CL = 30 pF  
3
FPo3 Output Delay from the output frame  
boundary to the FPo3 rising edge  
tFODR3  
12  
21  
ns  
4
5
6
7
CKo3 Output Clock Period  
CKo3 Output High Time  
CKo3 Output Low Time  
CKo3 Output Rise/Fall Time  
tCKP3  
tCKH3  
tCKL3  
27  
12  
12  
30.5  
34  
19  
19  
5
ns  
ns  
ns  
ns  
CL = 30 pF  
t
rCK3, tfCK3  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
AC Electrical Characteristics- FPo3 and CKo3 (32.768 MHz) Timing (Multiplied Slave Mode with more than  
10 ns of Cycle to Cycle Variation on CKi  
Characteristic  
FPo3 Output Pulse Width  
FPo3 Output Delay from the FPo3 falling edge  
to the output frame boundary  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
tFPW3  
tFODF3  
27  
12  
30.5  
34  
19  
ns  
ns  
CL = 30 pF  
3
FPo3 Output Delay from the output frame  
boundary to the FPo3 rising edge  
tFODR3  
12  
19  
ns  
4
5
6
7
CKo3 Output Clock Period  
CKo3 Output High Time  
CKo3 Output Low Time  
CKo3 Output Rise/Fall Time  
tCKP3  
tCKH3  
tCKL3  
17  
5
12  
30.5  
44  
29  
18  
5
ns  
ns  
ns  
ns  
CL = 30 pF  
t
rCK3, tfCK3  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
105  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
FPo0  
CKo4  
VCT  
tCKP4  
tCKH4  
tCKL4  
VCT  
trCK4  
tfCK4  
Output Frame Boundary  
Figure 44 - FPo4 and CKo4 Timing Diagram (1.544/2.048 MHz)  
AC Electrical Characteristics- CKo4 (1.544 MHz) Timing (Only when DPLL is active)  
Characteristic  
CKo4 Output Clock Period  
CKo4 Output High Time  
CKo4 Output Low Time  
CKo4 Output Rise/Fall Time  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
3
4
tCKP4  
tCKH4  
tCKL4  
645  
320  
320  
648  
324  
324  
650  
327  
327  
5
ns  
ns  
ns  
ns  
CL = 30 pF  
trCK4, tfCK4  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
AC Electrical Characteristics- CKo4 (2.048 MHz) Timing (Only when DPLL is active)  
Characteristic  
CKo4 Output Clock Period  
CKo4 Output High Time  
CKo4 Output Low Time  
CKo4 Output Rise/Fall Time  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
3
4
tCKP4  
tCKH4  
tCKL4  
485  
241  
241  
488  
244  
244  
492  
247  
247  
5
ns  
ns  
ns  
ns  
CL = 30 pF  
t
rCK4, tfCK4  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
tFPW5  
FPo5  
VCT  
(shares output pin  
with FPo_OFF2)  
tFODF5  
tFODR5  
tCKP5  
tCKH5  
tCKL5  
VCT  
CKo5  
trCK5  
tfCK5  
Output Frame Boundary  
Figure 45 - CKo5 Timing Diagram (19.44 MHz)  
106  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- CKo5 (19.44 MHz) Timing (Only when DPLL is active)  
Characteristic  
FPo5 Output Pulse Width  
FPo5 Output Delay from the FPo5 falling edge  
to the output frame boundary  
Sym.  
Min. Typ.Max. Units  
Notes  
1
2
tFPW5  
tFODF5  
49  
22  
51  
25  
55  
28  
ns  
ns  
CL = 30 pF  
3
FPo5 Output Delay from the output frame  
boundary to the FPo5 rising edge  
tFODR5  
21  
25  
32  
ns  
4
5
6
7
CKo5 Output Clock Period  
CKo5 Output High Time  
CKo5 Output Low Time  
CKo5 Output Rise/Fall Time  
tCKP5  
tCKH5  
tCKL5  
50  
23  
24  
51  
25  
25  
53  
27  
28  
5
ns  
ns  
ns  
ns  
t
rCK5, tfCK5  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
107  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- REF0-3 Reference Input to CKo Output Timing  
Characteristic  
Sym.  
Min.  
Max.  
Units  
Notes‡  
1
2
3
Minimum Input Pulse Width High or Low  
Input Rise or Fall Time  
tRPMIN  
tIR, (or tIF)  
tRD  
16  
ns  
ns  
1,2,3,14  
5
REF input to CKo0 output delay (no input jitter)  
REF @ 8 kHz, 2.048, 4.096, 8.192, 16.384 MHz  
REF @ 1.544 MHz  
-7  
6
0
ns  
ns  
ns  
15  
-2  
REF @ 19.44 MHz  
-10  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ See “Performance Characteristics Notes” on page 112.  
t
RPMIN  
t
RD  
REF0-3  
FPo[n]  
CKo[n]  
V
CT  
tIR  
V
CT  
V
CT  
Figure 46 - REF0 - 3 Reference Input/Output Timing  
108  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
AC Electrical Characteristics- Master Mode Output Timing  
Characteristic  
Sym.  
Min.  
Max.  
Units Notes‡  
1
2
3
CKo0 to CKo1 (8.192 MHz) delay  
CKo0 to CKo2 (16.384 MHz) delay  
tC1D  
tC2D  
tC3D  
-1  
-1  
-4  
2
3
0
ns  
ns  
ns  
1-5,14  
CKo0 to CKo3  
(32.768 MHz/16.384 MHz/8.192 MHz/4.096 MHz) delay  
4
CKo0 to CKo4 (1.544 MHz/2.048 MHz) delay  
CKo4 @ 1.544 MHz  
tC4D  
-12  
-2  
-7  
3
ns  
ns  
CKo4 @ 2.048 MHz  
5
CKo0 to CKo5 (19.44 MHz) delay  
tC5D  
6
12  
ns  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ See “Performance Characteristics Notes” on page 112.  
AC Electrical Characteristics- Divided Slave Mode Output Timing  
Characteristic Sym.  
CKo0 to CKo1 (8.192 MHz) delay  
Min.  
Max.  
Units Notes‡  
1
2
3
tC1D  
tC2D  
tC3D  
-1  
-1  
-2  
2
3
2
ns  
ns  
ns  
1-5,14  
CKo0 to CKo2 (16.384 MHz) delay  
CKo0 to CKo3  
(16.384 MHz/8.192 MHz/4.096 MHz) delay  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ See “Performance Characteristics Notes” on page 112.  
AC Electrical Characteristics- Multiplied Slave Mode Output Timing  
Characteristic Sym.  
CKo0 to CKo1 (8.192 MHz) delay  
Min.  
Max.  
Units Notes‡  
1
2
3
tC1D  
tC2D  
tC3D  
-1  
-1  
-1  
2
3
3
ns  
ns  
ns  
1-5,14  
CKo0 to CKo2 (16.384 MHz) delay  
CKo0 to CKo3  
(32.768 MHz/16.384 MHz/8.192 MHz/4.096 MHz) delay  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ See “Performance Characteristics Notes” on page 112.  
109  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
FPo0  
V
CT  
CKo0  
(4.096 MHz)  
V
V
V
CT  
CT  
CT  
t
C4D  
CKo4  
(1.544 MHz)  
t
t
t
C1D  
C2D  
C5D  
CKo1  
(8.192 MHz)  
V
V
V
CKo2  
CT  
CT  
CT  
(16.384 MHz)  
CKo5  
(19.44 MHz)  
t
C3D  
CKo3  
(32.768 MHz)  
Figure 47 - Output Timing (ST-BUS Format)  
110  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
DPLL Performance Characteristics- Accuracy & Switching  
Characteristics  
Conditions/  
Min.  
Max.  
Units  
Notes‡  
1
2
3
4
5
6
7
8
9
Freerun Accuracy  
-0.003  
-0.03  
-260  
0
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ns  
1,5,7  
1,4,8  
Initial Holdover Frequency Stability  
0.03  
260  
82.5  
64.5  
248  
242  
31  
Pull-in/Hold-in Range (Stratum 4E)  
1,3,7,9  
1,3,7,9,12  
Reference Far Hysteresis Limit (Stratum 4E)  
Reference Near Hysteresis Limit (Stratum 4E)  
Reference Far Hysteresis Limit (Relaxed Stratum 4E)  
Reference Near Hysteresis Limit (Relaxed Stratum 4E)  
Output phase continuity for reference switch1  
Normal output phase alignment speed (phase slope)  
-82.5  
-64.5  
-248  
1,3,7,9,13  
-242  
11  
10  
56  
µs/s  
s
10 Normal phase lock time2  
75  
1,3,7,9,10  
1. Reference switching to normal, holdover, or freerun mode  
2. -32 to +32 ppm locking  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ See “Performance Characteristics Notes” on page 112.  
DPLL Performance Characteristics- Output Jitter Generation (Unfiltered except for CKo5)  
Typ.‡  
Characteristics  
Units  
Conditions/Notes*  
1
2
3
4
5
Jitter at CKo0 and CKo3 (4.096 MHz)  
810  
800  
710  
670  
ps-pp  
ps-pp  
ps-pp  
ps-pp  
1-6,14  
Jitter at CKo1 and CKo3 (8.192 MHz)  
Jitter at CKo2 and CKo3 (16.384 MHz)  
Jitter at CKo3 (4.096, 8.192, 16.384, or 32.768 MHz)  
Jitter at CKo4 (1.544 MHz or 2.048 MHz)  
1.544 MHz  
2.048 MHz  
1060  
630  
ps-pp  
ps-pp  
6
Jitter at CKo5 (19.44 MHz)  
unfiltered jitter  
770  
540  
460  
510  
ps-pp  
ps-pp  
ps-pp  
ps-pp  
500 Hz - 1.3 MHz jitter  
65 kHz - 1.3 MHz jitter  
12 kHz - 1.3 MHz jitter  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
* See “Performance Characteristics Notes” on page 112  
111  
Zarlink Semiconductor Inc.  
ZL50019  
Data Sheet  
Performance Characteristics Notes  
† Characteristics are over recommended operating conditions unless otherwise stated.  
‡ Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not subject to production  
testing.  
1. Jitter on master clock input (XIN) is 100 ps pp or less.  
2. Jitter on reference input (REF0-3) is 2 ns pp or less.  
3. Normal Mode selected.  
4. Holdover Mode selected.  
5. Freerun Mode selected.  
6. Jitter is measured without an output filter.  
7. Accuracy of master clock input (XIN) is 0 ppm.  
8. Accuracy of master clock input (XIN) is 100 ppm.  
9. Capture range is +/-260 ppm; inaccuracy of XIN shifts this range.  
10. Phase alignment speed (phase slope) is programmed to 7 ns/125µs.  
11. Any input reference switch or state switch (i.e. REF0 to REF3, Normal to Holdover, etc.).  
12. Multi-period near limits and far limits are programmed to +/-64.713 ppm & +/-82.487 ppm respectively. (ST4_LIM = 1)  
13. Multi-period near limits and far limits are programmed to +/-240 ppm & +/-250 ppm respectively. (ST4_LIM = 0)  
14. 30 pF load on output pin.  
112  
Zarlink Semiconductor Inc.  
b
Package Code  
c
Zarlink Semiconductor 2003 All rights reserved.  
Previous package codes  
1
ISSUE  
ACN  
214440  
26June03  
DATE  
APPRD.  
Package Code  
c
Zarlink Semiconductor 2003 All rights reserved.  
Previous package codes  
ISSUE  
ACN  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

ZL50019QCG1

Enhanced 2 K Digital Switch with Stratum 4E DPLL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL50019_06

Enhanced 2 K Digital Switch with Stratum 4E DPLL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL50020

Enhanced 2 K Digital Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL50020GAC

Digital Time Switch, CMOS, PBGA256, 17 X 17 MM, 1.61 MM HEIGHT, PLASTIC, MS-034, BGA-256

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSEMI

ZL50020GAC

Enhanced 2 K Digital Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL50020GAG2

Digital Time Switch, PBGA256, 17 X 17 MM, 1.61 MM HEIGHT, LEAD FREE, PLASTIC, MS-034, BGA-256

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSEMI

ZL50020GAG2

Enhanced 2 K Digital Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL50020QCC

Enhanced 2 K Digital Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL50020QCG1

Digital Time Switch, PQFP256, 28 X 28 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026BJC, LQFP-256

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSEMI

ZL50020QCG1

Enhanced 2 K Digital Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL50021

Enhanced 4 K Digital Switch with Stratum 3 DPLL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK

ZL50021GAC

Enhanced 4 K Digital Switch with Stratum 3 DPLL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZARLINK