IXD3236A30DMR-G [ZILOG]

IC REG BUCK 3V 0.6A SYNC SOT25;
IXD3236A30DMR-G
型号: IXD3236A30DMR-G
厂家: ZILOG, INC.    ZILOG, INC.
描述:

IC REG BUCK 3V 0.6A SYNC SOT25

文件: 总27页 (文件大小:2144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Specification  
IXD3235/36/37  
Synchronous 600 mA Step-Down DC/DC Converter  
Operating voltage range is from 2.0 V to 6.0 V (A  
FEATURES  
C types) or 1.8 V to 6.0 V (D G types). For the D/F  
types, which have a reference voltage of 0.8 V with ±  
2.0% accuracy, the output voltage can be set from  
0.9 V by using two external resistors.  
Built-in transistors  
Operating Input Voltage Range: 2.0 V ~ 6.0 V  
(A/B/C types) or 1.8 V ~ 6.0 V (D/E/F/G types)  
Output Voltage Range Externally Set: 0.8 V ~ 4.0  
V (internally set) or 0.9 ~ 6.0 V (externally set)  
The A/B/C/E/G types have a fixed output voltage  
from 0.8 V to 4.0 V in increments of 0.05 V with  
± 2.0% accuracy. The device requires only an  
inductor and two externally connected ceramic  
capacitors. The built-in oscillator, either 1.2 MHz or  
3.0 MHz, can be selected.  
Output Current: 600 mA  
High Efficiency: 92%  
Oscillation Frequency: 1.2 MHz, 3 MHz  
Maximum Duty Cycle: 100%  
The IXD3235 operates in PWM mode, the IXD3236  
automatically switches between PWM/PFM modes,  
and the IXD3237 allows switch manually between the  
PWM and the automatic PWM/PFM switching control  
modes. This allows fast response, low ripple, and  
high efficiency over the full range of loads from light  
to heavy.  
Operating Modes: PWM, PWM/PFM auto select  
or PWM/PFM manual select  
Functions: Build-in Current Limit, Load Capacitor  
Discharge, High Speed Soft start  
Operating Ambient temperature: -40 ~ +850C  
Packages: SOT-25, USP-6C, USP-6EL, WLP-5-03  
EU RoHS Compliant, Pb Free  
The soft start and current control functions are  
internally optimized. All circuits are disabled in a  
standby mode to reduce current consumption to less  
than 1.0 μA.  
APPLICATION  
Mobile Phones  
Bluetooth headsets  
Digital home appliances  
Office automation equipment  
Various portable equipment  
The B/F/G types have a 0.25 ms high-speed soft-  
start for quick turn-on. The built-in Under Voltage  
Lockout (UVLO) function forces the internal  
P-channel transistor OFF, when input voltage  
becomes 1.4 V or lower.  
DESCRIPTION  
The B to G types have the output capacitor CL  
discharge circuitry, which allows fast CL discharge  
when IC goes into standby mode.  
The IXD3235/36/37 series is a group of synchronous-  
rectification type DC/DC converters with a built-in  
0.52 Ω N-channel synchronous rectification transistor  
and 0.42 Ω P-channel switching transistor providing  
up to 600 mA output current.  
Device is available in four types of packages: SOT-  
25, USP-6C, USP-6EL, and WLP-5-03.  
TYPICAL APPLICATION CIRCUITS  
TYPICAL PERFORMANCE CHARACTERISTIC  
Efficiency vs. Output Current (fOSC = 1.2 MHz, VOUT = 1.8 V)  
PWM/PFM Automatic Switching mode  
IXD3235/36/37 A, B, C, E, and G types  
IXD3235/36/37 D and F types  
PS034201-0515  
PRELIMINARY  
1
Product Specification  
IXD3235/36/37  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
VIN Pin Voltage  
SYMBOL  
RATINGS  
0.3 ~ 6.5  
0.3 ~ VIN + 0.31  
0.3 ~ 6.5  
0.3 ~ 6.5  
0.3 ~ 6.5  
±1500  
UNITS  
VIN  
VLX  
VOUT  
VFB  
VCE  
ILX  
V
V
LX Pin Voltage  
VOUT Pin Voltage  
FB Pin Voltage  
V
V
CE/MODE Pin Voltage  
Lx Pin Current  
V
mA  
SOT-25  
250  
USP-6C  
USP-6EL  
WLP-5-03  
120  
Power Dissipation  
PD  
mW  
120  
750  
Operating Temperature Range  
Storage Temperature Range  
TOPR  
TSTG  
40 ~ + 85  
50 ~ +125  
0C  
0C  
ELECTRICAL OPERATING CHARACTERISTICS  
IXD3235/36/37 A series, VOUT = 1.8 V, Ta = 250C  
PARAMETER  
Operating Voltage Range  
Output Voltage  
SYMBOL  
VIN  
CONDITIONS  
MIN. TYP. MAX. UNIT CIRCUIT  
2.0  
-
6.0  
V
V
VOUT  
VIN = VCE = 5.0 V, IOUT = 30 mA  
VIN = VOUT(E) + 2.0 V, VCE = 1.0 V9)  
VCE = VIN, VOUT = 01), 11)  
1.764 1.800 1.836  
600  
Maximum Output Current  
UVLO Voltage  
IOUT_MAX  
VUVLO  
mA  
V
1.00 1.40 1.78  
IXD323xA18Cxx  
IXD323xA18Dxx  
15  
21  
0
33  
35  
Supply  
Current  
IQ  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 1.1 V  
VIN = 5.0 V, VCE = 0 V, VOUT = VOUT(E) x 1.1 V  
VIN = VOUT(E) + 2 V, VCE = 1.0 V, IOUT = 100 mA  
µA  
µA  
Standby Current  
ISTB  
fOSC  
1.0  
IXD323xA18Cxx  
1020 1220 1380  
2550 3000 3460  
Oscillation  
Frequency  
kHz  
IXD323xA18Dxx  
IXD323xA18Cxx  
IXD323xA18Dxx  
PFM  
Switching  
Current  
120  
170  
160  
220  
200  
270  
12)  
IPFM  
VIN = VCE = VOUT(E) + 2 V, , IOUT = 1 mA (see table A)  
mA  
12)  
P-channel ON time maximum  
Maximum Duty Cycle Ratio  
Minimum Duty Cycle Ratio  
tPON_MAX  
VIN = VCE = (see table B), IOUT = 1 mA  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 0.9 V  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 1.1 V  
2Dmax 3DMAX  
DMAX  
DMIN  
100  
%
%
0
IXD323xA18Cxx  
Efficiency 2)  
92  
EFFI  
VIN = VCE = VOUT(E) + 1.2 V, IOUT = 100 mA  
%
IXD323xA18Dxx  
86  
LX “H” ON Resistance 13)  
LX “H” ON Resistance 23)  
LX “L” ON Resistance 14)  
LX “L” ON Resistance 24)  
LX HLeakage Current5)  
LX “L” Leakage Current5)  
Current Limit10)  
RLXH1  
RLXH2  
RLXL1  
RLXL2  
ILXH  
VIN = VCE = 5.0 V, VOUT = 0 V, ILX = 100 mA  
VIN = VCE = 3.6 V, VOUT = 0 V, ILX = 100 mA  
VIN = VCE = 5.0 V  
0.35 0.55  
0.42 0.67  
0.45 0.65  
0.52 0.77  
VIN = VCE = 3.6 V  
VIN = VCE = 5.0 V, VOUT = 0 V, VLX = 5.0 V  
VIN = VCE = 5.0 V, VOUT = 0 V, VLX = 5.0 V  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 0.9 V8)  
0.01  
0.01  
1.0  
1.0  
µA  
µA  
mA  
ILXH  
ILIM  
 ꢁꢂꢃ  
900 1050 1350  
±100  
Output Voltage Temperature  
Characteristics  
CE “H” Voltage14)  
CE “L” Voltage15)  
PWM mode Start Voltage6), 13)  
-400C ≤ TOPR 850C, IOUT = 30 mA  
ppm/0C  
ꢁꢂꢃ   ꢁꢆꢇ  
VCEH  
VOUT = 0 V  
VOUT = 0 V  
IOUT = 1 mA  
0.65  
0
6.0  
0.25  
V
V
VCEL  
VPWM  
VIN -1.0  
PWM/PFM mode  
Start Voltage6), 13)  
VIN –  
0.25  
VPFM  
IENH  
IOUT = 1 mA  
CE “H” Current  
VIN = VCE = 5.0 V, VOUT = 0 V  
-0.1  
0.1  
µA  
PS034201-0515  
PRELIMINARY  
2
Product Specification  
IXD3235/36/37  
CE “L” Current  
IENL  
tSS  
VIN = 5.0 V, VCE = 0 V, VOUT = 0 V  
IOUT = 1 mA (see table C)  
-0.1  
0.5  
0.5  
0.1  
2.5  
2.5  
µA  
ms  
IXD323xA18Cxx  
IXD323xA18Dxx  
1.0  
0.9  
Soft-Start  
Time  
VIN = VCE = 5.0 V, VOUT = 0.8 x VOUT(E), LX short with  
1 Ω resistor to ground  
VIN = VCE = 5.0 V, LX short with 1 Ω resistor to  
ground  
Latch Time7)  
tLAT  
1.0  
20.0  
ms  
V
Short Protection Threshold  
Voltage  
VSHORT  
0.675 0.900 1.150  
NOTE:  
Test conditions: Unless otherwise stated, VIN = 5.0 V, VOUT(E) = Nominal Voltage  
1) Including hysteresis operating voltage range  
2) EFFI = {(output voltage × output current) / (input voltage × input current)} × 100%  
3) ON resistance (Ω) = (VIN - Lx pin measurement voltage) / 100mA  
4) Design target value  
5) A 10μA (maximum) current may leak at high temperature  
6) The CE/MODE pin of the IXD3237A series functions also as an external switching pin between PWM and PWM/PFM control. Control  
is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3 V,  
and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V. However, it should be equal to or  
greater than VCEH  
7) Time from moment when VOUT is shorted to GND via 1 Ω resistor to the moment, when Current Limit generates pulse stopping LX  
oscillations  
8) When VIN is less than 2.4 V, current limit may not be reached because of voltage drop across ON resistance  
9) When the difference between input and output voltage is small, some cycles may be skipped completely before current maximizes. If  
load current increases in this state, output voltage will decrease because of the voltage drop across P-channel transistor  
10) Current limit denotes the level of an inductor peak current  
11) Voltage, when LX pin voltage is “L”=+0.1 V ~ -0.1 V  
12) Not for IXD3235 series, because they have PWM mode only  
13) The IXD3237 series only  
14) Voltage at which LX pin state changes from “L” to “H” = VIN ~ VIN - 1.2 V”  
15) Voltage at which LX pin state changes from “H” to “L” ”=+0.1 V ~ -0.1 V  
PS034201-0515  
PRELIMINARY  
3
Product Specification  
IXD3235/36/37  
ELECTRICAL OPERATING CHARACTERISTICS (CONTINUED)  
IXD3235/36/37 B/C/E/G series, VOUT = 1.8 V, Ta = 250C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN. TYP. MAX. UNIT CIRCUIT  
B/C series  
E/G series  
2.0  
1.8  
-
6.0  
6.0  
Operating Voltage  
Range  
VIN  
V
Output Voltage  
VOUT  
IOUT_MAX  
VUVLO  
VIN = VCE = 5.0 V, IOUT = 30 mA  
1.764 1.800 1.836  
600  
V
mA  
V
Maximum Output Current  
UVLO Voltage  
VIN = VOUT(E) + 2.0 V, VCE = 1.0 V9)  
VCE = VIN, VOUT = VOUT(E) x 0.5 V 1), 11), 16)  
1.00 1.40 1.78  
IXD323xx18Cxx  
IXD323xx18Dxx  
15  
21  
0
33  
35  
Supply  
Current  
IQ  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 1.1 V  
VIN = 5.0 V, VCE = 0 V, VOUT = VOUT(E) x 1.1 V  
VIN = VOUT(E) + 2 V, VCE = 1.0 V, IOUT = 100 mA  
µA  
µA  
Standby Current  
ISTB  
fOSC  
1.0  
IXD323xx18Cxx  
1020 1220 1380  
2550 3000 3460  
Oscillation  
Frequency  
kHz  
IXD323xx18Dxx  
IXD323xx18Cxx  
IXD323xx18Dxx  
PFM  
Switching  
Current  
120  
170  
160  
220  
200  
270  
12)  
IPFM  
VIN = VCE = VOUT(E) + 2 V, , IOUT = 1 mA (see table A)  
mA  
12)  
P-channel ON time maximum  
Maximum Duty Cycle Ratio  
Minimum Duty Cycle Ratio  
tPON_MAX  
VIN = VCE = (see table B), IOUT = 1 mA  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 0.9 V  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 1.1 V  
2Dmax 3DMAX  
DMAX  
DMIN  
100  
%
%
0
IXD323xx18Cxx  
Efficiency 2)  
92  
EFFI  
VIN = VCE = VOUT(E) + 1.2 V, IOUT = 100 mA  
%
IXD323xx18Dxx  
86  
LX “H” ON Resistance 13)  
LX “H” ON Resistance 23)  
LX “L” ON Resistance 14)  
LX “L” ON Resistance 24)  
LX HLeakage Current5)  
LX “L” Leakage Current5)  
Current Limit10)  
RLXH1  
RLXH2  
RLXL1  
RLXL2  
ILXH  
VIN = VCE = 5.0 V, VOUT = 0 V, ILX = 100 mA  
VIN = VCE = 3.6 V, VOUT = 0 V, ILX = 100 mA  
VIN = VCE = 5.0 V  
0.35 0.55  
0.42 0.67  
0.45 0.65  
0.52 0.77  
VIN = VCE = 3.6 V  
VIN = VCE = 5.0 V, VOUT = 0 V, VLX = 5.0 V  
VIN = VCE = 5.0 V, VOUT = 0 V, VLX = 5.0 V  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 0.9 V8)  
0.01  
0.01  
1.0  
1.0  
µA  
µA  
mA  
ILXH  
ILIM  
 ꢁꢂꢃ  
900 1050 1350  
±100  
Output Voltage Temperature  
Characteristics  
CE “H” Voltage14)  
CE “L” Voltage15)  
PWM mode Start Voltage6), 13)  
-400C ≤ TOPR 850C, IOUT = 30 mA  
ppm/0C  
ꢁꢂꢃ   ꢁꢆꢇ  
VCEH  
VOUT = 0 V  
VOUT = 0 V  
IOUT = 1 mA  
0.65  
0
6.0  
0.25  
V
V
VCEL  
VPWM  
VIN -1.0  
PWM/PFM mode  
Start Voltage6), 13)  
VIN –  
0.25  
VPFM  
IOUT = 1 mA  
CE “H” Current  
CE “L” Current  
IENH  
IENL  
VIN = VCE = 5.0 V, VOUT = 0 V  
-0.1  
0.1  
0.1  
0.4  
2.5  
µA  
µA  
VIN = 5.0 V, VCE = 0 V, VOUT = 0 V  
-0.1  
0.5  
IXD323xB(G)18Cxx  
0.25  
1.0  
IXD323xC(E)18Cxx  
IXD323xB(G)18Dxx  
IXD323xC(E)18Dxx  
Soft-Start  
Time  
tSS  
IOUT = 1 mA (see table C)  
ms  
ms  
0.32 0.50  
0.5  
1.0  
0.9  
2.5  
VIN = VCE = 5.0 V, VOUT = 0.8 x VOUT(E), LX short with  
1 Ω resistor to ground  
Latch Time7)  
tLAT  
20.0  
B/C series  
E/G series  
0.675 0.900 1.150  
0.338 0.450 0.563  
Short Protection  
Threshold Voltage  
VIN = VCE = 5.0 V, LX short with 1 Ω resistor to  
ground  
VSHORT  
RDCL  
V
CL Discharge Resistance  
VIN = VLX = 5.0 V, VCE = 0 V, VOUT - open  
200  
300  
450  
NOTE:  
Test conditions: Unless otherwise stated, VIN = 5.0 V, VOUT(E) = Nominal Voltage  
1) Including hysteresis operating voltage range  
2) EFFI = {(output voltage × output current) / (input voltage × input current)} × 100%  
3) ON resistance (Ω) = (VIN - Lx pin measurement voltage) / 100mA  
4) Design target value  
PS034201-0515  
PRELIMINARY  
4
Product Specification  
IXD3235/36/37  
5) A 10μA (maximum) current may leak at high temperature  
6) The CE/MODE pin of the IXD3237A series functions also as an external switching pin between PWM and PWM/PFM control. Control  
is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3 V,  
and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V. However, it should be equal to or  
greater than VCEH  
7) Time from moment when VOUT is shorted to GND via 1 Ω resistor to the moment, when Current Limit generates pulse stopping LX  
oscillations  
8) When VIN is less than 2.4 V, current limit may not be reached because of voltage drop across ON resistance  
9) When the difference between input and output voltage is small, some cycles may be skipped completely before current maximizes. If  
load current increases in this state, output voltage will decrease because of the voltage drop across P-channel transistor  
10) Current limit denotes the level of an inductor peak current  
11) Voltage, when LX pin voltage is “L”=+0.1 V ~ -0.1 V  
12) Not for IXD3235 series, because they have PWM mode only  
13) The IXD3237 series only  
14) Voltage at which LX pin state changes from “L” to “H” = VIN ~ VIN - 1.2 V”  
15) Voltage at which LX pin state changes from “H” to “L” ”=+0.1 V ~ -0.1 V  
16) Voltage at which VOUT becomes more than VIN, while VIN is rising from 0 V to VOUT (E) x 0.5 V  
PS034201-0515  
PRELIMINARY  
5
Product Specification  
IXD3235/36/37  
ELECTRICAL OPERATING CHARACTERISTICS (CONTINUED)  
IXD3235/36/37 D/F series, VOUT = 1.8 V, Ta = 250C  
PARAMETER  
Operating Voltage Range  
FB Voltage  
SYMBOL  
VIN  
CONDITIONS  
MIN. TYP. MAX. UNIT CIRCUIT  
1.8  
-
6.0  
V
V
VFB  
VIN = VCE = 5.0 V, IOUT = 30 mA  
VIN = VOUT(E) + 2.0 V, VCE = 1.0 V9)  
VCE = VIN, VOUT = 01), 11)  
1.784 1.800 1.816  
Maximum Output Current  
UVLO Voltage  
IOUT_MAX  
VUVLO  
600  
mA  
V
1.00 1.40 1.78  
15  
IXD323xx18Cxx  
IXD323xx18Dxx  
Supply  
Current  
IQ  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 1.1 V  
VIN = 5.0 V, VCE = 0 V, VOUT = VOUT(E) x 1.1 V  
VIN = VOUT(E) + 2 V, VCE = 1.0 V, IOUT = 100 mA  
µA  
µA  
21  
0
35  
Standby Current  
ISTB  
fOSC  
1.0  
IXD323xx18Cxx  
1020 1220 1380  
2550 3000 3460  
Oscillation  
Frequency  
kHz  
IXD323xx18Dxx  
IXD323xx18Cxx  
IXD323xx18Dxx  
PFM  
Switching  
Current  
120  
170  
160  
220  
200  
270  
12)  
IPFM  
VIN = VCE = VOUT(E) + 2 V, , IOUT = 1 mA (see table A)  
mA  
12)  
P-channel ON time maximum  
Maximum Duty Cycle Ratio  
Minimum Duty Cycle Ratio  
tPON_MAX  
VIN = VCE = (see table B), IOUT = 1 mA  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 0.9 V  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 1.1 V  
2Dmax 3DMAX  
DMAX  
DMIN  
100  
%
%
0
IXD323xx18Cxx  
Efficiency 2)  
92  
EFFI  
VIN = VCE = VOUT(E) + 1.2 V, IOUT = 100 mA  
%
IXD323xx18Dxx  
86  
LX “H” ON Resistance 13)  
LX “H” ON Resistance 23)  
LX “L” ON Resistance 14)  
LX “L” ON Resistance 24)  
LX HLeakage Current5)  
LX “L” Leakage Current5)  
Current Limit10)  
RLXH1  
RLXH2  
RLXL1  
RLXL2  
ILXH  
VIN = VCE = 5.0 V, VOUT = 0 V, ILX = 100 mA  
VIN = VCE = 3.6 V, VOUT = 0 V, ILX = 100 mA  
VIN = VCE = 5.0 V  
0.35 0.55  
0.42 0.67  
0.45 0.65  
0.52 0.77  
VIN = VCE = 3.6 V  
VIN = VCE = 5.0 V, VOUT = 0 V, VLX = 5.0 V  
VIN = VCE = 5.0 V, VOUT = 0 V, VLX = 5.0 V  
VIN = VCE = 5.0 V, VOUT = VOUT(E) x 0.9 V8)  
0.01  
0.01  
1.0  
1.0  
µA  
µA  
mA  
ILXH  
ILIM  
 ꢁꢂꢃ  
900 1050 1350  
±100  
Output Voltage Temperature  
Characteristics  
CE “H” Voltage14)  
CE “L” Voltage15)  
PWM mode Start Voltage6), 13)  
-400C ≤ TOPR 850C, IOUT = 30 mA  
ppm/0C  
ꢁꢂꢃ   ꢁꢆꢇ  
VCEH  
VOUT = 0 V  
VOUT = 0 V  
IOUT = 1 mA  
0.65  
0
6.0  
0.25  
V
V
VCEL  
VPWM  
VIN -1.0  
PWM/PFM mode  
Start Voltage6), 13)  
VIN –  
0.25  
VPFM  
IOUT = 1 mA  
CE “H” Current  
CE “L” Current  
IXD323xD18Cxx  
IENH  
IENL  
VIN = VCE = 5.0 V, VOUT = 0 V  
-0.1  
0.1  
0.1  
2.5  
µA  
µA  
VIN = 5.0 V, VCE = 0 V, VOUT = 0 V  
-0.1  
0.5  
1.0  
IXD323xF18Cxx  
IXD323xD18Dxx  
IXD323xF18Dxx  
0.25 0.40  
1.0 2.5  
Soft-Start  
Time  
tSS  
IOUT = 1 mA (see table C)  
ms  
ms  
0.5  
0.25 0.40  
20.0  
VIN = VCE = 5.0 V, VOUT = 0.8 x VOUT(E), LX short with  
1 Ω resistor to ground  
Latch Time7)  
tLAT  
1.0  
Short Protection Threshold  
Voltage  
VIN = VCE = 5.0 V, LX short with 1 Ω resistor to  
ground  
VSHORT  
RDCL  
0.675 0.900 1.150  
200 300 450  
V
CL Discharge Resistance  
VIN = VLX = 5.0 V, VCE = 0 V, VOUT - open  
NOTE:  
Test conditions: Unless otherwise stated, VIN = 5.0 V, VOUT(E) = Nominal Voltage  
1) Including hysteresis operating voltage range  
2) EFFI = {(output voltage × output current) / (input voltage × input current)} × 100%  
3) ON resistance (Ω) = (VIN - Lx pin measurement voltage) / 100mA  
4) Design target value  
5) A 10μA (maximum) current may leak at high temperature  
PS034201-0515  
PRELIMINARY  
6
Product Specification  
IXD3235/36/37  
6) The CE/MODE pin of the IXD3237A series functions also as an external switching pin between PWM and PWM/PFM control. Control  
is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3 V,  
and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V. However, it should be equal to or  
greater than VCEH  
7) Time from moment when VOUT is shorted to GND via 1 Ω resistor to the moment, when Current Limit generates pulse stopping LX  
oscillations  
8) When VIN is less than 2.4 V, current limit may not be reached because of voltage drop across ON resistance  
9) When the difference between input and output voltage is small, some cycles may be skipped completely before current maximizes. If  
load current increases in this state, output voltage will decrease because of the voltage drop across P-channel transistor  
10) Current limit denotes the level of an inductor peak current  
11) Voltage, when LX pin voltage is “L”=+0.1 V ~ -0.1 V  
12) Not for IXD3235 series, because they have PWM mode only  
13) The IXD3237 series only  
14) Voltage at which LX pin state changes from “L” to “H” = VIN ~ VIN - 1.2 V”  
15) Voltage at which LX pin state changes from “H” to “L” ”=+0.1 V ~ -0.1 V  
TABLE A  
PFM Switching Current (IPFM) vs. Oscillation Frequency and Setting Voltage  
fOSC = 1.2 MHz  
fOSC = 3.0 MHz  
SETTING VOLTAGE  
MIN  
140  
130  
120  
TYP  
180  
170  
160  
MAX  
240  
220  
200  
MIN  
190  
180  
170  
TYP  
260  
240  
220  
MAX  
350  
300  
270  
VOUT(E) ≤ 1.2 V  
1.2 V < VOUT(E) ≤ 1.75V  
VOUT(E) ≥ 1.8 V  
TABLE B  
Input Voltage (VIN) for Measuring P-channel ON time maximum tPON_MAX  
fOSC  
1,2 MHZ  
3 MHZ  
VIN  
VOUT(E) + 0.5 V  
VOUT(E) +1.0 V  
NOTE:  
Example:  
When VOUT(E) = 1.2V and fOSC = 1.2 MHz, VIN should be 1.7 V, however, VIN should be at least 2.0 V if the minimum operating voltage is 2.0 V  
TABLE C  
Soft-Start Time vs. Setting Voltage and Oscillation Frequency (IXD3235/36/37 B and G Series only)  
SOFT START TIME, µS  
SERIES  
fOSC  
SETTING VOLTAGE, V  
MIN  
TYP  
250  
320  
250  
320  
250  
320  
250  
320  
MAX  
400  
500  
400  
500  
400  
500  
400  
500  
0.8 ≤ VOUT(E) < 1.75  
1.5 ≤ VOUT(E) < 1.8  
1.8 ≤ VOUT(E) < 2.5  
2.5 ≤ VOUT(E) < 4.0  
0.8 ≤ VOUT(E) < 2.5  
2.5 ≤ VOUT(E) < 4.0  
0.8 ≤ VOUT(E) < 1.8  
1.8 ≤ VOUT(E) < 4.0  
IXD3235B/G  
IXD3237B/G  
1.2 MHz  
3.0 MHz  
IXD3236B/G  
IXD3235/36/37 B/G  
PS034201-0515  
PRELIMINARY  
7
Product Specification  
IXD3235/36/37  
PIN CONFIGURATION  
SOT-25 (Top View)  
USP-6C (Bottom View)  
USP-6EL (Bottom View)  
WLP-5-03 (Bottom View)  
NOTE:  
The dissipation pad for the USP-6C and USP-6EL packages should be soldered in recommended mount pattern and metal masking to enhance  
mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the VSS (No 2 and No 5) pins.  
VSS pins (No. 2 and 5) should be tied together.  
PIN ASSIGNMENT  
PIN NUMBER  
SOT-25 USP-6C/USP-6EL WLP-5-03  
PIN NAME  
FUNCTIONS  
1
2
3
6
2, 5  
4
2
3
1
VIN  
VSS  
CE/MODE  
Power Input  
Ground  
Enable (Active HIGH), Mode Selection Pin  
Fixed Output Voltage - A/B/C/E/G series  
(Output Voltage Sense Pin - D/F series)  
Switching Node  
4
5
3
1
4
5
VOUT (FB)  
LX  
PS034201-0515  
PRELIMINARY  
8
Product Specification  
IXD3235/36/37  
BLOCK DIAGRAMS  
IXD3235/36/37 A Series  
IXD3235/36/37 B/C/E/G Series  
IXD3235/36/37 D/F Series  
Internal diodes include an ESD protection and a parasitic diode  
BASIC OPERATION  
The IXD3235/36/37 series consists of a Reference Voltage source, Ramp Wave Generator, Error Amplifier, PWM  
Comparator, Phase Compensation circuit, output voltage resistive divider, P-channel switching transistor, N-  
channel transistor for the synchronous switch, Current Limiter circuit, UVLO circuit, and others. (See the block  
diagram above.)  
The Error Amplifier compares output voltage divided by internal (external for D/F versions) resistors RFB1/RFB2 with  
the internal reference voltage. Amplified difference between these two signals applies to the one input of the PWM  
Comparator, while ramp voltage from the Ramp Wave Generator applies to the second input. Resulting PWM pulse  
determines switching transistor ON time. It goes through the Buffer and it appears at the gate of the internal P-  
channel switching transistor. This continuous process stabilizes output voltage.  
The Current Feedback circuit monitors current of the P-channel transistor at each switching cycle, and modulates  
output signal from the Error Amplifier to provide additional feedback. This guarantees a stable converter operation  
even with low ESR ceramic load capacitor.  
Reference Voltage Source  
The Reference Voltage Source provides the reference voltage to ensure stable output voltage of the DC/DC  
converter.  
Ramp Wave Generator  
The Ramp Wave Generator produces ramp waveform signal needed for PWM operation, and signals to  
synchronize all the internal circuits. It operates at internally fixed 1.2 MHz or 3.0 MHz frequency.  
PS034201-0515  
PRELIMINARY  
9
Product Specification  
IXD3235/36/37  
Error Amplifier  
The Error Amplifier monitors output voltage through resistive divider connected to VOUT (FB) pin. If output voltage  
falls below preset value and Error Amplifier’s input signal becomes less than internal reference voltage, the Error  
Amplifier/s output signal increases. That results in wider PWM pulse and respectively longer ON time for switching  
transistor to increase output voltage. The gain and frequency characteristics of the error amplifier output are fixed  
internally to optimize IC performance.  
Current Limiter  
The Current Limiter circuit monitors current flowing through the P-channel transistor connected to the Lx pin, and  
combines function of the current limit and operation suspension.  
When transistor’s current is greater than a specified level, the Current Limiter turns off P-channel transistor  
immediately. After that, the Current Limiter turns off too, returning to monitoring mode.  
The driver transistor turns on at the next cycle, but the Current Limiter will turn it off immediately if an over current  
exists. When the over current state is eliminated, the IC resumes its normal operation.  
The IC waits for end of the over current state repeating above steps (t1 on figure below). If an over-current state  
continues for a few ms with IC repeatedly performing above steps, the Current Limiter latches the P-channel  
transistor in OFF state, and IC suspends operations (t2 on figure below). To restart IC operation after this condition,  
either EN pin should be toggled H L H, or VIN pin voltage should be set below UVLO to resume operations from  
soft start.  
The suspension mode is not a standby mode. In the suspension mode, pulse output is suspended; however,  
internal circuitries remain in operation mode consuming power.  
Short-Circuit Protection  
The short-circuit protection monitors the RFB1/RFB2 divider voltage (FB point in the block diagram). If output is  
accidentally shorted to the ground, FB voltage starts falling. When this voltage becomes less than half of the  
reference voltage (VREF) and P-channel switching transistor’s current is more than the ILIM threshold, the Short-  
Circuit Protection turns off and latches quickly the P-channel transistor.  
At D/E/F/G series, Short Circuit Protection starts once FB voltage becomes less than 0.25 of reference voltage  
(VREF), disregard to transistor’s current.  
To restart IC operation after this condition, either EN pin should be toggled H L H, or VIN pin voltage should be  
set below UVLO to resume operations from soft start.  
The sharp load transients creating a voltage drop at the VOUT, propagate to the FB point through CFB, that may  
result in Short Circuit protection operating at voltages higher than 1/2 VREF voltage.  
UVLO Circuit  
When the VIN pin voltage becomes 1.4V or lower, the P-channel transistor is forced OFF to prevent false pulse  
output caused by unstable operation of the internal circuitry. When the VIN pin voltage becomes 1.8 V or higher,  
switching operations resume with the soft start. The soft start function operates even when the VIN voltage falls  
PS034201-0515  
PRELIMINARY  
10  
Product Specification  
IXD3235/36/37  
below the UVLO threshold for a very short time. The UVLO circuit does not cause a complete shutdown of the IC,  
but causes pulse output to be suspended; therefore, the internal circuitry remains in operation.  
PFM Switch Current  
In PFM mode, the IC keeps the P-channel transistor on until inductor current reaches a specified level (IPFM).  
P-channel transistor’s ON time is equal  
tON = L×IPFM / (VIN - VOUT), µs,  
where L is an inductance in µH, and IPFM is a current limit in A.  
PFM Duty Limit  
In PFM mode, P-channel ON time maximum (tPON_MAX) is set to 2DMAX, i.e. two periods of the switching frequency.  
Therefore, under conditions, when the ON time increases (i.e. step-down ratio is small), it is possible that P-channel  
transistor to be turned off, even when inductor current does not reach to IPFM. (See Figures 1 and 2 below)  
Figure 1  
CL High Speed Discharge  
Figure 2  
The IXD3235/36/37 B, C, D, E, F, and G series can quickly discharge the output capacitor (CL) to avoid application  
malfunction, when CE pin set logic LOW to disable IC.  
CL Discharge Time is proportional to the resistance (R) of the N-channel transistor located between the LX pin and  
ground and the output CL capacitance as shown below.  
tDSH = RCL x Ln (V OUT(E) / V), where  
V - Output voltage after discharge  
VOUT(E) - Output voltage  
R = 300 Ω (Typical value)  
Output Voltage Discharge Characteristics  
PS034201-0515  
PRELIMINARY  
11  
Product Specification  
IXD3235/36/37  
CE/MODE Pin Function  
The IXD3235/36/37 series enter the shut down mode, when a LOW logic-level signal applies to the CE/MODE pin.  
In the shutdown mode, IC current consumption is ~0 μA (Typical value), with the Lx and VOUT pins at high  
impedance state. The IC starts its operation when a HIGH logic-level signal applies to the CE/MODE pin.  
Intermediate voltage, generated by external resistive divider can be used to select PWM/PFM auto or PWM only  
switching modes in respect with the table below.  
OPERATION MODE  
CE/MODE VOLTAGE LEVEL  
IXD3235  
IXD3236  
IXD3537  
Synchronous PWM/PFM auto  
switching mode  
0.65 V ≤ V CE/MODE ≤ 6.0 V  
Synchronous Fixed PWM mode  
-
Synchronous PWM/PFM auto  
switching mode  
VIN 0.25 V ≤ V CE/MODE VIN  
-
-
0.65 V ≤ V CE/MODE ≤ VIN 1.0 V  
-
-
Synchronous Fixed PWM mode  
Standby mode  
0 V ≤ V CE/MODE ≤ 0.25 V  
Standby mode  
Standby mode  
Examples of CE/MODE pin use are shown below. Please set the value of each resistor from few hundreds kΩ to  
few hundred MΩ. For switches, CPU open-drain I/O port and transistor can be used.  
The CE/MODE pin is a CMOS input with a sink current ~ 0 μA.  
IXD3235/36 series - Examples of how to use CE/MODE pin  
IC STATUS  
SW-CE  
POSITION  
ON  
SCHEMATIC A  
SCHEMATIC B  
Active  
Standby  
Active  
OFF  
Standby  
IXD3237 series - Examples of how to use CE/MODE pin  
IC STATUS  
SW-CE  
POSITION  
SW-PWM/PFM  
POSITION  
SCHEMATIC A  
SCHEMATIC B  
PWM/PFM Auto  
Switching Mode  
PWM Mode  
ON  
X
Standby  
OFF  
OFF  
ON  
OFF  
PWM Mode  
PWM/PFM Auto  
Switching Mode  
Standby  
Soft Start  
Soft start time is available in two options via product  
selection.  
The soft-start time of IXD3235/36/37 series is optimized by  
using internal circuits and it is 1.0 ms (Typically.) for  
A/C/D/E series and 0.25 ms for B/F/G series. D and F  
series require external resistors and a capacitor to set the  
output voltage, so the soft-start time might vary based on  
value of those external components. The definition of the  
soft-start time is the time when the output voltage goes up  
to the 90% of nominal output voltage after the IC is enabled  
by CE ”H” signal.  
PS034201-0515  
PRELIMINARY  
12  
Product Specification  
IXD3235/36/37  
TYPICAL APPLICATION CIRCUITS  
IXD3235/36/37 A, B, C, E, G  
Series (Fixed Output Voltage)  
IXD3235/36/37 D, F Series (Adjustable Output Voltage)  
EXTERNAL COMPONENTS  
fOSC  
1.2 MHz  
3.0 MHz  
L, µH  
CIN, µF  
CL, µF  
4.7  
4.7  
10  
1.5  
4.7  
10  
Setting Output Voltage  
The IXD3235/36/37 D, F Series allows set output voltage externally by two resistors RFB1 and RFB2 as sown on  
schematic diagram above.  
Output voltage can be set starting from 0.9V. However, when input voltage (VIN) is lower than the set output  
voltage, output voltage (VOUT) cannot be higher than the input voltage.  
VOUT = 0.8 × (RFB1+RFB2)/RFB2  
RFB1 + RFB2 < 1 MΩ.  
The value of the phase compensation capacitor CFB is calculated by the follow equation  
fZFB = 1/(2×π×CFB×RFB1),  
where fZFB < 10 kHz. For optimization, fZFB can be adjusted in the range of 1 kHz to 20 kHz depending on the  
inductance L and the load capacitance CL.  
Example:  
When RFB1 = 470 kΩ and RFB2 = 150 k, VOUT = 0.8 × (470 k+150 k) / 150 k = 3.3 V  
VOUT, V  
0.9  
RFB1, kΩ  
100  
RFB2, kΩ  
820  
CFB, pF  
150  
VOUT, V  
2.5  
RFB1, kΩ  
510  
RFB2, kΩ  
240  
CFB, pF  
100  
1.2  
150  
300  
100  
3.0  
330  
120  
150  
1.5  
130  
150  
220  
3.3  
470  
150  
100  
1.8  
300  
240  
150  
4.0  
120  
30  
470  
PS034201-0515  
PRELIMINARY  
13  
Product Specification  
IXD3235/36/37  
LAYOUT AND USE CONSIDERATIONS  
1. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce  
the circuit impedance. Please, pay special attention to the VIN and GND wiring. Switching noise, which  
occurs from the GND, may cause the instability of the IC, so, position VIN and VCL capacitors as close to IC  
as possible.  
2. Transitional voltage drops or voltage rising phenomenon could make the IC unstable if ratings are  
exceeded.  
3. The IXD3235/36/37 series are designed to work with ceramic output capacitors. However, if the difference  
between input and output voltages is too high, a ceramic capacitor may fail to absorb the resulting high  
switching energy and oscillation could occur. In this case, connect an electrolytic capacitor in parallel to  
ceramic one to compensate for insufficient capacitance.  
4. In PWM mode, IC generates very narrow pulses, and there is a possibility that some cycles will be skipped  
completely, if the difference between VIN and VOUT is high.  
5. If the difference between VIN and VOUT is small, IC generates very wide pulses, and there is a possibility  
that some cycles will be skipped completely at the heavy load current.  
6. When dropout voltage or load current is high, Current Limit may activate prematurely that will lead to IC  
instability. To avoid this condition, choose inductor’s value to set peak current below Current Limit  
threshold. Calculate the peak current according to the following formula:  
IPK = (VIN - VOUT) x D / (2 x L x fOSC) + IOUT, where  
L - Inductance  
fOSC -- Oscillation Frequency  
D Duty cycle  
7. Inductor’s rated current should exceed Current Limit threshold to avoid damage, which may occur until  
P-channel transistor turns off after Current Limiter activates (see figure below).  
Current flows into P-channel transistor reaches the current limit (ILIM).  
Current is more than ILIM due the circuit’s delay time from the current limit detection to the P-channel transistor OFF.  
The inductor’s current time rate becomes quite small.  
IC generates very narrow pulses for several milliseconds.  
The circuit latches, stopping operation.  
8. If VIN voltage is less than 2.4 V, current limit threshold may be not reached due voltage drop caused by  
switching transistor’s ON resistance  
9. Latch time may become longer or latch may not work due electrical noise. To avoid this effect, the board  
should be laid out so that input capacitors are placed as close to the IC as possible.  
10. Use of the IC at voltages below recommended voltage range may lead to instability.  
11. At high temperature, output voltage may increase up to input voltage level at no load, because of the  
leakage current of the driver transistor.  
12. High step-down ratio and very light load may be cause of intermittent oscillations.  
13. In PWM/PFM automatic switching mode, IC may become unstable during transition to continuous mode.  
Please verify with actual components.  
PS034201-0515  
PRELIMINARY  
14  
Product Specification  
IXD3235/36/37  
VOUT = 3.3 V, fOSC = 1.2 MHz, VIN = 3.7 V, IOUT = 100 mA  
Ch 1 VLX 5 V/div; Ch 2 VOUT 2.0 mV/div  
External components:  
L = 4.7 µH (NP4018)  
CIN = 4.7 µF (ceramic)  
CL = 10 µF (ceramic)  
14. The IC may enter unstable operation if the combination of ambient temperature, setting voltage, oscillation  
frequency, and inductor’s value are not adequate. If IC operates close to the maximum duty cycle, it may  
become  
unstable, even if inductor values listed below  
are used.  
fOSC, MHz  
3.0  
VOUT, V  
L, µH  
VOUT = 3.3 V, fOSC = 1.2 MHz,  
VIN = 4.0 V, IOUT = 150 mA  
Ch 1 VLX 2.0 V/div;  
0.8 V <VOUT < 4.0 V  
VOUT ≤2.5 V  
1.0 2.2  
3.3 6.8  
4.7 6.8  
1.2  
VOUT >2.5 V  
Ch 2 VOUT 20 mV/div  
External components:  
L = 1.5 µH (NP3015)  
CIN = 4.7 µF (ceramic)  
CL = 10 µF (ceramic)  
If an inductor less than 4.7μH is used at fOSC  
=
1.2 MHz, or inductor less than 1.5 μH is used at fOSC  
= 3.0 MHz, inductor peak current may easy reach  
the current limit threshold ILIM. In this case, the IC  
may be not able to provide 600mA output current.  
15. The IC may become unstable, when it goes into continuous operation mode, and difference between VIN  
and VOUT is high.  
VOUT = 1.8 V, fOSC = 1.2 MHz,  
VIN = 6.0 V, IOUT = 100 mA  
Ch 1 VOUT 10 mV/div  
Ch 2 VLX 5.0 V/div;  
External components:  
L = 4.7 µH (NP4018)  
CIN = 4.7 µF (ceramic)  
CL = 10 µF (ceramic)  
16. Note on mounting (WLP-5-03)  
a) Mounting pad design should be optimized for user's conditions.  
b) Do not use eutectics solder paste. Sn-AG-Cu solder is used for the package terminals. If eutectic  
solder is used, mounting reliability decreases.  
c) When under fill agent is used to increase interfacial bonding strength, please take enough evaluation  
for selection. Some under fill materials and application conditions may decrease bonding reliability.  
d) The IC has exposed surface of silicon material in the top marking face and sides, so it is weak against  
mechanical damages and external short circuit conditions. Please, take care of handling to avoid  
cracks and breaks and keep the circuit open to avoid short-circuit from the outside.  
e) Semi-transparent resin is coated on the circuit face of the package. Please be noted that the usage  
under strong lights may affects device’s performance.  
PS034201-0515  
PRELIMINARY  
15  
Product Specification  
IXD3235/36/37  
TEST CIRCUITS  
Circuit   
A/B/C/E/G series  
D/F series  
External Components  
External Components  
L = 1.5 µH (NR3015) at 3.0 MHz  
L = 4.7 µH (NR4018) at 1.2MHz  
CIN = 4.7 μF (ceramic), CL = 10 μF (ceramic)  
L = 1.5 µH (NR3015) at 3.0 MHz  
L = 4.7 µH (NR4018) at 1.2MHz  
CIN = 4.7 μF (ceramic), CL = 10 μF (ceramic)  
RFB1 = 150 kΩ, RFB2  
Circuit   
=
300 kΩ, CFB = 120 pF  
Circuit   
RPULL = 200 Ω  
Circuit   
Circuit   
IOUT = 100 mA, ON Resistance = (VIN VOUT/0.1, Ω  
Circuit   
Circuit   
b
RPULL = 1 Ω  
Circuit   
Circuit   
PS034201-0515  
PRELIMINARY  
16  
Product Specification  
IXD3235/36/37  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
Topr = 25 0C  
IXD3237A18C  
IXD3237A18D  
L = 1.5 μH (NR3015), CIN = 4.7 μF, CL = 10 μF  
L
=
4.7 µH (NR4018), CIN = 4.7 μF, CL= 10 μF  
(2) Output Voltage vs. Output Current  
IXD3237A18C  
IXD3237A18D  
L = 1.5 μH (NR3015), CIN = 4.7 μF, CL = 10 μF  
L
=
4.7 µH (NR4018), CIN = 4.7 μF, CL= 10 μF  
(3) Ripple Voltage vs. Output Current  
IXD3237A18C  
IXD3237A18D  
L = 1.5 μH (NR3015), CIN = 4.7 μF, CL = 10 μF  
L
=
4.7 µH (NR4018), CIN = 4.7 μF, CL= 10 μF  
PS034201-0515  
PRELIMINARY  
17  
Product Specification  
IXD3235/36/37  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Oscillation Frequency vs. Ambient Temperature  
IXD3237A18C  
IXD3237A18D  
L = 1.5 μH (NR3015), CIN = 4.7 μF, CL = 10 μF  
L
= 4.7 µH (NR4018), CIN = 4.7 μF, CL= 10 μF  
(5) Supply Current vs. Ambient Temperature  
IXD3237A18C  
IXD3237A18D  
(6) Output Voltage vs. Ambient Temperature  
(7) UVLO Voltage vs. Ambient Temperature  
IXD3237A18D  
IXD3237A18D  
PS034201-0515  
PRELIMINARY  
18  
Product Specification  
IXD3235/36/37  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(8) CE “H” Voltage vs. Ambient Temparature  
(9) CE “L” Voltage vs. Ambient Temperature  
IXD3237A18D  
IXD3237A18D  
(10) Soft Start Time vs. Ambient Temperature  
IXD3237A18C  
IXD3237A18D  
L = 1.5 μH (NR3015), CIN = 4.7 μF, CL = 10 μF  
L
=
4.7 µH (NR4018), CIN = 4.7 μF, CL= 10 μF  
(11) ON Resistance vs. Ambient Temperature  
IXD3237A18D  
PS034201-0515  
PRELIMINARY  
19  
Product Specification  
IXD3235/36/37  
(12) IXD3235/36/37 B version Start Wave Form  
IXD3237B12C  
IXD3237B33D  
L = 1.5 μH (NR3015), CIN = 4.7 μF, CL = 10 μF  
L
= 4.7 µH (NR4018), CIN = 4.7 μF, CL= 10 μF  
100 µs/div  
100 µs/div  
(13) IXD3235/36/37 B version Soft Start Time vs. Ambient Temperature  
IXD3237B12C  
IXD3237B33D  
L = 1.5 μH (NR3015), CIN = 4.7 μF, CL = 10 μF  
L
= 4.7 µH (NR4018), CIN = 4.7 μF, CL= 10 μF  
(14) IXD3235/36/37 B version CL Discharge Time vs. Ambient Temperature  
IXD3237B33D  
PS034201-0515  
PRELIMINARY  
20  
Product Specification  
IXD3235/36/37  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response  
IXD3237A18C  
L = 4.7 µH (NR4018), CIN = 4.7 μF, CL= 10 μF, VIN = VCE = 3.6 V, (PWM/PFM Auto Switching mode)  
IOUT = 1 mA 100 mA  
IOUT = 1 mA 300 mA  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 50 µs/div  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 50 µs/div  
IOUT = 100 mA 1 mA  
IOUT = 300 mA 1 mA  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 200 µs/div  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 200 µs/div  
IXD3237A18C  
L = 4.7 µH (NR4018), CIN = 4.7 μF, CL= 10 μF, VIN = 3.6 V, VCE = 1.8 V (PWM mode)  
IOUT = 1 mA 100 mA  
IOUT = 1 mA 300 mA  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 50 µs/div  
IOUT = 100 mA 1 mA  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 50 µs/div  
IOUT = 300 mA 1 mA  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 200 µs/div  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 200 µs/div  
PS034201-0515  
PRELIMINARY  
21  
Product Specification  
IXD3235/36/37  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
IXD3237A18D  
L = 1.5 µH (NR3015), CIN = 4.7 μF, CL= 10 μF, VIN = VCE = 3.6 V, (PWM/PFM Auto Switching mode)  
IOUT = 1 mA 100 mA  
IOUT = 1 mA 300 mA  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 50 µs/div  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 50 µs/div  
IOUT = 100 mA 1 mA  
IOUT = 300 mA 1 mA  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 200 µs/div  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 200 µs/div  
IXD3237A18D  
L = 1.5 µH (NR3015), CIN = 4.7 μF, CL= 10 μF, VIN = 3.6 V, VCE = 1.8 V (PWM mode)  
IOUT = 1 mA 100 mA  
IOUT = 1 mA 300 mA  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 50 µs/div  
IOUT = 100 mA 1 mA  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 50 µs/div  
IOUT = 300 mA 1 mA  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 200 µs/div  
Ch1 IOUT, Ch2 VOUT 50 mV/div, Time 200 µs/div  
PS034201-0515  
PRELIMINARY  
22  
Product Specification  
IXD3235/36/37  
ORDERING INFORMATION  
IXD3235-  
IXD3236-  
IXD3237-  
DESIGNATOR  
DESCRIPTION  
SYMBOL  
DESCRIPTION  
A
B
C
E
G
D
F
Type of DC/DC Controller  
Refer to Product Classification  
- integer part, - decimal part, i.e.  
VOUT = 2.8 V - = 2, = 8  
Fixed Output Voltage, V  
08 - 40  
VOUT = 2.85 V - = 2, = L  
0.05 V increments: 0.05 = A, 0.15 = B, 0.25 = C. 0.35 = D, 0.45 = E, 0.55 = F,  
  
0.65 = H, 0.75 = K, 0.85 = L, 0.95 = M  
Reference Voltage (Fixed) 0.8 V - = 0, = 8  
1.2 MHz  
3.0 MHz  
SOT-25 (3000/reel)  
SOT-25 (3000/reel)  
USP-6C (3000/reel)  
USP-6C (3000/reel)  
USP-6EL (3000/reel)  
WLP-5-03 (3000/reel)  
Reference Voltage  
Oscillation Frequency  
Packages (Order Limit)  
08  
C
D
MR  
MR-G  
ER  
ER-G  
4R-G  
0R-G  
-*  
NOTE:  
1) The -Gsuffix denotes halogen and antimony free, as well as being fully RoHS compliant.  
2) SOT-25, USP-6EL package are available for the A/B/C series only.  
3) WLP-5-03 package is available for the A/B series only.  
PRODUCT CLASSIFICATION  
VOUT  
VIN  
Soft Start  
Type  
CL Auto discharge  
Fixed  
Yes  
Yes  
Yes  
No  
Yes  
No  
Yes  
Adjustable  
No  
1.8 V  
No  
No  
2 V  
Yes  
Yes  
Yes  
No  
No  
No  
No  
High Speed  
No  
Low Speed  
Yes  
A
B
C
D
E
F
No  
No  
No  
Yes  
No  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
G
PS034201-0515  
PRELIMINARY  
23  
Product Specification  
IXD3235/36/37  
PACKAGE DRAWING AND DIMENSIONS  
(Units: mm)  
SOT-25  
USP-6C  
USP-6C Reference Metal Mask Design  
USP-6C Reference Pattern Layout  
PS034201-0515  
PRELIMINARY  
24  
Product Specification  
IXD3235/36/37  
PACKAGE DRAWING AND DIMENSIONS (CONTINUED)  
(Units: mm)  
USP-6EL  
WLP-5-03  
NOTE: A part of the pin may appear from the side of the package  
because of its structure, but reliability of the package and strength will  
be not below the standard.  
USP-6EL Reference Metal Mask Design  
USP-6EL Reference Pattern Layout  
PS034201-0515  
PRELIMINARY  
25  
Product Specification  
IXD3235/36/37  
MARKING  
SOT-25  
Represents product series  
MARK  
IXD3236  
PRODUCT SERIES  
IXD3235  
IXD3237  
A
B
C
D
E
F
4
C
K
K
4
5
D
L
L
5
6
E
M
M
6
2
C
7
D
B
E
G
USP-6C/USP-6EL  
Represents integer number of the output voltage and  
oscillation frequency  
A/B/C/F series  
MARK  
VOUT, V  
fOSC = 1.2 MHz  
fOSC = 3.0 MHz  
0.x  
1.x  
2.x  
3.x  
4.x  
A
B
C
D
E
F
H
K
L
M
WLP-5-03  
E/G/D Series  
MARK  
VOUT, V  
fOSC = 1.2 MHz  
fOSC = 3.0 MHz  
0.x  
1.x  
2.x  
3.x  
4.x  
A
B
C
D
E
F
H
K
L
M
Represents decimal value of the output voltage  
VOUT, V  
x.00  
x.10  
x.20  
x.30  
x.40  
x.50  
x/60  
x.70  
x.80  
x.90  
MARK  
VOUT, V  
x.05  
x.15  
x.25  
x.35  
x.45  
x.55  
x.65  
x.75  
x.85  
X,95  
MARK  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
H
K
L
M
 represents production lot number  
01090A0Z119ZA1A9AAAZB1ZZ in order  
(G, I, J, O, Q, and W excluded)  
PS034201-0515  
PRELIMINARY  
26  
Product Specification  
IXD3235/36/37  
Customer Support  
To share comments, get your technical questions answered, or report issues you may be experiencing with our  
products, please visit Zilog’s Technical Support page at http://support.zilog.com. To learn more about this product,  
find additional documentation, or to discover other fac-ets about Zilog product offerings, please visit the Zilog  
Knowledge Base at http:// zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum. This  
publication is subject to replacement by a later edition. To determine whether a later edition exists, please visit the  
Zilog website at http://www.zilog.com.  
Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.  
LIFE SUPPORT POLICY ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL  
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN  
APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.  
As used herein Life support devices or systems are devices which (a) are intended for surgical implant into the  
body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions  
for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical  
component is any component in a life support device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
Document Disclaimer ©2015 Zilog, Inc. All rights reserved. Information in this publication concerning the  
devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,  
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE  
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES  
NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY  
MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR  
OTHERWISE. The information contained within this document has been verified according to the general  
principles of electrical and mechanical engineering.  
PS034201-0515  
PRELIMINARY  
27  

相关型号:

IXD5118N35AGR-G

Power Supply Support Circuit,
IXYS

IXD5118N40AGR-G

Power Supply Support Circuit,
IXYS

IXD5118N43AGR-G

Power Supply Support Circuit,
IXYS

IXD5121A317ER-G

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO6, USP-6
IXYS

IXD5121A521ER

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO6, USP-6
IXYS

IXD5121A521ER-G

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO6, USP-6
IXYS

IXD5121C522ER-G

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO6, USP-6
IXYS

IXD5121E646ER-G

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO6, USP-6
IXYS

IXD5121E720ER

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO6, USP-6
IXYS

IXD5121F218ER-G

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO6, USP-6
IXYS

IXD5121F450MR-G

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO5, SOT-25, 5 PIN
IXYS

IXD5121F620ER

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO6, USP-6
IXYS