Z86E133SZ016EG [ZILOG]

IC 8-BIT, OTPROM, MICROCONTROLLER, PDSO28, SOIC-28, Microcontroller;
Z86E133SZ016EG
型号: Z86E133SZ016EG
厂家: ZILOG, INC.    ZILOG, INC.
描述:

IC 8-BIT, OTPROM, MICROCONTROLLER, PDSO28, SOIC-28, Microcontroller

可编程只读存储器 时钟 微控制器 光电二极管 外围集成电路
文件: 总150页 (文件大小:2535K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The MUZE Family of  
Z8 Microcontrollers  
MAXIMUM MEMORY WITH UART  
AND ZILOG EXPANDABLE EPROM  
Product Specification  
PRELIMINARY  
PS004005-1100  
ZiLOG Worldwide Headquarters • 910 E. Hamilton Avenue • Campbell, CA 95008  
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.ZiLOG.com  
©2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applica-  
tions, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC.  
DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF  
THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG  
ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT  
RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY  
DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval of ZiLOG, use of  
information, devices, or technology as critical components of life support systems is not authorized. No  
licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.  
P R E L I M I N A R Y  
PS004005-1100  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
iii  
Table of Contents  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
MUZE Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Expanded Register File, Bank 0h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ASCI Registers—Expanded Register File, Bank Ah . . . . . . . . . . . . . . . . . . 61  
Expanded Register File, Bank Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Standard Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
One-Time Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Universal Asynchronous Receiver/Transmitter . . . . . . . . . . . . . . . . . . . . . . . . 105  
ASCI Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
ASCI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
In-Circuit Serial Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
In-Circuit Serial Programming Block Diagram . . . . . . . . . . . . . . . . . . . . . . 125  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Part Number Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Precharacterization Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Document Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Document Number Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Change Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Customer Feedback Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
MUZE Product Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Customer Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Product Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Return Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Problem Description or Suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
PS004005-1100  
P R E L I M I N A R Y  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
iv  
List of Figures  
Figure 1. MUZE Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. 20-Pin DIP/SOIC Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3. 20-Pin DIP/SOIC Pin Configuration—ICSP Mode . . . . . . . . . . . . . . . 6  
Figure 4. 28-Pin DIP/SOIC Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 5. 28-Pin DIP/SOIC Pin Configuration—ICSP Mode . . . . . . . . . . . . . . . 9  
Figure 6. 40-Pin DIP/SOIC Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 7. 40-Pin DIP/SOIC Pin Configuration—ICSP Mode . . . . . . . . . . . . . . 13  
Figure 8. 44-Pin PQFP Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 9. 44-Pin PQFP Pin Configuration—ICSP Mode . . . . . . . . . . . . . . . . . 17  
Figure 10. Port 0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 11. Port 1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12. Port 2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 13. Port 3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 14. Port 3 Configuration—PCON Register Detail . . . . . . . . . . . . . . . . . 27  
Figure 15. Program Memory Map for the MUZE Family . . . . . . . . . . . . . . . . . . 30  
Figure 16. Data Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 17. Register Pointer—Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 18. Expanded Register File Architecture . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 19. Counter/Timer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 20. Oscillator Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 21. Stop-Mode Recovery Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 22. Resets and Watch-Dog Timer Example . . . . . . . . . . . . . . . . . . . . . 48  
Figure 23. Typical Low-Voltage Protection vs. Temperature . . . . . . . . . . . . . . 49  
Figure 24. Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 25. External I/O or Memory Read and Write Timing . . . . . . . . . . . . . . . 86  
Figure 26. Additional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 27. Input Handshake Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 28. Output Handshake Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 29. Test Load Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 30. Receive Data Register FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 31. FIFO Overrun Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 32. Clear FIFO Overrun Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 33. ASCI Interface Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 34. ASCI Serial Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
PS004005-1100  
P R E L I M I N A R Y  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
v
Figure 35. Multiprocessor Mode Serial Data Format . . . . . . . . . . . . . . . . . . . 115  
Figure 36. ICSP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 37. ICSP Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Figure 38. 20-Pin DIP Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 39. 20-Pin SOIC Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 40. 28-Pin DIP Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Figure 41. 28-Pin SOIC Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Figure 42. 40-Pin DIP Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Figure 43. 44-Pin PQFP Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
PS004005-1100  
P R E L I M I N A R Y  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
vi  
List of Tables  
Table 1. MUZE Family Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table 2. 20-Pin DIP/SOIC Pin Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 3. 20-Pin DIP/SOIC Pin Identification—ICSP Mode . . . . . . . . . . . . . . . 6  
Table 4. 28-Pin DIP/SOIC Pin Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 5. 28-Pin DIP/SOIC Pin Identification—ICSP Mode . . . . . . . . . . . . . . . 9  
Table 6. 40-Pin DIP/SOIC Pin Identification . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 7. 40-Pin DIP/SOIC Pin Identification—ICSP Mode . . . . . . . . . . . . . . 13  
Table 8. 44-Pin PQFP Pin Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 9. 44-Pin PQFP Pin Identification—ICSP Mode . . . . . . . . . . . . . . . . . 17  
Table 10. Port 3 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 11. Register Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 12. Interrupt Types, Sources, and Vectors . . . . . . . . . . . . . . . . . . . . . . 36  
Table 13. IRQ Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 14. Port Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 15. Stop-Mode Recovery Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 16. Stop-Mode Recovery Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 17. Stop-Mode Recovery Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 18. Stop-Mode Recovery Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 19. Watch-Dog Timer Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 20. WDT Time Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 21. Maximum (V ) Conditions: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
LV  
Table 22. Expanded Register File Registers—Reset States . . . . . . . . . . . . . . 50  
Table 23. Timer Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 24. Counter/Timer 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 25. Prescaler 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 26. Counter/Timer 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 27. Prescaler 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 28. Port 2 Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 29. Port 3 Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 30. Ports 0 and 1 Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 31. Interrupt Priority Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 32. Interrupt Request Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 33. Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 34. Flags Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
PS004005-1100  
P R E L I M I N A R Y  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
vii  
Table 35. Register Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 36. Stack Pointer High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 37. Stack Pointer Low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 38. Expanded Register File Registers—Reset States 61  
Table 39. Transmit Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 40. Receive Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 41. Control Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 42. Control Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 43. Extension Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 44. Time Constant Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 45. Time Constant Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 46. Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 47. Expanded Register File Registers—Reset States 68  
Table 48. Port Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 49. Verify Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 50. Stop-Mode Recovery Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 51. Stop-Mode Recovery Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 52. Watch-Dog Timer Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 53. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 54. DC Electrical Characteristics at Standard Temperature . . . . . . . . . 76  
Table 55. DC Electrical Characteristics at Extended Temperature . . . . . . . . . 81  
Table 56. Memory Read and Write Timing—Standard Temperature . . . . . . . 87  
Table 57. Memory Read and Write Timing—Extended Temperature . . . . . . . 89  
Table 58. Additional Timing at Standard Temperature . . . . . . . . . . . . . . . . . . 92  
Table 59. Additional Timing at Extended Temperature . . . . . . . . . . . . . . . . . . 95  
Table 60. Handshake Timing1 at Standard Temperature . . . . . . . . . . . . . . . . 98  
Table 61. Handshake Timing1 at Extended Temperature . . . . . . . . . . . . . . . . 99  
Table 62. Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 63. Option Bit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Table 64. ASCI Interrupt Conditions and Sources . . . . . . . . . . . . . . . . . . . . . 110  
Table 65. Transmit Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Table 66. Receive Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Table 67. Control Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Table 68. ASCI Data Format Mode Control Bits . . . . . . . . . . . . . . . . . . . . . . 113  
Table 69. Control Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Table 70. Clock Source and Speed Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
PS004005-1100  
P R E L I M I N A R Y  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
viii  
Table 71. Extension Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table 72. Time Constant Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Table 73. Time Constant Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Table 74. Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Table 75. Baud Rate List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Table 76. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
PS004005-1100  
P R E L I M I N A R Y  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
1
Architectural Overview  
®
ZiLOG’s large Z8 family of 8-bit microcontrollers now includes the MUZE product  
line, featuring 4 KB to 64 KB of In-Circuit Serially-Programmable (ICSP) OTP  
memory, an industry-standard Universal Asynchronous Receiver/Transmitter  
(UART), enhanced wake-up circuitry, programmable Watch-Dog Timers (WDT),  
and low-noise/EMI options. Each of the new enhancements to the Z8 offers a  
more efficient, cost-effective design and provides the user with increased design  
flexibility over the standard Z8 microcontroller core. The low-power-consumption  
OTP microcontroller offers fast execution, efficient use of memory, sophisticated  
interrupts, input/output bit manipulation capabilities, and easy hardware/software  
system expansion.  
The MUZE family features an Expanded Register File (ERF) to allow access to  
register-mapped peripheral and I/O circuits. Four basic address spaces are avail-  
able to support this wide range of configurations: Program Memory, Register File,  
Data Memory, and ERF.The Register File is composed of 236 bytes contained  
within one general-purpose register (GPR), 4 I/O port registers, 15 control regis-  
ters, and status registers. The ERF consists of 12 control registers.  
For applications demanding powerful I/O capabilities, the Z86E122/E123/E124/  
E125/E126 offers 16 pins, the Z86E132/E133/E134/E135/E136 offers 24 pins,  
and the Z86E142/E143/144/E145/E146 offers 32 pins dedicated to input and out-  
put.These lines are configurable under software control to provide timing, status  
signals, parallel I/O with or without handshake, and address/data bus for interfac-  
ing external memory.  
The MUZE family operates at 16MHz with a voltage range of 4.5 to 5.5V and  
DC  
up to 12MHz with a voltage range of 3.0 to 5.5V  
.
DC  
To unburden the system from coping with real-time tasks such as counting/timing  
and data communication, the Z8 offers two on-chip counter/timers with a large  
number of user-selectable modes and a hardware UART.  
With ROM/ROMless selectivity, the Z86E142/E143/E144/E145/E146 provides  
®
both external memory and ICSP, which enables this Z8 MCU to be used in high-  
volume applications, or where code flexibility is required.  
Note:  
All signals with an overline are active Low. For example, B/W, for which  
WORD is active Low, and B/W, for which BYTE is active Low.  
Power connections follow these conventional descriptions:  
Connection  
Power  
Circuit  
Device  
V
V
CC  
DD  
SS  
Ground  
GND  
V
PS004005-1100  
P R E L I M I N A R Y  
Architectural Overview  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
2
MUZE Features  
Table 1. MUZE Family Features  
Speed 4.5V to 5.5V  
(MHz—Standard  
Speed 3.0V to 5.5V  
(MHz—Standard  
OTP  
(KB)  
RAM*  
(Bytes)  
Device  
and Extended Temperature)  
Temperature Only)  
Z86E122  
Z86E123  
Z86E124  
Z86E125  
Z86E126  
Z86E132  
Z86E133  
Z86E134  
Z86E135  
Z86E136  
Z86E142  
Z86E143  
Z86E144  
Z86E145  
Z86E146  
4
8
236  
236  
236  
236  
236  
236  
236  
236  
236  
236  
236  
236  
236  
236  
236  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
16  
32  
64  
4
8
16  
32  
64  
4
8
16  
32  
64  
Note: *General-Purpose.  
4 KB to 64 KB OTP Memory  
Full-Duplex UART Asynchronous Serial Communications Interface (ASCI)  
Dedicated 16-Bit Baud Rate Generator (BRG)  
In-Circuit Serial Programming Interface  
20-Pin DIP and 20-Pin SOIC (E122, E123, E124, E125, E126)  
28-Pin DIP and 28-Pin SOIC (E132, E133, E134, E135, E136)  
40-Pin DIP and 44-Pin PQFP Packages (E142, E143, E144, E145, E146)  
3.0- to 5.5-Volt Operating Range  
PS004005-1100  
P R E L I M I N A R Y  
Architectural Overview  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
3
Operating Temperature Ranges:  
Standard: 0ºC to 70ºC  
Extended: –40ºC to +105ºC  
Note:  
The extended temperature range is only for the 4.5- to 5.5-volt part, at 16-  
MHz max. operation.  
Expanded Register File (ERF)  
16 Input/Output Lines (E122, E123, E124, E125, E126)  
24 Input/Output Lines (E132, E133, E134, E135, E136)  
32 Input/Output Lines (E142, E143, E144, E145, E146)  
Vectored, Prioritized Interrupts with Programmable Polarity  
Two Analog Comparators  
Two Programmable 8-Bit Counter/Timers, each with a 6-Bit Programmable  
Prescaler  
VBO/Power-On Reset (POR)  
Clock-Free Watch-Dog Timer (WDT) Reset  
On-Chip Oscillator that accepts a Crystal, Ceramic Resonator, LC, RC, or  
External Clock  
RAM and EPROM Protect  
Optional 32-kHz Oscillator  
PS004005-1100  
P R E L I M I N A R Y  
Architectural Overview  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
4
Functional Block Diagram  
Figure 1. MUZE Functional Block Diagram  
(E142/E143/E144/  
E145/E146 Only)  
Output Input  
VCC  
GND  
XOUT  
XIN  
AS DS R/W RESET  
Machine  
Port 3  
Timing & Inst.  
Control  
Counter/  
Timers (2)  
RESET  
WDT, POR  
ALU  
Interrupt  
Control  
In-Circuit  
Serial Prog  
FLAG  
Two Analog  
Comparators  
Register  
Pointer  
Program  
Memory  
Full-Duplex  
UART  
Register File  
Program  
Counter  
16-Bit Baud  
Rate Generator  
Port 2  
Port 0  
Port 1  
8
4
4
I/O  
Address or I/O  
(Nibble Programmable)  
(Bit Programmable)  
Address/Data or I/O  
(Byte Programmable)  
(E142/E143/E144/E145/E416 Only)  
PS004005-1100  
P R E L I M I N A R Y  
Architectural Overview  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
5
Pin Description  
Figure 2. 20-Pin DIP/SOIC Pin Configuration  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
P24  
P25  
P26  
P27  
P23  
P22  
P21  
P20  
GND  
P02  
P01  
P00  
P30  
P37  
Z86E122  
Z86E123  
Z86E124  
Z86E125  
Z86E126  
V
CC  
X
OUT  
X
IN  
P31  
P32  
P33  
9
10  
Table 2. 20-Pin DIP/SOIC Pin Identification  
Pin #  
1–4  
5
Symbol  
Function  
Direction  
P24–P27  
Port 2, Bits 4,5,6,7  
Power Supply  
Crystal Oscillator  
Crystal Oscillator  
Port 3, Bits 1,2,3  
Port 3, Bit 7  
Input/Output  
V
X
X
CC  
OUT  
IN  
6
Output  
7
Input  
8–10  
11  
P31–P33  
P37  
Fixed Input  
Fixed Output  
Fixed Input  
Input/Output  
12  
P30  
Port 3, Bit 0  
13–15  
16  
P00–P02  
GND  
Port 0, Bits 0,1,2  
Ground  
17–20  
P20–P23  
Port 2, Bits 0,1,2,3  
Input/Output  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
6
Figure 3. 20-Pin DIP/SOIC Pin Configuration—ICSP Mode  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Z86E122  
Z86E123  
Z86E124  
Z86E125  
Z86E126  
V
GND  
ICSP_RESET  
SDIO  
SCK  
NC  
CC  
NC  
NC  
NC  
NC  
NC  
9
10  
NC  
Table 3. 20-Pin DIP/SOIC Pin Identification—ICSP Mode  
Pin #  
1–4  
5
Symbol  
Function  
Direction  
NC  
No Connection  
Power Supply  
No Connection  
Serial ICSP Clock  
Serial Data  
V
CC  
6–12  
13  
NC  
SCK  
Input  
14  
SDIO  
ICSP_RESET  
GND  
Input/Output  
Input  
15  
ICSP Reset  
Ground  
16  
17–20  
NC  
No Connection  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
7
Figure 4. 28-Pin DIP/SOIC Pin Configuration  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
8
P25  
P26  
P27  
P04  
P05  
P06  
P07  
P24  
P23  
P22  
P21  
P20  
P03  
GND  
P02  
P01  
P00  
P30  
P36  
P37  
P35  
Z86E132  
Z86E133  
Z86E134  
Z86E135  
Z86E136  
V
CC  
X
9
OUT  
10  
11  
12  
13  
14  
X
IN  
P31  
P32  
P33  
P34  
Table 4. 28-Pin DIP/SOIC Pin Identification  
Pin #  
1–3  
2
Symbol  
P25  
Function  
Direction  
Port 2, Bit 5  
Port 2, Bit 6  
Port 2, Bit 7  
Port 0, Bit 4  
Port 0, Bit 5  
Port 0, Bit 6  
Port 0, Bit 7  
Power Supply  
Crystal Oscillator  
Crystal Oscillator  
Port 3, Bit 1  
Port 3, Bit 2  
Port 3, Bit 3  
Port 3, Bit 4  
Port 3, Bit 5  
Port 3, Bit 7  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
P26  
3
P27  
4
P04  
5
P05  
6
P06  
7
P07  
8
V
X
X
CC  
OUT  
IN  
9
Output  
10  
11  
12  
13  
14  
15  
16  
Input  
P31  
P32  
P33  
P34  
P35  
P37  
Fixed Input  
Fixed Input  
Fixed Input  
Fixed Output  
Fixed Output  
Fixed Output  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
8
Table 4. 28-Pin DIP/SOIC Pin Identification (Continued)  
Pin #  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Symbol  
P36  
P30  
P00  
P01  
P02  
GND  
P03  
P20  
P21  
P22  
P33  
P24  
Function  
Direction  
Port 3, Bit 6  
Port 3, Bit 0  
Port 0, Bit 0  
Port 0, Bit 0  
Port 0, Bit 2  
Ground  
Fixed Output  
Fixed Input  
Input/Output  
Input/Output  
Input/Output  
Port 0, Bit 3  
Port 2, Bit 0  
Port 2, Bit 1  
Port 2, Bit 2  
Port 2, Bit 3  
Port 2, Bit 4  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
9
Figure 5. 28-Pin DIP/SOIC Pin Configuration—ICSP Mode  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
8
Z86E132  
Z86E133  
Z86E134  
Z86E135  
Z86E136  
GND  
ICSP_RESET  
SDIO  
SCK  
NC  
NC  
NC  
NC  
V
CC  
NC  
NC  
NC  
NC  
NC  
NC  
9
10  
11  
12  
13  
14  
Table 5. 28-Pin DIP/SOIC Pin Identification—ICSP Mode  
Pin #  
1
Symbol  
NC  
Function  
Direction  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
Power Supply  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
2
NC  
3
NC  
4
NC  
5
NC  
6
NC  
7
NC  
8
V
CC  
9
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
10  
Table 5. 28-Pin DIP/SOIC Pin Identification—ICSP Mode (Continued)  
Pin #  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Symbol  
NC  
Function  
Direction  
No Connection  
Serial ICSP Clock  
Serial Data  
SCK  
SDIO  
ICSP_RESET  
GND  
NC  
Input  
Input/Output  
Input  
ICSP Reset  
Ground  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
NC  
NC  
NC  
NC  
NC  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
11  
Figure 6. 40-Pin DIP/SOIC Pin Configuration  
R/W  
P25  
P26  
P27  
P04  
P05  
P06  
P14  
P15  
P07  
DS  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
3
4
5
6
7
8
P24  
P23  
P22  
P21  
P20  
P03  
P13  
P12  
GND  
P02  
P11  
P10  
P01  
P00  
P30  
P36  
P37  
P35  
RESET  
Z86E142  
Z86E143  
Z86E144  
Z86E145  
Z86E146  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
CC  
P16  
P17  
X
OUT  
X
IN  
P31  
P32  
P33  
P34  
AS  
Table 6. 40-Pin DIP/SOIC Pin Identification  
Pin #  
1
Symbol  
R/W  
P25  
P26  
P27  
P04  
P05  
P06  
P14  
P15  
P07  
Function  
Direction  
READ/WRITE  
Port 2, Bit 5  
Port 2, Bit 6  
Port 2, Bit 7  
Port 0, Bit 4  
Port 0, Bit 5  
Port 0, Bit 6  
Port 1, Bit 4  
Port 1, Bit 5  
Port 0, Bit 7  
Power Supply  
Port 1, Bit 6  
Port 1, Bit 7  
Output  
2
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
3
4
5
6
7
8
9
10  
11  
12  
13  
V
CC  
P16  
P17  
Input/Output  
Input/Output  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
12  
Table 6. 40-Pin DIP/SOIC Pin Identification (Continued)  
Pin #  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Symbol  
Function  
Direction  
Output  
X
X
Crystal Oscillator  
Crystal Oscillator  
Port 3, Bit 1  
Port 3, Bit 2  
Port 3, Bit 3  
Port 3, Bit 4  
Address Strobe  
Reset  
OUT  
IN  
Input  
P31  
P32  
P33  
P34  
AS  
Input  
Input  
Input  
Output  
Output  
RESET  
P35  
P37  
P36  
P30  
P00  
P01  
P10  
P11  
P02  
GND  
P12  
P13  
P03  
P20  
P21  
P22  
P23  
P24  
DS  
Input  
Port 3, Bit 5  
Port 3, Bit 7  
Port 3, Bit 6  
Port 3, Bit 0  
Port 0, Bit 0  
Port 0, Bit 1  
Port 1, Bit 0  
Port 1, Bit 1  
Port 0, Bit 2  
Ground  
Output  
Output  
Output  
Input  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Port 1, Bit 2  
Port 1, Bit 3  
Port 0, Bit 3  
Port 2, Bit 0  
Port 2, Bit 1  
Port 2, Bit 2  
Port 2, Bit 3  
Port 2, Bit 4  
Data Strobe  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
13  
Figure 7. 40-Pin DIP/SOIC Pin Configuration—ICSP Mode  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Z86E142  
Z86E143  
Z86E144  
Z86E145  
Z86E146  
9
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
ICSP_RESET  
NC  
V
CC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
SDIO  
SCK  
NC  
NC  
NC  
NC  
RESET  
Table 7. 40-Pin DIP/SOIC Pin Identification—ICSP Mode  
Pin #  
1
Symbol  
NC  
Function  
Direction  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
Power Supply  
No connection  
No connection  
2
NC  
3
NC  
4
NC  
5
NC  
6
NC  
7
NC  
8
NC  
9
NC  
10  
11  
12  
13  
NC  
V
CC  
NC  
NC  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
14  
Table 7. 40-Pin DIP/SOIC Pin Identification—ICSP Mode (Continued)  
Pin #  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Symbol  
NC  
Function  
Direction  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
Reset  
NC  
NC  
NC  
NC  
NC  
NC  
RESET  
NC  
Input  
No connection  
No connection  
No connection  
No connection  
Serial ICSP Clock  
Serial Data  
NC  
NC  
NC  
SCK  
SDIO  
NC  
Input  
Input/Output  
No Connection  
No Connection  
ICSP Reset  
NC  
ICSP_RESET  
GND  
NC  
Input  
Ground  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
15  
Figure 8. 44-Pin PQFP Pin Configuration  
3332 3130 2928 27262524 23  
P21  
P22  
P23  
P24  
DS  
P30  
P36  
P37  
P35  
RESET  
R/RL  
AS  
P34  
P33  
P32  
P31  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
Z86E142  
Z86E143  
Z86E144  
Z86E145  
Z86E146  
NC  
R/W  
P25  
P26  
P27  
P04  
1 2 3 4 5 6 7 8 9 10 11  
Table 8. 44-Pin PQFP Pin Identification  
Pin #  
1
Symbol  
P05  
Function  
Direction  
Port 0, Bit 5  
Port 0, Bit 5  
Port 1, Bit 4  
Port 1, Bit 5  
Port 0, Bit 7  
Power Supply  
Power Supply  
Port 1 Bit 6  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
2
P06  
3
P14  
4
P15  
5
P07  
6
V
V
CC  
7
CC  
8
P16  
P17  
Input/Output  
Input/Output  
Output  
Input  
9
Port 1 Bit 7  
10  
11  
12  
13  
14  
X
X
Crystal Oscillator  
Crystal Oscillator  
Port 3, Bit 1  
Port 3, Bit 2  
Port 3, Bit 3  
OUT  
IN  
P31  
P32  
P33  
Input  
Input  
Input  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
16  
Table 8. 44-Pin PQFP Pin Identification (Continued)  
Pin #  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Symbol  
P34  
AS  
Function  
Direction  
Output  
Port 3, Bit 4  
Address Strobe  
ROM/ROMless Control  
Reset  
Output  
R/RL  
RESET  
P35  
P37  
P36  
P30  
P00  
P01  
P10  
P11  
P02  
GND  
GND  
P12  
P13  
P03  
P20  
P21  
P22  
P23  
P24  
DS  
Input  
Input  
Port 3, Bit 5  
Port 3, Bit 7  
Port 3, Bit 6  
Port 3, Bit 0  
Port 0, Bit 0  
Port 0, Bit 0  
Port 1, Bit 0  
Port 1, Bit 1  
Port 0, Bit 2  
Ground  
Output  
Output  
Output  
Input  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Ground  
Port 1, Bit 2  
Port 1, Bit 3  
Port 0, Bit 3  
Port 2, Bit 0  
Port 2, Bit 1  
Port 2, Bit 2  
Port 2, Bit 3  
Port 2, Bit 4  
Data Strobe  
Not Connected  
READ/WRITE  
Port 2, Bit 5  
Port 2, Bit 6  
Port 2, Bit 7  
Port 0, Bit 4  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
NC  
R/W  
P25  
P26  
P27  
P04  
Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
17  
Figure 9. 44-Pin PQFP Pin Configuration—ICSP Mode  
3332 3130 2928 27262524 23  
34  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
RESET  
NC  
NC  
NC  
NC  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Z86E142  
Z86E143  
Z86E144  
Z86E145  
Z86E146  
NC  
NC  
1 2 3 4 5 6 7 8 9 10 11  
Table 9. 44-Pin PQFP Pin Identification—ICSP Mode  
Pin #  
1
Symbol  
NC  
Function  
Direction  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
Power Supply  
Power Supply  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
2
NC  
3
NC  
4
NC  
5
NC  
6
V
V
CC  
CC  
7
8
NC  
NC  
NC  
NC  
NC  
NC  
9
10  
11  
12  
13  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
18  
Table 9. 44-Pin PQFP Pin Identification—ICSP Mode (Continued)  
Pin #  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
Symbol  
NC  
Function  
Direction  
No Connection  
No Connection  
No Connection  
No Connection  
Reset  
NC  
NC  
NC  
RESET  
NC  
Input  
No Connection  
No Connection  
No Connection  
No Connection  
Serial Clock  
NC  
NC  
NC  
SCK  
SDIO  
NC  
Input  
Serial Data  
Input/Output  
No Connection  
No Connection  
NC  
ICSP_RESET Programming Mode  
Input  
GND  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Ground  
Ground  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
19  
Table 9. 44-Pin PQFP Pin Identification—ICSP Mode (Continued)  
Pin #  
42  
Symbol  
NC  
Function  
Direction  
No Connection  
No Connection  
No Connection  
43  
NC  
44  
NC  
PS004005-1100  
P R E L I M I N A R Y  
Pin Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
20  
Pin Functions  
The following pages describe the function of each available MUZE family pin.  
R/RL (input). The ROM/ROMless pin, when connected to GND, disables the inter-  
nal ROM and forces the device to function as a ROMless Z8. (Available for  
devices in the 44-pin PQFP package only.)  
Notes:  
When left unconnected or pulled High to V , the device functions  
CC  
normally as a Z8 ROM version. When using the device in ROM mode in a  
high-EMI (noisy) environment, the ROMless pins must be connected  
directly to V  
.
CC  
DS (output, active Low). The Data Strobe is activated one time for each external  
memory transfer. For a READ operation, data must be available prior to the trail-  
ing edge of DS. For WRITE operations, the falling edge of DS indicates that out-  
put data is valid. (Not available for devices in the 28-pin package.)  
AS (output, active Low). The Address Strobe is pulsed one time at the beginning  
of each machine cycle for external memory transfer. Address output is from Port  
0/Port 1 for all external programs. Memory address transfers are valid at the trail-  
ing edge of AS. Under program control, AS is placed in the high-impedance state  
along with Ports 0 and 1, Data Strobe, and READ/WRITE. (Not available for  
devices in the 28-pin package.)  
X
Crystal Input. This pin connects a parallel-resonant crystal, ceramic resonator,  
IN  
LC, or RC network, or an external single-phase clock to the on-chip oscillator  
input.  
X
Crystal Output. This pin connects a parallel-resonant crystal, ceramic reso-  
OUT  
nant, LC, or RC network to the on-chip oscillator output.  
R/W (output, WRITE Low). The READ/WRITE signal is High when the Z8 reads  
from external program or data memory. The signal is Low when the Z8 writes to  
external data memory. (Not available for devices in the 28-pin package.)  
Port 0 (P00–P07). Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These  
eight I/O lines are configured under software control as a nibble I/O port (P03–  
P00 input/output and P07–P04 input/output), or as an address port for interfacing  
external memory.The input buffers are Schmitt-triggered and nibble-programmed  
as outputs and can be globally programmed as either push-pull or open-drain.  
Low-EMI output buffers are globally programmed by the software. Port 0 may be  
placed under handshake control. In this configuration, Port 3, lines P32 and P35  
are used as the handshake control DAV0 and RDY0. Handshake signal direction  
is dictated by the I/O direction (input or output) of Port 0 of the upper nibble P04–  
P07. The lower nibble must indicate the same direction as the upper nibble.  
For external memory references, Port 0 provides address bits A11–A8 (lower nib-  
ble) and A15–A8 (lower and upper nibble) depending on the required address  
PS004005-1100  
P R E L I M I N A R Y  
Pin Functions  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
21  
space. If the address range requires 12 bits or less, the upper nibble of Port 0 is  
programmed independently as I/O while the lower nibble is used for addressing. If  
one or both nibbles are required for I/O operation, they are configured by writing to  
the Port 0 mode register.  
In ROMless mode, after a hardware RESET, Port 0 is configured as address lines  
A15–A8, and extended timing is set to accommodate slow memory access. The  
initialization routine can include reconfiguration to eliminate this extended timing  
mode. (In ROM mode, Port 0 is defined as input after RESET.)  
Port 0 can be placed in a high-impedance state along with Port 1, AS, DS and R/  
W, allowing the Z8 to share common resources in multiprocessor and DMA appli-  
cations (Figure 10).  
Figure 10. Port 0 Configuration  
4
4
Port 0  
(I/O or A15–A8)  
Z8  
Handshake Controls  
DAV0 and RDY0  
(P32 and P35)  
Open-Drain  
OE  
Pull-Up  
Transistor Enable  
(Programmable Option)  
PAD  
Out  
In  
1.5  
2.3 Hysteresis @ VCC = 5.0V  
Auto Latch  
(mask option)  
R 500KΩ  
PS004005-1100  
P R E L I M I N A R Y  
Pin Functions  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
22  
Port 1 (P17–P10). Port 1 is an 8-bit, bidirectional, CMOS- compatible port  
(Figure 11), with multiplexed Address (A7–A0) and Data (D7–D0) ports.These 8 I/  
O lines are programmed as inputs or outputs, or can be configured under software  
control as an Address/Data port for interfacing external memory.The input buffers  
are Schmitt-triggered and byte-programmed as outputs and can be globally pro-  
grammed as either push-pull or open-drain. Low-EMI output buffers are globally  
programmed by the software.  
Note:  
Port 1 is not available on the devices in the 28-pin package, and P01M  
Register must set bit D4,D3 as 00. Low-EMI mode is not supported on the  
emulator for Port1. PCON register D4 must be 1.  
Port 1 may be placed under handshake control. In this configuration, Port 3, lines  
P33 and P34 are used as the handshake controls RDY1 and DAV1 (Ready and  
Data Available).  
Memory locations greater than the internal ROM address are referenced through  
Port 1, except for the Z86E146 (due to its 64 KB of internal memory). To interface  
external memory, Port 1 must be programmed for multiplexed Address/Data  
mode. If more than 256 external locations are required, Port 0 outputs the addi-  
tional lines.  
Port 1 can be placed in the high-impedance state along with Port 0, AS, DS, and  
R/W, allowing the Z8 to share common resources in multiprocessor and DMA  
applications.  
PS004005-1100  
P R E L I M I N A R Y  
Pin Functions  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
23  
Figure 11. Port 1 Configuration  
Port 1  
(I/O or AD7AD0)  
8
Z8  
Handshake Controls  
DAV1 and RDY1  
(P33 and P34)  
Open Drain  
OE  
Pull-Up  
Transistor Enable  
(Programmable Option)  
PAD  
Out  
1.5  
2.3 Hysteresis @ VCC = 5.0V  
In  
Auto Latch  
(mask option)  
R 500 KΩ  
Port 2 (P27–P20). Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port.  
These eight I/O lines are configured under software control as an input or output,  
independently. Port 2 is always available for I/O operation.The input buffers are  
Schmitt-triggered. Bits programmed as outputs may be globally programmed as  
either push-pull or open-drain. Low-EMI output buffers are globally programmed  
by the software.  
Port 2 may be placed under handshake control. In HANDSHAKE mode, Port 3  
lines P31 and P36 are used as the handshake control lines DAV2 and RDY2. The  
handshake signal assignment for Port 3 lines P31 and P36 is dictated by the  
direction (input or output) assigned to bit 7, Port 2 (Figure 12).  
PS004005-1100  
P R E L I M I N A R Y  
Pin Functions  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
24  
Figure 12. Port 2 Configuration  
Port 2 (I/O)  
Z8  
Handshake Controls  
DAV2 and RDY2  
(P31 and P36)  
Open Drain  
OE  
Pull-Up  
Transistor Enable  
(Programmable Option)  
PAD  
Out  
In  
1.5  
2.3 Hysteresis @ V  
CC = 5.0V  
Auto Latch  
(mask option)  
R 500 KΩ  
Port 3 (P37–P30). Port 3 is an 8-bit, CMOS-compatible port, with four fixed inputs  
(P33–P30) and four fixed outputs (P34–P37). Port 3 is configured under software  
control for Input/Output, Counter/Timers, interrupt, UART, port handshake, and  
Data Memory functions. Port 3, bit 0 input is Schmitt-triggered, and pins P31, P32,  
and P33 are standard CMOS inputs (no autolatches). Pins P34, P35, P36, P37  
are push-pull output lines. Low-EMI output buffers are globally programmed by  
the software.  
Two onboard comparators process analog signals on P31 and P32 with reference  
to the voltage on P33.The analog function is enabled by programming Port 3  
Mode Register (P3M bit 1). For interrupt functions, Port 3, bit 0 and pin 3 are fall-  
ing-edge interrupt inputs. P31 and P32 are programmable as rising, falling, or  
both edge-triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator  
reference voltage input when in Analog mode. Access to Counter/Timer 1 is made  
PS004005-1100  
P R E L I M I N A R Y  
Pin Functions  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
25  
through P31 (T ) and P36 (T  
). Handshake lines for Ports 0, 1, and 2 are avail-  
IN  
OUT  
able on P31 through P36.  
Port 3 also provides the following control functions: handshake for Ports 0, 1, and  
2 (DAV and RDY); four external interrupt request signals (IRQ3–IRQ0); timer input  
and output signals (T and T  
); Data Memory Select (DM, see Table 10 and  
IN  
OUT  
Figure 13).  
P34 output is software-programmed to function as a Data Memory Select (DM).  
The Port 3 Mode Register (P3M) bit D3,D4 selects this function. When accessing  
external data memory, P34 goes active Low; when accessing external program  
memory, P34 goes High.  
An onboard UART (ASCI) is enabled by software by setting the RE and TE bits of  
the ASCI Control Register A (CNTLA). When enabled, P30 is the receive input  
and P37 is the transmit output.  
Table 10.Port 3 Pin Assignments  
Control  
Timer  
Pin  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
Notes:  
I/O  
IN  
Analog  
Interrupt  
IRQ3  
P0 HS P1 HS P2 HS  
Ext  
UART  
RX  
IN  
T
AN1  
AN2  
IRQ2  
D/R  
IN  
IN  
IRQ0  
D/R  
D/R  
R/D  
R/D  
R/D  
IN  
REF  
IRQ1  
OUT  
OUT  
OUT  
OUT  
AN1–OUT  
DM  
T
OUT  
AN2–OUT  
TX  
HS = Handshake Signals  
D = DAV  
R = RDY  
Comparator Inputs and Outputs. Port 3, pins P31 and P32 each feature a compar-  
ator front end. The comparator reference voltage, pin P33, is common to both  
comparators. In ANALOG mode, the P31 and P32 are the positive inputs to the  
comparators, and P33 is the reference voltage supplied to both comparators. In  
DIGITAL mode, pin P33 is used as a P33 register input or IRQ1 source. P34 and  
P37 can provide the comparator output directly by software-programming the  
PCON register bit D0 to 1 (see Figure 14).  
PS004005-1100  
P R E L I M I N A R Y  
Pin Functions  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
26  
The user must add a two-NOP delay after setting the P3M bit D1 to 1  
before the comparator output is valid. IRQ0, IRQ1, and IRQ2 must be  
cleared in the IRQ register when the comparator is enabled or disabled.  
Note:  
Figure 13. Port 3 Configuration  
P30  
P31  
P32  
P33  
Port 3  
(I/O or Control)  
Z8  
P34  
P35  
P36  
P37  
Auto Latch  
(Progammable option)  
R 500KΩ  
P30 Data  
Latch IRQ3  
P30  
R247 = P3M  
1 = Analog  
0 = Digital  
D1  
DIG.  
AN.  
P31 (AN1)  
+
IRQ2, T , P31 Data Latch  
IN  
P32 (AN2)  
+
IRQ0, P32 Data Latch  
IRQ1, P33 Data Latch  
P33 (REF)  
From Stop-Mode  
Recovery Source  
PS004005-1100  
P R E L I M I N A R Y  
Pin Functions  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
27  
Figure 14. Port 3 Configuration—PCON Register Detail  
P34  
PAD  
P34 OUT  
P31  
+
REF (P33)  
P37  
PAD  
P37 OUT  
P32  
+
REF (P33)  
PCON  
0 P34, P37 Standard Output  
1 P34, P37 Comparator Output  
D0  
Autolatch. The autolatch places valid CMOS levels on all CMOS inputs (except  
P33–P31) that are not externally driven. Whether this level is 0 or 1 cannot be  
determined. A valid CMOS level, rather than a floating node, reduces excessive  
supply current flow in the input buffer. Autolatches are available on Port 0, Port 1,  
Port 2, and P30. There are no autolatches on P31, P32, and P33.  
Note:  
Deletion of all port autolatches is available as an option when the device is  
programmed.The AUTOLATCH DISABLE option is selected by the  
customer when the device is programmed.  
RESET (input/output, active Low). Initializes the MCU. RESET occurs through  
Power-On Reset, Watch-Dog Timer reset, Stop-Mode Recovery, or external reset.  
During Power-On Reset and Watch-Dog Reset, the internally-generated reset  
drives the RESET pin Low for the POR time. Pull-up is provided internally.  
Any devices driving the reset line must be open-drain to avoid damage  
from a possible conflict during reset conditions. RESET depends on os-  
cillator operation to achieve full reset conditions, except for conditions  
wherein the reset is caused by a WDT time-out.  
Caution:  
Note:  
The RESET pin is not available on devices in the 28-pin package.  
PS004005-1100  
P R E L I M I N A R Y  
Pin Functions  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
28  
After the POR time, RESET is a Schmitt-triggered input. During the RESET cycle,  
DS is held active Low while AS cycles at a rate of T C ÷ 2. Program execution  
P
begins at location 000Ch, after the RESET is released. For Power-On Reset, the  
reset output time is T  
ms.  
POR  
When program execution begins, AS and DS toggles only for external memory  
accesses.The Z8 does not reset WDTMR, SMR, P2M, PCON, and P3M registers  
on a Stop-Mode Recovery operation or from a WDT reset out of STOP mode.  
PS004005-1100  
P R E L I M I N A R Y  
Pin Functions  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
29  
Functional Description  
®
The Z8 MCU incorporates the following functions that enhance the standard Z8  
architecture and provide the user with increased design flexibility:  
Reset  
Program Memory  
Data Memory  
EPROM Protect  
RAM Protect  
Working Register File  
Expanded Register File  
General-Purpose Registers  
Stack Pointer  
Counter/Timers  
Interrupts  
Clock  
Power-On Reset  
HALT and STOP Modes  
Port Configuration Register  
Comparator  
Stop-Mode Recovery  
Watch-Dog Timer  
Voltage Comparator  
RESET. The device is reset in one of the following conditions:  
Power-On Reset  
Watch-Dog Timer  
Stop-Mode Recovery Source  
External Reset  
Low Voltage Recovery  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
30  
Automatic Power-On Reset circuitry is built into the Z8, eliminating the require-  
ment for an external reset circuit to reset upon power-up. The internal pull-up  
resistor is on the RESET pin, so a pull-up resistor is not required; however, in a  
high-EMI (noisy) environment, it is recommended that a low-value pull-up resistor  
be used.  
Note:  
The RESET pin is not available on devices in the 28-pin package.  
Program Memory. The first 12 bytes of program memory are reserved for the inter-  
rupt vectors. These locations contain six 16-bit vectors that correspond to the six  
available interrupts. For ROM mode, address 12 to address FFFFh (E136/E146)/  
7FFFh (E135/E145)/3FFF (E134/E144) consists of programmable EPROM.The  
Z86E142/E143/E144/E145 can access external program and data memory from  
addresses 4000h/8000h to FFFFh. See Figure 15.  
Figure 15. Program Memory Map for the MUZE Family  
FFFFh  
External/Internal  
ROM and RAM  
3FFFh/7FFFh  
3FFEh/7FFEh  
Location of  
First Byte of  
Instruction  
Executed  
On-Chip  
ROM  
12  
11  
10  
9
After RESET  
IRQ5  
IRQ5  
IRQ4  
IRQ4  
IRQ3  
IRQ3  
IRQ2  
IRQ2  
IRQ1  
IRQ1  
IRQ0  
IRQ0  
8
7
Interrupt  
Vector  
(Lower Byte)  
6
5
4
Interrupt  
Vector  
(Upper Byte)  
3
2
1
0
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
31  
Data Memory (DM). The ROMless version addresses up to 64 KB of external data  
memory. External data memory may be included with, or separated from, the  
external program memory space. DM, an optional I/O function that is programmed  
to appear on pin P34, is used to distinguish between data and program memory  
space (Figure 16). The state of the DM signal is controlled by the type of instruc-  
tion being executed. An LDC Op Code references PROGRAM (DM inactive)  
memory, and an LDE instruction references data (DM active Low) memory. The  
user must configure Port 3 Mode Register (P3M) bits D3 and D4 for this mode.  
This feature is not usable for devices in 28-pin package.  
Note:  
When used in ROM mode, the Z86E146 cannot access any external data  
or program memory. The Z86E14X series of Z8 MCUs can access  
external program and data memory from addresses 4000h/8000h to  
FFFFh.  
Figure 16. Data Memory Map  
FFFFh  
FFFFh  
External  
Data  
Memory  
External  
Data  
Memory  
4000h/8000h  
3FFFh/7FFFh  
Not Addressable  
EPROM Mode  
0
0
ROMless Mode  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
32  
EPROM Protect. EPROM PROTECT provides an additional security function.  
When the device is programmed with the EPROM PROTECT option bit selected,  
and it is executing out of External Program Memory, instructions LDC, LDCI, LDE,  
and LDEI cannot read Internal Program Memory.  
When the EPROM PROTECT option bit is selected, and executing out of Internal  
Program Memory, instructions LDC, LDCI, LDE, and LDEI can read Internal Pro-  
gram Memory.  
RAM Protect. The upper portion of the RAM’s address spaces 80h to EFh (exclud-  
ing the control registers) can be protected from writing. The RAM Protect option  
bit can be selected when the device is programmed. After the mask option is  
selected, the user activates this feature from the internal ROM code to turn off/on  
the RAM Protect by loading either a 0 or a 1 into the IMR register, bit D6. A 1 in bit  
D6 enables the RAM Protect option.  
Working Register File. The Z8 standard register file contains 4 I/O port registers,  
236 general-purpose registers, and 15 control and status registers. Expanded  
register file Fh contains 3 system-configuration registers. Expanded register file  
Ah contains 8 ASCI control registers. The working registers are accessed directly  
or indirectly via an 8-bit address field. As a result, a short 4-bit register address  
can use the Register Pointer (Table 11 and Figure 17). In the 4-bit mode, the  
working register file is divided into 16 working register groups, each occupying 16  
continuous locations. The Register Pointer addresses the starting location of the  
active working register group.  
Throughout this document, the Z8 Standard Register File is referred to as a Bank.  
Table 11.Register Pointer Register—RP FDh/R253 Bank 0h: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
0
D3  
R/W  
0
D2  
R/W  
0
D1  
R/W  
0
D0  
R/W  
0
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7–D4  
D3–D0  
Working Registers  
ERF  
R/W  
0
Working Register Group  
Pointer  
R/W  
0
Expanded Register File  
Expanded Register File (ERF). The Z8 register file is expanded to allow for addi-  
tional system control registers, and for mapping of additional peripheral devices,  
along with the I/O ports, into the register address area. The Z8 register address  
space R0 through R15 is implemented as 16 groups of 16 registers per bank (Fig-  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
33  
ures 17 and 18 ).These register groups are known as the Expanded Register File  
(ERF). Bits 7–4 of register RP select the Working Register Group. Bits 3–0 of reg-  
ister RP select the Expanded Register File. Five system configuration registers  
reside in the Expanded Register File at Bank Fh—PCON, VFY, SMR, SMR2, and  
WDTMR. The 8 control registers for the ASCI are located in the Expanded Regis-  
ter File Bank Ah. The remainder of the Expanded Register is not physically imple-  
mented, and is open for future expansion.  
Figure 17. Register Pointer—Detail  
R253  
(Register Pointer)  
r7 r6 r5 r4  
r3 r2 r1 r0  
The upper nibble of the register file address  
provided by the register pointer specifies  
the active working-register group.  
FF  
Register Bank Fh  
F0  
EF  
80  
7F  
70  
6F  
60  
5F  
50  
4F  
The lower nibble  
of the register  
file address  
40  
3F  
Specified Working  
Register File  
provided by the  
instruction points  
to the specified  
register.  
30  
2F  
20  
1F  
Register File1  
R15 to R0  
10  
0F  
R15 to R4*  
R3 to R0*  
Register File 0  
I/O Ports  
00  
* Expanded Register File 0 is selected  
in this figure by handling bits D3 to D0  
as "0" in Register R253 (RP).  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
34  
General-Purpose Registers (GPR). General-purpose registers are undefined after  
the device is powered up. These registers keep the most recent value after any  
RESET, as long as the RESET occurs in the V voltage-specified operating  
CC  
range. General-purpose registers are not guaranteed to keep their most recent  
state from a Low-Voltage Protection (V ) RESET if V drops below 1.8V.  
LV  
CC  
Note:  
Register Bank E0–EF is only accessed via working register and indirect  
addressing modes.  
Stack Pointer. The Z8 internal register file is used for the stack. The 16-bit Stack  
Pointer (SPH and SPL) is used for the external stack, which can reside anywhere  
in the data memory for ROMless mode. An 8-bit Stack Pointer (SPL) is used for  
the internal stack that resides within the 236 general-purpose registers. Stack  
Pointer High (SPH) is used as a general-purpose register only when using an  
internal stack. The devices in the 28-pin and 40-pin packages can only use the 8-  
bit stack pointer (SPL) for the internal stack.  
Note:  
SPH and SPL are set to 00h after any RESET or Stop-Mode Recovery.  
Counter/Timers. There are two 8-bit programmable counter/timers (T0–T1), each  
driven by its own 6-bit programmable prescaler.The T1 prescaler is driven by  
internal or external clock sources; however, the T0 prescaler is driven by the inter-  
nal clock only (Figure 19).  
The 6-bit prescalers can divide the input frequency of the clock source by any  
integer number from 2to 64. Each prescaler drives its counter, which decrements  
the value (1 to 256) that is loaded into the counter. When the counter reaches the  
end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.  
The counters are programmed to START, STOP, restart to CONTINUE, or restart  
from the initial value. The counters can also be programmed to STOP upon reach-  
ing 0 (SINGLE-PASS mode) or to automatically reload the initial value and con-  
tinue counting (MODULO–N CONTINUOUS mode).  
The counters, but not the prescalers, are read at any time without disturbing their  
value or count mode.The clock source for T1 is user-definable and is either the  
internal microprocessor clock divide-by-four, or an external signal input through  
Port 3. The Timer Mode Register configures the external timer input (P31) as an  
external clock, a trigger input that is retriggerable or nonretriggerable, or as a gate  
input for the internal clock.The counter/timers are cascaded by connecting the T0  
output to the input of T1. T mode is enabled by setting PRE1 bit D1 to 0.  
IN  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
35  
Figure 18. Expanded Register File Architecture  
Z8® Standard Control Registers  
Reset Condition  
Expanded Register File 0h  
Working Register Group 0  
D7 D6 D5 D4 D3 D2 D1 D0  
FFh  
FEh  
FDh  
FCh  
FBh  
FAh  
F9h  
F8h†  
F7h*  
F6h*  
F5h  
F4h  
F3h  
F2h  
F1h  
F0h  
SPL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register Pointer  
SPH  
RP  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
FLAGS  
IMR  
X
0
X
X
0
X
X
0
X
X
0
X
X
0
X
X
0
X
X
0
X
X
0
Working Register  
Group Pointer  
Expanded Register  
File Pointer  
IRQ  
0
IPR  
X
0
X
X
0
X
0
X
1
X
1
X
0
X
1
P01M  
P3M  
P2M  
PRE0  
T0  
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
X
X
X
0
X
X
X
X
0
X
X
X
X
0
X
X
X
X
0
X
X
X
X
0
X
X
X
X
0
X
X
0
0
X
0
Z8 Working Register File  
FFh  
PRE1  
T1  
FOh  
X
0
X
0
TMR  
Reserved  
Expanded Register File Fh  
Working Register Group 0  
Reset Condition  
0Fh*  
0Eh  
0
X
0
1
X
0
1
X
0
0
0
0
1
0
0
WDTMR  
X
X
X
Reserved  
70h  
0Dh*  
0Ch  
0Bh**  
0Ah  
09h  
X
X
X
SMR2  
Reserved  
SMR  
0
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PCON  
08h  
07h  
06h  
0Fh  
00h  
05h  
04h  
03h  
02h  
01h  
00h  
1
1
1
1
1
1
1
0
Expanded Register File Ah  
Working Register Group 0  
Reset Condition  
ASCI  
Control  
Registers  
0Fh*  
0Eh*  
Reserved  
Reserved  
Reserved  
X
0Dh  
0Ch  
Reserved  
Reserved  
Reserved  
GPR  
0Bh*  
0Ah*  
09hX  
Notes:  
X = Indeterminate.  
*Is not reset via Stop-Mode Recovery.  
**Is not reset via Stop-Mode Recovery, excet for bit D0.  
The ROMless reset condition: 10110110.  
XNot available on 28-pin packages.  
08h  
STAT  
0
1
0
1
1
0
0
0
X
X
0
1
1
0
0
0
X
X
0
1
1
0
0
1
X
X
0
1
1
0
0
0
X
X
0
1
1
0
1
0
X
X
0
1
1
1
1
0
X
X
0
1
1
0
1
0
X
X
07h*  
06h*  
05hX  
ASTH  
ASTL  
1
ASEXT  
CNTLB  
CNTLA  
RDR  
X
0
04h  
03h*  
02h*  
01hX  
0
X
X
TDR  
00h  
Reserved  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
36  
Figure 19. Counter/Timer Block Diagram  
OSC  
Internal Data Bus  
D1 (SMR)  
Write  
Write  
Read  
2
PRE0  
T0  
T0  
Initial Value  
Register  
Initial Value  
Register  
Current Value  
Register  
D0 (SMR)  
6-Bit  
Down  
8-bit  
Down  
16  
÷4  
Counter  
Counter  
IRQ4  
Internal  
Clock  
TOUT  
P36  
÷2  
External Clock  
Clock  
Logic  
6-Bit  
Down  
Counter  
8-Bit  
Down  
Counter  
IRQ5  
÷4  
Internal Clock  
Gated Clock  
Triggered Clock  
PRE1  
Initial Value  
Register  
T1  
T1  
Initial Value  
Register  
Current Value  
Register  
TIN P31  
Write  
Write  
Read  
Internal Data Bus  
Interrupts. The Z8 features six different interrupts from six different sources.  
These interrupts are maskable and prioritized (Figure 24). The 6 sources are  
divided as follows: 4 sources are claimed by Port 3 lines P33–P30, and 2 are  
claimed by counter/timers (Table 12).The Interrupt Mask Register globally or indi-  
vidually enables or disables the six interrupt requests.  
Table 12.Interrupt Types, Sources, and Vectors  
Vector  
Name Source  
Location Comments  
IRQ0  
IRQ1,  
IRQ2  
DAV0, IRQ0  
0,1  
2,3  
4,5  
External (P32), Rising and Falling Edges Triggered  
IRQ1  
External (P33), Falling Edge Triggered  
DAV2, IRQ2, T  
External (P31), Rising and Falling Edges Triggered  
IN  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
37  
Table 12.Interrupt Types, Sources, and Vectors (Continued)  
Vector  
Name Source  
Location Comments  
IRQ3  
IRQ4  
IRQ5  
UART (ASCI)  
6,7  
External (P30), Falling Edge Triggered  
T0  
T1  
8,9  
Internal  
Internal  
10,11  
When more than one interrupt is pending, priorities are resolved by a programma-  
ble priority encoder that is controlled by the Interrupt Priority register. An interrupt  
machine cycle activates when an interrupt request is granted.This action disables  
all subsequent interrupts, saves the Program Counter and Status Flags, and then  
branches to the program memory vector location reserved for that interrupt.  
All Z8 interrupts are vectored through locations in the program memory. This  
memory location and the next byte contain the 16-bit address of the interrupt ser-  
vice routine for that particular interrupt request. To accommodate polled interrupt  
systems, interrupt inputs are masked and the Interrupt Request register is polled  
to determine which of the interrupt requests require service.  
When in ANALOG mode, an interrupt resulting from COMPARATOR1 maps to  
IRQ2, and an interrupt from COMPARATOR2 maps to IRQ0. Interrupts IRQ2 and  
IRQ0 may be rising, falling, or both edge-triggered, and are programmed in the  
IRQ register. The software polls to identify the state of the pin. When in ANALOG  
mode, IRQ1 is generated by the Stop-Mode Recovery source selected by SMR  
Register bits D4, D3, D2, or SMR2 D1 or D0.  
Programming bits for the Interrupt Edge Select are located in the IRQ register, bits  
D7 and D6.The configuration is indicated in Table 13.  
Table 13.IRQ Register*  
IRQ  
Interrupt Edge  
P31 P32  
D7  
0
D6  
0
F
F
0
1
F
R
R
F
1
0
1
1
R/F  
R/F  
Notes:  
F = Falling Edge  
R = Rising Edge  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
38  
Clock. The Z8 on-chip oscillator features a high-gain, parallel-resonant amplifier  
for connection to a crystal, LC, RC, ceramic resonator, or any suitable external  
clock source (X = INPUT, X  
= OUTPUT). The crystal should be AT-cut, 16  
IN  
OUT  
MHz maximum, with a series resistance (RS) of less than or equal to 100when  
oscillating from 1MHz to 16MHz.  
The crystal should be connected across X and X  
using the vendor’s recom-  
OUT  
IN  
mended capacitor values from each pin directly to the device Ground pin to  
reduce ground-noise injection into the oscillator. The RC oscillator option can be  
selected when the device is programmed.  
Note:  
The RC option is available up to 8 MHz.The RC oscillator configuration  
must be an external resistor connected from X to XOUT, with a frequency-  
IN  
setting capacitor from X to Ground (Figure 20).  
IN  
For better noise immunity, the capacitors should be tied directly to the  
device Ground pin (V ).  
SS  
Figure 20. Oscillator Configuration  
XIN  
XIN  
XIN  
XIN  
C1  
C1  
C1  
L
R
VSS**  
VSS**  
VSS**  
XOUT  
XOUT  
XOUT  
XOUT  
C2  
C2  
VSS**  
VSS**  
Ceramic Resonator or  
Crystal  
LC  
RC  
External Clock  
C1, C2 = 22 pF  
@ 5V VCC (Typ.)  
C1, C2 = 47 pF Typ.*  
f = 8 MHz  
L = 130 µH *  
f = 3 MHz *  
C1 = 33 pF*  
R = 1 KB*  
f = 6 MHz*  
*Preliminary value, including pin parasitics.  
**Device ground pin.  
Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscilla-  
tor is used for the Power-On Reset (POR) timer function. The POR time allows  
V
and the oscillator circuit to stabilize before instruction execution begins.  
CC  
The POR timer circuit is a one-shot timer triggered by one of three conditions:  
1. Power fail to Power OK status.  
2. Stop-Mode Recovery (if D5 of SMR = 1).  
3. WDT time-out.  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
39  
The POR time is specified as TPOR. Bit 5 of the Stop-Mode Register determines  
whether the POR timer is bypassed after Stop-Mode Recovery (typical for exter-  
nal clock, RC/LC oscillators).  
HALT. HALT turns off the internal CPU clock, but not the CRYSTAL oscillation.  
The counter/timers, UART, and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3  
remain active.The devices are recovered by interrupts and are either externally or  
internally generated. An interrupt request must be enabled and executed to exit  
HALT mode. After the interrupt service routine, the program continues from the  
instruction after the HALT.  
In order to enter STOP (or HALT) mode, it is necessary to first flush the instruc-  
tion pipeline to avoid suspending execution in mid-instruction. Therefore, the user  
must execute a NOP (Op Code = FFh) immediately before the appropriate sleep  
instruction. For example:  
FF NOP ; clear the pipeline  
6F STOP ; enter STOP mode  
or  
FF NOP ; clear the pipeline  
7F HALT ; enter HALT mode  
STOP. This instruction turns off the internal clock and external crystal oscillation.  
The STOP instruction also reduces the standby current to 10 µA or less. STOP  
mode is terminated by a RESET only, either by WDT time-out, POR, Stop-Mode  
Recovery, or external reset. As a result, the processor restarts the application pro-  
gram at address 000Ch. A WDT time-out in STOP mode affects all registers the  
same as if a Stop-Mode Recovery occurred via a selected Stop-Mode Recovery  
source except that the POR delay is enabled even if the delay is selected for dis-  
able.  
Note:  
If a permanent WDT is selected, the WDT runs in all modes and cannot be  
stopped or disabled if the onboard RC oscillator is selected to drive the  
WDT.  
Port Configuration Register (PCON). The PCON register configures the ports indi-  
vidually; comparator output on Port 3, open-drain on Port 0 and Port 1, low EMI on  
Ports 0, 1, 2, and 3, and low-EMI oscillator. The PCON register is located in the  
expanded register file at Bank F, location 00h (Table 14).  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
40  
Table 14.Port Configuration Register—PCON 00h/R0 Bank Fh:WRITE ONLY  
Bit  
D7  
W
1
D6  
W
1
D5  
W
1
D4  
W
1
D3  
W
1
D2  
W
1
D1  
W
1
D0  
W
0
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit  
Position Field  
Oscillator  
Bit  
R/W  
State Description  
Low-EMI Oscillator  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
W
1
1
1
1
1
1
1
0
0: Low EMI  
1: Standard  
Port 3 I/O  
Port 2 I/O  
Port 1 I/O  
Port 0 I/O  
Port 0 I/O  
Port 1 I/O  
Port 3  
W
W
W
W
W
W
W
Port 3  
0: Low EMI  
1: Standard  
Port 2  
0: Low EMI  
1: Standard  
Port 1  
0: Low EMI  
1: Standard  
Port 0*  
0: Low EMI  
1: Standard  
Port 0  
0: Open-Drain  
1: Push-Pull Active  
Port 1*  
0: Open-Drain  
1: Push-Pull Active  
Port 3 Comparator Output  
0: P34, P37 Standard Output  
1: P34, P37 Comparator Output  
Note: Must be set to 1 for devices in 28-pin packages.  
Comparator  
Comparator Output Port 3 (D0). Bit 0 controls the comparator use in Port 3. A 1 in  
this location brings the comparator outputs to P34 and P37, and a 0 releases the  
Port to its standard I/O configuration. The default value is 0.  
Port 1 Open-Drain (D1). Port 1 is configured as an open-drain by resetting this bit  
(D1 = 0) or configured as push-pull active by setting this bit (D1 = 1).The default  
value is 1. The user must set D1 = 1 for devices in 28-pin packages.  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
41  
Port 0 Open-Drain (D2). Port 0 is configured as an open-drain by resetting this bit  
(D2 = 0) or configured as push-pull active by setting this bit (D2 = 1).The default  
value is 1.  
Low-EMI Port 0 (D3). Port 0 is configured as a low-EMI port by resetting this bit (D3  
= 0) or configured as a Standard Port by setting this bit (D3 = 1).The default value  
is 1.  
Low-EMI Port 1 (D4). Port 1 is configured as a low-EMI port by resetting this bit (D4  
= 0) or configured as a Standard Port by setting this bit (D4 = 1).The default value  
is 1. The user must set D4 = 1 for devices in 28-pin packages.  
Note:  
For emulator, this bit must be set to 1.  
Low-EMI Port 2 (D5). Port 2 is configured as a low-EMI port by resetting this bit (D5  
= 0) or configured as a Standard Port by setting this bit (D5 = 1).The default value  
is 1.  
Low-EMI Port 3 (D6). Port 3 is configured as a low-EMI port by resetting this bit (D6  
= 0) or configured as a Standard Port by setting this bit (D6 = 1).The default value  
is 1.  
Low-EMI OSC (D7). This bit of the PCON register controls the low-EMI noise oscil-  
lator. A 1 in this location configures the oscillator, DS, AS and R/W with standard  
drive, while a 0 configures the oscillator, DS, AS and R/W with low noise drive.  
LOW-EMI mode reduces the drive of the oscillator (OSC). The default value is 1.  
Note:  
Maximum external clock frequency of 4 MHz when running in LOW-EMI  
OSCILLATOR mode.  
Low-EMI Emission. The Z8 is programmed to operate in a low-EMI emission mode  
in the PCON register. The oscillator and all I/O ports is programmed as LOW-EMI  
EMISSION mode independently. Use of this feature results in:  
The pre-drivers slew rate reduced to 10 ns (typical)  
Low-EMI output drivers exhibit resistance of 200(typical)  
Low-EMI Oscillator  
Internal SCLK = CRYSTAL operation limited to a maximum of 4 MHz–250 ns  
cycle time, when LOW EMI OSCILLATOR is selected and system clock (SMR  
Register Bit D1 = 1)  
Stop-Mode Recovery  
Stop-Mode Recovery Registers (SMR1 and SMR2). These registers select the clock  
divide value and determine the mode of Stop-Mode Recovery (Tables 15 and 18).  
All bits are WRITE ONLY, except bit 7 of SMR1, which is READ ONLY. SMR1 bit  
7 is a flag bit that is set by hardware on a Stop-Mode Recovery condition and  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
42  
reset by a power-on cycle. For SMR1, bit 6 controls whether a Low level or a High  
level is required from the recovery source. Bit 5 controls the reset delay after  
Stop-Mode Recovery. Bits 2, 3, and 4 of the SMR1 register specify the source of  
the Stop-Mode Recovery signal. Bits 0 and 1 determine the time-out period of the  
WDT. The SMR registers are located in Bank F of the Expanded Register File at  
addresses 0Bh and 0Dh, respectively.  
For SMR2, bits 7 to 2 are reserved. Bits 1 and 0 of the SMR2 register specify the  
source of the Stop-Mode Recovery signal.  
Table 15.Stop-Mode Recovery Register 1—SMR1 0Bh/R11 Bank Fh: WRITE ONLY,  
except Bit D7, which is READ ONLY  
Bit  
D7  
R
D6  
W
0
D5  
W
1
D4  
W
0
D3  
W
0
D2  
W
0
D1  
W
0
D0  
W
0
R/W  
Reset  
0
Note: R = Read, W = Write, X = Indeterminate.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7  
STP  
R
0
0
1
0
Stop Flag  
0: POR  
1: Stop-Mode Recovery  
D6  
SMR  
W
W
W
Stop-Mode Recovery Level  
0: Low  
1: High  
D5  
STPDLY  
CLK  
Stop Delay  
0: Off  
1: On  
D0  
SCLK ÷ TCLK Divide-by-16  
1
0: Off  
1: On  
Notes:  
1. Do not use in conjunction with SMR2 Source.  
2. Cleared by RESET and SMR.  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
43  
D4–D2  
SMRSRC  
W
000 Stop-Mode Recovery Source2  
000: POR only and/or external RESET  
001: P30  
010: P31  
011: P32  
100: P33  
101: P27  
110: P2 NOR 0–3  
111: P2 NOR 0–7  
D1  
EXTCLK  
CLK  
W
W
0
0
External Clock Divide-by-2  
0: SCLK ÷ TCLK = Crystal ÷ 2  
1: SCLK = Crystal  
D0  
SCLK ÷ TCLK Divide-by-16  
1
0: Off  
1: On  
Notes:  
1. Do not use in conjunction with SMR2 Source.  
2. Cleared by RESET and SMR.  
SCLK ÷ TCLK Divide-by-16 Select (D0). Bit D0 of the SMR controls a divide-by-16  
prescaler of SCLK ÷ TCLK. The purpose of this control is to selectively reduce  
device power consumption during normal processor execution (SCLK control)  
and/or HALT mode (where TCLK sources counter/timers and interrupt logic). This  
bit is reset to D0 = 0 after a Stop-Mode Recovery.  
External Clock Divide-by-Two (D1). This bit can eliminate the oscillator divide-by-  
two circuitry. When this bit is 0, the system clock (SCLK) and timer clock (TCLK)  
are equal to the external clock frequency divided by 2.The SCLK is equal to the  
external clock frequency when this bit is set (D1 = 1). Using this bit together with  
D7 of PCON further helps lower EMI (that is, D7 (PCON) = 0, D1 (SMR) = 1). The  
default setting is 0. Maximum external clock frequency is 4 MHz when SMR bit D1  
= 1 where SCLK ÷ TCLK = Crystal.  
Stop-Mode Recovery Source (D2, D3, and D4). These three bits of the SMR specify  
the wake-up source of the Stop-Mode Recovery (Figure 21 and Table 16). When  
the Stop-Mode Recovery Sources are selected in this register, then SMR2 regis-  
ter bits D0,D1 must be set to 0.  
Note:  
If the Port 2 pin is configured as an output, this output level is read by the  
SMR circuitry.  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
44  
Figure 21. Stop-Mode Recovery Source  
SMR2 D1 D0  
0
0
VDD  
SMR2 D1 D0  
SMR2 D1 D0  
0
1
1
0
P20  
P23  
P20  
P27  
SMR D4 D3 D2  
0
0
0
VDD  
SMR D4 D3 D2 SMR D4 D3 D2 SMR D4 D3 D2  
SMR D4 D3 D2  
SMR D4 D3 D2  
0
0
0
0
1
1
1
0
1
1
0
0
1
0
1
1
1
0
1
1
1
P20  
P20  
P30  
P31  
P32  
P33  
P27  
P23  
P27  
To POR  
RESET  
Stop-Mode Recovery Edge  
Select (SMR)  
To P33 Data  
Latch and IRQ1  
MUX  
P33 From Pads  
Digital/Analog Mode  
Select (P3M)  
Table 16.Stop-Mode Recovery Source  
SMR[4–2]  
D4  
0
D3  
0
D2  
0
Operation/Description of Action  
POR and/or external reset recovery  
P30 transition  
0
0
1
0
1
0
P31 transition (not in ANALOG mode)  
P32 transition (not in ANALOG mode)  
P33 transition (not in ANALOG mode)  
P27 transition  
0
1
1
1
0
0
1
0
1
1
1
0
Logical NOR of P20 through P23  
Logical NOR of P20 through P27  
1
1
1
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
45  
Stop-Mode Recovery Delay Select (D5). This bit, if High, enables the T  
RESET  
POR  
delay after Stop-Mode Recovery. The default configuration of this bit is 1. If the  
fast wake up is selected, the Stop-Mode Recovery source must be kept active for  
at least 5 T C. Code execution begins after T  
(see Tables 58 and 59).  
P
EDELAY  
Stop-Mode Recovery Edge Select (D6). A 1 in this bit position indicates that a high  
level on any one of the recovery sources wakes the Z8 from STOP mode. A 0 indi-  
cates low-level recovery.The default is 0 on POR (Table 17).This bit is used for  
either SMR or SMR2.  
Cold or Warm Start (D7). This bit is set by the device upon entering STOP mode. A  
0 in this bit (cold) indicates that the device resets by POR/WDT RESET. A 1 in this  
bit (warm) indicates that the device awakens by a Stop-Mode Recovery source.  
Note:  
If the Port 2 pin is configured as an output, this output level is read by the  
SMR2 circuitry.  
Stop-Mode Recovery Register 2 (SMR2). This register contains additional Stop-  
Mode Recovery sources. When the Stop-Mode Recovery sources are selected in  
this register then SMR register bits D2, D3, and D4 must be 0.  
Table 17. Stop-Mode Recovery Register 2  
SMR1–0  
D1  
0
D0  
0
Operation/Description of Action  
POR and/or external reset recovery  
Logical AND of P20 through P23  
Logical AND of P20 through P27  
0
1
1
0
Table 18.Stop-Mode Recovery Register 2—SMR2 0Dh/R13 Bank Fh:WRITE ONLY  
Bit  
D7  
W
X
D6  
W
X
D5  
W
X
D4  
W
X
D3  
W
X
D2  
W
X
D1  
W
0
D0  
W
0
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit/  
Bit  
Field  
Position  
R/W  
W
State Description  
D7–D2 Reserved  
X
Reserved—must be 0  
D1–D0 STOP Mode  
W
00  
Stop-Mode Recovery Source 2*  
00: POR only  
01: AND P20, P21, P22, P23  
10: AND P20, P21, P22, P23, P24, P25,  
P26, P27  
Note: *Do not use in conjunction with SMR Source.  
P R E L I M I N A R Y  
PS004005-1100  
Functional Description  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
46  
Watch-Dog Timer  
Watch-Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot  
timer that resets the Z8 if it reaches its terminal count. The WDT is initially  
enabled by executing the WDT instruction and refreshed on subsequent execu-  
tions of the WDT instruction.The WDT circuit is driven by an onboard RC oscilla-  
tor or external oscillator from the X pin. The POR clock source is selected with  
IN  
bit 4 of the WDT register (Table 19).  
WDT instruction affects the Z (Zero), S (Sign), and V (Overflow) flags. The  
WDTMR must be written to within the first 64 internal system clocks. After that,  
the WDTMR is WRITE-protected.  
Note:  
WDT time-out while in STOP mode does not reset SMR, PCON, WDTMR,  
P2M, P3M, Ports 2 & 3 Data Registers, but the POR delay counter is still  
enabled even though the SMR stop delay is disabled.  
Table 19.Watch-Dog Timer Mode Register—WDTMR 0Fh/R15: WRITE ONLY  
Bit  
D7  
W
X
D6  
W
X
D5  
W
X
D4  
W
0
D3  
W
1
D2  
W
1
D1  
W
0
D0  
W
1
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit/  
Bit  
Field  
Position  
R/W  
W
State Description  
D7–D5 Reserved  
X
0
Reserved—must be 0  
D4  
X
W
XIN/INT RC Select for WDT  
0: On-Board RC  
IN  
1: Crystal  
D3  
D2  
WDT  
WDT  
W
W
W
1
1
WDT During STOP  
WDT During HALT  
D1–D0 WDT Tap  
01  
WDT Tap Int RC OSC System Clock  
00:  
01:  
10:  
11:  
3.5ms  
10.0 ms  
14.0 ms  
56.0 ms  
128 SCLK  
256 SCLK  
512 SCLK  
2048 SCLK  
Note: Not used in conjunction with SMR Source.  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
47  
WDT Time Select (D0,D1). Selects the WDT time period and is configured as indi-  
cated in Table 20.  
Table 20. WDT Time Select  
Timeout of  
Timeout of  
D1  
0
D0  
0
Internal RC OSC  
System Clock  
3.5 ms min  
7 ms min  
128 SCLK  
256 SCLK  
512 SCLK  
2048 SCLK  
0
1
1
0
14 ms min  
56 ms min  
1
1
Note: SCLK = system bus clock cycle. The default on RESET is 7 ms. Values provided are for  
= 5.0V.  
V
CC  
WDTMR During HALT (D2). This bit determines whether or not the WDT is active  
during HALT mode. A 1 indicates active during HALT. The default is 1.  
WDTMR During STOP (D3). This bit determines whether or not the WDT is active  
during STOP mode. Because the CRYSTAL clock is stopped during STOP mode,  
the on-board RC must be selected as the clock source to the POR counter. A 1  
indicates active during STOP. The default is 1.  
Note:  
If the permanent WDT programming option is selected, the WDT runs in all  
modes and cannot be stopped or disabled if the on board RC oscillator is  
selected as the clock source for WDT.  
Clock Source for WDT (D4). This bit determines which oscillator source is used to  
clock the internal POR and WDT counter chain. If the bit is a 1, the internal RC  
oscillator is bypassed and the POR and WDT clock source is driven from the  
external pin, X .The default configuration of this bit is 0 which selects the internal  
IN  
RC oscillator.  
WDTMR Register Accessibility. The WDTMR register is accessible only during the  
first 64 internal system clock cycles from the execution of the first instruction after  
Power-On Reset, Watch-Dog Reset, or Stop-Mode Recovery. After this point, the  
register cannot be modified by any means, intentional or otherwise. The WDTMR  
cannot be read and is located in Bank Fh of the Expanded Register File at  
address location 0Fh (Figure 22).  
Note:  
The WDT is permanently enabled (automatically enabled after RESET)  
through a programmable option.The option is selected when the device is  
programmed. In this mode, WDT is always activated when the device  
comes out of RESET. Execution of the WDT instruction serves to refresh the  
WDT time-out period. WDT operation in the HALT and STOP modes is  
controlled by WDTMR programming. If this option is not selected when the  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
48  
device is programmed, the WDT must be activated by the user through the  
WDT instruction and is always disabled by any reset to the device.  
Figure 22. Resets and Watch-Dog Timer Example  
Reset  
4 Clock  
Filter  
Clear  
CLK  
18 Clock RESET  
Generator  
RESET  
Internal  
RESET  
WDT Select  
(WDTMR)  
WDT TAP SELECT  
CLK Source  
Select  
(WDTMR)  
15ms 25ms 100ms  
5ms  
5ms POR  
CK  
XTAL  
M
U
X
WDT/POR Counter Chain  
CLR  
Internal  
RC OSC.  
2V Operating  
Voltage Det.  
VDD  
VLV  
+
WDT  
From Stop  
Mode  
Recovery  
Source  
Stop Delay  
Select (SMR)  
Voltage Comparator  
Low-Voltage Protection. An onboard Voltage Comparator checks that V is at the  
CC  
required level to ensure correct operation of the device. RESET is globally driven  
if V is below the specified voltage (Low-Voltage Protection). The minimum oper-  
CC  
ating voltage varies with the temperature and operating frequency, while the Low-  
Voltage Protection (V ) varies with temperature only.  
LV  
The Low-Voltage Protection trip voltage (V ) is less than 3V and more than 1.4V  
LV  
under the following conditions.  
The device functions normally at or above 4.5V under all conditions. Below 4.5V,  
the device functions normally until the Low-Voltage Protection trip point (V ) is  
LV  
reached, for the temperatures and operating frequencies in Case 1 and Case 2, in  
Table 21.The device is guaranteed to function normally at supply voltages above  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
49  
the Low-Voltage Protection trip point. The actual Low-Voltage Protection trip point  
is a function of temperature and process parameters (Figure 23).  
Figure 23. Typical Low-Voltage Protection vs.Temperature  
VCC  
(Volts)  
3.80  
3.60  
3.40  
3.20  
3.00  
2.80  
2.60  
2.40  
A
B
RUN/HALT Mode  
STOP Mode  
V
(Typical)  
LV  
B
A
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (ºC)  
Table 21.Maximum (V ) Conditions:  
LV  
Case 1:  
Case 2:  
T = –40ºC, +105ºC, Internal Clock Frequency equal or less than 4 MHz  
A
T = –40ºC, +85ºC, Internal Clock Frequency equal or less than 6 MHz  
A
Note:  
The internal clock frequency relationship to the CRYSTAL clock is  
dependent on SMR Bit 0 1 setting.  
PS004005-1100  
P R E L I M I N A R Y  
Functional Description  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
50  
Control Registers  
The MUZE family of Z8 parts offers 3 banks of registers, including eight ASCI reg-  
isters in Bank Ah, as detailed in the following pages.  
Expanded Register File, Bank 0h  
Bank 0h of the Expanded Register File contains 15 registers that perform the  
Timer, Prescaler, Port, Interrupt, Flag, and Pointer functions, as shown in Tables  
23 through 37.These 15 registers are not reset by a Stop-Mode Recovery.  
Table 22 lists the reset states of all 15 Bank 0h registers.  
Table 22.Expanded Register File Registers—Reset States  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
F0h  
F1h  
F2h  
F3h  
F4h  
F5h  
F6h  
F7h  
F8h  
F9h  
FAh  
FBh  
FCh  
FDh  
FEh  
FFh  
Reserved  
TMR*  
T1*  
0
X
X
X
X
1
0
0
X
0
0
X
0
0
0
0
X
X
X
X
1
0
1
X
0
X
X
0
0
0
0
X
X
X
X
1
0
0
X
0
X
X
0
0
0
0
X
X
X
X
1
0
0
X
0
X
X
0
0
0
0
X
X
X
X
1
0
1
X
0
X
X
0
0
0
0
X
X
X
X
1
0
1
X
0
X
X
0
0
0
0
X
0
X
X
1
0
0
X
0
X
X
0
0
0
0
X
0
X
0
1
0
1
X
0
X
X
0
0
0
PRE1*  
T0*  
PRE0*  
P2M*  
P3M*  
P01M*  
IPR*  
IRQ*  
IMR*  
FLAGS*  
RP*  
SPH*  
SPL*  
Note: *Not reset with a Stop-Mode Recovery.  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
51  
Timer Mode Register  
The Timer Mode Register, TMR, controls timing and counter functions. READ/  
WRITE and reset states for bits D7–D0 are listed in Table 23.  
Table 23.Timer Mode Register—TMR F1h/R241 Bank 0h: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
0
D3  
R/W  
0
D2  
R/W  
0
D1  
R/W  
0
D0  
R/W  
0
R/W  
Reset State  
Note: R = Read, W = Write.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7–D6  
D5–D4  
T
T
Mode  
R/W  
00  
T
Mode  
OUT  
OUT  
00: Off  
01: T0 Output  
10: T1 Output  
11: Internal Clock Output  
T Mode  
IN  
Mode  
R/W  
00  
IN  
00: External Clock Input  
01: Gate Input  
10: Trigger Input (nonretriggerable)  
11: Trigger Input (retriggerable)  
D3  
D2  
D1  
D0  
T1 Count  
T1  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
T1 Count  
0: Disable  
1: Enable  
T1  
0: No Function  
1: Load T1  
T0 Count  
T0  
T0 Count  
0: Disable  
1: Enable  
T0  
0: No Function  
1: Load T0  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
52  
Counter/Timer 1 Register  
The Counter/Timer 1 Register, T1, controls timing and counter functions. READ/  
WRITE and reset states for bits D7–D0 are listed in Table 24.  
Table 24.Counter/Timer 1 Register—T1 F2h/R242 Bank 0h: READ/WRITE  
Bit  
D7  
R/W  
X
D6  
R/W  
X
D5  
R/W  
X
D4  
R/W  
X
D3  
R/W  
X
D2  
R/W  
X
D1  
R/W  
X
D0  
R/W  
X
R/W  
Reset State  
Note: R = Read, W = Write, X = Indeterminate.  
Bit  
Position Field  
D7–D0 T1  
Bit  
R/W  
R
State Description  
X
X
T1 Current Value  
W
T1 Automatic Reload Value  
Range = 1–256 decimal; 01h–00h  
Prescaler 1 Register  
The Prescaler 1 Register, PRE1, controls clocking functions. READ/WRITE and  
reset states for bits D7–D0 are listed in Table 25.  
Table 25.Prescaler 1 Register—PRE1 F3h/R243 Bank 0h: WRITE ONLY  
Bit  
D7  
W
X
D6  
W
X
D5  
W
X
D4  
W
X
D3  
W
X
D2  
W
X
D1  
W
0
D0  
W
0
R/W  
Reset State  
Note: W = Write, X = Indeterminate.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7–D2  
D1  
Prescaler  
W
X
Prescaler Modulo  
Range = 1–64 decimal; 01h–00h  
Clock  
Count  
W
W
0
Clock Source  
0: T1 External Timing Input (T ) Mode  
1: T1 Internal  
IN  
D0  
0
Count Mode  
0: T1 Single Pass  
1: T1 Modulo N  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
53  
Counter/Timer 0 Register  
The Counter/Timer 0 Register, T0, controls timing and counter functions. READ/  
WRITE and reset states for bits D7–D0 are listed in Table 26.  
Table 26.Counter/Timer 0 Register—T0 F4h/R244 Bank 0h: READ/WRITE  
Bit  
D7  
R/W  
X
D6  
R/W  
X
D5  
R/W  
X
D4  
R/W  
X
D3  
R/W  
X
D2  
R/W  
X
D1  
R/W  
X
D0  
R/W  
X
R/W  
Reset State  
Note: R = Read, W = Write, X = Indeterminate.  
Bit  
Position Field  
D7–D0 T0  
Bit  
R/W  
R
State Description  
X
X
T0 Current Value  
W
T0 automatic Reload Value  
Range = 1–256 decimal  
Prescaler 0 Register  
The Prescaler 0 Register PRE0 controls clocking functions. WRITE and reset  
states for bits D7–D0 are listed in Table 27.  
Table 27.Prescaler 0 Register—PRE0 F5h/R245 Bank 0h: WRITE ONLY  
Bit  
D7  
W
X
D6  
W
X
D5  
W
X
D4  
W
X
D3  
W
X
D2  
W
X
D1  
W
X
D0  
W
0
R/W  
Reset State  
Note: W = Write, X = Indeterminate.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7–D2  
Prescaler  
W
X
Prescaler Modulo  
Range = 1–64 decimal; 01h–00h  
D1  
D0  
Reserved  
Count  
W
W
X
0
Reserved—must be 0  
Count Mode  
0: T0 Single Pass  
1: T0 Modulo N  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
54  
Port 2 Mode Register  
The Port 2 Mode Register, P2M, controls Port 2 I/O functions. WRITE and reset  
states for bits D7–D0 are listed in Table 28.  
Table 28.Port 2 Mode Register—P2M F6h/R246 Bank 0h: WRITE ONLY  
Bit  
D7  
W
1
D6  
W
1
D5  
W
1
D4  
W
1
D3  
W
1
D2  
W
1
D1  
W
1
D0  
W
1
R/W  
Reset State  
Note: W = Write.  
Bit  
Position Field  
D7–D0 P20–P27  
Bit  
R/W  
State Description  
W
1
P20–P27 I/O Definition  
0: Defines bit as Output  
1: Defines bit as Input  
Port 3 Mode Register  
The Port 3 Mode Register P3M controls Port 3 I/O functions. WRITE and reset  
states for bits D7–D0 are listed in Table 29.  
Table 29.Port 3 Mode Register—P3M F7h/R247 Bank 0h: WRITE ONLY  
Bit  
D7  
W
0
D6  
W
0
D5  
W
0
D4  
W
0
D3  
W
0
D2  
W
0
D1  
W
0
D0  
W
0
R/W  
Reset State  
Note: W = Write.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7–D6  
D5  
Reserved  
W
W
00  
0
Reserved—must be 00  
Port 3  
Port 3  
0: P31 = Input (T )  
IN  
P36 = Output (T  
)
OUT  
1: P31 = DAV2/RDY2  
P36 = RDY2/DAV2  
D4–D3  
Port 3  
W
00  
Port 3  
00: P33 = Input; P34 = Output  
01: P33 = Input; P34 = DM  
10: P33 = Input; P34 = DM  
11: P33 = DAV1/RDY1;  
P34 = RDY1/DAV1  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
55  
Bit  
Bit  
Position Field  
R/W  
State Description  
D2  
Port 3  
W
0
Port 3  
0: P32 = Input; P35 = Output  
1: P32 = DAV0/RDY0;  
P35 = RDY0/DAV0  
D1  
D0  
Port 3  
Port 2  
W
W
0
0
Port 3  
0: P31, P32 DIGITAL mode  
1: P31, P32 ANALOG mode  
Port 2  
0: Open-Drain  
1: Push-Pull  
Ports 0 and 1 Mode Register  
The Ports 0 and 1 Mode Register, P01M, controls port and timing functions for  
Ports 0 and 1. WRITE and reset states for bits D7–D0 are listed in Table 30.  
Table 30.Ports 0 and 1 Mode Register—P01M F8h/R248 Bank 0h: WRITE ONLY  
Bit  
D7  
W
0
D6  
W
1
D5  
W
0
D4  
W
0
D3  
W
1
D2  
W
1
D1  
W
0
D0  
W
1
R/W  
Reset State  
Note: W = Write.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7–D6  
P04–P07  
W
01  
P04–P07 Mode*  
00: Output  
01: Input  
1X: A15–A12 (Z86E14x only)  
D5  
Timing  
W
W
0
External Memory Timing  
0: Normal  
1: Extended  
D4–D3  
P10–P17  
01  
P10–P17 Mode*  
00: Byte Output  
01: Byte Input  
10: AD7–AD0  
11: High-Impedance AD7–AD0, AS, DS, R/  
W, A11–A8, A15–A12, if selected  
Note: *For 20- and 28-pin devices, the user must set D7=0, D4=0, D2=1, and D1=0.  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
56  
Bit  
Bit  
Position Field  
R/W  
State Description  
D2  
Stack  
W
1
Stack Selection*  
0: External  
1: Internal  
D1–D0  
P00–P03  
W
01  
P00–P03 Mode*  
00: Output  
01: Input  
1X: A11–A8 (Z86E14x only)  
Note: *For 20- and 28-pin devices, the user must set D7=0, D4=0, D2=1, and D1=0.  
Interrupt Priority Register  
The Interrupt Priority Register, IPR, prioritizes interrupt functions. WRITE and  
reset states for bits D7–D0 are listed in Table 31.  
Table 31.Interrupt Priority Register—IPR F9h/R249 Bank 0h: WRITE ONLY  
Bit  
D7  
W
X
D6  
W
X
D5  
W
X
D4  
W
X
D3  
W
X
D2  
W
X
D1  
W
X
D0  
W
X
R/W  
Reset State  
Note: W = Write, X = Indeterminate.  
Bit  
Bit Position Field  
R/W  
State Description  
D7–D6  
D5  
Reserved  
IRQ3, IRQ5  
W
W
XX  
X
Reserved—must be 0  
IRQ3, IRQ5 Priority (Group A)  
0: IRQ5 > IRQ3  
1: IRQ3 > IRQ5  
D4,D3,D0 Interrupt  
W
XXX Interrupt Group Priority  
000: Reserved  
001: C > A > B  
010: A > B > C  
011: A > C > B  
100: B > C > A  
101: C > B > A  
110: B > A > C  
111: Reserved  
D2  
IRQ0, IRQ2  
W
X
IRQ0, IRQ2 Priority (Group B)  
0: IRQ2 > IRQ0  
1: IRQ0 > IRQ2  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
57  
Bit  
Bit Position Field  
R/W  
State Description  
D1  
IRQ1, IRQ4  
W
X
IRQ1, IRQ4 Priority (Group C)  
0: IRQ1 > IRQ4  
1: IRQ4 > IRQ1  
Interrupt Request Register  
The Interrupt Request Register, IRQ, controls interrupt functions. READ/WRITE  
and reset states for bits D7–D0 are listed in Table 32.  
Table 32.Interrupt Request Register—IRQ FAh/R250 Bank 0h: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
0
D3  
R/W  
0
D2  
R/W  
0
D1  
R/W  
0
D0  
R/W  
0
R/W  
Reset  
Note: R = Read, W = Write.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7–D6  
Interrupt  
R/W  
00  
Interrupt Edge  
Edge  
IRQ5  
IRQ4  
IRQ3  
IRQ2  
00: P31  
01: P31  
10: P31  
P32  
P32  
P32  
11: P31 P32 ↓  
D5  
D4  
D3  
D2  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Interrupt  
IRQ5 = T1  
0: No Interrupt pending  
1: Interrupt pending  
Interrupt  
IRQ4 = T0  
0: No Interrupt pending  
1: Interrupt pending  
Interrupt  
IRQ3 = P30 Input/UART  
0: No Interrupt pending  
1: Interrupt pending  
Interrupt  
IRQ2 = P31 Input  
0: No Interrupt pending  
1: Interrupt pending  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
58  
Bit  
Bit  
Position Field  
R/W  
State Description  
D1  
D0  
IRQ1  
R/W  
0
Interrupt  
IRQ1 = P33 Input  
0: No Interrupt pending  
1: Interrupt pending  
IRQ0  
R/W  
0
Interrupt  
IRQ0 = P32 Input  
0: No Interrupt pending  
1: Interrupt pending  
Interrupt Mask Register  
The Interrupt Mask Register, IMR, controls interrupt functions. READ/WRITE and  
reset states for bits D7–D0 are listed in Table 33.  
Table 33.Interrupt Mask Register—IMR FBh/R251 Bank 0h: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
X
D5  
R/W  
X
D4  
R/W  
X
D3  
R/W  
X
D2  
R/W  
X
D1  
R/W  
X
D0  
R/W  
X
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7  
MIE  
R/W  
0
X
X
Master Interrupt Enable  
1: Enable interrupts  
0: Disable interrupts  
D6  
RAM Protect  
IRQ5–IRQ0  
R/W  
R/W  
RAM Protect  
1: Enable RAM Protect  
0: Disable RAM Protect  
D5–D0  
Interrupt Request  
1: Enable IRQ0–IRQ5  
0: Disable IRQ0–IRQ5  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
59  
Flags Register  
The CPU sets flags in the Flags Register, FLAGS, to allow the user to perform  
tests based on differing logical states. READ/WRITE and reset states for bits D7–  
D0 are listed in Table 34.  
Table 34.Flags Register—FLAGS FCh/R252 Bank 0h: READ/WRITE  
Bit  
D7  
R/W  
X
D6  
R/W  
X
D5  
R/W  
X
D4  
R/W  
X
D3  
R/W  
X
D2  
R/W  
X
D1  
R/W  
X
D0  
R/W  
X
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit  
Bit  
Position Field  
R/W  
R/W  
State  
X
Description  
Carry Flag  
Zero Flag  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Carry  
Zero  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
Sign  
X
Sign Flag  
Overflow  
Decimal Adjust  
Half Carry  
User  
X
Overflow Flag  
X
Decimal Adjust Flag  
Half Carry Flag  
User Flag F2*  
X
X
User  
X
User Flag F1*  
Note: *Not affected by RESET.  
Register Pointer Register  
The Register Pointer Register, RP, controls pointer functions in the working regis-  
ters. READ/WRITE and reset states for bits D7–D0 are listed in Table 35.  
Table 35.Register Pointer—RP FDh/R253 Bank 0h: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
0
D3  
R/W  
0
D2  
R/W  
0
D1  
R/W  
0
D0  
R/W  
0
R/W  
Reset  
Note: R = Read, W = Write.  
Bit  
Position Field  
D7–D4 Working  
Bit  
R/W  
State Description  
Working Register Pointer  
R/W  
0
Register  
Pointer  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
60  
Bit  
Position Field  
D3–D0 Expanded  
Bit  
R/W  
State Description  
R/W  
0
Expanded Register File Bank  
Register File  
Bank  
Stack Pointer High Register  
The Stack Pointer High Register, SPH, controls pointer functions in the upper  
byte. READ/WRITE and reset states for bits D7–D0 are listed in Table 36.  
Table 36.Stack Pointer High—SPH FEh/R254 Bank 0h: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
0
D3  
R/W  
0
D2  
R/W  
0
D1  
R/W  
0
D0  
R/W  
0
R/W  
Reset  
Note: R = Read, W = Write.  
Bit  
Position Field  
D7–D0 SPH  
Bit  
R/W  
R/W  
State Description  
Stack Pointer Upper Byte* (SP15–SP8)  
0
Note: *This register can be employed as a GPR for 20- and 28-pin devices.  
Stack Pointer Low Register  
The Stack Pointer Low Register, SPL, controls pointer functions in the lower byte.  
READ/WRITE and reset states for bits D7–D0 are listed in Table 37.  
Table 37.Stack Pointer Low—SPL FFh/R255 Bank 0h: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
0
D3  
R/W  
0
D2  
R/W  
0
D1  
R/W  
0
D0  
R/W  
0
R/W  
Reset  
Note: R = Read, W = Write.  
Bit  
Position Field  
D7–D0 SPL  
Bit  
R/W  
State Description  
Stack Pointer Lower Byte (SP7–SP0)  
R/W  
0
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
61  
ASCI Registers—Expanded Register File, Bank Ah  
Bank Ah of the Expanded Register File includes registers that perform ASCI func-  
tions.The 8 available registers are the Transmit Data, Receive Data, Multiproces-  
sor Control, Extension, Time Constant, and Status registers, as shown in Tables  
39 through 46.These eight registers are not reset by a Stop-Mode Recovery. An  
additional register, 09h, is available for general purposes. Table 38 lists the reset  
states of all 16 ASCI registers.  
Table 38.Expanded Register File Registers—Reset States  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00h  
Reserved  
TDR  
01h*  
02h*  
03h*  
04h*  
05h*  
06h*  
07h*  
08h*  
09h  
X
X
X
X
0
0
0
1
1
0
X
X
0
0
0
1
1
0
X
X
1
0
0
1
1
0
X
X
0
0
0
1
1
0
X
X
0
1
0
1
1
0
X
X
0
1
1
1
1
0
X
X
0
1
0
1
1
0
RDR  
CNTLA  
0
CNTLB  
0
ASEXT  
P30  
1
ASTL  
ASTH  
1
STAT  
0
General-Purpose  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
Note: *Not reset with a Stop-Mode Recovery.  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
62  
Transmit Data Register  
The Transmit Data Register, TDR, monitors data transmission functions in the  
FIFO. READ/WRITE and reset states for bits D7–D0 are listed in Table 39.  
Table 39.Transmit Data Register—TDR 01h/R1 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
X
D6  
R/W  
X
D5  
R/W  
X
D4  
R/W  
X
D3  
R/W  
X
D2  
R/W  
X
D1  
R/W  
X
D0  
R/W  
X
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit  
Position Field  
D7–D0 TDR  
Bit  
R/W  
State Description  
Transmit Data Register  
R/W  
X
Receive Data Register  
The Receive Data Register, RDR, monitors data receive functions in the FIFO.  
READ/WRITE and reset states for bits D7–D0 are listed in Table 40.  
Table 40.Receive Data Register—RDR 02h/R2 Bank Ah : READ/WRITE  
Bit  
D7  
R/W  
X
D6  
R/W  
X
D5  
R/W  
X
D4  
R/W  
X
D3  
R/W  
X
D2  
R/W  
X
D1  
R/W  
X
D0  
R/W  
X
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit  
Position Field  
D7–D0 RDR  
Bit  
R/W  
State Description  
Receive Data Register  
R/W  
X
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
63  
Control Register A  
Control Register A, CNTLA, controls data transmit, receive, and clocking func-  
tions. READ/WRITE and reset states for bits D7–D0 are listed in Table 41.  
Table 41.Control Register A—CNTLA 03h/R3 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
1
D3  
R/W  
0
D2  
R/W  
0
D1  
R/W  
0
D0  
R/W  
0
R/W  
Reset  
Note: R = Read, W = Write.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7  
D6  
MPE  
RE  
R/W  
0
Multiprocessor Enable  
0: Receive all bytes  
1: Filter bytes with MPB = 0  
R/W  
R/W  
0
Receiver Enable  
0: ASCI Receiver Disabled  
(P30 = Input)  
1: ASCI Receiver Enabled  
(P30 = RX)  
D5  
TE  
0
Transmitter Enable  
0: ASCI Transmitter Disabled  
(P37 = Output)  
1: ASCI Transmitter Enabled  
(P37 = TX)  
D4  
D3  
Reserved  
MPBR  
EFR  
R/W  
R
1
0
Reserved  
Multiprocessor Bit Received  
W
Error Flag Reset  
0: Clear Error Latches  
1: No Effect  
D2–D0  
MOD2–0  
R
0
Mode Select  
MOD2—Number of Data Bits  
0: 7 Data Bits  
1: 8 Data Bits  
Mode Select  
MOD1—Parity Enabled  
0: No Parity  
1: With Parity  
Mode Select  
MOD0—Number of Stop Bits  
0: 1 Stop Bit  
1: 2 Stop Bits  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
64  
Control Register B  
Control Register B, CNTLB, controls multiprocessor, parity, and clock sourcing  
functions. READ/WRITE and reset states for bits D7–D0 are listed in Table 42.  
Table 42.Control Register B—CNTLB 04h/R4 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
0
D3  
R/W  
0
D2  
R/W  
1
D1  
R/W  
1
D0  
R/W  
1
R/W  
Reset  
Note: R = Read, W = Write.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7  
D6  
MPBT  
MP  
R/W  
0
Multiprocessor Bit Transmitter  
0: Transmit 0 in MPB  
1: Transmit 1 in MPB  
R/W  
0
Multiprocessor Mode  
0: MULTIPROCESSOR mode disabled  
1: MULTIPROCESSOR mode enabled  
(no parity)  
D5  
D4  
D3  
D2  
PR  
W
R/W  
R/W  
R
0
0
0
1
Prescale  
0: BRG ÷ 10  
1: BRG ÷ 30  
PEO  
DR  
Parity Even/Odd  
0: Even Parity  
1: Odd Parity  
Divide Ratio  
0: Divide by 16  
1: Divide by 64  
SS2  
Clock Source and Speed Bits  
SS2  
0: ÷1, ÷2, ÷4, ÷8  
1: ÷16, ÷32, ÷64, Reserved  
D1  
D0  
SS1  
SS0  
R
R
1
1
Clock Source and Speed Bits  
SS1  
0: ÷1, ÷2, ÷16, ÷32  
1: ÷4, ÷8, ÷64, Reserved  
Clock Source and Speed Bits  
SS0  
0: ÷1, ÷4, ÷16, ÷64  
1: ÷2, ÷8, ÷32, Reserved  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
65  
ASCI Extension Control Register  
The ASCI Extension Control Register, ASEXT, controls ASCI transmission func-  
tions. READ/WRITE and reset states for bits D7–D0 are listed in Table 43.  
Table 43.Extension Control Register—ASEXT 05h/R5 Bank Ah: READ/WRITE  
Bit  
D7  
R
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
0
D3  
R/W  
0
D2  
R/W  
0
D1  
R
D0  
R/W  
0
R/W  
Reset  
X
1
Note: R = Read, W = Write.  
Bit  
Bit  
Position Field  
R/W  
R
State Description  
D7  
D6  
D5  
D4  
D3  
RX  
X
0
0
0
0
RX Data State  
Reserved  
Reserved  
Reserved  
Reserved  
BRG  
R/W  
R/W  
R/W  
R/W  
Reserved  
Reserved (must be 0)  
Baud Rate Generator Mode  
0: Use SS Selection  
1: Use ASTH or ASTL Value  
D2  
D1  
D0  
RIS  
BD  
SB  
R/W  
R
0
1
0
RX Interrupt on Start Bit  
0: No IRQ on Start Bit  
1: IRQ3 on Start Bit  
Break Detect  
0: Valid Data Byte  
1: Break Detected  
R/W  
Send Break  
0: Normal Operation  
1: Send Break  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
66  
ASCI Time Constant Low Register  
The ASCI Time Constant Low Register, ASTL, controls transmission functions in  
the lower byte. READ/WRITE and reset states for bits D7–D0 are listed in  
Table 44.  
Table 44.Time Constant Low Register—ASTL 06h/R6 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
1
D6  
R/W  
1
D5  
R/W  
1
D4  
R/W  
1
D3  
R/W  
1
D2  
R/W  
1
D1  
R/W  
1
D0  
R/W  
1
R/W  
Reset  
Note: R = Read, W = Write.  
Bit  
Position Field  
D7–D0 ASTL  
Bit  
R/W  
State Description  
ASCI Time Constant Low  
R/W  
1
ASCI Time Constant High Register  
The ASCI Time Constant High Register, ASTH, controls transmission functions in  
the upper byte. READ/WRITE and reset states for bits D7–D0 are listed in  
Table 45.  
Table 45.Time Constant Register High—ASTH 07h/R7 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
1
D6  
R/W  
1
D5  
R/W  
1
D4  
R/W  
1
D3  
R/W  
1
D2  
R/W  
1
D1  
R/W  
1
D0  
R/W  
1
R/W  
Reset  
Note: R = Read, W = Write.  
Bit  
Position Field  
D7–D0 ASTH  
Bit  
R/W  
State Description  
ASCI Time Constant High  
R/W  
1
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
67  
ASCI Status Register  
The ASCI Status Register, STAT, controls status functions. READ/WRITE and  
reset states for bits D7–D0 are listed in Table 46.  
Table 46.Status Register—STAT 08h/R8 Bank Ah: READ/WRITE  
Bit  
D7  
R
D6  
R
D5  
R
D4  
R
D3  
R/W  
0
D2  
R/W  
0
D1  
R
D0  
R/W  
0
R/W  
Reset  
0
0
0
0
0
Note: R = Read, W = Write.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7  
D6  
D5  
D4  
D3  
RDRNE  
R
0
0
0
0
0
Receive Data Register Not Empty  
0: Receive FIFO Empty  
1: Receive FIFO contains 1 or more bytes  
OE  
PE  
FE  
R
R
Overrun Error  
0: Receive OK  
1: Next byte is a FIFO overrun  
Parity Error  
0: Parity OK  
1: Parity Error  
R
Framing Error  
0: Receive OK  
1: Framing Error  
RIE  
R/W  
Receive Interrupt Enable  
0: No IRQ on Receive  
1: Enable Receiver Interrupt  
D2  
D1  
Reserved  
TDRE  
R/W  
R
0
0
Reserved  
Transmit Data Register Empty  
0: Transmitter Working  
1: Transmit Buffer Empty  
D0  
TIE  
R/W  
0
Transmit Interrupt Enable  
0: No IRQ on Transmit  
1: IRQ3 on TDRE  
Expanded Register File, Bank Fh  
Expanded Register File Fh Bank 0h contains 5 registers that perform the Port  
Configuration, Verify, Stop-Mode Recovery, and Watch-Dog Timer Mode func-  
tions, as shown in Tables 49 through 52.These 5 registers are not reset by a  
Stop-Mode Recovery. Table 47 lists the reset states of all 5 Bank 0h registers.  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
68  
Table 47.Expanded Register File Registers—Reset States  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
PCON*  
1
1
1
1
1
1
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SMR*  
0
X
X
0
X
X
1
X
X
0
X
0
0
X
1
0
X
1
0
0
0
0
0
1
Reserved  
SMR2*  
Reserved  
WDTMR*  
Note: *Not reset with a Stop-Mode Recovery.  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
69  
Port Configuration Register  
The Port Configuration Register, PCON, controls the configurations of Ports 0, 1,  
2, and 3. WRITE and reset states for bits D7–D0 are listed in Table 48.  
Table 48.Port Configuration Register—PCON 00h/R0 Bank Fh:WRITE ONLY  
Bit  
D7  
W
1
D6  
W
1
D5  
W
1
D4  
W
1
D3  
W
1
D2  
W
1
D1  
W
1
D0  
W
0
R/W  
Reset  
Note: W = Write.  
Bit  
Bit  
Position Field  
R/W  
State Description  
Low-EMI Oscillator  
D7  
Oscillator  
W
1
1
1
1
1
1
1
0
0: Low EMI  
1: Standard  
D6  
Port 3 I/O  
W
W
W
W
W
W
W
Port 3  
0: Low EMI  
1: Standard  
D5  
Port 2 I/O  
Port 1 I/O  
Port 0 I/O  
Port 0 I/O  
Port 1 I/O  
Port 3  
Port 2  
0: Low EMI  
1: Standard  
D4  
Port 1*  
0: Low EMI  
1: Standard  
D3  
Port 0†  
0: Low EMI  
1: Standard  
D2  
Port 0  
0: Open-Drain  
1: Push-Pull Active  
D1  
Port 1*  
0: Open-Drain  
1: Push-Pull Active  
D0  
Port 3 Comparator Output  
0: P34, P37 Standard Output  
1: P34, P37 Comparator Output  
Notes:  
1. Must be set to 1 when using an emulator.  
2. Must be set to 1 for both 20- and 28-pin devices.  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
70  
Verify Register  
The Verify Register, VFY, is only available after the ICSP unlock sequence exe-  
cutes. READ and reset states for bits D7–D0 are listed in Table 49. For more infor-  
mation on the VFY register, please see the MUZE Programming Specification.  
Table 49.Verify Register—VFY 09h/R09 Bank Fh: READ ONLY  
Bit  
D7  
R
D6  
R
D5  
R
D4  
R
D3  
R
D2  
R
D1  
R
D0  
R
R/W  
Reset  
X
X
X
X
X
X
X
X
Note: R = Read, X = Indeterminate.  
Bit  
Bit  
Position Field  
R/W  
R
State Description  
D7–D2  
D1  
Reserved  
X
X
Reserved  
VFY1  
R
Verify 1  
Programming verification result is output at  
this register  
D0  
VFY0  
R
X
Verify 0  
Programming verification result is output at  
this register  
Stop-Mode Recovery Register  
The Stop-Mode Recovery Register, SMR, controls clocking functions. READ/  
WRITE and reset states for bits D7–D0 are listed in Table 50.  
Table 50.Stop-Mode Recovery Register—SMR 0Bh/R11 Bank Fh:READ/WRITE  
Bit  
D7  
R
D6  
W
0
D5  
W
1
D4  
W
0
D3  
W
0
D2  
W
0
D1  
W
0
D0  
W
0
R/W  
Reset  
0
Note: R = Read, W = Write.  
Bit  
Bit  
Position Field  
R/W  
State Description  
D7  
Stop  
R
0
Stop Flag  
0: POR  
1: Stop Recovery  
Notes:  
1. For the Stop-Mode Recovery Source, either SMR or SMR2 can be selected. If SMR is used to  
select the Stop-Mode Recovery Source, bits D1–D0 of SMR2 must be 0.  
2. Cleared by RESET and SMR.  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
71  
Bit  
Bit  
Position Field  
R/W  
State Description  
D6  
Stop-Mode  
W
0
Stop-Mode Recovery Level  
Recovery  
0: Low  
1: High  
D5  
Stop Delay  
W
W
1
Stop Delay  
0: Off  
1: On  
D4–D2  
Stop Mode  
000 Stop-Mode Recovery Source*  
000: POR only and/or external RESET  
001: P30  
010: P31  
011: P32  
100: P33  
101: P27  
110: P2 NOR 0–3  
111: P2 NOR 0–7  
D1  
Clock  
W
W
0
0
External Clock Divide-by-2  
0: SCLK ÷ TCLK = Crystal ÷ 2  
1: SCLK = Crystal  
D0  
SCLK/TCLK  
SCLK/TCLK Divide-by-16  
0: Off  
1: On  
Notes:  
1. For the Stop-Mode Recovery Source, either SMR or SMR2 can be selected. If SMR is used to  
select the Stop-Mode Recovery Source, bits D1–D0 of SMR2 must be 0.  
2. Cleared by RESET and SMR.  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
72  
Stop-Mode Recovery Register 2  
The Stop-Mode Recovery Register, SMR2, controls additional Port 2 clocking  
functions. WRITE and reset states for bits D7–D0 are listed in Table 51.  
Table 51.Stop-Mode Recovery Register 2—SMR2 0Dh/R13 Bank Fh:WRITE ONLY  
Bit  
D7  
W
X
D6  
W
X
D5  
W
X
D4  
W
X
D3  
W
X
D2  
W
X
D1  
W
0
D0  
W
0
R/W  
Reset  
Note: W = Write, X = Indeterminate.  
Bit  
Bit  
Position Field  
R/W  
W
State Description  
D7–D2  
D1–D0  
Reserved  
STOP Mode  
X
Reserved—must be 0  
W
00  
Stop-Mode Recovery Source 2*  
00: POR only  
01: AND P20, P21, P22, P23  
10: AND P20, P21, P22, P23, P24, P25,  
P26, P27  
Note: For the Stop-Mode Recovery Source, either SMR or SMR2 can be selected. If SMR2 is used  
to select the Stop-Mode Recovery Source, bits D4–D2 of SMR must be 0.  
Watch-Dog Timer Mode Register  
The Watch-Dog Timer Mode Register, WDTMR, controls Watch-Dog Timer func-  
tions. WRITE and reset states for bits D7–D0 are listed in Table 52.  
Table 52.Watch-Dog Timer Mode Register—WDTMR 0Fh/R15 Bank Fh: WRITE ONLY  
Bit  
D7  
W
X
D6  
W
X
D5  
W
X
D4  
W
0
D3  
W
1
D2  
W
1
D1  
W
0
D0  
W
1
R/W  
Reset  
Note: W = Write, X = Indeterminate.  
Bit  
Bit  
Position Field  
R/W State Description  
D7–D5  
D4  
Reserved  
W
W
X
0
Reserved—must be 0  
X
Crystal Input/Internal RC Select for WDT  
0: On-Board RC  
IN  
1: Crystal  
Note: Not used in conjunction with SMR Source.  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
73  
Bit  
Bit  
Position Field  
R/W State Description  
D3  
WDT  
W
W
W
1
WDT During STOP  
0: WDT disabled during STOP mode  
1: WDT enabled during STOP mode  
D2  
WDT  
1
WDT During HALT  
0: WDT disabled during HALT mode  
1: WDT enabled during HALT mode  
D1–D0  
WDT Tap  
01 WDT Tap Int. RC Osc. System Clock  
00:  
01:  
10:  
11:  
3.5ms  
7 ms  
14 ms  
56 ms  
128 SCLK  
256 SCLK  
512 SCLK  
2048 SCLK  
Note: Not used in conjunction with SMR Source.  
PS004005-1100  
P R E L I M I N A R Y  
Control Registers  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
74  
Interrupts  
Interrupt Block Diagram  
Figure 24. Interrupt Block Diagram  
IRQ0 IRQ2  
IRQ1, 3, 4, 5  
Interrupt  
Edge  
IRQ (D6, D7)  
Select  
IRQ  
IMR  
IPR  
6
Global  
Interrupt  
Enable  
Interrupt  
Request  
PRIORITY  
LOGIC  
Vector Select  
PS004005-1100  
P R E L I M I N A R Y  
Interrupts  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
75  
Electrical Characteristics  
Absolute Maximum Ratings  
Stresses greater than the Absolute Maximum Ratings listed in Table 53 may  
cause permanent damage to the device. This rating is a stress rating only. Func-  
tional operation of the device at any condition above those indicated in the opera-  
tional sections of these specifications is not implied. Exposure to absolute  
maximum rating conditions for an extended period may affect device reliability.  
Table 53.Absolute Maximum Ratings  
Parameter  
Min  
–40  
Max  
+105  
+150  
+7  
Units  
C
Notes  
Ambient Temperature under Bias  
Storage Temperature  
–65  
C
Voltage on any Pin with Respect to V  
–0.6  
–0.3  
–0.6  
V
1
2
SS  
Voltage on V  
Pin with Respect to V  
+7  
V
DD  
SS  
Voltage on X and RESET Pins with Respect to V  
V
+1  
V
IN  
DD  
SS  
Total Power Dissipation  
1.21  
W
Maximum Allowable Current out of V  
220  
180  
+600  
+600  
25  
mA  
mA  
µA  
µA  
mA  
mA  
SS  
Maximum Allowable Current into V  
DD  
Maximum Allowable Current into an Input Pin  
–600  
–600  
3
4
Maximum Allowable Current into an Open-Drain Pin  
Maximum Allowable Output Current Sunk by Any I/O Pin  
Maximum Allowable Output Current Sourced by Any I/O Pin  
25  
Notes:  
1. Applies to all pins except Crystal pins and where otherwise noted.  
2. There is no input protection diode from pin to V  
3. Excludes Crystal pins.  
4. Device pin is not at an output Low state.  
and current into pin is limited to 600 µA.  
DD  
Total power dissipation should not exceed 1.21 W for the package. Power dissipa-  
tion is calculated as follows:  
Total Power Dissipation = V x [I – (sum of I ),  
DD  
DD  
OH  
+ sum of [(V – V ) x I ]  
OH  
DD  
OH  
+ sum of (V x I  
)
OL  
OL  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
76  
DC Electrical Characteristics  
Standard Temperature Range  
Table 54.DC Electrical Characteristics at Standard Temperature  
T =  
A
0°C to +70°C  
2
Typical  
Sym  
Parameter  
V
Min  
Max  
@25°C  
Units Conditions  
Notes  
CC1  
V
Clock Input  
High Voltage  
4.5V  
5.5V  
4.5V  
5.5V  
0.7 V  
V
V
+0.3  
1.8  
V
V
V
V
Driven by  
External Clock  
Generator  
CH  
CC  
CC  
CC  
CC  
0.7 V  
+0.3  
2.6  
1.2  
2.1  
Driven by  
External Clock  
Generator  
V
Clock Input  
Low Voltage  
GND–0.3  
GND–0.3  
0.2 V  
0.2 V  
Driven by  
External Clock  
Generator  
CL  
CC  
Driven by  
CC  
External Clock  
Generator  
V
V
Input High  
Voltage  
4.5V  
5.5V  
4.5V  
5.5V  
0.7 V  
0.7 V  
V
V
+0.3  
+0.3  
1.8  
2.6  
1.1  
1.6  
V
V
V
V
IH  
CC  
CC  
CC  
CC  
Input Low  
Voltage  
GND–0.3  
GND–0.3  
0.2 V  
IL  
CC  
CC  
0.2 V  
Notes:  
1. The  
V
voltage specification of 4.5V guarantees 3.3V 0.3V with typicals at  
V
= 3.3V, and the V voltage  
CC  
CC  
specification of 5.5V guarantees 5.0V 0.5V with typicals at  
CC  
V
= 5.0V.  
CC  
2. Typical voltage is  
3. STANDARD Mode (not Low-EMI Mode).  
V
= 5.0V and 3.3V.  
CC  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at  
8. Clock must be forced Low, when X is clock-driven and X  
V
.
CC  
is floating.  
IN  
OUT  
9. 0ºC to 70ºC (standard temperature).  
10.Autolatch (Mask Option) selected.  
11.The V voltage increases as the temperature decreases and overlaps lower  
V
operating region. See  
CC  
LV  
Figure 23 on page 49  
12.–40˚C to 150˚C (extended temperature).  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
77  
Table 54.DC Electrical Characteristics at Standard Temperature (Continued)  
T =  
A
0°C to +70°C  
2
Typical  
Sym  
Parameter  
V
Min  
Max  
@25°C  
Units Conditions  
Notes  
CC1  
V
Output High  
Voltage  
(Low-EMI  
Mode)  
4.5V  
5.0V  
V
V
–0.4  
3.1  
V
V
I
= –0.5 mA  
= –0.5 mA  
OH  
CC  
CC  
OH  
OH  
–0.4  
4.8  
I
V
V
Output High  
Voltage  
4.5V  
5.5V  
4.5V  
5.0V  
V
V
–0.4  
–0.4  
3.1  
4.8  
0.2  
0.1  
V
V
V
V
I
I
I
I
= –2.0 mA  
= –2.0 mA  
= 1.0 mA  
= 1.0 mA  
3
3
OH1  
CC  
OH  
OH  
OL  
OL  
CC  
Output Low  
Voltage  
(Low-EMI  
Mode)  
0.6  
0.4  
OL  
V
V
V
V
V
Output Low  
Voltage  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
0.6  
0.4  
1.2  
1.2  
0.2  
0.1  
0.3  
0.4  
1.8  
2.6  
1.1  
1.6  
0.3  
0.3  
V
V
V
V
V
V
V
V
V
V
I
I
I
I
= +4.0 mA  
= +4.0 mA  
= +6 mA  
3
3
3
3
4
4
4
4
4
4
OL1  
OL2  
RH  
OL  
OL  
OL  
OL  
Output Low  
Voltage  
= +12 mA  
Reset Input  
High Voltage  
0.8 V  
0.8 V  
V
CC  
CC  
CC  
V
CC  
Reset Input  
Low Voltage  
GND–0.3  
GND–0.3  
0.2 V  
0.2 V  
Rl  
CC  
CC  
Reset Output 4.5V  
Low Voltage  
0.6  
0.6  
I
I
= +1.0 mA  
= +1.0 mA  
OLR  
OL  
5.5V  
OL  
Notes:  
1. The  
V
voltage specification of 4.5V guarantees 3.3V 0.3V with typicals at  
V
= 3.3V, and the V voltage  
CC  
CC  
specification of 5.5V guarantees 5.0V 0.5V with typicals at  
CC  
V
= 5.0V.  
CC  
2. Typical voltage is  
3. STANDARD Mode (not Low-EMI Mode).  
V
= 5.0V and 3.3V.  
CC  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at  
8. Clock must be forced Low, when X is clock-driven and X  
V
.
CC  
is floating.  
IN  
OUT  
9. 0ºC to 70ºC (standard temperature).  
10.Autolatch (Mask Option) selected.  
11.The V voltage increases as the temperature decreases and overlaps lower  
V
operating region. See  
CC  
LV  
Figure 23 on page 49  
12.–40˚C to 150˚C (extended temperature).  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
78  
Table 54.DC Electrical Characteristics at Standard Temperature (Continued)  
T =  
A
0°C to +70°C  
2
Typical  
Sym  
Parameter  
V
Min  
Max  
@25°C  
Units Conditions  
Notes  
CC1  
V
Comparator  
Input Offset  
Voltage  
4.5V  
5.5V  
25  
25  
10  
mV  
mV  
5
5
OFFSET  
10  
I
I
I
I
Input  
Leakage  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
–1  
–1  
2
2
0.004  
0.004  
0.004  
0.004  
–60  
–85  
7
µA  
µA  
µA  
µA  
µA  
µA  
V
V
V
V
= 0V, V  
= 0V, V  
= 0V, V  
= 0V, V  
IL  
IN  
IN  
IN  
IN  
CC  
CC  
CC  
CC  
Output  
Leakage  
–1  
1
OL  
IR  
–1  
1
Reset Input  
Current  
–20  
–20  
–130  
–180  
20  
25  
15  
20  
Supply  
Current  
mA @ 16 MHz  
mA @ 16 MHz  
mA @ 12 MHz  
mA @ 12 MHz  
6
6
6
6
CC  
20  
5
15  
Notes:  
1. The  
V
voltage specification of 4.5V guarantees 3.3V 0.3V with typicals at  
V
= 3.3V, and the  
V
voltage  
CC  
specification of 5.5V guarantees 5.0V 0.5V with typicals at  
CC  
CC  
V
= 5.0V.  
CC  
2. Typical voltage is  
3. STANDARD Mode (not Low-EMI Mode).  
V
= 5.0V and 3.3V.  
CC  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at  
8. Clock must be forced Low, when X is clock-driven and X  
V
.
CC  
is floating.  
IN  
OUT  
9. 0ºC to 70ºC (standard temperature).  
10.Autolatch (Mask Option) selected.  
11.The V voltage increases as the temperature decreases and overlaps lower  
V
operating region. See  
CC  
LV  
Figure 23 on page 49  
12.–40˚C to 150˚C (extended temperature).  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
79  
Table 54.DC Electrical Characteristics at Standard Temperature (Continued)  
T =  
A
0°C to +70°C  
2
Typical  
Sym  
I
Parameter  
V
Min  
Max  
@25°C  
Units Conditions  
Notes  
CC1  
Standby  
Current  
(HALT mode)  
4.5V  
5.5V  
4.5V  
4.5  
2.0  
mA  
V
= 0V, V  
6
CC1  
IN  
CC  
CC  
@ 16 MHz  
8
3.7  
1.5  
mA  
V
= 0V, V  
6
6
IN  
@ 16 MHz  
3.4  
mA Clock Divide-  
by-16 @ 16  
MHz  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
7.0  
8
2.9  
2
mA Clock Divide-  
by-16 @ 16  
MHz  
6
I
Standby  
Current  
(STOP  
Mode)  
µA  
µA  
µA  
µA  
V
= 0V, V  
7,8  
CC2  
IN  
CC  
CC  
CC  
CC  
WDT is not  
Running  
10  
4
V
= 0V, V  
7,8  
IN  
WDT is not  
Running  
500  
800  
310  
600  
V
= 0V, V  
7,8,9  
7,8,9  
IN  
WDT is  
Running  
V
= 0V, V  
IN  
WDT is  
Running  
Notes:  
1. The  
V
voltage specification of 4.5V guarantees 3.3V 0.3V with typicals at  
V
= 3.3V, and the  
V
voltage  
CC  
specification of 5.5V guarantees 5.0V 0.5V with typicals at  
CC  
CC  
V
= 5.0V.  
CC  
2. Typical voltage is  
3. STANDARD Mode (not Low-EMI Mode).  
V
= 5.0V and 3.3V.  
CC  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at  
8. Clock must be forced Low, when X is clock-driven and X  
V
.
CC  
is floating.  
IN  
OUT  
9. 0ºC to 70ºC (standard temperature).  
10.Autolatch (Mask Option) selected.  
11.The V voltage increases as the temperature decreases and overlaps lower  
V
operating region. See  
CC  
LV  
Figure 23 on page 49  
12.–40˚C to 150˚C (extended temperature).  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
80  
Table 54.DC Electrical Characteristics at Standard Temperature (Continued)  
T =  
A
0°C to +70°C  
2
Typical  
Sym  
Parameter  
V
Min  
Max  
@25°C  
Units Conditions  
Notes  
CC1  
V
Input  
Common  
Mode  
4.5V  
5.5V  
0
V
V
–1.0V  
V
V
5
5
ICR  
CC  
0
–1.0V  
CC  
Voltage  
Range  
I
I
Autolatch  
Low Current  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
0.7  
1.4  
8
3
5
µA 0V<V <V  
10  
10  
ALL  
IN CC  
15  
–5  
–8  
µA 0V<V <V  
IN CC  
Autolatch  
High Current  
–0.6  
–1.0  
–3  
–6  
2.8  
µA 0V<V <V  
10  
ALH  
IN CC  
µA 0V<V <V  
10  
IN CC  
V
V
Low  
V
V
4 MHz max  
Interrupt CLK  
Freq.  
11,12  
LV  
CC  
Voltage  
Protection  
Voltage  
5.5V  
2.2  
3.1  
2.8  
6 MHz max  
Interrupt CLK  
Freq.  
9,11  
Notes:  
1. The  
V
voltage specification of 4.5V guarantees 3.3V 0.3V with typicals at  
V
= 3.3V, and the V voltage  
CC  
CC  
specification of 5.5V guarantees 5.0V 0.5V with typicals at  
CC  
V
= 5.0V.  
CC  
2. Typical voltage is  
3. STANDARD Mode (not Low-EMI Mode).  
V
= 5.0V and 3.3V.  
CC  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at  
8. Clock must be forced Low, when X is clock-driven and X  
V
.
CC  
is floating.  
IN  
OUT  
9. 0ºC to 70ºC (standard temperature).  
10.Autolatch (Mask Option) selected.  
11.The V voltage increases as the temperature decreases and overlaps lower  
V
operating region. See  
CC  
LV  
Figure 23 on page 49  
12.–40˚C to 150˚C (extended temperature).  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
81  
Extended Temperature Range  
Table 55.DC Electrical Characteristics at Extended Temperature  
T =  
A
–40°C to +105°C  
2
Typical  
Sym  
Parameter  
V
Min  
Max  
@25°C  
Units Conditions  
Notes  
CC1  
V
Clock Input  
High Voltage  
4.5V  
5.5V  
4.5V  
5.5V  
0.7 V  
V
V
+0.3  
1.8  
V
V
V
V
Driven by  
External Clock  
Generator  
CH  
CC  
CC  
CC  
0.7 V  
+0.3  
2.6  
1.2  
2.1  
Driven by  
External Clock  
Generator  
CC  
V
Clock Input  
Low Voltage  
GND–0.3  
GND–0.3  
0.2 V  
Driven by  
External Clock  
Generator  
CL  
CC  
CC  
0.2 V  
Driven by  
External Clock  
Generator  
V
V
V
Input High  
Voltage  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.0V  
0.7 V  
0.7 V  
V
V
+0.3  
+0.3  
1.8  
2.6  
1.1  
1.6  
3.1  
4.8  
V
V
V
V
V
V
IH  
CC  
CC  
CC  
CC  
Input Low  
Voltage  
GND–0.3  
GND–0.3  
0.2 V  
IL  
CC  
CC  
0.2 V  
Output High  
Voltage  
(Low-EMI  
Mode)  
V
V
–0.4  
I
I
= –0.5 mA  
= –0.5 mA  
OH  
CC  
CC  
OH  
–0.4  
OH  
V
Output High  
Voltage  
4.5V  
5.5V  
V
V
–0.4  
–0.4  
3.1  
4.8  
V
V
I
I
= –2.0 mA  
= –2.0 mA  
3
3
OH1  
CC  
OH  
CC  
OH  
Notes:  
1. The  
V
voltage specification of 5.5V guarantees 5.0V 0.5V with typicals at  
V
= 5.0V.  
CC  
CC  
2. Typicals are at  
V
= 5.0V and 3.3V.  
CC  
3. STANDARD Mode (not Low EMI).  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at  
V
IN  
.
CC  
8. Clock must be forced Low, when X is clock-driven and X  
is floating.  
OUT  
9. 0ºC to 70ºC (standard temperature).  
10. Autolatch (Mask Option) selected.  
11. The V voltage increases as the temperature decreases and overlaps lower  
V
operating region.  
LV  
CC  
12. –40˚C to 150˚C (extended temperature).  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
82  
Table 55.DC Electrical Characteristics at Extended Temperature (Continued)  
T =  
A
–40°C to +105°C  
2
Typical  
Sym  
Parameter  
V
Min  
Max  
0.6  
@25°C  
Units Conditions  
Notes  
CC1  
V
Output Low  
Voltage  
(Low-EMI  
Mode)  
4.5V  
5.0V  
0.2  
V
V
I
= 1.0 mA  
= 1.0 mA  
OL  
OL  
OL  
0.4  
0.1  
I
V
V
V
V
V
V
Output Low  
Voltage  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
0.6  
0.4  
1.2  
1.2  
0.2  
0.1  
0.3  
0.4  
1.8  
2.6  
1.1  
1.6  
0.3  
0.3  
10  
V
V
I
I
I
I
= +4.0 mA  
= +4.0 mA  
= +6 mA  
3
3
3
3
4
4
4
4
4
4
5
5
OL1  
OL2  
RH  
OL  
OL  
OL  
OL  
Output Low  
Voltage  
V
V
= +12 mA  
Reset Input  
High Voltage  
0.8 V  
0.8 V  
V
V
V
CC  
CC  
CC  
V
CC  
Reset Input  
Low Voltage  
GND–0.3  
GND–0.3  
0.2 V  
0.2 V  
V
Rl  
CC  
V
CC  
Reset Output 4.5V  
Low Voltage  
0.6  
0.6  
25  
V
I
I
= +1.0 mA  
= +1.0 mA  
OLR  
OFFSET  
OL  
5.5V  
V
OL  
Comparator  
Input Offset  
Voltage  
4.5V  
5.5V  
mV  
mV  
25  
10  
I
I
Input  
Leakage  
4.5V  
5.5V  
4.5V  
5.5V  
–1  
–1  
–1  
–1  
2
2
2
2
0.004  
0.004  
0.004  
0.004  
µA  
µA  
µA  
µA  
V
V
V
V
= 0V, V  
= 0V, V  
= 0V, V  
= 0V, V  
IL  
IN  
IN  
IN  
IN  
CC  
CC  
CC  
CC  
Output  
Leakage  
OL  
Notes:  
1. The  
V
voltage specification of 5.5V guarantees 5.0V 0.5V with typicals at  
V
= 5.0V.  
CC  
CC  
2. Typicals are at  
V
= 5.0V and 3.3V.  
CC  
3. STANDARD Mode (not Low EMI).  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at  
V
IN  
.
CC  
8. Clock must be forced Low, when X is clock-driven and X  
is floating.  
OUT  
9. 0ºC to 70ºC (standard temperature).  
10. Autolatch (Mask Option) selected.  
11. The V voltage increases as the temperature decreases and overlaps lower  
V
operating region.  
CC  
LV  
12. –40˚C to 150˚C (extended temperature).  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
83  
Table 55.DC Electrical Characteristics at Extended Temperature (Continued)  
T =  
A
–40°C to +105°C  
2
Typical  
Sym  
Parameter  
V
Min  
–18  
–18  
Max  
–130  
–180  
20  
@25°C  
–60  
–85  
7
Units Conditions  
µA  
Notes  
CC1  
I
Reset Input  
Current  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
IR  
µA  
I
Supply  
Current  
mA @ 16 MHz  
mA @ 16 MHz  
mA @ 12 MHz  
mA @ 12 MHz  
6
6
6
6
6
CC  
25  
20  
15  
5
20  
15  
I
Standby  
Current  
(HALT mode)  
4.5  
2.0  
mA  
V
= 0V, V  
CC1  
IN  
CC  
CC  
@ 16 MHz  
5.5V  
4.5V  
8
3.7  
1.5  
mA  
V
= 0V, V  
6
6
IN  
@ 16 MHz  
3.4  
mA Clock Divide-  
by-16 @ 16  
MHz  
5.5V  
7.0  
2.9  
mA Clock Divide-  
by-16 @ 16  
MHz  
6
Notes:  
1. The  
V
voltage specification of 5.5V guarantees 5.0V 0.5V with typicals at  
V
= 5.0V.  
CC  
CC  
2. Typicals are at  
V
= 5.0V and 3.3V.  
CC  
3. STANDARD Mode (not Low EMI).  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at  
V
IN  
.
CC  
8. Clock must be forced Low, when X is clock-driven and X  
is floating.  
OUT  
9. 0ºC to 70ºC (standard temperature).  
10. Autolatch (Mask Option) selected.  
11. The V voltage increases as the temperature decreases and overlaps lower  
V
operating region.  
LV  
CC  
12. –40˚C to 150˚C (extended temperature).  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
84  
Table 55.DC Electrical Characteristics at Extended Temperature (Continued)  
T =  
A
–40°C to +105°C  
2
Typical  
Sym  
Parameter  
V
Min  
Max  
@25°C  
Units Conditions  
Notes  
CC1  
I
Standby  
Current  
(STOP  
Mode)  
4.5V  
5.5V  
4.5V  
5.5V  
8
2
µA  
µA  
µA  
µA  
V
= 0V, V  
7,8  
CC2  
IN  
CC  
CC  
CC  
CC  
WDT is not  
Running  
10  
4
V
= 0V, V  
7,8  
IN  
WDT is not  
Running  
600  
310  
600  
V
= 0V, V  
7,8,9  
7,8,9  
IN  
WDT is  
Running  
1000  
V
= 0V, V  
IN  
WDT is  
Running  
V
Input  
Common  
Mode  
4.5V  
5.5V  
0
0
V
V
–1.5V  
V
V
5
5
ICR  
CC  
–1.5V  
CC  
Voltage  
Range  
I
Autolatch  
Low Current  
4.5V  
5.5V  
0.7  
1.4  
10  
20  
3
5
µA 0V<V <V  
10  
10  
ALL  
IN CC  
µA 0V<V <V  
IN CC  
Notes:  
1. The  
V
voltage specification of 5.5V guarantees 5.0V 0.5V with typicals at  
V
= 5.0V.  
CC  
CC  
2. Typicals are at  
V
= 5.0V and 3.3V.  
CC  
3. STANDARD Mode (not Low EMI).  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at  
V
IN  
.
CC  
8. Clock must be forced Low, when X is clock-driven and X  
is floating.  
OUT  
9. 0ºC to 70ºC (standard temperature).  
10. Autolatch (Mask Option) selected.  
11. The V voltage increases as the temperature decreases and overlaps lower  
V
operating region.  
CC  
LV  
12. –40˚C to 150˚C (extended temperature).  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
85  
Table 55.DC Electrical Characteristics at Extended Temperature (Continued)  
T =  
A
–40°C to +105°C  
2
Typical  
Sym  
Parameter  
V
Min  
–0.6  
–1.0  
2.0  
Max  
–7  
@25°C  
Units Conditions  
µA 0V<V <V  
Notes  
10  
CC1  
I
Autolatch  
High Current  
4.5V  
5.5V  
4.5V  
–3  
ALH  
IN CC  
–10  
3.3  
–6  
µA 0V<V <V  
10  
IN CC  
V
V
Low  
2.8  
V
4 MHz max  
11,12  
LV  
CC  
Voltage  
Interrupt CLK  
Freq.  
Protection  
Voltage  
5.5V  
2.8  
6 MHz max  
Interrupt CLK  
Freq.  
9,11  
Notes:  
1. The  
V
voltage specification of 5.5V guarantees 5.0V 0.5V with typicals at  
V
= 5.0V.  
CC  
CC  
2. Typicals are at  
V
= 5.0V and 3.3V.  
CC  
3. STANDARD Mode (not Low EMI).  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at  
V
IN  
.
CC  
8. Clock must be forced Low, when X is clock-driven and X  
is floating.  
OUT  
9. 0ºC to 70ºC (standard temperature).  
10. Autolatch (Mask Option) selected.  
11. The V voltage increases as the temperature decreases and overlaps lower  
V
operating region.  
LV  
CC  
12. –40˚C to 150˚C (extended temperature).  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
86  
AC Electrical Characteristics  
Figure 25 illustrates the timing characteristics of the MUZE Family of parts with  
respect to external input/output sources. See Tables 56 and 57 for descriptions of  
the numbered timing parameters in the figure.  
Figure 25. External I/O or Memory READ and WRITE Timing  
R/W  
Port 0, DM  
Port 1  
13  
19  
12  
16  
20  
3
18  
1
D7D0 IN  
A7A0  
2
9
AS  
8
11  
4
5
6
DS  
(Read)  
17  
10  
Port1  
A7A0  
D7D0 OUT  
14  
15  
7
DS  
(Write)  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
87  
Standard Temperature Range  
Table 56.External I/O or Memory READ and WRITE Timing—Standard Temperature  
T = –0ºC to 70ºC  
A
@ 12 MHz  
1
No  
Symbol  
T A(AS)  
Parameter  
V
Min  
35  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
CC  
1
Address Valid to AS Rise  
Delay  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
2
2
D
35  
2
T AS(A)  
AS Rise to Address Float  
Delay  
45  
2
D
45  
2
3
T AS(DR)  
AS Rise to Read Data  
Req’d Valid  
250  
250  
2,3  
2
D
4
T AS  
AS Low Width  
55  
55  
2
W
2
5
T AS(DS)  
Address Float to DS Fall  
DS (Read) Low Width  
DS (WRITE) Low Width  
0
D
0
6
T DSR  
200  
200  
110  
110  
2,3  
2,3  
2,3  
2,3  
2,3  
2,3  
2
W
7
T DSW  
W
8
T DSR(DR)  
DS Fall to Read Data  
Req’d Valid  
150  
150  
D
9
T DR(DS)  
Read Data to DS Rise Hold  
Time  
0
H
0
2
10  
11  
12  
Notes:  
T DS(A)  
DS Rise to Address Active  
Delay  
45  
55  
30  
45  
45  
45  
2
D
2
T DS(AS)  
DS Rise to AS Fall Delay  
2
D
2
T R/W(AS)  
R/W Valid to AS Rise Delay 4.5V  
5.5V  
2
D
2
1. Z86E142/E143/E144/E145/E146 only; SCLK ÷ TCLK = Crystal ÷ 2.  
2. The voltage specification of 5.5V guarantees 5.0V 0.5V.  
V
CC  
3. Timing numbers provided are for minimum T C.  
P
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
88  
Table 56.External I/O or Memory READ and WRITE Timing—Standard Temperature (Continued)  
T = –0ºC to 70ºC  
A
@ 12 MHz  
1
No  
Symbol  
T DS(R/W)  
Parameter  
V
Min  
45  
45  
55  
55  
45  
45  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
CC  
13  
DS Rise to R/W Not Valid  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
2
2
D
14  
T DW(DSW)  
WRITE Data Valid to DS  
Fall (WRITE) Delay  
2
D
2
15  
T DS(DW)  
DS Rise to WRITE Data  
Not Valid Delay  
2
D
2
16  
T A(DR)  
Address Valid to Read  
Data Req’d Valid  
310  
310  
2,3  
2,3  
2
D
17  
T AS(DS)  
AS Rise to DS Fall Delay  
DM Valid to AS Fall Delay  
DS Rise to DM Valid Delay  
65  
65  
35  
35  
45  
45  
45  
45  
D
2
18  
T DM(AS)  
2
D
2
19  
T DS(DM)  
2
D
2
20  
T DS(AS)  
DS Valid to Address Valid  
Hold Time  
2
H
2
Notes:  
1. Z86E142/E143/E144/E145/E146 only; SCLK ÷ TCLK = Crystal ÷ 2.  
2. The voltage specification of 5.5V guarantees 5.0V 0.5V.  
V
CC  
3. Timing numbers provided are for minimum T C.  
P
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
89  
Extended Temperature Range  
Table 57.External I/O or Memory READ and WRITE Timing—Extended Temperature  
T = –40ºC to  
A
+105ºC @ 12 MHz  
1
No  
Symbol  
T A(AS)  
Parameter  
V
Min  
35  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
CC  
1
Address Valid to AS Rise  
Delay  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
2
2
D
35  
2
T AS(A)  
AS Rise to Address Float  
Delay  
45  
2
D
45  
2
3
T AS(DR)  
AS Rise to Read Data  
Req’d Valid  
250  
250  
2,3  
2
D
4
T AS  
AS Low Width  
55  
55  
2
W
2
5
T AS(DS)  
Address Float to DS Fall  
DS (Read) Low Width  
DS (WRITE) Low Width  
0
D
0
6
T DSR  
200  
200  
110  
110  
2,3  
2,3  
2,3  
2,3  
2,3  
2,3  
2
W
7
T DSW  
W
8
T DSR(DR)  
DS Fall to Read Data  
Req’d Valid  
150  
150  
D
9
T DR(DS)  
Read Data to DS Rise Hold  
Time  
0
H
0
2
10  
11  
Notes:  
T DS(A)  
DS Rise to Address Active  
Delay  
45  
55  
30  
45  
2
D
2
T DS(AS)  
DS Rise to AS Fall Delay  
2
D
2
1. E142/E143/E144/E145/E146 only; SCLK ÷ TCLK = Crystal ÷ 2.  
2. The voltage specification of 4.5V guarantees 3.3V 0.3V, and the  
V
V
voltage specification of 5.5V guar-  
CC  
CC  
antees 5.0V 0.5V.  
3. Timing numbers provided are for minimum T C.  
P
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
90  
Table 57.External I/O or Memory READ and WRITE Timing—Extended Temperature (Continued)  
T = –40ºC to  
A
+105ºC @ 12 MHz  
1
No  
Symbol  
T R/W(AS)  
Parameter  
V
Min  
45  
45  
45  
45  
55  
55  
45  
45  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
CC  
12  
R/W Valid to AS Rise Delay 4.5V  
5.5V  
2
2
D
13  
T DS(R/W)  
DS Rise to R/W Not Valid  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
2
D
2
14  
T DW(DSW)  
WRITE Data Valid to DS  
Fall (WRITE) Delay  
2
D
2
15  
T DS(DW)  
DS Rise to WRITE Data  
Not Valid Delay  
2
D
2
16  
T A(DR)  
Address Valid to Read  
Data Req’d Valid  
310  
310  
2,3  
2,3  
2
D
17  
T AS(DS)  
AS Rise to DS Fall Delay  
DM Valid to AS Fall Delay  
DS Rise to DM Valid Delay  
65  
65  
35  
35  
45  
45  
45  
45  
D
2
18  
T DM(AS)  
2
D
2
19  
T Ds(DM)  
2
D
2
20  
T DS(AS)  
DS Valid to Address Valid  
Hold Time  
2
H
2
Notes:  
1. E142/E143/E144/E145/E146 only; SCLK ÷ TCLK = Crystal ÷ 2.  
2. The voltage specification of 4.5V guarantees 3.3V 0.3V, and the  
V
V
voltage specification of 5.5V guar-  
CC  
CC  
antees 5.0V 0.5V.  
3. Timing numbers provided are for minimum T C.  
P
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
91  
Additional Timing  
Figure 26 illustrates the timing characteristics of the MUZE Family of parts with  
respect to system clock functions. See Tables 58 and 59 for descriptions of the  
numbered timing parameters in the figure.  
Figure 26. Additional Timing  
3
1
Clock  
2
2
3
7
7
TIN  
4
5
6
IRQN  
8
9
Clock  
Setup  
11  
Stop  
Mode  
Recovery  
Source  
10  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
92  
For the values in Table 58, SCLK ÷ TCLK = Crystal ÷ 2, within a standard temper-  
ature range of 0ºC to 70ºC.  
Table 58.Additional Timing at Standard Temperature  
T = 0ºC to +70ºC  
A
8 MHz  
Max  
DC  
12 MHz  
Min Max  
DC  
1
No Sym  
Parameter  
V
Min  
250  
Units Notes D1,D0  
CC  
1
T C  
Input Clock Period  
4.5V  
5.5V  
4.5V  
5.5V  
83  
83  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2,3,4  
2,3,4  
2,3  
P
250  
125  
125  
DC  
DC  
DC  
25  
DC  
DC  
DC  
15  
250  
250  
2,3  
2
3
T C,  
Clock Input Rise & Fall 4.5V  
2,3  
R
T C  
Times  
F
5.5V  
25  
15  
2,3  
T C  
Input Clock Width  
4.5V  
5.5V  
4.5V  
5.5V  
125  
125  
62  
41  
41  
2,3,4  
2,3,4  
2,3  
W
125  
125  
100  
70  
62  
2,3  
4
5
6
7
T T L Timer Input Low Width 4.5V  
100  
70  
2,3  
W IN  
5.5V  
2,3  
T T H Timer Input High Width 4.5V 3T C  
5T C  
2,3  
W IN  
P
P
5.5V 3T C  
5T C  
2,3  
P
P
T T  
Timer Input Period  
4.5V 4T C  
8T C  
2,3  
P IN  
P
P
5.5V 4T C  
8T C  
2,3  
P
P
T T ,  
Timer Input Rise & Fall 4.5V  
100  
100  
100  
100  
ns  
ns  
2,3  
R IN  
T T  
Timer  
F IN  
5.5V  
2,3  
Notes:  
1. The V  
guarantees 5.0V 0.5V.  
2. Timing reference uses 0.7 V  
3. SMR: D1 = 0.  
voltage specification of 4.5V guarantees 3.3V 0.3V, and the V  
voltage specification of 5.5V  
CC  
CC  
for a logic 1 and 0.2 V  
CC  
for a logic 0.  
CC  
4. The maximum frequency for the external crystal clock is 4 MHz when using LOW-EMI OSCILLATOR mode.  
5. The interrupt request via Port 3 (P31–P33).  
6. The interrupt request via Port 3 (P30).  
7. SMR: D5 = 1, and the POR Stop-Mode Delay is on.  
8. For RC and LC oscillators, and for an oscillator driven by a clock driver.  
9. The D1,D0 column applies to the Watch-Dog Timer Mode Register tap selection.  
10. 12 µs is the typical delay time; only applies when SMR Register bit D5 is cleared to 0  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
93  
Table 58.Additional Timing at Standard Temperature (Continued)  
T = 0ºC to +70ºC  
A
8 MHz  
Max  
12 MHz  
Min Max  
100  
70  
5T C  
1
No Sym  
8A T IL  
Parameter  
V
Min  
100  
70  
Units Notes D1,D0  
CC  
Interrupt Request Low 4.5V  
ns  
ns  
2,3,5  
2,3,5  
2,3,6  
2,3,6  
2,3,5  
2,3,5  
7
W
Time  
5.5V  
8B T IL  
Interrupt Request Low 4.5V 3T C  
W
P
P
Time  
5.5V 3T C  
5T C  
P
P
9
T IH  
Interrupt Request Input 4.5V 3T C  
5T C  
P
W
P
High Time  
5.5V 3T C  
5T C  
P
P
10  
11  
12  
T
T
T
Stop-Mode Recovery  
Width Spec  
4.5V  
5.5V  
12  
12  
12  
12  
ns  
ns  
WSM  
OST  
WDT  
7
Oscillator Startup Time 4.5V  
5.5V  
5T C  
5T C  
7,8  
7,8  
9
P
P
5T C  
5T C  
P
P
Watch-Dog Timer  
Delay Timer before  
time-out  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
7
3.5  
14  
7
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
0,0  
0,0  
0,1  
0,1  
1,0  
1,0  
1,1  
1,1  
9
9
9
28  
14  
112  
56  
9
9
9
9
Notes:  
1. The V  
guarantees 5.0V 0.5V.  
2. Timing reference uses 0.7 V  
3. SMR: D1 = 0.  
voltage specification of 4.5V guarantees 3.3V 0.3V, and the V  
voltage specification of 5.5V  
CC  
CC  
for a logic 1 and 0.2 V  
CC  
for a logic 0.  
CC  
4. The maximum frequency for the external crystal clock is 4 MHz when using LOW-EMI OSCILLATOR mode.  
5. The interrupt request via Port 3 (P31–P33).  
6. The interrupt request via Port 3 (P30).  
7. SMR: D5 = 1, and the POR Stop-Mode Delay is on.  
8. For RC and LC oscillators, and for an oscillator driven by a clock driver.  
9. The D1,D0 column applies to the Watch-Dog Timer Mode Register tap selection.  
10. 12 µs is the typical delay time; only applies when SMR Register bit D5 is cleared to 0  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
94  
Table 58.Additional Timing at Standard Temperature (Continued)  
T = 0ºC to +70ºC  
A
8 MHz  
Max  
12 MHz  
1
No Sym  
13  
Parameter  
V
Min  
Min  
Max  
24  
Units Notes D1,D0  
CC  
T
Power-On Reset Delay 4.5V  
5.5V  
3
ms  
ms  
POR  
1.5  
13  
14  
T
POR Delay Time  
4.5V  
5.5V  
35  
µs  
µs  
10  
10  
EDELAY  
35  
Notes:  
1. The V  
guarantees 5.0V 0.5V.  
2. Timing reference uses 0.7 V  
3. SMR: D1 = 0.  
voltage specification of 4.5V guarantees 3.3V 0.3V, and the V  
voltage specification of 5.5V  
CC  
CC  
for a logic 1 and 0.2 V  
CC  
for a logic 0.  
CC  
4. The maximum frequency for the external crystal clock is 4 MHz when using LOW-EMI OSCILLATOR mode.  
5. The interrupt request via Port 3 (P31–P33).  
6. The interrupt request via Port 3 (P30).  
7. SMR: D5 = 1, and the POR Stop-Mode Delay is on.  
8. For RC and LC oscillators, and for an oscillator driven by a clock driver.  
9. The D1,D0 column applies to the Watch-Dog Timer Mode Register tap selection.  
10. 12 µs is the typical delay time; only applies when SMR Register bit D5 is cleared to 0  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
95  
For the values in Table 59, SCLK ÷ TCLK = Crystal ÷ 2, within an extended tem-  
perature range of –40ºC to 105ºC.  
Table 59.Additional Timing at Extended Temperature  
T = –40ºC to +105ºC  
A
8 MHz  
Min  
12 MHz  
Min Max Units Notes D1,D0  
1
No Sym  
Parameter  
VCC  
Max  
DC  
DC  
DC  
DC  
25  
1
T C  
Input Clock Period  
4.5V 250  
5.5V 250  
4.5V 125  
5.5V 125  
83  
83  
DC  
DC  
DC  
DC  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2,3,4  
2,3,4  
2,3  
P
250  
250  
2,3  
2
3
T C,  
Clock Input Rise & Fall 4.5V  
2,3  
R
T C  
Times  
F
5.5V  
25  
15  
2,3  
T C  
Input Clock Width  
4.5V 125  
5.5V 125  
41  
41  
2,3,4  
2,3,4  
2,3  
W
4.5V  
5.5V  
62  
62  
125  
125  
100  
70  
2,3  
4
5
6
7
T T L Timer Input Low Width 4.5V 100  
2,3  
W IN  
5.5V  
70  
2,3  
T T H Timer Input High Width 4.5V 3T C  
5T C  
2,3  
W IN  
P
P
5.5V 3T C  
5T C  
2,3  
P
P
T T  
Timer Input Period  
4.5V 4T C  
8T C  
2,3  
P IN  
P
P
5.5V 4T C  
8T C  
2,3  
P
P
T T ,  
Timer Input Rise & Fall 4.5V  
100  
100  
100  
100  
ns  
ns  
2,3  
R IN  
T T  
Timer  
F IN  
5.5V  
2,3  
Notes:  
1. The V  
2. The timing reference uses 0.7 V  
3. SMR: D1 = 0.  
voltage specification of 5.5V guarantees 5.0V 0.5V.  
CC  
for a logic 1 and 0.2 V for a logic 0.  
CC  
CC  
4. The maximum frequency for the external crystal clock is 4 MHz when using LOW-EMI OSCILLATOR mode.  
5. The interrupt request via Port 3 (P31–P33).  
6. The interrupt request via Port 3 (P30).  
7. SMR: D5 = 1, and the POR Stop-Mode Delay is on.  
8. For RC and LC oscillators, and for an oscillator driven by a clock driver.  
9. The D1,D0 column applies to the Watch-Dog Timer Mode Register tap selection.  
10. 12 µs is the typical delay time.  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
96  
Table 59.Additional Timing at Extended Temperature (Continued)  
T = –40ºC to +105ºC  
A
8 MHz  
Min Max  
12 MHz  
Min Max Units Notes D1,D0  
1
No Sym  
8A T IL  
Parameter  
VCC  
Interrupt Request Low 4.5V 100  
Time  
100  
70  
ns  
ns  
2,3,5  
2,3,5  
2,3,6  
2,3,6  
2,3,5  
2,3,5  
7
W
5.5V  
70  
8B T IL  
Interrupt Request Low 4.5V 3T C  
5T C  
P
W
P
Time  
5.5V 3T C  
5T C  
P
P
9
T IH  
Interrupt Request Input 4.5V 3T C  
5T C  
P
W
P
High Time  
5.5V 2T C  
5T C  
P
P
10  
11  
12  
T
T
T
Stop-Mode Recovery  
Width Spec  
4.5V  
5.5V  
12  
12  
12  
12  
ns  
ns  
WSM  
OST  
WDT  
7
Oscillator Startup Time 4.5V  
5.5V  
5T C  
5T C  
7,8  
7,8  
9
P
P
5T C  
5T C  
P
P
Watch-Dog Timer  
Delay Timer before  
time-out  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
7
3.5  
14  
7
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
0,0  
0,0  
0,1  
0,1  
1,0  
1,0  
1,1  
1,1  
9
9
9
28  
14  
112  
56  
3
9
9
9
9
13  
T
Power-On Reset Delay 4.5V  
5.5V  
25  
14  
POR  
1
Notes:  
1. The V  
2. The timing reference uses 0.7 V  
3. SMR: D1 = 0.  
voltage specification of 5.5V guarantees 5.0V 0.5V.  
CC  
for a logic 1 and 0.2 V for a logic 0.  
CC  
CC  
4. The maximum frequency for the external crystal clock is 4 MHz when using LOW-EMI OSCILLATOR mode.  
5. The interrupt request via Port 3 (P31–P33).  
6. The interrupt request via Port 3 (P30).  
7. SMR: D5 = 1, and the POR Stop-Mode Delay is on.  
8. For RC and LC oscillators, and for an oscillator driven by a clock driver.  
9. The D1,D0 column applies to the Watch-Dog Timer Mode Register tap selection.  
10. 12 µs is the typical delay time.  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
97  
Table 59.Additional Timing at Extended Temperature (Continued)  
T = –40ºC to +105ºC  
A
8 MHz  
Min Max  
12 MHz  
Min Max Units Notes D1,D0  
1
No Sym  
Parameter  
VCC  
14  
T
POR Delay Time  
4.5V  
5.5V  
35  
35  
µs  
µs  
10  
10  
EDELAY  
Notes:  
1. The V  
2. The timing reference uses 0.7 V  
3. SMR: D1 = 0.  
voltage specification of 5.5V guarantees 5.0V 0.5V.  
CC  
for a logic 1 and 0.2 V for a logic 0.  
CC  
CC  
4. The maximum frequency for the external crystal clock is 4 MHz when using LOW-EMI OSCILLATOR mode.  
5. The interrupt request via Port 3 (P31–P33).  
6. The interrupt request via Port 3 (P30).  
7. SMR: D5 = 1, and the POR Stop-Mode Delay is on.  
8. For RC and LC oscillators, and for an oscillator driven by a clock driver.  
9. The D1,D0 column applies to the Watch-Dog Timer Mode Register tap selection.  
10. 12 µs is the typical delay time.  
Figure 27. Input Handshake Timing  
Data In  
Data In Valid  
Next Data In Valid  
2
1
3
DAV  
(Input)  
Delayed DAV  
5
6
4
RDY  
(Output)  
Delayed RDY  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
98  
Figure 28. Output Handshake Timing  
Data Out  
Data Out Valid  
Next Data Out Valid  
Delayed DAV  
7
DAV  
(Output)  
11  
9
8
10  
RDY  
(Input)  
Delayed RDY  
1
Table 60.Handshake Timing at Standard Temperature  
12 MHz  
Data  
2
No Symbol  
T DI(DAV)  
Parameter  
V
Min  
0
Max Units  
Direction  
CC  
1
2
3
4
5
6
7
8
Data In Setup Time  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
ns  
ns  
ns  
ns  
ns  
ns  
Input  
S
0
Input  
T DI(RDY)  
Data In Hold Time  
0
Input  
H
0
Input  
T DAV  
Data Available Width  
155  
110  
Input  
W
Input  
T DAVI(RDY)  
DAV Fall to RDY Fall Delay 4.5V  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input  
D
5.5V  
DAV Out to DAV Fall Delay 4.5V  
5.5V  
0
Input  
T DAVId(RDY)  
120  
80  
Input  
D
Input  
RDY0 (DAV)  
RDY Rise to DAV Fall  
Delay  
4.5V  
5.5V  
0
0
Input  
D
Input  
T D0(DAV)  
Data Out to DAV Fall Delay 4.5V  
42  
42  
0
Output  
Output  
Output  
Output  
D
5.5V  
DAV Fall to RDY Fall Delay 4.5V  
5.5V  
T DAV0(RDY)  
D
0
Notes:  
1. The Timing Reference uses 0.7  
V
for a logic 1 and 0.2  
V
for a logic 0.  
CC  
CC  
2. The  
V
voltage specification of 5.5V guarantees 5.0V 0.5V.  
CC  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
99  
1
Table 60.Handshake Timing at Standard Temperature (Continued)  
12 MHz  
Data  
2
No Symbol  
T RDY0(DAV)  
Parameter  
V
Min  
Max Units  
Direction  
CC  
9
RDY Fall to DAV Rise  
Delay  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
160  
115  
ns  
ns  
ns  
ns  
ns  
ns  
Output  
Output  
Output  
Output  
Output  
Output  
D
10 T RDY  
RDY Width  
110  
80  
W
11 T RDY0 (DAV)  
RDY Rise to DAV Fall  
Delay  
110  
80  
D
D
Notes:  
1. The Timing Reference uses 0.7  
V
for a logic 1 and 0.2  
V
for a logic 0.  
CC  
CC  
2. The  
V
voltage specification of 5.5V guarantees 5.0V 0.5V.  
CC  
1
Table 61.Handshake Timing at Extended Temperature  
12 MHz  
16 MHz  
Data  
Max Units Direction  
2
No Symbol  
Parameter  
V
Min  
0
Max  
Min  
0
CC  
1
2
3
4
5
6
7
T DI(DAV)  
Data In Setup Time  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
S
0
0
T DI(RDY)  
Data In Hold Time  
0
0
H
0
0
T DAV  
Data Available Width  
155  
110  
155  
110  
W
T DAVI(RDY) DAV Fall to RDY Fall  
0
0
0
0
D
Delay  
T DAVId(RDY) DAV Out to DAV Fall  
120  
80  
120  
80  
D
Delay  
RDY0 (DAV) RDY Rise to DAV Fall 4.5V  
0
0
0
0
D
Delay  
5.5V  
T D0(DAV)  
Data Out to DAV Fall  
Delay  
4.5V  
5.5V  
42  
42  
31  
31  
D
Notes:  
1. The Timing Reference uses 0.7  
V
for a logic 1 and 0.2  
V
for a logic 0.  
CC  
CC  
2. The  
V
voltage specification of 5.5V guarantees 5.0V 0.5V.  
CC  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
100  
1
Table 61.Handshake Timing at Extended Temperature (Continued)  
12 MHz  
16 MHz  
Data  
Max Units Direction  
2
No Symbol  
Parameter  
V
Min  
0
Max  
Min  
0
CC  
8
T DAV0(RDY) DAV Fall to RDY Fall  
4.5V  
5.5V  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
D
Delay  
0
0
9
T RDY0(DAV) RDY Fall to DAV Rise 4.5V  
160  
115  
160  
115  
D
Delay  
5.5V  
10 T RDY  
RDY Width  
4.5V  
5.5V  
110  
80  
110  
80  
W
11 T RDY0 (DAV RDY Rise to DAV Fall 4.5V  
110  
80  
110  
80  
D
D
)
Delay  
5.5V  
Notes:  
1. The Timing Reference uses 0.7  
V
for a logic 1 and 0.2  
V
for a logic 0.  
CC  
CC  
voltage specification of 5.5V guarantees 5.0V 0.5V.  
2. The  
V
CC  
Standard Test Conditions  
The characteristics listed in following pages apply for standard test conditions as  
noted. All voltages are referenced to GND. Positive current flows into the refer-  
enced pin (see Figure 29.)  
Figure 29. Test Load Diagram  
From Output  
Under Test  
150 pF  
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
101  
Capacitance  
Table 62.Capacitance*  
Parameter  
Min  
Max  
Input capacitance  
Output capacitance  
I/O capacitance  
Note: *T = 25ºC, V  
0
12 pF  
12 pF  
12 pF  
0
0
= GND = 0V, f = 1.0 MHz, unmeasured pins to GND.  
CC  
A
PS004005-1100  
P R E L I M I N A R Y  
Electrical Characteristics  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
102  
One-Time Programming  
Table 63 briefly describes the MUZE Family OTP option bit selection at each bit’s  
default value before programming.  
Table 63.Option Bit Description*  
Bit  
0
Option  
Unprogrammed Default Value  
Disabled  
EPROM Protect  
RAM Protect  
Autolatches  
P0 Pull-Ups  
P1 Pull-Ups  
P2 Pull-Ups  
RC Oscillator  
32-kHz Oscillator  
Permanent WDT  
VBO  
1
Disabled  
2
Enabled  
3
Disabled  
4
Disabled  
5
Disabled  
6
Disabled  
7
Disabled  
8
Disabled  
9
Enabled  
10  
11  
12  
13  
14  
15  
Reserved  
Must not be changed  
Must not be changed  
Must not be changed  
Must not be changed  
Must not be changed  
Must not be changed  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Note: *Option bits are 0 when unprogrammed and are 1 when programmed. If bits are not to be  
programmed, use 0.  
EPROM Protect. Selecting the DISABLE EPROM PROTECT option, bit 0, allows  
the software program that is in the program memory to be read using ZiLOG’s  
internal factory test mode. Selecting the ENABLE EPROM PROTECT option  
negates the possibility of reading the code out of the part using a tester, program-  
mer, or any other standard method.  
The EPROM PROTECT option bit only affects the part’s ability to read from an  
external source and does not affect the operation of the part in an application.  
RAM Protect. Selecting the DISABLE RAM PROTECT option, bit 1, does not  
affect the RAM memory. RAM memory operates as defined in this Product Speci-  
fication for all address locations. Selecting the ENABLE RAM PROTECT option,  
allows protection (under software control) of a portion of the RAM’s address  
space from being read or written.  
PS004005-1100  
P R E L I M I N A R Y  
One-Time Programming  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
103  
AUTOLATCH Mode. Selecting the DISABLE AUTOLATCHES option, bit 2, dis-  
ables the autolatches on the Port pins.These pins float, rather than are pulled, to  
a valid CMOS level when they are inputs and not connected to an external signal.  
Selecting the ENABLE AUTOLATCHES option enables the autolatches on the  
Port pins and pulls the pins to a valid CMOS level when they are not connected to  
an external signal.  
Port 0 Pull-Ups. Selecting DISABLE PULL-UPS option, bit 3, disables the input  
pull-up circuitry on all Port 0 pins. Selecting ENABLE PULL-UPS enables the  
input pull-up circuitry on all Port 0 pins. This option bit does not affect any of the  
other port pins on the part.  
Port 1 Pull-Ups. Selecting DISABLE PULL-UPS option, bit 4, disables the input  
pull-up circuitry on all Port 1 pins. Selecting ENABLE PULL-UPS enables the  
input pull-up circuitry on all Port 1 pins. This option bit does not affect any of the  
other port pins on the part.  
Port 2 Pull-Ups. Selecting DISABLE PULL-UPS option, bit 5, disables the input  
pull-up circuitry on all Port 2 pins. Selecting ENABLE PULL-UPS enables the  
input pull-up circuitry on all Port 2 pins. This option bit does not affect any of the  
other port pins on the part.  
System Clock Source. Selecting the RC OSCILLATOR ENABLE option, bit 6, con-  
figures the oscillator circuit on the microcontroller to work with an external RC cir-  
cuit. Selecting the CRYSTAL/OTHER CLOCK SOURCE option configures the  
oscillator circuit to work with an external crystal, ceramic resonator, or LC oscilla-  
tor.  
Oscillator Operational Mode. Selecting the NORMAL HIGH FREQUENCY OPER-  
ATION ENABLED option, bit 7, enables the part to operate using a standard crys-  
tal or resonator, but it does not operate using a 32-kHz crystal. Selecting the 32-  
KHZ OPERATION ENABLED option enables the microcontroller to work with a  
32-kHz crystal and an external feedback resistor—these 2 items must be supplied  
between the X and X  
pins. (If RC OSCILLATOR ENABLED is selected in the  
IN  
OUT  
SYSTEM CLOCK SOURCE option, this option defaults to the NORMAL HIGH  
FREQUENCY OPERATION ENABLED bit.)  
WDT Mode. Selecting the WDT ENABLED BY SOFTWARE ONLY option, bit 8,  
operates the Watch-Dog Timer (WDT) when turned on under software control.  
Selecting the WDT ENABLED AUTOMATICALLY AFTER RESET option starts  
the WDT automatically at RESET.There is no way to disable or stop this mode,  
making it necessary in the code to periodically clear the WDT to prevent it from  
resetting the microcontroller. If the WDT ENABLED AUTOMATICALLY AFTER  
RESET option and the WDT DRIVEN BY SYSTEM CLOCK option (if offered) are  
selected, the WDT never operates in STOP mode, and cannot be enabled, by any  
means, to operate in STOP mode.  
PS004005-1100  
P R E L I M I N A R Y  
One-Time Programming  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
104  
VBO. Selecting the VBO option, bit 9, enables low-voltage protection circuitry. The  
device resets if V goes below V when VBO is selected. If it is disabled, the  
CC  
LV  
device does not reset if V falls below V . See Low-Voltage Protection for more  
CC  
LV  
details.  
The remainder of the OTP options, bits 10–15, are reserved by ZiLOG and must  
not be changed from their default values.  
PS004005-1100  
P R E L I M I N A R Y  
One-Time Programming  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
105  
Universal Asynchronous Receiver/Transmitter  
ASCI Key Features  
Key features of the UART Asynchronous Serial Communications Interface (ASCI)  
include:  
Full-duplex operation  
Programmable data format  
7 or 8 data bits with optional ninth bit for multiprocessor communication  
P30 and P37 are used as general-purpose I/O as long as the ASCI channels  
are disabled  
One or two STOP bits  
Odd, even or no parity  
Programmable interrupt conditions  
Four level data/status FIFOs for the receiver  
Receive parity, framing and overrun error detection  
Break detection and generation  
Transmit Data Register. Data written to the ASCI Transmit Data Register (TDR) is  
transferred to the Transmit Shift Register (TSR) as soon as the TSR is empty.  
Data is written while the TSR shifts the previous byte of data, thereby providing a  
double buffer for the transmit data.The TDR is READ- and WRITE-accessible.  
Reading from the TDR does not affect the ASCI data transmit operation currently  
in progress.  
Transmit Shift Register. When the Transmit Shift Register (TSR) receives data  
from the ASCI Transmit Data Register, the data shifts to the TX (P37) pin. When  
transmission is completed, the next byte, if available, is automatically loaded from  
the TDR into the TSR.The next transmission then starts. If no data is available for  
transmission, the TSR idles at a continuous High level. This register is not pro-  
gram-accessible.  
Receive Shift Register. When the Receive Enable (RE) bit is set in the CNTLA  
register, the RX (P30) pin is monitored for a Low. One-half bit-time after a Low is  
sensed at RX, the ASCI samples RX again. If RX goes back to High, the ASCI  
ignores the previous Low and resumes looking for a new Low. However, if RX is  
still Low, it considers RX a START bit and proceeds to clock in the data based  
upon the selected baud rate. The number of data bits, parity, multiprocessor and  
STOP bits are selected by the MOD2, MOD1, MOD0 and MULTIPROCESSOR  
mode (MP) bits in the CNTLA and CNTLB registers.  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
106  
After the data is received, the appropriate MP, parity and STOP bits are checked.  
Data and any errors are clocked into the receive data and status FIFO during the  
STOP bit if there is an empty position available. Interrupts and Receive Data Reg-  
ister Full Flag also goes active during this time. If there is no space in the FIFO at  
the time that the RSR attempts to transfer the received data into it, an overrun  
error occurs.  
Receive Data FIFO. When a complete incoming data byte is assembled in the  
RSR, it is automatically transferred to the 4-byte FIFO, which serves to reduce the  
incidence of overrun errors. The top (oldest) character in the FIFO (if any) is read  
via the Receive Data Register (RDR).  
Figure 30. Receive Data Register FIFO  
Data Byte 1  
Data Byte 2  
Data Byte 3  
Data Byte 4  
RSR  
Flags  
Flags  
Flags  
Flags  
The next incoming data byte can shift into the RSR while the FIFO is full, thus pro-  
viding an additional level of buffering. However, an overrun occurs if the receive  
FIFO is still full when the receiver completes assembly of that character and is  
ready to transfer it to the FIFO. If this situation occurs, the overrun error bit is set  
in the previous byte of the FIFO stack.  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
107  
Figure 31. FIFO Overrun Example  
Good Data Byte 1  
Good Data Byte 2  
Good Data Byte 3  
Good Data Byte 4  
Flags  
Flags  
Flags  
Flags  
Overrun Data Byte  
(Lost Data)  
Sets flag  
The latest data byte is not transferred from the shift register to the FIFO in this  
case, and is lost. When an overrun occurs, the receiver does not place any further  
data in the FIFO until the most recent good byte received arrives at the top of the  
FIFO and sets the Overrun latch, and software then clears the Overrun latch by a  
WRITE of 0 to the EFR bit.  
Figure 32. Clear FIFO Overrun Example  
Good Data Byte 4  
Empty  
Overrun Flag  
Empty  
Empty  
Empty  
Empty  
Empty  
Ignored Data Bytes  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
108  
Assembly of bytes continues in the shift register, but this data is ignored until the  
byte with the overrun error reaches the top of the FIFO and the status is cleared.  
When a break occurs (defined as a framing error with the data equal to all zeros),  
the all-zero byte, with its associated error bits, are transferred to the FIFO if it is  
not full. As a result, the Break Detect bit (bit 1) is set in the ASEXT register. If the  
FIFO is full, an overrun is generated, but the break, framing error and data are not  
transferred to the FIFO. Any time a break is detected, the receiver does not  
receive any more data until the RX pin returns to a high state.  
If the channel is set in MULTIPROCESSOR mode and the MPE bit (bit 7) of the  
CNTLA register is set to 1, then break, errors and data are ignored unless the MP  
bit in the received character is 1. The two conditions listed above could cause the  
missing of a break condition if the FIFO is full and the break occurs or if the MP bit  
in the transmission is not a one with the conditions specified above.  
ASCI Status FIFO/RegistersThis FIFO contains Parity Error, Framing Error, RX  
Overrun, and Break status bits associated with each character in the receive data  
FIFO. The status of the oldest character (if any) is read from the ASCI status reg-  
ister, which also provides several other, non-FIFOed status conditions.  
The outputs of the error FIFO set the inputs of the software-accessible error  
latches in the status register.Writing a 0 to the EFR bit (bit 3) in CNTLA is the only  
way to clear these latches. In other words, when an error bit reaches the top of the  
FIFO, it sets an error latch. If the FIFO contains more data and the software reads  
the next byte out of the FIFO, the error latch remains set until the software writes a  
0 to the EFR bit. The error bits are cumulative, so if additional errors are in the  
FIFO they set any unset error latches as they reach the top.  
Baud Rate Generator (BRG)The baud rate generator features two modes. The first  
provides a dual set of fixed clock divide ratios as defined in CNTLB. In the second  
mode, the BRG is configured as a sixteen-bit down counter that divides the pro-  
cessor clock by the value in a software accessible, sixteen-bit, time-constant reg-  
ister. As a result, virtually any frequency is created by appropriately selecting the  
main processor clock frequency. The BRG can also be disabled in favor of the  
SCLK.  
The Receiver and Transmitter subsequently divide the output of the Baud rate  
Generator (or the signal from the CLK pin) by 1, 16 or 64 under the control of the  
DR bit (bit 3) in the CNTLB register and the X1 bit in the ASCI Extension Control  
Register (ASEXT).  
ResetDuring RESET, the ASCI is forced to the following conditions:  
FIFO Empty  
All Error Bits Cleared (including those in the FIFO)  
Receive Enable Cleared (CNTLA Bit 6 = 0)  
Transmit Enable Cleared (CNTLA Bit 5 = 0)  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
109  
Figure 33. ASCI Interface Diagram  
Internal Address/Data Bus  
ASCI Transmit Data Register  
TDR (Bank: Ah, Addr: 01h)  
IRQ3  
Interrupt Request  
ASCI Transmit Shift Register  
TSR*  
(P37) TX  
(P30) RX  
ASCI Receive Data FIFO  
RDR (Bank: Ah, Addr: 02h)  
ASCI Receive Shift Register  
RSR*  
ASCI  
ASCI Control Register A  
CNTLA (Bank: Ah, Addr: 03h)  
Control  
ASCI Control Register B  
CNTLB (Bank: Ah, Addr: 04h)  
ASCI Status FIFO/Register  
STAT (Bank: Ah, Addr: 08h)  
ASCI Extension Control Reg.  
ASEXT (Bank: Ah, Addr: 05h)  
ASCI Time Constant High  
ASTCH (Bank: Ah, Addr: 07h)  
ASCI Time Constant Low  
ASTCL (Bank: Ah, Add: 06h)  
Baud Rate Generator  
Note: *Not Programmed.  
SCLK  
ASCI Interrupts  
The ASCI channel generates one interrupt, IRQ3, from two sources of interrupts:  
a receiver and a transmitter. In addition, there are several conditions that may  
cause these interrupts to trigger. Figure 64 illustrates the different conditions for  
each interrupt source enabled under program control.  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
110  
Table 64.ASCI Interrupt Conditions and Sources  
FIFO Full  
Overrun Error  
Framing Error  
Parity Error  
Start Bit  
Receiver  
Interrupt  
Sources  
ASCI  
Interrupt  
(IRQ3)  
Transmitter  
Interrupt  
Sources  
Buffer Empty  
ASCI Transmit Data Register  
Data written to the ASCI Transmit Data Register (TDR) is transferred to the Trans-  
mit Shift Register (TSR) as soon as the TSR is empty. The TSR is not software-  
accessible.The ASCI transmitter is double-buffered so data can be written to the  
TDR while the TSR is shifting out the previous byte. Data can be written into and  
read out of the TDR. When the TDR is read, the data transmit operation is not  
affected.  
READ/WRITE and reset states for bits D7–D0 of the TDR are listed in Table 65.  
Table 65.Transmit Data Register—TDR 01h/R1 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
X
D6  
R/W  
X
D5  
R/W  
X
D4  
R/W  
X
D3  
R/W  
X
D2  
R/W  
X
D1  
R/W  
X
D0  
R/W  
X
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit/  
Bit  
Field  
Position  
R/W  
State Description  
Transmit Data Register  
D7–D0  
TDR  
R/W  
X
ASCI Receive Data Register  
When a complete incoming data byte is assembled in the Receive Shift Register  
(RSR), it is automatically transferred to the highest available location in the  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
111  
Receive Data FIFO. The Receive Data Register (RDR) is the highest location in  
the Receive Data FIFO. The Receive Data Register Not Empty bit (RDRNE—bit  
7) in the STAT register is set when one or more bytes is available from the FIFO.  
The FIFO status for the character in the RDR is available in the STAT register via  
bits 6, 5 and 4. STAT should be read before reading the RDR. The data in both  
FIFO locations is popped when the character is read from the RDR.  
READ/WRITE and reset states for bits D7–D0 of the RDR are listed in Table 66.  
Table 66.Receive Data Register—RDR 02h/R2 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
X
D6  
R/W  
X
D5  
R/W  
X
D4  
R/W  
X
D3  
R/W  
X
D2  
R/W  
X
D1  
R/W  
X
D0  
R/W  
X
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit/  
Bit  
Field  
Position  
R/W  
State Description  
Receive Data Register  
D7–D0  
RDR  
R/W  
X
ASCI Control Register A  
ASCI Control Register A, CNTLA, controls data transmit, receive, and clocking  
functions. READ/WRITE and reset states for bits D7–D0 are listed in Table 67.  
Table 67.Control Register A—CNTLA 03h/R3 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
1
D3  
R/W  
0
D2  
R/W  
0
D1  
R/W  
0
D0  
R/W  
0
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit  
Bit/Field Position  
R/W  
State Description  
D7  
MPE  
R/W  
0
Multiprocessor Enable  
0: Receive all bytes  
1: Filter bytes with MPB = 0  
D6  
RE  
R/W  
0
Receiver Enable  
0: ASCI Receiver Disabled  
(P30 = Input)  
1: ASCI Receiver Enabled  
(P30 = RX)  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
112  
Bit  
Bit/Field Position  
R/W  
State Description  
D5  
TE  
R/W  
0
Transmitter Enable  
0: ASCI Transmitter Disabled  
(P37 = Output)  
1: ASCI Transmitter Enabled  
(P37 = TX)  
D4  
D3  
Reserved  
MPBR  
EFR  
R/W  
R
1
0
0
Reserved  
Multiprocessor Bit Received  
W
Error Flag Reset  
0: Clear Error Latches  
1: No Effect  
D2–D0  
MOD2–0  
R
0
MOD2—Number of Data Bits  
0: 7 Data Bits  
1: 8 Data Bits  
MOD1—Parity Enabled  
0: No Parity  
1: With Parity  
MOD0—Number of Stop Bits  
0: 1 Stop Bit  
1: 2 Stop Bits  
Multiprocessor Enable. The ASCI features a multiprocessor communication mode  
that utilizes an extra data bit for selective communication when a number of pro-  
cessors share a common serial bus. Multiprocessor data format is selected when  
the MP in the corresponding register is set to 1. If MULTIPROCESSOR mode is  
not selected (MP bit in CNTLB = 0), MULTIPROCESSOR ENABLE (MPE, bit 7)  
exhibits no effect. If MULTIPROCESSOR mode is selected (MPE bit in  
CNTLB = 1), MPE enables or disables the wake-up feature as follows. If MPE is  
set to 1, only received bytes in which the multiprocessor bit (MPB) = 1 are treated  
as valid data characters and loaded into the receiver FIFO with corresponding  
error flags in the status FIFO. Bytes with MPB = 0 are ignored by the ASCI. If MPE  
is reset to 0, all bytes are received by the ASCI, regardless of the state of the MPB  
data bit.  
Receiver Enable. When Receiver Enable (RE, bit 6) is set to 1, the ASCI receiver  
is enabled. When RE is reset to 0, the receiver is disabled and any receive opera-  
tion in progress is aborted. However, the previous contents of the receiver data  
and status FIFO are not affected.  
Transmitter Enable. When Transmitter Enable (TE, bit 5) is set to 1, the ASCI  
transmitter is enabled. When TE is reset to 0, the transmitter is disabled and any  
transmit operation in progress is aborted. However, the previous contents of the  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
113  
transmitter data register and the TDRE flag (bit 1 of the STAT register) are not  
affected.  
Bit 4 is reserved.  
Multiprocessor Bit Receive. When MULTIPROCESSOR mode is enabled (MP in  
CNTLB = 1), this READ-ONLY bit, when read, contains the value of the MPB bit  
for the data byte currently available at the Receive Data Register (the top of the  
receiver FIFO). The Multiprocessor Bit Receive bit, MPBR, is bit 3.  
Error Flag Reset. When the WRITE-ONLY Error Flag Reset (EFR), bit 3, is written  
to 0, the error flags (OVRN, FE; PE in STAT and BRK in ASEXT) are cleared to 0.  
This command self-resets, and as a result, writing EFR to a 1 is not required.  
ASCI Data Format Mode. Bits 2–0 program the ASCI data format, as indicated in  
Table 68.  
Table 68.ASCI Data Format Mode Control Bits  
Bit  
2
Name  
MOD2  
MOD1  
MOD0  
Function  
Bit = 0  
Bit = 1  
Number of Data Bits  
Parity Enabled  
Number of Stop Bits  
7
No Parity  
1
8
With Parity  
2
1
0
If MOD1 = 1, parity is checked on received data and a parity bit is appended to the  
data bits in the transmitted data. Parity Even/Odd (PEO) in CNTLB selects even  
or odd parity.  
The ASCI serial data format is illustrated in Figure 34.  
Figure 34. ASCI Serial Data Format  
7 or 8 bits Data Field  
1 or 2  
Stop Bit(s)  
Start Bit  
Parity  
Bit  
ASCI Control Register B  
Control Register B, CNTLB, controls multiprocessor, parity, and clock sourcing  
functions. READ/WRITE and reset states for bits D7–D0 are listed in Table 69.  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
 
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
114  
Table 69.Control Register B—CNTLB 04h/R4 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
0
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
0
D3  
R/W  
0
D2  
R/W  
1
D1  
R/W  
1
D0  
R/W  
1
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit/  
Bit  
Field  
Position  
R/W  
State Description  
D7  
MPBT  
R/W  
0
Multiprocessor Bit Transmitter  
0: Transmit 0 in MPB  
1: Transmit 1 in MPB  
D6  
MP  
R/W  
0
Multiprocessor Mode  
0: MULTIPROCESSOR mode disabled  
1: MULTIPROCESSOR mode enabled  
(no parity)  
D5  
D4  
D3  
D2  
D1  
D0  
PR  
W
R/W  
R/W  
R
0
0
0
1
1
1
Prescale  
0: BRG ÷ 10  
1: BRG ÷ 30  
PEO  
DR  
Parity Even/Odd  
0: Even Parity  
1: Odd Parity  
Divide Ratio  
0: Divide by 16  
1: Divide by 64  
SS2  
SS1  
SS0  
Clock Source and Speed Bits—SS2  
0: ÷1, ÷2, ÷4, ÷8  
1: ÷16, ÷32, ÷64, Reserved  
R
Clock Source and Speed Bits—SS1  
0: ÷1, ÷2, ÷16, ÷32  
1: ÷4, ÷8, ÷64, Reserved  
R
Clock Source and Speed Bits—SS0  
0: ÷1, ÷4, ÷16, ÷64  
1: ÷2, ÷8, ÷32, Reserved  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
115  
Multiprocessor Bit Transmit. When multiprocessor format is selected (MP bit = 1),  
Multiprocessor Bit Transmit (MPBT, bit 7) is used to specify the MPB data bit for  
transmission. If MPBT = 1, then a 1 is transmitted in the MPB bit position. If MPBT  
= 0, a 0 is transmitted.  
MULTIPROCESSOR Mode. When MULTIPROCESSOR mode is set to 1, the serial  
data format is configured for MULTIPROCESSOR mode (MP, bit 6), adding a bit  
position whose value is specified in MPBT immediately after the specified number  
of data bits and preceding the specified number of STOP bits.  
Note:  
The multiprocessor format does not provide parity. The serial data format  
while in MP mode is illustrated in Figure 35.  
Figure 35. Multiprocessor Mode Serial Data Format  
7 or 8 bits Data Field  
1 or 2  
Stop Bit(s)  
Start Bit  
MPB  
If MP = 0, the data format is based on MOD2–0 in CNTLA and may include parity.  
BRG Prescaler. The Prescale bit specifies the baud rate generator (BRG, bit 5)  
prescale factor when using the SS2–0 bits to define the ASCI baud rate (BRG  
mode = 0). Writing a 0 to this bit sets the BRG Prescaler to divide by 10. Setting  
this bit to a 1 sets the BRG Prescaler to divide by 30. See the Baud Rate Genera-  
tion Summary for more information on setting the ASCI baud rate.  
Parity Even/Odd. Parity Even/Odd (PEO, bit 4) controls the parity bit transmitted  
on the serial output and the parity check on the serial input. If PEO is cleared to 0,  
even parity is transmitted and checked. If PEO is set to 1, odd parity is transmitted  
and checked.  
Divide Ratio. The Divide Ratio bit (DR, bit 3) specifies the divider used to obtain  
the baud rate from the data sampling clock when using the SS2–0 bits to define  
the ASCI baud rate (BRG mode = 0). If DR is 0, then DIVIDE-BY-16 is used. If DR  
is set to 1, then DIVIDE-BY-64 is used. See the Baud Rate Generation Summary  
for more information on setting the ASCI baud rate.  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
116  
DR  
0
Sampling Clock  
Divide by 16  
1
Divide by 64  
Clock Source and Speed Select. When the BRG mode bit (bit 3) in the ASEXT reg-  
ister is set to 0, these 3 bits, along with DR and PR in this register define the ASCI  
baud rate. Bits 2, 1 and 0 specify a power-of-two divider of the SCLK as defined in  
Table 70.These bits should never be set to all 1s or erratic results may occur. See  
the Baud Rate Generation Summary for more information on setting the ASCI  
baud rate.  
Table 70.Clock Source and Speed Bits  
SS2  
0
SS1  
0
SS0  
0
Divider (DIV)  
÷1  
÷2  
0
0
1
0
1
0
÷4  
0
1
1
÷8  
1
0
0
÷16  
1
0
1
÷32  
1
1
0
÷64  
1
1
1
Reserved  
ASCI Extension Control Register  
Following are the bit functions for the ASCI Extension Control Register (ASEXT).  
Table 71.Extension Control Register—ASEXT 05h/R5 Bank Ah: READ/WRITE  
Bit  
D7  
R
D6  
R/W  
0
D5  
R/W  
0
D4  
R/W  
0
D3  
R/W  
0
D2  
R/W  
0
D1  
R
D0  
R/W  
0
R/W  
Reset  
P30  
0
Note: R = Read, W = Write, X = Indeterminate.  
Bit/  
Bit  
Field  
Position  
R/W  
R
State Description  
D7  
D6  
D5  
RX  
P30 RX Data State  
Reserved  
Reserved  
R/W  
R/W  
0
0
Reserved  
Reserved  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
117  
D4  
D3  
Reserved  
BRG  
R/W  
R/W  
0
0
Reserved (must be 0)  
Baud Rate Generator Mode  
0: Use SS Selection  
1: Use ASTH or ASTL Value  
D2  
D1  
D0  
RIS  
BD  
SB  
R/W  
R
0
0
0
RX Interrupt on Start Bit  
0: No IRQ on Start Bit  
1: IRQ3 on Start Bit  
Break Detect  
0: Valid Data Byte  
1: Break Detected  
R/W  
Send Break  
0: Normal Operation  
1: Send Break  
RX State. This bit provides the real-time state of the channel’s receive data input  
pin (RX, bit 7), which is P30.  
Reserved bits 6, 5, and 4. When read, bits 6 and 5 reflect the default value 0.When  
written, these bits are ignored. Bit 4 must be set to 0 or erratic results may occur.  
BRG Mode. When the Baud Rate Generator (BRG, bit 3) bit is set to 1, the ASCI’s  
baud rate is set by the 16-bit programmable divider programmed in ASCI Time  
Constant High (ASTH) and ASCI Time Constant Low (ASTL). If this bit is set to 0,  
the baud rate is defined by the PR bit, the DR bit, and the SS2–0 bits in the  
CNTLB register. In either case, the source for the baud rate generator is the  
SCLK. See the Baud Rate Generation Summary for more information on setting  
the ASCI baud rate.  
RX Interrupt on Start. If software sets RX (bit 2) to 1, a receive interrupt is  
requested (in a combinatorial fashion) when a START bit is detected on RX. Such  
a receive interrupt is always followed by setting RDRNE (bit 7) in the middle of the  
STOP bit. Upon receiving the interrupt service request, the RX Interrupt on Start  
(RIS) bit must be set to 0, then immediately set to 1 to continue operation with a  
start bit interrupt. One function of this feature is to wake the part from HALT mode  
when a character arrives, so that the ASCI receives clocking to process the char-  
acter. Another function is to ensure that the associated interrupt service routine is  
activated in time to sense the setting of RDRNE in the status register, and to start  
a timer for baud rate measurement at that time.  
Break Detect. This READ-ONLY status bit (BD, bit 1)is set to 1 when a break is  
detected. A break is defined as a framing error with the data bits all equal to 0.  
The all-zero byte with its associated error bits are transferred to the FIFO if it is not  
full. If the FIFO is full, an overrun is generated, but the break, framing error and  
data are not transferred to the FIFO. Any time a break is detected, the receiver  
does not receive any more data until the RX pin returns to a High state. When set,  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
118  
this bit remains set until it is cleared by writing a 0 to the EFR bit in the CNTLA  
register.  
Send Break. Setting the SB bit (bit 0) to a 1 forces the channel’s transmitter data  
output pin, TX, to a Low for as long as it remains set. Before starting the break,  
any character(s) in the TSR and in the TDR are transmitted completely. If a char-  
acter is loaded into the TDR while a break is being generated, that character is  
held until the break is terminated and then transmitted.  
ASCI Time Constant Registers  
The ASTL and ASTH registers are only used when the BRG mode bit in the  
ASEXT register is set to 1. These two 8-bit registers form a 16-bit counter with a  
flip-flop logic circuit (DIVIDE-BY-2) on the output so that the final BRG output is  
symmetrical. The values written to these registers determine the time constant  
from which the baud rate is generated.  
READ/WRITE and reset states for bits D7–D0 of the ASTL and ASTH registers  
are listed in Tables 72 and 73, respectively.  
Table 72.Time Constant Register Low—ASTL 06h/R6 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
1
D6  
R/W  
1
D5  
R/W  
1
D4  
R/W  
1
D3  
R/W  
1
D2  
R/W  
1
D1  
R/W  
1
D0  
R/W  
1
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit/  
Bit  
Field  
Position  
R/W  
State Description  
ASCI Time Constant Low  
D7–D0  
ASTL  
R/W  
1
Table 73.Time Constant Register High—ASTH 07h/R7 Bank Ah: READ/WRITE  
Bit  
D7  
R/W  
1
D6  
R/W  
1
D5  
R/W  
1
D4  
R/W  
1
D3  
R/W  
1
D2  
R/W  
1
D1  
R/W  
1
D0  
R/W  
1
R/W  
Reset  
Note: R = Read, W = Write, X = Indeterminate.  
Bit/  
Bit  
Field  
Position  
R/W  
State Description  
ASCI Time Constant High  
D7–D0  
ASTH  
R/W  
1
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
119  
ASCI Status Register  
The ASCI Status Register, STAT, controls status functions. READ/WRITE and  
reset states for bits D7–D0 are listed in Table 74.  
Table 74.Status Register—STAT 08h/R8 Bank Ah: READ/WRITE  
Bit  
D7  
R
D6  
R
D5  
R
D4  
R
D3  
R/W  
0
D2  
R/W  
0
D1  
R
D0  
R/W  
0
R/W  
Reset  
0
0
0
0
1
Note: R = Read, W = Write, X = Indeterminate.  
Bit/  
Bit  
Field  
Position  
R/W  
State Description  
D7  
D6  
D5  
D4  
D3  
RDRNE  
R
0
0
0
0
0
Receive Data Register Not Empty  
0: Receive FIFO Empty  
1: Receive FIFO contains 1 or more bytes  
OE  
R
R
Overrun Error  
0: Receive OK  
1: Next byte is a FIFO overrun  
PE  
Parity Error  
0: Parity OK  
1: Parity Error  
FE  
R
Framing Error  
0: Receive OK  
1: Framing Error  
RIE  
R/W  
Receive Interrupt Enable  
0: No IRQ on Receive  
1: IRQ3 on RDRNEor Start Bit  
D2  
D1  
Reserved  
TDRE  
R/W  
R
0
1
Reserved  
Transmit Data Register Empty  
0: Transmitter Working  
1: Transmit Buffer Empty  
D0  
TIE  
R/W  
0
Transmit Interrupt Enable  
0: No IRQ on Transmit  
1: IRQ3 on TDRE  
Receive Data Register Not Empty. RDRNE (RDRNE, bit 7)is set to 1 when the  
receiver transfers a character from the RSR into an empty RX FIFO.  
Note:  
If a framing or parity error occurs, RDRNE is still set and the receive data  
(which generated the error) is still loaded into the FIFO.  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
120  
When there is more than one byte in the FIFO and software reads a byte, RDRNE  
is not cleared to 0. The bit is cleared when the last byte is read from the FIFO.  
Overrun Error. An overrun error (OE, bit 6) occurs if the receive FIFO is still full  
when the receiver completes assembly of a character and is ready to transfer it to  
the FIFO. If this situation occurs, the overrun error bit associated with the previous  
byte in the FIFO is set. In this case, the latest data byte is not transferred from the  
shift register to the FIFO and is lost.  
When an overrun occurs, the receiver does not place any further data in the FIFO  
until the most recent good byte received (the byte with the associated overrun  
error bit set) moves to the top of the FIFO and sets the Overrun latch, and soft-  
ware then clears the Overrun latch. Assembly of bytes continues in the shift regis-  
ter, but this data is ignored until the byte with the overrun error reaches the top of  
the FIFO and the status is cleared. When set, the bit remains set until it is cleared  
by writing a 0 to the EFR bit in the CNTLA register. The bit is also cleared during  
Power-On Reset.  
Parity Error. A parity error (PE, bit 5) is detected when parity generation and  
checking is enabled by the MOD1 bit (bit 1) in the CNTLA register and a character  
is assembled in which the parity does not match that specified by the PEO bit (bit  
4) in CNTLB.  
Note:  
PE is FIFOed and the error bit is not actually set until the associated data  
becomes available for reading in the RDR.  
When set, the bit remains set until it is cleared by writing a 0 to the EFR bit (bit 3)  
in the CNTLA register. The bit is cleared at Power-On Reset.  
Framing Error. A framing error (FE, bit 4) is detected when the stop bit of a char-  
acter is sampled as a 0 (space). Like PE, FE is FIFOed and the error bit is not  
actually set until the associated data becomes available for reading in the RDR.  
When set, the bit remains set until it is cleared by writing a 0 to the EFR bit (bit 3)  
in the CNTLA register. The bit is cleared at Power-On Reset.  
Receive Interrupt Enable. RIE, bit 3, must be set to 1 to enable ASCI receive inter-  
rupt requests. The Z8 edge-triggered interrupt (IRQ3) is generated when RDRNE  
(bit 7 of the STAT Register) is transitioned from 0 to 1. IRQ3 is also generated if a  
start bit is detected; the RIE bit is set to 1, and bit 2 of the ASEXT register is set to  
1.  
Reserved Bit 2. When read, bit 2 reflects the default value 0. When written, bit 2 is  
ignored.  
Transmit Data Register Empty. TDRE = 1 indicates that the Transmit Data Register  
(TDR) is empty and that the next data byte to be transmitted can be written into  
the TDR. TDRE, bit 1, is cleared to 0 after the byte is written to TDR, until the  
ASCI transfers the byte from the TDR to the Transmit Shift Register (TSR), and  
then TDRE is again set to 1. TDRE is set to 1 at Power-On Reset.  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
121  
Transmit Interrupt Enable. TIE, bit 0, should be set to 1 to enable ASCI transmit  
interrupt requests. An interrupt (IRQ3) is generated when TDRE (bit 1 of the STAT  
register) transitions from 0 to 1. TIE is cleared to 0 at Power-On Reset.  
Note:  
If both TIE and RIE are set to 1, a receive interrupt is not generated on the  
incoming (RDR) data. To generate a receive interrupt:  
1. The user must set only RIE to 1.  
2. If both TIE and RIE have been previously set to 1, ZiLOG recommends  
that the EFR flag also be cleared to 0. If the EFR flag is not cleared to  
0, the receive interrupt may not occur. Clear the EFR flag bit with the  
following instruction:  
push  
srp  
rp  
#%1A  
;save the register pointer  
;switch to the ASCI control register  
;bank  
Loop1:ld  
temp,RDR  
;clean up the RDR register  
tm  
STAT,#10000000b ;make sure no data exists  
;in the RDR FIFO  
jr  
nz,Loop1  
and  
pop  
CNTLA,#11110111b :clear EFR  
rp  
;restore the register pointer  
Baud Rate Generation Summary  
The application can select between one of two baud rate generators for the ASCI.  
If the BRG mode bit in the ASEXT register is set to 0, the SS2,1,0 bits, the DR bit,  
and the PR bit in CNTLB are used to select the baud rate. If the BRG mode bit is  
set to 1, the ASTL and ASTH registers are used to select the baud rate.  
The following formulas are used to calculate the baud rate from the two baud rate  
generators:  
If BRG mode = 0:  
Baud Rate =  
SCLK  
(10 + 20 x PS) x DIV x DIVIDE RATIO  
Where:  
1. SCLK is the system clock.  
2. PS = 1 or 0 and is bit 5 of CNTLB.  
3. DIV = 1, 2, 4, 8, 16, 32 or 64 as reflected by SS2–0 in CNTLB.  
4. DIVIDE RATIO = 16 or 64, as defined by DR (bit 3) in CNTLB.  
If BRG mode = 1:  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
122  
SCLK  
(2 x (TC + 2) x DIVIDE RATIO  
Baud Rate =  
or  
SCLK  
2 x BAUD RATE x DIVIDE RATIO  
TC =  
– 2  
Where:  
1. SCLK is the system clock.  
2. TC is the 16-bit value programmed in ASTL and ASTH. A minimum TC value  
of 0 is valid.  
3. DIVIDE RATIO = 16 or 64, as defined by DR in CNTLB.  
4. BAUD RATE is the desired baud rate.  
5. A maximum baud rate of 115Kbps can be obtained by using a 16-MHz  
Crystal, when TC = 0 and the DIVIDE RATIO = 16.  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
123  
Table 75.Baud Rate List—BRG Mode = 0  
Sampling  
Example Baud Rate  
(bps)  
Prescaler  
Rate  
Baud Rate  
SCLK= SCLK= SCLK=  
Divide  
Ratio  
Divide General  
DR Rate SS2 SS1 SS0 Ratio Divide Ratio  
6.144 4.608 3.072  
PS  
MHz  
38400  
19200  
9600  
4800  
2400  
1200  
600  
MHz  
MHz  
19200  
9600  
4800  
2400  
1200  
600  
0
SCLK ÷ 10  
0
16  
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
÷1  
÷2  
÷4  
÷8  
SCLK ÷ 160  
SCLK ÷ 320  
SCLK ÷ 640  
SCLK ÷ 1280  
÷16 SCLK ÷ 2560  
÷32 SCLK ÷ 5120  
÷64 SCLK ÷ 10240  
300  
1
64  
÷1  
÷2  
÷4  
÷8  
SCLK ÷ 640  
SCLK ÷ 1280  
SCLK ÷ 2560  
SCLK ÷ 5120  
9600  
4800  
2400  
1200  
600  
4800  
2400  
1200  
600  
÷16 SCLK ÷ 10240  
÷32 SCLK ÷ 20480  
÷64 SCLK ÷ 40960  
300  
300  
150  
150  
75  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
124  
Table 75.Baud Rate List—BRG Mode = 0 (Continued)  
Sampling  
Example Baud Rate  
(bps)  
Prescaler  
Rate  
Baud Rate  
SCLK= SCLK= SCLK=  
Divide  
Ratio  
Divide General  
DR Rate SS2 SS1 SS0 Ratio Divide Ratio  
6.144 4.608 3.072  
PS  
MHz  
MHz  
4800  
2400  
1200  
600  
300  
150  
75  
MHz  
1
SCLK ÷ 30  
0
16  
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
÷1  
÷2  
÷4  
÷8  
SCLK ÷ 480  
SCLK ÷ 960  
SCLK ÷ 1920  
SCLK ÷ 3840  
÷16 SCLK ÷ 7680  
÷32 SCLK ÷ 15360  
÷64 SCLK ÷ 30720  
1
64  
÷1  
÷2  
÷4  
÷8  
SCLK ÷ 1920  
SCLK ÷ 3840  
SCLK ÷ 7680  
SCLK ÷ 15360  
2400  
1200  
600  
300  
150  
75  
÷16 SCLK ÷ 30720  
÷32 SCLK ÷ 61440  
÷64 SCLK ÷  
122880  
37.5  
PS004005-1100  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/Transmitter  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
125  
In-Circuit Serial Programming  
In-Circuit Serial Programming Block Diagram  
Figure 36 shows the basic functionality of the In-Circuit Serial Programming Inter-  
face (ICSP). The ICSP interface receives and transmits data via the SDIO line in  
conjunction with an ICSP clock on the SCK line. Please refer to the MUZE Pro-  
gramming Specification for more details.  
Figure 36. ICSP Block Diagram  
OTP  
Options  
SDIO  
ICSP  
EPROM  
SCK  
The ICSP interface is a five-wire connection. The connections for the MUZE are:  
. Power Supply.  
V
CC  
SDIO. Serial Data Input/Output (SDIO)—data input and output pin, open-drain.  
SCK. Serial ICSP Clock (SCK)—data input and output clock.  
ICSP_RESET. Active Low (ICSP) Reset. ICSP_RESET is an internal serial pro-  
gramming reset, not a complete Z8 reset, as is the case with POR.  
GND. Ground.  
The recommended circuit is illustrated in Figure 37.  
PS004005-1100  
P R E L I M I N A R Y  
In-Circuit Serial Programming  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
126  
Figure 37. ICSP Connectivity  
VCC  
Optional protection diode.  
ICSP provides limited  
supply current.  
V
CC  
1 KΩ  
VCC  
GND  
GND  
GND  
GND  
SCK  
SDIO  
SCK  
SDIO  
ICSP Cable  
VPP/ICSP_RESET  
VPP/ICSP_RESET  
ICSP  
Cable  
Header  
on  
Z8  
User  
PCB  
Note:  
The diode shown in Figure 37 is an optional protection diode. ICSP  
provides limited supply current.  
The following operations are specific to programming in ICSP mode:  
Serial Operations—Unlock  
Serial Programming Option Bits—WORD Mode  
Serial Programming Option Bits—BYTE Mode  
Serial Operations—Reading  
Data Verify  
Device-Specific Options  
For a complete description of these operations, please refer to the MUZE Pro-  
gramming Specification.  
PS004005-1100  
P R E L I M I N A R Y  
In-Circuit Serial Programming  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
127  
Packaging  
Figure 38 illustrates the 20-pin DIP package for the Z86E122, Z86E123,  
Z86E124, Z86E125, and Z86E126 microcontroller devices.  
Figure 38. 20-Pin DIP Package Diagram  
PS004005-1100  
P R E L I M I N A R Y  
Packaging  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
128  
Figure 39 illustrates the 20-pin SOIC package for the Z86E122, Z86E123,  
Z86E124, Z86E125, and Z86E126 microcontroller devices.  
Figure 39. 20-Pin SOIC Package Diagram  
PS004005-1100  
P R E L I M I N A R Y  
Packaging  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
129  
Figure 40 illustrates the 28-pin DIP package for the Z86E132, Z86E133,  
Z86E134, Z86E135, and Z86E136 microcontroller devices.  
Figure 40. 28-Pin DIP Package Diagram  
PS004005-1100  
P R E L I M I N A R Y  
Packaging  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
130  
Figure 41 illustrates the 28-pin SOIC package for the Z86E132, Z86E133,  
Z86E134, Z86E135, and Z86E136 microcontroller devices.  
Figure 41. 28-Pin SOIC Package Diagram  
PS004005-1100  
P R E L I M I N A R Y  
Packaging  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
131  
Figure 42 illustrates the 40-pin DIP package for the Z86E142, Z86E143,  
Z86E144, Z86E145, and Z86E146 microcontroller devices.  
Figure 42. 40-Pin DIP Package Diagram  
PS004005-1100  
P R E L I M I N A R Y  
Packaging  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
132  
Figure 43 illustrates the 44-pin PQFP package for the Z86E142, Z86E143,  
Z86E144, Z86E145, and Z86E146 microcontroller devices.  
Figure 43. 44-Pin PQFP Package Diagram  
PS004005-1100  
P R E L I M I N A R Y  
Packaging  
 
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
133  
Ordering Information  
Table 76.Ordering Information  
Size  
Pin Count  
Package  
DIP  
Order Number*  
Z86E136PZ016SC  
Z86E136SZ016SC  
Z86E146PZ016SC  
Z86E146FZ016SC  
Z86E135PZ016SC  
Z86E135SZ016SC  
Z86E145PZ016SC  
Z86E145FZ016SC  
Z86E134PZ016SC  
Z86E134SZ016SC  
Z86E144PZ016SC  
Z86E144FZ016SC  
Z86E133PZ016SC  
Z86E133SZ016SC  
Z86E143FZ016SC  
Z86E143SZ016SC  
Z86E132PZ016SC  
Z86E132SZ016SC  
Z86E142PZ016SC  
Z86E142FZ016SC  
64 KB  
28  
SOIC  
DIP  
40  
44  
28  
PQFP  
DIP  
32 KB  
16 KB  
8 KB  
SOIC  
DIP  
40  
44  
28  
PQFP  
DIP  
SOIC  
DIP  
40  
44  
28  
PQFP  
DIP  
SOIC  
DIP  
40  
44  
28  
PQFP  
DIP  
4 KB  
SOIC  
DIP  
40  
44  
PQFP  
Note: *The Standard temperature range is 0ºC to 70ºC. For parts that operate in the Extended temperature range of  
–40ºC to 105ºC, substitute the letter E for the letter S. For example, the Order Number for a 28-pin DIP operating at  
64 KB in the Extended temperature range is Z86E136PZ016EC.  
For fast results, contact your local ZiLOG sale office for assistance in ordering the  
part(s) desired.  
PS004005-1100  
P R E L I M I N A R Y  
Ordering Information  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
134  
Part Number Description  
ZiLOG part numbers consist of a number of components. For example, part num-  
ber Z86E136PZ016SC is a 16-MHz 28-pin DIP that operates in the –0ºC to +70ºC  
temperature range, with Plastic Standard Flow. The Z86E136PZ016SC part num-  
ber corresponds to the code segments indicated in the following table.  
Z
ZiLOG Prefix  
Z8 Product  
86  
E
OTP Product  
Product Number  
Package  
136  
PZ  
016  
S
Speed (MHz)  
Temperature  
Environmental Flow  
C
For fast results, contact your local ZiLOG sales office for assistance in ordering  
the part required.  
Precharacterization Product  
The product represented by this document is newly introduced and ZiLOG has not  
completed the full characterization of the product. The document states what  
ZiLOG knows about this product at this time, but additional features or non-con-  
formance with some aspects of the document may be found, either by ZiLOG or  
its customers in the course of further application and characterization work. In  
addition, ZiLOG cautions that delivery may be uncertain at times, due to start-up  
yield issues.  
ZiLOG, Inc.  
910 East Hamilton Avenue, Suite 110  
Campbell, CA 95008  
Telephone (408) 558-8500  
FAX 408 558-8300  
Internet: www.ZiLOG.com  
PS004005-1100  
P R E L I M I N A R Y  
Ordering Information  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
135  
Document Information  
Document Number Description  
The Document Control Number that appears in the footer of each page of this  
document contains unique identifying attributes, as indicated in the following  
table:  
PS  
0040 Unique Document Number  
05 Revision Number  
1100 Month and Year Published  
Product Specification  
Change Log  
Rev  
Date  
Purpose  
By  
01  
02  
03  
04  
05  
02/00  
03/00  
03/00  
06/00  
11/00  
Original issue  
Corrections  
K. Johnston, R. Beebe  
K. Johnston, R. Beebe  
K. Johnston, R. Beebe  
K. Johnston, R. Beebe  
K. Johnston, R. Beebe  
Corrections  
Corrections  
Additions and Corrections  
PS004005-1100  
P R E L I M I N A R Y  
Document Information  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
136  
Customer Feedback Form  
MUZE Product Specification  
If you experience any problems while operating this product, or if you note any inaccura-  
cies while reading this Product Specification, please copy and complete this form, then  
mail or fax it to ZiLOG (see Return Information, below). We also welcome your sugges-  
tions!  
Customer Information  
Name  
Country  
Phone  
Fax  
Company  
Address  
City/State/Zip  
E-Mail  
Product Information  
Serial # or Board Fab #/Rev. #  
Software Version  
Document Number  
Host Computer Description/Type  
Return Information  
ZiLOG  
System Test/Customer Support  
910 E. Hamilton Avenue, Suite 110, MS 4–3  
Campbell, CA 95008  
Fax: (408) 558-8536  
Email: tools@zilog.com  
Problem Description or Suggestion  
Provide a complete description of the problem or your suggestion. If you are reporting a  
specific problem, include all steps leading up to the occurrence of the problem. Attach  
additional pages as necessary.  
_______________________________________________________________________________  
_______________________________________________________________________________  
_______________________________________________________________________________  
_______________________________________________________________________________  
_______________________________________________________________________________  
_______________________________________________________________________________  
PS004005-1100  
P R E L I M I N A R Y  
Customer Feedback Form  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
137  
Index  
A
C
Absolute Maximum Ratings . . . . . . . . . . . .75  
AC Electrical Characteristics . . . . . . . . . . . .86  
Additional Timing . . . . . . . . . . . . . . . . . . . .91  
Address output . . . . . . . . . . . . . . . . . . . . . .20  
Address Strobe . . . . . . . . . . . . . . . .12, 16, 20  
Ambient Temperature . . . . . . . . . . . . . . . . .75  
AN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
AN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
ANALOG mode . . . . . . . . . . . . . . . . . . . . . .25  
Architectural Overview . . . . . . . . . . . . . . . . .1  
AS . . . . . . . .12, 16, 20, 22, 28, 41, 56, 87–90  
ASCI Control Register A . . . . . . . . . . .25, 112  
ASCI Control Register B . . . . . . . . . . . . . .115  
ASCI Data Format Mode . . . . . . . . . . . . . .113  
Control Bits . . . . . . . . . . . . . . . . . . . . .113  
ASCI Extension Control Register . . . .65, 108  
ASCI Status FIFO/Registers . . . . . . . . . . .108  
ASCI Time Constant High Register . . .66–67  
ASCI Time Constant Low Register . . . . . . .66  
ASEXT . . . . . . . . . . . . . . . . . . . .61, 113, 116  
ASEXT register . . . . .108, 116, 118, 120–121  
ASTH . . . . . . . . . . . . . . . . . .61, 65, 117, 121  
ASTL . . . . . . . . . . . . . . . . . . .61, 65, 117, 121  
ASTL Register Bit Functions . . . . . . . .66, 118  
Autolatch . . . . . . . . . . . . . . . . . .24, 27, 76, 81  
High Current . . . . . . . . . . . . . . . . . .80, 85  
Low Current . . . . . . . . . . . . . . . . . .79, 84  
AUTOLATCH DISABLE option . . . . . . . . . .27  
AUTOLATCH Mode . . . . . . . . . . . . . . . . .103  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . 101  
Carry Flag . . . . . . . . . . . . . . . . . . . . . . . . . 59  
ceramic resonator . . . . . . . . . . 3, 20, 38, 103  
Change Log . . . . . . . . . . . . . . . . . . . . . . . 135  
Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Clock Input . . . . . . . . . . . . . . . . . . . . . . 92, 95  
High Voltage . . . . . . . . . . . . . . . . . 76, 81  
Low Voltage . . . . . . . . . . . . . . . . . . 76, 81  
Clock Source . . . . . . . . . . . . . . . . . . . . . . 116  
for WDT . . . . . . . . . . . . . . . . . . . . . . . . 47  
CMOS- compatible . . . . . . . . . . . . 20, 22, 23  
CMOS level . . . . . . . . . . . . . . . . . . . . 27, 103  
CNTLA . . . . . . . . . . 25, 61, 63, 105, 111, 115  
register . . . . . . . . . . . . . . . . 108, 118, 120  
CNTLB . . . . . . . . .61, 64, 105, 108, 112, 113,  
114, 120, 121  
register . . . . . . . . . . . . . . . . . . . . 108, 117  
Cold or Warm Start . . . . . . . . . . . . . . . . . . 45  
comparator front end . . . . . . . . . . . . . . . . . 25  
Comparator Inputs and Outputs . . . . . . . . 25  
Comparator Output . . . . . . . . . . . . 26, 39, 69  
Port 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
comparator reference voltage . . . . . . . . . . 25  
input . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Comparator1 . . . . . . . . . . . . . . . . . . . . . . . 37  
Comparator2 . . . . . . . . . . . . . . . . . . . . . . . 37  
comparators, onboard . . . . . . . . . . . . . . . . 24  
Control Register A . 25, 61, 63, 105, 111, 115  
Control Register B . . . . . . . .61, 64, 105, 108,  
112, 113, 114, 120, 121  
Control Registers . . . . . . . . . . . . . . . . . . . . 50  
Counter/Timer 0 . . . . . . . . . . . . . . . . . . . . . 53  
Register . . . . . . . . . . . . . . . . . . . . . . . . 53  
Counter/Timer 1 . . . . . . . . . . . . . . . . . . 24, 52  
Register . . . . . . . . . . . . . . . . . . . . . . . . 52  
Counter/Timers . . . . . . . . . . . . . . . . . . . . . 34  
B
Baud Rate Generation . . . . . . . . . . .108, 121  
Break detect . . . . . . . . . . . . . . . . . . .105, 117  
bit . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
BRG mode . . . . . . . . . . . .115, 117–118, 121  
BRG Prescaler . . . . . . . . . . . . . . . . . . . . .115  
byte-programmed input buffers . . . . . . . . . .22  
PS004005-1100  
P R E L I M I N A R Y  
Index  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
138  
Crystal . . . . . . . . . . . . . . . . . . . .43, 46, 71, 72  
clock . . . . . . . . . . . . . . . . . . . . . . . .47, 49  
operation . . . . . . . . . . . . . . . . . . . . . . . .41  
oscillation . . . . . . . . . . . . . . . . . . . . . . .39  
pins . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Crystal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Crystal 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Customer Feedback Form . . . . . . . . . . . .136  
Customer Information . . . . . . . . . . . . . . . .136  
Extended Temperature Range . . . . . . 81, 89  
Extension Control Register . . . . . . . . 65, 116  
External Clock Divide-by-Two . . . . . . . . . . 43  
External Clock Generator . . . . . . . . . . 76, 81  
external crystal oscillation . . . . . . . . . . . . . 39  
External Memory Timing . . . . . . . . . . . . . . 55  
external memory transfer . . . . . . . . . . . . . . 20  
External Program Memory . . . . . . . 25, 31–32  
external single-phase clock . . . . . . . . . . . . 20  
External Timing Input . . . . . . . . . . . . . . . . . 52  
D
F
D0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
D1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
D4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
D5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
D6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41, 45  
Data Memory . . . . . . . . .1, 20, 24, 30, 31, 34  
Select . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Data Strobe . . . . . . . . . . . . . . . . . . .12, 16, 20  
DAV1 . . . . . . . . . . . . . . . . . . . . . . . . . . .22, 55  
DC Electrical Characteristics . . . . . . . . . . .76  
Decimal Adjust Flag . . . . . . . . . . . . . . . . . .59  
Divide Ratio . . . . . . . . . . . . . . . .115, 121, 123  
DM . . . . . . . . . . . . . . . . . . .25, 31, 55, 88, 90  
DMA applications . . . . . . . . . . . . . . . . .21, 22  
Document Information . . . . . . . . . . . . . . . .135  
Document Number Description . . . . . . . . .135  
DS . . . . . . . .12, 16, 20–22, 28, 41, 56, 87–90  
FE . . . . . . . . . . . . . . . . . . . . . . . . . . 113, 120  
Flag Register . . . . . . . . . . . . . . . . . . . . . . . 59  
floating node . . . . . . . . . . . . . . . . . . . . . . . 27  
framing error . . . . . . . . . . . . . . 108, 117, 120  
Full-Duplex UART . . . . . . . . . . . . . . . . . . . . 2  
Functional Block Diagram . . . . . . . . . . . . . . 4  
G
General-Purpose Registers . . . . . . . . . . . . 34  
GND . . . . . . . . 1, 5, 8, 12, 14, 16, 18, 20, 100  
GPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
H
Half Carry Flag . . . . . . . . . . . . . . . . . . . . . 59  
HALT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
HALT mode . . . . . . . . . . . . 39, 43, 47, 78, 83  
handshake control . . . . . . . . . . . . . 20, 22, 23  
lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
HANDSHAKE mode . . . . . . . . . . . . . . . . . 23  
handshake signal assignment . . . . . . . . . . 23  
Handshake signal direction . . . . . . . . . . . . 20  
high-impedance state . . . . . . . . . . . . . 20–22  
E
EFR . . . . . . . . . . . . . . . . . . . . . . . . . . .63, 113  
bit . . . . . . . . . . . . . . . .107–108, 118, 120  
Electrical Characteristics . . . . . . . . . . . . . . .75  
EPROM Protect . . . . . . . . . . . . . . . . .32, 102  
ERF . . . . . . . . . . . . . . . . . . . . . . . .1, 3, 32–33  
Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Error Flag Reset . . . . . . . . . . . . .63, 112–113  
Expanded Register File . . .1, 3, 32–33, 39, 60  
Bank Fh . . . . . . . . . . . . . . . . . . . . . . . . .67  
I
ICSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
initialization routine . . . . . . . . . . . . . . . . . . 21  
input buffers . . . . . . . . . . . . . . . . . . 20, 22–23  
PS004005-1100  
P R E L I M I N A R Y  
Index  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
139  
Input Clock Period . . . . . . . . . . . . . . . . .92, 95  
Input Common Mode . . . . . . . . . . . . . .79, 84  
Input High Voltage . . . . . . . . . . . . . . . .76, 81  
Input Leakage . . . . . . . . . . . . . . . . . . . .77, 82  
Input Low Voltage . . . . . . . . . . . . . . . . .76, 81  
internal clock . . . . . . . . . . . . . . . . . .34, 39, 49  
output . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Interrupt Edge . . . . . . . . . . . . . . . . . . . . . . .57  
Select . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Interrupt Group Priority . . . . . . . . . . . . . . . .56  
interrupt inputs . . . . . . . . . . . . . . . . . . . . . .37  
falling-edge . . . . . . . . . . . . . . . . . . . . . .24  
Interrupt Mask Register . . . . . . . . . . . . . . . .58  
Interrupt Priority Register . . . . . . . . . . . . . .56  
Interrupt Request . . . . . . . . . . . . . . . . .93, 96  
Register . . . . . . . . . . . . . . . . . . . . . . . . .57  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
ASCI . . . . . . . . . . . . . . . . . . . . . . . . . .109  
edge-triggered . . . . . . . . . . . . . . . . . . . .24  
external . . . . . . . . . . . . . . . . . . . . . . . . .39  
Receive Shift Register . . . . . . . . . . . .106  
Z8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
IRQ0 . . . . . . . . . . . . . . . . . .25, 36, 39, 57, 58  
IRQ1 . . . . . . . . . . . . . . . . . .25, 36, 39, 57, 58  
source . . . . . . . . . . . . . . . . . . . . . . . . . .25  
IRQ2 . . . . . . . . . . . . . . . . . .25, 36, 39, 57, 58  
IRQ3 . . . . . . . 25, 37, 39, 56, 58, 65, 67, 109,  
117, . . . . . . . . . . . . . . . . . . . . . . . .119–121  
IRQ4 . . . . . . . . . . . . . . . . . . . . . . . .34, 37, 57  
IRQ5 . . . . . . . . . . . . . . . . . . . . .34, 37, 56–57  
Low-EMI Port 3 . . . . . . . . . . . . . . . . . . . . . 41  
M
Memory address transfers . . . . . . . . . . . . . 20  
Mode Select . . . . . . . . . . . . . . . . . . . . . . . . 63  
MPBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
MPE . . . . . . . . . . . . . . . . . . . . . . . . . . 63, 111  
bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
multiplexed Address/Data mode . . . . . . . . 22  
multiplexed ports . . . . . . . . . . . . . . . . . . . . 22  
Multiprocessor Bit Receive (Read only) . 113  
Multiprocessor Bit Received . . . . . . . 63, 112  
Multiprocessor Bit Transmit . . . . . . . . . . . 115  
Multiprocessor Bit Transmitter . . . . . . 64, 114  
Multiprocessor Enable . . . . . . . . 63, 111, 112  
MULTIPROCESSOR mode . . .105, 108, 112,  
113, 115  
N
nibble-programmed input buffers . . . . . . . . 20  
O
Offset Voltage . . . . . . . . . . . . . . . . . . . 77, 82  
onboard comparators . . . . . . . . . . . . . . . . 24  
on-chip oscillator . . . . . . . . . . . . . . . 3, 20, 38  
Oscillator Operational Mode . . . . . . . . . . 103  
Oscillator Startup Time . . . . . . . . . . . . 93, 96  
Output High Voltage . . . . . . . . . . . 76, 77, 81  
Output Leakage . . . . . . . . . . . . . . . . . . 78, 82  
Output Low Voltage . . . . . . . . . . . . . . . 77, 82  
Overflow Flag . . . . . . . . . . . . . . . . . . . . . . 59  
Overrun Error . . . . . . . . . . 105, 106, 108, 120  
bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
L
LC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3, 38  
network . . . . . . . . . . . . . . . . . . . . . . . . .20  
oscillator . . . . . . . . . . . . . .39, 92, 95, 103  
Low-EMI Emission . . . . . . . . . . . . . . . . . . .41  
LOW-EMI mode . . . . . .22, 41, 76–77, 81–82  
Low-EMI Oscillator . . . . . . . . . . . . .39–41, 69  
mode . . . . . . . . . . . . . . . . . . . . .41, 92, 95  
Low-EMI output buffers . . . . . . . . . .20, 22–24  
Low-EMI Port 0 . . . . . . . . . . . . . . . . . . . . . .41  
Low-EMI Port 1 . . . . . . . . . . . . . . . . . . . . . .41  
Low-EMI Port 2 . . . . . . . . . . . . . . . . . . . . . .41  
P
P3M . . . . . . . . . . . . . . . 24, 25, 28, 31, 46, 54  
parallel-resonant crystal . . . . . . . . . . . . . . 20  
Parity Error . . . . . . . . . . . . . . . . . . . 108, 120  
Parity Even/Odd . . . . . . . . . . . . . . . 113, 115  
PS004005-1100  
P R E L I M I N A R Y  
Index  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
140  
Part Number Description . . . . . . . . . . . . . .134  
PCON . . . . . . . . . . . . . . . . . . . . . . .28, 33, 39  
Register . . . . . . . . . . . . . . . . . . .22, 39, 41  
Register Bit . . . . . . . . . . . . . . . . . . . . . .25  
PE . . . . . . . . . . . . . . . . . . . . . . . . . . .113, 120  
PEO . . . . . . . . . . . . . . . . . . . . .113, 115, 120  
Pin Description . . . . . . . . . . . . . . . . . . . . . . .5  
Plastic Standard Flow . . . . . . . . . . . . . . . .134  
POR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
POR Only . . . . . . . . . . . . . . . . .43, 45, 71, 72  
Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
mode register . . . . . . . . . . . . . . . . . . . .21  
Open-Drain . . . . . . . . . . . . . . . . . . . . . .41  
Pull-Ups . . . . . . . . . . . . . . . . . . . . . . .103  
Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Open-Drain . . . . . . . . . . . . . . . . . . . . . .40  
Pull-Ups . . . . . . . . . . . . . . . . . . . . . . .103  
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Mode Register . . . . . . . . . . . . . . . . . . . .54  
Pull-Ups . . . . . . . . . . . . . . . . . . . . . . .103  
Port 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Mode Register . . . . . . . . . . .24, 31, 54, 55  
mode register . . . . . . . . . . . . . . . . . . . .25  
Pin Assignments . . . . . . . . . . . . . . . . . .25  
Port Configuration Register . . . . . . . . . .39, 69  
Power Supply . . . . . .5, 6, 7, 9, 11, 13, 15, 17  
power-on cycle . . . . . . . . . . . . . . . . . . . . . .42  
Power-On Reset . .3, 27, 29, 38, 47, 120, 121  
Delay . . . . . . . . . . . . . . . . . . . . . . . .94, 96  
Precharacterization Product . . . . . . . . . . .134  
Prescale bit . . . . . . . . . . . . . . . . . . . . . . . .115  
prescale factor . . . . . . . . . . . . . . . . . . . . .115  
prescaler . . . . . . . . . . . . . . . . . . . . . . .43, 123  
Prescaler 0 Register . . . . . . . . . . . . . . . . . .53  
Prescaler 1 Register . . . . . . . . . . . . . . . . . .52  
Prescaler Modulo . . . . . . . . . . . . . . . . .52, 53  
prescaler, 6-bit programmable . . . . . . . .3, 34  
prescaler, T1 . . . . . . . . . . . . . . . . . . . . . . . .34  
Problem Description or Suggestion . . . . .136  
Product Information . . . . . . . . . . . . . . . . . .136  
program memory . . . . . . . . . . . . . . .1, 30, 102  
vector location . . . . . . . . . . . . . . . . . . . .37  
external . . . . . . . . . . . . . . . . . . . . . . . . .25  
programmable Watch-Dog Timers . . . . . . . .1  
R
RAM Protect . . . . . . . . . . . . . . . . 32, 58, 102  
RC . . . . . . . . . . . . . . . . . . . . . . . 3, 47, 92, 95  
circuit, external . . . . . . . . . . . . . . . . . 103  
network . . . . . . . . . . . . . . . . . . . . . . . . 20  
oscillator . . . . . . . . . . . . . . . . . 38–39, 46  
RC OSCILLATOR ENABLED . . . . . . . . . 103  
RC Select for WDT . . . . . . . . . . . . . . . . . . 46  
RDR . . . . . . . . . . . . . . . . . . . . . . . 61, 62, 111  
RDRNE . . . . . . . . . . . . . . . . . . 111, 119, 120  
bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
RDY1 . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 55  
RE . . . . . . . . . . . . . . . . . . . . . . . . 25, 63, 105  
READ operation . . . . . . . . . . . . . . . . . . . . . 20  
READ/WRITE signal . . . . . . . . . . . . . . . . . 20  
Receive Data FIFO . . . . . . . . . . . . . . . . . 106  
Receive Data Register . . . . . . . . . . . . 62, 111  
Receive Data Register Not Empty . . 111, 119  
Receive Shift Register . . . . . . . . . . . . . . . 105  
Receiver Enable . . . . . . . . . . . . . . . . . . . 112  
Receiver Interrupt Enable . . . . . . . . . . . . 120  
Register File . . . . . . . . . . . . . . . . . . . . . 1, 32  
Register Pointer Register . . . . . . . . . . . . . 59  
RESET . . . . . . . . . . . . . . . . . . . . . . . . 27, 108  
delay . . . . . . . . . . . . . . . . . 42, 45, 94, 96  
Reset Input Current . . . . . . . . . . . . . . . 78, 83  
Reset Input High Voltage . . . . . . . . . . . 77, 82  
Reset Input Low Voltage . . . . . . . . . . . 77, 82  
Reset Output Low Voltage . . . . . . . . . . 77, 82  
RESET pin . . . . . . . . . . . . . . . . . . . 27, 30, 75  
Return Information . . . . . . . . . . . . . . . . . . 136  
RIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
ROM mode . . . . . . . . . . . . . . . 20–21, 30–31  
ROM pin . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
ROM selectivity . . . . . . . . . . . . . . . . . . . . . . 1  
ROMless mode . . . . . . . . . . . . . . . . . . 21, 34  
ROMless pin . . . . . . . . . . . . . . . . . . . . . . . 20  
ROMless selectivity . . . . . . . . . . . . . . . . . . . 1  
RX Interrupt on Start . . . . . . . . . . . . . . . . 117  
RX State . . . . . . . . . . . . . . . . . . . . . . . . . 117  
S
Schmitt-triggered input buffers . . . . . . 20, 22  
PS004005-1100  
P R E L I M I N A R Y  
Index  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
141  
SCLK . . 41, 43, 46–47, 71, 73, 87, 89, 92, 95,  
108, 116–117, 121, 123  
T0 output . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
T0 prescaler . . . . . . . . . . . . . . . . . . . . . . . . 34  
T1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Count . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
prescaler . . . . . . . . . . . . . . . . . . . . . . . 34  
TCLK . . . . . . . . . . . 41, 43, 71, 87, 89, 92, 95  
TDR . . . . . . . . . . . . . . . . . . . . . . . 61, 62, 110  
TDRE . . . . . . . . . . . . . . . . . . . . 113, 120, 121  
TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 63  
TIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Time Constant Register High . . . . . . 66, 118  
Time Constant Register Low . . . . . . . 66, 118  
Timer Input . . . . . . . . . . . . . . . . . . . . . 92, 95  
Timer Mode Register . . . . . . . . . . . . . . . . . 51  
SCLK/TCLK Divide-by-16 Select . . . . . . . .43  
Send Break . . . . . . . . . . . . . . . . . . . . . . . .118  
Sign Flag . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
SMR . . . . . .28, 33, 37–38, 41, 46, 70, 92, 95  
SMR2 . . . . . . . . . . . . . . . . . . . .33, 37, 45, 72  
Speed Select . . . . . . . . . . . . . . . . . . . . . . .116  
Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Stack Pointer . . . . . . . . . . . . . . . . . . . . .34, 60  
High Register . . . . . . . . . . . . . . . . . . . .60  
Low Register . . . . . . . . . . . . . . . . . . . . .60  
Stack Selection . . . . . . . . . . . . . . . . . . . . . .56  
Standard Output . . . . . . . . . . . . . . . . . .40, 69  
Standard Temperature Range . . . . . . .76, 87  
Standard Test Conditions . . . . . . . . . . . . .100  
Standby Current . . . . . . . . . . . .78, 79, 83, 84  
STAT . . . . . . . . . . . . . . . . . . . . . . .61, 67, 119  
STAT register . . . . . . .67, 111, 113, 119–121  
STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Stop Delay . . . . . . . . . . . . . . . . . . . . . .46, 71  
STOP mode . . 28, 39, 45-47, 71, 79, 84, 103  
delay . . . . . . . . . . . . . . . . . . . . . . . .92, 95  
Stop-Mode Recovery . 27, 34, 38–39, 42–43,  
47, 50, 61, 68, 71  
Delay Select . . . . . . . . . . . . . . . . . . . . .45  
Edge Select . . . . . . . . . . . . . . . . . . . . . .45  
Register . . . . . . . . . . . . . . . . . . . . . .41, 70  
Register 1 . . . . . . . . . . . . . . . . . . . . . . .70  
Register 2 . . . . . . . . . . . . . . . . . . . .45, 72  
Source . . . . . . . . . . . . . .29, 37, 43, 45, 71  
Source 2 . . . . . . . . . . . . . . . . . . . . . . . .72  
Width Spec . . . . . . . . . . . . . . . . . . .93, 96  
Storage Temperature . . . . . . . . . . . . . . . . .75  
Supply Current . . . . . . . . . . . . . . . . . . .78, 83  
system clock . . . . . . . . . . . . . .41, 43, 47, 121  
option, WDT DRIVEN BY . . . . . . . . . .103  
SOURCE option . . . . . . . . . . . . . . . . .103  
system clocks, internal . . . . . . . . . . . . . . . .46  
T
. . . . . . . . . . . . . . . . . . . . . . 25, 36, 52, 54  
mode . . . . . . . . . . . . . . . . . . . . . . . 34, 51  
IN  
Total Power Dissipation . . . . . . . . . . . . . . . 75  
. . . . . . . . . . . . . . . . . . . . . . . . . . 25, 54  
T
OUT  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Transmit Data Register . . . . . . . 62, 105, 110  
Empty . . . . . . . . . . . . . . . . . . . . . . . . 120  
Transmit Interrupt Enable . . . . . . . . . . . . 121  
Transmit Shift Register . . . . . . . . . . . . . . 105  
Transmitter Enable . . . . . . . . . . . . . . 63, 112  
trigger input . . . . . . . . . . . . . . . . . . . . . 34, 51  
two-NOP delay . . . . . . . . . . . . . . . . . . . . . 26  
U
UART . . . . . . . . . . . . . . . . . . . . . 2, 37, 39, 57  
onboard ASCI . . . . . . . . . . . . . . . . . . . 25  
User Flags . . . . . . . . . . . . . . . . . . . . . . . . . 59  
V
VBO . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 104  
V
. . . . . . .1, 5–7, 9, 11, 13, 15, 17, 20, 34,  
CC  
47, 76–77, 87, 89, 98–99, 101, 104  
Low-Voltage Protection . . . . . . . . . . . . 48  
Low Voltage Protection Voltage . . 80, 85  
Power-On Reset . . . . . . . . . . . . . . . . . 38  
T
Verify Register . . . . . . . . . . . . . . . . . . . 33, 70  
VFY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Voltage Comparator . . . . . . . . . . . . . . . . . 48  
T0 Count . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
T0 Output . . . . . . . . . . . . . . . . . . . . . . . . . .51  
PS004005-1100  
P R E L I M I N A R Y  
Index  
Z86E12X/Z86E13X/Z86E14X  
The MUZE Family of Z8 Microcontrollers  
142  
W
X
IN  
wake-up circuitry . . . . . . . . . . . . . . . . . . . . . .1  
Watch-Dog Timer . . .1, 3, 29, 72, 93, 96, 103  
Mode Register . . . . . . . . . . . . . . . . .46, 72  
reset . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
WDT Mode . . . . . . . . . . . . . . . . . . . . . . . .103  
WDT Time Select . . . . . . . . . . . . . . . . . . . .47  
WDT time-out . . . . . . . . . . . . . .38, 39, 46, 47  
WDTMR . . . . . . . . . . . . . . . . . .28, 33, 46, 72  
During HALT . . . . . . . . . . . . . . . . . . . . .47  
During STOP . . . . . . . . . . . . . . . . . . . . .47  
Register Accessibility . . . . . . . . . . . . . .47  
Working Register Pointer . . . . . . . . . . . . . .59  
WRITE operations . . . . . . . . . . . . . . . . . . . .20  
X
X
. . . . . . 5, 7, 12, 15, 20, 38, 72, 75–76, 81  
pin . . . . . . . . . . . . . . . . . . . . . . . . 46, 103  
IN  
X , external pin . . . . . . . . . . . . . . . . . . . . . 47  
IN  
X
X
. . . . . . . . . . 5, 7, 12, 15, 20, 38, 76, 81  
pin . . . . . . . . . . . . . . . . . . . . . . . . . 103  
OUT  
OUT  
Z
Z8 MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Zero Flag . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
PS004005-1100  
P R E L I M I N A R Y  
Index  

相关型号:

Z86E134PZ016EG

IC 8-BIT, OTPROM, 16 MHz, MICROCONTROLLER, PDIP28, DIP-28, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86E134PZ016SG

Microcontroller, 8-Bit, OTPROM, 16MHz, CMOS, PDIP28, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86E134SZ016SG

Microcontroller, 8-Bit, OTPROM, CMOS, PDSO28, SOIC-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZILOG

Z86E134SZ16SC

Microcontroller, 8-Bit, OTPROM, 16MHz, CMOS, PDSO28, SOIC-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86E135PZ016EG

IC 8-BIT, OTPROM, 16 MHz, MICROCONTROLLER, PDIP28, DIP-28, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86E136PZ016EG

IC 8-BIT, OTPROM, 16 MHz, MICROCONTROLLER, PDIP28, DIP-28, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86E136PZ016SG

IC 8-BIT, OTPROM, 16 MHz, MICROCONTROLLER, PDIP28, DIP-28, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86E136SZ16EC

Microcontroller, 8-Bit, OTPROM, 16MHz, CMOS, PDSO28, SOIC-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86E142FZ016EG

Microcontroller, 8-Bit, OTPROM, 16MHz, CMOS, PQFP44, QFP-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZILOG

Z86E142FZ016SG

IC 8-BIT, OTPROM, 16 MHz, MICROCONTROLLER, PQFP44, QFP-44, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZILOG

Z86E142FZ16EC

Microcontroller, 8-Bit, OTPROM, 16MHz, CMOS, PQFP44, PLASTIC, QFP-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86E142FZ16SC

Microcontroller, 8-Bit, OTPROM, 16MHz, CMOS, PQFP44, PLASTIC, QFP-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS