Z8E520SSC [ZILOG]

Microcontroller, 8-Bit, OTPROM, Z8 CPU, 12MHz, CMOS, PDSO20, PLASTIC, SOIC-20;
Z8E520SSC
型号: Z8E520SSC
厂家: ZILOG, INC.    ZILOG, INC.
描述:

Microcontroller, 8-Bit, OTPROM, Z8 CPU, 12MHz, CMOS, PDSO20, PLASTIC, SOIC-20

可编程只读存储器 时钟 微控制器 光电二极管 外围集成电路
文件: 总43页 (文件大小:369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY PRODUCT SPECIFICATION  
Z8E520/C520  
1
1.5 MBPS USB LOW-POWER  
DEVICE CONTROLLER FOR  
MULTIPROTOCOL POINTING DEVICES  
FEATURES  
Software Programmable Timers Configurable as:  
Part  
ROM  
(KB)  
RAM  
Speed  
(MHz)  
Two 8-Bit Standard Timers and One 16-Bit  
Number  
(Bytes)  
Standard Timer or  
Z8E520 (OTP)  
Z8C520 (ROM)  
6
6
176  
176  
12  
12  
One 16-Bit Standard Timer and One 16-Bit Pulse  
Width Modulator (PWM) Timer  
Six Vectored Interrupts with Fixed Priority  
Identical Masked ROM Version (Z8C520)  
Processor Speed Dividable by Firmware Control  
On-Chip Oscillator that accepts a Ceramic Resonator or  
External Clock  
Operating Current: 5 mA typical in USB Mode; 2.5 mA  
typical in Serial Mode (@ 3 MHz); 5 mA typical in PS/2  
Mode  
Hardware Support for PS/2, Serial, USB, and General-  
Purpose I/O (GPIO)  
16 Total Input/Output Pins (Open-Drain/Push-Pull)  
Power Reduction Modes:  
Configurable  
STOP Mode (functionality shut down except SMR)  
HALT Mode (XTAL still running-peripherals active)  
6 inputs with 3 level Programmable Reference  
Comparators  
USB SIE Compliant with USB Spec 1.0  
16-Bit Programmable Watch-Dog Timer (WDT) with  
4.0 VDC to 6.0 VDC Operating Range @ 0°C to +70°C  
Internal RC Oscillator  
GENERAL DESCRIPTION  
Zilog’s Z8E520 (OTP) and Z8C520 (Masked ROM) micro-  
The microcontroller clock frequency is derived from the  
system clock by a programmable divider under firmware  
control.  
Plus  
controllers are low-power Z8  
MCUs, designed for the  
cost-effective implementation of USB and multiprotocol  
pointing devices.  
The device is capable of functioning in four distinct, select-  
able communications modes: PS/2, RS232, GPIO (Gener-  
al-purpose I/O), and USB. The communications mode de-  
termines the functionality of the two special serial  
communications pins (PB6 and PB7). The device is placed  
in the required mode when firmware sets the specified  
mode bit in the communications control register. The firm-  
ware interface is similar in all modes. The same buffer area  
in RAM will accept the data to be transmitted. Up to 8 bytes  
may be loaded, and the data will actually be transmitted as  
soon as the appropriate command is issued (setting In  
Packet Ready in USB mode, for example).  
For applications demanding powerful I/O capabilities, the  
Z8E520's input and output lines are grouped into two ports,  
and are configurable under software control to provide tim-  
ing, status signals, or parallel I/O.  
Both 8-bit and 16-bit timers, with a large number of user se-  
lectable modes, off-load the system of administering real-  
time tasks such as counting/timing and I/O data communi-  
cations.  
DS97KEY2005  
P R E L I M I N A R Y  
1
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
GENERAL DESCRIPTION (Continued)  
Power connections follow conventional descriptions at  
right:  
Connection  
Power  
Circuit  
Device  
V
V
CC  
DD  
V
Ground  
GND  
SS  
Ceramic Resonator  
GND  
V
CC  
Two 8-bit Timers  
or  
Machine Timing  
& Inst. Control  
One 16-bit PWM  
Timer  
Port B  
(6–7)  
ALU  
One 16-bit  
Std. Timer  
FLAG  
6 K Bytes  
ZIE  
Prg. Memory  
Interrupt  
Control  
Register  
Pointer  
Program  
Counter  
6 Analog  
Comparators  
RAM  
Register File  
(160 Bytes)  
WDT  
Port A  
I/O  
Port B  
I/O  
INTERNAL  
RC OSC  
Figure 1. Z8E520 Functional Block Diagram  
2
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
COMMUNICATION MODES  
The Z8E520/C520 allows its user to function in a variety of  
communication modes. Having this freedom within a sin-  
gle chip opens up many possibilities when utilizing multiple  
protocol applications. The modes incorporated into the  
Z8E520/C520 include PS/2, RS232, GPIO, and USB. A  
description of each mode is detailed below.  
GPIO Mode. In General-Purpose I/O Mode, the serial  
communications pins function as standard I/O pins, with  
Input, Output P/P (Push/Pull) and OD (Open Drain) Out-  
put.  
1
USB Mode. The Z8E520 includes two bidirectional end-  
points that support communications compliant to the USB  
Specification version 1.0. The serial communications pins  
function as D– (PB6) and D+ (PB7). The detailed behavior  
of the SIE is controllable by the firmware, and three sepa-  
rate power states are provided for USB Suspend Mode  
support (see section below).  
PS/2 Mode. The serial baud rate is fixed at 12.5 K baud.  
Received data is automatically checked for parity and  
framing errors while HOST abort is supported. The serial  
communications pins function as PS/2 compatible DATA  
(PB6) and CLOCK (PB7).  
RS232 Mode. The data rate is fixed at 1200 baud. The se-  
rial communications pins function as RxD (PB6) and TxD  
(PB7).  
USB SUSPEND/RESUME FUNCTIONALITY  
Suspend is dedicated through firmware by timing the Ac-  
tivity bit which is set by the SIE.  
or Resume from the host can be detected and used to  
wake up the microcontroller.  
In Stop Mode, with the WDT disabled, power requirements  
In Stop Mode, with the WDT enabled, slightly more power  
is consumed, but the device can wake up periodically to  
perform maintenance and detect a change of state in the  
application.  
are minimized. No power is consumed by the voltage reg-  
Plus  
ulator, the Z8  
core, nor differential detector. Only the  
Stop Mode Recovery (SMR) is enabled, so an input signal  
USB FUNCTIONAL BLOCK DESCRIPTION  
The USB portion of the chip is divided into two areas, the  
transceiver and the Serial Interface Engine (SIE). The  
transceiver handles incoming differential signals and “sin-  
gle ended zero (SE0)”. It also converts output data in digi-  
tal form to differential drive at the proper levels (Figure 2).  
the host. Data flow into and out of the MCU portions are  
dedicated registers mapped into Expanded Register File  
Memory.  
The USB SIE handles three endpoints (control at Endpoint  
0, data into the host from Endpoint 1 and data out from the  
host as Endpoint 2). All communications are at the  
1.5 MB/sec data rate. Endpoint 1 and 2 can be combined  
as Control EP1.  
The SIE performs all other processing on incoming and out  
going data, including signal recovery timing, bit stuffing,  
validity checking, data sequencing, and handshaking to  
Figure 2. Data To/From Z8E520/C520  
DS97KEY2005  
P R E L I M I N A R Y  
3
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
PIN IDENTIFICATION  
1
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PA0  
PA1  
20  
PA5  
PA4  
XTAL (2)  
GND  
XTAL (1)  
VCC  
PB7  
PB6  
PA3  
PA2  
20-Pin  
DIP/SOIC  
10  
11  
Figure 3. 20-Pin DIP/SOIC Pin Assignments  
Table 1. 20-Pin DIP/SOIC Pin Identification  
STANDARD Mode  
Pin #  
Symbol  
Function  
Direction  
1, 2  
PA X(6,7)  
PB X(0–5)  
PA X(0–3)  
PB X (6–7)  
Digital I/O + I SINK  
Digital I/O +Comparators  
Digital I/O  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
3–8  
9–12  
13–14  
15  
Digital I/O + Communications  
Power  
V
cc  
16  
XTAL (1)  
GND  
Clock  
Power  
17  
18  
XTAL (2)  
PA X(4,5)  
Clock  
19, 20  
Digital I/O + I SINK  
Bidirectional  
4
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
1
D0  
D1  
20  
1
D2  
D3  
D4  
D5  
CLK (1 MHz)  
GND  
(CLK OUT)  
VCC  
20-Pin  
DIP/SOIC  
D6  
D7  
TST_CLR  
PGM  
VPP  
ADDRCLK  
10  
11  
Figure 4. 20-Pin DIP/SOIC Pin Assignments:  
EPROM Programming Mode  
Table 2. 20-Pin DIP/SOIC Pin Identification:  
EPROM Programming Mode  
EPROM PROGRAMMING Mode  
Pin #  
Symbol  
D0–D7  
Function  
Direction  
1–8  
9
Data Bus  
I/O  
In  
TST_CLR  
PGM  
Reset Internal Address Counter  
Program Pin  
10  
11  
12  
In  
ADDRCLK  
Clock to Address Counter  
High Voltage to Program Device  
In  
V
Power  
PP  
13–14  
15  
Unused  
Power  
V
Power  
CC  
16  
17  
18  
19  
20  
CLKOUT  
GND  
Output from Clock Inverter  
Power Ref  
Out  
Power  
In  
CLK  
1 MHz to chip  
Unused  
Unused  
DS97KEY2005  
P R E L I M I N A R Y  
5
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed under Absolute Maxi-  
mum Ratings may cause permanent damage to the de-  
vice. This rating is a stress rating only; functional operation  
of the device at any condition above those indicated in the  
operational sections of these specifications is not implied.  
Exposure to absolute maximum rating conditions for an  
extended period may affect device reliability. Total power  
dissipation should not exceed 880 mW for the package.  
Power dissipation is calculated as follows:  
Total Power Dissipation =  
V
x [I – (sum of I )]  
DD DD OH  
+ sum of [(V – V ) x I ]  
OH  
DD  
OH  
+ sum of (V x I  
)
0L  
0L  
Parameter  
Min  
Max  
Units  
Note  
Ambient Temperature under Bias  
Storage Temperature  
–40  
–65  
–0.6  
+105  
+150  
+7  
C
C
V
Voltage on any Pin with Respect to V  
SS  
Voltage on V Pin with Respect to V  
–0.3  
+7  
V
DD  
SS  
Total Power Dissipation  
880  
80  
mW  
mA  
Maximum Allowable Current out of V  
SS  
Maximum Allowable Current into V  
80  
mA  
DD  
Maximum Allowable Current into an Input Pin  
Maximum Allowable Current into an Open-Drain Pin  
–600  
–600  
+600  
+600  
25  
µA  
µA  
1
2
Maximum Allowable Sink Output Current by Any I/O Pin  
Maximum Allowable Source Output Current by Any I/O Pin  
Maximum Allowable Sink Output Current by Port A  
Maximum Allowable Source Output Current by Port A  
Maximum Allowable Sink Output Current by Port B  
Maximum Allowable Source Output Current by Port B  
mA  
mA  
mA  
mA  
mA  
mA  
25  
40  
40  
40  
40  
Notes:  
1. Excludes XTAL pins.  
2. Device pin is not at an output Low state.  
6
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
STANDARD TEST CONDITIONS  
The characteristics listed here apply for standard test con-  
ditions as noted. All voltages are referenced to GND. Pos-  
itive current flows into the referenced pin (Figure 5).  
From Output  
Under Test  
1
150 pF  
Figure 5. Test Load Diagram  
CAPACITANCE  
TA = 25°C; VCC = GND = 0V; f = 1.0 MHz; unmeasured pins returned to GND.  
Parameter  
Max  
Input Capacitance  
12 pF  
12 pF  
12 pF  
Output Capacitance  
I/O Capacitance  
Note: Frequency tolerance ±10%  
DS97KEY2005  
P R E L I M I N A R Y  
7
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
DC CHARACTERISTICS: USB MODE  
V = 4.4V – 5.25V  
cc  
T = 0°C to +70°C  
A
V
Sym  
Parameter  
Min  
0.7V  
Max  
V +0.3  
CC  
Units Conditions  
Notes  
CC  
V
Clock Input High  
Voltage  
V
Driven by External  
CH  
CC  
Clock Generator  
V
Clock Input Low  
Voltage  
V
–0.3  
0.2V  
V
Driven by External  
Clock Generator  
CL  
SS  
CC  
V
V
V
Input High Voltage  
Input Low Voltage  
0.7V  
V +0.3  
CC  
V
V
V
IH  
CC  
VSS–0.3  
VCC–0.4  
0.2VCC  
IL  
Output High Voltage  
(Port A, B)  
IOH = –2.0 mA  
IOL = +4.0 mA  
IOL = +6 mA,  
OH  
V
V
V
Output Low Voltage  
(Port A, B)  
0.6  
1.2  
V
V
4
4
OL1  
Output Low Voltage  
(Port A, B)  
OL2  
Comparator Input Offset  
Voltage  
25.0  
mV  
OFFSET  
I
I
Input Leakage  
–1.0  
–1.0  
2.0  
2.0  
µA VIN = 0V, VCC  
µA VIN = 0V, VCC  
V
IL  
Output Leakage  
OL  
V
Comparator Input  
Common Mode  
Voltage Range  
V
–0.3 VCC –1.0  
ICR  
SS  
ICC  
Supply Current  
6.0V  
6.0V  
5.25  
6.0  
3.5  
mA @ 6 MHz (Internal open  
drain)  
1,2  
1,2  
ICC1  
HALT Mode  
mA @ 6 MHz (no CPU; RC/WDT  
& Detect; D+/D–; I/O active)  
ICC2  
ICC3  
Stop Current  
60  
40  
µA  
Stop Current w/o RC/WDT  
µA  
D+, D– Differential Signaling  
D– > D+ D+ > D–  
mV @ >200 mV Difference  
3
Notes:  
1. All outputs unloaded, I/O pins floating, and all inputs are at V or V level.  
CC  
SS  
2. CL1 = CL2 = 22 pF  
3. Except for SE0 for EOP and Reset (see 7.1.4 of USB Specification)  
4. General-Purpose I/O Mode.  
8
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
DC CHARACTERISTICS: PS/2 MODE  
V = 4.5V – 5.5V  
cc  
1
T = 0°C to +70°C  
A
V
Sym  
Parameter  
Min  
0.7V  
Max  
V +0.3  
CC  
Units Conditions  
Notes  
CC  
V
Clock Input High  
Voltage  
V
Driven by External  
Clock Generator  
CH  
CC  
V
Clock Input Low  
Voltage  
V
–0.3  
0.2V  
V
Driven by External  
Clock Generator  
CL  
SS  
CC  
V
V
V
V
V
V
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
Output Low Voltage  
0.7V  
V +0.3  
CC  
V
V
IH  
CC  
VSS–0.3  
VCC–0.4  
0.2VCC  
IL  
V
IOH = –2.0 mA  
IOL = +4.0 mA  
IOL = +6 mA,  
OH  
0.6  
1.2  
V
OL1  
OL2  
OFFSET  
V
Comparator Input Offset  
Voltage  
25.0  
mV  
I
I
Input Leakage  
–1.0  
–1.0  
2.0  
2.0  
µA VIN = 0V, VCC  
µA VIN = 0V, VCC  
V
IL  
Output Leakage  
OL  
V
Comparator Input  
Common Mode  
Voltage Range  
V
–0.3 VCC –1.0  
ICR  
SS  
ICC  
Supply Current  
5.5V  
5.5V  
6.0  
3.5  
60  
mA @ 6 MHz  
1,2  
1,2  
ICC1  
ICC2  
ICC3  
Notes:  
HALT Current  
mA @ 6 MHz (no CPU; no SIE)  
Stop Current  
µA  
µA  
Stop Current w/o RC/WDT  
40  
1. All outputs unloaded, I/O pins floating, and all inputs are at V or V level.  
CC  
SS  
2. CL1 = CL2 = 22 pF.  
DS97KEY2005  
P R E L I M I N A R Y  
9
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
DC CHARACTERISTICS: RS232 MODE  
V = 4.0V – 6.0V  
cc  
T = 0°C to +70°C  
A
V
Sym  
Parameter  
Min  
0.7V  
Max  
V +0.3  
CC  
Units Conditions  
Notes  
CC  
V
Clock Input High  
Voltage  
V
Driven by External  
CH  
CC  
Clock Generator  
V
Clock Input Low  
Voltage  
V
–0.3 0.2V  
V
Driven by External  
Clock Generator  
CL  
SS  
CC  
V
V
V
V
V
V
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
Output Low Voltage  
0.7V  
V +0.3  
CC  
V
V
IH  
CC  
VSS–0.3 0.2VCC  
IL  
VCC–0.4  
0.6  
V
IOH = –2.0 mA  
IOL = +4.0 mA  
IOL = +6 mA,  
OH  
V
OL1  
OL2  
OFFSET  
1.2  
V
Comparator Input Offset  
Voltage  
25.0  
mV  
I
I
Input Leakage  
–1.0  
–1.0  
2.0  
2.0  
µA VIN = 0V, VCC  
µA VIN = 0V, VCC  
V
IL  
Output Leakage  
OL  
V
Comparator Input  
Common Mode  
Voltage Range  
V
–0.3 VCC –1.0  
SS  
ICR  
ICC  
Supply Current  
HALT Mode  
6.0V  
6.0V  
4.0  
3.5  
60  
mA @ 3 MHz (6 MHz/2)  
1,2  
1,2  
ICC1  
ICC2  
ICC3  
mA @ 3 MHz  
Stop Current  
µA  
µA  
Stop Current w/o  
RC/WDT  
40  
Notes:  
1. All outputs unloaded, I/O pins floating, and all inputs are at V or V level.  
CC  
SS  
2. CL1 = CL2 = 22 pF.  
10  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
DC CHARACTERISTICS: I/O MODE  
V = 4.0V – 6.0V  
cc  
1
T = 0°C to +70°C  
A
V
Sym  
Parameter  
Min  
0.7V  
Max  
V +0.3  
CC  
Units Conditions  
Notes  
CC  
V
Clock Input High  
Voltage  
V
Driven by External  
Clock Generator  
CH  
CC  
V
Clock Input Low  
Voltage  
V
–0.3  
0.2V  
V
Driven by External  
Clock Generator  
CL  
SS  
CC  
V
V
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
Output Low Voltage  
0.7V  
V +0.3  
CC  
V
V
IH  
CC  
VSS–0.3  
VCC–0.4  
0.2VCC  
IL  
V
V
V
V
V
IOH = –2.0 mA  
IOL = +4.0 mA  
IOL = +6 mA,  
OH  
0.6  
1.2  
V
OL1  
OL2  
OFFSET  
V
Comparator Input Offset  
Voltage  
25.0  
mV  
I
I
Input Leakage  
–1.0  
–1.0  
2.0  
2.0  
µA VIN = 0V, VCC  
µA VIN = 0V, VCC  
V
IL  
Output Leakage  
OL  
V
Comparator Input  
Common Mode  
Voltage Range  
V
–0.3 VCC –1.0  
ICR  
SS  
ICC  
Supply Current  
6.0V  
5.5V  
6.0  
6.0  
4.0  
60  
mA @ 6 MHz  
1,2  
1,2  
ICCA  
ICCB  
ICC1  
ICC2  
Notes:  
mA @ 5.5V  
mA @ 6.0V (6 MHz/2)  
HALT w/ RC and WDT  
µA  
µA  
50  
1. All outputs unloaded, I/O pins floating, and all inputs are at V or V level.  
CC  
SS  
2. CL1 = CL2 = 22 pF.  
DS97KEY2005  
P R E L I M I N A R Y  
11  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
AC ELECTRICAL CHARACTERISTICS  
Timing Diagram  
1
3
CLOCK  
2
3
2
IRQ  
N
9
8
Figure 6. AC Electrical Timing Diagram  
Timing Table  
T = 0°C to +70°C  
A
6 MHz  
No  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
1
TpC  
Input Clock Period  
83  
DC  
5
ns  
ns  
ns  
ns  
1
1
2
TrC,TfC  
TwC  
Clock Input Rise & Fall Times  
Input Clock Width  
3
37  
70  
1
4
TwTinL  
TwTinH  
TpTin  
TrTin  
TwIL  
Timer Input Low Width  
1
5
Timer Input High Width  
2.5TpC  
4TpC  
1
6
Timer Input Period  
1
7
Timer Input Rise & Fall Timer  
Int. Request Low Time  
100  
ns  
ns  
1
8
70  
1,2  
1,2  
9
TwIH  
Twsm  
Tost  
Int. Request Input High Time  
Stop-Mode Recovery Width Spec  
Oscillator Start-Up Time  
Watch-Dog Timer  
3TpC  
10  
11  
12  
13  
14  
15  
Notes:  
100TpC  
ns  
ms  
ms  
nS  
0.5  
300  
50  
Twdt  
1000  
70  
D+, D–  
POR  
Differential Rise and Fall Times (USB Mode)  
Power supply; POR rate/Volt level  
RC Clock Period (internal)  
3
TrC  
12.5  
µsec  
4
1. Timing Reference uses 0.7 V  
for a logic 1 and 0.2 V  
for a logic 0.  
CC  
CC  
2. Interrupt request  
3. See USB Specification 7.1.1.2  
4. Corresponds to frequencies of 80 KHz to 20 KHz  
12  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
PIN FUNCTIONS  
Port A. Port A (4–7) includes a Sink configuration. Port A  
(3–0) has a Switch configuration.  
In Switch, the options also include input wakeup, bidirec-  
tional, push-pull or open drain configurations (Figure 8).  
The only difference between the two is the programmable  
Sink option.  
1
In Sink, the options include input wakeup, bidirectional,  
push-pull or open drain configurations (Figure 7). The Sink  
is programmable from 0–15 mA (in 1 mA increments).  
Vcc  
Typical  
100K  
± 30%  
TBD  
Pullup Resistor Enable  
Vcc  
In  
Pad  
Wake  
015 mA/ 1 mAincrements  
I SINK (3:0)  
Figure 7. Port A (4–7) Sink Configuration  
Table 3. Port A (4–7) Programmable Current Sink Table  
Symbol Parameter  
Min.  
Max.  
Units Conditions  
N
Number of Bits  
Bits  
LSB  
µA  
4 bits, 16 settings, 0–15 mA  
DNL  
Diff Non-Linearity  
Zero Code/Disable  
LSB Current  
0.50  
I
I
I
Disabled  
0
0.65  
9.75  
1.35  
20.25  
1600  
mA  
mA  
nS  
35%  
LSB  
F
Full Scale Current  
Settling Time  
35%, Note 1  
Within 10% of final value  
T
settle  
I
Overshoot Current  
Compliance Voltage  
1.05*I  
1.1  
µA  
overshoot  
set  
V
V
Above V with I  
ss FMAX  
comp  
Notes:  
1. Setting all (4) I  
cells to full scale is a violation of the Absolute Maximum Rating Spec.  
SNK  
DS97KEY2005  
P R E L I M I N A R Y  
13  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
PIN FUNCTIONS (Continued)  
Vcc  
In  
Pad  
Wake  
Pull-down Resistor Enable  
100K  
(± 35%)  
Figure 8. Port A (0–3) Switch Configuration  
14  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
Port B. Port B (0–5) includes a Quadrature configuration  
(Figure 9), with programmable current sink and an analog  
comparator with programmable reference voltages (Ta-  
bles 4–8).  
1
+V  
+ V  
Pad  
AC  
AC  
VR1  
VR2  
VR3  
Decode  
AC = Analog Comparator Mode  
Figure 9. Port B (0–5) Quadrature Configuration  
PORT B (0–5) QUADRATURE CONFIGURATION  
Table 4. Programmable Voltage Threshold  
Min. Max.  
0.21 V 0.29 V  
Symbol  
Parameter  
Units  
Conditions  
V
V
V
Voltage Reference 1  
Voltage Reference 2  
Voltage Reference 3  
Ratio Accuracy  
V
V
R1  
R2  
R3  
CC  
CC  
0.31 V  
0.41 V  
0.39 V  
0.49 V  
5
CC  
CC  
CC  
CC  
V
Ratio  
%
Note (1)  
Note:  
1. Greatest delta vs. specified delta.  
DS97KEY2005  
P R E L I M I N A R Y  
15  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
PORT B (0–5) QUADRATURE CONFIGURATION (Continued)  
Table 5. Programmable Voltage Bit Selections (Register Addresses DA–DF)  
V
— Bits D5:4  
Comp Enable—Bit D7  
Selected  
Conditions  
REF  
0
1
xx  
Comparator Off  
Note (1)  
01  
0.25 V  
0.35 V  
0.45 V  
CC  
CC  
CC  
1
1
10  
11  
Note:  
1. If all comparators are off, V  
can be powered off. If in Stop Mode, V  
is powered off.  
REF  
REF  
Table 6. Programmable Load Resistor  
Symbol  
Parameter  
Min.  
0.13 V  
Max.  
0.15 V  
CC  
Units  
V
Conditions  
V
Midpoint Voltage  
Load Resistor 1  
Load Resistor 2  
Load Resistor 3  
Load Resistor 4  
Load Resistor 5  
Load Resistor 6  
Ratio Accuracy  
MID  
CC  
R
R
R
R
R
R
5.25  
9.00  
8.75  
15.00  
22.50  
53.75  
92.50  
138.75  
5
K ohm  
K ohm  
K ohm  
K ohm  
K ohm  
K ohm  
%
Pad to V , track R , R  
SS L2  
L1  
L2  
L3  
L4  
L5  
L6  
L3  
L3  
L2  
Pad to V , track R , R  
SS  
L1  
13.50  
32.25  
55.50  
83.25  
Pad to V , track R , R  
SS  
CC  
CC  
CC  
L1  
Pad to V  
Pad to V  
Pad to V  
Note (1)  
Ratio  
Note:  
1. Greatest ratio vs. specified ratio.  
Table 7. Programmable Load Resistor Bit Selections (Register Addresses DA–DF  
Load Selected to V  
Load Selected to V  
CC  
Divider Bits D2:0  
SS  
000  
001  
010  
100  
No load Resistors  
7 K Selected  
No load Resistors  
43 K Selected  
74 K Selected  
111 K Selected  
12 K Selected  
18 K Selected  
Table 8. Comparator  
Max.  
Symbol  
Parameter  
Min.  
Units  
Conditions  
Common Mode, Note (1)  
VOS  
HYS  
VCM  
Offset Voltage  
Hysteresis  
25  
mV  
mV  
V
TBD  
TBD  
Voltage Range  
V
–0.3  
V
–1.0  
CC  
SS  
T
Response Time Fast  
1
µs  
µs  
µA  
700 mV/µs with 25 mV overdrive  
15 mV/µs with 25 mV overdrive  
rf  
T
Response Time Slow  
Supply Current  
1
rs  
IDD  
100  
Note:  
1. Zilog will provide specification.  
16  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
Port B. Port B (6–7) is configured as a serial communica-  
Port B (6) has a programmable internal pullup of 7.5 K ±  
tion port as follows:  
30%. For USB Mode, Port B (7) requires an external pullup  
of 7.5 K ± 1% to V (Figure 10).  
CC  
1
USB  
PS/2  
RS232  
GPIO  
Port B (6)  
Port B (7)  
D–  
D+  
Data  
R x D  
T x D  
Port B (6)  
Port B (7)  
Clock  
Vcc  
7.5 K Pullup  
Pull-up Resistor Enable  
VUSB  
Vcc  
In/Wake  
Pad  
Figure 10. Port B (6–7) Serial Communication Port  
DS97KEY2005  
P R E L I M I N A R Y  
17  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
FUNCTIONAL DESCRIPTION  
Program Memory. The 16-bit program counter addresses  
6 KB of program memory space at internal locations  
(Figure 11).  
The first 14 bytes of program memory are reserved for the  
rollover and interrupt vectors. These locations have six  
16-bit vectors that correspond to the six available inter-  
rupts.  
ADDRESS  
ON-CHIP EPROM PROGRAM MEMORY  
HEX  
DECIMAL  
6143  
17FF  
33  
32  
31  
021  
020  
01F  
AVAILABLE TO USER (AREA INTENDED  
FOR FUTURE ADDITIONAL INTERRUPTS)  
LOCATION OF FIRST  
BYTE OF INSTRUCTION  
EXECUTED AFTER  
RESET  
14  
13  
12  
11  
10  
9
00E  
00D  
00C  
00B  
00A  
009  
008  
007  
006  
005  
004  
003  
002  
001  
000  
IRQ5  
IRQ5  
IRQ4  
IRQ4  
IRQ3  
8
IRQ3  
7
IRQ2 INTERRUPT VECTOR (Lower Byte)  
6
IRQ2 INTERRUPT VECTOR (Upper Byte)  
5
IRQ1  
4
IRQ1  
3
2
IRQ0  
IRQ0  
1
0
PC ROLLOVER VECTOR (Lower Byte)  
PC ROLLOVER VECTOR (Upper Byte)  
Figure 11. Z8E520 Program Memory Map  
18  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
Register File. The register file consists of the following:  
160 General-Purpose Registers in group 0–7, SIE Buffers  
in group 8–A, SIE Control in group B, Timer/Counters in  
group C, Configuration Registers in group D, Virtual Reg-  
isters in group E and System Registers in Group F  
(Figure 12).  
1
System Registers  
Virtual Registers  
F
E
D
I/O Configuration  
Timer/Counter  
SIE Control  
C
B
A
9
XMIT Buffer  
RECEIVE Buffer  
SIE Buffers  
(for PS/2 or RS232-C Mode)  
General Purpose RAM  
8
7
6
5
4
3
2
General-Purpose  
Registers  
1
0
EP0 IN Buffer  
A
Depends on  
EP Mode  
(See Table Below)  
EP0 OUT Buffer  
9
8
SIE Buffers  
(for USB Mode)  
EP0 SETUP Buffer  
Figure 12. Register Files  
Table 9. EP Modes for SIE Buffer (In USB Mode)  
EP Mode  
Description  
Buffer Address  
0x98–0x9F  
0x88–0x8F  
0xA8–0xAF  
000  
001  
010  
011  
100  
101  
110  
111  
EP1 OFF, EP2 OFF  
EP1 IN, EP2 OFF  
EP1 OUT, EP2 OFF  
EP1 CONTROL  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
EPI IN Buffer  
EP1 OUT Buffer  
EP1 IN Buffer  
EP1 OUT Buffer  
EP1 IN Buffer  
EP1 OUT Buffer  
EP1 IN Buffer  
GPR  
EP1 SETUP Buffer  
GPR  
EP1 OUT Buffer  
EP2 OUT Buffer  
EP1 OUT Buffer  
EP1 IN Buffer  
EP2 IN Buffer  
EP1 OUT, EP2 OUT  
EP1 IN, EP1 OUT  
EP1 OUT, EP1 IN  
EP1 IN, EP2 IN  
GPR  
GPR  
GPR  
DS97KEY2005  
P R E L I M I N A R Y  
19  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
STACK POINTER  
RESERVED  
REGPTR  
FF  
FE  
FD  
FC  
FB  
FA  
F9  
FLAGS  
IMASK  
IREQ  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
RESERVED  
F1  
F0  
Figure 13. System Registers  
20  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
RESERVED  
RESERVED  
T1CNT  
CF  
CE  
1
CD  
CC  
CB  
CA  
C9  
T0CNT  
T3CNT  
T2CNT  
T3AR  
T2AR  
C8  
C7  
T1ARHI  
T0ARHI  
C6  
C5  
C4  
C3  
C2  
T1ARLO  
T0ARLO  
WDTHI  
READ  
ONLY  
WDTLO  
TCTLHI  
C1  
C0  
TCTLLO  
Figure 14. T/C Control Registers  
DS97KEY2005  
P R E L I M I N A R Y  
21  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
ADDR  
B0  
NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PORT A  
PORT B  
A7  
B7  
A6  
B6  
A5  
B5  
A4  
B4  
A3  
B3  
A2  
B2  
A1  
B1  
A0  
B0  
B1  
USB ADDRESS 6:0  
ADDR  
B2  
B3  
SIE MODE  
RS232  
PS/2  
USB  
SIE MODE 7:0  
SIE  
POWER  
FORCE  
RESUME  
J STATE  
ACTIVITY  
USB CSR  
B4  
B5  
B6  
EP MODE 2:0  
LOW  
PRIORITY  
INTR  
LOW  
PRIORITY  
MASK  
DEPENDS ON EP MODE  
(SEE TABLE 10)  
DEPENDS ON EP MODE  
(SEE TABLE 10)  
HIGH  
PRIORITY RESUME  
NAK  
SENT  
EP1  
NAK  
SENT  
EP0  
STALL  
SENT  
EP2  
STALL STALL  
SETUP  
EP1  
SETUP  
EP0  
B7  
B8  
B9  
BA  
BB  
SENT  
SENT  
INTR  
EP1  
EP0  
HIGH  
PRIORITY  
MASK  
SAME AS HIGH PROIORITY INTR  
OUT  
ACK  
SETUP  
STATUS BUFFER  
IN  
IN  
DATA  
EP0  
CSR  
OUT  
SERVICED  
FORCE FORCE  
DATA  
TOGGLE  
PACKET  
TOGGLE  
READY  
STALL  
NAK  
OUT  
VOLATILE  
EP1/2  
CSR  
DEPENDS ON EP MODE  
(SEE TABLE 11)  
EP0  
COUNT  
EP0 OUT COUNT 3:0  
EP0 IN COUNT 3:0  
EP1/2  
COUNT  
DEPENDS ON EP MODE  
(SEE TABLE 12)  
BC  
BD  
BE  
BF  
Figure 15. COMM Registers (USB Mode: B0–BF)  
P R E L I M I N A R Y  
22  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
COMMUNICATION REGISTER DEFINITIONS (USB MODE)  
The following definitions on pages 23–26 describe in detail  
the specific USB mode registers as illustrated in Figure 15.  
available 7.5 K ohm pull-up internal to the chip. An external  
7.5 K ohm pull-up should be provided for DATA.  
1
PORT A, PORT B: I/O Port data registers. At all times, a  
read to this port should indicate the current state at the  
pins. Read/Write.  
RS232: Port B7 is serial data out (T x D). Port B6 is serial  
data in (R x D). These signals are CMOS-level signals,  
positive logic. Appropriate transceiver circuitry must be  
added externally to comply with RS232-C signal levels at  
the device connector.  
ADDR: Determines the USB Device Address. Cleared by  
USB or POR Reset. Read/Write.  
SIE POWER: Powers up the SIE when USB Resume sig-  
naling has been received, or shuts down SIE in prepara-  
tion for USB Suspend. Read/Write.  
SIE MODE: Determines the mode of the SIE communica-  
tion pins (Port B7:6). Read/Write. The SIE modes are as  
follows:  
FORCE RESUME: Forces a K state on the USB pins.  
Read/Write.  
SIE Mode Description  
Port B7 Port B6  
00000000 GPIO  
00000001 USB  
00000010 PS/2  
I/O  
D+  
I/O  
D–  
ACTIVITY: This bit is set by the SIE when the state of the  
USB pins changes. Read/Write.  
CLOCK  
DATA  
J STATE: This bit is set when the USB is in the ‘J’ state  
and cleared when in ‘K’ or ‘SE0’. Read only.  
00000100 RS232-C 1200 Baud DATA IN DATA OUT  
N81 Full Duplex  
Other  
Reserved  
Reserved Reserved  
EP MODE: These bits define the operation of the non-zero  
endpoints of the SIE. Changing this mode resets the SIE,  
while writing the same value does not. Read/Write. The  
EP modes are as follows:  
GPIO: The SIE is off and the communication lines are  
standard I/O pins on Port B.  
USB: Port B7 is D+, which connects to pin 3 on a series A,  
or series B USB connector and whose conductor is green.  
Port B6 is D–, which connects to pin 2 on a series A or se-  
ries B USB connector and whose conductor is white. An  
external 7.5K pull-up should be provided for D–.  
EP Mode  
Description  
000  
001  
010  
011  
100  
101  
110  
111  
EP1 OFF, EP2 OFF  
EP1 IN, EP2 OFF  
EP1 OUT, EP2 OFF  
EP1 CONTROL  
PS/2: Port B7 is CLOCK, which connects to pin 5 on a  
male 6-pin Mini-DIN connector and Port B6 is DATA, which  
connects to pin 1 on a male 6-pin Mini-DIN connector.  
These signals are open-drain. The CLOCK pin has an  
EP1 OUT, EP2 OUT  
EP1 IN, EP1 OUT  
EP1 OUT, EP1 IN  
EP1 IN EP2 IN  
DS97KEY2005  
P R E L I M I N A R Y  
23  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
COMMUNICATION REGISTER DEFINITIONS (USB MODE) (Continued)  
LOW PRIORITY INTR: This register contains the IRQ  
source flags of a low-priority communications interrupt.  
The ISR should check these bits to determine the cause of  
the interrupt. The definition of these bits depends on the  
EP Mode as specified in the USB CSR. Writing a 1 to their  
position clears interrupt sources. Read/Write.  
LOW PRIORITY MASK: This register contains mask bits  
for the IRQ sources specified in the LOW PRIORITY INTR  
register. A set bit indicates that the corresponding interrupt  
source is unmasked.  
Table 10 illustrates both Low Priority MASK and INTR con-  
ditions according to EP Mode:  
Table 10. Low Priority MASK and INTR Conditions  
EP  
MODE  
Description  
EP 2  
EP 1  
EP 0  
OUT  
PACKET  
READY  
000  
001  
010  
011  
100  
101  
110  
111  
EP1 OFF, EP2 OFF  
OUT  
NAK  
SENT  
IN  
IN  
NAK  
SENT  
DONE  
EP1 IN EP2 OFF  
EP1 OUT, EP2 OFF  
EP1 CONTROL  
IN  
IN  
DONE  
OUT  
NAK  
SENT  
OUT  
PACKET  
READY  
IN  
IN  
NAK  
SENT  
NAK  
SENT  
DONE  
OUT  
NAK  
OUT  
OUT  
NAK  
SENT  
OUT  
PACKET  
READY  
IN  
IN  
PACKET  
NAK  
SENT  
DONE  
READY READY  
OUT  
OUT  
IN  
IN  
DONE  
OUT  
NAK  
SENT  
OUT  
PACKET  
READY  
IN  
IN  
NAK  
SENT  
PACKET  
READY  
NAK  
SENT  
NAK  
SENT  
DONE  
EP1 OUT, EP2 OUT  
EP1 IN, EP1 OUT  
EP1 OUT, EP1 IN  
EP1 IN EP2 IN  
OUT  
NAK  
SENT  
OUT  
OUT  
NAK  
SENT  
OUT  
OUT  
NAK  
SENT  
OUT  
PACKET  
READY  
IN  
IN  
PACKET  
READY  
PACKET  
READY  
NAK  
SENT  
DONE  
OUT  
NAK  
SENT  
OUT  
IN  
IN  
DONE  
OUT  
OUT  
NACK PACKET  
IN  
IN  
PACKET  
READY  
NAK  
SENT  
NAK  
SENT  
DONE  
SENT  
READY  
IN  
IN  
DONE  
OUT  
NAK  
SENT  
OUT  
OUT  
NAK  
SENT  
OUT  
PACKET  
READY  
IN  
IN  
NAK  
SENT  
PACKET  
READY  
NAK  
SENT  
DONE  
IN  
IN  
IN  
IN  
OUT  
OUT  
IN  
IN  
NAK  
SENT  
DONE  
NAK  
SENT  
DONE  
NACK PACKET  
SENT READY  
NAK  
SENT  
DONE  
IN DONE: The SIE received a valid IN token, sent the data  
packet and received an ACK from the host. Setting this bit  
by the SIE, clears IN PACKET READY and IN NAK SENT.  
SIE may never write to the IN buffer.  
OUT PACKET READY: The SIE received a valid OUT  
packet and placed the received data, if any, in the buffer,  
thereby updating the OUT count register and sending an  
ACK. Setting this bit by the SIE clears OUT SERVICED  
and OUT NAK SENT. Firmware may never write to the  
OUT buffer.  
IN NAK SENT: The SIE sent a NAK on an IN transmission  
because IN PACKET READY was clear.  
OUT NAK SENT: The SIE sent a NAK on an OUT trans-  
action because OUT SERVICED was clear. If an OUT  
packet was NAK’d, OUT DATA TOGGLE and the OUT  
buffer must not be affected.  
24  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
HIGH PRIORITY INTR: This register contains the IRQ  
source flags of a high-priority communications interrupt.  
The ISR should check these bits to determine the cause of  
the interrupt. Writing a 1 to their position clears interrupt  
sources. Read/Write.  
SETUP EP1: This bit is set after the completion of the  
setup stage of a control transfer on EP1. This bit is valid  
only in EP mode 011.  
1
SETUP EP0: This bit is set after the completion of the  
setup stage of a control transfer on EP0.  
RESUME: This bit is set when the ACTIVITY bit is set in  
the USB CSR, allowing the device to wake up on any  
activity of the USB.  
HIGH PRIORITY MASK: This register contains mask bits  
for the IRQ sources specified in the HIGH PRIORITY INTR  
register. A set bit indicates that the corresponding interrupt  
source is unmasked.  
STALL SENT EP2: This bit is set when a STALL is sent  
on EP2. This bit is valid only in EP modes 100, 101, 110  
and 111.  
EP0 CSR: Control/Status register of Endpoint 0 (Control  
pipe).  
STALL SENT EP1: This bit is set when a STALL is sent  
on EP1. This bit is not valid in EP mode 000.  
EP1/2 CSR: Control/Status register of additional end-  
points. The definition of these bits depends on the EP  
Mode as specified in the USB CSR. Read/Write.  
STALL SENT EP0: This bit is set when a STALL is sent  
on EP0.  
Table 11 illustrates the EP1/2 CSR registers according to  
EP Mode:  
Table 11. EP 1/2 CSR Registers (BA)  
EP  
MODE  
Description  
EP 1  
000 EP1 OFF, EP2 OFF  
001 EP1 IN EP2 OFF  
010 EP1 OUT, EP2 OFF  
011 EP1 CONTROL  
FORCE FORCE  
STALL NAK  
IN  
PACKET  
READY TOGGLE  
IN  
DATA  
FORCE FORCE  
STALL NAK  
IN  
PACKET  
READY TOGGLE  
IN  
DATA  
FORCE FORCE  
STALL NAK  
OUT  
PACKET  
READY TOGGLE  
OUT  
DATA  
ACK  
SETUP  
OUT  
OUT  
DATA  
TOGGLE  
FORCE FORCE  
STALL NAK  
IN  
PACKET  
READY TOGGLE  
IN  
DATA  
STATUS BUFFER SERVICED  
OUT VOLATILE  
100 EP1 OUT, EP2 OUT FORCE FORCE  
STALL NAK  
OUT  
SERVICED  
OUT  
DATA  
FORCE FORCE  
STALL NAK  
OUT  
PACKET  
OUT  
DATA  
TOGGLE  
READY TOGGLE  
101 EP1 IN, EP1 OUT  
110 EP1 OUT, EP1 IN  
111 EP1 IN EP2 IN  
FORCE FORCE  
STALL NAK  
OUT  
SERVICED  
OUT  
DATA  
TOGGLE  
FORCE FORCE  
STALL NAK  
IN  
PACKET  
READY TOGGLE  
IN  
DATA  
FORCE FORCE  
STALL NAK  
IN  
PACKET  
READY TOGGLE  
IN  
DATA  
FORCE FORCE  
STALL NAK  
OUT  
PACKET  
READY TOGGLE  
OUT  
DATA  
FORCE FORCE  
STALL NAK  
IN  
PACKET  
IN  
DATA  
FORCE FORCE  
STALL NAK  
IN  
PACKET  
IN  
DATA  
READY TOGGLE  
READY TOGGLE  
FORCE STALL: Forces the SIE to stall all IN and OUT  
transactions. The successful receipt of a setup token  
clears this bit. STALL takes priority over NAK or ACK.  
Read/Write.  
IN PACKET READY: When clear, IN transactions are  
NAK’d. This bit cannot be cleared by firmware. To clear it,  
firmware should be set FORCE NAK. Firmware must not  
write to the IN buffer or IN COUNT while this bit is set. It is  
cleared when the SIE sets IN DONE or when the SIE re-  
DS97KEY2005  
P R E L I M I N A R Y  
25  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
COMMUNICATION REGISTER DEFINITIONS (USB MODE) (Continued)  
ceives a valid setup token (via FORCE NAK). Setting IN  
PACKET READY clears IN NAK SENT. Read/Set.  
ACK STATUS OUT: This bit serves to filter the response  
to an OUT transaction. Setting this bit also sets OUT SER-  
VICED. This bit cannot be cleared by firmware. To clear it,  
firmware should be set FORCE NAK. Read/Set.  
FORCE NAK: Setting this bit clears IN PACKET READY if  
no IN transaction are in progress, and clears OUT SER-  
VICED and ACK STATUS OUT if no OUT transactions are  
in progress. This bit is cleared by a setup token or by firm-  
ware. Read/Write.  
While ACK STATUS OUT is set:  
If IN NAK SENT is clear, the SIE will ACK an empty OUT  
DATA 1 transaction.  
IN DATA TOGGLE: Indicates what type of PID to use in  
the data phase of the next IN transaction. SIE may never  
write to this bit. Read/Write.  
If IN NAK SENT is set, the SIE will NAK an empty OUT  
DATA 1 transaction.  
Any other kind of OUT transaction will be stalled and set  
the STALL SENT interrupt. It is possible to have both  
STALL SENT and OUT PACKET READY set on a  
single, incorrect OUT transaction.  
OUT SERVICED: When cleared, OUT transactions are  
NAK’d. It is cleared when the SIE sets OUT PACKET  
READY or receives a valid setup token (via FORCE NAK).  
This bit cannot be cleared by firmware. To clear it, firm-  
ware should be set FORCE NAK. When set, OUT COUNT  
and OUT buffer are volatile. Setting OUT SERVICED  
clears OUT N AK SENT. Read/Set.  
Any out transaction will cause the SIE to set FORCE  
NAK and OUT PACKET READY. As a result, ACK  
STATUS OUT is cleared. ACK STATUS OUT has “one-  
shot” behavior. It only handles one OUT transaction.  
OUT DATA TOGGLE: Indicates what type of PID was re-  
ceived in the data phase of the most recent successful  
OUT transaction. Read only.  
The successful receipt of a setup token sets FORCE  
NAK, which clears this bit.  
SETUP BUFFER VOLATILE: Indicates that the SIE has  
entered the data stage of a control transfer. The successful  
receipt of a setup token sets and locks this bit. The bit re-  
mains locked as set until the data phase is complete and  
error free. If the data phase has an error, this bit will re-  
mained locked, but a setup interrupt will still occur to inform  
the firmware that a new transfer was attempted. After the  
data phase is received without errors, firmware may clear  
this bit. Read/Clear (if unlocked).  
EP0 COUNT: Contains counts of bytes in the endpoint  
buffers.  
EP1/2 COUNT: Contains counts of bytes in the endpoint  
buffers. Definition of this register depends on the EP Mode  
as illustrated in Table 12:  
Table 12. EP 1/2 Counts  
EP MODE  
Description  
EP1 OFF, EP2 OFF  
EP1/2 COUNT  
000  
001  
010  
011  
100  
101  
110  
111  
GP R  
EP1 IN EP2 OFF  
EP1 OUT, EP2 OFF  
EP1 CONTROL  
GPR  
EP1 IN COUNT 3:0  
GPR  
EP1 OUT COUNT 3:0  
EP1 IN COUNT 3:0  
EP1 OUT COUNT 3:0  
EP1 IN COUNT 3:0  
EP1 OUT COUNT 3:0  
EP1 IN COUNT 3:0  
EP1 OUT COUNT 3:0  
EP2 OUT COUNT 3:0  
EP1 OUT COUNT 3:0  
EP1 IN COUNT 3:0  
EP2 IN COUNT 3:0  
EP1 OUT, EP2 OUT  
EP1 IN, EP1 OUT  
EP1 OUT, EP1 IN  
EP1 IN EP2 IN  
EP OUT COUNT: Set by the SIE to indicate the number of  
bytes received in the most recent OUT transaction. Invalid  
while OUT SERVICED is set.  
EP IN COUNT: Set by firmware to indicate the number of  
bytes to transfer in the next IN transaction. Invalid while IN  
PACKET READY is set.  
26  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
ADDR  
B0  
NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
PORT A  
PORT B  
A7  
B7  
A6  
B6  
A5  
B5  
A4  
B4  
A3  
B3  
A2  
B2  
A1  
B1  
A0  
B0  
B1  
B2  
B3  
1200  
BAUD  
SERIAL  
SIE MODE  
MODE 3:0  
USB  
PS/2  
B4  
B5  
B6  
LOW  
PRIORITY  
INTR  
LOW  
PRIORITY  
MASK  
PB7  
INTR  
PB6  
INTR  
XMIT  
DONE  
HOST  
ABORT ERROR  
COMM  
BYTE  
RCV  
PB7  
MSK  
PB6  
MSK  
SAME AS LOW PRIORITY INTR  
HIGH  
PRIORITY  
INTR  
OVER-  
RUN  
ERROR ERROR  
RCV  
COMM  
RCV  
DONE  
B7  
B8  
B9  
BA  
BB  
HIGH  
PRIORITY  
MASK  
SAME AS HIGH PRIORITY INTR  
COMM  
CSR  
RCV  
READY  
XMIT  
READY  
PACKET  
SIZE  
RCV PACKET SIZE  
XMIT PACKET SIZE  
BYTE  
OFFSETS  
LAST BYTE RECEIVED OFFSET  
NEXT SEND BYTE OFFSET  
BC  
BD  
BE  
BF  
Figure 16. COMM Registers (Non-USB Modes: B0–BF)  
DS97KEY2005  
P R E L I M I N A R Y  
27  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
COMMUNICATION REGISTER DEFINITIONS (NON-USB MODES)  
The following definitions describe in detail the specific non-  
USB mode registers as illustrated in Figure 16.  
RCV COMM ERROR: Indicates that a communications  
error occurred while receiving a byte, resulting in a  
framing or parity error. In PS/2 mode, it may also  
indicate that the host aborted its own transmission.  
PORT A, PORT B: Same as USB mode. Port B6 and B7  
are I/O in the GPIO Mode.  
RCV DONE: Indicates that RCV PACKET SIZE bytes  
SIE MODE: Same as USB mode.  
have been received since RCV READY was set.  
LOW PRIORITY INTR: This register contains the IRQ  
COMM CSR: Controls the SIE in PS/2 and RS232-C  
mode.  
flags of  
a
low-priority communications interrupt.  
Read/Write.  
XMIT READY: Indicates to the SIE that the XMIT buffer  
is valid. Cleared by SIE when XMIT DONE is set.  
Cannot be cleared by firmware. Read/Write.  
LOW PRIORITY MASK: This register contains mask bits  
for the IRQ sources specified in the LOW PRIORITY INTR  
register. A set bit indicates that the corresponding interrupt  
source is unmasked.  
RCV READY: Indicates to the SIE that the most recent  
packet received has been handled. Cleared by the SIE  
after RCV DONE is set. Cannot be cleared by firmware.  
Read/Write.  
XMIT COMM ERROR: Indicates that a communications  
error occurred while transmitting a byte. Valid only when  
the SIE is in PS/2 mode. Indicates that the host aborted  
the transfer.  
RCV PACKET SIZE: Number of bytes to receive before  
BYTE RECEIVED interrupt. Value may not exceed the  
size specified in RCV BUFFER SIZE. A “0” indicates that  
the packet size = the buffer size. Read/Write.  
XMIT DONE: Indicates that XMIT PACKET SIZE bytes  
have been sent since XMIT READY was set.  
HIGH PRIORITY INTR: This register contains the IRQ  
source flags of a low-priority communications interrupt.  
The ISR should check these bits to determine the cause of  
the interrupt. Read/Write.  
XMIT PACKET SIZE: The number of bytes to send  
before the XMIT DONE interrupt. A “0” indicates that the  
packet size = the buffer size  
LAST BYTE RECEIVED OFFSET: Indicates the offset  
in the RECEIVE buffer of the most recent byte received.  
Read only.  
HIGH PRIORITY MASK: This register contains mask bits  
for the IRQ sources specified in the HIGH PRIORITY INTR  
register. A set bit indicates that the corresponding interrupt  
source is unmasked.  
NEXT SEND BYTE OFFSET: Indicates the offset in the  
XMIT buffer of the next byte to be sent. If the host has  
aborted a PS/2 transmission, it is the offset of the byte  
that was aborted. Read only.  
OVERRUN ERROR: Indicates that RCV READY was  
clear when RCV DONE was set.  
28  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
INITIAL STATES: COMM REGISTERS, UPON CHANGING MODES:  
ADDR  
NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
PORT A  
PORT B  
Cleared by POR,or not changed  
Same as Port A  
SIE  
CONTROL  
REGS  
ALL 0  
Uninitialized  
INITIAL STATES: PORT CONFIGURATION REGISTERS:  
All Registers in this state are cleared to 0 on POR.  
DS97KEY2005  
P R E L I M I N A R Y  
29  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
PORT CONFIGURATION REGISTERS  
ADDR  
D0  
NAME  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A0  
A1  
PUSH/ PULLDWN  
PORT A  
CONFIG  
01  
PUSH/  
PULL  
PULLDWN  
ON  
WAKE  
WAKE  
WAKE  
OUTPUT  
OUTPUT  
OUTPUT  
WAKE  
WAKE  
WAKE  
WAKE  
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
PULL  
ON  
A2  
A3  
PORT A  
CONFIG  
23  
PUSH/  
PULL  
PULLUP  
ON  
PUSH/ PULLDWN  
PULL  
D1  
ON  
A4  
A5  
PORT A  
CONFIG  
45  
PUSH/  
PULL  
PULLUP  
ON  
PUSH/  
PULL  
PULLUP  
ON  
D2  
D3  
A6  
B0  
A7  
PORT A  
CONFIG  
67  
PUSH/  
PULL  
PULLUP  
ON  
PUSH/  
PULL  
PULLUP  
ON  
WAKE  
WAKE  
OUTPUT  
OUTPUT  
B1  
PORT B  
CONFIG  
01  
D4  
D5  
D6  
PUSH/  
PULL  
PULLUP  
ON  
PUSH/  
PULL  
PULLUP  
ON  
WAKE  
WAKE  
WAKE  
B2  
B4  
B6  
B3  
B5  
B7  
PORT B  
CONFIG  
23  
PORT B  
CONFIG  
45  
PORT B  
CONFIG  
67  
PUSH/  
PULL  
PULLUP  
ON  
PUSH/  
PULL  
PULLUP  
ON  
WAKE  
WAKE  
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
PUSH/  
PULL  
PULLUP  
ON  
PUSH/  
PULL  
PULLUP  
ON  
D7  
D8  
D9  
DA  
DB  
PUSH/  
PULL  
PULLUP  
ON  
PUSH/  
PULL  
PULLUP  
ON  
OUTPUT  
OUTPUT  
A5  
A4  
PORT A  
SINK  
45  
SINK 3:0  
A7  
SINK 3:0  
A6  
PORT A  
SINK  
67  
SINK 3:0  
SINK 3:0  
B0  
PORT B0  
PORT B1  
COMP  
ENABLE  
VREF 5:4  
VREF 5:4  
DIVIDER 2:0  
B1  
B2  
COMP  
ENABLE  
DIVIDER 2:0  
PORT B2  
PORT B3  
PORT B4  
DC  
DD  
COMP  
ENABLE  
DIVIDER 2:0  
VREF 5:4  
VREF 5:4  
B3  
B4  
COMP  
ENABLE  
DIVIDER 2:0  
DIVIDER 2:0  
DE  
DF  
COMP  
ENABLE  
VREF 5:4  
VREF 5:4  
B5  
PORT B5  
COMP  
ENABLE  
DIVIDER 2:0  
Figure 17. Port Configuration Registers ( D0–DF)  
P R E L I M I N A R Y  
30  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
PORT REGISTER DEFINITIONS  
The following definitions describe in detail the specific port  
registers as illustrated in Figure 17.  
SINK: Indicates the level of current drawn by the current  
sink on the pin. When SINK 0, the n-channel output tran-  
sistor is disabled. When SINK = 0, the sink is off and the n-  
channel output transistor may be enabled according to the  
OUTPUT bit.  
1
WAKE: When set, this pin is capable of waking the device  
on any edge.  
PUSH/PULL: When set, this pin is a push-pull output.  
When clear, this pin is an open-drain output. Ignored if  
OUTPUT is clear.  
DIVIDER: Selects one of the three voltage dividers to be  
placed on the pin. Divider 0 indicates no divider.  
VREF: Indicates the voltage reference level for the com-  
parator. Ignored if COMP ENABLED is clear.  
PULLUP ON: When set, the pull-up resistor is on.  
OUTPUT: When set, the pin’s output drivers are enabled.  
However, the pin may be read at any time regardless of the  
configuration.  
COMP ENABLE: When set, the comparator is powered.  
When clear, the comparator and VREF circuitry are pow-  
ered down.  
FUNCTIONAL DESCRIPTIONS  
Counter/Timers. For the Z8E20, 8-bit timers T0 and T1  
are available to function as a pair of independent 8-bit  
standard timers, or they can be cascaded to function as a  
16-bit PWM timer. In addition, 8-bit timers T2 and T3 are  
provided but they can only operate in cascade to function  
as a 16-bit standard timer (Figure 18).  
ue register is being written while the timer is in the process  
of being initialized. Whether initialization is done with the  
new or old value is a function of the exact timing of the  
write operation. In all cases, the Z8E520 will prioritize the  
software write above that of a decremented writeback.  
However, when hardware clears a control register bit for a  
timer that is configured for single-shot operation; the clear-  
ing of the control bit will override a software write. Reading  
either register can be done at any time, and will have no  
effect on the functionality of the timer.  
Each 8-bit timer is provided a pair of registers, which are  
both readable and writable. One of the registers is defined  
to contain the auto-initialization value for the timer, while  
the second register contains the current value for the timer.  
When a timer is enabled, the timer will decrement whatev-  
er value is currently held in its count register, and will then  
continue decrementing until it reaches 0, at which time an  
interrupt will be generated and the contents of the auto-ini-  
tialization register are optionally copied into the count val-  
ue register. If auto-initialization is not enabled, the timer  
will stop counting upon reaching 0 and control logic will  
clear the appropriate control register bit to disable the tim-  
er. This occurrence is referred to as “single-shot” opera-  
tion. If auto-initialization is enabled, the timer will continue  
counting from the initialization value. Software should not  
attempt to use registers that are defined as having timer  
functionality.  
If a timer pair is defined to operate as a single 16-bit entity,  
the entire 16-bit value must reach 0 before an interrupt is  
generated. In this case, a single interrupt will be generat-  
ed, and the interrupt will correspond to the even 8-bit time.  
For example, timers T2 and T3 are cascaded to form a sin-  
gle 16-bit timer, so the interrupt for the combined timer will  
be defined to be that of timer T2 rather than T3. When a  
timer pair is specified to act as a single 16-bit timer, the  
even timer registers in the pair (timer T0 or T2) will be de-  
fined to hold the timer’s least significant byte; while the odd  
timer in the pair will hold the timer’s most significant byte.  
In parallel with the posting of the interrupt request, the in-  
terrupting timer’s count value will be initialized by copying  
the contents of the auto-initialization value register to the  
count value register.  
Software is allowed to write to any register at any time, but  
it is not recommended that timer registers be updated  
while the timer is enabled. If software updates the count  
value while the timer is in operation, the timer will continue  
counting based upon the software-updated value. This oc-  
currence can produce strange behavior if the software up-  
date occurred at exactly the point that the timer was reach-  
ing 0 to trigger an interrupt and/or reload.  
Note: Any time that a timer pair is defined to act as a  
single 16-bit timer, that the auto-reload function will be  
performed automatically. All 16-bit timers will continue  
counting while their interrupt requests are active, and will  
operate in a free-running manner.  
If interrupts are disabled for a long period of time, it is pos-  
sible for the timer to decrement to 0 again before its initial  
interrupt has been responded to. This occurrence is a de-  
generate case, and hardware is not required to detect this  
Similarly, if software updates the initialization value regis-  
ter while the timer is active, the next time that the timer  
reaches 0, it will be initialized using the updated value.  
Again, strange behavior could result if the initialization val-  
DS97KEY2005  
P R E L I M I N A R Y  
31  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
FUNCTIONAL DESCRIPTIONS (Continued)  
condition. When the timer control register is written, all tim-  
ers that are enabled by the write will begin counting using  
the value that is held in their count register. An auto-initial-  
ization is not performed. All timers can receive an internal  
clock source only, so synchronization of timer updates is  
not an issue. Each standard timer that is enabled will be  
updated every 8th XTAL clock cycle.  
form, and the T0 interrupt will mark the end of the Low por-  
tion of the PWM waveform.  
To use the cascaded timers as a PWM, one must initialize  
the T0/T1 count registers to work in conjunction with the  
port pin. The user should initialize the T0 and T1 count reg-  
isters to the PWM hi auto-init value to obtain the required  
PWM behavior. The PWM is arbitrarily defined to use the  
Low auto-reload registers first, implying that it had just  
timed out after beginning in the High portion of the PWM  
waveform. As such, the PWM is defined to assert the T1  
interrupt after the first timeout interval.  
If T0 and T1 are defined to work independently, then each  
will work as an 8-bit timer with a single auto-initialization  
register; T0ARLO for T0, and T1ARLO for T1. Each timer  
will assert its predefined interrupt when it times out, and  
will optionally perform the auto-initialization function. If T0  
and T1 are cascaded to form a single 16-bit timer, then the  
single 16-bit timer will be capable of performing as a Pulse-  
Width Modulator (PWM). This timer is referred to as T01 to  
distinguish it as having special functionality that is not  
available when T0 and T1 act independently.  
After the auto-initialization has been completed, decre-  
menting occurs for the number of counts defined by the  
auto-init_lo registers. When decrementing again reaches  
0, the T0 interrupt is asserted; and auto-init using the auto-  
init_hi registers occurs. Decrementing occurs for the num-  
ber of counts defined by the auto-init_hi registers until  
reaching 0, at which time the the T1 interrupt is asserted,  
and the cycle begins again. The internal timers can be  
used to trigger external events by toggling port output  
when generating an interrupt. This functionality can only  
be achieved in conjunction with the port unit defining the  
appropriate pin as an output signal with the timer output  
special function enabled. In this mode, the appropriate port  
output will be toggled when the timer count reaches 0, and  
will continue toggling each time that the timer times out.  
When T01 is enabled, it can use a pair of 16-bit auto-initial-  
ization registers. In this mode, one 16-bit auto-initialization  
value is composed of the concatenation of T1ARLO and  
T0ARLO, and the second auto-initialization value is com-  
posed of the concatenation of T1ARHI and T0ARHI. When  
T01 times out, it will alternately initialize its count value us-  
ing the Lo auto-init pair followed by the Hi auto-init pair.  
This functionality corresponds to a PWM where the T1 in-  
terrupt will define the end of the High section of the wave-  
Register Data Bus  
÷ 8  
XTAL  
IRQ0  
T0ARHI  
T1ARHI  
LOAD  
OUF  
PA1  
PWM  
OUF  
T
T0  
T1  
REG C0–0  
LOAD  
XTAL  
÷8  
T0ARLO  
T1ARLO  
IRQ1  
REG C0–1  
= Bidirectional  
Figure 18. Z8E520 Timers Block Diagram  
P R E L I M I N A R Y  
32  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
Watch-Dog Timer. The WDT can be programmed at any-  
time in the program operation.  
trolled by the Interrupt Priority register. All interrupts are  
vectored through locations in the program memory. When  
an interrupt machine cycle is activated an interrupt request  
is granted. All of the subsequent interrupts are thus dis-  
abled, saving the Program Counter and status flags, and  
branching to the program memory vector location reserved  
for that interrupt. This memory location and the next byte  
contain the 16-bit address of the interrupt service routine  
for that particular interrupt request.  
Default value (Reset) = 98 ms  
1
The RC oscillator is under firmware control. If the oscillator  
is enabled during USB Suspend/Chip Stop Mode, the de-  
vice will be periodically woke up by the WDT timeout. If the  
application does not require “motion detect,” the current  
that drives the internal oscillator/WDT can be saved.  
EMI. Lower EMI on the Z8E520 is achieved through circuit  
modifications.  
WDT Control Registers. Select time-out values for the  
WDT are programmable –0 to +100%.  
The Z8E520 also accepts external clock from XTAL IN pin  
(Figure 20).  
Interrupts. The Z8E520 has six different interrupts. These  
interrupts are maskable and prioritized (Figure 19 ). The  
six sources are divided as follows:  
Priority  
IRQ  
0
1
2
3
4
5
TCO  
TC1  
XTAL1 (in)  
TC2  
COMM HIGH  
COMM LOW  
Port  
XTAL2 (out)  
.
Figure 20. Oscillator Configuration  
IRQ0–IRQ4  
Power-On-Reset (POR). A timer circuit is triggered by the  
system oscillator and is used for the Power-On Reset  
(POR) timer function. The POR time allows VCC and the os-  
cillator circuit to stabilize before instruction execution be-  
gins. POR period is defined as:  
6
IRQ  
POR (ms) = 98 ms  
IMR  
The POR timer circuit is a one-shot timer triggered by pow-  
er fail to Power OK status. The POR time is a nominal 100  
ms at 6 MHz. The POR time is bypassed after Stop-Mode  
Recovery.  
6
Global  
Interrupt  
Enable  
HALT. HALT turns off the internal CPU clock, but not the  
oscillator. The counter/timer and external interrupts  
IRQ0–5 remain active. The Z8E520 recovers by interrupts,  
either externally or internally.  
Interrupt  
Request  
USB Reset. Detection by the SIE of a reset from the Host  
will cause the chip to reset. The reset will be remembered  
so that the program can decide the source of the reset.  
The USB Reset will act even if the chip is in the STOP  
mode.  
Vector Select  
Figure 19. Interrupt Block Diagram  
When more than one interrupt is pending, priorities are re-  
solved by a programmable priority encoder that is con-  
DS97KEY2005  
P R E L I M I N A R Y  
33  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
FUNCTIONAL DESCRIPTIONS (Continued)  
V
Circuit. The Voltage Brown Out circuit will detect  
Note: The timer cannot generate an interrupt in STOP  
BO  
when voltage has dropped below the normal operating  
voltage. The chip will maintain full core functionality and  
Mode because the clock is stopped.  
The interrupt causes the processor to restart the applica-  
tion program at the address or the vector of the interrupt  
and continue the program at the end of the interrupt ser-  
vice routine. In order to enter STOP (or HALT) Mode, it is  
necessary to first flush the instruction pipeline to avoid sus-  
pending execution in mid-instruction. As a result, the user  
must execute a NOP (Opcode=FFH) immediately before  
the appropriate sleep instruction, such as:  
RAM values will be preserved during the range from V  
MIN  
(V = 4V) to V ; however, it may not meet worst case  
CC  
BO  
AC and DC limits. At V , the chip will be placed in reset  
BO  
and maintained in that state until V exceeds V . When  
CC  
BO  
this condition is reached, the chip will resume operation.  
is set by design to 2.7 V ± 0.2 V.  
V
BO  
STOP. This instruction turns off the internal clock and ex-  
ternal ceramic resonator oscillation. It reduces the standby  
current to less than 60 µA. The STOP Mode is terminated  
by an interrupt. An interrupt from any of the active (en-  
abled) interrupts will remove the chip from the STOP Mode  
(Ports 31–33 including the USB reset.  
FF  
6F  
NOP  
; clear the pipeline  
; enter STOP Mode  
or  
STOP  
FF  
7F  
NOP  
; clear the pipeline  
; enter HALT Mode  
HALT  
34  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
PLUS  
Z8  
SYSTEM REGISTERS  
Plus  
The registers displayed in Figures 21–27 represent Zilog’s  
new technology, please refer to the Z8  
user’s manual  
Plus  
new Z8  
architecture. For a complete overview of this  
(UM97Z8X0300) available at your local Zilog sales office.  
1
0FA  
IRQ  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IRQ0 = TIMER0 TIMEOUT  
IRQ1 = TIMER1 TIMEOUT  
IRQ2 = TIMER2 TIMEOUT  
IRQ3 = HIGH PRIORITY COMM  
IRQ4 = LOW PRIORITY COMM  
IRQ5 = PORTS  
RESERVED (MUST BE 0)  
RESERVED (MUST BE 0)  
FIXED INTERRUPT PRIORITY: IRQ0 > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5  
Figure 21. Interrupt Request Register  
DS97KEY2005  
P R E L I M I N A R Y  
35  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
Z8PLUS SYSTEM REGISTERS (Continued)  
0FB  
IMR  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1 = IRQ BIT N ENABLED  
0 = IRQ BIT N MASKED  
RESERVED (MUST BE 0)  
1= GLOBAL INTERRUPTS ENABLED  
0 = GLOBAL INTERRUPTS DISABLED  
Figure 22. Interrupt Mask Register  
0FF  
STACK POINTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NEXT STACK ADDRESSES  
Figure 23. Stack Pointer  
36  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
0C1  
TCTLHI  
D3  
1
D7  
D6  
D5  
D4  
D2  
D1  
D0  
SIE  
WDT POR  
RESET SOURCE  
0 = STOP MODE ENABLED  
1 = STOP MODE DISABLED  
D6 D5 D4  
WDT TIMEOUT VALUE  
MIN NOM MAX  
COUNTS  
UNITS  
mS  
0
0 0  
DISABLED  
0
0
0
1
1
1
1
0 1  
1 0  
1 1  
0 0  
0 1  
1 0  
1 1  
65,536  
131,072  
262,144  
524,288  
1,048,576  
2,097,152 156 400 1200.0  
4,194,304  
5
10  
19  
38 100  
78 200  
12  
25  
50  
39.3  
78.0  
156.0  
312.0  
624.0  
mS  
mS  
mS  
mS  
mS  
mS  
300 800 2400.0  
(RC CLOCKS TO TIMEOUT†)  
1 = RC ENABLED  
0 = RC DISABLED  
†: RC FREQUENCY = 40 KHz (Range: 20 TO 100 KHz)  
Figure 24. TCTLHI Register  
DS97KEY2005  
P R E L I M I N A R Y  
37  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
Z8PLUS SYSTEM REGISTERS (Continued)  
0C0  
TCTLLO  
TIMER STATUS  
T0 T1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D2 D1 D0  
0
0
0
0
1
1
1
1
0 0 DISAB. DISAB.  
0 1 ENAB. DISAB.  
1 0 DISAB. ENAB.  
1 1 ENAB. ENAB.  
0 0 T01 (PWM)  
0 1 ENAB.(*) DISAB.  
1 0 DISAB. ENAB.(*)  
1 1 T32 (16 BIT)  
(NOTE: (*) INDICATES AUTO-RELOAD  
IS ACTIVE.)  
D3 0: 6 MHz CR  
D3 1: 12 MHz CR  
D4 0: CORE CLK = ÷ (XTAL VALUE)  
D4 1: CORE CLK = XTAL ÷ 2  
1 = T32 16-BIT TIMER ENABLED WITH  
AUTO-RELOAD ACTIVE  
0 = T2 AND T3 TIMERS DISABLED  
D6 1: PWM MODE IN T0 (PA1 IS OUTPUT)  
D7 1: CAPTURE MODE IN T0 (PA0 IS INPUT)  
NOTE: TIMER T01 IS A 16-BIT PWM TIMER FORMED BY CASCADING 8-BIT TIMERS  
T1 (MSB) AND T0 (LSB). TIMER T32 IS A STANDARD 16-BIT TIMER FORMED  
BY CASCADING 8-BIT TIMERS T3(MSB) AND T2(LSB).  
NOTE: CLOCK “DIVIDE BY” MODE (÷) ALLOWS FOR LOWER POWER FOR RS232 OR FASTER  
CPU EXECUTION WITH ZIE AT NORMAL 6 MHZ CLOCK RATE.  
Figure 25. TCTLLO Register  
38  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
0FD  
RP  
1
Register Pointer  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MUST BE 0. (ONLY PAGE0 IS  
IMPLEMENTED ON Z8E520.)  
The upper nibble of the register file address  
provided by the register pointer specifies  
the active working register group.  
DF  
R15  
R0  
Register Group D  
D0  
CF  
R15  
R0  
Register Group C  
C0  
3F  
R15  
Register Group 3  
30  
R0  
R15  
R0  
2F  
Register Group 2 * (ACTIVE)  
20  
1F  
R15  
R0  
Register Group 1  
10  
0F  
R15  
R0  
Register Group 0  
00  
* Register Group 2 is active if RP = 20H.  
The lower nibble of the register  
file address provided by the  
instruction points to the  
specific register.  
Figure 26. Z8E520 Register Pointe  
DS97KEY2005  
P R E L I M I N A R Y  
39  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
Z8PLUS SYSTEM REGISTERS (Continued)  
0FC  
FLAGS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
STOP MODE RECOVERY FLAG (SMR)  
WDT RESET FLAG (WDT)  
HALF-CARRY FLAG (HC)  
DECIMAL ADJUST FLAG (DA)  
OVERFLOW FLAG (OVF)  
SIGN FLAG (S)  
ZERO FLAG (Z)  
CARRY FLAG (C)  
Figure 27. Flags Register  
40  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
PACKAGE INFORMATION  
1
Figure 28. 20-Pin DIP Package  
Figure 29. 20-Pin SOIC Package  
DS97KEY2005  
P R E L I M I N A R Y  
41  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
ORDERING INFORMATION  
6 MHz  
6 MHz  
20-Pin DIP  
20-Pin SOIC  
Z8E520PSC  
Z8C520PSC  
Z8E520SSC  
Z8C520SSC  
For fast results, contact your Zilog sales office for assistance in ordering the part required.  
CODES  
Package  
Environment  
P = Plastic DIP  
C = Plastic Standard  
V = Plastic Leaded Chip Carrier  
F = Quad Flat Pack  
Temperature  
S = 0°C to +70°C  
Speed  
06 = 6 MHz  
Example:  
Z
8E520 06 P S C is a Z8E520, 6 MHz, SOIC, 0°C to +70°C, Plastic Standard Flow  
Environmental Flow  
Temperature  
Package  
Speed  
Product Number  
Zilog Prefix  
42  
P R E L I M I N A R Y  
DS97KEY2005  
Z8E520/C520  
1.5 MBPS USB Device Controller  
Zilog  
1
Development Projects:  
Customer is cautioned that while reasonable efforts will be  
employed to meet performance objectives and milestone  
dates, development is subject to unanticipated problems  
and delays. No production release is authorized or  
committed until the Customer and Zilog have agreed upon  
a Customer Procurement Specification for this product.  
Pre-Characterization Product:  
The product represented by this CPS is newly introduced  
and Zilog has not completed the full characterization of the  
product. The CPS states what Zilog knows about this  
product at this time, but additional features or  
nonconformance with some aspects of the CPS may be  
found, either by Zilog or its customers in the course of  
further application and characterization work. In addition,  
Zilog cautions that delivery may be uncertain at times, due  
to start-up yield issues.  
Low Margin:  
Customer is advised that this product does not meet  
Zilog's internal guardbanded test policies for the  
specification requested and is supplied on an exception  
basis. Customer is cautioned that delivery may be  
uncertain and that, in addition to all other limitations on  
Zilog liability stated on the front and back of the  
acknowledgment, Zilog makes no claim as to quality and  
reliability under the CPS. The product remains subject to  
standard warranty for replacement due to defects in  
materials and workmanship.  
© 1998 by Zilog, Inc. All rights reserved. No part of this  
document may be copied or reproduced in any form or by  
any means without the prior written consent of Zilog, Inc.  
The information in this document is subject to change  
without notice. Devices sold by Zilog, Inc. are covered by  
warranty and patent indemnification provisions appearing  
in Zilog, Inc. Terms and Conditions of Sale only.  
to update or keep current the information contained in this  
document.  
Zilog’s products are not authorized for use as critical  
components in life support devices or systems unless a  
specific written agreement pertaining to such intended use  
is executed between the customer and Zilog prior to use.  
Life support devices or systems are those which are  
intended for surgical implantation into the body, or which  
sustains life whose failure to perform, when properly used  
in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in  
significant injury to the user.  
ZILOG, INC. MAKES NO WARRANTY, EXPRESS,  
STATUTORY, IMPLIED OR BY DESCRIPTION,  
REGARDING THE INFORMATION SET FORTH HEREIN  
OR REGARDING THE FREEDOM OF THE DESCRIBED  
DEVICES  
FROM  
INTELLECTUAL  
PROPERTY  
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY  
OF MERCHANTABILITY OR FITNESS FOR ANY  
PURPOSE.  
Zilog, Inc. 210 East Hacienda Ave.  
Campbell, CA 95008-6600  
Telephone (408) 370-8000  
FAX 408 370-8056  
Zilog, Inc. shall not be responsible for any errors that may  
appear in this document. Zilog, Inc. makes no commitment  
Internet: http://www.zilog.com  
DS97KEY2005  
P R E L I M I N A R Y  
43  

相关型号:

Z8E80004PEC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDIP8, DIP-8
ZILOG

Z8E80004PSC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDIP8, DIP-8
ZILOG

Z8E80004SEC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDSO8, SOIC-8
ZILOG

Z8E80004SSC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDSO8, SOIC-8
ZILOG

Z8E80104PEC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDIP8, DIP-8
ZILOG

Z8E80104PSC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDIP8, DIP-8
ZILOG

Z8E80104SSC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDSO8, SOIC-8
ZILOG

Z8E81004PEC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDIP8, DIP-8
ZILOG

Z8E81004PSC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDIP8, DIP-8
ZILOG

Z8E81004SEC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDSO8, SOIC-8
ZILOG

Z8E81004SSC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDSO8, SOIC-8
ZILOG

Z8E81104PSC

Microcontroller, 8-Bit, OTPROM, 4MHz, CMOS, PDIP8, DIP-8
ZILOG