ZL50075GAC [ZARLINK]

32 K Channel Digital Switch with High Jitter Tolerance, Rate Conversion per Group of 2 Streams (8, 16, 32 or 64 Mbps), and 64 Inputs and 64 Outputs; 32 K通道数字开关高抖动容限,转换率每2流( 8 , 16 , 32或64 Mbps)和64个输入和64个输出组
ZL50075GAC
型号: ZL50075GAC
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

32 K Channel Digital Switch with High Jitter Tolerance, Rate Conversion per Group of 2 Streams (8, 16, 32 or 64 Mbps), and 64 Inputs and 64 Outputs
32 K通道数字开关高抖动容限,转换率每2流( 8 , 16 , 32或64 Mbps)和64个输入和64个输出组

开关 电信集成电路 电信转换电路 电信电路
文件: 总60页 (文件大小:500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL50075  
32 K Channel Digital Switch with High Jitter  
Tolerance, Rate Conversion per Group of  
2 Streams (8, 16, 32 or 64 Mbps),  
and 64 Inputs and 64 Outputs  
Data Sheet  
January 2006  
Features  
32,768 channel x 32,768 channel non-blocking  
Ordering Information  
digital Time Division Multiplex (TDM) switch at  
65.536 Mbps or 32.768 Mbps or using a  
combination of rates  
ZL50075GAC  
324 Ball PBGA  
Trays  
ZL50075GAG2 324 Ball PBGA** Trays  
**Pb Free Tin/Silver/Copper  
16,384 channel x 16,384 channel non-blocking  
digital TDM switch at 16.384 Mbps  
-40°C to +85°C  
8,192 channel x 8,192 channel non-blocking  
digital TDM switch at 8.192 Mbps  
Per-channel A-Law/µ-Law Translation  
Per-channel constant or variable throughput delay  
for frame integrity and low latency applications  
High jitter tolerance with multiple input clock  
sources and frequencies  
Up to 64 serial TDM input streams, divided into  
32 groups with 2 input streams per group  
Per-stream Bit Error Rate (BER) test circuits  
Per-channel high impedance output control  
Per-channel force high output control  
Per-channel message mode  
Up to 64 serial TDM output streams, divided into  
32 groups with 2 output streams per group  
Per-group input and output data rate conversion  
selection at 65.536 Mbps, 32.768 Mbps,  
16.384 Mbps and 8.192 Mbps. Input and output  
data group rates can differ  
Control interface compatible with Intel and  
Motorola 16 bit non-multiplexed buses  
Connection memory block programming  
Per-group input bit delay for flexible sampling  
point selection  
Per-group output fractional bit advancement  
Supports ST-BUS and GCI-Bus standards for  
input and output timing  
IEEE 1149.1 (JTAG) test port  
Two sets of output timing signals for interfacing  
additional devices  
3.3 V I/O with 5V tolerant inputs; 1.8 V core  
voltage  
VDD_CORE  
VDD_IO  
VSS  
ODE  
PWR  
STiA0  
STiB0  
SToA0  
SToB0  
Data Memory  
P/S  
Converter  
:
:
S/P  
Converter  
:
:
STiA31  
STiB31  
Connection Memory  
SToA31  
SToB31  
Input  
Timing  
Output  
Timing  
FPi0  
CKi0  
CK_SEL1-0  
Timing  
Test Access  
Port  
Microprocessor Interface  
and Control Registers  
FPo1-0  
CKo1-0  
Figure 1 - ZL50075 Functional Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2004-2006, Zarlink Semiconductor Inc. All Rights Reserved.  
ZL50075  
Data Sheet  
Applications  
Large Switching Platforms  
Central Office Switches  
Wireless Base Stations  
Multi-service Access Platforms  
Media Gateways  
Description  
The ZL50075 is a non-blocking Time Division Multiplex (TDM) switch with maximum 32,768 x 32,768 channels. The  
device can switch 64 kbps and Nx64 kbps TDM channels from any input stream to any output stream. With a  
number of enhanced features, the ZL50075 is designed for high capacity voice and data switching applications.  
The ZL50075 has 64 input and 64 output data streams which can operate at 8.192 Mbps, 16.384 Mbps,  
32.768 Mbps or 65.536 Mbps. The large number of inputs and outputs maintains full 32 K x 32 K channel switching  
capacity at bit rates of 65 Mbps and 32 Mbps. Up to 32 input and output data streams may operate at 65 Mbps. Up  
to 64 input and output data streams may operate at 32 Mbps, 16 Mbps or 8 Mbps. The data rate can be  
independently set in groups of 2 input or output streams. In this way it is possible to provide rate conversion from  
input data channel to output data channel.  
The ZL50075 uses a master clock (CKi0) and frame pulse (FPi0) to define the TDM data stream frame boundary  
and timing. A high speed system clock is derived internally from CKi0 and FPi0. The input and output data streams  
can independently reference their timings to the input clock or to the internal system clock.  
The ZL50075 has a variety of user configurable options designed to provide flexibility when data streams are  
connected to multiple TDM components or circuits. These include:  
Variable input bit delay and output advancement, to accommodate delays and frame offsets of streams  
connected through different data paths  
Two timing outputs, CKo1 - 0 and FPo1 - 0, which can be configured independently to provide a variety of  
clock and frame pulse options  
Support of both ST-BUS and GCI-Bus formats  
The ZL50075 also has a number of value added features for voice and data applications:  
Per-channel variable delay mode for low latency applications and constant delay mode for frame integrity  
applications  
Per-channel A-Law/µ-Law Conversions for both voice and data  
64 separate Pseudo-random Bit Sequence (PRBS) test circuits; one per stream. This provides an integrated Bit  
Error Rate (BER) test capability to facilitate data path integrity checking  
The ZL50075 has two major modes of operation: Connection Mode (normal) and Message Mode. In Connection  
Mode, data bytes received at the TDM inputs are switched to timeslots in the output data streams, with mapping  
controlled by the Connection Memories. Using Zarlink's Message Mode capability, microprocessor data can be  
broadcast to the output data streams on a per-channel basis. This feature is useful for transferring control and  
status information to external circuits or other TDM devices.  
A non-multiplexed microprocessor port provides access to the internal Data Memory, Connection Memory and  
Control Registers used to program ZL50075 options. The port is configurable to interface with either 16 bit Motorola  
or Intel-type microprocessors.  
The mandatory requirements of IEEE 1149.1 standard are supported via the dedicated Test Access Port.  
2
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Change Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.2 Switch Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.3 Stream Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
1.4 Input and Output Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1.4.1 Per Group Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1.5 Rate Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.0 Input Clock (CKi) and Input Frame Pulse (FPi) Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.0 Output Clock (CKo) and Output Frame Pulse (FPo) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.0 Output Channel Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.0 Data Input Delay and Data Output Advancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.1 Input Sampling Point Delay Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.2 Fractional Bit Advancement on Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.0 Message Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.1 Data Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.2 Connection Memory Block Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.0 Data Delay Through the Switching Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.1 Constant Delay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.2 Variable Delay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8.0 Per-Channel A-Law/m-Law Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
9.0 Bit Error Rate Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
10.0 Microprocessor Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
10.1 Bus Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.1.1 Read Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.1.2 Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
11.0 Power-up and Initialization of the ZL50075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
11.1 Device Reset and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
11.2 Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
11.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
12.0 IEEE 1149.1 Test Access Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
12.1 Test Access Port (TAP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
12.2 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
12.3 Test Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
12.4 Boundary Scan Description Language (BSDL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
13.0 Memory Map of ZL50075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
14.0 Detailed Memory and Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
14.1 Connection Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
14.1.1 Connection Memory Bit Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
14.1.2 Connection Memory LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
14.2 Data Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
14.3 BER Control Memory and Error Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
14.3.1 Input BER Enable Control Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
14.3.2 BER Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
14.4 Group Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
14.5 Input Clock Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
14.6 Output Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Table of Contents  
14.7 Block Init Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
14.8 Block Init Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
15.0 DC/AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
List of Figures  
Figure 1 - ZL50075 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - 32 K x 32 K Channel Basic Switch Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 3 - Input and Output Data Rate Conversion Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 4 - Input Sampling Point Delay Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 5 - Output Bit Advancement Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 6 - Data Throughput Delay for Constant Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 7 - Data Throughput Delay for Variable Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 8 - Example PRBS Timeslot Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 9 - Read Cycle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 10 - Write Cycle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 11 - Frame Pulse Input and Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 12 - ST-Bus Frame Pulse and Clock Output Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 13 - GCI Frame Pulse and Clock Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 14 - Serial Data Timing to CKi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 15 - Serial Data Timing to CKo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 16 - Microprocessor Bus Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 17 - Intel Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 18 - IEEE 1149.1 Test Port & PWR Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
5
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
List of Tables  
Table 1 - Data Rate and Maximum Switch Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 2 - TDM Stream Bit Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3 - CKi0 and FPi0 Setting via CK_SEL1 - 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 4 - Input and Output Voice and Data Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 5 - Example of Address and Byte Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 6 - Byte Enable Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 7 - Memory Data Word Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 8 - Data Bus Word Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 9 - Byte Address Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 10 - Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 11 - Connection Memory Group Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 12 - Connection Memory Stream Address Offset at Various Output Rates . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 13 - Connection Memory Timeslot Address Offset Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 14 - Connection Memory Bits (CMB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 15 - Connection Memory LSB Group Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 16 - Connection Memory LSB Stream Address Offset at Various Output Rates . . . . . . . . . . . . . . . . . . . . . 35  
Table 17 - Data Memory Group Address Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 18 - Data Memory Stream Address Offset at Various Output Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 19 - BER Enable Control Memory Group Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 20 - BER Enable Control Memory Stream Address Offset at Various Output Rates . . . . . . . . . . . . . . . . . . 38  
Table 21 - BER Counter Group and Stream Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 22 - Group Control Register Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 23 - Group Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 24 - Input Clock Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 25 - Output Clock Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 26 - Block and Power-up Initialization Status Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
6
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Change Summary  
The following table captures the changes from the April 2005 issue.  
Page  
25  
Item  
10.1.1, “Read Cycle“  
Change  
Clarified WAIT signal description in Read Cycle.  
Corrected WAIT signal tristate timing in Read Cycle.  
Clarified WAIT signal description in Write Cycle.  
Corrected WAIT signal tristate timing in Write Cycle.  
26  
Figure 9 "Read Cycle Operation"  
10.1.2, “Write Cycle“  
26  
27  
Figure 10 "Write Cycle Operation"  
38  
Table 21 “BER Counter Group and  
Stream Address Mapping“  
Corrected BER Counter Group and Stream Mapping  
Addresses.  
The following table captures the changes from the July 2004 issue.  
Page  
Item  
Change  
10  
"Pin Description" - CKo0-1  
Added special requirement for using output clock at  
65.536 MHz.  
11  
48  
50  
"Pin Description" - DTA, WAIT  
Added more detailed description to the DTA and WAIT  
pins.  
“AC Electrical Characteristics1 - FPi0  
and CKi0 Timing“  
Added tFPIS, tFPIH (input frame pulse setup and hold)  
maximum values.  
(1) “AC Electrical Characteristics1 -  
FPO0-1 and CKO0-1 (65.536 MHz)  
Timing“  
Added CKO0-1 and FPO0-1 setup and hold parameters for  
all different clock rates.  
(2) “AC Electrical Characteristics1 -  
FPO0-1 and CKO0-1 (32.768 MHz)  
Timing“  
(3) “AC Electrical Characteristics1 -  
FPO0-1 and CKO0-1 (16.384 MHz)  
Timing“  
(4) “AC Electrical Characteristics1 -  
FPO0-1 and CKO0-1 (8.192 MHz)  
Timing“  
51  
52  
“AC Electrical Characteristics - Output  
Clock Jitter Generation“  
Added this table to specify CKO0-1 jitter generation.  
“AC Electrical Characteristics1 - Serial  
Data Timing2 to CKi“  
(1) Values of parameters tSIPS, tSIPH, tSINS, tSINH, tSIPV,  
tSINV, SIPZ and tSINZ are revised.  
t
(2) Separated parameter tCKD into tCKDP and tCKDN.  
Added more detail to figure.  
53  
54  
Figure 14 "Serial Data Timing to CKi"  
“AC Electrical Characteristics - Serial  
Data Timing1 to CKo2“  
(1) Values of parameters tSOPS, tSOPH, tSONS, tSONH, tSOPV,  
tSONV, SOPZ and tSONZ are revised.  
t
(2) Added CKO skew parameter, tCKOS, (clock source to  
internal APLL).  
55  
Figure 15 "Serial Data Timing to CKo"  
Added more detail and tCKOS to figure.  
7
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Pin Diagram - ZL50075 19 mm x 19 mm 324 Ball PBGA (as viewed through top of package)  
A1 corner identified by metallized marking.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
D[15] D[14] D[5] D[4] D[3] A[18] A[17] A[13] A[12] A[11] A[8]  
A[4]  
A[2]  
A[0] R/W  
DS  
IC  
DTA  
A
B
C
D
E
F
STOA IM  
[1]  
D[11] D[10] D[8] D[7] D[6] D[1] A[15] A[10] A[5]  
A[1]  
NC  
CS SIZ[0] PWR STOA SIZ[1]  
[31]  
STIA STIB STIA STIB STOA D[13] D[9] D[0] A[14] A[9]  
A[6] BERR WAIT STIB TDO STIA TRST NC  
[31] [31]  
[2]  
[1]  
[0]  
[0]  
[0]  
STOB CKO STIA STOB VDD_ D[12] D[2] VDD_ A[16] VDD_ A[7]  
[2] [0] [1] [0] CORE CORE IO  
A[3] VDD_ TCK VDD_ TMS STOB STOB  
IO CORE [30] [31]  
STIA STIB STOB FPO VSS VSS VDD_ VDD_ VSS VDD_ VDD_ VSS VDD_ VDD_ TDI STOA STIB STIA  
[3] [2] [1] [0] CORE IO CORE IO CORE IO [30] [30] [30]  
STOB STIB STOA VDD_ VDD_ VSS VSS VDD_ VDD_ VSS VDD_ VDD_ VSS VDD_ STOB STIB STOA STIA  
[3] [3] [2] CORE IO CORE IO CORE IO CORE [29] [29] [29] [29]  
STOA STIB STIA VDD_ VDD_ VDD_ VSS VSS VSS VSS VSS  
VSS VDD_ VSS VDD_ STIB STOB STOA  
G
H
J
[3] [4] [4] IO CORE IO IO IO [28] [28] [28]  
VSS VSS STOA STOB VSS VDD_ VSS VSS VSS VSS VSS  
VSS VDD_ VDD_ VSS STOA STOB STIA  
[4] [4] CORE CORE IO [27] [27] [28]  
STIA STOA STIB STOB VDD_ VSS VSS VSS VSS VSS VSS  
VSS  
VSS VDD_ STOA STOB VSS STIB  
[5] [5] [5] [5] IO CORE [26] [26] [27]  
ODE STIA STIA STOA VDD_ VDD_ VSS VSS VSS VSS VSS  
VSS VDD_ VSS STIB  
IC STOA STIA  
K
L
[6]  
[7]  
[6] CORE IO  
IO [25] [25] [27]  
STIB STOB IC  
STIA VSS VDD_ VSS VSS VSS VSS VSS  
VSS VDD_ VDD_ STIA STOA STOB IC  
CORE IO [24] [24] [24]  
[6] [6]  
[8]  
CORE  
STIB STOA STOB VDD_ VDD_ VDD_ VSS VSS VSS VSS VSS  
[7] [7] [8] CORE IO IO  
VSS VDD_ VDD_ VDD_ STIA STOB STIB  
IO CORE CORE [23] [23] [26]  
M
N
P
R
T
STOB STIB STIB VDD_ VDD_ VSS VSS VDD_ VDD_ VSS VDD_ VDD_ VSS  
VSS VDD_ STOA STOB STIA  
IO [22] [22] [26]  
[7]  
IC  
[8]  
[9]  
IO CORE  
CORE IO  
CORE  
IO  
STIA STIA STOB VSS VSS VDD_ VDD_ VSS VDD_ VSS  
VSS VDD_ VDD_ STOA STOB NC STOB  
CORE IO [21] [21] [25]  
[9] [10] [10] CORE IO CORE  
STOA STOB STOA STIA VDD_ STOA STIA VDD_ STOA VDD_ STIB  
[8] [9] [10] [12] IO [13] [15] CORE [15] IO [17]  
IC  
VDD_ STIB VDD_ STIA STIA STIA  
IO [19] CORE [21] [22] [25]  
STOA STIB STIA STOA STOA STIA STOB STIB STOB FPI STIA  
[9] [10] [11] [11] [12] [13] [13] [15] [16] [0] [17]  
IC  
STIA STIA STIA STOA NC STIB  
[18] [19] [20] [20] [24]  
STIB STOB STIB CKO STIA STIB STOB STIA STOA IC  
NC STOB CK_ STOB STOB STOB STIB STOA  
[17] SEL[0 [18] [19] [20] [21] [23]  
U
V
[11]  
[11]  
[12]  
[1]  
[14]  
[14]  
[15]  
[16]  
NC  
[16]  
IC  
STOB FPO STIB STOA STOB STIB CKI  
IC STOA CK_  
STIB STOA STOA STIB STIB STIB  
[12] [1] [13] [14] [14] [16] [0]  
[17] SEL[1] [18] [18] [19] [20] [22] [23]  
8
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Pin Description  
Pin  
Name  
Description  
TDM Interface  
C3, D3, C1, E1,  
G3, J1, K2, K3,  
L4, P2, P3, T3,  
STiA0-31 Serial TDM Input Data ’A’ Streams (5 V Tolerant Input with  
Internal Pull-down)  
The data rate of these input streams can be selected in a group of 2  
to be either 8.192 Mbps, 16.384 Mbps, 32.678 Mbps or  
65.536 Mbps. Refer to Section 1.4 for rate programming options.  
The data streams can be selected to be either inverted or  
non-inverted, programmed by the Group Control Registers (Section  
14.4).  
R4, T6, U5, R7,  
U8, T11, T13, T14, T15, R16,  
R17, M16, L15, R18, N18,  
K18, H18, F18, E18, C16,  
Unused inputs are pulled low by internal pull-down resistors and  
may be left unconnected.  
C4, C2, E2, F2,  
G2, J3, L1, M1,  
N2, N3, T2, U1,  
STiB0-31 Serial TDM Input Data ’B’ Streams (5 V Tolerant Input with  
Internal Pull-down)  
The data rate of these input streams can be selected in a group of 2  
to be either 8.192 Mbps, 16.384 Mbps, or 32.678 Mbps. The stream  
is unused when its input group rate is 65.536 Mbps. Refer to  
Section 1.4 for rate programming options.  
U3, V3, U6, T8,  
V6, R11, V13, R14, V16,  
U17, V17, V18, T18, K15,  
M18, J18, G16, F16, E17,  
C14  
The data streams can be selected to be either inverted or  
non-inverted, programmed by the Group Control Registers (Section  
14.4).  
Unused inputs are pulled low by internal pull-down resistors and  
may be left unconnected.  
C5, B1, F3, G1,  
H3, J2, K4, M2,  
R1, T1, R3, T4,  
SToA0-31 Serial TDM Output Data ’A’ Streams (5 V Tolerant, 3.3 V  
Tri-state Slew-Rate Controlled Outputs)  
The data rate of these output streams can be selected in a group of  
2 to be either 8.192 Mbps, 16.384 Mbps, 32.678 Mbps or  
65.536 Mbps. Refer to Section 1.4 for rate programming options.  
The data streams can be selected to be either inverted or  
non-inverted, programmed by the Group Control Registers (Section  
14.4).  
T5, R6, V4, R9,  
U9, V11, V14, V15, T16,  
P15, N16, U18, L16, K17,  
J15, H16, G18, F17, E16,  
B17  
D4, E3, D1, F1,  
H4, J4, L2, N1,  
M3, R2, P4, U2,  
SToB0-31 Serial TDM Output Data ’B’ Streams (5 V Tolerant, 3.3 V  
Tri-state Slew-Rate Controlled Outputs)  
The data rate of these output streams can be selected in a group of  
2 to be either 8.192 Mbps, 16.384 Mbps or 32.678 Mbps. The  
stream is unused when its output group rate is 65.536 Mbps. Refer  
to Section 1.4 for rate programming options.  
V1, T7, V5, U7,  
T9, U12, U14, U15, U16,  
P16, N17, M17, L17, P18,  
J16, H17, G17, F15, D17,  
D18  
The data streams can be selected to be either inverted or  
non-inverted, programmed by the Group Control Registers (Section  
14.4).  
Unused outputs are tristated and may be left unconnected.  
V7  
CKi0  
ST-BUS/GCI-Bus Clock Input (5 V Tolerant Schmitt-Triggered  
Input)  
This pin accepts an 8.192 MHz, 16.384 MHz, 32.678 MHz or  
65.536 MHz clock. This clock must be provided for correct  
operation of the ZL50075. The frequency of the CKi0 input is  
selected by the CK_SEL1-0 inputs. The active clock edge may be  
either rising or falling, programmed by the Input Clock Control  
Register (Section 14.5).  
9
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Pin Description (continued)  
Pin  
Name  
Description  
T10  
FPi0  
ST-BUS/GCI-Bus Frame Pulse Input (5 V Tolerant Input)  
This pin accepts the 8 kHz frame pulse which marks the frame  
boundary of the TDM data streams. The pulse width is nominally  
one CKi0 clock period (assuming ST-BUS mode) selected by the  
CK_SEL1-0 inputs. The active state of the frame pulse may be  
either high or low, programmed by the Input Clock Control Register  
(Section 14.5).  
D2, U4  
CKo0-1  
ST-BUS/GCI-Bus Clock Outputs (3.3 V Outputs with Slew-Rate  
Control)  
These clock outputs can be programmed to generate 8.192 MHz,  
16.384 MHz, 32.678 MHz or 65.536 MHz TDM clock outputs. The  
active edge can be programmed to be either rising or falling. The  
source of the clock outputs can be derived from either the CKi0  
inputs or the internal system clock. The frequency, active edge and  
source of each clock output can be programmed independently by  
the Output Clock Control Register (Section 14.6). For 65.536 MHz  
output clock, the total loading on the output should not be larger  
than 10pF.  
E4, V2  
U13, V12  
K1  
FPo0-1  
ST-BUS/GCI-Bus Frame Pulse Outputs (3.3 V Outputs with  
Slew-Rate Control)  
These 8 kHz output pulses mark the frame boundary of the TDM  
data streams. The pulse width is nominally one clock period of the  
corresponding CKo output. The active state of each frame pulse  
may be either high or low, independently programmed by the  
Output Clock Control Register (Section 14.6).  
CK_SEL0-1 TDM Master Clock Input Select  
Inputs used to select the frequency and frame alignment of CKi0  
and FPi0:  
CK_SEL1 = 0, CK_SEL0 = 0, 8.192 MHz  
CK_SEL1 = 0, CK_SEL0 = 1, 16.384 MHz  
CK_SEL1 = 1, CK_SEL0 = 0, 32.768 MHz  
CK_SEL1 = 1, CK_SEL0 = 1, 65.536 MHz  
ODE  
Output Drive Enable (5 V Tolerant Input with Internal Pull-up)  
This is the asynchronous output enable control for the output  
streams. When it is high, the streams are enabled. When it is low,  
the output streams are tristated.  
Microprocessor Port and Reset  
A1, A2, C6, D6,  
B3, B4, C7, B5,  
B6, B7, A3, A4,  
A5, D7, B8, C8  
D15-0  
Microprocessor Port Data Bus (5 V Tolerant Bi-directional with  
Slew-Rate Output Control)  
16 bit bi-directional data bus. Used for microprocessor access to  
internal memories and registers.  
A6, A7, D9, B9, C9, A8, A9,  
A10, B10, C10, A11, D11,  
C11, B11, A12, D12, A13,  
B12, A14  
A18-0  
Microprocessor Port Address Bus (5 V Tolerant Inputs)  
19 bit address bus for the internal memories and registers. Note A0  
is not used and should be connected to a defined logic level.  
10  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Pin Description (continued)  
Pin  
Name  
Description  
B14  
CS  
Chip Select Input (5 V Tolerant Input)  
Active low input used with DS to enable read and write access to  
the ZL50075.  
A16  
A15  
DS  
Data Strobe Input (5 V Tolerant Input)  
Active low input used with CS to enable read and write access to  
the ZL50075.  
R/W  
Read/Write Input (5 V Tolerant Input)  
Input signal that controls the type of microprocessor access:  
0 - Microprocessor write to the ZL50075  
1 - Microprocessor read from the ZL50075  
A18  
C12  
DTA  
Data Transfer Acknowledge (5 V Tolerant, 3.3 V Tri-state Output  
with Slew-Rate)  
Active low output which indicates that a data bus transfer is  
complete. An external pull-up resistor is required to hold this pin  
HIGH when output is high-impedance.  
BERR  
Transfer Bus Error Output with Slew Rate Control (5 V Tolerant,  
3.3 V Tri-state Outputs with Slew-Rate Control)  
This pin goes low whenever the microprocessor attempts to access  
an invalid memory space inside the device. In Motorola bus mode, if  
this bus error signal is activated, the data transfer acknowledge  
signal, DTA, will not be generated. In Intel bus mode, the generation  
of the DTA is not affected by this BERR signal. An external pull-up  
resistor is required to hold a HIGH level when output is  
high-impedance.  
C13  
WAIT  
Data Transfer Wait Output (5 V Tolerant, 3.3 V Tri-state Output  
with Slew Rate)  
Active low wait signal output. An external pull-up resistor is required  
to hold a HIGH level when output is high-impedance.  
B15, B18  
SIZ0-1  
Data Transfer Size/Upper and Lower Data Strobe Inputs (5 V  
Tolerant Inputs)  
Motorola mode: SIZ0 - LDS, SIZ1 - UDS.  
Active low upper and lower data strobes, UDS and LDS, indicate  
whether the upper byte, D15-8, and/or lower byte, D7-0, is being  
transferred.  
Intel mode: SIZ0 - BE0, SIZ1 - BE1.  
Active low Intel type bus-enable signal BE1 and BE0 signals  
B2  
IM  
Microprocessor Port Bus Mode Select (5 V Tolerant Input)  
Control input:  
0 = Motorola mode  
1 = Intel mode  
B16  
PWR  
Device Reset (5 V Tolerant Schmitt-Triggered Input)  
Asynchronous reset input used to initialize the ZL50075.  
0 = Reset  
1 = Normal  
See Section 11.0, Power-up and Initialization of the ZL50075 for  
detailed description of Reset state.  
11  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Pin Description (continued)  
Pin  
Name  
Description  
IEEE 1149.1 (JTAG) Test Access Port (TAP)  
E15  
TDI  
Test Data (5 V Tolerant Input with Internal Pull-up)  
Serial test data input. When not used, this input may be left  
unconnected.  
C15  
D14  
TDO  
TCK  
Test Data (3.3 V Output)  
Serial test data output.  
Test Clock (5 V Tolerant Schmitt-Triggered Input with Internal  
Pull-up)  
Clock input used by TAP Controller. When not used, this input may  
be left unconnected.  
D16  
C17  
TMS  
Test Reset (5 V Tolerant Schmitt-Triggered Input with Internal  
Pull-up)  
Input which controls the state transitions of the TAP Controller.  
When not used, this pin is pulled high by an internal pull-up resistor  
and may be left unconnected.  
TRST  
Test Mode Select (5 V Tolerant Input with Internal Pull-up)  
Asynchronously initializes the JTAG TAP controller by putting it in  
the Test-Logic-Reset state. This pin should be pulsed low during  
power-up to ensure that the device is in the normal functional mode.  
When JTAG is not being used, this pin should be pulled low during  
normal operation.  
Unused  
U10, V9, V10, R12, L18,  
A17, L3, P1, T12, K16  
IC  
Internal Connections  
In normal mode these pins MUST be connected low.  
B13, C18, P17, T17, U11, V8  
NC  
No Connection  
In normal mode these pins MUST be left unconnected.  
Power  
E5, E6, E9, E12, F6, F7, F10,  
F13, G7, G8, G9, G10, G11,  
G12, G14, H1, H2, H5, H7,  
H8, H9, H10, H11, H12, H15,  
J6, J7, J8, J9, J10, J11, J12,  
J13, J17, K7, K8, K9, K10,  
K11, K12, K14, L5, L7, L8,  
L9, L10, L11, L12, M7, M8,  
M9, M10, M11, M12, N6, N7,  
N10, N13, N14, P5, P6, P9,  
P11, P12  
VSS  
Ground  
D5, D8, D15, E7, E10, E13,  
F4, F8, F11, F14, G5, H6,  
H13, J14, K5, L13, L6, M4,  
M14, M15, N5, N8, N11, P7,  
P10, P13, R8, R15  
VDD_CORE Power Supply for the Core Logic: +1.8 V  
12  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Pin Description (continued)  
Pin  
Name  
Description  
Power Supply for the I/O: +3.3 V  
D10, D13, E8, E11, E14, F5,  
F9, F12, G4, G6, G13, G15,  
H14, J5, K6, K13, L14, M5,  
M6, M13, N4, N9, N12, N15,  
P8, P14, R5, R10, R13  
VDD_IO  
1.0 Functional Description  
1.1 Overview  
The device has 64 ST-BUS/GCI-Bus inputs (STiA0 - 31 and STiB0 - 31) and 64 ST-BUS/GCI-Bus outputs (SToA0 -  
31 and SToB0 - 31). It is a non-blocking digital switch with 32,768 64 kbps channels and is capable of performing  
rate conversion between groups of 2 inputs and 2 outputs. The inputs accept serial input data streams with data  
rates of 8.192 Mbps, 16.384 Mbps, 32.768 Mbps or 65.536 Mbps. There are 32 input groups with each group  
consisting of 2 streams (‘A’ and ‘B’). Each group can be set to any of the data rates. The outputs deliver serial data  
streams with data rates of 8.192 Mbps, 16.384 Mbps, 32.768 Mbps or 65.536 Mbps. There are 32 output groups  
with each group consisting of 2 streams (‘A’ and ‘B’). Each group can be set to any of the data rates.  
By using Zarlink’s message mode capability, the microprocessor can store data in the connection memory which  
can be broadcast to the output streams on a per-channel basis. This feature is useful for transferring control and  
status information for external circuits or other ST-BUS/GCI-Bus devices.  
The ZL50075 uses the ST-BUS/GCI-Bus master input frame pulse (FPi0) and the ST-BUS/GCI-Bus master input  
clock (CKi0) to define the input frame boundary and timing for sampling the ST-BUS/GCI-Bus input streams with  
various data rates (8.192 Mbps, 16.384 Mbps, 32.768 Mbps or 65.536 Mbps). The rate of the input clock is defined  
by setting the CK_SEL1 - 0 pins.  
A selectable Motorola or Intel compatible non-multiplexed microprocessor port allows users to program the device  
to operate in various modes under different switching configurations. Users can use the microprocessor port to  
perform internal register and memory read and write operations. The microprocessor port has 16 bit data bus and  
17 bit address bus (in A18-0, A0 is not used, and A1 is used for word alignment). There are seven control signals  
(CS, DS, R/W, DTA, WAIT, BERR and IM).  
The device supports the mandatory requirements for the IEEE 1149.1 (JTAG) standard via the test port.  
1.2 Switch Operation  
The ZL50075 switches 64 kbps and Nx64 kbps data and voice channels from the TDM input streams, to timeslots  
in the TDM output streams. The device is non-blocking; all 32 K input channels can be switched through to the  
outputs. Any input channel can be switched to any available output channel.  
13  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
STiA0  
STiB0  
SToA0  
SToB0  
Output Group 0  
Input Group 0  
32 K x 32 K  
TDM INPUT  
64 Streams  
TDM OUTPUT  
64 Streams  
SToA31  
SToB31  
STiA31  
STiB31  
Output Group 31  
Input Group 31  
ZL50075  
Figure 2 - 32 K x 32 K Channel Basic Switch Configuration  
The maximum channel switching capacity is determined by the number of streams and their rate of operation, as  
shown in Table 1.  
MaximumNumber MaximumNumber  
Number of  
64 kbps Channels  
per Stream  
Maximum Switch  
Capacity(streams  
x channels = total)  
TDM Group  
Data Rate  
of Input TDM Data  
Streams  
of Output TDM  
Data Streams  
65.536 Mbps  
32.768 Mbps  
16.384 Mbps  
8.192 Mbps  
32  
64  
64  
64  
32  
64  
64  
64  
1024  
512  
256  
128  
32 x 1024 = 32,768  
64 x 512 = 32,768  
64 x 256 = 16,384‡  
64 x 128 = 8,192‡  
Table 1 - Data Rate and Maximum Switch Size  
† The maximum capacity shown is when all streams are at the same rate, and none are operating at 16.384 Mbps or 8.192 Mbps.  
‡ Switch capacity is limited to less than 32 K channels, only when streams are provisioned at 16 Mbps or 8 Mbps. The maximum switch capac-  
ity in this case is given by 32,768 - (M x 256) - (N x 384), where M is the number of 16 Mbps input or output streams, and N is the number of  
8 Mbps input or output streams.  
1.3 Stream Provisioning  
The ZL50075 is a large switch with a comprehensive list of user configurable, ’per-group’ programmable features.  
In order to facilitate ease of use, the ZL50075 offers a simple programming model. Streams are grouped in sets of  
two, with each group sharing the same configured characteristics. In this way it is possible to reduce programming  
complexity, while still maintaining flexible ’per-stream’ configuration options:  
Input and output rate selection, see Section 1.4  
Input stream clock source selection, see Section 2.0  
Output stream clock source selection, see Section 2.0  
Input stream sampling point selection, see Section 5.1  
Output stream fractional bit advance, see Section 5.2  
Input and output stream inversion control, see Section 14.4  
The streams are grouped, one from the TDM ’A’ streams, combined with the corresponding ’B’ streams. For  
example, input stream group #12 is STiA12 and STiB12, and output stream group #4 is SToA4 and SToB4. There  
are 32 input and 32 output groups. Depending on the data rate set for the group there will be between 1 and 2  
streams activated. If the data rate is set for 65.536 Mbps, the ‘A’ stream will be activated and the ‘B’ stream will not  
be activated. If the data rate is set for 32.768 Mbps, 16.384 Mbps or 8.192 Mbps, the ‘A’ and ‘B’ streams will be  
activated. The maximum channel capacity of a group is 1024 channels when operating at 65 Mbps or 32 Mbps. The  
14  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
switch capacity is reduced to 512 channels when operating at 16 Mbps and to 256 channels when operating at  
8 Mbps.  
1.4 Input and Output Rate Selection  
Table 1 shows the maximum number of streams available at different bit rates. The ZL50075 deactivates unused  
streams when operating at the higher bit rates as shown in Table 2.  
Input or Output Group n  
65 Mbps  
32 Mbps  
16 Mbps  
8 Mbps  
(n = 0 - 31)  
STiAn / SToAn  
STiBn / SToBn  
Active  
Not Active  
Active  
Active  
Active  
Active  
Active  
Active  
Table 2 - TDM Stream Bit Rates  
For 65 Mbps operation, only those inputs and outputs in the TDM ’A’ streams are active. For 32 Mbps, 16 Mbps and  
8 Mbps operation, the inputs and outputs in the TDM ’A’ and ’B’ streams are active.  
Note that if the internal system clock is not used as the clock source, there are limitations on the maximum data  
rate. See Section 2.0 for more details.  
1.4.1 Per Group Rate Selection  
See Section 14.4, Group Control Registers, for programming details. The data rates are set with the Input Stream  
Bit Rate (bits 3 - 2) and the Output Stream Bit Rate (bits 19 - 18) in the Group Control Registers 0 - 31 (GCR0 - 31).  
For the ZL50075, the bit rates of the inputs and outputs are programmed independently, in groups of 2 streams.  
Depending on the rate programmed, the active streams in the group will be as indicated in Table 2.  
For example:  
if input stream group #1 is programmed for 65 Mbps: STiA1 is active; STiB1 is not active  
if output stream group #15 is programmed for 32 Mbps, 16 Mbps or 8 Mbps: SToA15 and SToB15 are active  
1.5 Rate Conversion  
The ZL50075 supports rate conversion from any input stream rate to any output stream rate.  
An example of ZL50075 rate conversion is given in Figure 3. The output stream rates do not have to follow the input  
stream rates. In this example, on the input side of the switch you can have 24 streams operating at 65.536 Mbps  
(24,576 channels - 24 groups with 1 stream in each group), 8 streams operating at 32.768 Mbps (4096 channels - 4  
groups with 2 streams in each group) and 8 streams operating at 16.384 Mbps (2048 channels - 4 groups with 2  
streams in each group) with no streams operating at 8.192 Mbps. This results in an input capacity of 30,720 input  
channels. This is less than the full capacity of the device as some groups are operating at less than 32 Mbps. As  
the output streams do not have to follow the input streams, they can be configured so that 15 streams operate at  
65.536 Mbps (15,360 channels - 15 groups with 1 stream in each group), 28 streams operate at 32.768 Mbps  
(14,336 channels - 14 groups with 2 streams in each group), 2 streams operate at 16.384 Mbps (512 channels - 1  
group with 2 streams in the group) and 4 streams operate at 8.192 Mbps (512 channels - 2 groups with 2 streams in  
each group). This results in an output capacity of 30,720 output channels. This is less than the full capacity of the  
device as some groups are operating at less than 32 Mbps.  
15  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
STiA0 - 23 at 65 Mbps  
STiB0 - 23 Not Active  
SToA0 - 14 at 65 Mbps  
SToB0 - 14 Not Active  
Output Groups  
0 - 14 at 65 Mbps  
Input Groups  
0 - 23 at 65 Mbps  
SToA15 - 28 at 32 Mbps  
SToB15 - 28 at 32 Mbps  
Output Groups  
15 - 28 at 32 Mbps  
STiA24 - 27 at 32 Mbps  
STiB24 - 27 at 32 Mbps  
Input Groups  
24 - 27 at 32 Mbps  
SToA29 at 16 Mbps  
SToB29 at 16 Mbps  
Output Group  
29 at 16 Mbps  
STiA28 - 31 at 16 Mbps  
STiB28 - 31 at 16 Mbps  
Input Groups  
SToA30 - 31 at 8 Mbps  
SToB30 - 31 at 8 Mbps  
28 - 31 at 16 Mbps  
Output Groups  
30 - 31 at 8 Mbps  
Example:  
Input Groups 0 - 23 at 65 Mbps; Output Groups 0 - 14 at 65 Mbps  
Input Groups 24 - 27 at 32 Mbps; Output Groups 15 - 28 at 32 Mbps  
Input Groups 28 - 31 at 16 Mbps; Output Group 29 at 16 Mbps  
Output Groups 30 - 31 at 8 Mbps  
Figure 3 - Input and Output Data Rate Conversion Example  
2.0 Input Clock (CKi) and Input Frame Pulse (FPi) Timing  
The input timing for the ZL50075 can be set for one of four different frequencies. They can also be set for ST-BUS  
or GCI-Bus mode with positive or negative input. The CKi0 and FPi0 input timing must be provided in order for the  
device to be used. CKi0 is used to generate the internal clock. This clock is used for all the internal logic and can be  
used as one of the clocks that defines the timing for the input and output data. The input stream clock source is  
selected by the ISSRC1 - 0 (bits 1 - 0) in the Group Control Register. The output stream clock source is selected by  
the OSSRC1 - 0 (bits 17 - 16) in the Group Control Register.  
The CKi0 and FPi0 input frequency is set via the CK_SEL1 - 0 pins as shown in Table 3. By default the CKi0 and  
FPi0 pins accept ST-BUS, negative input timing. The input frame pulse format (ST-BUS/GCI-Bus), frame pulse  
polarity, and clock polarity can be programmed by the GCISEL0 (bit 2), FPIPOL0 (bit 1), and CKIPSL0 (bit 0) in the  
Input Clock Control Register (ICCR), as described in Section 14.5.  
CK_SEL1  
CK_SEL0  
Input CKi0 and FPi0  
0
0
1
1
0
1
0
1
8.192 MHz  
16.384 MHz  
32.768 MHz  
65.536 MHz  
Table 3 - CKi0 and FPi0 Setting via CK_SEL1 - 0  
The input streams, output streams, and output clocks / frame pulses can use either the internal system clock or the  
input CKi0 and FPi0 as clock sources. The input streams’ clock sources are controlled by the ISSRC1-0 (bits 1 - 0)  
in the Group Control Registers (GCR). The output streams’ clock sources are controlled by the OSSRC1-0 (bits 17  
- 16) in the Group Control Registers (GCR). The output clocks’ / frame pulses’ clock sources are controlled by the  
CKO1SRC1-0 (bits 8-7) and CKO0SRC1-0 (bits 1-0) in the Output Clock Control Register (OCCR). Using the input  
CKi0 and FPi0 as clock source provides a direct interface to jittery peripherals, while using the internal system clock  
as clock source provides the best data rate and clock rate flexibility.  
16  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
When the internal system clock is not used as the clock source, there are limitations to the data rate and the output  
clock rate. For all the input and output stream groups that do not use the internal system clock as their clock source,  
the data rate is limited to be no higher than the selected clock source’s rate (e.g., if CKi0 runs at 16.384 MHz and it  
is selected as the clock source for input stream group 3, then the maximum data rate of STiA3 and STiB3 is  
16.384 Mbps). Similarly, for all the output clocks that do not use the internal system clock as their clock source, the  
clock rate is limited to be no higher than the selected clock source’s rate (e.g., if CKi0 runs at 32.768 MHz and it is  
selected as the clock source for output clock CKo0, then the maximum clock rate of CKo0 is 32.768 MHz).  
3.0 Output Clock (CKo) and Output Frame Pulse (FPo) Timing  
There are two output timing pairs, CKo1 - 0 and FPo1 - 0. By default these signals generate ST-BUS, negative  
timing, and use the internal system clock as reference clock source. Their default clock rates are 65.536 MHz for  
CKo0 and 32.768 MHz for CKo1. Their properties can also be individually programmed in the Output Clock Control  
Register (OCCR) to control the frame pulse format (ST-BUS/GCI-Bus), frame pulse polarity, clock polarity, clock  
rate (8.192 MHz, 16.384 MHz, 32.768 MHz or 65.536 MHz), and reference clock source. Refer to Section 14.6 for  
programming details. Note that the reference clock source can be set to either the internal system clock or the input  
CKi0 and FPi0 signals. If the input CKi0 and FPi0 is selected as the reference source, the output clock cannot be  
programmed to generate a higher clock frequency than the reference source. As each output timing pair has its  
own bit settings, they can be set to provide different output timings. For 65.536 MHz output clock, the total  
loading on the output should not be larger than 10pF.  
4.0 Output Channel Control  
To be able to interface with external buffers, the output signals can be set to enter a high impedance or drive high  
state on a per-channel basis. The Per Channel Function (bits 31 - 29) in the Connection Memory Bits can be set to  
001 to drive the channel output high, or to 000, 110 or 111 to set the channel into a high impedance state.  
5.0 Data Input Delay and Data Output Advancement  
The Group Control Registers (GCR) are used to adjust the input delay and output advancement for each input and  
output data groups. Each group is independently programmed.  
5.1 Input Sampling Point Delay Programming  
The input sampling point delay programming feature provides users with the flexibility of handling different wire  
delays when incoming traffic is from different sources.  
By default, all input streams have zero delay, such that bit 7 is the first bit that appears after the input frame  
boundary (assuming ST-BUS formatting). The nominal input sampling point with zero delay is at the 3/4 bit time.  
The input delay is enabled by the Input Sample Point Delay (bit 8 - 4) in the Group Control Registers 0 - 31 (GCR0  
- 31) as described in Section 14.4 on page 39. The input sampling point delay can range from 0 to 7 3/4 bit delay  
with a 1/4 bit resolution on a per group basis.  
17  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Nominal Channel n Boundary  
Nominal Channel n+1 Boundary  
STi[n]  
0
7
6
5
4
3
2
1
0
7
6
00000 (Default)  
00001  
11111  
11110  
11101  
00010  
00011  
00100  
11100  
11011  
00101  
00110  
00111  
01000  
01001  
11010  
11001  
11000  
10111  
10110  
01010  
01011  
10101  
10100  
01100  
01101  
01110  
01111  
10011  
10010  
10001  
10000  
Example: With a setting of 01111 the sampling point for bit 7 will be 3 1/2 bits  
Figure 4 - Input Sampling Point Delay Programming  
There are limitations when the ZL50075 is programmed to use CKi0 as the input stream clock source as opposed  
to the internal clock:  
The granularity of the delay becomes 1/2 the selected reference clock period, or 1/4 bit, whichever is longer  
If the selected reference clock frequency is the same as the stream bit rate, the granularity of the delay is 1/2 bit.  
In this case, the least significant bit of the ISPD register is not used; the remaining 4 bits select the total delay in  
1/2 bit increments, to a maximum of 7 1/2 bits. Also, the 0 bit delay reference point changes from the 3/4 bit  
position to the 1/2 bit position.  
5.2 Fractional Bit Advancement on Output  
See Section 14.4, Group Control Registers, for programming details.  
This feature is used to advance the output data with respect to the output frame boundary. Each group has its own  
bit advancement value which can be programmed in the Group Control Registers 0 - 31 (GCR0 - 31).  
By default all output streams have zero bit advancement such that bit 7 is the first bit that appears after the output  
frame boundary (assuming ST-BUS formatting). The output advancement is enabled by the Output Stream Bit  
Advancement (bits 21 - 20) of the Group Control Registers 0 - 31 (GCR0 - 31), as described in Section 14.4. The  
output delay can vary from 0 to 22.8 ns with a 7.6 ns increment. The exception to this is output streams  
programmed at 65 Mbps, in which case the increment is 3.8 ns with a total advancement of 11.4 ns.  
18  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Nominal 8 MHz  
Clock  
Nominal 16 MHz  
Clock  
Nominal 32/65 MHz  
Clock  
Nominal Output  
Bit Timing  
OSBA = 00  
OSBA = 01  
7.6ns (~3.8 ns at 65 Mbps)  
Level 1  
Advance  
15.2ns (~7.6 ns at 65 Mbps)  
22.8ns (~11.4 ns at 65 Mbps)  
Level 2  
Advance  
OSBA = 10  
OSBA = 11  
Level 3  
Advance  
Figure 5 - Output Bit Advancement Timing  
This programming feature is provided to assist in designs where per stream routing delays are significant and  
different.  
The OSBA bits in the Group Control Registers are used to set the bit-advancement for each of the corresponding  
serial output stream groups. Figure 5 illustrates the effect of the OSBA settings on the output timing.  
There are limitations when the ZL50075 is programmed to use CKi0 as the output stream clock source:  
If the selected reference clock frequency is 65 MHz or 32 MHz, the granularity of the advancement is  
reduced to 1/2 the clock period  
If the selected reference clock frequency is 16 MHz or 8 MHz, bit advancement is not available and the  
output streams are driven at the nominal times  
6.0 Message Mode  
In Message Mode (MSG), microprocessor data can be broadcast to the output data streams on a per-channel  
basis. This feature is useful for transferring control and status information to external circuits or other TDM devices.  
For a given output channel, when the corresponding Per Channel Function (bits 31 - 29) in the Connection Memory  
are set to Message Mode (010), the Connection Memory’s lowest data byte (bits 7 - 0) is output in the timeslot.  
Refer to Section 14.1.1, Connection Memory Bit Functions, for programming details  
19  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
To increase programming bandwidth, the ZL50075 has separate addressable 32 bit memory locations, called  
Connection Memory Least Significant Bytes (LSB), which provide direct access to the Connection Memories’  
Lowest data bytes (bits 7 - 0). Up to four consecutive message mode channels can be set with one Connection  
Memory LSB access. Refer to Section 14.1.2, Connection Memory LSB, for programming details.  
6.1 Data Memory Read  
All TDM input channels can be read via the microprocessor port. This feature is useful for receiving control and  
status information from external circuits or other TDM devices. Each 32 bit Data Memory access enables up to four  
consecutive input channels to be monitored. The Data Memory field is read only; any attempt to write to this  
address range will result in a bus error condition signalled back to the host processor. Refer to Section 14.2, Data  
Memory, for programming details.  
The latency of data reads is up to 3 frames, depending on when the input timeslots are sampled.  
6.2 Connection Memory Block Programming  
See Section 14.7, Block Init Register, and Section 14.8, Block Init Enable Register, for programming details.  
This feature allows for fast initialization of the connection memory after power up. When the block programming  
mode is enabled, the contents of Block Init Register are written to all Connection Memory Bits. This operation  
completes in one 125 µs frame. During Connection Memory initialization, all TDM output streams are set to high  
impedance.  
7.0 Data Delay Through the Switching Paths  
See Section 14.1.1, Connection Memory Bit Functions, for programming details.  
The switching of information from the input serial streams to the output serial streams results in a throughput delay.  
The device can be programmed to perform timeslot interchange functions with different throughput delay  
capabilities on a per-channel basis. For voice applications, select variable throughput delay to ensure minimum  
delay between input and output data. In wideband data application, select constant delay to maintain the frame  
integrity of the information through the switch. The delay through the device varies according to the type of  
throughput delay selected by programming the Per Channel Function (bits 31 - 29) in the Connection Memories.  
When these bits are set to 011, the channel is in variable delay mode. When they are set to 100, the channel is in  
constant delay mode.  
7.1 Constant Delay Mode  
In this mode the frame integrity is maintained in all switching configurations. The delay though the switch is 2  
frames - Input Channel + Output Channel. This can result in a minimum delay of 1 frame + 1 channel if the last  
channel of a stream is switched to the first channel of a stream. The maximum delay is 1 channel short of 3 frames  
delay. This occurs when the first channel of a stream is switched to the last channel of a stream.  
The data throughput delay is expressed as a function of ST-BUS/GCI-Bus frames, input channel number (n) and  
output channel number (m). The data throughput delay (T) is:  
T = 2 frames + (n - m)  
20  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
Figure 6 - Data Throughput Delay for Constant Delay  
7.2 Variable Delay Mode  
Variable delay mode causes the output channel to be transmitted as soon as possible. This is a useful mode for  
voice applications where the minimum throughput delay is more important than data integrity. The delay through the  
switch is minimum 3 channels and maximum 1 frame + 2 channels.  
N-2 N-1 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9  
N-2 N-1 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9  
N-2 N-1 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9  
N-2 N-1 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
Figure 7 - Data Throughput Delay for Variable Delay  
21  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
8.0 Per-Channel A-Law/µ-Law Translation  
The ZL50075 provides per channel code translation to be used to adapt pulse code modulation (PCM) voice or data  
traffic between networks which use different encoding laws. Code translation is available in both Connection Mode  
and Message Mode.  
This feature is controlled by the Connection Memories. The V/D (bit 28) defines if the traffic in the channel is voice  
or data. The ICL1 - 0 (bits 27 - 26) define the input coding law and the OCL1 - 0 (bits 25 - 24) define the output  
coding law. The different coding options are shown in Table 4:  
Input Coding  
(ICL1- 0)  
Output Coding  
(OCL1 - 0)  
Voice Coding  
(V/D bit = 0)  
Data Coding  
(V/D bit = 1)  
00  
01  
10  
00  
01  
10  
ITU-T G.711 A-Law  
ITU-T G.711 µ-Law  
A-Law without Alternate Bit  
Inversion (ABI)  
No Code  
Alternate Bit Inversion (ABI)  
Inverted Alternate Bit  
Inversion (ABI)  
11  
11  
µ-Law without Magnitude  
All Bits Inverted  
Inversion (MI)  
Table 4 - Input and Output Voice and Data Coding  
For voice coding options, the ITU-T G.711 A-Law and ITU-T G.711 µ-Law are the standard rules for encoding. The  
A-Law without Alternate Bit Inversion (ABI) is an alternative code that does not invert the even bits (6, 4, 2, 0). The  
µ-Law without Magnitude Inversion (MI) is an alternative code that does not perform Inversion of magnitude bits (6,  
5, 4, 3, 2, 1, 0).  
When performing data code options, No Code does not invert the bits. The Alternate Bit Inversion (ABI) option  
inverts the even bits (6, 4, 2, 0) while the Inverted Alternate Bit Inversion (ABI) inverts the odd bits (7, 5, 3, 1). When  
All Bits Inverted is selected, all of the bits (7, 6, 5, 4, 3, 2, 1, 0) are inverted.  
The input channel and output channel encoding law are configured independently. If the output channel coding is  
set to be different from the input channel, the ZL50075 performs translation between the two standards. If the input  
and output encoding laws are set to the same standard, no translation occurs.  
9.0 Bit Error Rate Tester  
The ZL50075 has one Bit Error Rate (BER) transmitter and one BER receiver for each pair of input and output  
streams, resulting in 64 transmitters connected to the output streams and 64 receivers associated with the input  
streams. Each transmitter can generate a BER sequence with a pattern of 215-1 Pseudo-Random Code (ITU  
O.151). Each transmitter can start at any location on the stream and will last for a minimum of 1 channel to a  
maximum of 1 frame time (125 µs). The BER transmitters are enabled by programming the Per Channel Function  
(bit 31 - 29) to 101 (PRBS Generator mode) in the Connection Memories.  
Multiple Connection Memory locations can be programmed for BER tests. These locations are not required to be  
consecutive. However, when read back, the BER locations must be received in the same order that they were  
transmitted. If the BER locations are not received in the same order, the BER test will produce errors.  
The PRBS bit pattern is sequentially loaded into the output timeslots. An example is shown in Figure 8.  
22  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Example segment of serial bit pattern  
from Stream N PRBS Generator  
..010111001101101111001010110110001011111011010011100001101...  
Stream N with Channels  
a, b and c enabled  
for PRBS insertion  
a
b
c
a
b
c
Frame m  
Frame m+1  
Figure 8 - Example PRBS Timeslot Insertion  
Each PRBS detector can be configured to monitor for bit errors in one or more timeslots. The selection of timeslots  
is configured by the Input BER Enable Control Memory (IBERECM). See Section 14.3.1 for programming details,  
Each detector has an associated 16 bit error counter accessible via the microprocessor interface, as described in  
Section 14.3.2, BER Counters. The value of the counter represents the total number of errors detected on the  
corresponding input stream. Bit errors are accumulated until the counter is either reset (by writing to the counter or  
by resetting the device), or the counter reaches its maximum value, 65,535 (decimal). If more than 65,535 errors  
are detected, the counter will hold at the maximum value until reset.  
Any number of timeslots may be configured for bit error rate testing; however the user must ensure the following for  
correct operation of the BER test function:  
1. The number of timeslots enabled for PRBS detection on the input stream must equal the number of timeslots  
enabled for PRBS generation on the source output stream  
2. The arrival order of timeslots at the PRBS detector must be the same as the order in which timeslots were trans-  
mitted by the PRBS generator. For example, in Figure 8 above, the timeslot order a, b, c must be maintained  
through the external path from source TDM output stream to destination TDM input stream.  
10.0 Microprocessor Port  
The ZL50075 has a generic 16-bit microprocessor port that provides access to the 32-bit internal Data Memory  
(read access only), Connection Memory and Control Registers. D15 on the bus maps to Bit 31 and Bit 15 of the  
internal 32 bit memory or register, D14 maps to Bit 30 and Bit 14, etc.  
The IM pin is used to select between Motorola bus control and Intel bus control. If the IM input is low, then a  
Motorola control is selected. If the IM bit is high, then an Intel control is selected. Regardless of which bus  
configuration is selected, the bus cycle termination signals WAIT & DTA are both provided.  
The Data Memory, Connection Memory and Control Registers are assigned 32 bit fields in the ZL50075 memory  
space. Each 32 bit memory or register location spans 4 consecutive addresses. Example:  
The 32 bit Group Control Register for TDM Group 0 is located at address range 40200 - 40203 Hex  
The Least Significant address identifies the Most Significant Byte (MSB) in the 32 bit field, as illustrated in Table 5.  
23  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Address (Hex)  
Memory/Register Bits  
40200  
40201  
40202  
40203  
Bits 31:24 (MSB)  
Bits 23:16  
Bits 15:8  
Bits 7:0 (LSB)  
Table 5 - Example of Address and Byte Significance  
The Address Bus, A18 - 0, controls access to each 32 bit location. A0 is not used and must be connected to defined  
logic level. Address bit A1 and the Data Transfer Size inputs, SIZ1 - 0, identify which bytes are being accessed.  
In Motorola Bus Mode (IM = 0), SIZ1 - 0 form active low data strobe signals, consistent with UDS and LDS available  
on the MC68000 and MC68302 processors, as shown in Table 6.  
In Intel Bus Mode (IM = 1), SIZ1 - 0 form active low byte enable signals, consistent with BE1 and BE0 available on  
the Intel i960 processor, as shown in Table 6.  
Motorola Mode MC68000, MC68302  
Equivalent Function  
IM = 0  
Intel Mode i960  
Equivalent Function  
IM = 1  
Pin Name  
Data Bus Bytes Enabled  
SIZ1  
SIZ0  
UDS  
LDS  
BE1  
BE0  
D15-8  
D7-0  
Table 6 - Byte Enable Signals  
In both Intel and Motorola modes, the A1 address input is used to identify the word alignment in internal memory, as  
shown in Table 7.  
A1  
Memory Data Word Alignment  
0
1
Bits 31:16  
Bits 15:0  
Table 7 - Memory Data Word Alignment  
Data bus word alignments are shown in Table 8. An example of byte addressing is given in Table 9.  
Microprocessor  
16 Bit Data Bus  
Internal 32-Bit Memory  
SIZ1  
SIZ0  
A1  
or Register  
D15 - 8  
0
0
1
1
0
0
1
1
1
0
0
0
0
1
0
1
0
1
0
Bits 31:24  
Bits 15:8  
Bits 23:16  
Bits 7:0  
Bits 31:16  
Bits 15:0  
No access  
D7 - 0  
D15 - 0  
1
X1  
Table 8 - Data Bus Word Alignment  
1. X - Don’t Care  
24  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Address  
(Hex)  
Register  
Register  
Byte  
A18 - 0 (binary)  
SIZ1 SIZ0  
Comments  
Description  
40200 or  
40201  
40282 or  
40283  
40286 or  
40287  
40284 or  
40285  
Group Control  
Bits 23:16 100 0000 0010 0000 000X†  
1
0
0
0
0
1
0
0
8 bit transfer  
Register (Group 0)  
Input Clock Control  
Register  
Bits 15:8  
Bits 15:0  
100 0000 0010 1000 001X†  
100 0000 0010 1000 011X†  
8 bit transfer  
16 bit transfer  
16 bit transfer  
Output Clock  
Control Register  
Output Clock  
Bits 31:16 100 0000 0010 1000 010X†  
Control Register  
Table 9 - Byte Address Examples  
† - Don’t Care. A0 is not used.  
10.1 Bus Operation  
10.1.1 Read Cycle  
The operation of a read cycle is illustrated in Figure 9.  
The microprocessor asserts the R/W control signal high, to signal a read cycle. It also drives the address A,  
transfer size, SIZ1 - 0, and chip select logic drives the CS signal active low to select the ZL50075  
The microprocessor then drives the DS signal active low, to signal the start of the bus cycle. The DS signal  
is held low for the duration of the bus cycle  
WAIT is asserted active low  
The ZL50075 accesses the requested memory or register location(s), and places the requested data onto  
the data bus, D15 - 0. All data bus pins are driven, whether or not they are being used for the specific data  
transfer. Unused pins will present unknown data. If the address is to an unused area of the memory space,  
unknown data is presented on the data bus  
The ZL50075 then de-asserts WAIT, and asserts either DTA or BERR, depending on the validity of the data  
transfer  
When the microprocessor observes the active low state of the DTA or the BERR signal or the low-to-high  
transition of the WAIT signal, it terminates the bus cycle by driving the DS pin inactive high  
When the ZL50075 sees the DS signal go inactive high, it removes the assertions on the DTA or BERR  
signals by driving them inactive high  
When the ZL50075 sees the CS signal go inactive high, it tri-states the data bus, D15 - 0 and the DTA,  
BERR and WAIT signals. However, if CS goes inactive high before DS goes inactive high, the DTA, BERR  
and WAIT signals are driven inactive high before they are tri-stated  
In Intel mode, DTA is always driven to signal the end of a bus cycle, regardless of BERR  
25  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Address A,  
SIZ1 - 0  
CS  
R/W  
DS  
Hi-Z  
Data  
Hi-Z  
DTA  
BERR  
Hi-Z  
Hi-Z  
WAIT  
The cycle termination signals WAIT & DTA are provided for all bus configurations.  
Figure 9 - Read Cycle Operation  
10.1.2 Write Cycle  
The operation of the write cycle is illustrated in Figure 10.  
The microprocessor asserts the R/W control signal low, to signal a write cycle. It also drives the address A,  
data transfer size, SIZ1 - 0, and chip select logic drives the CS signal active low to select the ZL50075  
The microprocessor then drives the data bus, D15 - 0 with the data to be written, and then drives the DS  
signal active low, to signal the start of the bus cycle. The DS signal is held low for the duration of the bus  
cycle  
WAIT is asserted active low  
The ZL50075 transfers the data presented on the data bus pins into the indicated memory or register  
location(s). If the address is to an unused area of the memory space, or to the data memory, no data is  
transferred. The microprocessor port cannot write to the Data Memory  
The ZL50075 then de-asserts WAIT, and asserts either DTA or BERR, depending on the validity of the data  
transfer  
When the microprocessor observes the active low state of the DTA or the BERR signal or the low-to-high  
transition of the WAIT signal, it terminates the bus cycle by driving the DS pin inactive high  
When the ZL50075 sees the DS signal go inactive high, it removes the assertions on the DTA or BERR  
signals by driving them inactive high  
When the ZL50075 sees the CS signal go inactive high, it tri-states the DTA, BERR and WAIT signals.  
However, if CS goes inactive high before DS goes inactive high, the DTA, BERR and WAIT signals are  
driven inactive high before they are tri-stated  
In Intel mode, DTA is always driven to signal the end of a bus cycle, regardless of BERR  
26  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Address  
SIZ1 - 0  
CS  
R/W  
DS  
Data  
DTA  
BERR  
Hi-Z  
Hi-Z  
Hi-Z  
WAIT  
The cycle termination signals WAIT & DTA are provided for all bus configurations.  
Figure 10 - Write Cycle Operation  
11.0 Power-up and Initialization of the ZL50075  
11.1 Device Reset and Initialization  
The PWR pin is used to reset the ZL50075. When this pin is low, the following functions are performed:  
Asynchronously puts the microprocessor port in a reset state  
Tristates all of the output streams (SToA0 - 31, SToB0 - 31)  
Preloads all of the registers with their default values (refer to the individual registers for default values)  
Clears all internal counters  
11.2 Power Supply Sequencing  
The ZL50075 has two separate power supplies: VDD_IO (3.3 V) and VDD_CORE (1.8 V). The recommended  
power-up sequence is for VDD_IO to be applied first, followed by the VDD_CORE supply. VDD_CORE should not lead  
VDD_IO supply by more than 0.3 V. Both supplies may be powered-down simultaneously.  
11.3 Initialization  
Upon power up, the ZL50075 should be initialized as follows:  
Assert PWR to low immediately after power is applied  
Set the TRST pin low to disable the JTAG TAP controller  
Deassert the PWR pin.  
Apply the Master Clock Input (CKi0) and Master Frame Pulse Input (FPi0) to the values defined by the  
CK_SEL1 - 0 pins  
Set the ODE pin low to disable the output streams  
27  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Note: After the PWR reset is removed, and on the application of a suitable master clock input, it takes  
approximately 1 ms for the internal initialization to complete  
Automatic block initialization of the Connection Memory to all zeros occurs, without microprocessor  
intervention  
All Group Control Registers are preset to 000C000C hex, corresponding to rates of 65 Mbps, no link  
inversions, no fractional output bit advancements, internal clock source, and no input sample point delays  
The Input Clock Control Register is preset to 0DB hex, corresponding to:  
-
-
-
All clock inputs set to negative logic sense  
All frame pulse inputs set to negative logic sense  
All input frame pulses set to ST-BUS timing  
The Output Clock Control Register is pre-set to 060D1C3C hex, corresponding to:  
-
-
-
-
-
All clock outputs set to negative logic sense  
All frame pulse outputs set to negative logic sense  
All output frame pulses set to ST-BUS timing  
All output clock source selections to internal  
Clock outputs, CKo0 - 1 are preset to rates of 65 MHz and 32 MHz, respectively  
Note: If the master clock input, CKi0, is not available, the microprocessor port will assert BERR on all accesses and  
read cycles.  
12.0 IEEE 1149.1 Test Access Port  
The JTAG test port is implemented to meet the mandatory requirements of the IEEE 1149.1 (JTAG) standard. The  
operation of the boundary-scan circuity is controlled by an external Test Access Port (TAP) Controller.  
The ZL50075 uses the public instructions defined in IEEE 1149.1, with the provision of a 16-bit Instruction Register,  
and three scannable Test Data Registers: Boundary Scan Register, Bypass Register and Device Identification  
Register.  
12.1 Test Access Port (TAP)  
The Test Access Port (TAP) accesses the ZL50075 test functions. The interface consists of 4 input and 1 output  
signal. as follows:  
Test Clock (TCK) - TCK provides the clock for the test logic. The TCK does not interfere with any on-chip  
clock and thus remains independent in the functional mode. The TCK permits shifting of test data into or out  
of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with  
the on-chip logic.  
Test Mode Select (TMS) - The TAP Controller uses the logic signals received at the TMS input to control  
test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally  
pulled to VDD_IO when it is not driven from an external source.  
Test Data Input (TDi) - Serial input data applied to this port is fed either into the instruction register or into a  
test data register, depending on the sequence previously applied to the TMS input. Both registers are  
described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses.  
This pin is internally pulled to VDD_IO when it is not driven from an external source.  
Test Data Output (TDo) - Depending on the sequence previously applied to the TMS input, the contents of  
either the instruction register or data register are serially shifted out towards the TDo. The data out of the  
TDo is clocked on the falling edge of the TCK pulses. When no data is shifted through the boundary scan  
cells, the TDo driver is set to a high impedance state.  
28  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Test Reset (TRST) - Resets the JTAG scan structure. This pin is internally pulled to VDD_IO when it is not  
driven from an external source. When JTAG is not in use, this pin must be tied low for normal operation.  
The TAP signals are only applied when the ZL50075 is required to be in test mode. When in normal, non-test mode,  
TRST must be connected low to disable the test logic. The remaining test pins may be left unconnected.  
12.2 Instruction Register  
The ZL50075 uses the public instructions defined in the IEEE 1149.1 standard. The JTAG interface contains a  
16-bit instruction register. Instructions are serially loaded into the instruction register from the TDi when the TAP  
controller is in its shifted-OR state. These instructions are subsequently decoded to achieve two basic functions: to  
select the test data register that may operate while the instruction is current and to define the serial test data  
register path that is used to shift data between TDi and TDo during register scanning.  
12.3 Test Data Register  
As specified in the IEEE 1149.1 standard, the ZL50075 JTAG Interface contains three test data registers:  
The Boundary-Scan Register - The Boundary-Scan register consists of a series of Boundary-Scan cells  
arranged to form a scan path around the boundary of the ZL50075 core logic.  
The Bypass Register - The Bypass register is a single stage shift register that provides a one-bit path from  
TDi to TDo.  
The Device Identification Register - The JTAG device ID for the ZL50075 is C39B14BH  
Version  
<31:28>  
<27:12>  
<11:1>  
<0>  
0000  
Part Number  
Manufacturer ID  
LSB  
1100 0011 1001 1011  
0001 0100 101  
1
12.4 Boundary Scan Description Language (BSDL)  
A Boundary Scan Description Language (BSDL) file is available from Zarlink Semiconductor to aid in the use of the  
IEEE 1149.1 test interface.  
29  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
13.0 Memory Map of ZL50075  
The memory map for the ZL50075 is given in Table 10.  
Address (Hex)  
Description  
00000 - 1FFFF  
20000 - 27FFF  
28000 - 2FFFF  
30000 - 37FFF  
38000 - 3FFFF  
40000 - 401FF  
40200 - 4027F  
40280 - 40283  
40284 - 40287  
40288 - 4028B  
4028C - 4028F  
40290- 7FFFF  
Connection Memory  
Connection Memory LSB  
Data Memory: Read only; Bus error on write (BERR)  
Input BER Enable Control Memory  
Invalid Address. Access causes Bus error (BERR)  
BER Counters  
Group Control Registers  
Input Clock Control Register  
Output Clock Control Register  
Block Init Register  
Block Init Enable  
Invalid Address. Access causes Bus error (BERR)  
Table 10 - Memory Map  
14.0 Detailed Memory and Register Descriptions  
This section describes all the memories and registers that are used in this device.  
14.1 Connection Memory  
Address range 00000 - 1FFFF hex.  
On power-up, all Connection Memory locations are initialized automatically to 00000000 hex, using the Block  
Initialization feature, as described in Section 14.7 and Section 14.8.  
The 32 bit Connection Memory has 32,768 locations. Each 32 bit long-word is used to program the desired source  
data and any other per-channel characteristics of one output time-slot.  
The memory map for the Connection Memory is sub-divided into 32 blocks, each corresponding to one of the  
possible 32 output stream group numbers. The address ranges for these blocks are illustrated in Table 11.  
30  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Start  
Address  
(Hex)  
Start  
Address  
(Hex)  
Output  
Group  
Address Range  
Output  
Group  
Address Range  
(Hex)  
(Hex)  
0
1
2
3
4
5
6
7
8
000000  
001000  
002000  
003000  
004000  
005000  
006000  
007000  
008000  
009000  
00A000  
00B000  
00C000  
00D000  
00E000  
00F000  
000000 - 000FFF  
001000 - 001FFF  
002000 - 002FFF  
003000 - 003FFF  
004000 - 004FFF  
005000 - 005FFF  
006000 - 006FFF  
007000 - 007FFF  
008000 - 008FFF  
009000 - 009FFF  
00A000 - 00AFFF  
00B000 - 00BFFF  
00C000 - 00CFFF  
00D000 - 00DFFF  
00E000 - 00EFFF  
00F000 - 00FFFF  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
010000  
011000  
012000  
013000  
014000  
015000  
016000  
017000  
018000  
019000  
01A000  
01B000  
01C000  
01D000  
01E000  
01F000  
010000 - 010FFF  
011000 - 011FFF  
012000 - 012FFF  
013000 - 013FFF  
014000 - 014FFF  
015000 - 015FFF  
016000 - 016FFF  
017000 - 017FFF  
018000 - 018FFF  
019000 - 019FFF  
01A000 - 01AFFF  
01B000 - 01BFFF  
01C000 - 01CFFF  
01D000 - 01DFFF  
01E000 - 01EFFF  
01F000 - 01FFFF  
9
10  
11  
12  
13  
14  
15  
Table 11 - Connection Memory Group Address Mapping  
The mapping of each output stream, SToAn and SToBn, depends on the programmed bit rate. The address offset  
range for each stream is illustrated in Table 12.  
Output Group Data Rate  
Timeslot Range  
Output Stream  
Stream Address Offset Range (Hex)  
65 Mbps  
0 - 1023  
SToAn  
SToBn  
SToAn  
SToBn  
SToAn  
SToBn  
BERR  
SToAn  
SToBn  
BERR  
00000 - 00FFF  
N/A  
32 Mbps  
16 Mbps  
0 - 511  
0 - 255  
00000 - 007FF  
00800 - 00FFF  
00000 - 003FF  
00400 - 007FF  
00800 - 00FFF  
00000 - 001FF  
00200 - 003FF  
00400 - 00FFF  
N/A  
0 - 127  
8 Mbps  
N/A  
Table 12 - Connection Memory Stream Address Offset at Various Output Rates  
31  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
The address range for a particular stream is given by adding the group start address, as indicated in Table 11, to the  
appropriate stream offset range, as indicated in Table 12. For example, the Connection Memory address range for  
SToB12 operating at 32 Mbps is 00C800-00CFFF.  
Each output channel timeslot occupies a range of 4 addresses in the Connection Memories. The timeslot address  
offset is illustrated in Table 13. It shows the maximum number of timeslots that a stream can have, but the actual  
number of timeslots available depends on the output data rates, as illustrated in Table 1 and Table 12.  
Timeslot  
SToAn  
Address Offset  
hex  
SToBn  
0
1
2
0
1
2
000  
004  
008  
-
-
-
510  
511  
512  
513  
-
510  
511  
7F8  
7FC  
800  
804  
-
1021  
1022  
1023  
FF4  
FF8  
FFC  
Table 13 - Connection Memory Timeslot Address Offset Range  
32  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
14.1.1 Connection Memory Bit Functions  
The bit functions of the connection memory are illustrated in Table 14.  
External Read/Write Address: 000000H  
Reset Value: 0000H  
31  
30  
29  
28  
V/D  
12  
27  
26  
25  
24  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
PCF  
2
PCF  
1
PCF  
0
ICL  
1
ICL  
0
OCL  
1
OCL  
0
15  
0
14  
13  
11  
10  
9
8
7
6
5
4
3
2
1
0
GP  
4
GP  
3
GP  
2
GP  
1
GP  
0
STCH  
9
STCH  
8
STCH  
7
STCH STCH STCH  
STCH  
3
STCH STCH STCH  
6
5
4
2
1
0
Bit  
Name  
Description  
31 - 29  
PCF2 - 0 Per Channel Function  
PCF2 - 0  
Function  
Description  
000  
001  
010  
011  
100  
101  
110  
111  
OT  
FH  
MSG  
VAR  
CD  
PRBS  
OT  
OT  
Output is tri-stated  
Output drives high always  
Output is in message mode  
Variable delay connection mode  
Constant delay connection mode  
PRBS Generator  
Output is tri-stated  
Output is tri-stated  
28  
V/D  
Voice/Data Control  
When this bit is low, the corresponding channel is for voice.  
When this bit is high, the corresponding channel is for data.  
27 - 26  
ICL1 - 0  
Input Coding Law  
Input Coding Law  
ICL1 - 0  
For Voice (V/D bit = 0)  
For Data (V/D bit = 1)  
00  
01  
10  
11  
CCITT.ITU A-Law  
CCITT.ITU µ-Law  
A-Law w/o ABI  
No Code  
ABI  
Inverted ABI  
All Bits Inverted  
µ-Law w/o Mag. Inv  
Table 14 - Connection Memory Bits (CMB)  
33  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
External Read/Write Address: 000000H  
Reset Value: 0000H  
31  
30  
29  
28  
V/D  
12  
27  
26  
25  
24  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
PCF  
2
PCF  
1
PCF  
0
ICL  
1
ICL  
0
OCL  
1
OCL  
0
15  
0
14  
13  
11  
10  
9
8
7
6
5
4
3
2
1
0
GP  
4
GP  
3
GP  
2
GP  
1
GP  
0
STCH  
9
STCH  
8
STCH  
7
STCH STCH STCH  
STCH  
3
STCH STCH STCH  
6
5
4
2
1
0
Bit  
Name  
Description  
25 - 24  
OCL1 - 0 Output Coding Law  
Output Coding Law  
OCL1 - 0  
For Voice (V/D bit = 0)  
For Data (V/D bit = 1)  
00  
01  
10  
11  
CCITT.ITU A-Law  
CCITT.ITU µ-Law  
A-Law w/o ABI  
No Code  
ABI  
Inverted ABI  
All Bits Inverted  
µ-Law w/o Mag. Inv  
23 - 15  
14 - 10  
9 - 0  
Unused  
GP4 - 0  
Reserved. In normal functional mode, these bits MUST be set to zero.  
Source Group Selection. These bits define the input/source group number (31 - 0)  
Source Stream and Channel Selection / Message Mode Data  
STCH  
9 - 0  
In connection mode (constant/variable delay), these bits define the input/source stream  
and channel number, depending on the data rate.  
For 65.536 Mbps, bits 9 - 0 select the input channel (0 - 1023).  
For 32.768 Mbps, bits 9 - 1 select the input channel (0 - 511). Bit 0 selects stream STiA  
(0) or STiB (1).  
For 16.869 Mbps, bits 9 - 2 select the input channel (0 - 255). Bit 0 selects stream STiA  
(0) or STiB (1). Bit 1 MUST be set to 0.  
For 8.192 Mbps, bits 9 - 3 select the input channel (0 - 127). Bit 0 selects stream STiA (0)  
or STiB (1). Bit 2-1 MUST be set to 00.  
In message mode, bits 7 - 0 define the output data. The data is output sequentially with  
bit 7 being output first. Bits 9 - 8 are not used.  
Table 14 - Connection Memory Bits (CMB) (continued)  
14.1.2 Connection Memory LSB  
The Connection Memory Least Significant Byte field is provided to give a convenient alternative way to modify the  
output data for a stream in message mode. In this memory address range, all of the connection memory least  
significant bytes (bits 7 - 0) are available for read/write in consecutive address locations. This feature is provided for  
programming convenience. It can allow higher programming bandwidth on message mode streams. For example,  
one longword access to this memory space can read or set the message bytes in four consecutive connection  
memory locations. Access to this memory space is big-endian, with the most significant bytes on the data bus  
accessing the lower address of the connection memory. Addressing into each of the streams is illustrated in Table  
15.  
34  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Start  
Address  
(Hex)  
Start  
Address  
(Hex)  
Output  
Group  
Address Range  
Output  
Group  
Address Range  
(Hex)  
(Hex)  
0
1
2
3
4
5
6
7
8
020000  
020400  
020800  
020C00  
021000  
021400  
021800  
021C00  
022000  
022400  
022800  
022C00  
023000  
023400  
023800  
023C00  
020000 - 0203FF  
020400 - 0207FF  
020800 - 020BFF  
020C00 - 020FFF  
021000 - 0213FF  
021400 - 0217FF  
021800 - 021BFF  
021C00 - 021FFF  
022000 - 0223FF  
022400 - 0227FF  
022800 - 022BFF  
022C00 - 022FFF  
023000 - 0233FF  
023400 - 0237FF  
023800 - 023BFF  
023C00 - 023FFF  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
024000  
024400  
024800  
024C00  
025000  
025400  
025800  
025C00  
026000  
026400  
026800  
026C00  
027000  
027400  
027800  
027C00  
024000 - 0243FF  
024400 - 0247FF  
024800 - 024BFF  
024C00 - 024FFF  
025000 - 0253FF  
025400 - 0257FF  
025800 - 025BFF  
025C00 - 025FFF  
026000 - 0263FF  
026400 - 0267FF  
026800 - 026BFF  
026C00 - 026FFF  
027000 - 0273FF  
027400 - 0277FF  
027800 - 027BFF  
027C00 - 027FFF  
9
10  
11  
12  
13  
14  
15  
Table 15 - Connection Memory LSB Group Address Mapping  
Output Group Data Rate  
Timeslot Range  
Output Stream  
Stream Address Offset Range (Hex)  
65 Mbps  
0 - 1023  
SToAn  
SToBn  
SToAn  
SToBn  
SToAn  
SToBn  
BERR  
SToAn  
SToBn  
BERR  
00000 - 003FF  
N/A  
32 Mbps  
16 Mbps  
0 - 511  
0 - 255  
00000 - 001FF  
00200 - 003FF  
00000 - 000FF  
00100 - 001FF  
00200 - 003FF  
00000 - 0007F  
00080 - 000FF  
00100 - 003FF  
N/A  
8 Mbps  
0 - 127  
N/A  
Table 16 - Connection Memory LSB Stream Address Offset at Various Output Rates  
Within each stream group, the mapping of each of the actual output streams, SToAn and SToBn, depends on the  
output rate programmed into the Group Control Registers. The address offsets to these control areas for each of  
the output streams are illustrated in Table 16.  
35  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
14.2 Data Memory  
The data memory field is a read only address range used to monitor the data being received by the input streams.  
Addressing into each of the streams is illustrated in Table 17.  
Start  
Address  
(Hex)  
Start  
Address  
(Hex)  
Input  
Group  
Address Range  
(Hex)  
Input  
Group  
Address Range  
(Hex)  
0
1
2
3
4
5
6
7
8
028000  
028400  
028800  
028C00  
029000  
029400  
029800  
029C00  
02A000  
02A400  
02A800  
02AC00  
02B000  
02B400  
02B800  
02BC00  
028000 - 0283FF  
028400 - 0287FF  
028800 - 028BFF  
028C00 - 028FFF  
029000 - 0293FF  
029400 - 0297FF  
029800 - 029BFF  
029C00 - 029FFF  
02A000 - 02A3FF  
02A400 - 02A7FF  
02A800 - 02ABFF  
02AC00 - 02AFFF  
02B000 - 02B3FF  
02B400 - 02B7FF  
02B800 - 02BBFF  
02BC00 - 02BFFF  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
02C000  
02C400  
02C800  
02CC00  
02D000  
02D400  
02D800  
02DC00  
02E000  
02E400  
02E800  
02EC00  
02F000  
02F400  
02F800  
02FC00  
02C000 - 02C3FF  
02C400 - 02C7FF  
02C800 - 02CBFF  
02CC00 - 02CFFF  
02D000 - 02D3FF  
02D400 - 02D7FF  
02D800 - 02DBFF  
02DC00 - 02DFFF  
02E000 - 02E3FF  
02E400 - 02E7FF  
02E800 - 02EBFF  
02EC00 - 02EFFF  
02F000 - 02F3FF  
02F400 - 02F7FF  
02F800 - 02FBFF  
02FC00 - 02FFFF  
9
10  
11  
12  
13  
14  
15  
Table 17 - Data Memory Group Address Mapping  
Within each stream group, the mapping of each of the actual input streams, STiAn and STiBn, depends on the input  
rate programmed into the Group Control Registers. The address offsets to these data areas for each of the input  
streams are illustrated in Table 18.  
Input Group Data Rate Time-slot Range  
Input Streams  
Address Offset Range (Hex)  
65 Mbps  
32 Mbps  
16 Mbps  
0 - 1023  
0 - 511  
0 - 255  
STiAn  
STiBn  
STiAn  
STiBn  
STiAn  
STiBn  
BERR  
STiAn  
STiBn  
BERR  
00000 - 003FF  
N/A  
00000 - 001FF  
00200 - 003FF  
00000 - 000FF  
00100 - 001FF  
00200 - 003FF  
00000 - 0007F  
00080 - 000FF  
00100 - 003FF  
N/A  
8 Mbps  
0 - 127  
N/A  
Table 18 - Data Memory Stream Address Offset at Various Output Rates  
36  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
The address ranges for the data memory portion corresponding to each of the actual input streams, STiAn and  
STiBn, for any particular input group number is calculated by adding the Start Address for the particular group, as  
indicated in Table 17, to the appropriate Address Offset Range, as indicated in Table 18. The time-slots map linearly  
into the appropriate address offset range. (i.e., timeslots 0, 1, 2,... map into addresses 00000, 00001, 00002,...)  
The entire data memory is a read only structure. Any write attempts will result in a bus error. BERR is driven active  
low to terminate the bus cycle.  
14.3 BER Control Memory and Error Counters  
14.3.1 Input BER Enable Control Memory  
The BER Enable Control Memory (IBERECM) is a read/write memory block. Each memory location is used to  
control the BER counter of one incoming timeslot. Addressing into each of the streams is illustrated in Table 19.  
Start  
Address  
(Hex)  
Start  
Address  
(Hex)  
Input  
Group  
Address Range  
(Hex)  
Input  
Group  
Address Range  
(Hex)  
0
1
2
3
4
5
6
7
8
030000  
030400  
030800  
030C00  
031000  
031400  
031800  
031C00  
032000  
032400  
032800  
032C00  
033000  
033400  
033800  
033C00  
030000 - 0303FF  
030400 - 0307FF  
030800 - 030BFF  
030C00 - 030FFF  
031000 - 0313FF  
031400 - 0317FF  
031800 - 031BFF  
031C00 - 031FFF  
032000 - 0323FF  
032400 - 0327FF  
032800 - 032BFF  
032C00 - 032FFF  
033000 - 0333FF  
033400 - 0337FF  
033800 - 033BFF  
033C00 - 033FFF  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
034000  
034400  
034800  
034C00  
035000  
035400  
035800  
035C00  
036000  
036400  
036800  
036C00  
037000  
037400  
037800  
037C00  
034000 - 0343FF  
034400 - 0347FF  
034800 - 034BFF  
034C00 - 034FFF  
035000 - 0353FF  
035400 - 0357FF  
035800 - 035BFF  
035C00 - 035FFF  
036000 - 0363FF  
036400 - 0367FF  
036800 - 036BFF  
036C00 - 036FFF  
037000 - 0373FF  
037400 - 0377FF  
037800 - 037BFF  
037C00 - 037FFF  
9
10  
11  
12  
13  
14  
15  
Table 19 - BER Enable Control Memory Group Address Mapping  
Each byte location of the BER Enable Memory contains one read/write BER counter enable (BCE) bit, mapped into  
the D0 location. If the BCE bit is set, then the BER counter for the corresponding stream and timeslot is enabled for  
the duration of that timeslot. If the BCE bit is cleared the counter is disabled.  
37  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
Input Group Data Rate  
Time-slot Range  
Input Streams  
Address Offset Range (Hex)  
65 Mbps  
0 - 1023  
STiAn  
STiBn  
STiAn  
STiBn  
STiAn  
STiBn  
BERR  
STiAn  
STiBn  
BERR  
00000 - 003FF  
N/A  
32 Mbps  
16 Mbps  
0 - 511  
0 - 255  
00000 - 001FF  
00200 - 003FF  
00000 - 000FF  
00100 - 001FF  
00200 - 003FF  
00000 - 0007F  
00080 - 000FF  
00100 - 003FF  
N/A  
0 - 127  
8 Mbps  
N/A  
Table 20 - BER Enable Control Memory Stream Address Offset at Various Output Rates  
14.3.2 BER Counters  
There are a total of 64 Bit Error Counters, corresponding to the 64 serial input streams. Each count value is 32 bits  
wide, but only the least significant 16 bits are used. The most significant 16 bits of the bit error counters will always  
read back zero. A write operation to any byte of the counter, including the 16 most significant bits, will clear that  
counter.  
Each bit error counter contains the number of single bit errors detected on the corresponding stream, since the  
counter was last cleared. If the number of bit errors detected exceeds 65535 (decimal), the counter will hold that  
value until it is cleared.  
BER Input Group  
0
BER Input Stream  
Start Address (Hex)  
End Address (Hex)  
STiA0  
STiB0  
N/A  
40000  
40080  
BERR - 40100  
40004  
40003  
40083  
BERR - 40183  
40007  
1
2
STiA1  
STiB1  
N/A  
40084  
BERR - 40104  
40008  
40087  
BERR - 40187  
4000B  
STiA2  
STiB2  
N/A  
40088  
BERR - 40108  
4008B  
BERR - 4018B  
.
.
.
.
.
.
.
.
.
.
.
.
31  
STiA31  
STiB31  
N/A  
4007C  
400FC  
BERR - 4017C  
4007F  
400FF  
BERR - 401FF  
Table 21 - BER Counter Group and Stream Address Mapping  
38  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
14.4 Group Control Registers  
The ZL50075 addresses the issues of a simple programming model and automatic stream configuration by defining  
a basic switching bit rate of 65.536 Mbps and by grouping the I/O streams. Each TDM I/O group contains 2 input  
and 2 output streams. The 2 input streams in the same group have identical input characteristics, and similarly, the  
2 output streams in the same group have identical output characteristics. However, input and output streams in the  
same group can have different input and output operation characteristics.  
The Group Control Registers are provided for setting the operating characteristics of the TDM input and output  
streams. All of the Group Control Registers are mapped long-word aligned on 32 bit boundaries in the memory  
space. Each of the 32 registers is used to control one group. The mapping of the Group Control Registers to the I/O  
group numbers is illustrated in Table 22. The bit functions of each of the Group Control Registers are illustrated in  
Table 23.  
TDM Group  
Group Control Register Address (Hex)  
0
1
2
3
:
40200 - 40203  
40204 - 40207  
40208 - 4020B  
4020C - 4020F  
:
:
:
29  
30  
31  
40274 - 40277  
40278 - 4027B  
4027C - 4027F  
Table 22 - Group Control Register Addressing  
External Read/Write Address: 40200H - 4027FH  
Reset Value: 000C000CH  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
0
25  
0
24  
0
23  
0
22  
OSI  
6
21  
20  
19  
18  
17  
16  
OSBA  
1
OSBA  
0
OSBR  
1
OSBR  
0
OSSRC  
1
OSSRC  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
5
4
3
2
1
0
ISI  
ISPD  
4
ISPD  
3
ISPD  
2
ISPD  
1
ISPD  
0
ISBR  
1
ISBR  
0
ISSRC  
1
ISSRC  
0
Bit  
Name  
Description  
31 - 23  
22  
Unused  
OSI  
Reserved. In normal functional mode, these bits MUST be set to zero.  
Output Stream Inversion  
For normal operation, this bit is set low.  
To invert the output stream, set this bit high.  
Table 23 - Group Control Register  
39  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
External Read/Write Address: 40200H - 4027FH  
Reset Value: 000C000CH  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
0
25  
0
24  
0
23  
0
22  
OSI  
6
21  
20  
19  
18  
17  
16  
OSBA  
1
OSBA  
0
OSBR  
1
OSBR  
0
OSSRC  
1
OSSRC  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
5
4
3
2
1
0
ISI  
ISPD  
4
ISPD  
3
ISPD  
2
ISPD  
1
ISPD  
0
ISBR  
1
ISBR  
0
ISSRC  
1
ISSRC  
0
Bit  
Name  
Description  
21 - 20  
OSBA1 - 0  
Output Stream Bit Advancement  
OSBA1 - 0  
Non-65 Mbps  
65 Mbps  
00  
01  
10  
11  
0 ns  
0 ns  
3.8 ns  
7.6 ns  
11.4 ns  
7.6 ns  
15.2 ns  
22.8 ns  
19 - 18  
OSBR1 - 0  
Output Stream Bit Rate  
Bit Rates Per Group  
OSBR1 - 0  
SToA  
SToB  
00  
01  
10  
11  
8.192 Mbps  
16.384 Mbps  
32.768 Mbps  
65.536 Mbps  
8.192 Mbps  
16.384 Mbps  
32.768 Mbps  
Not Used  
Unused streams are tri-stated.  
If the internal system clock is used as the clock source, all the above data rates are  
available. Otherwise, the data rate cannot exceed the selected clock source’s rate.  
17 - 16  
OSSRC1 - 0 Output Stream Clock Source Select  
OSSRC1 - 0  
Output Timing Source  
00  
01  
10  
11  
Internal System Clock  
CKi0 and FPi0  
Reserved  
Reserved  
15 - 10  
9
Unused  
ISI  
Reserved. In normal functional mode, these bits MUST be set to zero.  
Input Stream Inversion  
For normal operation, this bit is set low.  
To invert the input stream, set this bit high.  
8 - 4  
ISPD4 - 0  
Input Sampling Point Delay  
Default Sampling Point is 3/4. Adjust according to Figure on page 18.  
Table 23 - Group Control Register (continued)  
40  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
External Read/Write Address: 40200H - 4027FH  
Reset Value: 000C000CH  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
0
25  
0
24  
0
23  
0
22  
OSI  
6
21  
20  
19  
18  
17  
16  
OSBA  
1
OSBA  
0
OSBR  
1
OSBR  
0
OSSRC  
1
OSSRC  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
5
4
3
2
1
0
ISI  
ISPD  
4
ISPD  
3
ISPD  
2
ISPD  
1
ISPD  
0
ISBR  
1
ISBR  
0
ISSRC  
1
ISSRC  
0
Bit  
Name  
Description  
3 - 2  
ISBR1 - 0  
Input Stream Bit Rate  
Bit Rates Per Group  
ISBR1 - 0  
STiA  
STiB  
00  
01  
10  
11  
8.192 Mbps  
16.384 Mbps  
32.768 Mbps  
65.536 Mbps  
8.192 Mbps  
16.384 Mbps  
32.768 Mbps  
Not Used  
Unused streams must be connected to ground.  
If the internal system clock is used as the clock source, all the above data rates are  
available. Otherwise, the data rate cannot exceed the selected clock source’s rate.  
1 - 0  
ISSRC1 - 0  
Input Stream Clock Source Select  
ISSRC1 - 0  
Input Timing Source  
00  
01  
10  
11  
Internal System Clock  
CKi0 and FPi0  
Reserved  
Reserved  
Table 23 - Group Control Register (continued)  
The Group Control Register is a static control register. Changes to bit settings may disrupt data flow on the selected  
port for a maximum of 2 frames.  
41  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
14.5 Input Clock Control Register  
The Input Clock Control Register is used to select the logic sense of the input clock.  
External Read/Write Address: 40280H  
Reset Value: 0DBH  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
0
25  
0
24  
0
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
1
6
1
5
0
4
1
3
1
2
1
0
GCI  
FPI  
CKI  
SEL0  
POL0  
POL0  
Bit  
Name  
Description  
31 - 9  
8 - 3  
2
Unused  
Unused  
Reserved. In normal functional mode, these bits MUST be set to zero.  
Reserved. In normal functional mode, these bits MUST be set to 011011.  
GCISEL0 GCI-Bus Selection for FPi0  
When this bit is low, FPi0 is set for ST-BUS mode.  
When this bit is high, FPi0 is set for GCI-Bus mode.  
1
0
FPIPOL0 Frame Pulse Polarity Selection for FPi0  
When this bit is low, FPi0 is set for active high.  
When this bit is high, FPi0 is set for active low.  
CKIPOL0 Clock Polarity Selection for CKi0  
When this bit is low, CKi0 is set for the positive clock edge.  
When this bit is high, CKi0 is set for the negative clock edge.  
Table 24 - Input Clock Control Register  
42  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
14.6 Output Clock Control Register  
The Output Clock Control Register is used to select the desired source, frequency, and logic sense of the output  
clocks. The bit functions of the Output Clock Control Register are illustrated in Table 25.  
External Read/Write Address: 40284H  
Reset Value: 060D1C3CH  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
1
25  
1
24  
0
23  
0
22  
0
21  
0
20  
0
19  
1
18  
1
17  
0
16  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GCO  
SEL1  
FPO  
CKO  
CKO1  
CKO1  
CKO1  
CKO1  
SRC0  
GCO  
SEL0  
FPO  
CKO  
CKO0  
CKO0 CKO0 CKO0  
0
0
POL1  
POL1  
RATE1 RATE0 SRC1  
POL0  
POL0  
RATE1 RATE0 SRC1 SRC0  
Bit  
Name  
Description  
Reserved. In normal functional mode, these bits MUST be set to zero.  
31 - 28  
27 - 14  
13  
Unused  
Unused  
Reserved. In normal functional mode, these bits MUST be set to 01100000110100.  
GCO  
SEL1  
GCI-Bus Selection for FPo1  
When this bit is low, FPo1 is set for ST-BUS mode.  
When this bit is high, FPo1 is set for GCI-Bus mode.  
12  
11  
FPO  
Frame Pulse Polarity Selection for FPo1  
When this bit is low, FPo1 is set for active high.  
When this bit is high, FPo1 is set for active low.  
POL1  
CKO  
Clock Polarity Selection for CKo1  
POL1  
When this bit is low, CKo1 is set for the positive clock edge.  
When this bit is high, CKo1 is set for the negative clock edge.  
10 - 9  
CKO1  
RATE  
1 - 0  
Output Clock Rate for CKo1 and FPo1  
The output clock rate can not exceed the selected clock source rate. All rates are avail-  
able when the internal system clock is selected as clock source.  
CKO1RATE1 - 0  
CKo1  
FPo1  
00  
01  
10  
11  
8.192 MHz  
16.384 MHz  
32.768 MHz  
65.536 MHz  
120 ns  
60 ns  
30 ns  
15 ns  
8 - 7  
CKO1  
SRC  
1 - 0  
Output Clock Source for CKo1 and FPo1  
CKO1SRC1 - 0  
Output Timing Source  
00  
01  
10  
11  
Internal System Clock  
CKi0 and FPi0  
Reserved  
Reserved  
Table 25 - Output Clock Control Register  
43  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
External Read/Write Address: 40284H  
Reset Value: 060D1C3CH  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
1
25  
1
24  
0
23  
0
22  
0
21  
0
20  
0
19  
1
18  
1
17  
0
16  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GCO  
SEL1  
FPO  
CKO  
CKO1  
CKO1  
CKO1  
CKO1  
SRC0  
GCO  
SEL0  
FPO  
CKO  
CKO0  
CKO0 CKO0 CKO0  
0
0
POL1  
POL1  
RATE1 RATE0 SRC1  
POL0  
POL0  
RATE1 RATE0 SRC1 SRC0  
Bit  
Name  
Description  
6
GCO  
SEL0  
GCI-Bus Selection for FPo0  
When this bit is low, FPo0 is set for ST-BUS mode.  
When this bit is high, FPo0 is set for GCI-Bus mode.  
5
4
FPO  
Frame Pulse Polarity Selection for FPo0  
When this bit is low, FPo0 is set for active high.  
When this bit is high, FPo0 is set for active low.  
POL0  
CKO  
Clock Polarity Selection for CKo0  
POL0  
When this bit is low, CKo0 is set for the positive clock edge.  
When this bit is high, CKo0 is set for the negative clock edge.  
3 - 2  
CKO0  
RATE  
1 - 0  
Output Clock Rate for CKo0 and FPo0  
The output clock rate can not exceed the selected clock source rate. All rates are avail-  
able when the internal system clock is selected as clock source.  
CKO0RATE1 - 0  
CKo0  
FPo0  
00  
01  
10  
11  
8.192 MHz  
16.384 MHz  
32.768 MHz  
65.536 MHz  
120 ns  
60 ns  
30 ns  
15 ns  
1 - 0  
CKO0  
SRC  
1 - 0  
Output Clock Source for CKo0 and FPo0  
CKO0SRC1 - 0  
Output Timing Source  
00  
01  
10  
11  
Internal System Clock  
CKi0 and FPi0  
Reserved  
Reserved  
Table 25 - Output Clock Control Register (continued)  
44  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
14.7 Block Init Register  
The Block Init Register is a 32 bit read/write register at address 040288 - 04028BH.  
The Block Init Register is used during block initialization of the connection memory. A block initialization  
automatically occurs at power-up. However, it is possible to perform a block initialization at any time. During Block  
Initialization, the value of the Block Init Register is copied to all connection memory locations in an operation that  
runs in about 120 µs. If the Block Init Register is modified during a block initialization, the new value used is  
ignored.  
14.8 Block Init Enable Register  
The Block Init Enable Register is a 32 bit read/write register at address 04028C - 04028FH.  
The Block Init Enable Register is used to initiate a block initialization of the connection memory. A block initialization  
automatically occurs at power-up. Since the Block Init Register is cleared at power-up this automatic block  
initialization will write all zeros to all Connection Memory Bits. However, it is possible to perform a block initialization  
at any time. To begin a block initialization, the hex value 31415926 must be written to the Block Init Enable Register.  
If a block initialization is signaled while one is in progress, the signal is ignored, and the currently active block  
initialization is allowed to complete.  
The value read back from the Block Init Enable Register is different from the value written. It represents both the  
block initialization status, and the power-up reset initialization status. The meaning of the initialization status bits is  
illustrated in Table 26. The bits 31 - 2 always read back 0.  
Bit  
Name  
Description  
0
Block Init Status  
0 if Block initialization is completed;  
1 if Block initialization is in progress  
1
Reset Init Status  
0 if Reset initialization is completed  
1 if Reset initialization is in progress  
Table 26 - Block and Power-up Initialization Status Bits  
Any access to the connection memory or the data memory during a block initialization or a reset initialization will  
result in a bus error, BERR. All TDM outputs are tri-stated during any block initialization.  
45  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
15.0 DC/AC Electrical Characteristics  
Absolute Maximum Ratings1 - Voltages are with respect to ground (VSS) unless otherwise stated.  
Characteristics  
Sym.  
Min.  
Typ.2  
Max.  
Unit  
1
2
3
Chip I/O Supply Voltage  
VDD_IO  
VDD_CORE  
VI_3V  
-0.5  
-0.5  
-0.5  
5.0  
5.0  
V
V
V
Chip Core Supply Voltage  
Input Voltage (non-5 V tolerant inputs)  
VDD_IO  
0.5  
+
4
5
6
7
Input Voltage (5 V tolerant inputs)  
Continuous Current at digital outputs  
Package power dissipation  
Storage temperature  
VI_5V  
Io  
-0.5  
7.0  
15  
V
mA  
W
PD  
TS  
2.1  
- 55  
+125  
°C  
Note 1: Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Note 2: Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing.  
Recommended Operating Conditions - Voltages are with respect to ground (VSS) unless otherwise stated.  
Characteristics  
Operating Temperature  
Sym.  
Min.  
Typ.1  
Max.  
Unit  
1
2
3
4
5
TOP  
VDD_CORE  
VDD_IO  
VI_3V  
-40  
1.71  
3.0  
0
25  
1.8  
3.3  
+85  
1.89  
3.6  
°C  
V
Positive Supply Core  
Positive Supply I/O  
V
Input Voltage (non-5 V tolerant inputs)  
Input Voltage (5 V tolerant inputs)  
VDD_IO  
5.5  
V
VI_5V  
0
Note 1: Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing.  
46  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
DC Electrical Characteristics - Voltages are with respect to ground (VSS) unless otherwise stated.  
Characteristics  
Sym.  
Min.  
Typ.1  
Max.  
Unit  
Test Conditions  
1
2
3
4
5
6
7
8
9
Core Supply Current2  
IDD_CORE  
IDD_IO  
IDDQ  
PDD  
VIH  
500  
62  
mA  
mA  
µA  
W
I/O Supply Current  
Outputs Unloaded  
Outputs Unloaded  
Leakage Current  
105  
Dynamic Power Dissipation  
Input High Voltage  
1.2  
2.0  
V
Input Low Voltage  
VIL  
0.8  
5
V
Input Leakage-input pins3  
Input Leakage-bidirectional pins  
Pull-up Current  
IIL  
µA  
µA  
µA  
µA  
pF  
V
0<VI VDD_IO  
0<VI VDD_IO  
Input at 0 V  
IBL  
5
IPU  
-33  
33  
3
10 Pull-down Current  
11 Input Pin Capacitance  
12 Output High Voltage  
13 Output Low Voltage  
IPD  
Input at VDD_IO  
CI  
VOH  
VOL  
2.4  
IOH = 8 mA  
IOL = 8 mA  
0.4  
V
Note 1: Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing.  
Note 2: StoA = 65 Mbps with random patterns. CKo0 = 65 MHz, CKo1 = 32 MHz.  
Note 3: Maximum leakage on pins (output or I/O pins in high impedance state) is over an applied voltage (Vin).  
AC Electrical Characteristics1 - Timing Parameter Measurement Voltage Levels - Voltages are with respect to ground  
(VSS) unless otherwise stated.  
Characteristics  
CMOS Threshold  
Sym.  
Level  
Unit  
Test Conditions  
1
2
3
VCT  
VHM  
VLM  
0.5 VDD_IO  
0.7 VDD_IO  
0.3 VDD_IO  
V
V
V
Rise/Fall Threshold Voltage High  
Rise/Fall Threshold Voltage Low  
1. Characteristics are over recommended operating conditions unless otherwise stated.  
47  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
AC Electrical Characteristics1 - FPi0 and CKi0 Timing  
No.  
Characteristic (Figure 11)  
Sym.  
Min.  
Typ.2  
Max.  
Units  
Notes  
1
FPi0 Input Frame Pulse Setup  
Time  
tFPIS  
3
3
12  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKi0= 65.536 MHz  
CKi0 = 32.768 MHz  
CKi0 = 16.384 MHz  
CKi0 = 8.192 MHz  
CKi0= 65.536 MHz  
CKi0 = 32.768 MHz  
CKi0 = 16.384 MHz  
CKi0 = 8.192 MHz  
CKi0= 65.536 MHz  
CKi0 = 32.768 MHz  
CKi0 = 16.384 MHz  
CKi0 = 8.192 MHz  
65.536 MHz  
3
55  
3
115  
12  
2
3
4
FPi0 Input Frame Pulse Hold Time  
FPi0 Input Frame Pulse width  
tFPIH  
tFPIW  
tCKIP  
2
2
25  
2
55  
2
115  
24  
5
5
50  
5
110  
230  
15.5  
31  
5
CKi0 Input Clock Period (average  
value, does not consider the  
effects of jitter)  
15  
30  
60  
120  
4
15.26  
30.5  
61.0  
122  
32.768 MHz  
62  
16.384 MHz  
124  
8.192 MHz  
5
6
7
CKi0Input Clock High Time  
CKi0 Input Clock Low Time  
CKi0 Input Clock Rise/Fall Time  
tCKIH  
tCKIL  
trCKI  
4
,
0
6
2
tfCKI  
tCVC  
8
CKi0 Input Clock Cycle to Cycle  
Variation  
ns p-p Standard rating3.  
STi at 65 Mbps  
4
ns p-p Standard rating3.  
STi at 32 Mbps  
10  
20  
ns p-p Standard rating3.  
STi at 16 Mbps  
ns p-p Standard rating3.  
STi at 8 Mbps  
20%of  
tCKIP  
p-p  
Extended rating.  
With alternate clock  
source4 or high  
CKi0 rate5  
Note 1: Characteristics are over recommended operating conditions unless otherwise stated.  
Note 2: Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing.  
Note 3: When using internal APLL clock source and the CKi0 frequency is less than or equal to the data rate.  
Note 4: When using input clock source CKi0 instead of the internal APLL clock source.  
Note 5: When using internal APLL clock source and the CKi0 frequency is higher than or equal to twice the data rate.  
48  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
tFPIW  
FPi  
tFPIS  
tFPH  
tCKIP  
tCKIH  
tCKIL  
CKi  
trCKI  
tfCKI  
Input Frame Boundary  
Figure 11 - Frame Pulse Input and Clock Input  
49  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
AC Electrical Characteristics1 - FPO0-1 and CKO0-1 (65.536 MHz) Timing  
No.  
Characteristic  
Sym.  
Min.  
Typ.2  
Max.  
Units  
Notes3  
1
FPO0 Output Frame Pulse Setup  
Time  
tFPOS  
5.5  
9.5  
ns  
CL=30 pF  
2
3
FPO0 Output Frame Pulse Hold  
Time  
tFPOH  
tCKOP  
5.5  
9.5  
ns  
ns  
CL=30 pF  
CL=30 pF  
CKO0 Output Clock Period  
14.5  
15.5  
AC Electrical Characteristics1 - FPO0-1 and CKO0-1 (32.768 MHz) Timing  
No.  
Characteristic  
Sym.  
Min.  
Typ.2  
Max.  
Units  
Notes3  
1
FPO0 Output Frame Pulse Setup  
Time  
tFPOS  
14.0  
16.5  
ns  
CL=30 pF  
CL=30 pF  
CL=30 pF  
2
3
FPO0 Output Frame Pulse Hold  
Time  
tFPOH  
tCKOP  
14.0  
30.0  
16.5  
31.0  
ns  
ns  
CKO0 Output Clock Period  
AC Electrical Characteristics1 - FPO0-1 and CKO0-1 (16.384 MHz) Timing  
No.  
Characteristic  
Sym.  
Min.  
Typ.2  
Max.  
Units  
Notes3  
1
FPO0 Output Frame Pulse Setup  
Time  
tFPOS  
29.0  
31.0  
ns  
CL=30 pF  
CL=30 pF  
CL=30 pF  
2
3
FPO0 Output Frame Pulse Hold  
Time  
tFPOH  
tCKOP  
29.0  
60.5  
31.0  
61.5  
ns  
ns  
CKO0 Output Clock Period  
AC Electrical Characteristics1 - FPO0-1 and CKO0-1 (8.192 MHz) Timing  
No.  
Characteristic  
Sym.  
Min.  
Typ.2  
Max.  
Units  
Notes3  
1
FPO0 Output Frame Pulse Setup  
Time  
tFPOS  
60.0  
62.0  
ns  
ns  
ns  
CL=30 pF  
CL=30 pF  
CL=30 pF  
2
3
FPO0 Output Frame Pulse Hold  
Time  
tFPOH  
tCKOP  
60.0  
62.0  
CKO0 Output Clock Period  
121.5  
122.5  
Note 1: Characteristics are over recommended operating conditions unless otherwise stated.  
Note 2: Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing.  
Note 3: CKo clock source set to internal 131 MHz APLL, and CKi0 and FPi0 meet all the timing requirements.  
Note 4: When CKo source is set to one of the CKi/FPi, its output timings directly follow its source.  
50  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
FPo0  
CKo0  
tFPOS  
tFPOH  
tCKOP  
Output Frame Boundary  
Figure 12 - ST-Bus Frame Pulse and Clock Output Timing  
FPo0  
CKo0  
tFPOS  
tFPOH  
tCKOP  
Output Frame Boundary  
Figure 13 - GCI Frame Pulse and Clock Output Timing  
AC Electrical Characteristics - Output Clock Jitter Generation  
No.  
Characteristic  
Max.  
Units  
Notes1,2  
1
2
3
4
Jitter at CKO0-1 (8.192 MHz)  
Jitter at CKO0-1 (16.384 MHz)  
Jitter at CKO0-1 (32.768 MHz)  
Jitter at CKO0-1 (65.536 MHz)  
1050  
1030  
920  
ps-pp  
ps-pp  
ps-pp  
ps-pp  
810  
Note 1: CKi at 8 MHz, output clock source set to internal APLL. No jitter presented on the the Cki0 input.  
Note 2: For 65.536 MHz output clock, the total loading on the output should not be larger than 10pF.  
51  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
AC Electrical Characteristics1 - Serial Data Timing2 to CKi  
No.  
Characteristic (Figure 14)  
Sym. Min. Typ.3  
Max.  
Units  
Notes4  
1
CKi to CKo Positive edge  
Propagation Delay  
tCKDP  
3.5  
8
ns  
CKo clock source =  
CKi  
4.1  
9.2  
ns  
CKo Clock source =  
Internal 131 MHz  
APLL output  
2
CKi to CKo Negative edge  
Propagation Delay  
tCKDN  
4.5  
5
9.2  
ns  
ns  
CKo clock source =  
CKi  
10.1  
CKo Clock source =  
Internal 131 MHz  
APLL output  
3
4
5
6
7
STi to posedge CKi setup  
STi to posedge CKi hold  
STi to negedge CKi setup  
STi to negedge CKi hold  
tSIPS  
tSIPH  
tSINS  
tSINH  
-0.8  
5.9  
-0.8  
5.9  
4.8  
4.1  
5.8  
4.5  
4.3  
4.6  
5.3  
5.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Posedge CKi to Output Data Valid tSIPV  
11.6  
13.7  
12.9  
14.8  
14.6  
14.5  
13  
SToA5  
SToB5  
SToA5  
SToB5  
SToA5  
SToB5  
SToA5  
SToB5  
8
9
Negedge CKi to Output Data Valid tSINV  
Posedge CKi to Output Data  
tri-state  
tSIPZ  
tSINZ  
tSOZ  
10  
11  
Negedge CKi to Output Data  
tri-state  
13.6  
10  
ODE to Output Data tri-state  
SToA  
CL = 30 pF, RL = 1 K5  
11  
ns  
SToB  
CL = 30 pF, RL = 1 K5  
12  
ODE to Output Data Enable  
tSOE  
4.5  
6
15  
20  
ns  
ns  
SToA5  
SToB5  
Note 1: Characteristics are over recommended operating conditions unless other wise stated.  
Note 2: All of these specifications refer to ST-BUS inputs and outputs with clock source set to CKi.  
Note 3: Typical figures are at 25°C, V  
at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing. DD_CORE  
Note 4: Loads on all serial outputs set to 30 pF.  
Note 5: High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to discharge  
CL.  
52  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
FPi  
(negative sense)  
t
CKDN  
CKo  
(negative sense)  
CKi  
(negative sense)  
tSINS  
tSINH  
STin  
*
tSINV  
VALID DATA  
STon  
STon  
tSINZ  
tSOZ  
ODE  
tSOE  
FPi  
(negative sense)  
t
CKDP  
CKo  
(positive sense)  
CKi  
(positive sense)  
tSIPS  
tSIPH  
STin  
*
VALID DATA  
tSIPV  
STon  
STon  
tSIPZ  
Note 1 : CKi frequency is assumed to be twice of the STin data rate, so that the sampling point is at the  
3/4 point of the bit cell, or 1 1/2 clock period after the active clock edge  
Note 2 : If CKi frequency is the same as the STin data rate, the sampling point moves to the 1/2 point of  
the bit cell, or 1/2 clock period after the active clock edge.  
Figure 14 - Serial Data Timing to CKi  
53  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
AC Electrical Characteristics - Serial Data Timing1 to CKo2  
No.  
Characteristic (Figure 15)  
Sym. Min. Typ.3 Max. Units  
Notes4  
1
2
3
4
5
STi to posedge CKo setup  
STi to posedge CKo hold  
STi to negedge CKo setup  
STi to negedge CKo hold  
Posedge CKo to Output Data Valid  
tSOPS  
tSOPH -2.0  
tSONS 7.3  
tSONH -2.0  
7.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSOPV  
0.1  
0
2.7  
4.6  
1.7  
3.7  
4.9  
5.1  
4.7  
4.8  
1.2  
SToA4  
SToB4  
SToA4  
SToB4  
SToA4  
SToB4  
SToA4  
SToB4  
6
7
8
9
Negedge CKo to Output Data Valid  
Posedge CKo to Output Data tri-state  
Negedge CKo to Output Data tri-state  
CKo1 to CKo0 skew  
tSONV -1.2  
-1.6  
tSOPZ  
tSONZ  
tCKOS  
0.9  
0.1  
0.4  
0
Note 1: Data Capture points vary with respect to CKo edge depending on clock rates & fractional delay settings.  
Note 2: All of these specifications refer to ST-BUS inputs, ST-BUS outputs and CKo outputs set to internal clock source.  
Note 3: Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing.  
Note 4: Loads on all serial outputs set to 30 pF.  
54  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
CKo0  
CKo1  
t
CKOS  
FPo  
(negative sense)  
CKo  
(negative sense)  
tSONS  
tSONH  
STin  
*
VALID DATA  
tSONV  
STon  
STon  
tSONZ  
FPo  
(negative sense)  
CKo  
(positive sense)  
tSOPS  
tSOPH  
STin  
STon  
STon  
*
tSOPV  
VALID DATA  
tSOPZ  
Note 1 : CKo frequency is assumed to be twice of the STin data rate, so that the sampling point is at the  
3/4 point of the bit cell, or 1 1/2 clock period after the active clock edge  
Note 2 : If CKo frequency is the same as the STin data rate, the sampling point moves to the 1/2 point of  
the bit cell, or 1/2 clock period after the active clock edge.  
Figure 15 - Serial Data Timing to CKo  
55  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
AC Electrical Characteristics - Microprocessor Bus Interface  
No  
Characteristics (Figure , & Figure 17)  
Sym. Min. Typ.1 Max. Units  
Notes  
tDSRE  
tCSRE  
tCSS  
1
2
3
4
5
6
DS Recovery  
5
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
CS Recovery  
CS asserted setup to DS asserted  
Address, SIZ1-0, R/W setup to DS asserted  
CS hold from DS deasserted  
tADS  
tCSH  
tADH  
Address, SIZ0-1, R/W hold from DS  
deasserted  
tDSR  
tDZ  
7
8
Data valid to DTA asserted on read  
0
ns  
ns  
CL = 50 pF,  
RL = 1 k2  
CS deasserted to Data tri-stated on read  
5
9
CL = 50 pF,  
RL = 1 k2  
tWDS  
9
Data setup to DS asserted on write  
CS asserted to WAIT deasserted  
0
0
ns  
ns  
tCSWA  
10  
CL = 30 pF,  
RL = 1K2  
tDHW  
tWDD  
11  
12  
Data hold from DTA asserted on write  
DS asserted to WAIT Asserted  
ns  
ns  
9
10  
155  
75  
7
CL = 50 pF,  
RL = 1 k2  
tAKS  
tAKD  
13  
14  
WAIT deasserted to DTA/BERR asserted  
skew  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 50 pF,  
RL = 1 k2  
DS asserted to DTA Asserted  
35  
50  
Connection  
Memory  
All other  
registers  
tAKH  
tDTHZ  
tWAHZ  
15  
16  
17  
DS deasserted to DTA Deasserted  
CS deasserted to DTA tri-stated  
CS deasserted to WAIT tri-stated  
CL = 30 pF,  
RL = 1 K2  
13  
6
CL = 30 pF,  
RL = 1 K2  
CL = 30 pF,  
RL = 1 K2  
tDSK  
18  
19  
BE or UDS/LDS skew  
20  
tBEDS  
BE or UDS/LDS to DS set-up  
0
Note 1: Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing.  
Note 2: High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to discharge  
CL.  
56  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
tDSRE  
DS  
CS  
tCSRE  
tCSS  
tCSH  
tADH  
tADS  
VALID  
A18-A0  
RWN,SIZ  
tDZ  
D31-D0  
READ  
VALID READ DATA  
tWDS  
VALID WRITE DATA  
D31-D0  
WRITE  
tDTHZ  
Hi-Z  
tDSR  
tDHW  
Hi-Z  
DTA  
BERR  
tAKD  
tAKH  
tAKS  
tCSWA  
tWDD  
tWAHZ  
Hi-Z  
Hi-Z  
WAIT  
Figure 16 - Microprocessor Bus Interface Timing  
tDSRE  
DS  
tBEDS  
SIZ1-SIZ0  
(BE1-BE0 or  
UDS, LDS)  
tDSK  
Figure 17 - Intel Mode Timing  
57  
Zarlink Semiconductor Inc.  
ZL50075  
Data Sheet  
AC Electrical Characteristics1 - IEEE 1149.1 Test Port and PWR Pin Timing  
No.  
Characteristic (Figure 18)  
TCK Clock Period  
Sym.  
Min. Typ.2 Max.  
Units  
Notes  
1
2
tTCKP  
tTCKF  
tTCKH  
tTCKL  
tTMSS  
tTMSH  
tTDIS  
100  
10  
20  
20  
10  
10  
20  
60  
20  
20  
20  
ns  
MHz  
ns  
TCK Clock Frequency  
TCK Clock Pulse Width High  
TCK Clock Pulse Width Low  
TMS Set-up Time  
3
4
ns  
5
ns  
6
TMS Hold Time  
ns  
7
TDi Input Set-up Time  
TDi Input Hold Time  
TDo Output Delay  
ns  
8
tTDIH  
ns  
9
tTDOD  
tTRSTW  
tTPWR  
ns  
CL = 30 pF  
10  
11  
TRST pulse width  
ns  
PWR pulse width  
ns  
Note 1: Characteristics are over recommended operating conditions unless otherwise stated.  
Note 2: Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing.  
tTCKL  
tTCKH  
tTCKP  
TCK  
TMS  
tTMSH  
tTMSS  
tTDIS  
tTDIH  
TDi  
tTDOD  
TDo  
tTRSTW  
TRST  
tTPWR  
PWR  
Figure 18 - IEEE 1149.1 Test Port & PWR Reset Timing  
58  
Zarlink Semiconductor Inc.  
Package Code  
c
Zarlink Semiconductor 2003 All rights reserved.  
Previous package codes  
1
ISSUE  
ACN  
15 Jul 03  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

ZL50075GAG2

32 K Channel Digital Switch with High Jitter Tolerance, Rate Conversion per Group of 2 Streams (8, 16, 32 or 64 Mbps), and 64 Inputs and 64 Outputs
ZARLINK

ZL50110

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50110GAG

Telecom Circuit, 1-Func, PBGA552, 35 X 35 MM, 1.27 MM PITCH, PLASTIC, MS-034BAR-2, BGA-552
MICROSEMI

ZL50110GAG

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50110GAG2

Telecom Circuit, 1-Func, PBGA552, 35 X 35 MM, 1.27 MM PITCH, LEAD FREE, PLASTIC, MS-034BAR-2, BGA-552
MICROSEMI

ZL50110GAG2

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50110_06

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50110_08

128, 256, 512 and 1024 Channel CESoP Processors
ZARLINK

ZL50111

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50111GAG

Telecom Circuit, 1-Func, PBGA552, 35 X 35 MM, 1.27 MM PITCH, PLASTIC, MS-034BAR-2, BGA-552
MICROSEMI

ZL50111GAG

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50111GAG2

Telecom Circuit, 1-Func, PBGA552, 35 X 35 MM, 1.27 MM PITCH, LEAD FREE, PLASTIC, MS-034BAR-2, BGA-552
MICROSEMI