Z8F0423PJ005SG [ZILOG]

IC MCU 8BIT 4KB FLASH 28DIP;
Z8F0423PJ005SG
型号: Z8F0423PJ005SG
厂家: ZILOG, INC.    ZILOG, INC.
描述:

IC MCU 8BIT 4KB FLASH 28DIP

文件: 总247页 (文件大小:15293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High-Performance 8-Bit Microcontrollers  
Z8 Encore! XP® F0823  
Series  
Product Specification  
PS024317-0914  
Copyright ©2014 Zilog®, Inc. All rights reserved.  
www.zilog.com  
Z8 Encore! XP® F0823 Series  
Product Specification  
ii  
DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.  
Warning:  
LIFE SUPPORT POLICY  
ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE  
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF  
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.  
As used herein  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)  
support or sustain life and whose failure to perform when properly used in accordance with instructions for  
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti-  
cal component is any component in a life support device or system whose failure to perform can be reason-  
ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
Document Disclaimer  
©2014 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,  
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES  
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE  
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO  
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED  
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED  
HEREIN OR OTHERWISE. The information contained within this document has been verified according  
to the general principles of electrical and mechanical engineering.  
Z8, Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product  
or service names are the property of their respective owners.  
PS024317-0914  
P R E L I M I N A R Y  
Disclaimer  
Z8 Encore! XP® F0823 Series  
Product Specification  
iii  
Revision History  
Each instance in this document’s revision history reflects a change from its previous edi-  
tion. For more details, refer to the corresponding page(s) or appropriate links furnished in  
the table below.  
Revision  
Date Level  
Page  
No.  
Chapter/Section  
Description  
Sep  
2014  
17  
General-Purpose Input/Output Clarified statements relating to the Direct  
LED Drive and LED Drive Enable features.  
Updated Table 17.  
38, 51  
Apr  
2013  
16  
15  
Timer Pin Signal Operation  
Clarified use/availabity of the T0OUT and  
T1OUT timer functions by mode.  
83  
Sep  
LED Drive Enable Register  
Clarified statement surrounding the Alternate 51,  
2011  
Function Register as it relates to the LED  
function; revised Flash Sector Protect Regis- 212  
ter description; revised Packaging chapter.  
146,  
Mar  
2008  
14  
13  
n/a  
Changed branding to Z8 Encore! XP F0823 All  
Series where appropriate.  
Dec  
Pin Description, General-Pur- Updated title from Z8 Encore! 8K and 4K  
8, 36,  
2007  
pose Input/Output, Interrupt  
Controller, Watchdog Timer,  
Series to Z8 Encore! XP Z8F0823 Series.  
Updated Figure 3, Table 15, Table 35, Tables 201,  
60, 95,  
Electrical Characteristics, and 59 through 61, Table 119 and Part Number  
Ordering Information Suffix Designations section.  
and  
222  
Aug  
12  
Part Selection Guide, External Updated Table 1, Table 16, and Program  
2, 35,  
2007  
Clock Setup, and Program  
Memory  
Memory section.  
and 13  
Jun  
2007  
11  
10  
n/a  
Updated to combine Z8 Encore! 8K and Z8 All  
Encore! 4K Series.  
Dec  
Ordering Information  
Updated Ordering Information chapter.  
213  
2006  
PS024317-0914  
P R E L I M I N A R Y  
Revision History  
Z8 Encore! XP® F0823 Series  
Product Specification  
iv  
Table of Contents  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Part Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
CPU and Peripheral Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
General-Purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Flash Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Internal Precision Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
10-Bit Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Universal Asynchronous Receiver/Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Reset Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Available Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Flash Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reset and Stop-Mode Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Reset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PS024317-0914  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
v
Voltage Brown-Out Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Watchdog Timer Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
External Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
External Reset Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
On-Chip Debugger Initiated Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Stop-Mode Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Stop-Mode Recovery Using Watchdog Timer Time-Out . . . . . . . . . . . . . . . . . 27  
Stop-Mode Recovery Using a GPIO Port Pin Transition . . . . . . . . . . . . . . . . . . 27  
Stop-Mode Recovery Using the External RESET Pin . . . . . . . . . . . . . . . . . . . . 28  
Reset Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Halt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Peripheral-Level Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Power Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
General-Purpose Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
GPIO Port Availability By Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
GPIO Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Direct LED Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Shared Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Shared Debug Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Crystal Oscillator Override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5V Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
External Clock Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
GPIO Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
GPIO Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Port A–C Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Port A–C Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Port A–C Data Direction Subregisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Port A–C Alternate Function Subregisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Port A–C Input Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Port A–C Output Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
LED Drive Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
LED Drive Level High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
LED Drive Level Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Interrupt Vector Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
PS024317-0914  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
vi  
Master Interrupt Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Interrupt Vectors and Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Software Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Watchdog Timer Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Interrupt Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Interrupt Request 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Interrupt Request 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Interrupt Request 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
IRQ0 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
IRQ1 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
IRQ2 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Interrupt Edge Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Shared Interrupt Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Interrupt Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Timer Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Reading the Timer Count Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Timer Pin Signal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Timer 0–1 High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Timer Reload High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Timer 0–1 PWM High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . 86  
Timer 0–1 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Watchdog Timer Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Watchdog Timer Time-Out Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Watchdog Timer Reload Unlock Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Watchdog Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Watchdog Timer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Watchdog Timer Reload Upper, High and Low Byte Registers . . . . . . . . . . . . 94  
Universal Asynchronous Receiver/Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Transmitting Data Using the Polled Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Transmitting Data Using the Interrupt-Driven Method . . . . . . . . . . . . . . . . . . 100  
Receiving Data Using the Polled Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
PS024317-0914  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
vii  
Receiving Data Using the Interrupt-Driven Method . . . . . . . . . . . . . . . . . . . . 102  
Clear To Send (CTS) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
MULTIPROCESSOR (9-Bit) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
External Driver Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
UART Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
UART Baud Rate Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
UART Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
UART Transmit Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
UART Receive Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
UART Status 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
UART Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
UART Control 0 and Control 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
UART Address Compare Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
UART Baud Rate High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . 115  
Infrared Encoder/Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Transmitting IrDA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Receiving IrDA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Infrared Encoder/Decoder Control Register Definitions . . . . . . . . . . . . . . . . . . . . 121  
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Automatic Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Single-Shot Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Calibration and Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
ADC Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
ADC Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
ADC Control/Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
ADC Data High Byte Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
ADC Data Low Bits Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Comparator Control Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Flash Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
PS024317-0914  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
viii  
Flash Operation Timing Using the Flash Frequency Registers . . . . . . . . . . . . 138  
Flash Code Protection Against External Access . . . . . . . . . . . . . . . . . . . . . . . 138  
Flash Code Protection Against Accidental Program and Erasure . . . . . . . . . . 138  
Byte Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Page Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Mass Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Flash Controller Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Flash Controller Behavior in Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Flash Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Flash Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Flash Page Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Flash Sector Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Flash Frequency High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . 146  
Flash Option Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Option Bit Configuration By Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Option Bit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Reading the Flash Information Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Flash Option Bit Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Trim Bit Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Trim Bit Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Flash Option Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Trim Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Zilog Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
ADC Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Serialization Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Randomized Lot Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
OCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
OCD Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
OCD Autobaud Detector/Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
OCD Serial Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
OCD Unlock Sequence (8-Pin Devices Only) . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Runtime Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
On-Chip Debugger Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
PS024317-0914  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
ix  
On-Chip Debugger Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
OCD Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
OCD Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Oscillator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
System Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Clock Failure Detection and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Oscillator Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Internal Precision Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
eZ8 CPU Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Assembly Language Programming Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Assembly Language Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
eZ8 CPU Instruction Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
eZ8 CPU Instruction Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
eZ8 CPU Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Opcode Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
On-Chip Peripheral AC and DC Electrical Characteristics . . . . . . . . . . . . . . . . . . 203  
General Purpose I/O Port Input Data Sample Timing . . . . . . . . . . . . . . . . . . . 206  
General Purpose I/O Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
UART Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Part Number Suffix Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
PS024317-0914  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
x
List of Figures  
Figure 1. Z8 Encore! XP F0823 Series Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 2. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 8-Pin SOIC, QFN/MLF-S, or  
PDIP Package* 8  
Figure 3. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 20-Pin SOIC, SSOP or PDIP  
Package* 8  
Figure 4. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 28-Pin SOIC, SSOP or PDIP  
Package* 8  
Figure 5. Power-On Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 6. Voltage Brown-Out Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 7. GPIO Port Pin Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 8. Interrupt Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 9. Timer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 10. UART Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 11. UART Asynchronous Data Format without Parity . . . . . . . . . . . . . . . . . . . 99  
Figure 12. UART Asynchronous Data Format with Parity . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format . . . . . . 103  
Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity) 105  
Figure 15. UART Receiver Interrupt Service Routine Flow . . . . . . . . . . . . . . . . . . . 107  
Figure 16. Infrared Data Communication System Block Diagram . . . . . . . . . . . . . . 118  
Figure 17. Infrared Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 18. IrDA Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 19. Analog-to-Digital Converter Block Diagram . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 20. Flash Memory Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 21. Flash Controller Operation Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 22. On-Chip Debugger Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 23. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface, # 1 of  
2 159  
Figure 24. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface, # 2 of  
2 160  
PS024317-0914  
P R E L I M I N A R Y  
List of Figures  
Z8 Encore! XP® F0823 Series  
Product Specification  
xi  
Figure 25. OCD Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 26. Opcode Map Cell Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Figure 27. First Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Figure 28. Second Opcode Map after 1Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Figure 29. Port Input Sample Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Figure 30. GPIO Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Figure 31. On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Figure 32. UART Timing With CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Figure 33. UART Timing Without CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
PS024317-0914  
P R E L I M I N A R Y  
List of Figures  
Z8 Encore! XP® F0823 Series  
Product Specification  
xii  
List of Tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
F0823 Series Family Part Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
F0823 Series Package Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Characteristics (20- and 28-pin Devices)* . . . . . . . . . . . . . . . . . . . . . . 11  
Pin Characteristics (8-Pin Devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Z8 Encore! XP F0823 Series Program Memory Maps . . . . . . . . . . . . . . . . 14  
F0823 Series Flash Memory Information Area Map . . . . . . . . . . . . . . . . . . 15  
Register File Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reset and Stop-Mode Recovery Characteristics and Latency . . . . . . . . . . . 21  
Table 10. Reset Sources and Resulting Reset Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 11. Stop-Mode Recovery Sources and Resulting Action . . . . . . . . . . . . . . . . . 27  
Table 12. Reset Status Register (RSTSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 13. POR Indicator Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 14. Power Control Register 0 (PWRCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 15. Port Availability by Device and Package Type . . . . . . . . . . . . . . . . . . . . . . 33  
Table 16. Port Alternate Function Mapping (8-Pin Parts) . . . . . . . . . . . . . . . . . . . . . . 35  
Table 17. Port Alternate Function Mapping (Non 8-Pin Parts) . . . . . . . . . . . . . . . . . . 36  
Table 18. GPIO Port Registers and Subregisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 19. Port A–C GPIO Address Registers (PxADDR) . . . . . . . . . . . . . . . . . . . . . . 41  
Table 20. PADDR[7:0] Subregister Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 21. Port A–C Control Registers (PxCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 22. Port A–C Data Direction Subregisters (PxDD) . . . . . . . . . . . . . . . . . . . . . . 43  
Table 23. Port A–C Alternate Function Subregisters (PxAF) . . . . . . . . . . . . . . . . . . . 44  
Table 24. Port A–C Output Control Subregisters (PxOC) . . . . . . . . . . . . . . . . . . . . . . 44  
Table 25. Port A–C High Drive Enable Subregisters (PHDEx) . . . . . . . . . . . . . . . . . 45  
Table 26. Port A–C Stop-Mode Recovery Source Enable Subregisters (PSMREx) . . 46  
Table 27. Port A–C Pull-Up Enable Subregisters (PPUEx) . . . . . . . . . . . . . . . . . . . . 47  
Table 28. Port A–C Alternate Function Set 1 Subregisters (PAFS1x) . . . . . . . . . . . . 48  
PS024317-0914  
P R E L I M I N A R Y  
List of Tables  
Z8 Encore! XP® F0823 Series  
Product Specification  
xiii  
Table 29. Port A–C Alternate Function Set 2 Subregisters (PxAFS2) . . . . . . . . . . . . 49  
Table 30. Port A–C Input Data Registers (PxIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 31. Port A–C Output Data Register (PxOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 32. LED Drive Enable (LEDEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 33. LED Drive Level High Register (LEDLVLH) . . . . . . . . . . . . . . . . . . . . . . 52  
Table 34. LED Drive Level Low Register (LEDLVLL) . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 35. Trap and Interrupt Vectors in Order of Priority . . . . . . . . . . . . . . . . . . . . . . 55  
Table 36. Interrupt Request 0 Register (IRQ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 37. Interrupt Request 1 Register (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 38. Interrupt Request 2 Register (IRQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 39. IRQ0 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 40. IRQ0 Enable High Bit Register (IRQ0ENH) . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 41. IRQ0 Enable Low Bit Register (IRQ0ENL) . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 42. IRQ1 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 43. IRQ1 Enable Low Bit Register (IRQ1ENL) . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 44. IRQ1 Enable High Bit Register (IRQ1ENH) . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 45. IRQ2 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 46. IRQ2 Enable High Bit Register (IRQ2ENH) . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 47. IRQ2 Enable Low Bit Register (IRQ2ENL) . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 48. Interrupt Edge Select Register (IRQES) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 49. Shared Interrupt Select Register (IRQSS) . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 50. Interrupt Control Register (IRQCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 51. Timer 0–1 High Byte Register (TxH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table 52. Timer 0–1 Low Byte Register (TxL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table 53. Timer 0–1 Reload High Byte Register (TxRH) . . . . . . . . . . . . . . . . . . . . . . 85  
Table 54. Timer 0–1 Reload Low Byte Register (TxRL) . . . . . . . . . . . . . . . . . . . . . . 85  
Table 55. Timer 0–1 PWM High Byte Register (TxPWMH) . . . . . . . . . . . . . . . . . . . 86  
Table 56. Timer 0–1 PWM Low Byte Register (TxPWML) . . . . . . . . . . . . . . . . . . . . 86  
Table 57. Timer 0–1 Control Register 0 (TxCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Table 58. Timer 0–1 Control Register 1 (TxCTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
PS024317-0914  
P R E L I M I N A R Y  
List of Tables  
Z8 Encore! XP® F0823 Series  
Product Specification  
xiv  
Table 59. Watchdog Timer Approximate Time-Out Delays . . . . . . . . . . . . . . . . . . . . 92  
Table 60. Watchdog Timer Control Register (WDTCTL) . . . . . . . . . . . . . . . . . . . . . 94  
Table 61. Watchdog Timer Reload Upper Byte Register (WDTU) . . . . . . . . . . . . . . 95  
Table 62. Watchdog Timer Reload High Byte Register (WDTH) . . . . . . . . . . . . . . . 95  
Table 63. Watchdog Timer Reload Low Byte Register (WDTL) . . . . . . . . . . . . . . . . 96  
Table 64. UART Transmit Data Register (U0TXD) . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Table 65. UART Receive Data Register (U0RXD) . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Table 66. UART Status 0 Register (U0STAT0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Table 67. UART Status 1 Register (U0STAT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Table 68. UART Control 0 Register (U0CTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Table 69. UART Control 1 Register (U0CTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Table 70. UART Address Compare Register (U0ADDR) . . . . . . . . . . . . . . . . . . . . . 115  
Table 71. UART Baud Rate High Byte Register (U0BRH) . . . . . . . . . . . . . . . . . . . 115  
Table 72. UART Baud Rate Low Byte Register (U0BRL) . . . . . . . . . . . . . . . . . . . . 115  
Table 73. UART Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table 74. ADC Control Register 0 (ADCCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Table 75. ADC Control/Status Register 1 (ADCCTL1) . . . . . . . . . . . . . . . . . . . . . . 130  
Table 76. ADC Data High Byte Register (ADCD_H) . . . . . . . . . . . . . . . . . . . . . . . . 131  
Table 77. ADC Data Low Bits Register (ADCD_L) . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Table 78. Comparator Control Register (CMP0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Table 79. Z8 Encore! XP F0823 Series Flash Memory Configurations . . . . . . . . . . 135  
Table 80. Flash Code Protection Using the Flash Option Bits . . . . . . . . . . . . . . . . . 139  
Table 81. Flash Control Register (FCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Table 82. Flash Status Register (FSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Table 83. Flash Page Select Register (FPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Table 84. Flash Sector Protect Register (FPROT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Table 85. Flash Frequency High Byte Register (FFREQH) . . . . . . . . . . . . . . . . . . . 147  
Table 86. Flash Frequency Low Byte Register (FFREQL) . . . . . . . . . . . . . . . . . . . . 147  
Table 87. Trim Bit Address Register (TRMADR) . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Table 88. Trim Bit Data Register (TRMDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
PS024317-0914  
P R E L I M I N A R Y  
List of Tables  
Z8 Encore! XP® F0823 Series  
Product Specification  
xv  
Table 89. Flash Option Bits at Program Memory Address 0000h . . . . . . . . . . . . . . 151  
Table 90. Flash Options Bits at Program Memory Address 0001h . . . . . . . . . . . . . 152  
Table 91. Trim Options Bits at Address 0000h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Table 92. Trim Option Bits at 0001h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Table 93. Trim Option Bits at 0002h (TIPO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Table 94. ADC Calibration Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Table 95. ADC Calibration Data Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Table 96. Serial Number at 001C–001F (S_NUM) . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Table 97. Serialization Data Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Table 98. Lot Identification Number (RAND_LOT) . . . . . . . . . . . . . . . . . . . . . . . . 156  
Table 99. Randomized Lot ID Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Table 100. OCD Baud-Rate Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Table 101. OCD Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Table 102. OCD Control Register (OCDCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 103. OCD Status Register (OCDSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Table 104. Oscillator Configuration and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Table 105. Oscillator Control Register (OSCCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 106. Assembly Language Syntax Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Table 107. Assembly Language Syntax Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Table 108. Notational Shorthand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Table 109. Additional Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Table 110. Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Table 111. Bit Manipulation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Table 112. Block Transfer Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Table 113. CPU Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Table 114. Load Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Table 115. Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Table 116. Program Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Table 117. Rotate and Shift Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Table 118. eZ8 CPU Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
PS024317-0914  
P R E L I M I N A R Y  
List of Tables  
Z8 Encore! XP® F0823 Series  
Product Specification  
xvi  
Table 119. Opcode Map Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 120. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Table 121. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Table 122. Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Table 123. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Table 124. Internal Precision Oscillator Electrical Characteristics . . . . . . . . . . . . . . . 202  
Table 125. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Tim-  
ing 203  
Table 126. Flash Memory Electrical Characteristics and Timing . . . . . . . . . . . . . . . . 204  
Table 127. Watchdog Timer Electrical Characteristics and Timing . . . . . . . . . . . . . . 204  
Table 128. Analog-to-Digital Converter Electrical Characteristics and Timing . . . . . 205  
Table 129. Comparator Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Table 130. GPIO Port Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Table 131. GPIO Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Table 132. On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Table 133. UART Timing With CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Table 134. UART Timing Without CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 135. Z8 Encore! XP F0823 Series Ordering Matrix . . . . . . . . . . . . . . . . . . . . . 213  
PS024317-0914  
P R E L I M I N A R Y  
List of Tables  
Z8 Encore! XP® F0823 Series  
Product Specification  
1
Overview  
Zilog’s Z8 Encore! XP microcontroller unit (MCU) family of products are the first Zilog  
microcontroller products based on the 8-bit eZ8 CPU core. Z8 Encore! XP F0823 Series  
products expand upon Zilog’s extensive line of 8-bit microcontrollers. The Flash in-circuit  
programming capability allows for faster development time and program changes in the  
field. The new eZ8 CPU is upward compatible with existing Z8 instructions. The rich  
peripheral set of Z8 Encore! XP F0823 Series makes it suitable for a variety of applica-  
tions including motor control, security systems, home appliances, personal electronic  
devices, and sensors.  
Features  
The key features of Z8 Encore! XP F0823 Series include:  
5MHz eZ8 CPU  
1KB, 2KB, 4KB, or 8KB Flash memory with in-circuit programming capability  
256B, 512B, or 1KB register RAM  
6 to 24 I/O pins depending upon package  
Internal precision oscillator (IPO)  
Full-duplex UART  
The universal asynchronous receiver/transmitter (UART) baud rate generator (BRG)  
can be configured and used as a basic 16-bit timer  
Infrared data association (IrDA)-compliant infrared encoder/decoders, integrated with  
UART  
Two enhanced 16-bit timers with capture, compare, and PWM capability  
Watchdog Timer (WDT) with dedicated internal RC oscillator  
On-Chip Debugger (OCD)  
Optional 8-channel, 10-bit Analog-to-Digital Converter (ADC)  
On-Chip analog comparator  
Up to 20 vectored interrupts  
Direct LED drive with programmable drive strengths  
Voltage Brown-Out (VBO) protection  
Power-On Reset (POR)  
PS024317-0914  
P R E L I M I N A R Y  
Overview  
Z8 Encore! XP® F0823 Series  
Product Specification  
2
2.7V to 3.6V operating voltage  
Up to thirteen 5V-tolerant input pins  
8-, 20-, and 28-pin packages  
0°C to +70°C and –40°C to +105°C for operating temperature ranges  
Part Selection Guide  
Table 1 lists the basic features and package styles available for each device within the Z8  
Encore! XP® F0823 Series product line.  
Table 1. F0823 Series Family Part Selection Guide  
Part  
Number  
Flash  
(KB)  
RAM  
(B)  
ADC  
Inputs  
I/O  
Packages  
Z8F0823  
Z8F0813  
Z8F0423  
Z8F0413  
Z8F0223  
Z8F0213  
Z8F0123  
Z8F0113  
8
8
4
4
2
2
1
1
1024  
1024  
1024  
1024  
512  
6–22  
6–24  
6–22  
6–24  
6–22  
6–24  
6–22  
6–24  
4–8  
0
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
4–8  
0
4–8  
0
512  
256  
4–8  
0
256  
PS024317-0914  
P R E L I M I N A R Y  
Part Selection Guide  
Z8 Encore! XP® F0823 Series  
Product Specification  
3
Block Diagram  
Figure 1 displays a block diagram of the F0823 Series architecture.  
Internal  
Precision  
Oscillator  
System  
Clock  
Oscillator  
Control  
Low Power  
RC Oscillator  
On-Chip  
Debugger  
POR/VBO  
and Reset  
Controller  
eZ8  
CPU  
Interrupt  
Controller  
WDT  
Memory Busses  
Register Bus  
Flash  
RAM  
Timers  
UART  
IrDA  
ADC  
Comparator  
Controller  
Controller  
Flash  
Memory  
RAM  
GPIO  
Figure 1. Z8 Encore! XP F0823 Series Block Diagram  
PS024317-0914  
P R E L I M I N A R Y  
Block Diagram  
Z8 Encore! XP® F0823 Series  
Product Specification  
4
CPU and Peripheral Overview  
The eZ8 CPU, Zilog’s latest 8-bit central processing unit (CPU), meets the continuing  
demand for faster and code-efficient microcontrollers. The eZ8 CPU executes a superset  
of the original Z8 instruction set. The eZ8 CPU features include:  
Direct register-to-register architecture allows each register to function as an  
accumulator, improving execution time and decreasing the required program memory  
Software stack allows much greater depth in subroutine calls and interrupts than  
hardware stacks  
Compatible with existing Z8 code  
Expanded internal Register File allows access of up to 4 KB  
New instructions improve execution efficiency for code developed using higher-level  
programming languages, including C  
Pipelined instruction fetch and execution  
New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC,  
LDCI, LEA, MULT, and SRL  
New instructions support 12-bit linear addressing of the Register File  
Up to 10 MIPS operation  
C-Compiler friendly  
2 to 9 clock cycles per instruction  
For more information about the eZ8 CPU, refer to the eZ8 CPU Core User Manual  
(UM0128) available for download at www.zilog.com.  
General-Purpose I/O  
F0823 Series features 6 to 24 port pins (Ports A–C) for general-purpose I/O (GPIO). The  
number of GPIO pins available is a function of package. Each pin is individually program-  
mable. 5V-tolerant input pins are available on all I/Os on 8-pin devices, most I/Os on other  
package types.  
Flash Controller  
The Flash Controller programs and erases Flash memory. The Flash Controller supports  
protection against accidental program and erasure, as well as factory serialization and read  
protection.  
PS024317-0914  
P R E L I M I N A R Y  
CPU and Peripheral Overview  
Z8 Encore! XP® F0823 Series  
Product Specification  
5
Internal Precision Oscillator  
The internal precision oscillator (IPO) is a trimmable clock source that requires no exter-  
nal components.  
10-Bit Analog-to-Digital Converter  
The optional analog-to-digital converter (ADC) converts an analog input signal to a 10-bit  
binary number. The ADC accepts inputs from eight different analog input pins in both sin-  
gle-ended and differential modes.  
Analog Comparator  
The analog comparator compares the signal at an input pin with either an internal pro-  
grammable voltage reference or a second input pin. The comparator output can be used to  
drive either an output pin or to generate an interrupt.  
Universal Asynchronous Receiver/Transmitter  
The UART is full-duplex and capable of handling asynchronous data transfers. The UART  
supports 8- and 9-bit data modes and selectable parity. The UART also supports multi-  
drop address processing in hardware. The UART baud rate generator can be configured and  
used as a basic 16-bit timer.  
Timers  
Two enhanced 16-bit reloadable timers can be used for timing/counting events or for  
motor control operations. These timers provide a 16-bit programmable reload counter and  
operate in One-Shot, Continuous, Gated, Capture, Capture Restart, Compare, Capture and  
Compare, PWM Single Output, and PWM Dual Output modes.  
Interrupt Controller  
Z8 Encore! XP® F0823 Series products support up to 20 interrupts. These interrupts con-  
sist of eight internal peripheral interrupts and 12 general-purpose I/O pin interrupt sources.  
The interrupts have three levels of programmable interrupt priority.  
Reset Controller  
Z8 Encore! XP® F0823 Series products can be reset using the RESET pin, POR, WDT  
time-out, Stop Mode exit, or Voltage Brown-Out warning signal. The RESET pin is bidi-  
rectional, that is, it functions as reset source as well as a reset indicator.  
PS024317-0914  
P R E L I M I N A R Y  
CPU and Peripheral Overview  
Z8 Encore! XP® F0823 Series  
Product Specification  
6
On-Chip Debugger  
F0823 Series products feature an integrated On-Chip Debugger. The OCD provides a rich-  
set of debugging capabilities, such as reading and writing registers, programming Flash  
memory, setting breakpoints and executing code. A single-pin interface provides commu-  
nication to the OCD.  
PS024317-0914  
P R E L I M I N A R Y  
CPU and Peripheral Overview  
Z8 Encore! XP® F0823 Series  
Product Specification  
7
Pin Description  
Z8 Encore! XP F0823 Series products are available in a variety of package styles and pin  
configurations. This chapter describes the signals and pin configurations available for  
each of the package styles. For information about physical package specifications, see the  
Packaging chapter on page 212.  
Available Packages  
Table 2 lists the package styles that are available for each device in the F0823 Series prod-  
uct line.  
Table 2. F0823 Series Package Options  
Part  
Number  
8-pin  
PDIP  
8-pin 20-pin 20-pin 20-pin 28-pin 28-pin 28-pin 8-pin QFN/  
ADC  
Yes  
No  
SOIC  
PDIP  
SOIC SSOP PDIP  
SOIC SSOP  
MLF-S  
Z8F0823  
Z8F0813  
Z8F0423  
Z8F0413  
Z8F0223  
Z8F0213  
Z8F0123  
Z8F0113  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Yes  
No  
X
X
X
X
Yes  
No  
X
X
X
X
Yes  
No  
X
X
X
X
Pin Configurations  
Figures 2 through 4 display the pin configurations for all packages available in the F0823  
Series. For description of signals, see Table 3. The analog input alternate functions  
(ANAx) are not available on the Z8F0x13 devices. The analog supply pins (AVDD and  
AVSS) are also not available on these parts, and are replaced by PB6 and PB7.  
At reset, all pins of Ports A, B, and C default to an input state. In addition, any alternate  
functionality is not enabled, so the pins function as general-purpose input ports until pro-  
grammed otherwise.  
The pin configurations listed are preliminary and subject to change based on manufactur-  
ing limitations.  
PS024317-0914  
P R E L I M I N A R Y  
Pin Description  
Z8 Encore! XP® F0823 Series  
Product Specification  
8
VSS  
VDD  
PA0/T0IN/T0OUT/DBG  
1
2
3
4
8
7
6
5
PA5/TXD0/T1OUT/ANA0/CINP  
PA4/RXD0/ANA1/CINN  
PA1/T0OUT/ANA3/VREF/CLKIN  
PA2/RESET/DE0/T1OUT  
PA3/CTS0/ANA2/COUT/T1IN  
Figure 2. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 8-Pin SOIC, QFN/MLF-S, or PDIP Package*  
PB1/ANA1  
PB2/ANA2  
PB3/CLKIN/ANA3  
VDD  
PB0/ANA0  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PC3/COUT/LED  
PC2/ANA6/LED/VREF  
PC1/ANA5/CINN/LED  
PC0/ANA4/CINP/LED  
PA0/T0IN/T0OUT  
PA1/T0OUT  
VSS  
DBG  
RESET  
PA7/T1OUT  
PA6/T1IN/T1OUT  
PA5/TXD0  
PA2/DE0  
PA3/CTS0  
PA4/RXD0  
Figure 3. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 20-Pin SOIC, SSOP or PDIP Package*  
PB2/ANA2  
PB1/ANA1  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
PB0/ANA0  
2
PB4/ANA7  
PB5/VREF  
3
PC3/COUT/LED  
PC2/ANA6/LED  
PC1/ANA5/CINN/LED  
PC0/ANA4/CINP/LED  
DBG  
PB3/CLKIN/ANA3  
(PB6) AVDD  
4
5
6
VDD  
PA0/T0IN/T0OUT  
PA1/T0OUT  
VSS  
7
8
RESET  
9
PC7/LED  
(PB7) AVSS  
PA2/DE0  
10  
11  
12  
13  
14  
PC6/LED  
PA7/T1OUT  
PC5/LED  
PA3/CTS0  
PA4/RXD0  
PA5/TXD0  
PC4/LED  
PA6/T1IN/T1OUT  
Figure 4. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 28-Pin SOIC, SSOP or PDIP Package*  
PS024317-0914  
P R E L I M I N A R Y  
Pin Configurations  
Z8 Encore! XP® F0823 Series  
Product Specification  
9
Note: *Analog input alternate functions (ANA) are not available on Z8F0x13 devices.  
Signal Descriptions  
Table 3 lists the Z8 Encore! XP F0823 Series signals. To determine the signals available  
for the specific package styles, see the Pin Configurations section on page 7.  
Table 3. Signal Descriptions  
Signal Mnemonic  
I/O  
Description  
General-Purpose I/O Ports A–D  
PA[7:0]  
PB[7:0]  
I/O  
I/O  
Port A. These pins are used for general-purpose I/O.  
1
Port B. These pins are used for general-purpose I/O. PB6 and PB7 are  
available only in those devices without an ADC.  
PC[7:0]  
I/O  
Port C. These pins are used for general-purpose I/O.  
UART Controllers  
TXD0  
RXD0  
CTS0  
DE  
O
I
Transmit Data. This signal is the transmit output from the UART and IrDA.  
Receive Data. This signal is the receive input for the UART and IrDA.  
Clear To Send. This signal is the flow control input for the UART.  
I
O
Driver Enable. This signal allows automatic control of external RS-485  
drivers. This signal is approximately the inverse of the TXE (Transmit  
Empty) bit in the UART Status 0 Register. The DE signal can be used to  
ensure the external RS-485 driver is enabled when data is transmitted by  
the UART.  
Timers  
T0OUT/T1OUT  
T0OUT/T1OUT  
O
O
Timer Output 0–1. These signals are output from the timers.  
Timer Complement Output 0–1. These signals are output from the timers  
in PWM DUAL OUTPUT Mode.  
T0IN/T1IN  
I
Timer Input 0–1. These signals are used as the capture, gating and coun-  
ter inputs. The T0IN signal is multiplexed T0OUT signals.  
Comparator  
CINP/CINN  
I
Comparator Inputs. These signals are the positive and negative inputs to  
the comparator.  
Notes:  
1. PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC, they are  
replaced by AVDD and AVSS  
.
2. The AVDD and AVSS signals are available only in 28-pin packages with ADC. They are replaced by PB6 and  
PB7 on 28-pin packages without ADC.  
PS024317-0914  
P R E L I M I N A R Y  
Signal Descriptions  
Z8 Encore! XP® F0823 Series  
Product Specification  
10  
Table 3. Signal Descriptions (Continued)  
Signal Mnemonic  
I/O  
Description  
COUT  
O
Comparator Output. This is the output of the comparator.  
Analog  
ANA[7:0]  
I
Analog port. These signals are used as inputs to the ADC. The ANA0,  
ANA1, and ANA2 pins can also access the inputs and output of the inte-  
grated transimpedance amplifier.  
VREF  
I/O  
I
Analog-to-Digital Converter reference voltage input.  
Clock Input  
CLKIN  
Clock Input Signal. This pin can be used to input a TTL-level signal to be  
used as the system clock.  
LED Drivers  
LED  
O
Direct LED drive capability. All port C pins have the capability to drive an  
LED without any other external components. These pins have programma-  
ble drive strengths set by the GPIO block.  
On-Chip Debugger  
DBG  
I/O  
Debug. This signal is the control and data input and output to and from the  
OCD.  
Caution: The DBG pin is open-drain and requires an external pull-up  
resistor to ensure proper operation.  
Reset  
RESET  
I/O  
RESET. Generates a reset when asserted (driven Low). Also serves as a  
reset indicator; the Z8 Encore! XP forces this pin Low when in reset. This  
pin is open-drain and features an enabled internal pull-up resistor.  
Power Supply  
V
I
I
I
I
Digital Power Supply.  
Analog Power Supply.  
Digital Ground.  
DD  
2
AV  
DD  
V
SS  
AV  
Analog Ground.  
SS  
Notes:  
1. PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC, they are  
replaced by AVDD and AVSS  
.
2. The AVDD and AVSS signals are available only in 28-pin packages with ADC. They are replaced by PB6 and  
PB7 on 28-pin packages without ADC.  
PS024317-0914  
P R E L I M I N A R Y  
Signal Descriptions  
Z8 Encore! XP® F0823 Series  
Product Specification  
11  
Pin Characteristics  
Table 4 provides detailed information about the characteristics for each pin available on  
Z8 Encore! XP F0823 Series 20- and 28-pin devices. Data in Table 4 is sorted alphabeti-  
cally by the pin symbol mnemonic.  
Note: All six I/O pins on the 8-pin packages are 5V-tolerant (unless the pull-up devices are  
enabled). The right-most column in Table 4 describes 5V tolerance for the 20- and 28-pin  
packages only.  
Table 4. Pin Characteristics (20- and 28-pin Devices)*  
Active  
Low or  
Internal  
Pull-up Schmitt-  
Symbol  
Reset  
Active Tristate or Pull- Trigger  
Open Drain  
Output  
5V  
Tolerance  
Mnemonic Direction Direction High Output  
down  
N/A  
N/A  
No  
Input  
N/A  
N/A  
Yes  
AVDD  
AVSS  
DBG  
N/A  
N/A  
I/O  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Yes  
Yes  
N/A  
N/A  
Yes  
N/A  
NA  
N/A  
I
I
Yes  
PA[7:0]  
I/O  
Program-  
mable  
Yes  
Yes,  
Programmable  
PA[7:2] only  
Pull-up  
PB[7:0]  
PC[7:0]  
RESET  
I/O  
I/O  
I/O  
I
I
N/A  
N/A  
Yes  
Yes  
Program-  
mable  
Pull-up  
Yes  
Yes  
Yes  
Yes,  
Programmable  
PB[7:6] only  
PC[7:3] only  
Yes  
Program-  
mable  
Pull-up  
Yes,  
Programmable  
I/O  
Low (in  
Yes  
(PD0  
only)  
Always  
on for  
RESET  
Always on for  
RESET  
(defaults Reset  
to  
Mode)  
RESET)  
VDD  
VSS  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Note: PB6 and PB7 are available only in the devices without ADC.  
PS024317-0914  
P R E L I M I N A R Y  
Pin Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
12  
Table 5 provides detailed information about the characteristics for each pin available on  
Z8 Encore! XP F0823 Series 8-pin devices.  
Table 5. Pin Characteristics (8-Pin Devices)  
Active  
Low  
or  
Internal  
Pull-up Schmitt-  
Symbol  
Reset Active Tristate or Pull- Trigger  
Open Drain  
Output  
5V  
Tolerance  
Mnemonic Direction Direction High Output  
down  
Input  
PA0/DBG  
I/O  
I (but can N/A  
change  
Yes  
Program-  
mable  
Yes  
Yes,  
Programmable  
Yes, unless  
pull-ups  
during  
Pull-up  
enabled  
reset if  
key  
sequence  
detected)  
PA1  
I/O  
I/O  
I
N/A  
N/A  
Yes  
Yes  
Program-  
mable  
Pull-up  
Yes  
Yes  
Yes,  
Programmable  
Yes, unless  
pull-ups  
enabled  
RESET/PA2  
I/O  
(defaults  
to  
Program-  
mable for  
PA2;  
always  
on for  
Programma- Yes, unless  
ble for PA2;  
always on for  
RESET  
pull-ups  
enabled  
RESET)  
RESET  
PA[5:3]  
I/O  
I
N/A  
Yes  
Program-  
mable  
Yes  
Yes,  
Programmable  
Yes, unless  
pull-ups  
Pull-up  
enabled  
VDD  
VSS  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PS024317-0914  
P R E L I M I N A R Y  
Pin Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
13  
Address Space  
The eZ8 CPU can access three distinct address spaces:  
The Register File contains addresses for the general-purpose registers and the eZ8  
CPU, peripheral, and general-purpose I/O Port Control Registers  
The Program Memory contains addresses for all memory locations having executable  
code and/or data  
The Data Memory contains addresses for all memory locations that contain data only  
These three address spaces are covered briefly in the following subsections. For more  
detailed information regarding the eZ8 CPU and its address space, refer to the eZ8 CPU  
Core User Manual (UM0128), available for download at www.zilog.com.  
Register File  
The Register File address space in the Z8 Encore! XPMCU is 4KB (4096 bytes). The  
Register File is composed of two sections: control registers and general-purpose registers.  
When instructions are executed, registers defined as sources are read, and registers defined  
as destinations are written. The architecture of the eZ8 CPU allows all general-purpose  
registers to function as accumulators, address pointers, index registers, stack areas, or  
scratch pad memory.  
The upper 256 bytes of the 4KB Register File address space are reserved for control of the  
eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at  
addresses from F00hto FFFh. Some of the addresses within the 256 B control register  
section are reserved (unavailable). Reading from a reserved Register File address returns  
an undefined value. Writing to reserved Register File addresses is not recommended and  
can produce unpredictable results.  
The on-chip RAM always begins at address 000hin the Register File address space. Z8  
Encore! XP F0823 Series devices contain 256B–1KB of on-chip RAM. Reading from  
Register File addresses outside the available RAM addresses (and not within the control  
register address space) returns an undefined value. Writing to these Register File addresses  
produces no effect.  
Program Memory  
The eZ8 CPU supports 64KB of Program Memory address space. F0823 Series devices  
contain 1KB to 8KB of on-chip Flash memory in the Program Memory address space.  
Reading from Program Memory addresses outside the available Flash memory addresses  
PS024317-0914  
P R E L I M I N A R Y  
Address Space  
Z8 Encore! XP® F0823 Series  
Product Specification  
14  
returns FFh. Writing to these unimplemented Program Memory addresses produces no  
effect. Table 6 describes the Program Memory maps for the Z8 Encore! XP F0823 Series  
products.  
Table 6. Z8 Encore! XP F0823 Series Program Memory Maps  
Program Memory Address (Hex)  
Function  
Z8F0823 and Z8F0813 Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Oscillator Fail Traps*  
Program Memory  
0006–0007  
0008–0037  
0038–003D  
003E–0FFF  
Z8F0423 and Z8F0413 Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Oscillator Fail Traps*  
Program Memory  
0006–0007  
0008–0037  
0038–003D  
003E–0FFF  
Z8F0223 and Z8F0213 Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Oscillator Fail Traps*  
Program Memory  
0006–0007  
0008–0037  
0038–003D  
003E–07FF  
Note: *See the Trap and Interrupt Vectors in Order of Priority section on page 55  
for a list of the interrupt vectors and traps.  
PS024317-0914  
P R E L I M I N A R Y  
Program Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
15  
Table 6. Z8 Encore! XP F0823 Series Program Memory Maps (Continued)  
Program Memory Address (Hex)  
Function  
Z8F0123 and Z8F0113 Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Oscillator Fail Traps*  
Program Memory  
0006–0007  
0008–0037  
0038–003D  
003E–03FF  
Note: *See the Trap and Interrupt Vectors in Order of Priority section on page 55  
for a list of the interrupt vectors and traps.  
Data Memory  
Z8 Encore! XP F0823 Series does not use the eZ8 CPU’s 64KB Data Memory address  
space.  
Flash Information Area  
Table 7 lists the F0823 Series Flash Information Area. This 128B Information Area is  
accessed by setting bit 7 of the Flash Page Select Register to 1. When access is enabled,  
the Flash Information Area is mapped into the Program Memory and overlays the 128  
bytes at addresses FE00hto FF7Fh. When the Information Area access is enabled, all  
reads from these Program Memory addresses return the Information Area data rather than  
the Program Memory data. Access to the Flash Information Area is read-only.  
Table 7. F0823 Series Flash Memory Information Area Map  
Program Memory  
Address (Hex)  
FE00–FE3F  
FE40–FE53  
Function  
Zilog Option Bits.  
Part Number.  
20-character ASCII alphanumeric code  
Left-justified and filled with Fh.  
FE54–FE5F  
FE60–FE7F  
FE80–FFFF  
Reserved.  
Zilog Calibration Data.  
Reserved.  
PS024317-0914  
P R E L I M I N A R Y  
Data Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
16  
Register Map  
Table 8 lists an address map of the Z8 Encore! XP F0823 Series Register File. Not all  
devices and package styles in the Z8 Encore! XP F0823 Series support the ADC, nor all  
GPIO ports. Consider registers for unimplemented peripherals to be reserved.  
Table 8. Register File Address Map  
Page  
Address (Hex)  
Register Description  
Mnemonic  
Reset (Hex)  
No.  
General-Purpose RAM  
Z8F0823/Z8F0813 Devices  
000–3FF  
400–EFF  
General-Purpose Register File RAM  
Reserved  
XX  
XX  
Z8F0423/Z8F0413 Devices  
000–3FF  
400–EFF  
General-Purpose Register File RAM  
Reserved  
XX  
XX  
Z8F0223/Z8F0213 Devices  
000–1FF  
200–EFF  
General-Purpose Register File RAM  
Reserved  
XX  
XX  
Z8F0123/Z8F0113 Devices  
000–0FF  
100–EFF  
General-Purpose Register File RAM  
XX  
XX  
Reserved  
Timer 0  
F00  
Timer 0 High Byte  
T0H  
T0L  
00  
01  
FF  
FF  
00  
00  
00  
00  
84  
84  
85  
85  
86  
86  
87  
88  
F01  
Timer 0 Low Byte  
F02  
Timer 0 Reload High Byte  
Timer 0 Reload Low Byte  
Timer 0 PWM High Byte  
Timer 0 PWM Low Byte  
Timer 0 Control 0  
T0RH  
F03  
T0RL  
F04  
T0PWMH  
T0PWML  
T0CTL0  
T0CTL1  
F05  
F06  
F07  
Timer 0 Control 1  
Timer 1  
F08  
Timer 1 High Byte  
Timer 1 Low Byte  
T1H  
T1L  
00  
01  
84  
84  
F09  
Note: XX=Undefined.  
PS024317-0914  
P R E L I M I N A R Y  
Register Map  
Z8 Encore! XP® F0823 Series  
Product Specification  
17  
Table 8. Register File Address Map (Continued)  
Page  
No.  
Address (Hex)  
Register Description  
Mnemonic  
Reset (Hex)  
Timer 1 (cont’d)  
F0A  
Timer 1 Reload High Byte  
Timer 1 Reload Low Byte  
Timer 1 PWM High Byte  
Timer 1 PWM Low Byte  
Timer 1 Control 0  
T1RH  
T1RL  
FF  
FF  
00  
00  
00  
00  
XX  
85  
85  
86  
86  
87  
84  
F0B  
F0C  
T1PWMH  
T1PWML  
T1CTL0  
T1CTL1  
F0D  
F0E  
F0F  
Timer 1 Control 1  
F10–F3F  
Reserved  
UART  
F40  
UART0 Transmit Data  
UART0 Receive Data  
UART0 Status 0  
U0TXD  
U0RXD  
U0STAT0  
U0CTL0  
U0CTL1  
U0STAT1  
U0ADDR  
U0BRH  
U0BRL  
XX  
109  
109  
110  
112  
112  
111  
115  
115  
115  
XX  
F41  
0000011Xb  
F42  
UART0 Control 0  
00  
00  
00  
00  
FF  
FF  
XX  
F43  
UART0 Control 1  
F44  
UART0 Status 1  
F45  
UART0 Address Compare  
UART0 Baud Rate High Byte  
UART0 Baud Rate Low Byte  
Reserved  
F46  
F47  
F48–F6F  
Analog-to-Digital Converter (ADC)  
F70  
ADC Control 0  
ADC Control 1  
ADC Data High Byte  
ADC Data Low Bits  
Reserved  
ADCCTL0  
ADCCTL1  
ADCD_H  
ADCD_L  
00  
80  
128  
128  
131  
131  
F71  
F72  
XX  
XX  
XX  
F73  
F74–F7F  
Low Power Control  
F80  
F81  
Power Control 0  
PWRCTL0  
80  
32  
Reserved  
XX  
LED Controller  
F82  
F83  
LED Drive Enable  
LEDEN  
00  
00  
51  
52  
LED Drive Level High Byte  
LEDLVLH  
Note: XX=Undefined.  
PS024317-0914  
P R E L I M I N A R Y  
Register Map  
Z8 Encore! XP® F0823 Series  
Product Specification  
18  
Table 8. Register File Address Map (Continued)  
Page  
No.  
Address (Hex)  
Register Description  
Mnemonic  
Reset (Hex)  
LED Controller (cont’d)  
F84  
F85  
LED Drive Level Low Byte  
LEDLVLL  
00  
53  
Reserved  
XX  
Oscillator Control  
F86  
Oscillator Control  
Reserved  
OSCCTL  
A0  
XX  
174  
134  
F87–F8F  
Comparator 0  
F90  
Comparator 0 Control  
Reserved  
CMP0  
14  
F91–FBF  
XX  
Interrupt Controller  
FC0  
Interrupt Request 0  
IRQ0  
IRQ0ENH  
IRQ0ENL  
IRQ1  
00  
00  
00  
00  
00  
00  
00  
00  
00  
XX  
00  
00  
00  
59  
62  
62  
60  
64  
64  
61  
65  
66  
FC1  
IRQ0 Enable High Bit  
IRQ0 Enable Low Bit  
Interrupt Request 1  
IRQ1 Enable High Bit  
IRQ1 Enable Low Bit  
Interrupt Request 2  
IRQ2 Enable High Bit  
IRQ2 Enable Low Bit  
Reserved  
FC2  
FC3  
FC4  
IRQ1ENH  
IRQ1ENL  
IRQ2  
FC5  
FC6  
FC7  
IRQ2ENH  
IRQ2ENL  
FC8  
FC9–FCC  
FCD  
FCE  
FCF  
Interrupt Edge Select  
Shared Interrupt Select  
Interrupt Control  
IRQES  
67  
67  
68  
IRQSS  
IRQCTL  
GPIO Port A  
FD0  
Port A Address  
Port A Control  
PAADDR  
PACTL  
PAIN  
00  
00  
XX  
00  
40  
42  
43  
43  
FD1  
FD2  
Port A Input Data  
Port A Output Data  
FD3  
PAOUT  
GPIO Port B  
FD4  
Port B Address  
Port B Control  
PBADDR  
PBCTL  
00  
00  
40  
42  
FD5  
Note: XX=Undefined.  
PS024317-0914  
P R E L I M I N A R Y  
Register Map  
Z8 Encore! XP® F0823 Series  
Product Specification  
19  
Table 8. Register File Address Map (Continued)  
Page  
No.  
Address (Hex)  
Register Description  
Mnemonic  
Reset (Hex)  
GPIO Port B (cont’d)  
FD6  
FD7  
Port B Input Data  
PBIN  
XX  
00  
43  
43  
Port B Output Data  
PBOUT  
GPIO Port C  
FD8  
Port C Address  
Port C Control  
Port C Input Data  
Port C Output Data  
Reserved  
PCADDR  
PCCTL  
PCIN  
00  
00  
40  
42  
43  
43  
FD9  
FDA  
XX  
00  
XX  
FDB  
PCOUT  
FDC–FEF  
Watchdog Timer (WDT)  
FF0  
Reset Status  
RSTSTAT  
WDTCTL  
WDTU  
WDTH  
WDTL  
XX  
XX  
FF  
FF  
FF  
XX  
94  
94  
95  
95  
96  
Watchdog Timer Control  
FF1  
Watchdog Timer Reload Upper Byte  
Watchdog Timer Reload High Byte  
Watchdog Timer Reload Low Byte  
Reserved  
FF2  
FF3  
FF4–FF5  
Trim Bit Control  
FF6  
FF7  
Trim Bit Address  
Trim Data  
TRMADR  
TRMDR  
00  
150  
151  
XX  
Flash Memory Controller  
FF8  
FF8  
FF9  
Flash Control  
FCTL  
FSTAT  
FPS  
00  
00  
00  
00  
00  
00  
143  
144  
145  
146  
147  
147  
Flash Status  
Flash Page Select  
Flash Sector Protect  
FPROT  
FFREQH  
FFREQL  
FFA  
FFB  
Flash Programming Frequency High Byte  
Flash Programming Frequency Low Byte  
Note: XX=Undefined.  
PS024317-0914  
P R E L I M I N A R Y  
Register Map  
Z8 Encore! XP® F0823 Series  
Product Specification  
20  
Table 8. Register File Address Map (Continued)  
Page  
No.  
Address (Hex)  
Register Description  
Mnemonic  
Reset (Hex)  
eZ8 CPU  
FFC  
Flags  
XX  
XX  
XX  
XX  
Refer  
to the  
eZ8  
CPU  
Core  
User  
Man-  
ual  
FFD  
Register Pointer  
Stack Pointer High Byte  
Stack Pointer Low Byte  
RP  
FFE  
SPH  
SPL  
FFF  
(UM01  
28)  
Note: XX=Undefined.  
PS024317-0914  
P R E L I M I N A R Y  
Register Map  
Z8 Encore! XP® F0823 Series  
Product Specification  
21  
Reset and Stop-Mode Recovery  
The Reset Controller within the Z8 Encore! XP F0823 Series controls Reset and Stop-  
Mode Recovery operation and provides indication of low supply voltage conditions. In  
typical operation, the following events cause a Reset:  
Power-On Reset (POR)  
Voltage Brown-Out (VBO)  
Watchdog Timer time-out (when configured by the WDT_RES Flash Option Bit to  
initiate a reset)  
External RESET pin assertion (when the alternate RESET function is enabled by the  
GPIO register)  
On-chip Debugger initiated Reset (OCDCTL[0] set to 1)  
When the device is in Stop Mode, a Stop-Mode Recovery is initiated by either of the fol-  
lowing:  
Watchdog Timer time-out  
GPIO port input pin transition on an enabled Stop-Mode Recovery source  
The VBO circuitry on the device performs the following function:  
Generates the VBO reset when the supply voltage drops below a minimum safe level  
Reset Types  
F0823 Series MCUs provide several different types of Reset operations. Stop-Mode  
Recovery is considered a form of Reset. Table 9 lists the types of Reset and their operating  
characteristics. The duration of a System Reset is longer if the external crystal oscillator is  
enabled by the Flash option bits; this configuration allows additional time for oscillator  
startup.  
Table 9. Reset and Stop-Mode Recovery Characteristics and Latency  
Reset Characteristics and Latency  
Reset Type  
Control Registers  
eZ8 CPU Reset Latency (Delay)  
System Reset Reset (as applicable)  
Reset  
Reset  
66 Internal Precision Oscillator Cycles  
Stop-Mode  
Recovery  
Unaffected, except WDT_CTL  
and OSC_CTL registers  
66 Internal Precision Oscillator Cycles  
+ IPO startup time  
PS024317-0914  
P R E L I M I N A R Y  
Reset and Stop-Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
22  
During a System Reset or Stop-Mode Recovery, the IPO requires 4 µs to start up. Then the  
Z8 Encore! XP F0823 Series device is held in Reset for 66 cycles of the Internal Precision  
Oscillator. If the crystal oscillator is enabled in the Flash option bits, this reset period is  
increased to 5000 IPO cycles. When a reset occurs because of a low voltage condition or  
Power-On Reset, this delay is measured from the time that the supply voltage first exceeds  
the POR level. If the external pin reset remains asserted at the end of the reset period, the  
device remains in reset until the pin is deasserted.  
At the beginning of Reset, all GPIO pins are configured as inputs with pull-up resistor dis-  
abled.  
During Reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal  
oscillator and Watchdog Timer oscillator continue to run.  
Upon Reset, control registers within the Register File that have a defined Reset value are  
loaded with their reset values. Other control registers (including the Stack Pointer, Regis-  
ter Pointer, and Flags) and general-purpose RAM are undefined following Reset. The eZ8  
CPU fetches the Reset vector at Program Memory addresses 0002hand 0003hand loads  
that value into the Program Counter. Program execution begins at the Reset vector  
address.  
When the control registers are re-initialized by a system reset, the system clock after reset  
is always the IPO. The software must reconfigure the oscillator control block, such that the  
correct system clock source is enabled and selected.  
PS024317-0914  
P R E L I M I N A R Y  
Reset Types  
Z8 Encore! XP® F0823 Series  
Product Specification  
23  
Reset Sources  
Table 10 lists the possible sources of a System Reset.  
Table 10. Reset Sources and Resulting Reset Type  
Operating Mode Reset Source  
Special Conditions  
Normal or Halt  
modes  
Power-On Reset/Voltage Brown- Reset delay begins after supply voltage exceeds  
Out.  
POR level.  
Watchdog Timer time-out when  
configured for Reset.  
None.  
RESET pin assertion.  
All reset pulses less than three system clocks in  
width are ignored.  
OCD initiated Reset (OCDCTL[0] System Reset, except the OCD is unaffected by  
set to 1). the reset.  
Power-On Reset/Voltage Brown- Reset delay begins after supply voltage exceeds  
Stop Mode  
Out.  
POR level.  
RESET pin assertion.  
All reset pulses less than the specified analog  
delay are ignored. See the Electrical Characteris-  
tics chapter on page 198.  
DBG pin driven Low.  
None.  
Power-On Reset  
Each device in the Z8 Encore! XP F0823 Series contains an internal POR circuit. The  
POR circuit monitors the supply voltage and holds the device in the Reset state until the  
supply voltage reaches a safe operating level. After the supply voltage exceeds the POR  
voltage threshold (VPOR), the device is held in the Reset state until the POR Counter has  
timed out. If the crystal oscillator is enabled by the option bits, this time-out is longer.  
After the Z8 Encore! XP F0823 Series device exits the POR state, the eZ8 CPU fetches the  
Reset vector. Following the POR, the POR status bit in Watchdog Timer Control  
(WDTCTL) Register is set to 1.  
Figure 5 displays POR operation. For the POR threshold voltage (VPOR), see the Electri-  
cal Characteristics chapter on page 198.  
PS024317-0914  
P R E L I M I N A R Y  
Reset Sources  
Z8 Encore! XP® F0823 Series  
Product Specification  
24  
VCC = 3.3 V  
VPOR  
VVBO  
Program  
Execution  
VCC = 0.0V  
Internal Precision  
Oscillator  
Internal RESET  
signal  
POR  
counter delay  
Note: Not to Scale  
Figure 5. Power-On Reset Operation  
Voltage Brown-Out Reset  
The devices in the Z8 Encore! XP F0823 Series provide low VBO protection. The VBO  
circuit senses when the supply voltage drops to an unsafe level (below the VBO threshold   
voltage) and forces the device into the Reset state. While the supply voltage remains  
below the POR voltage threshold (VPOR), the VBO block holds the device in the Reset.  
After the supply voltage again exceeds the Power-On Reset voltage threshold, the device  
progresses through a full System Reset sequence, as described in the Power-On Reset sec-  
tion on page 23. Following POR, the POR status bit in the Reset Status (RSTSTAT) Regis-  
ter is set to 1. Figure 6 displays Voltage Brown-Out operation. For the VBO and POR  
threshold voltages (VVBO and VPOR), see the Electrical Characteristics chapter on  
page 198.  
The VBO circuit can be either enabled or disabled during Stop Mode. Operation during  
Stop Mode is set by the VBO_AO Flash Option bit. For information about configuring  
VBO_AO, see the Flash Option Bits chapter on page 148.  
PS024317-0914  
P R E L I M I N A R Y  
Reset Sources  
Z8 Encore! XP® F0823 Series  
Product Specification  
25  
VCC = 3.3 V  
VCC = 3.3 V  
VPOR  
VVBO  
Program  
Voltage  
Program  
Execution  
Brown-Out  
Execution  
WDT Clock  
System Clock  
Internal RESET  
signal  
POR  
counter delay  
Note: Not to Scale  
Figure 6. Voltage Brown-Out Reset Operation  
The POR level is greater than the VBO level by the specified hysteresis value. This  
ensures that the device undergoes a POR after recovering from a VBO condition.  
Watchdog Timer Reset  
If the device is in Normal or Stop Mode, the Watchdog Timer can initiate a System Reset  
at time-out if the WDT_RES Flash Option Bit is programmed to 1. This is the unpro-  
grammed state of the WDT_RES Flash Option Bit. If the bit is programmed to 0, it config-  
ures the Watchdog Timer to cause an interrupt, not a System Reset, at time-out.  
The WDT status bit in the WDT Control Register is set to signify that the reset was initi-  
ated by the Watchdog Timer.  
External Reset Input  
The RESET pin has a Schmitt-Triggered input and an internal pull-up resistor. Once the  
RESET pin is asserted for a minimum of four system clock cycles, the device progresses  
through the System Reset sequence. Because of the possible asynchronicity of the system  
PS024317-0914  
P R E L I M I N A R Y  
Reset Sources  
Z8 Encore! XP® F0823 Series  
Product Specification  
26  
clock and reset signals, the required reset duration can be as short as three clock periods  
and as long as four. A reset pulse three clock cycles in duration might trigger a reset; a  
pulse four cycles in duration always triggers a reset.  
While the RESET input pin is asserted Low, the Z8 Encore! XP F0823 Series devices  
remain in the Reset state. If the RESET pin is held Low beyond the System Reset time-  
out, the device exits the Reset state on the system clock rising edge following RESET pin  
deassertion. Following a System Reset initiated by the external RESET pin, the EXT sta-  
tus bit in the WDT Control (WDTCTL) register is set to 1.  
External Reset Indicator  
During System Reset or when enabled by the GPIO logic (see the Port A–C Control Reg-  
isters section on page 42), the RESET pin functions as an open-drain (active Low) reset  
mode indicator in addition to the input functionality. This reset output feature allows an Z8  
Encore! XP F0823 Series device to reset other components to which it is connected, even  
if that reset is caused by internal sources such as POR, VBO, or WDT events.  
After an internal reset event occurs, the internal circuitry begins driving the RESET pin  
Low. The RESET pin is held Low by the internal circuitry until the appropriate delay  
listed in Table 9 has elapsed.  
On-Chip Debugger Initiated Reset  
A POR is initiated using the On-Chip Debugger by setting the RST bit in the OCD Control  
Register. The OCD block is not reset but the rest of the chip goes through a normal system  
reset. The RST bit automatically clears during the System Reset. Following the System  
Reset, the POR bit in the Reset Status (RSTSTAT) Register is set.  
Stop-Mode Recovery  
The device enters into Stop Mode when eZ8 CPU executes a stop instruction. For more  
details about Stop Mode, see the Low-Power Modes section on page 30. During Stop-  
Mode Recovery, the CPU is held in reset for 66 IPO cycles if the crystal oscillator is dis-  
abled or 5000 cycles if it is enabled. The SMR delay also included the time required to  
start up the IPO.  
Stop-Mode Recovery does not affect on-chip registers other than the Watchdog Timer  
Control Register (WDTCTL) and the Oscillator Control Register (OSCCTL). After any  
Stop-Mode Recovery, the IPO is enabled and selected as the system clock. If another sys-  
tem clock source is required or IPO disabling is required, the Stop-Mode Recovery code  
must reconfigure the oscillator control block such that the correct system clock source is  
enabled and selected.  
PS024317-0914  
P R E L I M I N A R Y  
Stop-Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
27  
The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002hand 0003h  
and loads that value into the Program Counter. Program execution begins at the Reset vec-  
tor address. Following Stop-Mode Recovery, the Stop bit in the Watchdog Timer Control  
Register is set to 1. Table 11 lists the Stop-Mode Recovery sources and resulting actions.  
The section following the table provides more detailed information about each of the Stop-  
Mode Recovery sources.  
Table 11. Stop-Mode Recovery Sources and Resulting Action  
Operating Mode Stop-Mode Recovery Source  
Action  
Stop Mode  
Watchdog Timer time-out when configured Stop-Mode Recovery  
for Reset  
Watchdog Timer time-out when configured Stop-Mode Recovery followed by interrupt  
for interrupt  
(if interrupts are enabled)  
Data transition on any GPIO port pin  
Stop-Mode Recovery  
enabled as a Stop-Mode Recovery source  
Assertion of external RESET Pin  
Debug Pin driven Low  
System Reset  
System Reset  
Stop-Mode Recovery Using Watchdog Timer Time-Out  
If the Watchdog Timer times out during Stop Mode, the device undergoes a Stop-Mode  
Recovery sequence. In the Watchdog Timer Control Register, the WDT and Stop bits are set  
to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and Z8  
Encore! XP F0823 Series device is configured to respond to interrupts, the eZ8 CPU services  
the Watchdog Timer interrupt request following the normal Stop-Mode Recovery sequence.  
Stop-Mode Recovery Using a GPIO Port Pin Transition  
Each of the GPIO port pins can be configured as a Stop-Mode Recovery input source. On  
any GPIO pin enabled as a Stop-Mode Recovery source, a change in the input pin value  
(from High to Low or from Low to High) initiates Stop-Mode Recovery.  
The SMR pulses shorter than specified does not trigger a recovery. When this happens, the  
Stop bit in the Reset Status (RSTSTAT) Register is set to 1.  
Note:  
In Stop Mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input  
Data registers record the port transition only if the signal stays on the port pin through the  
end of the Stop-Mode Recovery delay. As a result, short pulses on the port pin can initiate  
Stop-Mode Recovery without being written to the Port Input Data Register or without ini-  
tiating an interrupt (if enabled for that pin).  
Caution:  
PS024317-0914  
P R E L I M I N A R Y  
Stop-Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
28  
Stop-Mode Recovery Using the External RESET Pin  
When a Z8 Encore! XP F0823 Series device is in Stop Mode and the external RESET pin  
is driven Low, a system reset occurs. Because of a glitch filter operating on the RESET  
pin, the Low pulse must be greater than the minimum width specified, or it is ignored. For  
more details, see the Electrical Characteristics chapter on page 198.  
Reset Register Definitions  
The following sections define the Reset registers.  
Reset Status Register  
The Reset Status (RSTSTAT) Register is a read-only register that indicates the source of  
the most recent Reset event, indicates a Stop-Mode Recovery event, and indicates a  
Watchdog Timer time-out. Reading this register resets the upper four bits to 0.  
This register shares its address with the Watchdog Timer Control Register, which is write-  
only; see Table 12.  
Table 12. Reset Status Register (RSTSTAT)  
Bit  
7
6
5
4
3
2
1
0
POR  
STOP  
WDT  
EXT  
Reserved  
Field  
See descriptions in Table 13  
0
0
0
0
0
RESET  
R/W  
R
R
R
R
R
R
R
R
FF0h  
Address  
Bit  
Description  
[7]  
POR  
Power-On Reset Indicator  
If this bit is set to 1, a Power-On Reset event has occurred. This bit is reset to 0 if a WDT time-  
out or Stop-Mode Recovery occurs. This bit is also reset to 0 when the register is read. For  
POR/Stop Mode Recover event values, please see Table 13.  
[6]  
STOP  
Stop-Mode Recovery Indicator  
If this bit is set to 1, a Stop-Mode Recovery is occurred. If the Stop and WDT bits are both set  
to 1, the Stop-Mode Recovery occurred because of a WDT time-out. If the Stop bit is 1 and the  
WDT bit is 0, the Stop-Mode Recovery was not caused by a WDT time-out. This bit is reset by  
a POR or a WDT time-out that occurred while not in Stop Mode. Reading this register also  
resets this bit. For POR/Stop Mode Recover event values, please see Table 13.  
[5]  
WDT  
Watchdog Timer Time-Out Indicator  
If this bit is set to 1, a WDT time-out has occurred. A POR resets this pin. A Stop-Mode Recov-  
ery from a change in an input pin also resets this bit. Reading this register resets this bit; this  
read must occur before clearing the WDT interrupt. For POR/Stop Mode Recover event values,  
please see Table 13.  
PS024317-0914  
P R E L I M I N A R Y  
Reset Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
29  
Bit  
Description (Continued)  
External Reset Indicator  
[4]  
EXT  
If this bit is set to 1, a Reset initiated by the external RESET pin occurred. A Power-On Reset  
or a Stop-Mode Recovery from a change in an input pin resets this bit. Reading this register  
resets this bit. For POR/Stop Mode Recover event values, please see Table 13.  
[3:0]  
Reserved  
These bits are reserved and must be programmed to 0000 when read.  
Table 13. POR Indicator Values  
Reset or Stop-Mode Recovery Event  
Power-On Reset  
POR  
STOP  
WDT  
EXT  
0
1
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
1
Reset using RESET pin assertion  
1
Reset using WDT time-out  
0
Reset using the OCD (OCTCTL[1] set to 1)  
Reset from Stop Mode using DBG Pin driven Low  
Stop-Mode Recovery using GPIO pin transition  
Stop-Mode Recovery using WDT time-out  
0
0
0
0
PS024317-0914  
P R E L I M I N A R Y  
Reset Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
30  
Low-Power Modes  
Z8 Encore! XP F0823 Series products contain power-saving features. The highest level of  
power reduction is provided by the Stop Mode, in which nearly all device functions are  
powered down. The next lower level of power reduction is provided by the Halt Mode, in  
which the CPU is powered down.  
Further power savings can be implemented by disabling individual peripheral blocks  
while in Active Mode (defined as being in neither Stop nor Halt Mode).  
Stop Mode  
Executing the eZ8 CPU’s Stop instruction places the device into Stop Mode, powering  
down all peripherals except the Voltage Brown-Out detector, and the Watchdog Timer.  
These two blocks may also be disabled for additional power savings. In Stop Mode, the  
operating characteristics are:  
Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT  
(if previously enabled) are disabled, and PA0/PA1 revert to the states programmed by  
the GPIO registers  
System clock is stopped  
eZ8 CPU is stopped  
Program counter (PC) stops incrementing  
Watchdog Timer’s internal RC oscillator continues to operate if enabled by the Oscil-  
lator Control Register  
If enabled, the Watchdog Timer logic continues to operate  
If enabled for operation in Stop Mode by the associated Flash Option Bit, the Voltage  
Brown-Out protection circuit continues to operate  
All other on-chip peripherals are idle  
To minimize current in Stop Mode, all GPIO pins that are configured as digital inputs must  
be driven to one of the supply rails (VCC or GND). Additionally, any GPIOs configured as  
outputs must also be driven to one of the supply rails. The device can be brought out of  
Stop Mode using Stop-Mode Recovery. For more information about Stop-Mode Recovery,  
see the Reset and Stop-Mode Recovery chapter on page 21.  
PS024317-0914  
P R E L I M I N A R Y  
Low-Power Modes  
Z8 Encore! XP® F0823 Series  
Product Specification  
31  
Halt Mode  
Executing the eZ8 CPU’s Halt instruction places the device into Halt Mode, which powers  
down the CPU but leaves all other peripherals active. In Halt Mode, the operating charac-  
teristics are:  
Primary oscillator is enabled and continues to operate  
System clock is enabled and continues to operate  
eZ8 CPU is stopped  
Program counter stops incrementing  
Watchdog Timer’s internal RC oscillator continues to operate  
If enabled, the Watchdog Timer continues to operate  
All other on-chip peripherals continue to operate  
The eZ8 CPU can be brought out of Halt Mode by any of the following operations:  
Interrupt  
Watchdog Timer time-out (interrupt or reset)  
Power-On Reset  
Voltage Brown-Out reset  
External RESET pin assertion  
To minimize current in Halt Mode, all GPIO pins that are configured as inputs must be  
driven to one of the supply rails (VCC or GND).  
Peripheral-Level Power Control  
In addition to the Stop and Halt modes, it is possible to disable each peripheral on each of  
the Z8 Encore! XP F0823 Series devices. Disabling a given peripheral minimizes its  
power consumption.  
Power Control Register Definitions  
The following sections describe the power control registers.  
Power Control Register 0  
Each bit of the following registers disables a peripheral block, either by gating its system  
clock input or by removing power from the block.  
PS024317-0914  
P R E L I M I N A R Y  
Halt Mode  
Z8 Encore! XP® F0823 Series  
Product Specification  
32  
Note: This register is only reset during a Power-On Reset sequence. Other System Reset events  
do not affect it.  
Table 14. Power Control Register 0 (PWRCTL0)  
Bit  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
VBO  
Reserved  
ADC  
COMP  
Reserved  
Field  
1
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F80h  
Address  
Bit  
Description  
Reserved  
[7]  
This bit is reserved and must be programmed to 1.  
[6:5]  
Reserved  
These bits are reserved and must be programmed to 00.  
[4]  
VBO  
Voltage Brown-Out Detector Disable  
This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be active.  
0 = VBO enabled.  
1 = VBO disabled.  
[3]  
Reserved  
This bit is reserved and must be programmed to 0.  
[2]  
ADC  
Analog-to-Digital Converter Disable  
0 = Analog-to-Digital Converter enabled.  
1 = Analog-to-Digital Converter disabled.  
[1]  
COMP  
Comparator Disable  
0 = Comparator is enabled.  
1 = Comparator is disabled.  
[0]  
Reserved  
This bit is reserved and must be programmed to 0.  
PS024317-0914  
P R E L I M I N A R Y  
Power Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
33  
General-Purpose Input/Output  
Z8 Encore! XP F0823 Series products support a maximum of 24 port pins (Ports A–C) for  
general-purpose input/output (GPIO) operations. Each port contains control and data reg-  
isters. The GPIO control registers determine data direction, open-drain, output drive cur-  
rent, programmable pull-ups, Stop-Mode Recovery functionality, and alternate pin  
functions. Each port pin is individually programmable. In addition, the Port C pins are  
capable of direct LED drive at programmable drive strengths.  
GPIO Port Availability By Device  
Table 15 lists the port pins available with each device and package type.  
Table 15. Port Availability by Device and Package Type  
Devices  
Package 10-Bit ADC Port A  
Port B  
Port C  
Total I/O  
Z8F0823SB, Z8F0823PB  
Z8F0423SB, Z8F0423PB  
Z8F0223SB, Z8F0223PB  
Z8F0123SB, Z8F0123PB  
8-pin  
Yes  
[5:0]  
[5:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
No  
No  
6
Z8F0813SB, Z8F0813PB  
Z8F0413SB, Z8F0413PB  
Z8F0213SB, Z8F0213PB  
Z8F0113SB, Z8F011vPB  
8-pin  
No  
No  
No  
6
Z8F0823PH, Z8F0823HH  
Z8F0423PH, Z8F0423HH  
Z8F0223PH, Z8F0223HH  
Z8F0123PH, Z8F0123HH  
20-pin  
20-pin  
28-pin  
28-pin  
Yes  
No  
[3:0]  
[3:0]  
[5:0]  
[7:0]  
[3:0]  
[3:0]  
[7:0]  
[7:0]  
16  
16  
22  
24  
Z8F0813PH, Z8F0813HH  
Z8F0413PH, Z8F0413HH  
Z8F0213PH, Z8F0213HH  
Z8F0113PH, Z8F0113HH  
Z8F0823PJ, Z8F0823SJ  
Z8F0423PJ, Z8F0423SJ  
Z8F0223PJ, Z8F0223SJ  
Z8F0123PJ, Z8F0123SJ  
Yes  
No  
Z8F0813PJ, Z8F0813SJ  
Z8F0413PJ, Z8F0413SJ  
Z8F0213PJ, Z8F0213SJ  
Z8F0113PJ, Z8F0113SJ  
PS024317-0914  
P R E L I M I N A R Y  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
34  
Architecture  
Figure 7 displays a simplified block diagram of a GPIO port pin. In this figure, the ability  
to accommodate alternate functions and variable port current drive strength is not dis-  
played.  
Port Input  
Data Register  
Schmitt-Trigger  
Q
D
Q
D
System  
Clock  
VDD  
Port Output Control  
Port Output  
Data Register  
DATA  
Bus  
D
Q
Port  
Pin  
System  
Clock  
Port Data Direction  
GND  
Figure 7. GPIO Port Pin Block Diagram  
GPIO Alternate Functions  
Many of the GPIO port pins are used for general-purpose I/O and access to on-chip  
peripheral functions such as the timers and serial communication devices. The port A–D  
Alternate Function subregisters configure these pins for either GPIO or alternate function  
operation. When a pin is configured for alternate function, control of the port pin direction  
(input/output) is passed from the Port A–D Data Direction registers to the alternate func-  
tion assigned to this pin. Tables 16 and 17 list the alternate functions possible with each  
port pin for 8-pin and non-8-pin parts, respectively. The alternate function associated at a  
pin is defined through Alternate Function Sets subregisters AFS1 and AFS2.  
The crystal oscillator functionality is not controlled by the GPIO block. When the crystal  
oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1  
is overridden. In that case, those pins function as input and output for the crystal oscillator.  
PS024317-0914  
P R E L I M I N A R Y  
Architecture  
Z8 Encore! XP® F0823 Series  
Product Specification  
35  
PA0 and PA6 contain two different timer functions, a timer input and a complementary timer  
output. Both of these functions require the same GPIO configuration, the selection between  
the two is based on the timer mode. For more details, see the Timers chapter on page 69  
.
For pins with multiple alternate functions, Zilog recommends writing to the AFS1 and  
AFS2 subregisters before enabling the alternate function via the AF Subregister. This  
prevents spurious transitions through unwanted alternate function modes.  
Caution:  
Table 16. Port Alternate Function Mapping (8-Pin Parts)  
Alternate  
Function  
Alternate  
Select  
Alternate Function  
Description  
Function Select Register  
Register AFS1 AFS2  
Port  
Pin  
Mnemonic  
T0IN  
Port A  
PA0  
Timer 0 Input  
AFS1[0]: 0  
AFS1[0]: 0  
AFS1[0]: 1  
AFS1[0]: 1  
AFS1[1]: 0  
AFS1[1]: 0  
AFS1[1]: 1  
AFS1[1]: 1  
AFS1[2]: 0  
AFS1[2]: 0  
AFS1[2]: 1  
AFS1[2]: 1  
AFS1[3]: 0  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[3]: 1  
AFS1[4]: 0  
AFS1[4]: 0  
AFS1[4]: 1  
AFS1[4]: 1  
AFS1[5]: 0  
AFS1[5]: 0  
AFS1[5]: 1  
AFS1[5]: 1  
AFS2[0]: 0  
AFS2[0]: 1  
AFS2[0]: 0  
AFS2[0]: 1  
AFS2[1]: 0  
AFS2[1]: 1  
AFS2[1]: 0  
AFS2[1]: 1  
AFS2[2]: 0  
AFS2[2]: 1  
AFS2[2]: 0  
AFS2[2]: 1  
AFS2[3]: 0  
AFS2[3]: 1  
AFS2[3]: 0  
AFS2[3]: 1  
AFS2[4]: 0  
AFS2[4]: 1  
AFS2[4]: 0  
AFS2[4]: 1  
AFS2[5]: 0  
AFS2[5]: 1  
AFS2[5]: 0  
AFS2[5]: 1  
Reserved  
Reserved  
T0OUT  
Timer 0 Output Complement  
Timer 0 Output  
PA1  
PA2  
PA3  
PA4  
PA5  
T0OUT  
Reserved  
CLKIN  
External Clock Input  
Analog Functions* ADC Analog Input/V  
REF  
DE0  
UART 0 Driver Enable  
RESET  
T1OUT  
Reserved  
CTS0  
External Reset  
Timer 1 Output  
UART 0 Clear to Send  
Comparator Output  
Timer 1 Input  
COUT  
T1IN  
Analog Functions* ADC Analog Input  
RXD0  
UART 0 Receive Data  
Reserved  
Reserved  
Analog Functions* ADC/Comparator Input (N)  
TXD0  
UART 0 Transmit Data  
T1OUT  
Reserved  
Timer 1 Output Complement  
Analog Functions* ADC/Comparator Input (P)  
Note: *Analog Functions include ADC inputs, ADC reference and comparator inputs. Also, alternate function selection  
as described in the Port A–C Alternate Function Subregisters section on page 43 must be enabled.  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Alternate Functions  
Z8 Encore! XP® F0823 Series  
Product Specification  
36  
Table 17. Port Alternate Function Mapping (Non 8-Pin Parts)  
Alternate Function  
Set Register AFS1  
Port  
Pin  
Mnemonic  
Alternate Function Description  
1
Port A PA0  
T0IN/T0OUT  
Timer 0 Input/Timer 0 Output Com- N/A  
plement  
Reserved  
T0OUT  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
Timer 0 Output  
Reserved  
DE0  
UART 0 Driver Enable  
UART 0 Clear to Send  
UART 0 / IrDA 0 Receive Data  
UART 0 / IrDA 0 Transmit Data  
Reserved  
CTS0  
Reserved  
RXD0/IRRX0  
Reserved  
TXD0/IRTX0  
Reserved  
2
T1IN/T1OUT  
Timer 1 Input/Timer 1 Output Com-  
plement  
Reserved  
T1OUT  
PA7  
Timer 1 Output  
Reserved  
Notes:  
1. Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers  
are not implemented for Port A. Enabling alternate function selections as described in the Port A–C  
Alternate Function Subregisters section on page 43 automatically enables the associated alternate func-  
tion.  
2. Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer con-  
figuration as described in the Timer Pin Signal Operation section on page 83.  
3. Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function  
Set register AFS2 is implemented but not used to select the function. Also, alternate function selection  
as described in the Port A–C Alternate Function Subregisters section on page 43 must also be enabled.  
4. VREF is available on PB5 in 28-pin products only.  
5. Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function  
Set register AFS2 is implemented but not used to select the function. Also, Alternate Function selection  
as described in the Port A–C Alternate Function Subregisters section on page 43 must also be enabled.  
6. VREF is available on PC2 in 20-pin parts only.  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Alternate Functions  
Z8 Encore! XP® F0823 Series  
Product Specification  
37  
Table 17. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)  
Alternate Function  
Set Register AFS1  
Port  
Pin  
Mnemonic  
Reserved  
ANA0  
Alternate Function Description  
ADC Analog Input  
3
Port B PB03  
AFS1[0]: 0  
AFS1[0]: 1  
AFS1[1]: 0  
AFS1[1]: 1  
AFS1[2]: 0  
AFS1[2]: 1  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[4]: 0  
AFS1[4]: 1  
AFS1[5]: 0  
AFS1[5]: 1  
AFS1[6]: 0  
AFS1[6]: 1  
AFS1[7]: 0  
AFS1[7]: 1  
PB1  
Reserved  
ANA1  
ADC Analog Input  
PB2  
Reserved  
ANA2  
ADC Analog Input  
External Clock Input  
ADC Analog Input  
PB3  
CLKIN  
ANA3  
PB4  
Reserved  
ANA7  
ADC Analog Input  
PB5  
Reserved  
4
V
ADC Voltage Reference  
REF  
PB6  
Reserved  
Reserved  
Reserved  
Reserved  
PB7  
Notes:  
1. Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers  
are not implemented for Port A. Enabling alternate function selections as described in the Port A–C  
Alternate Function Subregisters section on page 43 automatically enables the associated alternate func-  
tion.  
2. Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer con-  
figuration as described in the Timer Pin Signal Operation section on page 83.  
3. Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function  
Set register AFS2 is implemented but not used to select the function. Also, alternate function selection  
as described in the Port A–C Alternate Function Subregisters section on page 43 must also be enabled.  
4. VREF is available on PB5 in 28-pin products only.  
5. Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function  
Set register AFS2 is implemented but not used to select the function. Also, Alternate Function selection  
as described in the Port A–C Alternate Function Subregisters section on page 43 must also be enabled.  
6. VREF is available on PC2 in 20-pin parts only.  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Alternate Functions  
Z8 Encore! XP® F0823 Series  
Product Specification  
38  
Table 17. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)  
Alternate Function  
Set Register AFS1  
Port  
Pin  
Mnemonic  
Alternate Function Description  
4
Port C PC0  
Reserved  
AFS1[0]: 0  
AFS1[0]: 1  
ANA4/CINP/LED  
Drive  
ADC or Comparator Input or LED  
Drive  
PC1  
Reserved  
AFS1[1]: 0  
AFS1[1]: 1  
ANA5/CINN/LED  
Drive  
ADC or Comparator Input or LED  
Drive  
PC2  
Reserved  
AFS1[2]: 0  
6
ANA6/LED/V  
ADC Analog Input or LED Drive or AFS1[2]: 1  
ADC Voltage Reference  
REF  
PC3  
PC4  
COUT  
LED  
Comparator Output  
LED Drive  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[4]: 0  
AFS1[4]: 1  
AFS1[5]: 0  
AFS1[5]: 1  
AFS1[6]: 0  
AFS1[6]: 1  
AFS1[7]: 0  
AFS1[7]: 1  
Reserved  
LED  
LED Drive  
LED Drive  
LED Drive  
LED Drive  
PC5  
Reserved  
LED  
PC6  
Reserved  
LED  
PC7  
Reserved  
LED  
Notes:  
1. Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers  
are not implemented for Port A. Enabling alternate function selections as described in the Port A–C  
Alternate Function Subregisters section on page 43 automatically enables the associated alternate func-  
tion.  
2. Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer con-  
figuration as described in the Timer Pin Signal Operation section on page 83.  
3. Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function  
Set register AFS2 is implemented but not used to select the function. Also, alternate function selection  
as described in the Port A–C Alternate Function Subregisters section on page 43 must also be enabled.  
4. VREF is available on PB5 in 28-pin products only.  
5. Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function  
Set register AFS2 is implemented but not used to select the function. Also, Alternate Function selection  
as described in the Port A–C Alternate Function Subregisters section on page 43 must also be enabled.  
6. VREF is available on PC2 in 20-pin parts only.  
Direct LED Drive  
The Port C pins provide a current sinked output capable of driving an LED without requir-  
ing an external resistor. The output sinks current at programmable levels of 3mA, 7mA,  
13mA, and 20mA. This mode is enabled through the Alternate Function register and  
PS024317-0914  
P R E L I M I N A R Y  
Direct LED Drive  
Z8 Encore! XP® F0823 Series  
Product Specification  
39  
Alternate Function sub-register AFS1 and is programmable through the LED control reg-  
isters. The LED Drive Enable (LEDEN) register turns on the drivers. The LED Drive  
Level (LEDLVLH and LEDLVLL) registers select the sink current.  
For correct operation, the LED anode must be connected to VDD and the cathode must be  
connected to the GPIO pin. Using all Port C pins in LED Drive Mode with maximum cur-  
rent can result in excessive total current. For the maximum total current for the applicable  
package, see the Electrical Characteristics chapter on page 198.  
Shared Reset Pin  
On the 8-pin product versions, the reset pin is shared with PA2, but the pin is not limited to  
output-only when in GPIO Mode.  
If PA2 on the 8-pin product is reconfigured as an input, ensure that no external stimulus  
drives the pin Low during any reset sequence. Because PA2 returns to its RESET  
alternate function during system resets, driving it Low holds the chip in a reset state until  
the pin is released.  
Caution:  
Shared Debug Pin  
On the 8-pin version of this device only, the Debug pin shares function with the PA0 GPIO  
pin. This pin performs as a general purpose input pin on power-up, but the debug logic  
monitors this pin during the reset sequence to determine if the unlock sequence occurs. If  
the unlock sequence is present, the debug function is unlocked and the pin no longer func-  
tions as a GPIO pin. If it is not present, the debug feature is disabled until/unless another  
reset event occurs. For more details, see the On-Chip Debugger chapter on page 158.  
Crystal Oscillator Override  
For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When  
the crystal oscillator is enabled (see the Oscillator Control Register Definitions section on  
page 173), the GPIO settings are overridden and PA0 and PA1 are disabled.  
5V Tolerance  
All six I/O pins on the 8-pin devices are 5V-tolerant, unless the programmable pull-ups  
are enabled. If the pull-ups are enabled and inputs higher than VDD are applied to these  
parts, excessive current flows through those pull-up devices and can damage the chip.  
PS024317-0914  
P R E L I M I N A R Y  
Shared Reset Pin  
Z8 Encore! XP® F0823 Series  
Product Specification  
40  
Note: In the 20- and 28-pin versions of this device, any pin which shares functionality with an  
ADC, crystal or comparator port is not 5V-tolerant, including PA[1:0], PB[5:0], and  
PC[2:0]. All other signal pins are 5V-tolerant, and can safely handle inputs higher than  
VDD even with the pull-ups enabled.  
External Clock Setup  
For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin  
devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator  
Control Register (see the Oscillator Control Register Definitions section on page 173)  
such that the external oscillator is selected as the system clock. For 8-pin devices, use PA1  
instead of PB3.  
GPIO Interrupts  
Many of the GPIO port pins are used as interrupt sources. Some port pins are configured  
to generate an interrupt request on either the rising edge or falling edge of the pin input  
signal. Other port pin interrupt sources generate an interrupt when any edge occurs (both  
rising and falling). For more information about interrupts using the GPIO pins, see the  
Interrupt Controller chapter on page 54.  
GPIO Control Register Definitions  
Four registers for each port provide access to GPIO control, input data, and output data.  
Table 18 lists these port registers. Use the Port A–D Address and Control registers  
together to provide access to subregisters for port configuration and control.  
Table 18. GPIO Port Registers and Subregisters  
Port Register  
Mnemonic  
PxADDR  
PxCTL  
Port Register Name  
Port A–C Address Register (Selects subregisters).  
Port A–C Control Register (Provides access to subregisters).  
Port A–C Input Data Register.  
PxIN  
PxOUT  
Port A–C Output Data Register.  
Port Subregister  
Mnemonic  
Port Register Name  
PxDD  
Data Direction.  
PS024317-0914  
P R E L I M I N A R Y  
External Clock Setup  
Z8 Encore! XP® F0823 Series  
Product Specification  
41  
Table 18. GPIO Port Registers and Subregisters (Continued)  
Port Register  
Mnemonic  
Port Register Name  
PxAF  
Alternate Function.  
PxOC  
Output Control (Open-Drain).  
High Drive Enable.  
PxHDE  
PxSMRE  
PxPUE  
PxAFS1  
PxAFS2  
Stop-Mode Recovery Source Enable.  
Pull-up Enable.  
Alternate Function Set 1.  
Alternate Function Set 2.  
Port A–C Address Registers  
The Port A–C Address registers select the GPIO port functionality accessible through the  
Port A–C Control registers. The Port A–C Address and Control registers combine to pro-  
vide access to all GPIO port controls (Table 19).  
Table 19. Port A–C GPIO Address Registers (PxADDR)  
Bit  
7
6
5
4
3
2
1
0
PADDR[7:0]  
00h  
Field  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FD0h, FD4h, FD8h  
Address  
Bit  
Description  
[7:0]  
Port Address  
PADDR The Port Address selects one of the subregisters accessible through the Port Control Register.  
See Table 20 for each subregister function.  
Table 20. PADDR[7:0] Subregister Functions  
PADDR[7:0] Port Control Subregister Accessible Using the Port A–C Control Registers  
00h  
01h  
02h  
03h  
04h  
No function. Provides some protection against accidental Port reconfiguration.  
Data Direction.  
Alternate Function.  
Output Control (Open-Drain).  
High Drive Enable.  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
42  
Table 20. PADDR[7:0] Subregister Functions  
PADDR[7:0] Port Control Subregister Accessible Using the Port A–C Control Registers  
05h  
06h  
Stop-Mode Recovery Source Enable.  
Pull-up Enable.  
07h  
Alternate Function Set 1.  
Alternate Function Set 2.  
No function.  
08h  
09h–FFh  
Port A–C Control Registers  
The Port A–C Control registers set the GPIO port operation. The value in the correspond-  
ing Port A–C Address Register determines which subregister is read from or written to by  
a Port A–C Control Register transaction; see Table 21.  
Table 21. Port A–C Control Registers (PxCTL)  
Bit  
7
6
5
4
3
2
1
0
PCTL  
00h  
Field  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FD1h, FD5h, FD9h  
Address  
Bit  
Description  
Port Control  
[7:0]  
PCTL  
The Port Control Register provides access to all subregisters that configure the GPIO Port  
operation.  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
43  
Port A–C Data Direction Subregisters  
The Port A–C Data Direction Subregister is accessed through the Port A–C Control Regis-  
ter by writing 01hto the Port A–C Address Register; see Table 22.  
Table 22. Port A–C Data Direction Subregisters (PxDD)  
Bit  
7
6
5
4
3
2
1
0
DD7  
DD6  
DD5  
DD4  
DD3  
DD2  
DD1  
DD0  
Field  
1
1
1
1
1
1
1
1
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 01h in Port A–C Address Register, accessible through the Port A–C Control Register.  
Address  
Bit  
Description  
[7:0]  
DDx  
Data Direction  
These bits control the direction of the associated port pin. Port Alternate Function operation  
overrides the Data Direction register setting.  
0 = Output. Data in the Port A–C Output Data Register is driven onto the port pin.  
1 = Input. The port pin is sampled and the value written into the Port A–C Input Data Register.  
The output driver is tristated.  
Note: x indicates the specific GPIO port pin number (7–0).  
Port A–C Alternate Function Subregisters  
The Port A–C Alternate Function Subregister (Table 23) is accessed through the Port A–C  
Control Register by writing 02hto the Port A–C Address Register. The Port A–C Alter-  
nate Function subregisters enable the alternate function selection on pins. If disabled, pins  
functions as GPIO. If enabled, select one of four alternate functions using alternate func-  
tion set subregisters 1 and 2 as described in the the Port A–C Alternate Function Set 1  
Subregisters section on page 48 and the Port A–C Alternate Function Set 2 Subregisters  
section on page 49. See the GPIO Alternate Functions section on page 34 to determine  
the alternate function associated with each port pin.  
Do not enable alternate functions for GPIO port pins for which there is no associated al-  
ternate function. Failure to follow this guideline can result in unpredictable operation.  
Caution:  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
44  
Table 23. Port A–C Alternate Function Subregisters (PxAF)  
Bit  
7
6
5
4
3
2
1
0
AF7  
AF6  
AF5  
AF4  
AF3  
AF2  
AF1  
AF0  
Field  
00h (Ports A–C); 04h (Port A of 8-pin device)  
R/W  
RESET  
R/W  
If 02h in Port A–C Address Register, accessible through the Port A–C Control Register  
Address  
Bit  
Description  
[7:0]  
AFx  
Port Alternate Function enabled  
0 = The port pin is in Normal Mode and the DDx bit in the Port A–C Data Direction Subregister  
determines the direction of the pin.  
1 = The alternate function selected through Alternate Function Set subregisters is enabled.  
Port pin operation is controlled by the alternate function.  
Note: x indicates the specific GPIO port pin number (7–0).  
Port A–C Output Control Subregisters  
The Port A–C Output Control Subregister (Table 24) is accessed through the Port A–C  
Control Register by writing 03hto the Port A–C Address Register. Setting the bits in the  
Port A–C Output Control subregisters to 1 configures the specified port pins for open-  
drain operation. These subregisters affect the pins directly and, as a result, alternate func-  
tions are also affected.  
Table 24. Port A–C Output Control Subregisters (PxOC)  
Bit  
7
6
5
4
3
2
1
0
POC7  
POC6  
POC5  
POC4  
POC3  
POC2  
POC1  
POC0  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 03h in Port A–C Address Register, accessible through the Port A–C Control Register  
Address  
Bit  
Description  
[7:0]  
POCx  
Port Output Control  
These bits function independently of the alternate function bit and always disable the drains if  
set to 1.  
0 = The drains are enabled for any output mode (unless overridden by the alternate function).  
1 = The drain of the associated pin is disabled (open-drain mode).  
Note: x indicates the specific GPIO port pin number (7–0).  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
45  
Port A–C High Drive Enable Subregisters  
The Port A–C High Drive Enable Subregister (Table 25) is accessed through the Port A–C  
Control Register by writing 04hto the Port A–C Address Register. Setting the bits in the  
Port A–C High Drive Enable subregisters to 1 configures the specified port pins for high-  
current output drive operation. The Port A–C High Drive Enable Subregister affects the  
pins directly and, as a result, alternate functions are also affected.  
Table 25. Port A–C High Drive Enable Subregisters (PHDEx)  
Bit  
7
6
5
4
3
2
1
0
PHDE7  
PHDE6  
PHDE5  
PHDE4  
PHDE3  
PHDE2  
PHDE1  
PHDE0  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 04h in Port A–C Address Register, accessible through the Port A–C Control Register  
Address  
Bit  
Description  
[7:0]  
PHDEx  
Port High Drive Enabled.  
0 = The Port pin is configured for standard output current drive.  
1 = The Port pin is configured for high output current drive.  
Note: x indicates the specific GPIO port pin number (7–0).  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
46  
Port A–C Stop-Mode Recovery Source Enable Subregisters  
The Port A–C Stop-Mode Recovery Source Enable Subregister (Table 26) is accessed  
through the Port A–C Control Register by writing 05hto the Port A–C Address Register.  
Setting the bits in the Port A–C Stop-Mode Recovery Source Enable subregisters to 1 con-  
figures the specified Port pins as a Stop-Mode Recovery source. During Stop Mode, any  
logic transition on a Port pin enabled as a Stop-Mode Recovery source initiates Stop-  
Mode Recovery.  
Table 26. Port A–C Stop-Mode Recovery Source Enable Subregisters (PSMREx)  
Bit  
7
6
5
4
3
2
1
0
PSMRE7 PSMRE6 PSMRE5 PSMRE4 PSMRE3 PSMRE2 PSMRE1 PSMRE0  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 05h in Port A–C Address Register, accessible through the Port A–C Control Register  
Address  
Bit  
Description  
Port Stop-Mode Recovery Source Enabled.  
[7:0]  
PSMREx 0 = The Port pin is not configured as a Stop-Mode Recovery source. Transitions on this pin  
during Stop Mode do not initiate Stop-Mode Recovery.  
1 = The Port pin is configured as a Stop-Mode Recovery source. Any logic transition on this pin  
during Stop Mode initiates Stop-Mode Recovery.  
Note: x indicates the specific GPIO port pin number (7–0).  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
47  
Port A–C Pull-up Enable Subregisters  
The Port A–C Pull-up Enable Subregister (Table 27) is accessed through the Port A–C  
Control Register by writing 06hto the Port A–C Address Register. Setting the bits in the  
Port A–C Pull-up Enable subregisters enables a weak internal resistive pull-up on the  
specified Port pins.  
Table 27. Port A–C Pull-Up Enable Subregisters (PPUEx)  
Bit  
7
6
5
4
3
2
1
0
PPUE7  
PPUE6  
PPUE5  
PPUE4  
PPUE3  
PPUE2  
PPUE1  
PPUE0  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 06h in Port AC Address Register, accessible through the Port AC Control Register  
Address  
Bit  
Description  
[7:0]  
PPUEx  
Port Pull-up Enabled  
0 = The weak pull-up on the Port pin is disabled.  
1 = The weak pull-up on the Port pin is enabled.  
Note: x indicates the specific GPIO port pin number (7–0).  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
48  
Port A–C Alternate Function Set 1 Subregisters  
The Port A–C Alternate Function Set1 Subregister (Table 28) is accessed through the Port  
A–C Control Register by writing 07hto the Port A–C Address Register. The Alternate  
Function Set 1 subregisters selects the alternate function available at a port pin. Alternate  
Functions selected by setting or clearing bits of this register are defined in “GPIO Alter-  
nate Functions” on page 34.  
Note: Alternate function selection on port pins must also be enabled as described in the Port  
A–C Alternate Function Subregisters section on page 43.  
Table 28. Port A–C Alternate Function Set 1 Subregisters (PAFS1x)  
Bit  
7
6
5
4
3
2
1
0
PAFS17  
PAFS16  
PAFS15  
PAFS14  
PAFS13  
PAFS12  
PAFS11  
PAFS10  
Field  
00h (all ports of 20/28 pin devices); 04h (Port A of 8-pin device)  
R/W R/W R/W R/W R/W R/W  
RESET  
R/W  
R/W  
R/W  
If 07h in Port A–C Address Register, accessible through the Port A–C Control Register  
Address  
Bit  
Description  
Port Alternate Function Set to 1  
[7:0]  
PAFS1x 0 = Port Alternate Function selected as defined in Table 15 (see the GPIO Alternate Functions  
section on page 34).  
1 = Port Alternate Function selected as defined in Table 15 (see the GPIO Alternate Functions  
section on page 34).  
Note: x indicates the specific GPIO port pin number (7–0).  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
49  
Port A–C Alternate Function Set 2 Subregisters  
The Port A–C Alternate Function Set 2 Subregister (Table 29) is accessed through the Port  
A–C Control Register by writing 08hto the Port A–C Address Register. The Alternate  
Function Set 2 subregisters selects the alternate function available at a port pin. Alternate  
Functions selected by setting or clearing bits of this register is defined in Table 15 in the  
section the GPIO Alternate Functions section on page 34.  
Table 29. Port A–C Alternate Function Set 2 Subregisters (PxAFS2)  
Bit  
7
6
5
4
3
2
1
0
PAFS27  
PAFS26  
PAFS25  
PAFS24  
PAFS23  
PAFS22  
PAFS21  
PAFS20  
Field  
00h (all ports of 20/28 pin devices); 04h (Port A of 8-pin device)  
R/W R/W R/W R/W R/W R/W  
RESET  
R/W  
R/W  
R/W  
If 08h in Port A–C Address Register, accessible through the Port A–C Control Register  
Address  
Bit  
Description  
Port Alternate Function Set 2  
[7:0]  
PAFS2x 0 = Port Alternate Function selected as defined in Table 15 on page 33; also see the GPIO  
Alternate Functions section on page 34).  
1 = Port Alternate Function selected as defined in Table 15.  
Note: x indicates the specific GPIO port pin number (7–0).  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
50  
Port A–C Input Data Registers  
Reading from the Port A–C Input Data registers (Table 30) returns the sampled values  
from the corresponding port pins. The Port A–C Input Data registers are read-only. The  
value returned for any unused ports is 0. Unused ports include those missing on the 8- and  
28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.  
Table 30. Port A–C Input Data Registers (PxIN)  
Bit  
7
6
5
4
3
2
1
0
PIN7  
PIN6  
PIN5  
PIN4  
PIN3  
PIN2  
PIN1  
PIN0  
Field  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
RESET  
R/W  
FD2h, FD6h, FDAh  
Address  
Bit  
Description  
[7:0]  
PxIN  
Port Input Data  
Sampled data from the corresponding port pin input.  
0 = Input data is logical 0 (Low).  
1 = Input data is logical 1 (High).  
Note: x indicates the specific GPIO port pin number (7–0).  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
51  
Port A–C Output Data Register  
The Port A–C Output Data Register (Table 31) controls the output data to the pins.  
Table 31. Port A–C Output Data Register (PxOUT)  
Bit  
7
6
5
4
3
2
1
0
POUT7  
POUT6  
POUT5  
POUT4  
POUT3  
POUT2  
POUT1  
POUT0  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FD3h, FD7h, FDBh  
Address  
Bit  
Description  
[7:0]  
PxOUT  
Port Output Data  
These bits contain the data to be driven to the port pins. The values are only driven if the corre-  
sponding pin is configured as an output and the pin is not configured for alternate function  
operation.  
0 = Drive a logical 0 (Low).  
1 = Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting  
the corresponding Port Output Control Register bit to 1.  
Note: x indicates the specific GPIO port pin number (7–0).  
LED Drive Enable Register  
The LED Drive Enable Register, shown in Table 32, activates the controlled current drive.  
The Port C pin must first be enabled for the LED function by setting the Alternate Func-  
tion sub-register AFS1 and Alternate Function register. LEDEN bits [7:0] correspond to  
Port C bits [7:0], respectively.  
Table 32. LED Drive Enable (LEDEN)  
Bit  
7
6
5
4
3
2
1
0
LEDEN[7:0]  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F82h  
Address  
Bit  
Description  
[7:0]  
LED Drive Enable  
LEDEN These bits determine which Port C pins are connected to an internal current sink.  
0 = Tristate the Port C pin.  
1= Connect controlled current sink to the Port C pin.  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
52  
LED Drive Level High Register  
The LED Drive Level registers contain two control bits for each Port C pin (Table 33).  
These two bits select between four programmable drive levels. Each pin is individually  
programmable.  
Table 33. LED Drive Level High Register (LEDLVLH)  
Bit  
7
6
5
4
3
2
1
0
LEDLVLH[7:0]  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F83h  
Address  
Bit  
Description  
[7:0]  
LED Level High Bit  
LEDLVLH {LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C  
pin.  
00 = 3mA.  
01= 7mA.  
10= 13mA.  
11= 20mA.  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
53  
LED Drive Level Low Register  
The LED Drive Level registers contain two control bits for each Port C pin (Table 34).  
These two bits select between four programmable drive levels. Each pin is individually  
programmable.  
Table 34. LED Drive Level Low Register (LEDLVLL)  
Bit  
7
6
5
4
3
2
1
0
LEDLVLL[7:0]  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F84h  
Address  
Bit  
Description  
[7:0]  
LED Level High Bit  
LEDLVLL {LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.  
00 = 3mA.  
01 = 7mA.  
10 = 13mA.  
11 = 20mA.  
PS024317-0914  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
54  
Interrupt Controller  
The interrupt controller on the Z8 Encore! XP F0823 Series products prioritizes the inter-  
rupt requests from the on-chip peripherals and the GPIO port pins. The features of inter-  
rupt controller include:  
20 unique interrupt vectors  
12 GPIO port pin interrupt sources (two are shared)  
8 on-chip peripheral interrupt sources (two are shared)  
Flexible GPIO interrupts  
Eight selectable rising and falling edge GPIO interrupts  
Four dual-edge interrupts  
Three levels of individually programmable interrupt priority  
Watchdog Timer can be configured to generate an interrupt  
Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly  
manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt  
service routine is involved with the exchange of data, status information, or control infor-  
mation between the CPU and the interrupting peripheral. When the service routine is com-  
pleted, the CPU returns to the operation from which it was interrupted.  
The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts,  
the interrupt controller has no effect on operation. For more information about interrupt  
servicing by the eZ8 CPU, refer to the eZ8 CPU Core User Manual (UM0128) available  
for download at www.zilog.com.  
Interrupt Vector Listing  
Table 35 lists all of the interrupts available in order of priority. The interrupt vector is  
stored with the most-significant byte (MSB) at the even Program Memory address and the  
least-significant byte (LSB) at the following odd Program Memory address.  
Note: Some port interrupts are not available on the 8- and 20-pin packages. The ADC interrupt is  
unavailable on devices not containing an ADC.  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
55  
Table 35. Trap and Interrupt Vectors in Order of Priority  
Program  
Memory  
Priority Vector Address Interrupt or Trap Source  
Highest 0002h  
0004h  
003Ah  
003Ch  
0006h  
0008h  
000Ah  
000Ch  
000Eh  
0010h  
0012h  
0014h  
0016h  
0018h  
001Ah  
001Ch  
001Eh  
0020h  
0022h  
0024h  
0026h  
0028h  
002Ah  
002Ch  
002Eh  
0030h  
0032h  
0034h  
0036h  
Reset (not an interrupt)  
Watchdog Timer (see the Watchdog Timer section on page 91)  
Primary Oscillator Fail Trap (not an interrupt)  
Watchdog Timer Oscillator Fail Trap (not an interrupt)  
Illegal Instruction Trap (not an interrupt)  
Reserved  
Timer 1  
Timer 0  
UART 0 receiver  
UART 0 transmitter  
Reserved  
Reserved  
ADC  
Port A Pin 7, selectable rising or falling input edge  
Port A Pin 6, selectable rising or falling input edge or Comparator Output  
Port A Pin 5, selectable rising or falling input edge  
Port A Pin 4, selectable rising or falling input edge  
Port A Pin 3 or Port D Pin 3, selectable rising or falling input edge  
Port A Pin 2 or Port D Pin 2, selectable rising or falling input edge  
Port A Pin 1, selectable rising or falling input edge  
Port A Pin 0, selectable rising or falling input edge  
Reserved  
Reserved  
Reserved  
Reserved  
Port C Pin 3, both input edges  
Port C Pin 2, both input edges  
Port C Pin 1, both input edges  
Port C Pin 0, both input edges  
Lowest  
0038h  
Reserved  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Vector Listing  
Z8 Encore! XP® F0823 Series  
Product Specification  
56  
Architecture  
Figure 8 displays the interrupt controller block diagram.  
High  
Priority  
Port Interrupts  
Vector  
Priority  
Mux  
IRQ Request  
Medium  
Priority  
Internal Interrupts  
Low  
Priority  
Figure 8. Interrupt Controller Block Diagram  
Operation  
This section describes the operational aspects of the following functions.  
Master Interrupt Enable: see page 56  
Interrupt Vectors and Priority: see page 57  
Interrupt Assertion: see page 57  
Software Interrupt Assertion: see page 58  
Watchdog Timer Interrupt Assertion: see page 58  
Master Interrupt Enable  
The master interrupt enable bit (IRQE) in the Interrupt Control Register globally enables  
and disables interrupts.  
Interrupts are globally enabled by any of the following actions:  
Execution of an Enable Interrupt (EI) instruction  
PS024317-0914  
P R E L I M I N A R Y  
Architecture  
Z8 Encore! XP® F0823 Series  
Product Specification  
57  
Execution of an Return from Interrupt (IRET) instruction  
Writing a 1 to the IRQE bit in the Interrupt Control Register  
Interrupts are globally disabled by any of the following actions:  
Execution of a Disable Interrupt (DI) instruction  
eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller  
Writing a 0 to the IRQE bit in the Interrupt Control Register  
Reset  
Execution of a trap instruction  
Illegal instruction trap  
Primary oscillator fail trap  
Watchdog timer oscillator fail trap  
Interrupt Vectors and Priority  
The interrupt controller supports three levels of interrupt priority. Level 3 is the highest  
priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all  
interrupts are enabled with identical interrupt priority (for example, all as Level 2 inter-  
rupts), the interrupt priority is assigned from highest to lowest as specified in Table 35 on  
page 55. Level 3 interrupts are always assigned higher priority than Level 2 interrupts  
which, in turn, always are assigned higher priority than Level 1 interrupts. Within each  
interrupt priority level (Level 1, Level 2 or Level 3), priority is assigned as specified in  
Table 35. Reset, Watchdog Timer interrupt (if enabled), Primary Oscillator Fail Trap,  
Watchdog Timer Oscillator Fail Trap, and Illegal Instruction Trap always have highest  
(Level 3) priority.  
Interrupt Assertion  
Interrupt sources assert their interrupt requests for only a single system clock period (sin-  
gle pulse). When the interrupt request is acknowledged by the eZ8 CPU, the correspond-  
ing bit in the Interrupt Request register is cleared until the next interrupt occurs. Writing a  
0 to the corresponding bit in the Interrupt Request register likewise clears the interrupt  
request.  
Zilog recommends not using a coding style that clears bits in the Interrupt Request reg-  
isters. All incoming interrupts received between execution of the first LDX command  
and the final LDX command are lost. See Example 1, which follows.  
Caution:  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
58  
Example 1. A poor coding style that can result in lost interrupt requests:  
LDX r0, IRQ0  
AND r0, MASK  
LDX IRQ0, r0  
To avoid missing interrupts, use the coding style in Example 2 to clear bits in the Interrupt  
Request 0 Register:  
Example 2. A good coding style that avoids lost interrupt requests:  
ANDX IRQ0, MASK  
Software Interrupt Assertion  
Program code generates interrupts directly. Writing a 1 to the correct bit in the Interrupt  
Request register triggers an interrupt (assuming that interrupt is enabled). When the inter-  
rupt request is acknowledged by the eZ8 CPU, the bit in the Interrupt Request register is  
automatically cleared to 0.  
Zilog recommends not using a coding style to generate software interrupts by setting bits  
in the Interrupt Request registers. All incoming interrupts received between execution of  
the first LDX command and the final LDX command are lost. See Example 3, which fol-  
lows.  
Caution:  
Example 3. A poor coding style that can result in lost interrupt requests:  
LDX r0, IRQ0  
OR r0, MASK  
LDX IRQ0, r0  
To avoid missing interrupts, use the coding style in Example 4 to set bits in the Interrupt  
Request registers:  
Example 4. A good coding style that avoids lost interrupt requests:  
ORX IRQ0, MASK  
Watchdog Timer Interrupt Assertion  
The Watchdog Timer interrupt behavior is different from interrupts generated by other  
sources. The Watchdog Timer continues to assert an interrupt as long as the timeout condi-  
tion continues. As it operates on a different (and usually slower) clock domain than the  
rest of the device, the Watchdog Timer continues to assert this interrupt for many system  
clocks until the counter rolls over.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
59  
To avoid retriggerings of the Watchdog Timer interrupt after exiting the associated inter-  
rupt service routine, Zilog recommends that the service routine continues to read from  
the RSTSTAT register until the WDT bit is cleared as shown in the following example.  
Caution:  
CLEARWDT:  
LDX r0, RSTSTAT ; read reset status register to clear wdt bit  
BTJNZ 5, r0, CLEARWDT  
; loop until bit is cleared  
Interrupt Control Register Definitions  
For all interrupts other than the Watchdog Timer interrupt, the Primary Oscillator Fail  
Trap, and the Watchdog Timer Oscillator Fail Trap, the interrupt control registers enable  
individual interrupts, set interrupt priorities, and indicate interrupt requests.  
Interrupt Request 0 Register  
The Interrupt Request 0 (IRQ0) register (Table 36) stores the interrupt requests for both  
vectored and polled interrupts. When a request is presented to the interrupt controller, the  
corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vec-  
tored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If  
interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt  
Request 0 register to determine if any interrupt requests are pending.  
Table 36. Interrupt Request 0 Register (IRQ0)  
Bit  
7
6
5
4
3
2
1
0
Reserved  
T1I  
T0I  
U0RXI  
U0TXI  
Reserved  
ADCI  
Field  
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC0h  
Address  
Bit  
Description  
Reserved  
[7]  
This bit is reserved and must be programmed to 0.  
[6]  
T1I  
Timer 1 Interrupt Request  
0 = No interrupt request is pending for Timer 1.  
1 = An interrupt request from Timer 1 is awaiting service.  
[5]  
T0I  
Timer 0 Interrupt Request  
0 = No interrupt request is pending for Timer 0.  
1 = An interrupt request from Timer 0 is awaiting service.  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
60  
Bit  
Description (Continued)  
[4]  
U0RXI  
UART 0 Receiver Interrupt Request  
0 = No interrupt request is pending for the UART 0 receiver.  
1 = An interrupt request from the UART 0 receiver is awaiting service.  
[3]  
U0TXI  
UART 0 Transmitter Interrupt Request  
0 = No interrupt request is pending for the UART 0 transmitter.  
1 = An interrupt request from the UART 0 transmitter is awaiting service.  
[2:1]  
Reserved  
These bits are reserved and must be programmed to 00.  
[0]  
ADCI  
ADC Interrupt Request  
0 = No interrupt request is pending for the ADC.  
1 = An interrupt request from the ADC is awaiting service.  
Interrupt Request 1 Register  
The Interrupt Request 1 (IRQ1) register (Table 37) stores interrupt requests for both vec-  
tored and polled interrupts. When a request is presented to the interrupt controller, the cor-  
responding bit in the IRQ1 Register becomes 1. If interrupts are globally enabled  
(vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If  
interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt  
Request 1 Register to determine if any interrupt requests are pending.  
Table 37. Interrupt Request 1 Register (IRQ1)  
Bit  
7
6
5
4
3
2
1
0
PA7VI  
PA6CI  
PA5I  
PA4I  
PA3I  
PA2I  
PA1I  
PA0I  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC3h  
Address  
Bit  
Description  
[7]  
PA7VI  
Port A7 Interrupt Request  
0 = No interrupt request is pending for GPIO Port A.  
1 = An interrupt request from GPIO Port A.  
[6]  
PA6CI  
Port A6 or Comparator Interrupt Request  
0 = No interrupt request is pending for GPIO Port A or Comparator.  
1 = An interrupt request from GPIO Port A or Comparator.  
[5:0]  
PAxI  
Port A Pin x Interrupt Request  
0 = No interrupt request is pending for GPIO Port A pin x.  
1 = An interrupt request from GPIO Port A pin x is awaiting service.  
Note: x indicates the specific GPIO Port pin number (0–5).  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
61  
Interrupt Request 2 Register  
The Interrupt Request 2 (IRQ2) register (Table 38) stores interrupt requests for both vec-  
tored and polled interrupts. When a request is presented to the interrupt controller, the cor-  
responding bit in the IRQ2 Register becomes 1. If interrupts are globally enabled  
(vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If  
interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt  
Request 2 Register to determine if any interrupt requests are pending.  
Table 38. Interrupt Request 2 Register (IRQ2)  
Bit  
7
6
5
4
3
2
1
0
Reserved  
PC3I  
PC2I  
PC1I  
PC0I  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC6h  
Address  
Bit  
Description  
Reserved  
[7:4]  
These bits are reserved and must be programmed to 0000.  
[3:0]  
PCxI  
Port C Pin x Interrupt Request  
0 = No interrupt request is pending for GPIO Port C pin x.  
1 = An interrupt request from GPIO Port C pin x is awaiting service.  
Note: x indicates the specific GPIO Port C pin number (3–0).  
IRQ0 Enable High and Low Bit Registers  
Table 39 describes the priority control for IRQ0. The IRQ0 Enable High and Low Bit reg-  
isters (Table 40 and Table 41) form a priority-encoded enabling for interrupts in the Inter-  
rupt Request 0 Register. Priority is generated by setting bits in each register.  
Table 39. IRQ0 Enable and Priority Encoding  
IRQ0ENH[x] IRQ0ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Disabled  
Level 1  
Level 2  
Level 3  
Nominal  
High  
Note: where x indicates the register bits from 0–7.  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
62  
Table 40. IRQ0 Enable High Bit Register (IRQ0ENH)  
Bit  
7
6
5
4
3
2
1
0
Reserved T1ENH  
T0ENH  
U0RENH U0TENH  
Reserved  
ADCENH  
Field  
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC1h  
Address  
Bit  
Description  
Reserved  
[7]  
This bit is reserved and must be programmed to 0.  
[6]  
Timer 1 Interrupt Request Enable High Bit  
T1ENH  
[5]  
Timer 0 Interrupt Request Enable High Bit  
T0ENH  
[4]  
U0RENH  
UART 0 Receive Interrupt Request Enable High Bit  
UART 0 Transmit Interrupt Request Enable High Bit  
[3]  
U0TENH  
[2:1]  
Reserved  
These bits are reserved and must be programmed to 00.  
[0]  
ADC Interrupt Request Enable High Bit  
ADCENH  
Table 41. IRQ0 Enable Low Bit Register (IRQ0ENL)  
Bit  
7
6
5
4
3
2
1
0
Reserved  
T1ENL  
T0ENL  
U0RENL U0TENL  
Reserved  
ADCENL  
Field  
0
0
0
0
0
0
0
RESET  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R
R/W  
FC2h  
Address  
Bit  
Description  
Reserved  
[7]  
This bit is reserved and must be programmed to 0 when read.  
[6]  
Timer 1 Interrupt Request Enable Low Bit  
T1ENL  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
63  
Bit  
Description (Continued)  
[5]  
Timer 0 Interrupt Request Enable Low Bit  
T0ENL  
[4]  
U0RENL  
UART 0 Receive Interrupt Request Enable Low Bit  
UART 0 Transmit Interrupt Request Enable Low Bit  
[3]  
U0TENL  
[2:1]  
Reserved  
These bits are reserved and must be programmed to 00.  
[0]  
ADC Interrupt Request Enable Low Bit  
ADCENL  
IRQ1 Enable High and Low Bit Registers  
Table 42 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit reg-  
isters (Table 43 and Table 44) form a priority-encoded enabling for interrupts in the Inter-  
rupt Request 1 Register. Priority is generated by setting bits in each register.  
Table 42. IRQ1 Enable and Priority Encoding  
IRQ1ENH[x]  
IRQ1ENL[x]  
Priority  
Disabled  
Level 1  
Level 2  
Level 3  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Nominal  
High  
Note: x indicates register bits 0–7.  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
64  
Table 43. IRQ1 Enable High Bit Register (IRQ1ENH)  
Bit  
7
6
5
4
3
2
1
0
PA7VENH PA6CENH PA5ENH PA4ENH PA3ENH PA2ENH PA1ENH PA0ENH  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC4h  
Address  
Bit  
Description  
[7]  
Port A Bit[7] Interrupt Request Enable High Bit  
PA7VENH  
[6]  
Port A Bit[7] or Comparator Interrupt Request Enable High Bit  
PA6CENH  
[5:0]  
PAxENH  
Port A Bit[x] Interrupt Request Enable High Bit  
For selection of Port A as the interrupt source, see the Shared Interrupt Select Register sec-  
tion on page 67.  
Note: x indicates the specific GPIO Port A pin number (5–0).  
Table 44. IRQ1 Enable Low Bit Register (IRQ1ENL)  
Bit  
7
6
5
4
3
2
1
0
PA7VENL PA6CENL PA5ENL PA4ENL PA3ENL PA2ENL PA1ENL PA0ENL  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC5h  
Address  
Bit  
Description  
[7]  
Port A Bit[7] Interrupt Request Enable Low Bit  
PA7VENL  
[6]  
Port A Bit[7] or Comparator Interrupt Request Enable Low Bit  
PA6CENL  
[5:0]  
Port A Bit[x] Interrupt Request Enable Low Bit  
PAxENL  
Note: x indicates the specific GPIO Port A pin number (5–0).  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
65  
IRQ2 Enable High and Low Bit Registers  
Table 45 describes the priority control for IRQ2. The IRQ2 Enable High and Low Bit reg-  
isters (Table 46 and Table 47) form a priority encoded enabling for interrupts in the Inter-  
rupt Request 2 register. Priority is generated by setting bits in each register.  
Table 45. IRQ2 Enable and Priority Encoding  
IRQ2ENH[x] IRQ2ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Disabled  
Level 1  
Level 2  
Level 3  
Nominal  
High  
Note: where x indicates the register bits from 0–7.  
Table 46. IRQ2 Enable High Bit Register (IRQ2ENH)  
Bit  
7
6
5
4
3
2
1
0
Reserved  
C3ENH  
C2ENH  
C1ENH  
C0ENH  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC7h  
Address  
Bit  
Description  
Reserved  
[7:4]  
These bits are reserved and must be programmed to 0000.  
[3]  
Port C3 Interrupt Request Enable High Bit  
C3ENH  
[2]  
C2ENH  
Port C2 Interrupt Request Enable High Bit  
Port C1 Interrupt Request Enable High Bit  
Port C0 Interrupt Request Enable High Bit  
[1]  
C1ENH  
[0]  
C0ENH  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
66  
Table 47. IRQ2 Enable Low Bit Register (IRQ2ENL)  
Bit  
7
6
5
4
3
2
1
0
Reserved  
C3ENL  
C2ENL  
C1ENL  
C0ENL  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC8h  
Address  
Bit  
Description  
Reserved  
[7:4]  
These bits are reserved and must be programmed to 0000.  
[3]  
Port C3 Interrupt Request Enable Low Bit  
C3ENL  
[2]  
C2ENL  
Port C2 Interrupt Request Enable Low Bit  
Port C1 Interrupt Request Enable Low Bit  
Port C0 Interrupt Request Enable High Low  
[1]  
C1ENL  
[0]  
C0ENL  
Interrupt Edge Select Register  
The Interrupt Edge Select (IRQES) Register (Table 48) determines whether an interrupt is  
generated for the rising edge or falling edge on the selected GPIO Port A or Port D input  
pin.  
Table 48. Interrupt Edge Select Register (IRQES)  
Bit  
7
6
5
4
3
2
1
0
IES7  
IES6  
IES5  
IES4  
IES3  
IES2  
IES1  
IES0  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FCDh  
Address  
Bit  
Description  
[7]  
IESx  
Interrupt Edge Select x  
0 = An interrupt request is generated on the falling edge of the PAx input or PDx.  
1 = An interrupt request is generated on the rising edge of the PAx input PDx.  
Note: x indicates the specific GPIO port pin number (7–0).  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
67  
Shared Interrupt Select Register  
The Shared Interrupt Select (IRQSS) register (Table 49) determines the source of the  
PADxS interrupts. The Shared Interrupt Select register selects between Port A and   
alternate sources for the individual interrupts.  
Because these shared interrupts are edge-triggered, it is possible to generate an interrupt  
just by switching from one shared source to another. For this reason, an interrupt must be  
disabled before switching between sources.  
Table 49. Shared Interrupt Select Register (IRQSS)  
Bit  
7
6
5
4
3
2
1
0
Reserved  
PA6CS  
Reserved  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FCEh  
Address  
Bit  
Description  
Reserved  
[7]  
This bit is reserved and must be programmed to 0.  
[6]  
PA6CS  
PA6/Comparator Selection  
0 = PA6 is used for the interrupt for PA6CS interrupt request.  
1 = The comparator is used as an interrupt for PA6CS interrupt requests.  
[5:0]  
Reserved  
These bits are reserved and must be programmed to 000000.  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
68  
Interrupt Control Register  
The Interrupt Control (IRQCTL) Register (Table 50) contains the master enable bit for all  
interrupts.  
Table 50. Interrupt Control Register (IRQCTL)  
Bit  
7
6
5
4
3
2
1
0
IRQE  
Reserved  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R
R
R
R
R
R
R
FCFh  
Address  
Bit  
Description  
[7]  
IRQE  
Interrupt Request Enable  
This bit is set to 1 by executing an Enable Interrupts (EI) or Interrupt Return (IRET) instruction,  
or by a direct register write of a 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8  
CPU acknowledgement of an interrupt request, reset or by a direct register write of a 0 to this  
bit.  
0 = Interrupts are disabled.  
1 = Interrupts are enabled.  
[6:0]  
Reserved  
These bits are reserved and must be programmed to 0000000 when read.  
PS024317-0914  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
69  
Timers  
Z8 Encore! XP F0823 Series products contain up to two 16-bit reloadable timers that are  
used for timing, event counting or generation of PWM signals. The timers’ features  
include:  
16-bit reload counter  
Programmable prescaler with prescale values from 1 to 128  
PWM output generation  
Capture and compare capability  
External input pin for timer input, clock gating, or capture signal; external input pin sig-  
nal frequency is limited to a maximum of one-fourth the system clock frequency  
Timer output pin  
Timer interrupt  
In addition to the timers described in this chapter, the baud rate generator of the UART (if  
unused) also provides basic timing functionality. For information about using the baud  
rate generator as an additional timer, see the Universal Asynchronous Receiver/Transmit-  
ter chapter on page 97.  
PS024317-0914  
P R E L I M I N A R Y  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
70  
Architecture  
Figure 9 displays the architecture of the timers.  
Timer Block  
Timer  
Control  
Data  
Bus  
Block  
Control  
Timer  
Interrupt  
16-Bit  
Reload Register  
Interrupt,  
PWM,  
and  
Timer Output  
Control  
Timer  
Output  
System  
Clock  
Timer  
Output  
16-Bit Counter  
with Prescaler  
Timer  
Input  
Complement  
Gate  
Input  
16-Bit  
PWM/Compare  
Capture  
Input  
Figure 9. Timer Block Diagram  
Operation  
The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value  
0001hinto the Timer Reload High and Low Byte registers and setting the prescale value  
to 1. Maximum time-out delay is set by loading the value 0000hinto the Timer Reload  
High and Low Byte registers and setting the prescale value to 128. If the Timer reaches  
FFFFh, the timer rolls over to 0000hand continues counting.  
Timer Operating Modes  
The timers can be configured to operate in the following modes:  
One-Shot Mode  
In One-Shot Mode, the timer counts up to the 16-bit reload value stored in the Timer  
Reload High and Low Byte registers. The timer input is the system clock. Upon reaching  
the reload value, the timer generates an interrupt and the count value in the Timer High  
and Low Byte registers is reset to 0001h. The timer is automatically disabled and stops  
counting.  
PS024317-0914  
P R E L I M I N A R Y  
Architecture  
Z8 Encore! XP® F0823 Series  
Product Specification  
71  
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state  
for one system clock cycle (from Low to High or from High to Low) upon timer reload. If  
it is appropriate to have the Timer Output make a state change at a One-Shot time-out  
(rather than a single cycle pulse), first set the TPOL bit in the Timer Control Register to  
the start value before enabling One-Shot Mode. After starting the timer, set TPOL to the  
opposite bit value.  
Observe the following steps to configure a timer for One-Shot Mode and initiating the  
count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for One-Shot Mode  
Set the prescale value  
Set the initial output level (High or Low) if using the Timer Output alternate func-  
tion  
2. Write to the Timer High and Low Byte registers to set the starting count value.  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control Register to enable the timer and initiate counting.  
In One-Shot Mode, the system clock always provides the timer input. The timer period is  
computed via the following equation:  
Reload Value Start ValuePrescale  
ONE-SHOT Mode Time-Out Period (s) = ----------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
Continuous Mode  
In Continuous Mode, the timer counts up to the 16-bit reload value stored in the Timer  
Reload High and Low Byte registers. The timer input is the system clock. Upon reaching  
the reload value, the timer generates an interrupt, the count value in the Timer High and  
Low Byte registers is reset to 0001hand counting resumes. Also, if the Timer Output  
alternate function is enabled, the Timer Output pin changes state (from Low to High or  
from High to Low) at timer reload.  
Observe the following steps to configure a timer for Continuous Mode and to initiate the  
count:  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
72  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Continuous Mode  
Set the prescale value  
If using the Timer Output alternate function, set the initial output level (High or  
Low)  
2. Write to the Timer High and Low Byte registers to set the starting count value (usually  
0001h). This action only affects the first pass in Continuous Mode. After the first  
timer reload in Continuous Mode, counting always begins at the reset value of 0001h.  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. Enable the timer interrupt (if appropriate) and set the timer interrupt priority by writ-  
ing to the relevant interrupt registers.  
5. Configure the associated GPIO port pin (if using the Timer Output function) for the  
Timer Output alternate function.  
6. Write to the Timer Control Register to enable the timer and initiate counting.  
In Continuous Mode, the system clock always provides the timer input. The timer period  
is computed via the following equation:  
Reload Value Prescale  
CONTINUOUS Mode Time-Out Period (s) = -----------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001his loaded into the Timer High and Low Byte  
registers, use the One-Shot Mode equation to determine the first time-out period.  
Counter Mode  
In Counter Mode, the timer counts input transitions from a GPIO port pin. The timer input  
is taken from the GPIO port pin Timer Input alternate function. The TPOL bit in the Timer  
Control Register selects whether the count occurs on the rising edge or the falling edge of  
the timer input signal. In Counter Mode, the prescaler is disabled.  
The input frequency of the timer input signal must not exceed one-fourth the system  
clock frequency.  
Caution:  
Upon reaching the reload value stored in the Timer Reload High and Low Byte registers,  
the timer generates an interrupt, the count value in the Timer High and Low Byte registers  
is reset to 0001hand counting resumes. Also, if the Timer Output alternate function is  
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at  
timer reload.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
73  
Observe the following steps to configure a timer for Counter Mode and initiating the  
count:  
1. Write to the Timer Control Register to:  
Disable the timer.  
Configure the timer for Counter Mode.  
Select either the rising edge or falling edge of the Timer Input signal for the count.  
This selection also sets the initial logic level (High or Low) for the Timer Output  
alternate function. However, the Timer Output function is not required to be  
enabled.  
2. Write to the Timer High and Low Byte registers to set the starting count value. This  
only affects the first pass in Counter Mode. After the first timer reload in Counter  
Mode, counting always begins at the reset value of 0001h. In Counter Mode the  
Timer High and Low Byte registers must be written with the value 0001h.  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
7. Write to the Timer Control Register to enable the timer.  
In Counter Mode, the number of timer input transitions since the timer start is computed  
via the following equation:  
COUNTER Mode Timer Input Transitions = Current Count Value Start Value  
Comparator Counter Mode  
In Comparator Counter Mode, the timer counts input transitions from the analog compara-  
tor output. The TPOL bit in the Timer Control Register selects whether the count occurs  
on the rising edge or the falling edge of the comparator output signal. In Comparator  
Counter Mode, the prescaler is disabled.  
The frequency of the comparator output signal must not exceed one-fourth the system  
clock frequency.  
Caution:  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
74  
After reaching the reload value stored in the Timer Reload High and Low Byte registers,  
the timer generates an interrupt, the count value in the Timer High and Low Byte registers  
is reset to 0001hand counting resumes. Also, if the Timer Output alternate function is  
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at  
timer reload.  
Observe the following steps to configure a timer for Comparator Counter Mode and initi-  
ating the count:  
1. Write to the Timer Control Register to:  
Disable the timer.  
Configure the timer for Comparator Counter Mode.  
Select either the rising edge or falling edge of the comparator output signal for the  
count. This also sets the initial logic level (High or Low) for the Timer Output  
alternate function. However, the Timer Output function is not required to be  
enabled.  
2. Write to the Timer High and Low Byte registers to set the starting count value. This  
action only affects the first pass in Comparator Counter Mode. After the first timer  
reload in Comparator Counter Mode, counting always begins at the reset value of  
0001h. Generally, in Comparator Counter Mode the Timer High and Low Byte regis-  
ters must be written with the value 0001h.  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control Register to enable the timer.  
In Comparator Counter Mode, the number of comparator output transitions since the timer  
start is computed via the following equation:  
Comparator Output Transitions = Current Count Value Start Value  
PWM Single Output Mode  
In PWM Single Output Mode, the timer outputs a PWM output signal through a GPIO  
port pin. The timer input is the system clock. The timer first counts up to the 16-bit PWM  
match value stored in the Timer PWM High and Low Byte registers. When the timer count  
value matches the PWM value, the Timer Output toggles. The timer continues counting  
until it reaches the reload value stored in the Timer Reload High and Low Byte registers.  
Upon reaching the reload value, the timer generates an interrupt, the count value in the  
Timer High and Low Byte registers is reset to 0001hand counting resumes.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
75  
If the TPOL bit in the Timer Control Register is set to 1, the Timer Output signal begins as  
a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The  
Timer Output signal returns to a High (1) after the timer reaches the reload value and is  
reset to 0001h.  
If the TPOL bit in the Timer Control Register is set to 0, the Timer Output signal begins as  
a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The  
Timer Output signal returns to a Low (0) after the timer reaches the reload value and is  
reset to 0001h.  
Observe the following steps to configure a timer for PWM Single Output Mode and initi-  
ating the PWM operation:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for PWM Mode  
Set the prescale value  
Set the initial logic level (High or Low) and PWM High/Low transition for the  
Timer Output alternate function  
2. Write to the Timer High and Low Byte registers to set the starting count value (typi-  
cally 0001h); this write only affects the first pass in PWM Mode. After the first timer  
reset in PWM Mode, counting always begins at the reset value of 0001h.  
3. Write to the PWM High and Low Byte registers to set the PWM value.  
4. Write to the Timer Reload High and Low Byte registers to set the reload value (PWM  
period). The reload value must be greater than the PWM value.  
5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
6. Configure the associated GPIO port pin for the Timer Output alternate function.  
7. Write to the Timer Control Register to enable the timer and initiate counting.  
The PWM period is represented by the following equation:  
Reload Value Prescale  
PWM Period (s) = -----------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001his loaded into the Timer High and Low Byte  
registers, use the One-Shot Mode equation to determine the first PWM time-out period. If  
TPOL is set to 0, the ratio of the PWM output High time to the total period is represented  
by the following equation:  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
76  
Reload Value PWM Value  
PWM Output High Time Ratio (%) =  
100  
-------------------------------------------------------------------  
Reload Value  
If TPOL is set to 1, the ratio of the PWM output High time to the total period is repre-  
sented by the following equation:  
PWM Value  
Reload Value  
PWM Output High Time Ratio (%) =  
100  
-----------------------------------  
PWM Dual Output Mode  
In PWM Dual Output Mode, the timer outputs a PWM output signal pair (basic PWM sig-  
nal and its complement) through two GPIO port pins. The timer input is the system clock.  
The timer first counts up to the 16-bit PWM match value stored in the Timer PWM High  
and Low Byte registers. When the timer count value matches the PWM value, the Timer  
Output toggles. The timer continues counting until it reaches the reload value stored in the  
Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer  
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to  
0001hand counting resumes.  
If the TPOL bit in the Timer Control Register is set to 1, the Timer Output signal begins as  
a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The  
Timer Output signal returns to a High (1) after the timer reaches the reload value and is  
reset to 0001h.  
If the TPOL bit in the Timer Control Register is set to 0, the Timer Output signal begins as  
a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The  
Timer Output signal returns to a Low (0) after the timer reaches the reload value and is  
reset to 0001h.  
The timer also generates a second PWM output signal Timer Output Complement. The  
Timer Output Complement is the complement of the Timer Output PWM signal. A pro-  
grammable deadband delay can be configured to time delay (0 to 128 system clock cycles)  
PWM output transitions on these two pins from a low to a high (inactive to active). This  
ensures a time gap between the deassertion of one PWM output to the assertion of its com-  
plement.  
Observe the following steps to configure a timer for PWM DUAL OUTPUT Mode and  
initiating the PWM operation:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for PWM DUAL OUTPUT Mode. Setting the mode also  
involves writing to the TMODEHI bit in the TxCTL1 Register  
Set the prescale value  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
77  
Set the initial logic level (High or Low) and PWM High/Low transition for the  
Timer Output alternate function  
2. Write to the Timer High and Low Byte registers to set the starting count value (typi-  
cally 0001h); this write only affects the first pass in PWM Mode. After the first timer  
reset in PWM Mode, counting always begins at the reset value of 0001h.  
3. Write to the PWM High and Low Byte registers to set the PWM value.  
4. Write to the PWM Control Register to set the PWM dead band delay value. The dead-  
band delay must be less than the duration of the positive phase of the PWM signal (as  
defined by the PWM high and low byte registers). It must also be less than the dura-  
tion of the negative phase of the PWM signal (as defined by the difference between  
the PWM registers and the Timer Reload registers).  
5. Write to the Timer Reload High and Low Byte registers to set the reload value (PWM  
period). The reload value must be greater than the PWM value.  
6. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
7. Configure the associated GPIO port pin for the Timer Output and Timer Output Com-  
plement alternate functions. The Timer Output Complement function is shared with  
the Timer Input function for both timers. Setting the timer mode to Dual PWM auto-  
matically switches the function from Timer In to Timer Out Complement.  
8. Write to the Timer Control Register to enable the timer and initiate counting.  
The PWM period is represented by the following equation:  
Reload Value Prescale  
PWM Period (s) = -----------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001his loaded into the Timer High and Low Byte  
registers, the One-Shot Mode equation determines the first PWM time-out period.  
If TPOL is set to 0, the ratio of the PWM output High time to the total period is repre-  
sented by:  
Reload Value PWM Value  
PWM Output High Time Ratio (%) =  
100  
------------------------------------------------------------------  
Reload Value  
If TPOL is set to 1, the ratio of the PWM output High time to the total period is repre-  
sented by:  
PWM Value  
Reload Value  
PWM Output High Time Ratio (%) =  
100  
-----------------------------------  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
78  
Capture Mode  
In Capture Mode, the current timer count value is recorded when the appropriate external  
Timer Input transition occurs. The capture count value is written to the Timer PWM High  
and Low Byte registers. The timer input is the system clock. The TPOL bit in the Timer  
Control Register determines if the capture occurs on a rising edge or a falling edge of the  
Timer Input signal. When the capture event occurs, an interrupt is generated and the timer  
continues counting. The INPCAP bit in TxCTL1 Register is set to indicate the timer inter-  
rupt is because of an input capture event.  
The timer continues counting up to the 16-bit reload value stored in the Timer Reload  
High and Low Byte registers. Upon reaching the reload value, the timer generates an inter-  
rupt and continues counting. The INPCAP bit in TxCTL1 Register clears indicating the  
timer interrupt is not because of an input capture event.  
Observe the following steps to configure a timer for Capture Mode and initiating the  
count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Capture Mode  
Set the prescale value  
Set the capture edge (rising or falling) for the Timer Input  
2. Write to the Timer High and Low Byte registers to set the starting count value (typi-  
cally 0001h).  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. Clear the Timer PWM High and Low Byte registers to 0000h. Clearing these registers  
allows the software to determine if interrupts were generated by either a capture or a  
reload event. If the PWM High and Low Byte registers still contain 0000hafter the  
interrupt, the interrupt was generated by a reload.  
5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input capture and reload events. If appropriate, configure the timer interrupt to be gen-  
erated only at the input capture event or the reload event by setting TICONFIG field  
of the TxCTL1 Register.  
6. Configure the associated GPIO port pin for the Timer Input alternate function.  
7. Write to the Timer Control Register to enable the timer and initiate counting.  
In Capture Mode, the elapsed time from timer start to capture event can be calculated  
using the following equation:  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
79  
Capture Value Start ValuePrescale  
Capture Elapsed Time (s) = -------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
Capture Restart Mode  
In Capture Restart Mode, the current timer count value is recorded when the acceptable  
external Timer Input transition occurs. The capture count value is written to the Timer  
PWM High and Low Byte registers. The timer input is the system clock. The TPOL bit in  
the Timer Control Register determines if the capture occurs on a rising edge or a falling  
edge of the Timer Input signal. When the capture event occurs, an interrupt is generated  
and the count value in the Timer High and Low Byte registers is reset to 0001hand count-  
ing resumes. The INPCAP bit in TxCTL1 Register is set to indicate the timer interrupt is  
because of an input capture event.  
If no capture event occurs, the timer counts up to the 16-bit compare value stored in the  
Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer  
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to  
0001hand counting resumes. The INPCAP bit in TxCTL1 Register is cleared to indicate  
the timer interrupt is not caused by an input capture event.  
Observe the following steps to configure a timer for Capture Restart Mode and initiating  
the count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Capture Restart Mode; setting the mode also involves  
writing to TMODEHI bit in TxCTL1 Register  
Set the prescale value  
Set the capture edge (rising or falling) for the Timer Input  
2. Write to the Timer High and Low Byte registers to set the starting count value (typi-  
cally 0001h).  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. Clear the Timer PWM High and Low Byte registers to 0000h. Clearing these registers  
allows the software to determine if interrupts were generated by either a capture or a  
reload event. If the PWM High and Low Byte registers still contain 0000hafter the  
interrupt, the interrupt was generated by a reload.  
5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input capture and reload events. If appropriate, configure the timer interrupt to be gen-  
erated only at the input capture event or the reload event by setting TICONFIG field  
of the TxCTL1 Register.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
80  
6. Configure the associated GPIO port pin for the Timer Input alternate function.  
7. Write to the Timer Control Register to enable the timer and initiate counting.  
In Capture Mode, the elapsed time from timer start to capture event can be calculated  
using the following equation:  
Capture Value Start ValuePrescale  
Capture Elapsed Time (s) = -------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
Compare Mode  
In Compare Mode, the timer counts up to the 16-bit maximum compare value stored in the  
Timer Reload High and Low Byte registers. The timer input is the system clock. Upon  
reaching the compare value, the timer generates an interrupt and counting continues (the  
timer value is not reset to 0001h). Also, if the Timer Output alternate function is enabled,  
the Timer Output pin changes state (from Low to High or from High to Low) upon com-  
pare.  
If the Timer reaches FFFFh, the timer rolls over to 0000hand continue counting. Observe  
the following steps to configure a timer for Compare Mode and to initiate the count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for COMPARE Mode  
Set the prescale value  
Set the initial logic level (High or Low) for the Timer Output alternate function, if  
appropriate  
2. Write to the Timer High and Low Byte registers to set the starting count value.  
3. Write to the Timer Reload High and Low Byte registers to set the compare value.  
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control Register to enable the timer and initiate counting.  
In Compare Mode, the system clock always provides the timer input. The compare time  
can be calculated by the following equation:  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
81  
Compare Value Start ValuePrescale  
COMPARE Mode Time (s) = ----------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
Gated Mode  
In Gated Mode, the timer counts only when the Timer Input signal is in its active state  
(asserted), as determined by the TPOL bit in the Timer Control Register. When the Timer  
Input signal is asserted, counting begins. A timer interrupt is generated when the Timer  
Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal  
deassertion generated the interrupt, read the associated GPIO input value and compare to  
the value stored in the TPOL bit.  
The timer counts up to the 16-bit reload value stored in the Timer Reload High and Low  
Byte registers. The timer input is the system clock. When reaching the reload value, the  
timer generates an interrupt, the count value in the Timer High and Low Byte registers is  
reset to 0001hand counting resumes (assuming the Timer Input signal remains asserted).  
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state  
(from Low to High or from High to Low) at timer reset.  
Observe the following steps to configure a timer for Gated Mode and to initiate the count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Gated Mode  
Set the prescale value  
2. Write to the Timer High and Low Byte registers to set the starting count value. Writing  
these registers only affects the first pass in Gated Mode. After the first timer reset in  
Gated Mode, counting always begins at the reset value of 0001h.  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input deassertion and reload events. If appropriate, configure the timer interrupt to be  
generated only at the input deassertion event or the reload event by setting TICONFIG  
field of the TxCTL1 Register.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. Write to the Timer Control Register to enable the timer.  
7. Assert the Timer Input signal to initiate the counting.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
82  
Capture/Compare Mode  
In Capture/Compare Mode, the timer begins counting on the first external Timer Input  
transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in  
the Timer Control Register. The timer input is the system clock.  
Every subsequent acceptable transition (after the first) of the Timer Input signal captures  
the current count value. The capture value is written to the Timer PWM High and Low  
Byte registers. When the capture event occurs, an interrupt is generated, the count value in  
the Timer High and Low Byte registers is reset to 0001h, and counting resumes. The  
INPCAP bit in TxCTL1 Register is set to indicate the timer interrupt is caused by an input  
capture event.  
If no capture event occurs, the timer counts up to the 16-bit compare value stored in the  
Timer Reload High and Low Byte registers. Upon reaching the compare value, the timer  
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to  
0001hand counting resumes. The INPCAP bit in TxCTL1 Register is cleared to indicate  
the timer interrupt is not because of an input capture event.  
Observe the following steps to configure a timer for Capture/Compare Mode and initiating  
the count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Capture/Compare Mode  
Set the prescale value  
Set the capture edge (rising or falling) for the Timer Input  
2. Write to the Timer High and Low Byte registers to set the starting count value (typi-  
cally 0001h).  
3. Write to the Timer Reload High and Low Byte registers to set the compare value.  
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers.By default, the timer interrupt are generated for both  
input capture and reload events. If appropriate, configure the timer interrupt to be gen-  
erated only at the input capture event or the reload event by setting TICONFIG field  
of the TxCTL1 Register.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. Write to the Timer Control Register to enable the timer.  
7. Counting begins on the first appropriate transition of the Timer Input signal. No inter-  
rupt is generated by this first edge.  
In Capture/Compare Mode, the elapsed time from timer start to capture event can be cal-  
culated using the following equation:  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
83  
Capture Value Start ValuePrescale  
-----------------------------------------------------------------------------------------------------------------------  
Capture Elapsed Time (s) =  
System Clock Frequency (Hz)  
Reading the Timer Count Values  
The current count value in the timers can be read while counting (enabled). This capability  
has no effect on timer operation. When the timer is enabled and the Timer High Byte Reg-  
ister is read, the contents of the Timer Low Byte register are placed in a holding register. A  
subsequent read from the Timer Low Byte register returns the value in the holding register.  
This operation allows accurate reads of the full 16-bit timer count value while enabled.  
When the timers are not enabled, a read from the Timer Low Byte register returns the  
actual value in the counter.  
Timer Pin Signal Operation  
Timer Output is a GPIO port pin alternate function. The Timer Output is toggled every  
time the counter is reloaded.  
The timer input can be used as a selectable counting source. It shares the same pin as the  
complementary timer output (TxOUT). When selected by the GPIO Alternate Function  
registers, this pin functions as a timer input in all modes except for Dual PWM Output  
Mode. For this mode, there is no timer input available. For the 8-pin device, the T0OUT  
function is available for the various timer out functions. The T1OUT function is only  
available in Dual PWM Output Mode.  
Timer Control Register Definitions  
This section defines the features of the following Timer Control registers.  
Timer 0–1 High and Low Byte Registers: see page 83  
Timer Reload High and Low Byte Registers: see page 84  
Timer 0–1 PWM High and Low Byte Registers: see page 86  
Timer 0–1 Control Registers: see page 86  
Timer 0–1 High and Low Byte Registers  
The Timer 0–1 High and Low Byte (TxH and TxL) registers (Table 51 and Table 52) con-  
tain the current 16-bit timer count value. When the timer is enabled, a read from TxH  
causes the value in TxL to be stored in a temporary holding register. A read from TxL  
always returns this temporary register when the timers are enabled. When the timer is dis-  
abled, reads from the TxL reads the register directly.  
PS024317-0914  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
84  
Writing to the Timer High and Low Byte registers while the timer is enabled is not recom-  
mended. There are no temporary holding registers available for write operations, so simul-  
taneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are  
written during counting, the 8-bit written value is placed in the counter (High or Low  
Byte) at the next clock edge. The counter continues counting from the new value.  
Table 51. Timer 0–1 High Byte Register (TxH)  
Bit  
7
6
5
4
3
2
1
0
TH  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F00h, F08h  
Address  
Table 52. Timer 0–1 Low Byte Register (TxL)  
Bit  
7
6
5
4
3
2
1
0
TL  
Field  
0
0
0
0
0
0
0
1
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F01h, F09h  
Address  
Bit  
Description  
[7:0]  
TH, TL  
Timer High and Low Bytes  
These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value.  
Timer Reload High and Low Byte Registers  
The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers (Table 53 and  
Table 54) store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer  
Reload High Byte register are stored in a temporary holding register. When a write to the  
Timer Reload Low Byte register occurs, the temporary holding register value is written to  
the Timer High Byte register. This operation allows simultaneous updates of the 16-bit  
Timer reload value. In Compare Mode, the Timer Reload High and Low Byte registers  
store the 16-bit compare value.  
PS024317-0914  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
85  
Table 53. Timer 0–1 Reload High Byte Register (TxRH)  
Bit  
7
6
5
4
3
2
1
0
TRH  
Field  
1
1
1
1
1
1
1
1
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F02h, F0Ah  
Address  
Table 54. Timer 0–1 Reload Low Byte Register (TxRL)  
Bit  
7
6
5
4
3
2
1
0
TRL  
Field  
1
1
1
1
1
1
1
1
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F03h, F0Bh  
Address  
Bit  
Description  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
TRH and TRL—Timer Reload Register High and Low  
These two bytes form the 16-bit reload value, {TRH[7:0], TRL[7:0]}. This value sets the  
maximum count value which initiates a timer reload to 0001h. In COMPARE Mode,  
these two bytes form the 16-bit compare value.  
PS024317-0914  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
86  
Timer 0–1 PWM High and Low Byte Registers  
The Timer 0–1 PWM High and Low Byte (TxPWMH and TxPWML) registers (Table 55  
and Table 56) control pulse-width modulator (PWM) operations. These registers also store  
the capture values for the Capture and Capture/Compare modes.  
Table 55. Timer 0–1 PWM High Byte Register (TxPWMH)  
Bit  
7
6
5
4
3
2
1
0
PWMH  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F04h, F0Ch  
Address  
Table 56. Timer 0–1 PWM Low Byte Register (TxPWML)  
Bit  
7
6
5
4
3
2
1
0
PWML  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F05h, F0Dh  
Address  
Bit  
Description  
[7:0]  
Pulse-Width Modulator High and Low Bytes  
PWMH, These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current  
PWML  
16-bit timer count. When a match occurs, the PWM output changes state. The PWM output  
value is set by the TPOL bit in the Timer Control Register (TxCTL1)   
register.  
These TxPWMH and TxPWML registers also store the 16-bit captured timer value when oper-  
ating in Capture or Capture/Compare modes.  
Timer 0–1 Control Registers  
The Timer Control registers are 8-bit read/write registers that control the operation of their  
associated counter/timers.  
Timer 0–1 Control Register 0  
The Timer Control Register 0 (TxCTL0) and Timer Control Register 1 (TxCTL1) deter-  
mine the timer operating mode. It also includes a programmable PWM deadband delay,  
PS024317-0914  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
87  
two bits to configure timer interrupt definition, and a status bit to identify if the most  
recent timer interrupt is caused by an input capture event.  
Table 57. Timer 0–1 Control Register 0 (TxCTL0)  
Bit  
7
6
5
4
3
2
1
0
TMODEHI  
TICONFIG  
Reserved  
PWMD  
INPCAP  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F06h, F0Eh  
Address  
Bit  
Description  
[7]  
Timer Mode High Bit  
TMODEHI This bit along with the TMODE field in TxCTL1 Register determines the operating mode of  
the timer. This is the most-significant bit of the Timer mode selection value.  
[6:5]  
Timer Interrupt Configuration  
TICONFIG This field configures timer interrupt definition.  
0x = Timer Interrupt occurs on all defined reload, compare and input events.  
10 = Timer Interrupt only on defined input capture/deassertion events.  
11 = Timer Interrupt only on defined reload/compare events.  
[4]  
Reserved  
This bit is reserved and must be programmed to 0.  
[3:1]  
PWMD  
PWMD—PWM Delay value  
This field is a programmable delay to control the number of system clock cycles delay  
before the Timer Output and the Timer Output Complement are forced to their active state.  
000 = No delay.  
001 = 2 cycles delay.  
010 = 4 cycles delay.  
011 = 8 cycles delay.  
100 = 16 cycles delay.  
101 = 32 cycles delay.  
110 = 64 cycles delay.  
111 = 128 cycles delay.  
[0]  
INPCAP  
Input Capture Event  
This bit indicates if the most recent timer interrupt is caused by a Timer Input capture event.  
0 = Previous timer interrupt is not a result of Timer Input capture event.  
1 = Previous timer interrupt is a result of Timer Input capture event.  
Timer 0–1 Control Register 1  
The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler  
value, and determine the timer operating mode.  
PS024317-0914  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
88  
Table 58. Timer 0–1 Control Register 1 (TxCTL1)  
Bit  
7
6
5
4
3
2
1
0
TEN  
TPOL  
PRES  
TMODE  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F07h, F0Fh  
Address  
Bit  
Description  
[7]  
TEN  
Timer Enable  
0 = Timer is disabled.  
1 = Timer enabled to count.  
[6]  
TPOL  
Timer Input/Output Polarity  
Operation of this bit is a function of the current operating mode of the timer.  
One-Shot Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the  
timer is enabled, the Timer Output signal is complemented upon timer reload.  
Continuous Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the  
timer is enabled, the Timer Output signal is complemented upon timer reload.  
PS024317-0914  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
89  
Bit  
Description (Continued)  
Counter Mode  
If the timer is enabled the Timer Output signal is complemented after timer reload.  
0 = Count occurs on the rising edge of the Timer Input signal.  
[6]  
TPOL  
(cont’d.)  
1 = Count occurs on the falling edge of the Timer Input signal.  
PWM Single Output Mode  
0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output  
is forced High (1) upon PWM count match and forced Low (0) upon reload.  
1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Out-  
put is forced Low (0) upon PWM count match and forced High (1) upon reload.  
Capture Mode  
0 = Count is captured on the rising edge of the Timer Input signal.  
1 = Count is captured on the falling edge of the Timer Input signal.  
Compare Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the  
timer is enabled, the Timer Output signal is complemented upon timer reload.  
Gated Mode  
0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the  
falling edge of the Timer Input.  
1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the  
rising edge of the Timer Input.  
Capture/Compare Mode  
0 = Counting is started on the first rising edge of the Timer Input signal. The current count is  
captured on subsequent rising edges of the Timer Input signal.  
1 = Counting is started on the first falling edge of the Timer Input signal. The current count is  
captured on subsequent falling edges of the Timer Input signal.  
PWM Dual Output Mode  
0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1) when the  
timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count  
match and forced Low (0) upon reload. When enabled, the Timer Output Complement is  
forced Low (0) upon PWM count match and forced High (1) upon reload. The PWMD field  
in TxCTL0 register is a programmable delay to control the number of cycles time delay  
before the Timer Output and the Timer Output Complement is forced to High (1).  
1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0) when the  
timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count  
match and forced High (1) upon reload.When enabled, the Timer Output Complement is  
forced High (1) upon PWM count match and forced Low (0) upon reload. The PWMD field  
in TxCTL0 register is a programmable delay to control the number of cycles time delay  
before the Timer Output and the Timer Output Complement is forced to Low (0).  
Capture Restart Mode  
0 = Count is captured on the rising edge of the Timer Input signal.  
1 = Count is captured on the falling edge of the Timer Input signal.  
PS024317-0914  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
90  
Bit  
Description (Continued)  
[6]  
TPOL  
(cont’d.)  
Comparator Counter Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the  
timer is enabled, the Timer Output signal is complemented upon timer reload.  
Caution: When the Timer Output alternate function TxOUT on a GPIO port pin is enabled,  
TxOUT changes to whatever state the TPOL bit is in. The timer does not need to be enabled  
for that to happen. Also, the port data direction sub register is not needed to be set to output on  
TxOUT. Changing the TPOL bit with the timer enabled and running does not immediately  
change the TxOUT.  
[5:3]  
PRES  
Prescale Value  
The timer input clock is divided by 2  
PRES  
, where PRES can be set from 0 to 7. The prescaler is  
reset each time the timer is disabled. This reset ensures proper clock division each time the  
timer is restarted.  
000 = Divide by 1.  
001 = Divide by 2.  
010 = Divide by 4.  
011 = Divide by 8.  
100 = Divide by 16.  
101 = Divide by 32.  
110 = Divide by 64.  
111 = Divide by 128.  
[2:0]  
Timer Mode  
TMODE This field, along with the TMODEHI bit in TxCTL0 Register, determines the operating mode of  
the timer. TMODEHI is the most significant bit of the timer mode selection value.  
0000 = One-Shot Mode.  
0001 = Continuous Mode.  
0010 = Counter Mode.  
0011 = PWM Single Output Mode.  
0100 = Capture Mode.  
0101 = Compare Mode.  
0110 = Gated Mode.  
0111 = Capture/Compare Mode.  
1000 = PWM Dual Output Mode.  
1001 = Capture Restart Mode.  
1010 = Comparator Counter Mode.  
PS024317-0914  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
91  
Watchdog Timer  
The Watchdog Timer (WDT) protects against corrupt or unreliable software, power faults,  
and other system-level problems which can place Z8 Encore! XP F0823 Series devices  
into unsuitable operating states. The features of Watchdog Timer include:  
On-chip RC oscillator  
A selectable time-out response: reset or interrupt  
24-bit programmable time-out value  
Operation  
The WDT is a retriggerable one-shot timer that resets or interrupts F0823 Series devices  
when the WDT reaches its terminal count. The Watchdog Timer uses a dedicated on-chip  
RC oscillator as its clock source. The Watchdog Timer operates in only two modes: ON  
and OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. Per-  
form an enable by executing the WDT instruction or by setting the WDT_AO Flash  
Option Bit. The WDT_AO bit forces the Watchdog Timer to operate immediately upon  
reset, even if a WDT instruction has not been executed.  
The Watchdog Timer is a 24-bit reloadable down counter that uses three 8-bit registers in  
the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is  
described by the following equation:  
WDT Reload Value  
------------------------------------------  
WDT Time-out Period (ms) =  
10  
where the WDT reload value is the decimal value of the 24-bit value given by  
{WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator  
frequency is 10kHz. The Watchdog Timer cannot be refreshed after it reaches 000002h.  
The WDT Reload Value must not be set to values below 000004h. Table 59 provides  
information about approximate time-out delays for the minimum and maximum WDT  
reload values.  
PS024317-0914  
P R E L I M I N A R Y  
Watchdog Timer  
Z8 Encore! XP® F0823 Series  
Product Specification  
92  
Table 59. Watchdog Timer Approximate Time-Out Delays  
Approximate Time-Out Delay  
(with 10kHz typical WDT oscillator frequency)  
WDT Reload Value WDT Reload Value  
(Hex)  
000004  
FFFFFF  
(Decimal)  
Typical  
400 s  
Description  
4
Minimum time-out delay  
Maximum time-out delay  
16,777,215  
28 minutes  
Watchdog Timer Refresh  
When first enabled, the WDT is loaded with the value in the Watchdog Timer Reload reg-  
isters. The Watchdog Timer counts down to 000000hunless a WDT instruction is exe-  
cuted by the eZ8 CPU. Execution of the WDT instruction causes the down counter to be  
reloaded with the WDT reload value stored in the Watchdog Timer Reload registers.  
Counting resumes following the reload operation.  
When Z8 Encore! XP F0823 Series devices are operating in Debug Mode (using the  
OCD), the Watchdog Timer is continuously refreshed to prevent any Watchdog Timer  
time-outs.  
Watchdog Timer Time-Out Response  
The Watchdog Timer times out when the counter reaches 000000h. A time-out of the  
Watchdog Timer generates either an interrupt or a system reset. The WDT_RES Flash  
Option Bit determines the time-out response of the Watchdog Timer. For information  
about programming of the WDT_RES Flash Option Bit, see the Flash Option Bits chapter  
on page 148.  
WDT Interrupt in Normal Operation  
If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues  
an interrupt request to the interrupt controller and sets the WDT status bit in the Watchdog  
Timer Control Register. If interrupts are enabled, the eZ8 CPU responds to the interrupt  
request by fetching the Watchdog Timer interrupt vector and executing code from the vec-  
tor address. After time-out and interrupt generation, the Watchdog Timer counter rolls  
over to its maximum value of FFFFFhand continues counting. The Watchdog Timer  
counter is not automatically returned to its Reload Value.  
The Reset Status Register (see the Reset Status Register section on page 28) must be read  
before clearing the WDT interrupt. This read clears the WDT time-out Flag and prevents  
further WDT interrupts for immediately occurring.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
93  
WDT Interrupt in Stop Mode  
If configured to generate an interrupt when a time-out occurs and F0823 Series are in Stop  
Mode, the Watchdog Timer automatically initiates a Stop-Mode Recovery and generates  
an interrupt request. Both the WDT status bit and the stop bit in the Watchdog Timer Con-  
trol Register are set to 1 following a WDT time-out in Stop Mode. For more information  
about Stop-Mode Recovery, see the Reset and Stop-Mode Recovery chapter on page 21.  
If interrupts are enabled, following completion of the Stop-Mode Recovery the eZ8 CPU  
responds to the interrupt request by fetching the Watchdog Timer interrupt vector and exe-  
cuting code from the vector address.  
WDT Reset in Normal Operation  
If configured to generate a Reset when a time-out occurs, the Watchdog Timer forces the  
device into the System Reset state. The WDT status bit in the Watchdog Timer Control  
Register is set to 1. For more information about System Reset, see the Reset and Stop-  
Mode Recovery chapter on page 21.  
WDT Reset in Stop Mode  
If configured to generate a Reset when a time-out occurs and the device is in Stop Mode,  
the Watchdog Timer initiates a Stop-Mode Recovery. Both the WDT status bit and the stop  
bit in the Watchdog Timer Control Register are set to 1 following WDT time-out in Stop  
Mode. For more information, see the Reset and Stop-Mode Recovery chapter on page 21.  
Watchdog Timer Reload Unlock Sequence  
Writing the unlock sequence to the Watchdog Timer Control Register (WDTCTL) address  
unlocks the three Watchdog Timer Reload Byte Registers (WDTU, WDTH, and WDTL)  
to allow changes to the time-out period. These write operations to the WDTCTL Register  
address produce no effect on the bits in the WDTCTL Register. The locking mechanism  
prevents spurious writes to the Reload registers. The following sequence is required to  
unlock the Watchdog Timer Reload Byte Registers (WDTU, WDTH, and WDTL) for  
write access.  
1. Write 55hto the Watchdog Timer Control Register (WDTCTL).  
2. Write AAhto the Watchdog Timer Control Register (WDTCTL).  
3. Write the Watchdog Timer Reload Upper Byte register (WDTU).  
4. Write the Watchdog Timer Reload High Byte register (WDTH).  
5. Write the Watchdog Timer Reload Low Byte register (WDTL).  
All three Watchdog Timer Reload registers must be written in the order just listed. There  
must be no other register writes between each of these operations. If a register write  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
94  
occurs, the lock state machine resets and no further writes can occur unless the sequence is  
restarted. The value in the Watchdog Timer Reload registers is loaded into the counter  
when the Watchdog Timer is first enabled and every time a WDT instruction is executed.  
Watchdog Timer Control Register Definitions  
This section defines the features of the following Watchdog Timer Control registers.  
Watchdog Timer Control Register (WDTCTL): see page 94  
Watchdog Timer Reload Upper Byte Register (WDTU): see page 95  
Watchdog Timer Reload High Byte Register (WDTH): see page 95  
Watchdog Timer Reload Low Byte Register (WDTL): see page 96  
Watchdog Timer Control Register  
The Watchdog Timer Control (WDTCTL) register is a write-only control register. Writing  
the 55h, AAhunlock sequence to the WDTCTL Register address unlocks the three Watch-  
dog Timer Reload Byte registers (WDTU, WDTH and WDTL) to allow changes to the  
time-out period. These write operations to the WDTCTL Register address produce no  
effect on the bits in the WDTCTL Register. The locking mechanism prevents spurious  
writes to the Reload registers.  
This register address is shared with the read-only Reset Status Register.  
Table 60. Watchdog Timer Control Register (WDTCTL)  
Bit  
7
6
5
4
3
2
1
0
WDTUNLK  
Field  
X
X
X
X
X
X
X
X
RESET  
R/W  
W
W
W
W
W
W
W
W
FF0h  
Address  
Bit  
Description  
[7:0]  
Watchdog Timer Unlock  
WDTUNLK The software must write the correct unlocking sequence to this register before it is allowed  
to modify the contents of the Watchdog Timer reload registers.  
Watchdog Timer Reload Upper, High and Low Byte Registers  
The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) regis-  
ters, shown in Tables 61 through 63, form the 24-bit reload value that is loaded into the  
PS024317-0914  
P R E L I M I N A R Y  
Watchdog Timer Control Register  
Z8 Encore! XP® F0823 Series  
Product Specification  
95  
Watchdog Timer when a WDT instruction executes. The 24-bit reload value ranges across  
bits [23:0] to encompass the three bytes {WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writ-  
ing to these registers sets the appropriate Reload Value. Reading from these registers  
returns the current Watchdog Timer count value.  
The 24-bit WDT Reload Value must not be set to a value less than 000004h.  
Caution:  
Table 61. Watchdog Timer Reload Upper Byte Register (WDTU)  
Bit  
7
6
5
4
3
2
1
0
WDTU  
00h  
Field  
RESET  
R/W  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
FF1h  
Address  
Note: R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.  
Bit  
Description  
[7:0]  
WDTU  
WDT Reload Upper Byte  
Most significant byte (MSB), Bits[23:16], of the 24-bit WDT reload value.  
Table 62. Watchdog Timer Reload High Byte Register (WDTH)  
Bit  
7
6
5
4
3
2
1
0
WDTH  
04h  
Field  
RESET  
R/W  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
FF2h  
Address  
Note: R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.  
Bit  
Description  
[7:0]  
WDTH  
WDT Reload High Byte  
Middle byte, Bits[15:8], of the 24-bit WDT reload value.  
PS024317-0914  
P R E L I M I N A R Y  
Watchdog Timer Control Register  
Z8 Encore! XP® F0823 Series  
Product Specification  
96  
Table 63. Watchdog Timer Reload Low Byte Register (WDTL)  
Bit  
7
6
5
4
3
2
1
0
WDTL  
00h  
Field  
RESET  
R/W  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
FF3h  
Address  
Note: R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.  
Bit  
Description  
[7:0]  
WDTL  
WDT Reload Low  
Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.  
PS024317-0914  
P R E L I M I N A R Y  
Watchdog Timer Control Register  
Z8 Encore! XP® F0823 Series  
Product Specification  
97  
Universal Asynchronous Receiver/  
Transmitter  
The universal asynchronous receiver/transmitter (UART) is a full-duplex communication  
channel capable of handling asynchronous data transfers. The UART uses a single 8-bit  
data mode with selectable parity. The features of UART include:  
8-bit asynchronous data transfer  
Selectable even- and odd-parity generation and checking  
Option of one or two Stop bits  
Separate transmit and receive interrupts  
Framing, parity, overrun, and break detection  
Separate transmit and receive enables  
16-bit baud rate generator (BRG)  
Selectable MULTIPROCESSOR (9-bit) Mode with three configurable interrupt  
schemes  
BRG can be configured and used as a basic 16-bit timer  
Driver Enable output for external bus transceivers  
Architecture  
The UART consists of three primary functional blocks: transmitter, receiver, and baud rate  
generator. The UART’s transmitter and receiver function independently, but employ the  
same baud rate and data format. Figure 10 displays the UART architecture.  
PS024317-0914  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/  
Z8 Encore! XP® F0823 Series  
Product Specification  
98  
Parity Checker  
Receive Shifter  
Receiver Control  
with Address Compare  
RXD  
Receive Data  
Register  
Control Registers  
System Bus  
Transmit Data  
Register  
Status Register  
Baud Rate  
Generator  
Transmit Shift  
Register  
TXD  
Transmitter Control  
Parity Generator  
CTS  
DE  
Figure 10. UART Block Diagram  
Operation  
The UART always transmits and receives data in an 8-bit data format, least-significant bit  
(lsb) first. An even or odd parity bit can be added to the data stream. Each character begins  
with an active Low Start bit and ends with either 1 or 2 active High Stop bits. Figure 11  
and Figure 12 display the asynchronous data format employed by the UART without par-  
ity and with parity, respectively.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
99  
Data Field  
Stop Bit(s)  
msb  
Idle State  
of Line  
lsb  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
1
2
Figure 11. UART Asynchronous Data Format without Parity  
Data Field  
Stop Bit(s)  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Parity  
1
2
Figure 12. UART Asynchronous Data Format with Parity  
Transmitting Data Using the Polled Method  
Observe the following steps to transmit data using the polled method of operation:  
1. Write to the UART Baud Rate High and Low Byte registers to set the required baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Write to the UART Control 1 Register, if MULTIPROCESSOR Mode is appropriate,  
to enable MULTIPROCESSOR (9-bit) Mode functions.  
4. Set the Multiprocessor Mode Select (MPEN) bit to enable MULTIPROCESSOR  
Mode.  
5. Write to the UART Control 0 Register to:  
Set the transmit enable bit (TEN) to enable the UART for data transmission  
Set the parity enable bit (PEN), if parity is appropriate and MULTIPROCESSOR  
Mode is not enabled, and select either even or odd parity (PSEL)  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
100  
Set or clear the CTSE bit to enable or disable control from the remote receiver  
using the CTS pin  
6. Check the TDRE bit in the UART Status 0 Register to determine if the Transmit Data  
Register is empty (indicated by a 1). If empty, continue to Step 7. If the Transmit Data  
Register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit  
Data Register becomes available to receive new data.  
7. Write the UART Control 1 Register to select the outgoing address bit.  
8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if  
sending a data byte.  
9. Write the data byte to the UART Transmit Data Register. The transmitter automati-  
cally transfers the data to the Transmit Shift register and transmits the data.  
10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate  
and MULTIPROCESSOR Mode is enabled,.  
11. To transmit additional bytes, return to Step 5.  
Transmitting Data Using the Interrupt-Driven Method  
The UART Transmitter interrupt indicates the availability of the Transmit Data Register to  
accept new data for transmission. Observe the following steps to configure the UART for   
interrupt-driven data transmission:  
1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Execute a DI instruction to disable interrupts.  
4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and  
set the acceptable priority.  
5. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) Mode  
functions, if MULTIPROCESSOR Mode is appropriate.  
6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR  
Mode.  
7. Write to the UART Control 0 Register to:  
Set the transmit enable bit (TEN) to enable the UART for data transmission.  
Enable parity, if appropriate and if MULTIPROCESSOR Mode is not enabled,  
and select either even or odd parity.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
101  
Set or clear CTSE to enable or disable control from the remote receiver using the  
CTS pin.  
8. Execute an EI instruction to enable interrupts.  
The UART is now configured for interrupt-driven data transmission. Because the UART  
Transmit Data Register is empty, an interrupt is generated immediately. When the UART  
Transmit interrupt is detected, the associated interrupt service routine (ISR) performs the  
following:  
1. Write the UART Control 1 Register to select the multiprocessor bit for the byte to be  
transmitted:  
Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if  
sending a data byte.  
2. Write the data byte to the UART Transmit Data Register. The transmitter automati-  
cally transfers the data to the Transmit Shift register and transmits the data.  
3. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.  
4. Execute the IRET instruction to return from the interrupt-service routine and wait for  
the Transmit Data Register to again become empty.  
Receiving Data Using the Polled Method  
Observe the following steps to configure the UART for polled data reception:  
1. Write to the UART Baud Rate High and Low Byte registers to set an acceptable baud  
rate for the incoming data stream.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Write to the UART Control 1 Register to enable MULTIPROCESSOR Mode func-  
tions, if appropriate.  
4. Write to the UART Control 0 Register to:  
Set the receive enable bit (REN) to enable the UART for data reception  
Enable parity, if appropriate and if Multiprocessor Mode is not enabled, and select  
either even or odd parity  
5. Check the RDA bit in the UART Status 0 Register to determine if the Receive Data  
Register contains a valid data byte (indicated by a 1). If RDA is set to 1 to indicate  
available data, continue to Step 6. If the Receive Data Register is empty (indicated by  
a 0), continue to monitor the RDA bit awaiting reception of the valid data.  
6. Read data from the UART Receive Data Register. If operating in MULTIPROCES-  
SOR (9-bit) Mode, further actions may be required depending on the MULTIPRO-  
CESSOR Mode bits MPMD[1:0].  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
102  
7. Return to Step 4 to receive additional data.  
Receiving Data Using the Interrupt-Driven Method  
The UART Receiver interrupt indicates the availability of new data (as well as error condi-  
tions). Observe the following steps to configure the UART receiver for interrupt-driven  
operation:  
1. Write to the UART Baud Rate High and Low Byte registers to set the acceptable baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Execute a DI instruction to disable interrupts.  
4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set  
the acceptable priority.  
5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.  
6. Write to the UART Control 1 Register to enable Multiprocessor (9-bit) Mode func-  
tions, if appropriate.  
Set the Multiprocessor Mode Select (MPEN) to Enable MULTIPROCESSOR  
Mode  
Set the Multiprocessor Mode Bits, MPMD[1:0], to select the acceptable address  
matching scheme  
Configure the UART to interrupt on received data and errors or errors only (inter-  
rupt on errors only is unlikely to be useful for Z8 Encore! XP devices without a  
DMA block)  
7. Write the device address to the Address Compare Register (automatic MULTIPRO-  
CESSOR modes only).  
8. Write to the UART Control 0 Register to:  
Set the receive enable bit (REN) to enable the UART for data reception  
Enable parity, if appropriate and if Multiprocessor Mode is not enabled, and select  
either even or odd parity  
9. Execute an EI instruction to enable interrupts.  
The UART is now configured for interrupt-driven data reception. When the UART  
Receiver interrupt is detected, the associated interrupt service routine (ISR) performs the  
following:  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
103  
1. Checks the UART Status 0 Register to determine the source of the interrupt - error,  
break, or received data.  
2. Reads the data from the UART Receive Data Register if the interrupt was because of  
data available. If operating in MULTIPROCESSOR (9-bit) Mode, further actions may  
be required depending on the MULTIPROCESSOR Mode bits MPMD[1:0].  
3. Clears the UART Receiver interrupt in the applicable Interrupt Request register.  
4. Executes the IRET instruction to return from the interrupt-service routine and await  
more data.  
Clear To Send (CTS) Operation  
The CTS pin, if enabled by the CTSE bit of the UART Control 0 Register, performs flow  
control on the outgoing transmit datastream. The Clear To Send (CTS) input pin is sam-  
pled one system clock before beginning any new character transmission. To delay trans-  
mission of the next data character, an external receiver must deassert CTS at least one  
system clock cycle before a new data transmission begins. For multiple character trans-  
missions, this action is typically performed during Stop Bit transmission. If CTS deasserts  
in the middle of a character transmission, the current character is sent completely.  
MULTIPROCESSOR (9-Bit) Mode  
The UART has a MULTIPROCESSOR (9-bit) Mode that uses an extra (9th) bit for selec-  
tive communication when a number of processors share a common UART bus. In MULTI-  
PROCESSOR Mode (also referred to as 9-bit Mode), the multiprocessor bit (MP) is  
transmitted immediately following the 8-bits of data and immediately preceding the Stop  
bit(s) as displayed in Figure 13. The character format is given below:  
Data Field  
Stop Bit(s)  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
MP  
1
2
Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format  
In MULTIPROCESSOR (9-bit) Mode, the parity bit location (9th bit) becomes the Multi-  
processor control bit. The UART Control 1 and Status 1 registers provide MULTIPRO-  
CESSOR (9-bit) Mode control and status information. If an automatic address matching  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
104  
scheme is enabled, the UART Address Compare register holds the network address of the  
device.  
MULTIPROCESSOR (9-bit) Mode Receive Interrupts  
When MULTIPROCESSOR Mode is enabled, the UART only processes frames addressed  
to it. The determination of whether a frame of data is addressed to the UART can be made  
in hardware, software or some combination of the two, depending on the multiprocessor  
configuration bits. In general, the address compare feature reduces the load on the CPU,  
because it does not require access to the UART when it receives data directed to other  
devices on the multi-node network. The following three MULTIPROCESSOR modes are  
available in hardware:  
Interrupt on all address bytes  
Interrupt on matched address bytes and correctly framed data bytes  
Interrupt only on correctly framed data bytes  
These modes are selected with MPMD[1:0] in the UART Control 1 Register. For all multi-  
processor modes, bit MPEN of the UART Control 1 Register must be set to 1.  
The first scheme is enabled by writing 01bto MPMD[1:0]. In this mode, all incoming  
address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt  
service routine must manually check the address byte that caused triggered the interrupt. If  
it matches the UART address, the software clears MPMD[0]. Each new incoming byte  
interrupts the CPU. The software is responsible for determining the end of the frame. It  
checks for the end-of-frame by reading the MPRX bit of the UART Status 1 Register for  
each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame  
is different from the UART’s address, MPMD[0] must be set to 1 causing the UART inter-  
rupts to go inactive until the next address byte. If the new frame’s address matches the  
UART’s, the data in the new frame is processed as well.  
The second scheme requires the following: set MPMD[1:0] to 10b and write the UART’s  
address into the UART Address Compare register. This mode introduces additional hard-  
ware control, interrupting only on frames that match the UART’s address. When an  
incoming address byte does not match the UART’s address, it is ignored. All successive  
data bytes in this frame are also ignored. When a matching address byte occurs, an inter-  
rupt is issued and further interrupts now occur on each successive data byte. When the first  
data byte in the frame is read, the NEWFRM bit of the UART Status 1 Register is asserted.  
All successive data bytes have NEWFRM=0. When the next address byte occurs, the  
hardware compares it to the UART’s address. If there is a match, the interrupts continues  
and the NEWFRM bit is set for the first byte of the new frame. If there is no match, the  
UART ignores all incoming bytes until the next address match.  
The third scheme is enabled by setting MPMD[1:0] to 11band by writing the UART’s  
address into the UART Address Compare Register. This mode is identical to the second  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
105  
scheme, except that there are no interrupts on address bytes. The first data byte of each  
frame remains accompanied by a NEWFRM assertion.  
External Driver Enable  
The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This fea-  
ture reduces the software overhead associated with using a GPIO pin to control the trans-  
ceiver when communicating on a multi-transceiver bus, such as RS-485.  
Driver Enable is an active High signal that envelopes the entire transmitted data frame  
including parity and Stop bits as displayed in Figure 14. The Driver Enable signal asserts  
when a byte is written to the UART Transmit Data Register. The Driver Enable signal  
asserts at least one UART bit period and no greater than two UART bit periods before the  
Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver  
Enable signal deasserts one system clock period after the final Stop bit is transmitted. This  
one system clock delay allows both time for data to clear the transceiver before disabling  
it, as well as the ability to determine if another character follows the current character. In  
the event of back to back characters (new data must be written to the Transmit Data Regis-  
ter before the previous character is completely transmitted) the DE signal is not deasserted  
between characters. The DEPOL bit in the UART Control Register 1 sets the polarity of  
the Driver Enable signal.  
1
DE  
0
Data Field  
Stop Bit  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Parity  
1
Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)  
The Driver Enable to Start bit setup time is calculated as follows:  
UART Interrupts  
The UART features separate interrupts for the transmitter and the receiver. In addition,  
when the UART primary functionality is disabled, the Baud Rate Generator can also func-  
tion as a basic timer with interrupt capability.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
106  
1
2
----------------------------------------  
----------------------------------------  
DE to Start Bit Setup Time (s)   
Baud Rate (Hz)  
Baud Rate (Hz)  
Transmitter Interrupts  
The transmitter generates a single interrupt when the Transmit Data Register Empty bit  
(TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for trans-  
mission. The TDRE interrupt occurs after the Transmit shift register has shifted the first  
bit of data out. The Transmit Data Register can now be written with the next character to  
send. This action provides 7 bit periods of latency to load the Transmit Data Register  
before the Transmit shift register completes shifting the current character. Writing to the  
UART Transmit Data Register clears the TDRE bit to 0.  
Receiver Interrupts  
The receiver generates an interrupt when any of the following occurs:  
A data byte is received and is available in the UART Receive Data Register. This inter-  
rupt can be disabled independently of the other receiver interrupt sources. The received  
data interrupt occurs after the receive character has been received and placed in the Re-  
ceive Data Register. To avoid an overrun error, software must respond to this received  
data available condition before the next character is completely received.  
In MULTIPROCESSOR Mode (MPEN = 1), the receive data interrupts are dependent on  
the multiprocessor configuration and the most recent address byte.  
Note:  
A break is received  
An overrun is detected  
A data framing error is detected  
UART Overrun Errors  
When an overrun error condition occurs the UART prevents overwriting of the valid data  
currently in the Receive Data Register. The Break Detect and Overrun status bits are not  
displayed until after the valid data has been read.  
After the valid data has been read, the UART Status 0 Register is updated to indicate the  
overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that  
the Receive Data Register contains a data byte. However, because the overrun error  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
107  
occurred, this byte cannot contain valid data and must be ignored. The BRKD bit indicates  
if the overrun was caused by a break condition on the line. After reading the status byte  
indicating an overrun error, the Receive Data Register must be read again to clear the error  
bits is the UART Status 0 Register. Updates to the Receive Data Register occur only when  
the next data word is received.  
UART Data and Error Handling Procedure  
Figure 15 displays the recommended procedure for use in UART receiver interrupt service  
routines.  
Receiver  
Ready  
Receiver  
Interrupt  
Read Status  
No  
Errors?  
Yes  
Read Data which  
clears RDA bit and  
resets error bits  
Read Data  
Discard Data  
Figure 15. UART Receiver Interrupt Service Routine Flow  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
108  
Baud Rate Generator Interrupts  
If the Baud Rate Generator (BRG) interrupt enable is set, the UART Receiver interrupt  
asserts when the UART Baud Rate Generator reloads. This condition allows the Baud  
Rate Generator to function as an additional counter if the UART functionality is not  
employed.  
UART Baud Rate Generator  
The UART Baud Rate Generator creates a lower frequency baud rate clock for data trans-  
mission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate  
High and Low Byte registers combine to create a 16-bit baud rate divisor value  
(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data  
rate is calculated using the following equation:  
System Clock Frequency (Hz)  
--------------------------------------------------------------------------------  
UART Data Rate (bits/s) =  
16 UART Baud Rate Divisor Value  
When the UART is disabled, the Baud Rate Generator functions as a basic 16-bit timer  
with interrupt on time-out. Observe the following steps to configure the Baud Rate Gener-  
ator as a timer with interrupt on time-out:  
1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 Register  
to 0.  
2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte  
registers.  
3. Enable the Baud Rate Generator timer function and associated interrupt by setting the  
BIRQ bit in the UART Control 1 Register to 1.  
When configured as a general purpose timer, the interrupt interval is calculated using the  
following equation:  
Interrupt Interval (s) = System Clock Period (s) BRG[15:0]  
UART Control Register Definitions  
The UART control registers support the UART and the associated infrared encoder/decod-  
ers. For more information about the infrared operation, see the Infrared Encoder/Decoder  
chapter on page 118.  
PS024317-0914  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
109  
UART Transmit Data Register  
Data bytes written to the UART Transmit Data Register (Table 64) are shifted out on the  
TXDx pin. The Write-only UART Transmit Data Register shares a Register File address  
with the read-only UART Receive Data Register.  
Table 64. UART Transmit Data Register (U0TXD)  
Bit  
7
6
5
4
3
2
1
0
TXD  
Field  
X
X
X
X
X
X
X
X
RESET  
R/W  
W
W
W
W
W
W
W
W
F40h  
Address  
Bit  
Description  
[7:0]  
TXD  
Transmit Data  
UART transmitter data byte to be shifted out through the TXDx pin.  
UART Receive Data Register  
Data bytes received through the RXDx pin are stored in the UART Receive Data Register  
(Table 65). The read-only UART Receive Data Register shares a Register File address  
with the Write-only UART Transmit Data Register.  
Table 65. UART Receive Data Register (U0RXD)  
Bit  
7
6
5
4
3
2
1
0
RXD  
F40h  
Field  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
RESET  
R/W  
Address  
Bit  
Description  
[7:0]  
RXD  
Receive Data  
UART receiver data byte from the RXDx pin.  
PS024317-0914  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
110  
UART Status 0 Register  
The UART Status 0 and Status 1 registers (Table 66 and Table 67) identify the current  
UART operating configuration and status.  
Table 66. UART Status 0 Register (U0STAT0)  
Bit  
7
6
5
4
3
2
1
0
RDA  
PE  
OE  
FE  
BRKD  
TDRE  
TXE  
CTS  
Field  
0
0
0
0
0
1
1
X
R
RESET  
R/W  
R
R
R
R
R
R
R
F41h  
Address  
Bit  
Description  
[7]  
RDA  
Receive Data Available  
This bit indicates that the UART Receive Data Register has received data. Reading the UART  
Receive Data Register clears this bit.  
0 = The UART Receive Data Register is empty.  
1 = There is a byte in the UART Receive Data Register.  
[6]  
PE  
Parity Error  
This bit indicates that a parity error has occurred. Reading the UART Receive Data   
register clears this bit.  
0 = No parity error has occurred.  
1 = A parity error has occurred.  
[5]  
OE  
Overrun Error  
This bit indicates that an overrun error has occurred. An overrun occurs when new data is  
received and the UART Receive Data Register has not been read. If the RDA bit is reset to 0,  
reading the UART Receive Data Register clears this bit.  
0 = No overrun error occurred.  
1 = An overrun error occurred.  
[4]  
FE  
Framing Error  
This bit indicates that a framing error (no Stop bit following data reception) was detected.  
Reading the UART Receive Data Register clears this bit.  
0 = No framing error occurred.  
1 = A framing error occurred.  
[3]  
BRKD  
Break Detect  
This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop  
bit(s) are all 0s this bit is set to 1. Reading the UART Receive Data Register clears this bit.  
0 = No break occurred.  
1 = A break occurred.  
PS024317-0914  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
111  
Bit  
Description (Continued)  
[2]  
TDRE  
Transmitter Data Register Empty  
This bit indicates that the UART Transmit Data Register is empty and ready for additional data.  
Writing to the UART Transmit Data Register resets this bit.  
0 = Do not write to the UART Transmit Data Register.  
1 = The UART Transmit Data Register is ready to receive an additional byte to be transmitted.  
[1]  
TXE  
Transmitter Empty  
This bit indicates that the transmit shift register is empty and character transmission is finished.  
0 = Data is currently transmitting.  
1 = Transmission is complete.  
[0]  
CTS  
CTS Signal  
When this bit is read, it returns the level of the CTS signal. This signal is active Low.  
UART Status 1 Register  
This register contains multiprocessor control and status bits.  
Table 67. UART Status 1 Register (U0STAT1)  
Bit  
7
6
5
4
3
2
1
0
Reserved  
NEWFRM  
MPRX  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R
R
R
R
R/W  
R/W  
R
R
F44h  
Address  
Bit  
Description  
Reserved  
[7:2]  
These bits are reserved; R/W bits must be programmed to 000000 during writes and  
000000 when read.  
[1]  
NEWFRM  
New Frame  
A status bit denoting the start of a new frame. Reading the UART Receive Data Register  
resets this bit to 0.  
0 = The current byte is not the first data byte of a new frame.  
1 = The current byte is the first data byte of a new frame.  
[0]  
MPRX  
Multiprocessor Receive  
Returns the value of the most recent multiprocessor bit received. Reading from the UART  
Receive Data Register resets this bit to 0.  
PS024317-0914  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
112  
UART Control 0 and Control 1 Registers  
The UART Control 0 and Control 1 registers (Table 68 and Table 69) configure the   
properties of the UART’s transmit and receive operations. The UART Control registers  
must not be written while the UART is enabled.  
Table 68. UART Control 0 Register (U0CTL0)  
Bit  
7
6
5
4
3
2
1
0
TEN  
REN  
CTSE  
PEN  
PSEL  
SBRK  
STOP  
LBEN  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F42h  
Address  
Bit  
Description  
[7]  
TEN  
Transmit Enable  
This bit enables or disables the transmitter. The enable is also controlled by the CTS signal  
and the CTSE bit. If the CTS signal is low and the CTSE bit is 1, the transmitter is enabled.  
0 = Transmitter disabled.  
1 = Transmitter enabled.  
[6]  
REN  
Receive Enable  
This bit enables or disables the receiver.  
0 = Receiver disabled.  
1 = Receiver enabled.  
[5]  
CTSE  
CTSE—CTS Enable  
0 = The CTS signal has no effect on the transmitter.  
1 = The UART recognizes the CTS signal as an enable control from the transmitter.  
[4]  
PEN  
Parity Enable  
This bit enables or disables parity. Even or odd is determined by the PSEL bit.  
0 = Parity is disabled.  
1 = The transmitter sends data with an additional parity bit and the receiver receives an addi-  
tional parity bit .  
[3]  
PSEL  
Parity Select  
0 = Even parity is transmitted and expected on all received data.  
1 = Odd parity is transmitted and expected on all received data.  
[2]  
SBRK  
Send Break  
This bit pauses or breaks data transmission. Sending a break interrupts any transmission in  
progress, so ensure that the transmitter has finished sending data before setting this bit.  
0 = No break is sent.  
1 = Forces a break condition by setting the output of the transmitter to zero.  
PS024317-0914  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
113  
Bit  
Description (Continued)  
[1]  
STOP  
Stop Bit Select  
0 = The transmitter sends one stop bit.  
1 = The transmitter sends two stop bits.  
[0]  
LBEN  
Loop Back Enable  
0 = Normal operation.  
1 = All transmitted data is looped back to the receiver.  
Table 69. UART Control 1 Register (U0CTL1)  
Bit  
7
6
5
4
3
2
1
0
MPMD[1]  
MPEN  
MPMD[0]  
MPBT  
DEPOL  
BRGCTL RDAIRQ  
IREN  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F43h  
Address  
Bit  
Description  
MULTIPROCESSOR Mode  
[7,5]  
MPMD[1:0] If MULTIPROCESSOR (9-bit) Mode is enabled.  
00 = The UART generates an interrupt request on all received bytes (data and address).  
01 = The UART generates an interrupt request only on received address bytes.  
10 = The UART generates an interrupt request when a received address byte matches the  
value stored in the Address Compare Register and on all successive data bytes until  
an address mismatch occurs.  
11 = The UART generates an interrupt request on all received data bytes for which the most  
recent address byte matched the value in the Address Compare Register.  
[6]  
MPEN  
MULTIPROCESSOR (9-bit) Enable  
This bit is used to enable MULTIPROCESSOR (9-bit) Mode.  
0 = Disable MULTIPROCESSOR (9-bit) Mode.  
1 = Enable MULTIPROCESSOR (9-bit) Mode.  
[4]  
MPBT  
Multiprocessor Bit Transmit  
This bit is applicable only when MULTIPROCESSOR (9-bit) Mode is enabled. The 9th bit is  
used by the receiving device to determine if the data byte contains address or data informa-  
tion.  
0 = Send a 0 in the multiprocessor bit location of the data stream (data byte).  
1 = Send a 1 in the multiprocessor bit location of the data stream (address byte).  
[3]  
DEPOL  
Driver Enable Polarity  
0 = DE signal is Active High.  
1 = DE signal is Active Low.  
PS024317-0914  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
114  
Bit  
Description (Continued)  
Baud Rate Control  
[2]  
BRGCTL  
This bit causes an alternate UART behavior depending on the value of the REN bit in the  
UART Control 0 Register.  
When the UART receiver is not enabled (REN=0), this bit determines whether the Baud  
Rate Generator issues interrupts.  
0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value.  
1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0.  
Reads from the Baud Rate High and Low Byte registers return the current BRG count value.  
When the UART receiver is enabled (REN=1), this bit allows reads from the Baud Rate Reg-  
isters to return the BRG count value instead of the Reload Value.  
0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value.  
1 = Reads from the Baud Rate High and Low Byte registers return the current BRG count  
value. Unlike the Timers, there is no mechanism to latch the Low Byte when the High  
Byte is read.  
[1]  
RDAIRQ  
Receive Data Interrupt Enable  
0 = Received data and receiver errors generates an interrupt request to the Interrupt Con-  
troller.  
1 = Received data does not generate an interrupt request to the Interrupt Controller. Only  
receiver errors generate an interrupt request.  
[0]  
IREN  
Infrared Encoder/Decoder Enable  
0 = Infrared encoder/decoder is disabled. UART operates normally.  
1 = Infrared encoder/decoder is enabled. The UART transmits and receives data through  
the infrared encoder/decoder.  
PS024317-0914  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
115  
UART Address Compare Register  
The UART Address Compare Register stores the multinode network address of the UART.  
When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are  
compared to the value stored in the Address Compare Register. Receive interrupts and  
RDA assertions only occur in the event of a match.  
Table 70. UART Address Compare Register (U0ADDR)  
Bit  
7
6
5
4
3
2
1
0
COMP_ADDR  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F45h  
Address  
Bit  
Description  
Compare Address  
[7:0]  
COMP_ADDR This 8-bit value is compared to incoming address bytes.  
UART Baud Rate High and Low Byte Registers  
The UART Baud Rate High and Low Byte registers (Table 71 and Table 72) combine to  
create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate  
(baud rate) of the UART.  
Table 71. UART Baud Rate High Byte Register (U0BRH)  
Bit  
7
6
5
4
3
2
1
0
BRH  
Field  
1
1
1
1
1
1
1
1
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F46h  
Address  
Table 72. UART Baud Rate Low Byte Register (U0BRL)  
Bit  
7
6
5
4
3
2
1
0
BRL  
Field  
1
1
1
1
1
1
1
1
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F47h  
Address  
PS024317-0914  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
116  
The UART data rate is calculated using the following equation:  
System Clock Frequency (Hz)  
--------------------------------------------------------------------------------  
UART Baud Rate (bits/s) =  
16 UART Baud Rate Divisor Value  
For a given UART data rate, calculate the integer baud rate divisor value using the follow-  
ing equation:  
System Clock Frequency (Hz)  
-----------------------------------------------------------------  
UART Baud Rate Divisor Value (BRG) = Round  
16 UART Data Rate (bits/s)  
The baud rate error relative to the acceptable baud rate is calculated using the following  
equation:  
Actual Data Rate Desired Data Rate  
------------------------------------------------------------------------------------  
Desired Data Rate  
UART Baud Rate Error (%) = 100   
For reliable communication, the UART baud rate error must never exceed five percent.  
Table 73 provides information about data rate errors for a 5.5296MHz System Clock.  
Table 73. UART Baud Rates  
5.5296MHz System Clock  
Acceptable Rate  
(kHz)  
BRG Divisor  
(Decimal)  
Actual Rate  
(kHz)  
Error (%)  
N/A  
1250.0  
625.0  
250.0  
115.2  
57.6  
N/A  
N/A  
1
N/A  
N/A  
N/A  
345.6  
115.2  
57.6  
38.4  
19.2  
9.60  
38.24  
0.00  
3
6
0.00  
38.4  
9
0.00  
19.2  
18  
36  
0.00  
9.60  
0.00  
PS024317-0914  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
117  
Table 73. UART Baud Rates  
5.5296MHz System Clock  
4.80  
2.40  
1.20  
0.60  
0.30  
72  
144  
288  
576  
1152  
4.80  
2.40  
1.20  
0.60  
0.30  
0.00  
0.00  
0.00  
0.00  
0.00  
PS024317-0914  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
118  
Infrared Encoder/Decoder  
Z8 Encore! XP F0823 Series products contain a fully-functional, high-performance UART  
with an infrared encoder/decoder (endec). The infrared endec is integrated with an on-chip  
UART to allow easy communication between the Z8 Encore! XP and IrDA Physical Layer  
Specification, Version 1.3-compliant infrared transceivers. Infrared communication pro-  
vides secure, reliable, low-cost, point-to-point communication between PCs, PDAs, cell  
phones, printers and other infrared enabled devices.  
Architecture  
Figure 16 displays the architecture of the infrared endec.  
System  
Clock  
Infrared  
Transceiver  
RxD  
RXD  
TXD  
RXD  
TXD  
Infrared  
TxD  
Encoder/Decoder  
(Endec)  
UART  
Baud Rate  
Clock  
Interrupt  
I/O  
Data  
Signal Address  
Figure 16. Infrared Data Communication System Block Diagram  
Operation  
When the infrared endec is enabled, the transmit data from the associated on-chip UART  
is encoded as digital signals in accordance with the IrDA standard and output to the infra-  
red transceiver through the TXD pin. Similarly, data received from the infrared transceiver  
is passed to the infrared endec through the RXD pin, decoded by the infrared endec, and  
PS024317-0914  
P R E L I M I N A R Y  
Infrared Encoder/Decoder  
Z8 Encore! XP® F0823 Series  
Product Specification  
119  
passed to the UART. Communication is half-duplex, which means simultaneous data  
transmission and reception is not allowed.  
The baud rate is set by the UART’s baud rate generator and supports IrDA standard baud  
rates from 9600 baud to 115.2 kbaud. Higher baud rates are possible, but do not meet IrDA  
specifications. The UART must be enabled to use the infrared endec. The infrared endec  
data rate is calculated using the following equation:  
System Clock Frequency (Hz)  
--------------------------------------------------------------------------------  
Infrared Data Rate (bits/s) =  
16 UART Baud Rate Divisor Value  
Transmitting IrDA Data  
The data to be transmitted using the infrared transceiver is first sent to the UART. The  
UART’s transmit signal (TXD) and baud rate clock are used by the IrDA to generate the  
modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared  
data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains  
low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first out-  
puts a 7 clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse is  
output to complete the full 16 clock data period. Figure 17 displays IrDA data transmis-  
sion. When the infrared endec is enabled, the UART’s TXD signal is internal to Z8  
Encore! XP F0823 Series products while the IR_TXD signal is output through the TXD  
pin.  
16 clock  
period  
Baud Rate  
Clock  
UART’s  
TXD  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
3 clock  
pulse  
IR_TXD  
7-clock  
delay  
Figure 17. Infrared Data Transmission  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
120  
Receiving IrDA Data  
Data received from the infrared transceiver using the IR_RXD signal through the RXD pin  
is decoded by the infrared endec and passed to the UART. The UART’s baud rate clock is  
used by the infrared endec to generate the demodulated signal (RXD) that drives the  
UART. Each UART/Infrared data bit is 16-clocks wide. Figure 18 displays data reception.  
When the infrared endec is enabled, the UART’s RXD signal is internal to the Z8 Encore!  
XP F0823 Series products while the IR_RXD signal is received through the RXD pin.  
16 clock  
period  
Baud Rate  
Clock  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
IR_RXD  
min. 1.4 s  
pulse  
UART’s  
RXD  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
8 clock  
delay  
16 clock  
period  
16 clock  
period  
16 clock  
period  
16 clock  
period  
Figure 18. IrDA Data Reception  
Infrared Data Reception  
The system clock frequency must be at least 1.0MHz to ensure proper reception of the  
1.4µs minimum width pulses allowed by the IrDA standard.  
Caution:  
Endec Receiver Synchronization  
The IrDA receiver uses a local baud rate clock counter (0 to 15 clock periods) to generate  
an input stream for the UART and to create a sampling window for detection of incoming  
pulses. The generated UART input (UART RXD) is delayed by 8 baud rate clock periods  
with respect to the incoming IrDA data stream. When a falling edge in the input data  
stream is detected, the endec counter is reset. When the count reaches a value of 8, the  
UART RXD value is updated to reflect the value of the decoded data. When the count  
reaches 12 baud clock periods, the sampling window for the next incoming pulse opens.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
121  
The window remains open until the count again reaches 8 (that is, 24 baud clock periods  
since the previous pulse was detected), giving the endec a sampling window of minus four  
baud rate clocks to plus eight baud rate clocks around the expected time of an incoming  
pulse. If an incoming pulse is detected inside this window this process is repeated. If the  
incoming data is a logical 1 (no pulse), the endec returns to the initial state and waits for  
the next falling edge. As each falling edge is detected, the endec clock counter is reset,  
resynchronizing the endec to the incoming signal, allowing the endec to tolerate jitter and  
baud rate errors in the incoming datastream. Resynchronizing the endec does not alter the  
operation of the UART, which ultimately receives the data. The UART is only synchro-  
nized to the incoming data stream when a Start bit is received.  
Infrared Encoder/Decoder Control Register Definitions  
All infrared endec configuration and status information is set by the UART control regis-  
ters as defined in the Universal Asynchronous Receiver/Transmitter chapter on page 97.  
To prevent spurious signals during IrDA data transmission, set the IREN bit in the UART  
Control 1 Register to 1 to enable the endec before enabling the GPIO port alternate func-  
tion for the corresponding pin.  
Caution:  
PS024317-0914  
P R E L I M I N A R Y Infrared Encoder/Decoder Control Register  
Z8 Encore! XP® F0823 Series  
Product Specification  
122  
Analog-to-Digital Converter  
The Analog-to-Digital Converter (ADC) converts an analog input signal to its digital rep-  
resentation. The features of this sigma-delta ADC include:  
10-bit resolution  
Eight single-ended analog input sources are multiplexed with general-purpose I/O  
ports  
Interrupt upon conversion complete  
Bandgap generated internal voltage reference generator with two selectable levels  
Factory offset and gain calibration  
Architecture  
Figure 19 displays the major functional blocks of the ADC. An analog multiplexer net-  
work selects the ADC input from the available analog pins, ANA0 through ANA7.  
PS024317-0914  
P R E L I M I N A R Y  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
123  
2
Internal Voltage  
VREFSEL  
V
REF  
Reference Generator  
VREFEXT  
Ref Input  
11  
ADC  
Data  
Analog Input  
Multiplexer  
Analog Input  
ANA0  
ANA1  
ANA2  
ANA3  
ADC  
IRQ  
ANA4  
ANA5  
ANA6  
ANA7  
4
ANAIN  
Figure 19. Analog-to-Digital Converter Block Diagram  
Operation  
The output of the ADC is an 11-bit, signed, two’s-complement digital value. The output  
generally ranges from 0 to +1023, but offset errors can cause small negative values.  
The ADC registers return 13 bits of data, but the two LSBs are intended for compensation  
use only. When the compensation routine is performed on the 13 bit raw ADC value, two  
bits of resolution are lost because of a rounding error. As a result, the final value is an 11-  
bit number.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
124  
Automatic Powerdown  
If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles,  
portions of the ADC are automatically powered down. From this powerdown state, the  
ADC requires 40 system clock cycles to powerup. The ADC powers up when a conversion  
is requested by the ADC Control Register.  
Single-Shot Conversion  
When configured for single-shot conversion, the ADC performs a single analog-to-digital  
conversion on the selected analog input channel. After completion of the conversion, the  
ADC shuts down. Observe the following steps for setting up the ADC and initiating a sin-  
gle-shot conversion:  
1. Enable the acceptable analog inputs by configuring the general-purpose I/O pins for  
alternate function. This configuration disables the digital input and output drivers.  
2. Write the ADC Control/Status Register 1 to configure the ADC  
Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELH bit is  
contained in the ADC Control/Status Register 1.  
3. Write to the ADC Control Register 0 to configure the ADC and begin the conversion.  
The bit fields in the ADC Control Register can be written simultaneously:  
Write to the ANAIN[3:0] field to select from the available analog input sources  
(different input pins available depending on the device).  
Clear CONT to 0 to select a single-shot conversion.  
If the internal voltage reference must be output to a pin, set the REFEXT bit to 1.  
The internal voltage reference must be enabled in this case.  
Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELL bit is  
contained in the ADC Control Register 0.  
Set CEN to 1 to start the conversion.  
4. CEN remains 1 while the conversion is in progress. A single-shot conversion requires  
5129 system clock cycles to complete. If a single-shot conversion is requested from an  
ADC powered-down state, the ADC uses 40 additional clock cycles to power-up  
before beginning the 5129 cycle conversion.  
5. When the conversion is complete, the ADC control logic performs the following oper-  
ations:  
11-bit two’s-complement result written to {ADCD_H[7:0], ADCD_L[7:5]}  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
125  
CEN resets to 0 to indicate the conversion is complete  
6. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically  
powered-down.  
Continuous Conversion  
When configured for continuous conversion, the ADC continuously performs an analog-  
to-digital conversion on the selected analog input. Each new data value over-writes the  
previous value stored in the ADC Data registers. An interrupt is generated after each con-  
version.  
In Continuous Mode, ADC updates are limited by the input signal bandwidth of the ADC  
and the latency of the ADC and its digital filter. Step changes at the input are not detected  
at the next output from the ADC. The response of the ADC (in all modes) is limited by  
the input signal bandwidth and the latency.  
Caution:  
Observe the following steps for setting up the ADC and initiating continuous conversion:  
1. Enable the acceptable analog input by configuring the general-purpose I/O pins for  
alternate function. This action disables the digital input and output driver.  
2. Write the ADC Control/Status Register 1 to configure the ADC:  
Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELH bit is  
contained in the ADC Control/Status Register 1.  
3. Write to the ADC Control Register 0 to configure the ADC for continuous conversion.  
The bit fields in the ADC Control Register can be written simultaneously:  
Write to the ANAIN[3:0] field to select from the available analog input sources  
(different input pins available depending on the device).  
Set CONT to 1 to select continuous conversion.  
If the internal VREF must be output to a pin, set the REFEXT bit to 1. The inter-  
nal voltage reference must be enabled in this case.  
Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELL bit is  
contained in ADC Control Register 0.  
Set CEN to 1 to start the conversions.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
126  
4. When the first conversion in continuous operation is complete (after 5129 system  
clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic  
performs the following operations:  
CEN resets to 0 to indicate the first conversion is complete. CEN remains 0 for all  
subsequent conversions in continuous operation  
An interrupt request is sent to the Interrupt Controller to indicate the conversion is  
complete  
5. The ADC writes a new data result every 256 system clock cycles. For each completed  
conversion, the ADC control logic performs the following operations:  
Writes the 11-bit two’s complement result to {ADCD_H[7:0], ADCD_L[7:5]}  
An interrupt request to the Interrupt Controller denoting conversion complete  
6. To disable continuous conversion, clear the CONTbit in the ADC Control Register to 0.  
Interrupts  
The ADC is able to interrupt the CPU whenever a conversion has been completed and the  
ADC is enabled.  
When the ADC is disabled, an interrupt is not asserted; however, an interrupt pending  
when the ADC is disabled is not cleared.  
Calibration and Compensation  
Z8 Encore! XP F0823 Series ADC can be factory calibrated for offset error and gain error,  
with the compensation data stored in Flash memory. Alternatively, user code can perform  
its own calibration, storing the values into Flash themselves.  
Factory Calibration  
Devices that have been factory calibrated contain nine bytes of calibration data in the  
Flash option bit space. This data consists of three bytes for each reference type. For a list  
of input modes for which calibration data exists, see the Zilog Calibration Data section on  
page 154. There is 1 byte for offset, and there are 2 bytes for gain correction.  
User Calibration  
If you have precision references available, its own external calibration can be performed,  
storing the values into Flash themselves.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
127  
Software Compensation Procedure  
The value read from the ADC high and low byte registers are uncompensated. The user  
mode software must apply gain and offset correction to this uncompensated value for  
maximum accuracy. The following formula yields the compensated value:  
1
OFFCALGAINCAL  2  
ADC  
= ADC  
OFFCAL+ ADC  
comp  
uncomp  
uncomp  
where GAINCAL is the gain calibration byte, OFFCAL is the offset calibration byte and  
ADCuncomp is the uncompensated value read from the ADC. The OFFCAL value is in  
two’s complement format, as are the compensated and uncompensated ADC values.  
The offset compensation is performed first, followed by the gain compensation. One bit of  
resolution is lost because of rounding on both the offset and gain computations. As a result  
the ADC registers read back 13 bits: 1 sign bit, two calibration bits lost to rounding and 10  
data bits. Also note that in the second term, the multiplication must be performed before  
the division by 216. Otherwise, the second term evaluates to zero incorrectly.  
Note:  
Although the ADC can be used without the gain and offset compensation, it does exhibit  
non-unity gain. Designing the ADC with sub-unity gain reduces noise across the ADC  
range but requires the ADC results to be scaled by a factor of 8/7.  
Caution:  
ADC Control Register Definitions  
The following sections define the ADC Control registers.  
ADC Control Register 0  
The ADC Control Register selects the analog input channel and initiates the analog-to-dig-  
ital conversion.  
PS024317-0914  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
128  
Table 74. ADC Control Register 0 (ADCCTL0)  
Bit  
7
6
5
4
3
2
1
0
CEN  
REFSELL REFEXT  
CONT  
ANAIN[3:0]  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F70h  
Address  
Bit  
Description  
[7]  
CEN  
Conversion Enable  
0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears  
this bit to 0 when a conversion is complete.  
1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already in  
progress, the conversion restarts. This bit remains 1 until the conversion is complete.  
[6]  
REFSELL  
Voltage Reference Level Select Low Bit  
In conjunction with the High bit (REFSELH) in ADC Control/Status Register 1, this deter-  
mines the level of the internal voltage reference; the following details the effects of {REF-  
SELH, REFSELL}. This reference is independent of the Comparator reference.  
00 = Internal Reference Disabled, reference comes from external pin.  
01 = Internal Reference set to 1.0V.  
10 = Internal Reference set to 2.0V (default).  
[5]  
REFEXT  
External Reference Select  
0 = External reference buffer is disabled; V  
pin is available for GPIO functions.  
REF  
1 = The internal ADC reference is buffered and connected to the V  
pin.  
REF  
[4]  
CONT  
Continuous Conversion  
0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock  
cycles.  
1 = Continuous conversion. ADC data updated every 256 system clock cycles.  
PS024317-0914  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
129  
Bit  
Description (Continued)  
Analog Input Select  
[3:0]  
ANAIN  
These bits select the analog input for conversion. Not all port pins in this list are available in  
all packages for Z8 Encore! XP F0823 Series. For information about the port pins available  
with each package style, see the Pin Description section on page 7. Do not enable unavail-  
able analog inputs. Usage of these bits changes depending on the buffer mode selected in  
ADC Control/Status Register 1.  
For the reserved values, all input switches are disabled to avoid leakage or other undesir-  
able operation. ADC samples taken with reserved bit settings are undefined.  
Single-Ended:  
0000 = ANA0.  
0001 = ANA1.  
0010 = ANA2.  
0011 = ANA3.  
0100 = ANA4.  
0101 = ANA5.  
0110 = ANA6.  
0111 = ANA7.  
1000 = Reserved.  
1001 = Reserved.  
1010 = Reserved.  
1011 = Reserved.  
1100 = Reserved.  
1101 = Reserved.  
1110 = Reserved.  
1111 = Reserved.  
PS024317-0914  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
130  
ADC Control/Status Register 1  
The second ADC Control Register contains the voltage reference level selection bit.  
Table 75. ADC Control/Status Register 1 (ADCCTL1)  
Bit  
7
6
5
4
3
2
1
0
REFSELH  
Reserved  
Field  
1
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F71h  
Address  
Bit  
Description  
[7]  
Voltage Reference Level Select High Bit  
REFSELH In conjunction with the Low bit (REFSELL) in ADC Control Register 0, this bit determines  
the level of the internal voltage reference; the following details the effects of {REFSELH,  
REFSELL}; this reference is independent of the Comparator reference.  
00 = Internal Reference Disabled, reference comes from external pin.  
01 = Internal Reference set to 1.0V.  
10 = Internal Reference set to 2.0V (default).  
[6:0]  
Reserved  
These bits are reserved and must be programmed to 0000000.  
PS024317-0914  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
131  
ADC Data High Byte Register  
The ADC Data High Byte Register contains the upper eight bits of the ADC output. The  
output is an 11-bit two’s complement value. During a single-shot conversion, this value is  
invalid. Access to the ADC Data High Byte register is read-only. Reading the ADC Data  
High Byte Register latches data in the ADC Low Bits Register.  
Table 76. ADC Data High Byte Register (ADCD_H)  
Bit  
7
6
5
4
3
2
1
0
ADCDH  
F72h  
Field  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
RESET  
R/W  
Address  
Bit  
Description  
[7:0]  
ADC Data High Byte  
ADCDH This byte contains the upper eight bits of the ADC output. These bits are not valid during a sin-  
gle-shot conversion. During a continuous conversion, the most recent conversion output is  
held in this register. These bits are undefined after a Reset.  
PS024317-0914  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
132  
ADC Data Low Bits Register  
The ADC Data Low Byte register contains the lower bits of the ADC output as well as an  
overflow status bit. The output is a 11-bit two’s complement value. During a single-shot  
conversion, this value is invalid. Access to the ADC Data Low Byte register is read-only.  
Reading the ADC Data High Byte register latches data in the ADC Low Bits Register.  
Table 77. ADC Data Low Bits Register (ADCD_L)  
Bit  
7
6
5
4
3
2
1
0
ADCDL  
Reserved  
OVF  
Field  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
RESET  
R/W  
F73h  
Address  
Bit  
Description  
[7:5]  
ADC Data Low Bits  
ADCDL These bits are the least significant three bits of the 11-bits of the ADC output. These bits are  
undefined after a Reset.  
[4:1]  
Reserved  
These bits are reserved and are undefined when read.  
[0]  
OVF  
Overflow Status  
0 = An overflow did not occur in the digital filter for the current sample.  
1 = An overflow did occur in the digital filter for the current sample.  
PS024317-0914  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
133  
Comparator  
Z8 Encore! XP F0823 Series devices feature a general purpose comparator that compares  
two analog input signals. A GPIO (CINP) pin provides the positive comparator input. The  
negative input (CINN) can be taken from either an external GPIO pin or an internal refer-  
ence. The output is available as an interrupt source or can be routed to an external pin  
using the GPIO multiplex.  
The features of the comparator include:  
Two inputs which can be connected up using the GPIO multiplex (MUX)  
One input can be connected to a programmable internal reference  
One input can be connected to the on-chip temperature sensor  
Output can be either an interrupt source or an output to an external pin  
Operation  
One of the comparator inputs can be connected to an internal reference which is a user  
selectable reference that is user programmable with 200 mV resolution.  
The comparator can be powered down to save on supply current. For details, see the Power  
Control Register 0 section on page 31.  
Because of the propagation delay of the comparator, Zilog does not recommend enabling  
or reconfiguring the comparator without first disabling the interrupts and waiting for the  
comparator output to settle. Doing so can result in spurious interrupts.  
Caution:  
The following example shows how to safely enable the comparator:  
di  
ld cmp0  
nop  
nop  
; wait for output to settle  
clr irq0 ; clear any spurious interrupts pending  
ei  
PS024317-0914  
P R E L I M I N A R Y  
Comparator  
Z8 Encore! XP® F0823 Series  
Product Specification  
134  
Comparator Control Register Definition  
The Comparator Control Register (CMPCTL) configures the comparator inputs and sets  
the value of the internal voltage reference.  
Table 78. Comparator Control Register (CMP0)  
Bit  
7
6
5
4
3
2
1
0
INPSEL  
INNSEL  
REFLVL  
Reserved  
Field  
0
0
0
1
0
1
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F90h  
Address  
Bit  
Description  
[7]  
Signal Select for Positive Input  
INPSEL 0 = GPIO pin used as positive comparator input.  
1 = temperature sensor used as positive comparator input.  
[6]  
Signal Select for Negative Input  
INNSEL 0 = internal reference disabled, GPIO pin used as negative comparator input.  
1 = internal reference enabled as negative comparator input.  
[5:2]  
Internal Reference Voltage Level  
REFLVL 0000 = 0.0V.  
0001 = 0.2V.  
0010 = 0.4V.  
0011 = 0.6V.  
0100 = 0.8V.  
0101 = 1.0V (Default).  
0110 = 1.2V.  
0111 = 1.4V.  
1000 = 1.6V.  
1001 = 1.8V.  
1010–1111 = Reserved.  
Note: This reference is independent of the ADC voltage reference.  
[1:0]  
Reserved  
These bits are reserved; R/W bits must be programmed to 00 during writes and to 00 when  
read.  
PS024317-0914  
P R E L I M I N A R Y  
Comparator Control Register Definition  
Z8 Encore! XP® F0823 Series  
Product Specification  
135  
Flash Memory  
The products in Z8 Encore! XP F0823 Series features either 8KB (8192), 4KB (4096),  
2KB (2048) or 1KB (1024) of nonvolatile Flash memory with read/write/erase capability.  
Flash Memory can be programmed and erased in-circuit by either user code or through the  
On-Chip Debugger.  
The Flash Memory array is arranged in pages with 512 bytes per page. The 512-byte page  
is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64  
bytes.  
For program/data protection, the Flash memory is also divided into sectors. In the Z8  
Encore! XP F0823 Series, these sectors are either 1024 bytes (in the 8KB devices) or 512  
bytes in size (all other memory sizes); each sector maps to a page. Page and sector sizes  
are not generally equal.  
The first two bytes of the Flash program memory are used as Flash Option bits. For more  
information about their operation, see the Flash Option Bits chapter on page 148.  
Table 79 describes the Flash memory configuration for each device in the Z8 Encore! XP  
F0823 Series. Figure 20 displays the Flash memory arrangement.  
Table 79. Z8 Encore! XP F0823 Series Flash Memory Configurations  
Program  
Flash Size  
KB (Bytes)  
Memory  
Addresses  
Flash Sector  
Size (bytes)  
Part Number  
Z8F08x3  
Flash Pages  
8 (8192)  
4 (4096)  
2 (2048)  
1 (1024)  
16  
8
0000h–1FFFh  
0000h–0FFFh  
0000h–07FFh  
0000h–03FFh  
1024  
512  
512  
512  
Z8F04x3  
Z8F02x3  
4
Z8F01x3  
2
PS024317-0914  
P R E L I M I N A R Y  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
136  
Figure 20. Flash Memory Arrangement  
Flash Information Area  
The Flash information area is separate from program memory and is mapped to the  
address range FE00hto FFFFh. Not all these addresses are accessible. Factory trim values  
for the analog peripherals are stored here. Factory calibration data for the ADC is also  
stored here.  
Operation  
The Flash Controller programs and erases Flash memory. The Flash Controller provides  
the proper Flash controls and timing for Byte Programming, Page Erase, and Mass Erase  
of Flash memory.  
The Flash Controller contains several protection mechanisms to prevent accidental program-  
ming or erasure. These mechanism operate on the page, sector and full-memory levels.  
Figure 21 displays a basic Flash Controller flow. The following subsections provide  
details about the various operations (Lock, Unlock, Byte Programming, Page Protect,  
Page Unprotect, Page Select Page Erase, and Mass Erase) displayed in Figure 21.  
PS024317-0914  
P R E L I M I N A R Y  
Flash Information Area  
Z8 Encore! XP® F0823 Series  
Product Specification  
137  
Reset  
Lock State 0  
Write Page  
Select Register  
Write FCTL  
No  
73h  
Yes  
Lock State 1  
Write FCTL  
Writes to Page Select  
Register in Lock State 1  
result in a return to  
Lock State 0  
No  
8Ch  
Yes  
Write Page  
Select Register  
No  
Page Select  
values match?  
Yes  
Yes  
Page in  
Protected Sector?  
Byte Program  
Write FCTL  
No  
Page  
Yes  
Unlocked  
95h  
No  
Page Erase  
Program/Erase  
Enabled  
Figure 21. Flash Controller Operation Flowchart  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
138  
Flash Operation Timing Using the Flash Frequency Registers  
Before performing either a program or erase operation on Flash memory, you must first  
configure the Flash Frequency High and Low Byte registers. The Flash Frequency regis-  
ters allow programming and erasing of the Flash with system clock frequencies ranging  
from 32kHz (32768Hz) through 20MHz.  
The Flash Frequency High and Low Byte registers combine to form a 16-bit value,  
FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash  
Frequency value must contain the system clock frequency (in kHz). This value is calcu-  
lated using the following equation:  
System Clock Frequency (Hz)  
FFREQ[15:0] = -------------------------------------------------------------------------------  
1000  
Flash programming and erasure are not supported for system clock frequencies below  
32kHz (32768 Hz) or above 20MHz. The Flash Frequency High and Low Byte registers  
must be loaded with the correct value to ensure operation of Z8 Encore! XP F0823 Series  
devices.  
Caution:  
Flash Code Protection Against External Access  
The user code contained within the Flash memory can be protected against external access  
with the On-Chip Debugger. Programming the FRP Flash Option Bit prevents reading of  
the user code with the On-Chip Debugger. For more information, see the Flash Option Bits  
section on page 148 and the On-Chip Debugger chapter on page 158.  
Flash Code Protection Against Accidental Program and  
Erasure  
F0823 Series provides several levels of protection against accidental program and erasure  
of the Flash memory contents. This protection is provided by a combination of the Flash  
Option bits, the register locking mechanism, the page select redundancy and the sector  
level protection control of the Flash Controller.  
Flash Code Protection Using the Flash Option Bits  
The FRP and FWP Flash Option Bits combine to provide three levels of Flash Program  
Memory protection as listed in Table 80. For more information, see the Flash Option Bits  
section on page 148.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
139  
.
Table 80. Flash Code Protection Using the Flash Option Bits  
FWP Flash Code Protection Description  
0
Programming and erasing disabled for all of Flash Program Memory. In user code program-  
ming, Page Erase, and Mass Erase are all disabled. Mass Erase is available through the On-  
Chip Debugger.  
1
Programming, Page Erase, and Mass Erase are enabled for all of Flash Program Memory.  
Flash Code Protection Using the Flash Controller  
At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash  
memory. To program or erase the Flash memory, first write the Page Select Register with  
the target page. Unlock the Flash Controller by making two consecutive writes to the  
Flash Control Register with the values 73hand 8Ch, sequentially. The Page Select Regis-  
ter must be rewritten with the same page previously stored there. If the two Page Select  
writes do not match, the controller reverts to a locked state. If the two writes match, the  
selected page becomes active. For more details, see Figure 21.  
After unlocking a specific page, you can enable either Page Program or Erase. Writing the  
value 95hcauses a Page Erase only if the active page resides in a sector that is not pro-  
tected. Any other value written to the Flash Control Register locks the Flash Controller.  
Mass Erase is not allowed in the user code but only in through the Debug Port.  
After unlocking a specific page, you can also write to any byte on that page. After a byte is  
written, the page remains unlocked, allowing for subsequent writes to other bytes on the  
same page. Further writes to the Flash Control Register cause the active page to revert to a  
locked state.  
Sector-Based Flash Protection  
The final protection mechanism is implemented on a per-sector basis. The Flash memories  
of Z8 Encore! XP devices are divided into maximum number of 8 sectors. A sector is 1/8  
of the total Flash memory size unless this value is smaller than the page size – in which  
case, the sector and page sizes are equal. On Z8 Encore! F0823 Series devices, the sector  
size is varied according to the Flash memory configuration shown in Table 79 on page  
135.  
The Flash Sector Protect Register can be configured to prevent sectors from being pro-  
grammed or erased. After a sector is protected, it cannot be unprotected by user code. The  
Flash Sector Protect Register is cleared after reset, and any previously-written protection  
values are lost. User code must write this register in their initialization routine if they pre-  
fer to enable sector protection.  
The Flash Sector Protect Register shares its Register File address with the Page Select  
Register. The Flash Sector Protect Register is accessed by writing the Flash Control Regis-  
ter with 5Eh. After the Flash Sector Protect Register is selected, it can be accessed at the  
Page Select Register address. When user code writes the Flash Sector Protect Register,  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
140  
bits can only be set to 1. Thus, sectors can be protected, but not unprotected, via register  
write operations. Writing a value other than 5Ehto the Flash Control Register deselects  
the Flash Sector Protect Register and reenables access to the Page Select Register.  
Observe the following procedure to setup the Flash Sector Protect Register from user  
code:  
1. Write 00hto the Flash Control Register to reset the Flash Controller.  
2. Write 5Ehto the Flash Control Register to select the Flash Sector Protect Register.  
3. Read and/or write the Flash Sector Protect Register which is now at Register File  
address FF9h.  
4. Write 00hto the Flash Control Register to return the Flash Controller to its reset state.  
The Sector Protect Register is initialized to 0 on reset, putting each sector into an unpro-  
tected state. When a bit in the Sector Protect Register is written to 1, the corresponding  
sector can no longer be written or erased by the CPU. External Flash programming  
through the OCD or via the Flash Controller Bypass Mode are unaffected. After a bit of  
the Sector Protect Register has been set, it cannot be cleared except by powering down the  
device.  
Byte Programming  
The Flash Memory is enabled for byte programming after unlocking the Flash Controller  
and successfully enabling either Mass Erase or Page Erase. When the Flash Controller is  
unlocked and Mass Erase is successfully completed, all Program Memory locations are  
available for byte programming. In contrast, when the Flash Controller is unlocked and  
Page Erase is successfully enabled, only the locations of the selected page are available for  
byte programming. An erased Flash byte contains all 1’s (FFh). The programming opera-  
tion can only be used to change bits from 1 to 0. To change a Flash bit (or multiple bits)  
from 0 to 1 requires execution of either the Page Erase or Mass Erase commands.  
Byte Programming is accomplished using the On-Chip Debugger's Write Memory com-  
mand or eZ8 CPU execution of the LDC or LDCI instructions. For a description of the  
LDC and LDCI instructions, refer to the eZ8 CPU Core User Manual (UM0128), available  
for download at www.zilog.com. While the Flash Controller programs the Flash memory,  
the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. To  
exit programming mode and lock the Flash, write any value to the Flash Control Register,  
except the Mass Erase or Page Erase commands.  
The byte at each address of the Flash memory cannot be programmed (any bits written  
to 0) more than twice before an erase cycle occurs. Doing so may result in corrupted data  
at the target byte.  
Caution:  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
141  
Page Erase  
The Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash  
memory sets all bytes in that page to the value FFh. The Flash Page Select register identi-  
fies the page to be erased. Only a page residing in an unprotected sector can be erased.  
With the Flash Controller unlocked and the active page set, writing the value 95hto the  
Flash Control Register initiates the Page Erase operation. While the Flash Controller exe-  
cutes the Page Erase operation, the eZ8 CPU idles but the system clock and on-chip  
peripherals continue to operate. The eZ8 CPU resumes operation after the Page Erase  
operation completes. If the Page Erase operation is performed using the On-Chip Debug-  
ger, poll the Flash Status Register to determine when the Page Erase operation is complete.  
When the Page Erase is complete, the Flash Controller returns to its locked state.  
Mass Erase  
The Flash memory can also be Mass Erased using the Flash Controller, but only by using  
the On-Chip Debugger. Mass Erasing the Flash memory sets all bytes to the value FFh.  
With the Flash Controller unlocked and the Mass Erase successfully enabled, writing the  
value 63hto the Flash Control Register initiates the Mass Erase operation. While the  
Flash Controller executes the Mass Erase operation, the eZ8 CPU idles but the system  
clock and on-chip peripherals continue to operate. Using the On-Chip Debugger, poll the  
Flash Status Register to determine when the Mass Erase operation is complete. When the  
Mass Erase is complete, the Flash Controller returns to its locked state.  
Flash Controller Bypass  
The Flash Controller can be bypassed and the control signals for the Flash memory  
brought out to the GPIO pins. Bypassing the Flash Controller allows faster Row Program-  
ming algorithms by controlling the Flash programming signals directly.  
Row programing is recommended for gang programming applications and large volume  
customers who do not require in-circuit initial programming of the Flash memory. Page  
Erase operations are also supported when the Flash Controller is bypassed.  
For more information about bypassing the Flash Controller, refer to the Zilog application  
note titled, Third-Party Flash Programming Support for Z8 Encore! MCUs (AN0117),  
available for download at www.zilog.com.  
Flash Controller Behavior in Debug Mode  
The following changes in behavior of the Flash Controller occur when the Flash Control-  
ler is accessed using the On-Chip Debugger:  
The Flash Write Protect option bit is ignored  
The Flash Sector Protect register is ignored for programming and erase operations  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
142  
Programming operations are not limited to the page selected in the Page Select  
register  
Bits in the Flash Sector Protect register can be written to one or zero  
The second write of the Page Select register to unlock the Flash Controller is not  
necessary  
The Page Select register can be written when the Flash Controller is unlocked  
The Mass Erase command is enabled through the Flash Control Register  
For security reasons, the Flash Controller allows only a single page to be opened for  
write/erase. When writing multiple Flash pages, the Flash controller must repeat the un-  
lock sequence to select another page.  
Caution:  
Flash Control Register Definitions  
This section defines the features of the following Flash Control registers.  
Flash Control Register: see page 142  
Flash Status Register: see page 144  
Flash Page Select Register: see page 144  
Flash Sector Protect Register: see page 146  
Flash Frequency High and Low Byte Registers: see page 146  
Flash Control Register  
The Flash Controller must be unlocked using the Flash Control (FTCTL) Register before  
programming or erasing the Flash memory. Writing the sequence 73h8Ch, sequentially,  
to the Flash Control Register unlocks the Flash Controller. When the Flash Controller is  
unlocked, the Flash memory can be enabled for Mass Erase or Page Erase by writing the  
appropriate enable command to the FCTL. Page Erase applies only to the active page  
selected in Flash Page Select register. Mass Erase is enabled only through the On-Chip  
Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to  
its locked state. The Write-only Flash Control Register shares its Register File address  
with the read-only Flash Status Register.  
PS024317-0914  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
143  
Table 81. Flash Control Register (FCTL)  
Bit  
7
6
5
4
3
2
1
0
FCMD  
FF8h  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
W
W
W
W
W
W
W
W
Address  
Bit  
Description  
[7:0]  
FCMD  
Flash Command  
73h = First unlock command.  
8Ch = Second unlock command.  
95h = Page Erase command (must be third command in sequence to initiate Page Erase).  
63h = Mass Erase command (must be third command in sequence to initiate Mass Erase).  
5Eh = Enable Flash Sector Protect Register Access.  
PS024317-0914  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
144  
Flash Status Register  
The Flash Status Register indicates the current state of the Flash Controller. This register  
can be read at any time. The read-only Flash Status Register shares its Register File  
address with the write-only Flash Control Register.  
Table 82. Flash Status Register (FSTAT)  
Bit  
7
6
5
4
3
2
1
0
Reserved  
FSTAT  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R
R
R
R
R
R
R
R
FF8h  
Address  
Bit  
Description  
Reserved  
[7:6]  
These bits are reserved and must be programmed to 0 when read.  
[5:0]  
FSTAT  
Flash Controller Status  
000000 = Flash Controller locked.  
000001 = First unlock command received (73h written).  
000010 = Second unlock command received (8Ch written).  
000011 = Flash Controller unlocked.  
000100 = Sector protect register selected.  
001xxx = Program operation in progress.  
010xxx = Page erase operation in progress.  
100xxx = Mass erase operation in progress.  
Flash Page Select Register  
The Flash Page Select (FPS) register shares address space with the Flash Sector Protect  
Register. Unless the Flash controller is unlocked and written with 5Eh, writes to this  
address target the Flash Page Select Register.  
The register is used to select one of the eight available Flash memory pages to be pro-  
grammed or erased. Each Flash Page contains 512 bytes of Flash memory. During a Page  
Erase operation, all Flash memory having addresses with the most significant 7-bits given  
by FPS[6:0] are chosen for program/erase operation.  
PS024317-0914  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
145  
Table 83. Flash Page Select Register (FPS)  
Bit  
7
6
5
4
3
2
1
0
INFO_EN  
PAGE  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF9h  
Address  
Bit  
Description  
[7]  
Information Area Enable  
INFO_EN 0 = Information Area us not selected.  
1 = Information Area is selected. The Information Area is mapped into the Program Memory  
address space at addresses FE00h through FFFFh.  
[6:0]  
PAGE  
Page Select  
This 7-bit field identifies the Flash memory page for Page Erase and page unlocking.  
• Program Memory Address[15:9] = PAGE[6:0].  
• For Z8F04x3 devices, the upper 4 bits must always be 0.  
• For Z8F02x3 devices, the upper 5 bits must always be 0.  
• For Z8F01x3 devices, the upper 6 bits must always be 0.  
PS024317-0914  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
146  
Flash Sector Protect Register  
The Flash Sector Protect (FPROT) Register is shared with the Flash Page Select Register.  
When the Flash Control Register is written with 5Eh, the next write to this address targets  
the Flash Sector Protect Register. In all other cases, it targets the Flash Page Select Regis-  
ter.  
This register selects one of the 8 available Flash memory sectors to be protected. The reset  
state of each Sector Protect bit is an unprotected state. After a sector is protected by setting  
its corresponding register bit, it cannot be unprotected (the register bit cannot be cleared)  
without powering down the device.  
Table 84. Flash Sector Protect Register (FPROT)  
Bit  
7
6
5
4
3
2
1
0
SPROT7 SPROT6 SPROT5 SPROT4 SPROT3 SPROT2 SPROT1 SPROT0  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF9h  
Address  
Bit  
Description  
[7]  
Sector Protection  
SPROTn Each bit corresponds to a 1024-byte Flash sector on devices in the 8K range, while the  
remaining devices correspond to a 512-byte Flash sector. To determine the appropriate Flash  
memory sector address range and sector number for your Z8F0823 Series product, please  
refer to Table 79 on page 135 and to Figure 20, which follows the table.  
• For Z8F08x3 and Z8F04x3 devices, all bits are used.  
• For Z8F02x3 devices, the upper 4 bits are unused.  
• For Z8F01x3 devices, the upper 6 bits are unused.  
Note: n indicates the specific Flash sector (7–0).  
Flash Frequency High and Low Byte Registers  
The Flash Frequency High (FFREQH) and Low Byte (FFREQL) registers combine to  
form a 16-bit value, FFREQ, to control timing for Flash program and erase operations.  
The 16-bit binary Flash Frequency value must contain the system clock frequency (in  
kHz) and is calculated using the following equation:  
System Clock Frequency  
FFREQ[15:0] = FFREQH[7:0],FFREQL[7:0]= ------------------------------------------------------------------  
1000  
PS024317-0914  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
147  
The Flash Frequency High and Low Byte registers must be loaded with the correct value  
to ensure proper operation of the device. Also, Flash programming and erasure is not sup-  
ported for system clock frequencies below 20kHz or above 20MHz.  
Caution:  
Table 85. Flash Frequency High Byte Register (FFREQH)  
Bit  
7
6
5
4
3
2
1
0
FFREQH  
Field  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FFAh  
Address  
Bit  
Description  
[7:0]  
Flash Frequency High Byte  
FFREQH High byte of the 16-bit Flash Frequency value.  
Table 86. Flash Frequency Low Byte Register (FFREQL)  
Bit  
7
6
5
4
3
2
1
0
FFREQL  
0
Field  
RESET  
R/W  
R/W  
FFBh  
Address  
Bit  
Description  
[7:0]  
Flash Frequency Low Byte  
FFREQL Low byte of the 16-bit Flash Frequency value.  
PS024317-0914  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
148  
Flash Option Bits  
Programmable Flash option bits allow user configuration of certain aspects of Z8 Encore!  
XP F0823 Series operation. The feature configuration data is stored in the Flash program  
memory and loaded into holding registers during Reset. The features available for control  
through the Flash Option Bits include:  
Watchdog Timer time-out response selection–interrupt or system reset  
Watchdog Timer always on (enabled at Reset)  
The ability to prevent unwanted read access to user code in Program Memory  
The ability to prevent accidental programming and erasure of all or a portion of the user  
code in Program Memory  
Voltage Brown-Out configuration-always enabled or disabled during Stop Mode to re-  
duce Stop Mode power consumption  
Factory trimming information for the internal precision oscillator  
Factory calibration values for ADC  
Factory serialization and randomized lot identifier (optional)  
Operation  
This section describes the type and configuration of the programmable Flash option bits.  
Option Bit Configuration By Reset  
Each time the Flash Option Bits are programmed or erased, the device must be Reset for  
the change to take effect. During any reset operation (System Reset, Power-On Reset, or  
Stop-Mode Recovery), the Flash Option Bits are automatically read from the Flash Pro-  
gram Memory and written to Option Configuration registers. The Option Configuration  
registers control operation of the devices within the Z8 Encore! XP 8K and 4K Series.  
Option bit control is established before the device exits Reset and the eZ8 CPU begins  
code execution. The Option Configuration registers are not part of the Register File and  
are not accessible for read or write access.  
PS024317-0914  
P R E L I M I N A R Y  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
149  
Option Bit Types  
This section describes the five types of Flash option bits offered in the F083A Series.  
User Option Bits  
The user option bits are contained in the first two bytes of program memory. Access to  
these bits has been provided because these locations contain application-specific device  
configurations. The information contained here is lost when page 0 in program memory is  
erased.  
Trim Option Bits  
The trim option bits are contained in a Flash memory information page. These bits are fac-  
tory programmed values required to optimize the operation of onboard analog circuitry  
and cannot be permanently altered. Program memory may be erased without endangering  
these values. It is possible to alter working values of these bits by accessing the Trim Bit  
Address and Data Registers, but these working values are lost after a power loss or any  
other reset event.  
There are 32 bytes of trim data. To modify one of these values the user code must first  
write a value between 00hand 1Fhinto the Trim Bit Address Register. The next write to  
the Trim Bit Data Register changes the working value of the target trim data byte.  
Reading the trim data requires the user code to write a value between 00hand 1Fhinto the  
Trim Bit Address Register. The next read from the Trim Bit Data Register returns the  
working value of the target trim data byte.  
Note: The trim address range is from information address 20–3Fonly. The remainder of the  
information page is not accessible through the trim bit address and data registers.  
Calibration Option Bits  
The calibration option bits are also contained in the information page. These bits are fac-  
tory programmed values intended for use in software correcting the device’s analog per-  
formance. To read these values, the user code must employ the LDC instruction to access  
the information area of the address space as defined in the Flash Information Area section  
on page 15.  
Serialization Bits  
As an optional feature, Zilog is able to provide factory-programmed serialization. For seri-  
alized products, the individual devices are programmed with unique serial numbers. These  
serial numbers are binary values, four bytes in length. The numbers increase in size with  
each device, but gaps in the serial sequence may exist.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
150  
These serial numbers are stored in the Flash information page (for more details, see the  
Reading the Flash Information Page section on page 150 and the Serialization Data sec-  
tion on page 156) and are unaffected by mass erasure of the device’s Flash memory.  
Randomized Lot Identification Bits  
As an optional feature, Zilog is able to provide a factory-programmed random lot identi-  
fier. With this feature, all devices in a given production lot are programmed with the same  
random number. This random number is uniquely regenerated for each successive produc-  
tion lot and is not likely to be repeated.  
The randomized lot identifier is a 32-byte binary value, stored in the flash information  
page (for more details, see the Reading the Flash Information Page section on page 150  
and the Randomized Lot Identifier section on page 156) and is unaffected by mass erasure  
of the device’s flash memory.  
Reading the Flash Information Page  
The following code example shows how to read data from the Flash Information Area.  
; get value at info address 60 (FE60h)  
ldx FPS, #%80 ; enable access to flash info page  
ld R0, #%FE  
ld R1, #%60  
ldc R2, @RR0 ; R2 now contains the calibration value  
Flash Option Bit Control Register Definitions  
This section briefly describes the features of the Trim Bit Address and Data registers.  
Trim Bit Address Register  
The Trim Bit Address (TRMADR) Register contains the target address for an access to the  
trim option bits.  
Table 87. Trim Bit Address Register (TRMADR)  
Bit  
7
6
5
4
3
2
1
0
TRMADR: Trim Bit Address (00h to 1Fh)  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF6h  
Address  
PS024317-0914  
P R E L I M I N A R Y  
Flash Option Bit Control Register  
Z8 Encore! XP® F0823 Series  
Product Specification  
151  
Trim Bit Data Register  
The Trim Bid Data (TRMDR) register contains the read or write data for access to the trim  
option bits.  
Table 88. Trim Bit Data Register (TRMDR)  
Bit  
7
6
5
4
3
2
1
0
TRMDR: Trim Bit Data  
Field  
0
0
0
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF7h  
Address  
Flash Option Bit Address Space  
The first two bytes of Flash program memory at addresses 0000hand 0001hare reserved  
for the user-programmable Flash option bits.  
Table 89. Flash Option Bits at Program Memory Address 0000h  
Bit  
7
6
5
4
3
2
1
0
WDT_RES WDT_AO  
Reserved  
VBO_AO  
FRP  
Reserved  
FWP  
Field  
U
U
U
U
U
U
U
U
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Program Memory 0000h  
Address  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7]  
Watchdog Timer Reset  
WDT_RES 0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally  
enabled for the eZ8 CPU to acknowledge the interrupt request.  
1 = Watchdog Timer time-out causes a system reset. This setting is the default for unpro-  
grammed (erased) Flash.  
[6]  
WDT_AO  
Watchdog Timer Always ON  
0 = Watchdog Timer is automatically enabled upon application of system power. Watchdog  
Timer can not be disabled.  
1 = Watchdog Timer is enabled upon execution of the WDT instruction. Once enabled, the  
Watchdog Timer can only be disabled by a Reset or Stop-Mode Recovery. This setting is  
the default for unprogrammed (erased) Flash.  
[5:4]  
Reserved  
These bits are reserved and must be programmed to 11 during writes, and to 11 when read.  
PS024317-0914  
P R E L I M I N A R Y  
Flash Option Bit Address Space  
Z8 Encore! XP® F0823 Series  
Product Specification  
152  
Bit  
Description (Continued)  
[3]  
VBO_AO  
Voltage Brown-Out Protection Always ON  
0 = Voltage Brown-Out Protection can be disabled in Stop Mode to reduce total power con-  
sumption. For the block to be disabled, the power control register bit must also be writ-  
ten (see the Power Control Register 0 section on page 31).  
1 = Voltage Brown-Out Protection is always enabled including during Stop Mode. This set-  
ting is the default for unprogrammed (erased) Flash.  
[2]  
FRP  
Flash Read Protect  
0 = User program code is inaccessible. Limited control features are available through the  
On-Chip Debugger.  
1 = User program code is accessible. All On-Chip Debugger commands are enabled. This  
setting is the default for unprogrammed (erased) Flash.  
[1]  
Reserved  
This bit is reserved and must be programmed to 1.  
[0]  
FWP  
Flash Write Protect  
This Option Bit provides Flash Program Memory protection:  
0 = Programming and erasure disabled for all of Flash Program Memory. Programming,  
Page Erase, and Mass Erase through User Code is disabled. Mass Erase is available  
using the On-Chip Debugger.  
1 = Programming, Page Erase, and Mass Erase are enabled for all of Flash program mem-  
ory.  
Table 90. Flash Options Bits at Program Memory Address 0001h  
Bit  
7
6
5
4
3
2
1
0
Reserved  
XTLDIS  
Reserved  
Field  
U
U
U
U
U
U
U
U
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Program Memory 0001h  
Address  
Note: U = Unchanged by Reset. R/W = Read/Write.  
PS024317-0914  
P R E L I M I N A R Y  
Flash Option Bit Address Space  
Z8 Encore! XP® F0823 Series  
Product Specification  
153  
Bit  
Description  
Reserved  
[7:5]  
These bits are reserved and must be programmed to 111 during writes and to 111 when read.  
[4]  
State of Crystal Oscillator at Reset  
XTLDIS This bit only enables the crystal oscillator. Its selection as a system clock must be performed  
manually.  
0 = The crystal oscillator is enabled during reset, resulting in longer reset timing.  
1 = The crystal oscillator is disabled during reset, resulting in shorter reset timing.  
Caution: Programming the XTLDIS bit to zero on 8-pin versions of F0823 Series devices pre-  
vents any further communication via the debug pin due to the X and DBG functions being  
IN  
shared on pin 2 of the 8-pin package. Do not program this bit to zero on 8-pin devices unless  
no further debugging or Flash programming is required.  
[3:0]  
Reserved  
These bits are reserved and must be programmed to 1111 during writes and to 1111 when read.  
Trim Bit Address Space  
All available trim bit addresses and their functions are listed in Tables 91 through 93.  
Table 91. Trim Options Bits at Address 0000h  
Bit  
7
6
5
4
3
2
1
0
Field  
Reserved  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 0020h  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
Reserved  
[7:0]  
These bits are reserved. Altering this register may result in incorrect device operation.  
PS024317-0914  
P R E L I M I N A R Y  
Trim Bit Address Space  
Z8 Encore! XP® F0823 Series  
Product Specification  
154  
Table 92. Trim Option Bits at 0001h  
Bit  
7
6
5
4
3
2
1
0
Reserved  
Field  
U
U
U
U
U
U
U
U
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 0021h  
Address  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
Reserved  
[7:0]  
These bits are reserved. Altering this register may result in incorrect device operation.  
Table 93. Trim Option Bits at 0002h (TIPO)  
Bit  
7
6
5
4
3
2
1
0
IPO_TRIM  
Field  
U
RESET  
R/W  
R/W  
Information Page Memory 0022h  
Address  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:0]  
Internal Precision Oscillator Trim Byte  
IPO_TRIM Contains trimming bits for the Internal Precision Oscillator.  
Zilog Calibration Data  
This section briefly describes the features of the following Flash Option Bit calibration  
registers.  
ADC Calibration Data: see page 155  
Serialization Data: see page 156  
Randomized Lot Identifier: see page 156  
PS024317-0914  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F0823 Series  
Product Specification  
155  
ADC Calibration Data  
Table 94. ADC Calibration Bits  
Bit  
7
6
5
4
3
2
1
0
ADC_CAL  
Field  
U
U
U
U
U
U
U
U
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 0060h–007Dh  
Address  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:0]  
Analog-to-Digital Converter Calibration Values  
ADC_CAL Contains factory-calibrated values for ADC gain and offset compensation. Each of the ten  
supported modes has one byte of offset calibration and two bytes of gain calibration. These  
values are read by the software to compensate ADC measurements as detailed in the Soft-  
ware Compensation Procedure section on page 127. The location of each calibration byte is  
provided in Table 95.  
Table 95. ADC Calibration Data Location  
Info Page  
Address  
Memory  
Address  
Compensation  
Usage  
Reference  
Type  
ADC Mode  
60  
08  
09  
63  
0A  
0B  
66  
0C  
0D  
FE60  
FE08  
FE09  
FE63  
FE0A  
FE0B  
FE66  
FE0C  
FE0D  
Offset  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Internal 2.0V  
Internal 2.0V  
Internal 2.0V  
Internal 1.0V  
Internal 1.0V  
Internal 1.0V  
External 2.0V  
External 2.0V  
External 2.0V  
Gain High Byte  
Gain Low Byte  
Offset  
Gain High Byte  
Gain Low Byte  
Offset  
Gain High Byte  
Gain Low Byte  
PS024317-0914  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F0823 Series  
Product Specification  
156  
Serialization Data  
Table 96. Serial Number at 001C–001F (S_NUM)  
Bit  
7
6
5
4
3
2
1
0
S_NUM  
Field  
U
U
U
U
U
U
U
U
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 001C–001F  
Address  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:0]  
Serial Number Byte  
S_NUM The serial number is a unique four-byte binary value; see Table 97.  
Table 97. Serialization Data Locations  
Info Page  
Address  
Memory  
Address  
Usage  
1C  
1D  
1E  
1F  
FE1C  
FE1D  
FE1E  
FE1F  
Serial Number Byte 3 (most significant).  
Serial Number Byte 2.  
Serial Number Byte 1.  
Serial Number Byte 0 (least significant).  
Randomized Lot Identifier  
Table 98. Lot Identification Number (RAND_LOT)  
Bit  
7
6
5
4
3
2
1
0
RAND_LOT  
Field  
U
U
U
U
U
U
U
U
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Interspersed throughout Information Page Memory  
Address  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7]  
Randomized Lot ID  
RAND_LOT The randomized lot ID is a 32-byte binary value that changes for each production lot; see  
Table 99.  
PS024317-0914  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F0823 Series  
Product Specification  
157  
Table 99. Randomized Lot ID Locations  
Memory  
Info Page  
Address  
Address  
FE3C  
FE3D  
FE3E  
FE3F  
FE58  
FE59  
FE5A  
FE5B  
FE5C  
FE5D  
FE5E  
FE5F  
FE61  
FE62  
FE64  
FE65  
FE67  
FE68  
FE6A  
FE6B  
FE6D  
FE6E  
FE70  
FE71  
FE73  
FE74  
FE76  
FE77  
FE79  
FE7A  
FE7C  
FE7D  
Usage  
3C  
3D  
3E  
3F  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
61  
62  
64  
65  
67  
68  
6A  
6B  
6D  
6E  
70  
71  
73  
74  
76  
77  
79  
7A  
7C  
7D  
Randomized Lot ID Byte 31 (most significant)  
Randomized Lot ID Byte 30  
Randomized Lot ID Byte 29  
Randomized Lot ID Byte 28  
Randomized Lot ID Byte 27  
Randomized Lot ID Byte 26  
Randomized Lot ID Byte 25  
Randomized Lot ID Byte 24  
Randomized Lot ID Byte 23  
Randomized Lot ID Byte 22  
Randomized Lot ID Byte 21  
Randomized Lot ID Byte 20  
Randomized Lot ID Byte 19  
Randomized Lot ID Byte 18  
Randomized Lot ID Byte 17  
Randomized Lot ID Byte 16  
Randomized Lot ID Byte 15  
Randomized Lot ID Byte 14  
Randomized Lot ID Byte 13  
Randomized Lot ID Byte 12  
Randomized Lot ID Byte 11  
Randomized Lot ID Byte 10  
Randomized Lot ID Byte 9  
Randomized Lot ID Byte 8  
Randomized Lot ID Byte 7  
Randomized Lot ID Byte 6  
Randomized Lot ID Byte 5  
Randomized Lot ID Byte 4  
Randomized Lot ID Byte 3  
Randomized Lot ID Byte 2  
Randomized Lot ID Byte 1  
Randomized Lot ID Byte 0 (least significant)  
PS024317-0914  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F0823 Series  
Product Specification  
158  
On-Chip Debugger  
Z8 Encore! XP F0823 Series devices contain an integrated On-Chip Debugger (OCD)  
which provides advanced debugging features that include:  
Single pin interface  
Reading and writing of the register file  
Reading and writing of program and data memory  
Setting of breakpoints and watchpoints  
Executing eZ8 CPU instructions  
Debug pin sharing with general-purpose input-output function to maximize the pins  
available  
Architecture  
The on-chip debugger consists of four primary functional blocks: transmitter, receiver,  
auto-baud detector/generator, and debug controller. Figure 22 displays the architecture of  
the OCD.  
System Clock  
Auto-Baud  
Detector/Generator  
Transmitter  
Receiver  
Debug Controller  
DBG Pin  
Figure 22. On-Chip Debugger Block Diagram  
PS024317-0914  
P R E L I M I N A R Y  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
159  
Operation  
The following section describes the operation of the OCD.  
OCD Interface  
The OCD uses the DBG pin for communication with an external host. This one-pin inter-  
face is a bidirectional open-drain interface that transmits and receives data. Data transmis-  
sion is half-duplex, in that transmit and receive cannot occur simultaneously. The serial  
data on the DBG pin is sent using the standard asynchronous data format defined in RS-  
232. This pin creates an interface from the F0823 Series products to the serial port of a  
host PC using minimal external hardware.Two different methods for connecting the DBG  
pin to an RS-232 interface are displayed in Figure 23 and Figure 24. The recommended  
method is the buffered implementation depicted in Figure 24. The DBG pin has a internal  
pull-up resistor which is sufficient for some applications (for more details about the pull-  
up current, see the Electrical Characteristics chapter on page 198). For OCD operation at  
higher data rates or in noisy systems, Zilog recommends an external pull-up resistor.  
For operation of the OCD, all power pins (VDD and AVDD) must be supplied with power,  
and all ground pins (VSS and AVSS) must be properly grounded. The DBG pin is open-  
drain and may require an external pull-up resistor to ensure proper operation.  
Caution:  
VDD  
RS-232  
Transceiver  
10 k  
Schottky  
Diode  
RS-232 TX  
RS-232 RX  
DBG Pin  
Figure 23. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface, # 1 of 2  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
160  
VDD  
RS-232  
Transceiver  
10 k  
Open-Drain  
Buffer  
RS-232 TX  
RS-232 RX  
DBG Pin  
Figure 24. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface, # 2 of 2  
Debug Mode  
The operating characteristics of the devices in Debug Mode are:  
The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to ex-  
ecute specific instructions  
The system clock operates unless in Stop Mode  
All enabled on-chip peripherals operate unless in Stop Mode  
Automatically exits Halt Mode  
Constantly refreshes the Watchdog Timer, if enabled.  
Entering Debug Mode  
The device enters Debug Mode following the operations below:  
The device enters Debug Mode after the eZ8 CPU executes a BRK (breakpoint) in-  
struction  
If the DBG pin is held Low during the most recent clock cycle of System Reset, the part  
enters Debug Mode upon exiting System Reset  
Note: Holding the DBG pin Low for an additional 5000 (minimum) clock cycles after reset  
(making sure to account for any specified frequency error if using an internal oscillator)  
prevents a false interpretation of an autobaud sequence (see the OCD Autobaud Detector/  
Generator section on page 161).  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
161  
If the PA2/RESET pin is held Low while a 32-bit key sequence is issued to the PA0/  
DBG pin, the DBG feature is unlocked. After releasing PA2/RESET, it is pulled high.  
At this point, the PA0/DBG pin can be used to autobaud and cause the device to enter   
Debug Mode. For more details, see the OCD Unlock Sequence (8-Pin Devices Only)  
section on page 163.  
Exiting Debug Mode  
The device exits Debug Mode following any of these operations:  
Clearing the DBGMODE bit in the OCD Control Register to 0  
Power-On Reset  
Voltage Brown-Out reset  
Watchdog Timer reset  
Asserting the RESET pin Low to initiate a Reset  
Driving the DBG pin Low while the device is in Stop Mode initiates a system reset  
OCD Data Format  
The OCD interface uses the asynchronous data format defined for RS-232. Each character  
is transmitted as 1 Start bit, 8 data bits (least-significant bit first), and 1 Stop bit as dis-  
played in Figure 25.  
START  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop  
Figure 25. OCD Data Format  
Note: When responding to a request for data, the OCD may commence transmitting immediately  
after receiving the stop bit of an incoming frame. Therefore, when sending the stop bit, the  
host must not actively drive the DBG pin High for more than 0.5 bit times. Zilog recom-  
mends that, if possible, the host drives the DBG pin using an open-drain output.  
OCD Autobaud Detector/Generator  
To run over a range of baud rates (data bits per second) with various system clock frequen-  
cies, the OCD contains an auto-baud detector/generator. After a reset, the OCD is idle  
until it receives data. The OCD requires that the first character sent from the host is the  
character 80h. The character 80hhas eight continuous bits Low (one Start bit plus 7 data  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
162  
bits), framed between High bits. The auto-baud detector measures this period and sets the  
OCD baud rate generator accordingly.  
The auto-baud detector/generator is clocked by the system clock. The minimum baud rate  
is the system clock frequency divided by 512. For optimal operation with asynchronous  
datastreams, the maximum recommended baud rate is the system clock frequency divided  
by eight. The maximum possible baud rate for asynchronous datastreams is the system  
clock frequency divided by four, but this theoretical maximum is possible only for low  
noise designs with clean signals. Table 100 lists minimum and recommended maximum  
baud rates for sample crystal frequencies.  
Table 100. OCD Baud-Rate Limits  
Recommended  
Maximum Baud Rate  
(kbps)  
Recommended  
Standard PC Baud  
Rate (bps)  
System Clock  
Frequency (MHz)  
Minimum Baud Rate  
(kbps)  
5.5296  
1382.4  
4.096  
691,200  
2400  
1.08  
0.032768 (32kHz)  
0.064  
If the OCD receives a Serial Break (nine or more continuous bits Low) the auto-baud  
detector/generator resets. Reconfigure the auto-baud detector/generator by sending 80h.  
OCD Serial Errors  
The OCD detects any of the following error conditions on the DBG pin:  
Serial Break (a minimum of nine continuous bits Low)  
Framing Error (received Stop bit is Low)  
Transmit Collision (OCD and host simultaneous transmission detected by the OCD)  
When the OCD detects one of these errors, it aborts any command currently in progress,  
transmits a four character long Serial Break back to the host, and resets the auto-baud  
detector/generator. A Framing Error or Transmit Collision may be caused by the host  
sending a Serial Break to the OCD. Because of the open-drain nature of the interface,  
returning a Serial Break break back to the host only extends the length of the Serial Break  
if the host releases the Serial Break early.  
The host transmits a Serial Break on the DBG pin when first connecting to the F0823  
Series devices or when recovering from an error. A Serial Break from the host resets the  
auto-baud generator/detector but does not reset the OCD Control Register. A Serial Break  
leaves the device in Debug Mode if that is the current mode. The OCD is held in Reset  
until the end of the Serial Break when the DBG pin returns High. Because of the open-  
drain nature of the DBG pin, the host sends a Serial Break to the OCD even if the OCD is  
transmitting a character.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
163  
OCD Unlock Sequence (8-Pin Devices Only)  
Because of pin-sharing on the 8-pin device, an unlock sequence must be performed to  
access the DBG pin. If this sequence is not completed during a system reset, then the PA0/  
DBG pin functions only as a GPIO pin.  
The following sequence unlocks the DBG pin:  
1. Hold PA2/RESET Low.  
2. Wait 5 ms for the internal reset sequence to complete.  
3. Send the following bytes serially to the debug pin:  
DBG80h (autobaud)  
DBGEBh  
DBG5Ah  
DBG70h  
DBGCDh (32-bit unlock key)  
4. Release PA2/RESET. The PA0/DBG pin is now identical in function to that of the  
DBG pin on the 20- or 28-pin device. To enter Debug Mode, reautobaud and write  
80hto the OCD Control Register (see the On-Chip Debugger Commands section on  
page 164).  
Breakpoints  
Execution breakpoints are generated using the BRK instruction (opcode 00h). When the  
eZ8 CPU decodes a BRK instruction, it signals the OCD. If breakpoints are enabled, the  
OCD enters Debug Mode and idles the eZ8 CPU. If breakpoints are not enabled, the OCD  
ignores the BRK signal and the BRK instruction operates as an NOP instruction.  
Breakpoints in Flash Memory  
The BRK instruction is opcode 00h, which corresponds to the fully programmed state of a  
byte in Flash memory. To implement a breakpoint, write 00hto the required break  
address, overwriting the current instruction. To remove a breakpoint, the corresponding  
page of Flash memory must be erased and reprogrammed with the original data.  
Runtime Counter  
The OCD contains a 16-bit Runtime Counter. It counts system clock cycles between  
breakpoints. The counter starts counting when the OCD leaves Debug Mode and stops  
counting when it enters Debug Mode again or when it reaches the maximum count of  
FFFFh.  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
164  
On-Chip Debugger Commands  
The host communicates to the OCD by sending OCD commands using the DBG interface.  
During normal operation, only a subset of the OCD commands are available. In Debug  
Mode, all OCD commands become available unless the user code and control registers are  
protected by programming the Flash Read Protect Option bit (FRP). The Flash Read Pro-  
tect Option bit prevents the code in memory from being read out of Z8 Encore! XP F0823  
Series products. When this option is enabled, several of the OCD commands are disabled.  
Table 101 is a summary of the OCD commands. Each OCD command is described in fur-  
ther detail in the pages that follow this table. Table 102 on page 169 also indicates those  
commands that operate when the device is not in Debug Mode (normal operation) and  
those commands that are disabled by programming the Flash Read Protect Option bit.  
Table 101. OCD Commands  
Command Enabled when not Disabled by Flash Read Protect  
Debug Command  
Byte  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
in Debug Mode? Option Bit  
Read OCD Revision  
Reserved  
Yes  
Read OCD Status Register  
Read Runtime Counter  
Write OCD Control Register  
Read OCD Control Register  
Write Program Counter  
Read Program Counter  
Write Register  
Yes  
Yes  
Yes  
Cannot clear DBGMODE bit.  
Disabled.  
Disabled.  
Only writes of the Flash Memory Con-  
trol registers are allowed. Additionally,  
only the Mass Erase command is  
allowed to be written to the Flash Con-  
trol Register.  
Read Register  
09h  
0Ah  
Disabled.  
Disabled.  
Disabled.  
Yes.  
Write Program Memory  
Read Program Memory  
Write Data Memory  
Read Data Memory  
Read Program Memory CRC  
Reserved  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
Step Instruction  
10h  
Disabled.  
Disabled.  
Disabled.  
Stuff Instruction  
11h  
Execute Instruction  
Reserved  
12h  
13h–FFh  
PS024317-0914  
P R E L I M I N A R Y  
On-Chip Debugger Commands  
Z8 Encore! XP® F0823 Series  
Product Specification  
165  
In the following list of OCD Commands, data and commands sent from the host to the  
OCD are identified by ’DBG Command/Data’. Data sent from the OCD back to the  
host is identified by ’DBG Data’.  
Read OCD Revision (00h). The Read OCD Revision command determines the version of  
the OCD. If OCD commands are added, removed, or changed, this revision number  
changes.  
DBG 00h  
DBG OCDRev[15:8] (Major revision number)  
DBG OCDRev[7:0] (Minor revision number)  
Read OCD Status Register (02h). The Read OCD Status Register command reads the  
OCDSTAT Register.  
DBG 02h  
DBG OCDSTAT[7:0]  
Read Runtime Counter (03h). The Runtime Counter counts system clock cycles in  
between breakpoints. The 16-bit Runtime Counter counts up from 0000hand stops at the  
maximum count of FFFFh. The Runtime Counter is overwritten during the Write Memory,  
Read Memory, Write Register, Read Register, Read Memory CRC, Step Instruction, Stuff  
Instruction, and Execute Instruction commands.  
DBG 03h  
DBG RuntimeCounter[15:8]  
DBG RuntimeCounter[7:0]  
Write OCD Control Register (04h). The Write OCD Control Register command writes  
the data that follows to the OCDCTL register. When the Flash Read Protect Option Bit is  
enabled, the DBGMODE bit (OCDCTL[7]) can only be set to 1, it cannot be cleared to 0  
and the only method of returning the device to normal operating mode is to reset the  
device.  
DBG 04h  
DBG OCDCTL[7:0]  
Read OCD Control Register (05h). The Read OCD Control Register command reads the  
value of the OCDCTL register.  
DBG 05h  
DBG OCDCTL[7:0]  
Write Program Counter (06h). The Write Program Counter command writes the data that  
follows to the eZ8 CPU’s Program Counter (PC). If the device is not in Debug Mode or if  
the Flash Read Protect Option bit is enabled, the Program Counter (PC) values are dis-  
carded.  
DBG 06h  
DBG ProgramCounter[15:8]  
DBG ProgramCounter[7:0]  
PS024317-0914  
P R E L I M I N A R Y  
On-Chip Debugger Commands  
Z8 Encore! XP® F0823 Series  
Product Specification  
166  
Read Program Counter (07h). The Read Program Counter command reads the value in  
the eZ8 CPU’s Program Counter (PC). If the device is not in Debug Mode or if the Flash  
Read Protect Option bit is enabled, this command returns FFFFh.  
DBG 07h  
DBG ProgramCounter[15:8]  
DBG ProgramCounter[7:0]  
Write Register (08h). The Write Register command writes data to the Register File. Data  
can be written 1–256 bytes at a time (256 bytes can be written by setting size to 0). If the  
device is not in Debug Mode, the address and data values are discarded. If the Flash Read  
Protect Option bit is enabled, only writes to the Flash Control Registers are allowed and  
all other register write data values are discarded.  
DBG 08h  
DBG {4’h0,Register Address[11:8]}  
DBG Register Address[7:0]  
DBG Size[7:0]  
DBG 1–256 data bytes  
Read Register (09h). The Read Register command reads data from the Register File.  
Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the  
device is not in Debug Mode or if the Flash Read Protect Option bit is enabled, this com-  
mand returns FFhfor all the data values.  
DBG 09h  
DBG {4’h0,Register Address[11:8]  
DBG Register Address[7:0]  
DBG Size[7:0]  
DBG 1–256 data bytes  
Write Program Memory (0Ah). The Write Program Memory command writes data to  
Program Memory. This command is equivalent to the LDC and LDCI instructions. Data  
can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0).  
The on-chip Flash Controller must be written to and unlocked for the programming opera-  
tion to occur. If the Flash Controller is not unlocked, the data is discarded. If the device is  
not in Debug Mode or if the Flash Read Protect Option bit is enabled, the data is dis-  
carded.  
DBG 0Ah  
DBG Program Memory Address[15:8]  
DBG Program Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1–65536 data bytes  
Read Program Memory (0Bh). The Read Program Memory command reads data from  
Program Memory. This command is equivalent to the LDC and LDCI instructions. Data  
can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If the  
device is not in Debug Mode or if the Flash Read Protect Option Bit is enabled, this com-  
mand returns FFhfor the data.  
PS024317-0914  
P R E L I M I N A R Y  
On-Chip Debugger Commands  
Z8 Encore! XP® F0823 Series  
Product Specification  
167  
DBG 0Bh  
DBG Program Memory Address[15:8]  
DBG Program Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1–65536 data bytes  
Write Data Memory (0Ch). The Write Data Memory command writes data to Data Mem-  
ory. This command is equivalent to the LDE and LDEI instructions. Data can be written  
1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is  
not in Debug Mode or if the Flash Read Protect Option Bit is enabled, the data is dis-  
carded.  
DBG 0Ch  
DBG Data Memory Address[15:8]  
DBG Data Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1–65536 data bytes  
Read Data Memory (0Dh). The Read Data Memory command reads from Data Memory.  
This command is equivalent to the LDE and LDEI instructions. Data can be read 1 to  
65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in  
Debug Mode, this command returns FFhfor the data.  
DBG 0Dh  
DBG Data Memory Address[15:8]  
DBG Data Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1–65536 data bytes  
Read Program Memory CRC (0Eh). The Read Program Memory Cyclic Redundancy  
Check (CRC) command computes and returns the CRC of Program Memory using the 16-  
bit CRC-CCITT polynomial. If the device is not in Debug Mode, this command returns  
FFFFhfor the CRC value. Unlike most other OCD Read commands, there is a delay from  
issuing of the command until the OCD returns the data. The OCD reads the Program  
Memory, calculates the CRC value, and returns the result. The delay is a function of the  
Program Memory size and is approximately equal to the system clock period multiplied by  
the number of bytes in the Program Memory.  
DBG 0Eh  
DBG CRC[15:8]  
DBG CRC[7:0]  
Step Instruction (10h). The Step Instruction steps one assembly instruction at the current  
Program Counter (PC) location. If the device is not in Debug Mode or the Flash Read Pro-  
tect Option bit is enabled, the OCD ignores this command.  
DBG 10h  
PS024317-0914  
P R E L I M I N A R Y  
On-Chip Debugger Commands  
Z8 Encore! XP® F0823 Series  
Product Specification  
168  
Stuff Instruction (11h). The Stuff command steps one assembly instruction and allows  
specification of the first byte of the instruction. The remaining 0–4 bytes of the instruction  
are read from Program Memory. This command is useful for stepping over instructions  
where the first byte of the instruction has been overwritten by a Breakpoint. If the device  
is not in Debug Mode or the Flash Read Protect Option bit is enabled, the OCD ignores  
this command.  
DBG 11h  
DBG opcode[7:0]  
Execute Instruction (12h). The Execute command allows sending an entire instruction to  
be executed to the eZ8 CPU. This command can also step over breakpoints. The number  
of bytes to send for the instruction depends on the opcode. If the device is not in Debug  
Mode or the Flash Read Protect Option bit is enabled, this command reads and discards  
one byte.  
DBG 12h  
DBG 1–5 byte opcode  
On-Chip Debugger Control Register Definitions  
This section describes the features of the On-Chip Debugger Control and Status registers.  
OCD Control Register  
The OCD Control Register controls the state of the OCD. This register is used to enter or  
exit Debug Mode and to enable the BRK instruction. It also resets Z8 Encore! XP F0823  
Series device.  
A reset and stop function can be achieved by writing 81hto this register. A reset and go  
function can be achieved by writing 41hto this register. If the device is in Debug Mode, a  
run function can be implemented by writing 40hto this register.  
PS024317-0914  
P R E L I M I N A R Y  
On-Chip Debugger Control Register  
Z8 Encore! XP® F0823 Series  
Product Specification  
169  
Table 102. OCD Control Register (OCDCTL)  
Bit  
7
6
5
4
3
2
1
0
DBGMODE BRKEN DBGACK  
Reserved  
RST  
Field  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R
R
R
R
R/W  
Bit  
Description  
Debug Mode  
[7]  
DBGMODE The device enters Debug Mode when this bit is 1. When in Debug Mode, the eZ8 CPU stops  
fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is auto-  
matically set when a BRK instruction is decoded and breakpoints are enabled. If the Flash  
Read Protect Option Bit is enabled, this bit can only be cleared by resetting the device. It  
cannot be written to 0.  
0 = F0823 Series device is operating in Normal Mode.  
1 = F0823 Series device is in Debug Mode.  
[6]  
BRKEN  
Breakpoint Enable  
This bit controls the behavior of the BRK instruction (opcode 00h). By default, breakpoints  
are disabled and the BRK instruction behaves similar to an NOP instruction. If this bit is 1,  
when a BRK instruction is decoded, the DBGMODE bit of the OCDCTL register is automati-  
cally set to 1.  
0 = Breakpoints are disabled.  
1 = Breakpoints are enabled.  
[5]  
DBGACK  
Debug Acknowledge  
This bit enables the debug acknowledge feature. If this bit is set to 1, the OCD sends a  
Debug Acknowledge character (FFh) to the host when a Breakpoint occurs.  
0 = Debug Acknowledge is disabled.  
1 = Debug Acknowledge is enabled.  
[4:1]  
Reserved  
These bits are reserved and must be 00000 when read.  
[0]  
RST  
Reset  
Setting this bit to 1 resets the Z8F04xA family device. The device goes through a normal  
Power-On Reset sequence with the exception that the OCD is not reset. This bit is automat-  
ically cleared to 0 at the end of reset.  
0 = No effect.  
1 = Reset the Flash Read Protect Option Bit device.  
PS024317-0914  
P R E L I M I N A R Y  
On-Chip Debugger Control Register  
Z8 Encore! XP® F0823 Series  
Product Specification  
170  
OCD Status Register  
The OCD Status Register reports status information about the current state of the debugger  
and the system.  
Table 103. OCD Status Register (OCDSTAT)  
Bit  
7
6
5
4
3
2
1
0
DBG  
HALT  
FRPENB  
Reserved  
Field  
RESET  
R/W  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Bit  
Description  
[7]  
DBG  
Debug Status  
0 = Normal Mode.  
1 = Debug Mode.  
[6]  
HALT  
Halt Mode  
0 = Not in Halt Mode.  
1 = In Halt Mode.  
[5]  
Flash Read Protect Option Bit Enable  
FRPENB 0 = FRP bit enabled to allow disabling of many OCD commands.  
1 = FRP bit has no effect.  
[4:0]  
Reserved  
These bits are reserved and must be 00000 when read.  
PS024317-0914  
P R E L I M I N A R Y  
On-Chip Debugger Control Register  
Z8 Encore! XP® F0823 Series  
Product Specification  
171  
Oscillator Control  
Z8 Encore! XP F0823 Series devices uses three possible clocking schemes, each user-  
selectable. These three schemes are:  
On-chip precision trimmed RC oscillator  
External clock drive  
On-chip low power Watchdog Timer oscillator  
In addition, F0823 Series devices contain clock failure detection and recovery circuitry,  
which allow continued operation despite a failure of the primary oscillator.  
Operation  
This chapter discusses the logic used to select the system clock and handle primary oscil-  
lator failures. A description of the specific operation of each oscillator is outlined else-  
where in this document.  
System Clock Selection  
The oscillator control block selects from the available clocks. Table 104 details each clock  
source and its usage.  
Table 104. Oscillator Configuration and Selection  
Clock Source  
Characteristics  
Required Setup  
Internal Precision  
RC Oscillator  
• 32.8kHz or 5.53MHz  
• ± 4% accuracy when trimmed  
• No external components required  
• Unlock and write Oscillator Control  
Register (OSCCTL) to enable and  
select oscillator at either 5.53MHz or  
32.8kHz  
External Clock  
Drive  
• 0 to 20MHz  
• Accuracy dependent on external clock  
source  
• Write GPIO registers to configure PB3  
pin for external clock function  
• Unlock and write OSCCTL to select  
external system clock  
• Apply external clock signal to GPIO  
Internal Watchdog • 10kHz nominal  
• Enable WDT if not enabled and wait  
until WDT Oscillator is operating.  
• Unlock and write Oscillator Control  
Register (OSCCTL) to enable and  
select oscillator  
Timer Oscillator  
• ± 40% accuracy; no external compo-  
nents required  
• Very Low power consumption  
PS024317-0914  
P R E L I M I N A R Y  
Oscillator Control  
Z8 Encore! XP® F0823 Series  
Product Specification  
172  
Unintentional accesses to the Oscillator Control Register can actually stop the chip by  
switching to a non-functioning oscillator. To prevent this condition, the oscillator control  
block employs a register unlocking/locking scheme.  
Caution:  
OSC Control Register Unlocking/Locking  
To write to the Oscillator Control Register, unlock it by making two writes to the OSC-  
CTL Register with the values E7hfollowed by 18h. A third write to the OSCCTL Regis-  
ter changes the value of the actual register and returns the register to a locked state. Any  
other sequence of Oscillator Control Register writes has no effect. The values written to  
unlock the register must be ordered correctly, but are not necessarily consecutive. It is pos-  
sible to write to or read from other registers within the unlocking/locking operation.  
When selecting a new clock source, the primary oscillator failure detection circuitry and  
the Watchdog Timer oscillator failure circuitry must be disabled. If POFEN and WOFEN  
are not disabled prior to a clock switch-over, it is possible to generate an interrupt for a  
failure of either oscillator. The Failure detection circuitry can be enabled anytime after a  
successful write of OSCSEL in the Oscillator Control Register.  
The internal precision oscillator is enabled by default. If the user code changes to a differ-  
ent oscillator, it is appropriate to disable the IPO for power savings. Disabling the IPO  
does not occur automatically.  
Clock Failure Detection and Recovery  
Should an oscillator or timer fail, there are methods of recovery, as this section describes.  
Primary Oscillator Failure  
Z8 Encore! XP F0823 Series devices can generate non-maskable interrupt-like events  
when the primary oscillator fails. To maintain system function in this situation, the clock  
failure recovery circuitry automatically forces the Watchdog Timer oscillator to drive the  
system clock. The Watchdog Timer oscillator must be enabled to allow the recovery.  
Although this oscillator runs at a much slower speed than the original system clock, the  
CPU continues to operate, allowing execution of a clock failure vector and software rou-  
tines that either remedy the oscillator failure or issue a failure alert. This automatic switch-  
over is not available if the Watchdog Timer is the primary oscillator. It is also unavailable  
if the Watchdog Timer oscillator is disabled, though it is not necessary to enable the  
Watchdog Timer reset function outlined in the the Watchdog Timer section on page 91.  
The primary oscillator failure detection circuitry asserts if the system clock frequency  
drops below 1kHz ±50%. If an external signal is selected as the system oscillator, it is pos-  
sible that a very slow but non-failing clock can generate a failure condition. Under these  
PS024317-0914  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F0823 Series  
Product Specification  
173  
conditions, do not enable the clock failure circuitry (POFEN must be deasserted in the  
OSCCTL Register).  
Watchdog Timer Failure  
In the event of a Watchdog Timer oscillator failure, a similar non-maskable interrupt-like  
event is issued. This event does not trigger an attendant clock switch-over, but alerts the  
CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a pri-  
mary oscillator failure. The failure detection circuitry does not function if the Watchdog  
Timer is used as the primary oscillator or if the Watchdog Timer oscillator has been dis-  
abled. For either of these cases, it is necessary to disable the detection circuitry by deas-  
serting the WDFEN bit of the OSCCTL Register.  
The Watchdog Timer oscillator failure detection circuit counts system clocks while  
searching for a Watchdog Timer clock. The logic counts 8004 system clock cycles before  
determining that a failure has occurred. The system clock rate determines the speed at  
which the Watchdog Timer failure can be detected. A very slow system clock results in  
very slow detection times.  
It is possible to disable the clock failure detection circuitry as well as all functioning  
clock sources. In this case, the Z8 Encore! XP F0823 Series device ceases functioning  
and can only be recovered by Power-On Reset.  
Caution:  
Oscillator Control Register Definitions  
The following section provides the bit definitions for the Oscillator Control Register.  
Oscillator Control Register  
The Oscillator Control Register (OSCCTL) enables/disables the various oscillator circuits,  
enables/disables the failure detection/recovery circuitry and selects the primary oscillator,  
which becomes the system clock.  
The Oscillator Control Register must be unlocked before writing. Writing the two step  
sequence E7hfollowed by 18hto the Oscillator Control Register unlocks it. The register  
is locked at successful completion of a register write to the OSCCTL.  
PS024317-0914  
P R E L I M I N A R Y  
Oscillator Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
174  
Table 105. Oscillator Control Register (OSCCTL)  
Bit  
7
6
5
4
3
2
1
0
INTEN  
Reserved WDTEN  
POFEN  
WDFEN  
SCKSEL  
Field  
1
0
1
0
0
0
0
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F86h  
Address  
Bit  
Description  
[7]  
INTEN  
Internal Precision Oscillator Enable  
1 = Internal precision oscillator is enabled.  
0 = Internal precision oscillator is disabled.  
[6]  
Reserved  
This bit is reserved and must be programmed to 0 during writes and to 0 when read.  
[5]  
Watchdog Timer Oscillator Enable  
WDTEN 1 = Watchdog Timer oscillator is enabled.  
0 = Watchdog Timer oscillator is disabled.  
[4]  
Primary Oscillator Failure Detection Enable  
POFEN 1 = Failure detection and recovery of primary oscillator is enabled.  
0 = Failure detection and recovery of primary oscillator is disabled.  
[3]  
Watchdog Timer Oscillator Failure Detection Enable  
WDFEN 1 = Failure detection of Watchdog Timer oscillator is enabled.  
0 = Failure detection of Watchdog Timer oscillator is disabled.  
[2:0]  
System Clock Oscillator Select  
SCKSEL 000 = Internal precision oscillator functions as system clock at 5.53MHz.  
001 = Internal precision oscillator functions as system clock at 32kHz.  
010 = Reserved.  
011 = Watchdog Timer oscillator functions as system clock.  
100 = External clock signal on PB3 functions as system clock.  
101 = Reserved.  
110 = Reserved.  
111 = Reserved.  
PS024317-0914  
P R E L I M I N A R Y  
Oscillator Control Register Definitions  
Z8 Encore! XP® F0823 Series  
Product Specification  
175  
Internal Precision Oscillator  
The internal precision oscillator (IPO) is designed for use without external components.  
You can either manually trim the oscillator for a non-standard frequency or use the auto-  
matic factory-trimmed version to achieve a 5.53MHz frequency. The features of IPO  
include:  
On-chip RC oscillator that does not require external components  
Output frequency of either 5.53MHz or 32.8kHz (contains both a fast and a slow mode)  
Trimming possible through Flash option bits with user override  
Elimination of crystals or ceramic resonators in applications where high timing accu-  
racy is not required  
Operation  
An 8-bit trimming register, incorporated into the design, compensates for absolute varia-  
tion of oscillator frequency. Once trimmed the oscillator frequency is stable and does not  
require subsequent calibration. Trimming is performed during manufacturing and is not  
necessary for you to repeat unless a frequency other than 5.53MHz (fast mode) or  
32.8kHz (slow mode) is required. This trimming is done at +30°C and a supply voltage of  
3.3 V, so accuracy of this operating point is optimal.  
Power down this block for minimum system power. By default, the oscillator is configured  
through the Flash Option bits. However, the user code can override these trim values, as  
described in the Trim Bit Address Space section on page 153.  
Select one of the two frequencies for the oscillator: 5.53MHz and 32.8kHz, using the  
OSCSEL bits in the Oscillator Control chapter on page 171.  
PS024317-0914  
P R E L I M I N A R Y  
Internal Precision Oscillator  
Z8 Encore! XP® F0823 Series  
Product Specification  
176  
eZ8 CPU Instruction Set  
This chapter describes the following features of the eZ8 CPU instruction set:  
Assembly Language Programming Introduction: see page 176  
Assembly Language Syntax: see page 177  
eZ8 CPU Instruction Notation: see page 178  
eZ8 CPU Instruction Classes: see page 180  
eZ8 CPU Instruction Summary: see page 184  
Assembly Language Programming Introduction  
The eZ8 CPU assembly language provides a means for writing an application program  
without concern for actual memory addresses or machine instruction formats. A program  
written in assembly language is called a source program. Assembly language allows the  
use of symbolic addresses to identify memory locations. It also allows mnemonic codes  
(opcodes and operands) to represent the instructions themselves. The opcodes identify the  
instruction while the operands represent memory locations, registers, or immediate data  
values.  
Each assembly language program consists of a series of symbolic commands called state-  
ments. Each statement can contain labels, operations, operands, and comments.  
Labels are assigned to a particular instruction step in a source program. The label identi-  
fies that step in the program as an entry point for use by other instructions.  
The assembly language also includes assembler directives that supplement the machine  
instruction. The assembler directives, or pseudo-ops, are not translated into a machine  
instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the  
assembly process.  
The source program is processed (assembled) by the assembler to obtain a machine lan-  
guage program called the object code. The object code is executed by the eZ8 CPU. An  
example segment of an assembly language program is detailed in the following example.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
177  
Assembly Language Source Program Example  
; Everything after the semicolon is a comment.  
JP START  
START:  
; A label called ‘START’. The first instruction (JP START) in this  
; example causes program execution to jump to the point within the  
; program where the START label occurs.  
LD R4, R7  
; A Load (LD) instruction with two operands. The first operand,  
; Working Register R4, is the destination. The second operand,  
; Working Register R7, is the source. The contents of R7 is  
; written into R4.  
LD 234h, #%01  
; Another Load (LD) instruction with two operands.  
; The first operand, Extended Mode Register Address 234h,  
; identifies the destination. The second operand, Immediate Data  
; value 01h, is the source. The value 01his written into the  
; Register at address 234h.  
Assembly Language Syntax  
For proper instruction execution, eZ8 CPU assembly language syntax requires that the  
operands be written as ‘destination, source’. After assembly, the object code usually has  
the operands in the order ‘source, destination’, but ordering is opcode-dependent. The fol-  
lowing instruction examples illustrate the format of some basic assembly instructions and  
the resulting object code produced by the assembler. You must follow this binary format if  
you prefer manual program coding or intend to implement your own assembler.  
Example 1  
If the contents of registers 43hand 08hare added and the result is stored in 43h, the  
assembly syntax and resulting object code is shown in Table 106.  
Table 106. Assembly Language Syntax Example 1  
Assembly Language Code  
Object Code  
ADD  
04  
43h,  
08  
08h  
43  
(ADD dst, src)  
(OPC src, dst)  
Example 2  
In general, when an instruction format requires an 8-bit register address, that address can  
specify any register location in the range 0–255 or, using Escaped Mode Addressing, a  
Working Register R0–R15. If the contents of Register 43hand Working Register R8 are  
added and the result is stored in 43h, the assembly syntax and resulting object code is  
shown in Table 107.  
PS024317-0914  
P R E L I M I N A R Y  
Assembly Language Syntax  
Z8 Encore! XP® F0823 Series  
Product Specification  
178  
Table 107. Assembly Language Syntax Example 2  
Assembly Language Code  
Object Code  
ADD  
04  
43h,  
E8  
R8  
43  
(ADD dst, src)  
(OPC src, dst)  
See the device-specific Z8 Encore! XP Product Specification to determine the exact regis-  
ter file range available. The register file size varies, depending on the device type.  
eZ8 CPU Instruction Notation  
In the eZ8 CPU Instruction Summary and Description sections, the operands, condition  
codes, status flags, and address modes are represented by a notational shorthand that is  
noted in Table 108.  
Table 108. Notational Shorthand  
Notation Description  
Operand Range  
b
Bit  
b
b represents a value from 0 to 7 (000B to 111B).  
cc  
Condition Code  
See the Condition Codes overview in the eZ8 CPU  
Core User Manual (UM0128).  
DA  
ER  
Direct Address  
Addrs  
Addrs represents a number in the range of 0000h  
to FFFFh.  
Extended Addressing Register Reg  
Reg represents a number in the range of 000h to  
FFFh.  
IM  
Ir  
Immediate Data  
#Data  
Data is a number between 00h to FFh.  
n = 0–15.  
Indirect Working Register  
Indirect Register  
@Rn  
IR  
@Reg  
Reg. represents a number in the range of 00h to  
FFh.  
Irr  
Indirect Working Register Pair @RRp  
p = 0, 2, 4, 6, 8, 10, 12, or 14.  
IRR  
Indirect Register Pair  
@Reg  
Reg represents an even number in the range 00h  
to FEh.  
p
Polarity  
p
Polarity is a single bit binary value of either 0B or  
1B.  
r
Working Register  
Register  
Rn  
n = 0–15.  
R
Reg  
Reg. represents a number in the range of 00h to  
FFh.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Notation  
Z8 Encore! XP® F0823 Series  
Product Specification  
179  
Table 108. Notational Shorthand (Continued)  
Operand Range  
Notation Description  
RA  
Relative Address  
X
X represents an index in the range of +127 to –128  
which is an offset relative to the address of the  
next instruction  
rr  
Working Register Pair  
Register Pair  
RRp  
Reg  
p = 0, 2, 4, 6, 8, 10, 12, or 14.  
RR  
Reg. represents an even number in the range of  
00h to FEh.  
Vector  
X
Vector Address  
Indexed  
Vector  
#Index  
Vector represents a number in the range of 00h to  
FFh.  
The register or register pair to be indexed is offset  
by the signed Index value (#Index) in a +127 to   
–128 range.  
Table 109 lists additional symbols that are used throughout the Instruction Summary and  
Instruction Set Description sections.  
Table 109. Additional Symbols  
Symbol  
dst  
src  
@
Definition  
Destination Operand  
Source Operand  
Indirect Address Prefix  
Stack Pointer  
SP  
PC  
FLAGS  
RP  
#
Program Counter  
Flags Register  
Register Pointer  
Immediate Operand Prefix  
Binary Number Suffix  
Hexadecimal Number Prefix  
Hexadecimal Number Suffix  
B
%
H
Assignment of a value is indicated by an arrow, as shown in the following example.  
dst dst + src  
This example indicates that the source data is added to the destination data; the result is  
stored in the destination location.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Notation  
Z8 Encore! XP® F0823 Series  
Product Specification  
180  
eZ8 CPU Instruction Classes  
eZ8 CPU instructions are divided functionally into the following groups:  
Arithmetic  
Bit Manipulation  
Block Transfer  
CPU Control  
Load  
Logical  
Program Control  
Rotate and Shift  
Tables 110 through 117 contain the instructions belonging to each group and the number  
of operands required for each instruction. Some instructions appear in more than one table  
as these instruction can be considered as a subset of more than one category. Within these  
tables, the source operand is identified as ‘src’, the destination operand is ‘dst’ and a con-  
dition code is ‘cc’.  
Table 110. Arithmetic Instructions  
Mnemonic  
ADC  
Operands  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst  
Instruction  
Add with Carry  
ADCX  
ADD  
Add with Carry using Extended Addressing  
Add  
ADDX  
CP  
Add using Extended Addressing  
Compare  
CPC  
Compare with Carry  
Compare with Carry using Extended Addressing  
Compare using Extended Addressing  
Decimal Adjust  
CPCX  
CPX  
DA  
DEC  
dst  
Decrement  
DECW  
INC  
dst  
Decrement Word  
dst  
Increment  
INCW  
dst  
Increment Word  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Classes  
Z8 Encore! XP® F0823 Series  
Product Specification  
181  
Table 110. Arithmetic Instructions (Continued)  
Mnemonic  
MULT  
SBC  
Operands  
dst  
Instruction  
Multiply  
dst, src  
dst, src  
dst, src  
dst, src  
Subtract with Carry  
SBCX  
SUB  
Subtract with Carry using Extended Addressing  
Subtract  
SUBX  
Subtract using Extended Addressing  
Table 111. Bit Manipulation Instructions  
Mnemonic  
BCLR  
BIT  
Operands  
bit, dst  
p, bit, dst  
bit, dst  
dst  
Instruction  
Bit Clear  
Bit Set or Clear  
Bit Set  
BSET  
BSWAP  
CCF  
Bit Swap  
Complement Carry Flag  
Reset Carry Flag  
Set Carry Flag  
Test Complement Under Mask  
RCF  
SCF  
TCM  
dst, src  
dst, src  
TCMX  
Test Complement Under Mask using Extended  
Addressing  
TM  
dst, src  
dst, src  
Test Under Mask  
TMX  
Test Under Mask using Extended Addressing  
Table 112. Block Transfer Instructions  
Mnemonic  
Operands  
Instruction  
LDCI  
dst, src  
Load Constant to/from Program Memory and Auto-  
Increment Addresses  
LDEI  
dst, src  
Load External Data to/from Data Memory and Auto-  
Increment Addresses  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Classes  
Z8 Encore! XP® F0823 Series  
Product Specification  
182  
Table 113. CPU Control Instructions  
Mnemonic  
ATM  
CCF  
DI  
Operands  
Instruction  
src  
Atomic Execution  
Complement Carry Flag  
Disable Interrupts  
Enable Interrupts  
HALT Mode  
EI  
HALT  
NOP  
RCF  
SCF  
No Operation  
Reset Carry Flag  
Set Carry Flag  
SRP  
STOP  
WDT  
Set Register Pointer  
Stop Mode  
Watchdog Timer Refresh  
Table 114. Load Instructions  
Mnemonic  
CLR  
Operands  
dst  
Instruction  
Clear  
LD  
dst, src  
dst, src  
dst, src  
Load  
LDC  
Load Constant to/from Program Memory  
LDCI  
Load Constant to/from Program Memory and Auto-  
Increment Addresses  
LDE  
dst, src  
dst, src  
Load External Data to/from Data Memory  
LDEI  
Load External Data to/from Data Memory and Auto-  
Increment Addresses  
LDWX  
LDX  
dst, src  
dst, src  
dst, X(src)  
dst  
Load Word using Extended Addressing  
Load using Extended Addressing  
Load Effective Address  
Pop  
LEA  
POP  
POPX  
PUSH  
PUSHX  
dst  
Pop using Extended Addressing  
Push  
src  
src  
Push using Extended Addressing  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Classes  
Z8 Encore! XP® F0823 Series  
Product Specification  
183  
Table 115. Logical Instructions  
Mnemonic  
AND  
Operands  
dst, src  
dst, src  
dst  
Instruction  
Logical AND  
ANDX  
COM  
Logical AND using Extended Addressing  
Complement  
OR  
dst, src  
dst, src  
dst, src  
dst, src  
Logical OR  
ORX  
Logical OR using Extended Addressing  
Logical Exclusive OR  
XOR  
XORX  
Logical Exclusive OR using Extended Addressing  
Table 116. Program Control Instructions  
Mnemonic  
BRK  
Operands  
Instruction  
On-Chip Debugger Break  
BTJ  
p, bit, src, DA Bit Test and Jump  
BTJNZ  
BTJZ  
CALL  
DJNZ  
IRET  
JP  
bit, src, DA  
Bit Test and Jump if Non-Zero  
bit, src, DA  
Bit Test and Jump if Zero  
Call Procedure  
dst  
dst, src, RA  
Decrement and Jump Non-Zero  
Interrupt Return  
Jump  
dst  
dst  
DA  
DA  
JP cc  
JR  
Jump Conditional  
Jump Relative  
JR cc  
RET  
Jump Relative Conditional  
Return  
TRAP  
vector  
Software Trap  
Table 117. Rotate and Shift Instructions  
Mnemonic  
BSWAP  
RL  
Operands  
Instruction  
dst  
dst  
dst  
Bit Swap  
Rotate Left  
RLC  
Rotate Left through Carry  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Classes  
Z8 Encore! XP® F0823 Series  
Product Specification  
184  
Table 117. Rotate and Shift Instructions (Continued)  
Mnemonic  
RR  
Operands  
Instruction  
dst  
dst  
dst  
dst  
dst  
Rotate Right  
RRC  
Rotate Right through Carry  
Shift Right Arithmetic  
Shift Right Logical  
Swap Nibbles  
SRA  
SRL  
SWAP  
eZ8 CPU Instruction Summary  
Table 118 summarizes the eZ8 CPU instruction set. The table identifies the addressing  
modes employed by the instruction, the effect upon the Flags Register, the number of CPU  
clock cycles required for the instruction fetch, and the number of CPU clock cycles  
required for the instruction execution.  
.
Table 118. eZ8 CPU Instruction Summary  
Address  
Mode  
Symbolic Operation dst src  
Flags  
C Z S V D H Cycles Cycles  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
ADC dst, src  
dst dst + src + C  
r
r
r
12  
13  
14  
15  
16  
17  
18  
19  
*
*
*
*
0
*
2
2
3
3
3
3
4
4
3
4
3
4
3
4
3
3
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
ADCX dst, src  
dst dst + src + C  
*
*
*
*
0
*
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F0823 Series  
Product Specification  
185  
Table 118. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
C Z S V D H Cycles Cycles  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
ADD dst, src  
dst dst + src  
r
r
r
02  
03  
04  
05  
06  
07  
08  
09  
52  
53  
54  
55  
56  
57  
58  
59  
2F  
*
*
*
*
0
*
2
2
3
3
3
3
4
4
2
2
3
3
3
3
4
4
1
3
4
3
4
3
4
3
3
3
4
3
4
3
4
3
3
2
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
r
R
IR  
ER  
ER  
r
ADDX dst, src  
AND dst, src  
dst dst + src  
*
*
*
*
*
*
0
*
dst dst AND src  
0
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
ANDX dst, src  
ATM  
dst dst AND src  
*
*
0
Block all interrupt and  
DMA requests during  
execution of the next  
3 instructions  
BCLR bit, dst  
BIT p, bit, dst  
BRK  
dst[bit] 0  
r
r
E2  
E2  
00  
E2  
D5  
F6  
F7  
X
*
*
0
0
0
2
2
1
2
2
3
3
2
2
1
2
2
3
4
dst[bit] p  
Debugger Break  
dst[bit] 1  
BSET bit, dst  
BSWAP dst  
r
dst[7:0] dst[0:7]  
R
BTJ p, bit, src, if src[bit] = p  
dst  
r
PC PC + X  
Ir  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F0823 Series  
Product Specification  
186  
Table 118. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
C Z S V D H Cycles Cycles  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
BTJNZ bit, src, if src[bit] = 1  
r
Ir  
r
F6  
F7  
F6  
F7  
D4  
D6  
3
3
3
3
2
3
3
4
3
4
6
3
dst  
PC PC + X  
BTJZ bit, src,  
dst  
if src[bit] = 0  
PC PC + X  
Ir  
CALL dst  
SP SP –2  
@SP PC  
PC dst  
IRR  
DA  
CCF  
C ~C  
EF  
B0  
*
– –-  
1
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
5
5
4
4
2
2
3
2
3
3
4
3
4
3
4
3
4
3
4
3
4
3
3
3
3
CLR dst  
dst 00h  
R
IR  
R
B1  
COM dst  
dst ~dst  
60  
*
*
*
*
*
0
*
IR  
r
61  
CP dst, src  
dst - src  
r
A2  
r
Ir  
A3  
R
R
A4  
R
IR  
IM  
IM  
r
A5  
R
A6  
IR  
r
A7  
CPC dst, src  
dst - src - C  
1F A2  
1F A3  
1F A4  
1F A5  
1F A6  
1F A7  
1F A8  
1F A9  
A8  
*
*
*
*
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
ER  
IM  
R
IR  
ER  
ER  
ER  
ER  
CPCX dst, src  
CPX dst, src  
dst - src - C  
dst - src  
*
*
*
*
*
*
*
*
A9  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F0823 Series  
Product Specification  
187  
Table 118. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
C Z S V D H Cycles Cycles  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
DA dst  
dst DA(dst)  
dst dst - 1  
dst dst - 1  
IRQCTL[7] 0  
R
IR  
40  
41  
*
*
*
*
*
*
*
X
2
2
2
2
2
2
1
2
2
3
2
3
5
6
2
3
DEC dst  
DECW dst  
R
30  
*
IR  
31  
RR  
IRR  
80  
*
81  
DI  
8F  
DJNZ dst, RA  
dst dst – 1  
if dst 0  
r
0A–FA  
PC PC + X  
EI  
IRQCTL[7] 1  
HALT Mode  
9F  
7F  
*
*
1
1
2
2
1
2
2
1
2
2
2
3
2
5
6
5
HALT  
INC dst  
dst dst + 1  
R
IR  
20  
21  
r
0E-FE  
A0  
INCW dst  
IRET  
dst dst + 1  
RR  
IRR  
*
*
*
*
*
*
*
*
*
A1  
FLAGS @SP  
SP SP + 1  
PC @SP  
BF  
SP SP + 2  
IRQCTL[7] 1  
JP dst  
PC dst  
DA  
IRR  
DA  
8D  
C4  
3
2
3
2
3
2
JP cc, dst  
if cc is true  
PC dst  
0D-FD  
JR dst  
PC PC + X  
DA  
DA  
8B  
2
2
2
2
JR cc, dst  
if cc is true  
0B-FB  
PC PC + X  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F0823 Series  
Product Specification  
188  
Table 118. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
C Z S V D H Cycles Cycles  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
IM  
LD dst, rc  
dst src  
r
r
0C-FC  
C7  
D7  
E3  
2
3
3
2
3
3
3
3
2
3
2
2
2
2
2
2
3
4
3
2
4
2
3
3
3
5
9
5
9
9
X(r)  
r
X(r)  
r
Ir  
R
R
R
IR  
Ir  
R
E4  
IR  
IM  
IM  
r
E5  
E6  
E7  
F3  
IR  
r
R
F5  
LDC dst, src  
LDCI dst, src  
dst src  
Irr  
Irr  
r
C2  
C5  
D2  
C3  
D3  
Ir  
Irr  
Ir  
dst src  
r r + 1  
rr rr + 1  
Irr  
Ir  
Irr  
LDE dst, src  
LDEI dst, src  
dst src  
r
Irr  
r
82  
92  
83  
93  
2
2
2
2
5
5
9
9
Irr  
Ir  
dst src  
r r + 1  
rr rr + 1  
Irr  
Ir  
Irr  
LDWX dst, src dst src  
ER  
ER  
1FE8  
5
4
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F0823 Series  
Product Specification  
189  
Table 118. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
C Z S V D H Cycles Cycles  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
ER  
LDX dst, src  
dst src  
r
Ir  
84  
85  
86  
87  
88  
89  
94  
95  
96  
97  
E8  
E9  
98  
99  
F4  
3
3
3
3
3
3
3
3
3
3
4
4
3
3
2
2
3
4
5
4
4
2
3
4
5
2
2
3
5
8
ER  
IRR  
IRR  
X(rr)  
r
R
IR  
r
X(rr)  
ER  
ER  
IRR  
IRR  
ER  
ER  
r
r
Ir  
R
IR  
ER  
IM  
LEA dst, X(src) dst src + X  
X(r)  
X(rr)  
rr  
MULT dst  
dst[15:0]    
RR  
dst[15:8] * dst[7:0]  
NOP  
No operation  
0F  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
*
*
0
1
2
2
3
3
3
3
4
4
2
2
2
3
4
3
4
3
4
3
3
2
3
OR dst, src  
dst dst OR src  
r
r
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
R
ORX dst, src  
POP dst  
dst dst OR src  
*
*
0
dst @SP  
SP SP + 1  
IR  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F0823 Series  
Product Specification  
190  
Table 118. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
C Z S V D H Cycles Cycles  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
POPX dst  
PUSH src  
dst @SP  
SP SP + 1  
ER  
D8  
3
2
SP SP – 1  
@SP src  
R
IR  
IM  
70  
71  
2
2
3
2
3
2
IF70  
PUSHX src  
SP SP – 1  
@SP src  
ER  
C8  
3
2
RCF  
RET  
C 0  
CF  
AF  
0
1
1
2
4
PC @SP  
SP SP + 2  
RL dst  
R
90  
91  
*
*
*
*
2
2
2
3
C
D7 D6 D5 D4 D3 D2 D1 D0  
IR  
dst  
RLC dst  
RR dst  
R
10  
11  
*
*
*
*
*
*
*
*
2
2
2
3
C
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
R
E0  
E1  
2
2
2
3
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
IR  
RRC dst  
R
C0  
C1  
*
*
*
*
2
2
2
3
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
IR  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F0823 Series  
Product Specification  
191  
Table 118. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
C Z S V D H Cycles Cycles  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
SBC dst, src  
dst dst – src - C  
r
r
r
32  
33  
34  
35  
36  
37  
38  
39  
DF  
D0  
D1  
*
*
*
*
1
*
2
2
3
3
3
3
4
4
1
2
2
3
4
3
4
3
4
3
3
2
2
3
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
SBCX dst, src  
dst dst – src - C  
C 1  
*
*
*
*
1
*
SCF  
1
*
*
*
0
SRA dst  
R
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
C
IR  
SRL dst  
R
1F C0  
1F C1  
*
*
0
*
3
3
2
3
0
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
SRP src  
STOP  
RP src  
IM  
01  
6F  
22  
23  
24  
25  
26  
27  
28  
29  
F0  
F1  
*
*
*
*
1
*
2
1
2
2
3
3
3
3
4
4
2
2
2
2
3
4
3
4
3
4
3
3
2
3
STOP Mode  
SUB dst, src  
dst dst – src  
r
r
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
R
SUBX dst, src  
SWAP dst  
dst dst – src  
*
*
*
*
*
*
1
*
dst[7:4] dst[3:0]  
X
X
IR  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F0823 Series  
Product Specification  
192  
Table 118. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
C Z S V D H Cycles Cycles  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
TCM dst, src  
(NOT dst) AND src  
r
r
r
62  
63  
64  
65  
66  
67  
68  
69  
72  
73  
74  
75  
76  
77  
78  
79  
F2  
*
*
0
2
2
3
3
3
3
4
4
2
2
3
3
3
3
4
4
2
3
4
3
4
3
4
3
3
3
4
3
4
3
4
3
3
6
Ir  
R
R
R
IR  
R
IM  
IM  
ER  
IM  
r
IR  
ER  
ER  
r
TCMX dst, src (NOT dst) AND src  
*
*
*
*
0
0
TM dst, src  
dst AND src  
r
Ir  
R
R
R
IR  
R
IM  
IM  
ER  
IM  
Vector  
IR  
ER  
ER  
TMX dst, src  
TRAP Vector  
dst AND src  
*
*
0
SP SP – 2  
@SP PC  
SP SP – 1  
@SP FLAGS  
PC @Vector  
WDT  
5F  
1
2
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F0823 Series  
Product Specification  
193  
Table 118. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
C Z S V D H Cycles Cycles  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
XOR dst, src  
dst dst XOR src  
r
r
r
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
*
*
0
2
2
3
3
3
3
4
4
3
4
3
4
3
4
3
3
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
XORX dst, src dst dst XOR src  
*
*
0
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS024317-0914  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F0823 Series  
Product Specification  
194  
Opcode Maps  
A description of the opcode map data and the abbreviations are provided in Figure 26.  
Figures 27 and 28 provide information about each of the eZ8 CPU instructions. Table 119  
lists Opcode Map abbreviations.  
Opcode  
Lower Nibble  
Fetch Cycles  
Instruction Cycles  
4
3.3  
CP  
Opcode  
Upper Nibble  
A
R2,R1  
First Operand  
After Assembly  
Second Operand  
After Assembly  
Figure 26. Opcode Map Cell Description  
PS024317-0914  
P R E L I M I N A R Y  
Opcode Maps  
Z8 Encore! XP® F0823 Series  
Product Specification  
195  
Table 119. Opcode Map Abbreviations  
Abbreviation  
Description  
Abbreviation  
Description  
b
Bit position  
IRR  
Indirect Register Pair  
Polarity (0 or 1)  
cc  
X
Condition code  
p
r
8-bit signed index or displace-  
ment  
4-bit Working Register  
DA  
ER  
Destination address  
R
8-bit register  
Extended Addressing register r1, R1, Ir1, Irr1, IR1,  
Destination address  
rr1, RR1, IRR1, ER1  
IM  
Immediate data value  
r2, R2, Ir2, Irr2, IR2,  
rr2, RR2, IRR2, ER2  
Source address  
Ir  
Indirect Working Register  
Indirect register  
RA  
rr  
Relative  
IR  
Irr  
Working Register Pair  
Register Pair  
Indirect Working Register Pair RR  
PS024317-0914  
P R E L I M I N A R Y  
Opcode Maps  
Z8 Encore! XP® F0823 Series  
Product Specification  
196  
Lower Nibble (Hex)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
1.1  
2.2  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4  
4.3  
4.3  
2.3  
2.2  
JR  
cc,X  
2.2  
LD  
r1,IM  
3.2  
JP  
cc,DA  
1.2  
INC  
r1  
1.2  
NOP  
BRK SRP ADD ADD ADD ADD ADD ADD ADDX ADDX DJNZ  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
IM  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
r1,X  
2.2  
RLC  
R1  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
See 2nd  
Opcode  
Map  
RLC ADC ADC ADC ADC ADC ADC ADCX ADCX  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
INC  
R1  
2.3  
INC  
IR1  
2.3  
SUB  
r1,r2  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
SUB SUBX SUBX  
IR1,IM ER2,ER1 IM,ER1  
1
SUB SUB  
r1,Ir2  
SUB SUB  
IR2,R1  
R2,R1  
R1,IM  
2.2  
DEC  
R1  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4  
4.3  
4.3  
DEC SBC  
IR1  
SBC SBC  
r1,Ir2  
SBC SBC  
IR2,R1  
SBC SBCX SBCX  
IR1,IM ER2,ER1 IM,ER1  
r1,r2  
R2,R1  
R1,IM  
2.2  
DA  
R1  
2.3  
DA  
IR1  
2.3  
OR  
r1,r2  
2.4  
OR  
r1,Ir2  
3.3  
OR  
R2,R1  
3.4  
OR  
IR2,R1  
3.3  
OR  
R1,IM  
3.4  
4.3  
4.3  
OR  
ORX ORX  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1.2  
WDT  
POP POP AND AND AND AND AND AND ANDX ANDX  
R1  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1.2  
STOP  
COM COM TCM TCM TCM TCM TCM TCM TCMX TCMX  
R1  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
TM  
r1,Ir2  
3.3  
TM  
R2,R1  
3.4  
TM  
IR2,R1  
3.3  
TM  
R1,IM  
3.4  
4.3  
4.3  
1.2  
HALT  
PUSH PUSH TM  
R2  
TM  
TMX TMX  
IR2  
r1,r2  
IR1,IM ER2,ER1 IM,ER1  
2.5  
2.6  
2.5  
2.9  
3.2  
3.3  
LDX  
3.4  
LDX  
3.5  
3.4  
3.4  
1.2  
DI  
DECW DECW LDE LDEI LDX  
RR1  
LDX  
LDX  
LDX  
IRR1  
r1,Irr2  
Ir1,Irr2 r1,ER2 Ir1,ER2 IRR2,R1 IRR2,IR1 r1,rr2,X rr1,r2,X  
2.2  
RL  
R1  
2.3  
RL  
IR1  
2.5  
2.9  
3.2  
3.3  
LDX  
3.4  
LDX  
3.5  
3.3  
3.5  
1.2  
EI  
LDE LDEI LDX  
r2,Irr1  
LDX  
LEA  
LEA  
Ir2,Irr1 r2,ER1 Ir2,ER1 R2,IRR1 IR2,IRR1 r1,r2,X rr1,rr2,X  
2.5  
2.6  
2.3  
CP  
r1,r2  
2.4  
CP  
r1,Ir2  
3.3  
CP  
R2,R1  
3.4  
CP  
IR2,R1  
3.3  
CP  
R1,IM  
3.4  
4.3  
4.3  
1.4  
RET  
INCW INCW  
RR1  
CP  
CPX  
CPX  
IRR1  
IR1,IM ER2,ER1 IM,ER1  
2.2  
CLR  
R1  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1.5  
IRET  
CLR XOR XOR XOR XOR XOR XOR XORX XORX  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
3.4 3.2  
LD PUSHX  
2.2  
2.3  
2.5  
2.9  
2.3  
JP  
IRR1  
2.9  
LDC  
Ir1,Irr2  
1.2  
RCF  
RRC RRC  
R1  
LDC LDCI  
r1,Irr2  
IR1  
Ir1,Irr2  
r1,r2,X  
ER2  
2.2  
SRA  
R1  
2.3  
SRA  
IR1  
2.5  
2.9  
2.6  
2.2  
3.3  
3.4  
LD  
r2,r1,X  
3.2  
POPX  
ER1  
1.2  
SCF  
LDC LDCI CALL BSWAP CALL  
r2,Irr1  
Ir2,Irr1  
IRR1  
R1  
DA  
2.2  
RR  
R1  
2.3  
RR  
IR1  
2.2  
BIT  
p,b,r1  
2.3  
LD  
r1,Ir2  
3.2  
LD  
R2,R1  
3.3  
LD  
IR2,R1  
3.2  
LD  
R1,IM  
3.3  
4.2  
4.2  
1.2  
CCF  
LD  
LDX  
LDX  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.6  
2.3  
LD  
Ir1,r2  
2.8  
MULT  
RR1  
3.3  
LD  
3.3  
BTJ  
3.4  
BTJ  
SWAP SWAP TRAP  
R1  
IR1  
Vector  
R2,IR1 p,b,r1,X p,b,Ir1,X  
Figure 27. First Opcode Map  
PS024317-0914  
P R E L I M I N A R Y  
Opcode Maps  
Z8 Encore! XP® F0823 Series  
Product Specification  
197  
Lower Nibble (Hex)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
3
,
3.3  
CPC  
r1,r2  
3.4  
4.3  
4.4  
4.3  
4.4  
5.3  
5.3  
CPC CPC  
r1,Ir2  
CPC CPC  
IR2,R1  
CPC CPCX CPCX  
IR1,IM ER2,ER1 IM,ER1  
R2,R1  
R1,IM  
3.2  
SRL  
R1  
3.3  
SRL  
IR1  
5, 4  
LDWX  
ER2,ER1  
Figure 28. Second Opcode Map after 1Fh  
PS024317-0914  
P R E L I M I N A R Y  
Opcode Maps  
Z8 Encore! XP® F0823 Series  
Product Specification  
198  
Electrical Characteristics  
The data in this chapter represents all known data prior to qualification and characteriza-  
tion of the F0823 Series of products, and is therefore subject to change. Additional electri-  
cal characteristics may be found in the individual chapters of this document.  
Absolute Maximum Ratings  
Stresses greater than those listed in Table 120 may cause permanent damage to the device.  
These ratings are stress ratings only. Operation of the device at any condition outside those  
indicated in the operational sections of these specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
For improved reliability, tie unused inputs to one of the supply voltages (VDD or VSS).  
Table 120. Absolute Maximum Ratings  
Parameter  
Minimum Maximum  
Units  
°C  
°C  
V
Notes  
Ambient temperature under bias  
Storage temperature  
–40  
–65  
–0.3  
–0.3  
–0.3  
–5  
+105  
+150  
+5.5  
+3.9  
+3.6  
+5  
Voltage on any pin with respect to V  
1
2
SS  
V
Voltage on V pin with respect to V  
V
DD  
SS  
Maximum current on input and/or inactive output pin  
Maximum output current from active output pin  
µA  
mA  
–25  
+25  
8-pin Packages Maximum Ratings at 0°C to 70°C  
Total power dissipation  
220  
60  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
20-pin Packages Maximum Ratings at 0°C to 70°C  
Total power dissipation  
430  
120  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
28-pin Packages Maximum Ratings at 0°C to 70°C  
Total power dissipation  
450  
125  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
Notes: Operating temperature is specified in DC Characteristics.  
1. This voltage applies to all pins except the following: V , AV , pins supporting analog input (Port B[5:0], Port  
DD  
DD  
C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1). On the 8-pin packages, this applies to all pins  
but V  
.
DD  
2. This voltage applies to pins on the 20/28 pin packages supporting analog input (Port B[5:0], Port C[2:0]) and pins  
supporting the crystal oscillator (PA0 and PA1).  
PS024317-0914  
P R E L I M I N A R Y  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
199  
DC Characteristics  
Table 121 lists the DC characteristics of the Z8 Encore! XP F0823 Series products. All  
voltages are referenced to VSS, the primary system ground.  
Table 121. DC Characteristics  
T = –40°C to +105°C  
A
(unless otherwise specified)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
V
Supply Voltage  
2.7  
3.6  
V
V
DD  
IL1  
Low Level Input  
Voltage  
–0.3  
0.3*V  
DD  
V
V
High Level Input  
Voltage  
0.7*V  
0.7*V  
5.5  
V
V
For all input pins without analog  
or oscillator function. For all sig-  
nal pins on the 8-pin devices.  
Programmable pull-ups must  
also be disabled.  
IH1  
IH2  
DD  
DD  
High Level Input  
Voltage  
V
+0.3  
For those pins with analog or  
oscillator function (20-/28-pin  
devices only), or when pro-  
grammable pull-ups are  
enabled.  
DD  
V
V
V
V
Low Level Output  
Voltage  
2.4  
0.4  
V
V
I
= 2mA; V = 3.0V  
OL DD  
OL1  
OH1  
OL2  
OH2  
High Output Drive disabled.  
I = –2mA; V = 3.0V  
OH  
High Level Output  
Voltage  
0.6  
DD  
High Output Drive disabled.  
Low Level Output  
Voltage  
V
I
OL  
= 20mA; V = 3.3 V  
DD  
High Output Drive enabled.  
I = –20mA; V = 3.3 V  
OH  
High Level Output  
Voltage  
2.4  
V
DD  
High Output Drive enabled.  
I
I
I
Input Leakage Cur-  
rent  
+0.002  
+0.007  
+5  
+5  
+5  
µA  
µA  
µA  
V
V
= V  
DD  
IH  
IN  
= 3.3 V  
DD  
Input Leakage Cur-  
rent  
V
V
= V  
SS  
IL  
IN  
= 3.3 V  
DD  
Tristate Leakage  
Current  
TL  
Notes:  
1. This condition excludes all pins that have on-chip pull-ups, when driven Low.  
2. These values are provided for design guidance only and are not tested in production.  
PS024317-0914  
P R E L I M I N A R Y  
DC Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
200  
Table 121. DC Characteristics (Continued)  
T = –40°C to +105°C  
A
(unless otherwise specified)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
I
Controlled Current  
Drive  
1.8  
2.8  
7.8  
12  
3
7
4.5  
10.5  
19.5  
30  
mA {AFS2,AFS1} = {0,0}.  
mA {AFS2,AFS1} = {0,1}.  
mA {AFS2,AFS1} = {1,0}.  
mA {AFS2,AFS1} = {1,1}.  
pF  
LED  
13  
20  
2
C
C
C
GPIO Port Pad  
Capacitance  
8.0  
8.0  
9.5  
PAD  
XIN  
2
2
X
Pad Capaci-  
pF  
pF  
IN  
tance  
X
Pad Capaci-  
OUT  
XOUT  
tance  
I
Weak Pull-up Cur-  
rent  
30  
100  
350  
µA  
V
V
= 3.0V–3.6V.  
DD  
PU  
V
RAM Data Reten-  
tion Voltage  
TBD  
Voltage at which RAM retains  
static values; no reading or writ-  
ing is allowed.  
RAM  
Notes:  
1. This condition excludes all pins that have on-chip pull-ups, when driven Low.  
2. These values are provided for design guidance only and are not tested in production.  
PS024317-0914  
P R E L I M I N A R Y  
DC Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
201  
Table 122. Power Consumption  
V
= 2.7V to 3.6V  
DD  
2
3
Maximum Maximum  
1
Symbol  
Parameter  
Typical  
Std Temp Ext Temp Units Conditions  
I
Stop  
Supply Current in Stop  
Mode  
0.1  
2
7.5  
µA No peripherals enabled.  
All pins driven to V or  
DD  
DD  
V
.
SS  
I
Halt  
Supply Current in Halt  
Mode (with all peripher-  
als disabled)  
35  
55  
65  
µA 32kHz.  
DD  
520  
630  
700  
µA 5.5MHz.  
I
Supply Current in Active  
Mode (with all peripher-  
als disabled)  
2.8  
4.5  
4.5  
5.2  
4.8  
5.2  
mA 32kHz.  
DD  
mA 5.5MHz.  
I
I
I
WDT Watchdog Timer Sup-  
ply Current  
0.9  
350  
50  
1.0  
1.1  
µA  
DD  
DD  
DD  
IPO  
Internal Precision Oscil-  
lator Supply Current  
500  
550  
µA  
VBO  
Voltage Brown-Out Sup-  
ply Current  
µA For 20-/28-pin devices  
4
(VBO only).  
4
For 8-pin devices.  
I
ADC  
Analog-to-Digital Con-  
verter Supply Current  
(with External Refer-  
ence)  
2.8  
3.1  
3.3  
3.7  
0
3.1  
3.6  
3.7  
4.2  
3.2  
3.7  
3.8  
4.3  
mA 32kHz.  
DD  
mA 5.5MHz.  
mA 10MHz.  
mA 20MHz.  
µA See Note 4.  
I
ADC Internal Refer-  
ence Supply Current  
DD  
ADCRef  
I
CMP Comparator supply Cur-  
rent  
150  
320  
180  
480  
190  
500  
µA See Note 4.  
DD  
I
BG  
Band Gap Supply Cur-  
rent  
µA For 20-/28-pin devices.  
For 8-pin devices.  
DD  
Notes:  
1. Typical conditions are defined as VDD = 3.3 V and +30°C.  
2. Standard temperature is defined as TA = 0°C to +70°C; these values not tested in production for worst case  
behavior, but are derived from product characterization and provided for design guidance only.  
3. Extended temperature is defined as TA = –40°C to +105°C; these values not tested in production for worst case  
behavior, but are derived from product characterization and provided for design guidance only.  
4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply  
current. This bandgap current is only added once, regardless of how many peripherals are using it.  
PS024317-0914  
P R E L I M I N A R Y  
DC Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
202  
AC Characteristics  
The section provides information about the AC characteristics and timing. All AC timing  
information assumes a standard load of 50 pF on all outputs.  
Table 123. AC Characteristics  
V
= 2.7V to 3.6V  
DD  
T = –40°C to +105°C  
A
(unless otherwise  
stated)  
Symbol Parameter  
Minimum Maximum Units Conditions  
F
System Clock Frequency  
20.0*  
MHz Read-only from Flash memory.  
SYSCLK  
1
0.032768  
20.0  
MHz Program or erasure of the  
Flash memory.  
T
T
T
T
T
System Clock Period  
50  
20  
20  
30  
30  
3
ns  
ns  
ns  
ns  
ns  
T
T
T
T
T
= 1/F  
.
SYSCLK  
XIN  
CLK  
CLK  
CLK  
CLK  
CLK  
System Clock High Time  
System Clock Low Time  
System Clock Rise Time  
System Clock Fall Time  
= 50ns.  
= 50ns.  
= 50ns.  
= 50ns.  
XINH  
XINL  
XINR  
XINF  
3
Note: *System Clock Frequency is limited by the Internal Precision Oscillator on the Z8 Encore! XP F0823 Series.  
See Table 124 on page 202.  
Table 124. Internal Precision Oscillator Electrical Characteristics  
V
= 2.7V to 3.6V  
DD  
T = –40°C to +105°C  
A
(unless otherwise stated)  
Symbol Parameter  
Minimum  
Typical Maximum Units Conditions  
F
F
F
T
Internal Precision Oscillator  
Frequency (High Speed)  
5.53  
32.7  
+1  
MHz  
kHz  
%
V
= 3.3V  
DD  
IPO  
T = 30°C  
A
Internal Precision Oscillator  
Frequency (Low Speed)  
V
= 3.3V  
DD  
IPO  
T = 30°C  
A
Internal Precision Oscillator  
Error  
+4  
IPO  
Internal Precision Oscillator  
Startup Time  
3
µs  
IPOST  
PS024317-0914  
P R E L I M I N A R Y  
AC Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
203  
On-Chip Peripheral AC and DC Electrical Characteristics  
Table 125 tabulates the electrical characteristics of the POR and VBO blocks.  
Table 125. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing  
T = –40°C to +105°C  
A
Symbol Parameter  
Minimum Typical* Maximum Units Conditions  
V
Power-On Reset Voltage  
Threshold  
2.20  
2.45  
2.40  
50  
2.70  
V
V
= V  
POR  
DD  
POR  
V
Voltage Brown-Out Reset Volt-  
age Threshold  
2.15  
2.65  
V
V
= V  
VBO  
DD  
VBO  
V
to V  
hysteresis  
VBO  
75  
mV  
V
POR  
Starting V voltage to ensure  
V
SS  
DD  
valid Power-On Reset.  
T
Power-On Reset Analog Delay  
70  
µs  
V
> V  
;
POR  
ANA  
DD  
T
Digital  
POR  
Reset delay fol-  
lows T  
ANA  
T
Power-On Reset Digital Delay  
Stop-Mode Recovery  
16  
µs 66 Internal Preci-  
sion Oscillator  
cycles + IPO  
POR  
startup time  
(T  
)
IPOST  
T
T
16  
10  
µs 66 Internal Preci-  
sion Oscillator  
cycles  
SMR  
VBO  
Voltage Brown-Out Pulse  
Rejection Period  
µs Period of time in  
which V  
<
DD  
V
without  
VBO  
generating a  
Reset.  
T
T
Time for V to transition from  
0.10  
100  
ms  
RAMP  
SMP  
DD  
V
to V  
to ensure valid  
SS  
POR  
Reset  
Stop-Mode Recovery pin pulse  
rejection period  
20  
ns For any SMR pin  
or for the Reset  
pin when it is  
asserted in Stop  
Mode.  
Note: *Data in the typical column is from characterization at 3.3 V and 30°C. These values are provided for design  
guidance only and are not tested in production.  
PS024317-0914  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F0823 Series  
Product Specification  
204  
Table 126. Flash Memory Electrical Characteristics and Timing  
= 2.7V to 3.6V  
V
DD  
T = –40°C to +105°C  
A
(unless otherwise stated)  
Parameter  
Minimum Typical Maximum Units Notes  
Flash Byte Read Time  
Flash Byte Program Time  
Flash Page Erase Time  
Flash Mass Erase Time  
100  
20  
40  
ns  
µs  
10  
ms  
ms  
200  
Writes to Single Address  
Before Next Erase  
2
Flash Row Program Time  
8
ms Cumulative program time for  
single row cannot exceed limit  
before next erase. This param-  
eter is only an issue when  
bypassing the Flash Controller.  
Data Retention  
Endurance  
100  
years 25°C  
10,000  
cycles Program/erase cycles  
Table 127. Watchdog Timer Electrical Characteristics and Timing  
= 2.7V to 3.6V  
V
DD  
T = –40°C to +105°C  
A
(unless otherwise stated)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
F
F
T
WDT Oscillator Frequency  
WDT Oscillator Error  
10  
kHz  
%
WDT  
WDT  
WDT-  
+50  
WDT Calibrated Timeout  
0.98  
0.70  
0.50  
1
1
1
1.02  
s
V
= 3.3 V;  
DD  
T = 30°C  
CAL  
A
1.30  
1.50  
s
s
V
= 2.7V to 3.6V  
DD  
T = 0°C to 70°C  
A
V
= 2.7V to 3.6V  
DD  
T = –40°C to +105°C  
A
PS024317-0914  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F0823 Series  
Product Specification  
205  
Table 128. Analog-to-Digital Converter Electrical Characteristics and Timing  
= 3.0V to 3.6V  
V
DD  
T = 0°C to +70°C  
A
(unless otherwise stated)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
Resolution  
10  
bits  
3
Differential Nonlinearity  
(DNL)  
–1.0  
1.0  
LSB External V  
= 2.0V;   
= 2.0V;   
REF  
R 3.0 kΩ  
S
3
Integral Nonlinearity (INL)  
–3.0  
3.0  
LSB External V  
REF  
R 3.0 kΩ  
S
3
3
Offset Error with Calibration  
+1  
+3  
LSB  
LSB  
Absolute Accuracy with  
Calibration  
V
V
V
Internal Reference Voltage  
1.0  
2.0  
1.1  
2.2  
1.2  
2.4  
V
%
%
W
REFSEL=01  
REFSEL=10  
REF  
REF  
REF  
Internal Reference Varia-  
tion with Temperature  
+1.0  
+0.5  
850  
Temperature variation  
with V = 3.0  
DD  
Internal Reference Voltage  
Supply voltage varia-  
Variation with V  
tion with T = 30°C  
DD  
A
R
Reference Buffer Output  
Impedance  
When the internal ref-  
erence is buffered and  
driven out to the VREF  
pin (REFOUT = 1)  
RE-  
FOUT  
Single-Shot Conversion  
Time  
5129  
Sys- All measurements but  
tem temperature sensor  
clock  
cycles  
10258  
256  
Temperature sensor  
measurement  
Continuous Conversion  
Time  
Sys- All measurements but  
tem temperature sensor  
clock  
cycles  
512  
Temperature sensor  
measurement  
Notes:  
1. Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.  
2. Devices are factory calibrated at V  
conditions.  
= 3.3 V and T = +30°C, so the ADC is maximally accurate under these  
DD  
A
3. LSBs are defined assuming 10-bit resolution.  
4. This is the maximum recommended resistance seen by the ADC input pin.  
5. The input impedance is inversely proportional to the system clock frequency.  
PS024317-0914  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F0823 Series  
Product Specification  
206  
Table 128. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)  
V
= 3.0V to 3.6V  
DD  
T = 0°C to +70°C  
A
(unless otherwise stated)  
Symbol Parameter  
Signal Input Bandwidth  
Minimum Typical Maximum Units Conditions  
10  
kHz As defined by –3 dB  
point  
4
R
Analog Source Impedance  
Input Impedance  
10  
kW In unbuffered mode  
S
Zin  
0
150  
kW In unbuffered mode at  
5
20MHz  
Vin  
Input Voltage Range  
V
V
Unbuffered Mode  
DD  
Notes:  
1. Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.  
2. Devices are factory calibrated at V  
conditions.  
= 3.3 V and T = +30°C, so the ADC is maximally accurate under these  
DD  
A
3. LSBs are defined assuming 10-bit resolution.  
4. This is the maximum recommended resistance seen by the ADC input pin.  
5. The input impedance is inversely proportional to the system clock frequency.  
Table 129. Comparator Electrical Characteristics  
V
= 2.7V to 3.6V  
DD  
T = –40°C to +105°C  
A
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
V
Input DC Offset  
5
+5  
+3  
200  
4
mV  
%
OS  
Programmable Internal  
Reference Voltage  
20-/28-pin devices  
8-pin devices  
CREF  
%
T
Propagation Delay  
Input Hysteresis  
ns  
mV  
V
PROP  
V
V
HYS  
IN  
Input Voltage Range  
V
V
–1  
DD  
SS  
General Purpose I/O Port Input Data Sample Timing  
Figure 29 displays a timing sequence for the GPIO port input sampling. The input value  
on a GPIO port pin is sampled on the rising edge of the system clock. The port value is  
PS024317-0914  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F0823 Series  
Product Specification  
207  
available to the eZ8 CPU on the second rising clock edge following the change of the port  
value.  
TCLK  
System  
Clock  
Port Value  
Changes to 0  
Port Pin  
Input Value  
Port Input Data  
Register Latch  
0 Latched  
Into Port Input  
Data Register  
Port Input Data Register  
Value 0 Read  
by eZ8  
Port Input Data  
Read on Data Bus  
Figure 29. Port Input Sample Timing  
Table 130. GPIO Port Input Timing  
Delay (ns)  
Parameter Abbreviation  
Minimum Maximum  
T
T
T
Port Input Transition to X Rise Setup Time (Not pictured)  
5
0
S_PORT  
H_PORT  
SMR  
IN  
X
Rise to Port Input Transition Hold Time (Not pictured)  
IN  
GPIO Port Pin Pulse Width to ensure Stop-Mode Recovery (for  
GPIO Port Pins enabled as SMR sources)  
1 s  
PS024317-0914  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F0823 Series  
Product Specification  
208  
General Purpose I/O Port Output Timing  
Figure 30 and Table 131 provide timing information for GPIO Port pins.  
TCLK  
X
IN  
T1  
T2  
Port Output  
Figure 30. GPIO Port Output Timing  
Table 131. GPIO Port Output Timing  
Delay (ns)  
Minimum Maximum  
Parameter Abbreviation  
GPIO Port pins  
T
T
X
X
Rise to Port Output Valid Delay  
Rise to Port Output Hold Time  
2
15  
1
2
IN  
IN  
PS024317-0914  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F0823 Series  
Product Specification  
209  
On-Chip Debugger Timing  
Figure 31 and Table 132 provide timing information for the DBG pin. The DBG pin tim-  
ing specifications assume a 4 ns maximum rise and fall time.  
TCLK  
X
IN  
T1  
T2  
T4  
DBG  
(Output)  
Output Data  
T3  
DBG  
(Input)  
Input Data  
Figure 31. On-Chip Debugger Timing  
Table 132. On-Chip Debugger Timing  
Delay (ns)  
Minimum Maximum  
Parameter Abbreviation  
DBG  
T
T
T
T
X
X
Rise to DBG Valid Delay  
2
5
5
15  
1
2
3
4
IN  
IN  
Rise to DBG Output Hold Time  
DBG to X Rise Input Setup Time  
IN  
DBG to X Rise Input Hold Time  
IN  
PS024317-0914  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F0823 Series  
Product Specification  
210  
UART Timing  
Figure 32 and Table 133 provide timing information for UART pins for the case where  
CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the transmit  
data register has been loaded with data prior to CTS assertion.  
CTS  
(Input)  
T3  
DE  
(Output)  
T1  
TXD  
bit 7 parity  
stop  
start  
bit 0  
bit 1  
(Output)  
T2  
end of  
stop bit(s)  
Figure 32. UART Timing With CTS  
Table 133. UART Timing With CTS  
Delay (ns)  
Parameter Abbreviation  
UART  
Minimum  
Maximum  
T
CTS Fall to DE output delay  
2 * X period 2 * X period +  
1
IN  
IN  
1 bit time  
T
T
DE assertion to TXD falling edge (start bit) delay  
End of Stop Bit(s) to DE deassertion delay  
± 5  
± 5  
2
3
PS024317-0914  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F0823 Series  
Product Specification  
211  
Figure 33 and Table 134 provide timing information for UART pins for the case where  
CTS is not used for flow control. DE asserts after the transmit data register has been writ-  
ten. DE remains asserted for multiple characters as long as the transmit data register is  
written with the next character before the current character has completed.  
T2  
DE  
(Output)  
TXD  
(Output)  
start  
bit0  
bit 1  
bit 7 parity  
stop  
T1  
end of  
stop bit(s)  
Figure 33. UART Timing Without CTS  
Table 134. UART Timing Without CTS  
Delay (ns)  
Parameter Abbreviation  
UART  
Minimum  
Maximum  
T
T
DE assertion to TXD falling edge (start bit) delay  
1 * X period  
1 bit time  
1
2
IN  
End of Stop Bit(s) to DE deassertion delay (Tx data  
register is empty)  
± 5  
PS024317-0914  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F0823 Series  
Product Specification  
212  
Packaging  
Zilog’s F0823 Series of MCUs includes the Z8F0113, Z8F0123, Z8F0213, Z8F0223,  
Z8F0413, Z8F0423, Z8F0813 and Z8F0823 devices, which are available in the following  
packages:  
8-pin Plastic Dual Inline Package (PDIP)  
8-Pin Quad Flat No-Lead Package (QFN)/MLF-S1  
20-pin Plastic Dual-Inline Package (PDIP)  
20-pin Small Outline Integrated Circuit Package (SOIC)  
20-pin Small Shrink Outline Package (SSOP)  
28-pin Plastic Dual-Inline Package (PDIP)  
28-pin Small Outline Integrated Circuit Package (SOIC)  
28-pin Small Shrink Outline Package (SSOP)  
Current diagrams for each of these packages are published in Zilog’s Packaging Product  
Specification (PS0072), which is available free for download from the Zilog website.  
1. The footprint of the QFN)/MLF-S package is identical to that of the 8-pin SOIC package, but with a lower profile.  
PS024317-0914  
P R E L I M I N A R Y  
Packaging  
Z8 Encore! XP® F0823 Series  
Product Specification  
213  
Ordering Information  
Order your F0823 Series products from Zilog using the part numbers shown in Table 135.  
For more information about ordering, please consult your local Zilog sales office. The  
Sales Location page on the Zilog website lists all regional offices.  
Table 135. Z8 Encore! XP F0823 Series Ordering Matrix  
Z8 Encore! XP F0823 Series with 8 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0°C to 70°C  
Z8F0823PB005SG  
Z8F0823QB005SG  
Z8F0823SB005SG  
Z8F0823SH005SG  
Z8F0823HH005SG  
Z8F0823PH005SG  
Z8F0823SJ005SG  
Z8F0823HJ005SG  
Z8F0823PJ005SG  
8 KB 1 KB  
8 KB 1 KB  
8 KB 1 KB  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
8 KB 1 KB 16  
8 KB 1 KB 16  
8 KB 1 KB 16  
8 KB 1 KB 22  
8 KB 1 KB 22  
8 KB 1 KB 22  
Extended Temperature: –40°C to 105°C  
Z8F0823PB005EG  
Z8F0823QB005EG  
Z8F0823SB005EG  
Z8F0823SH005EG  
Z8F0823HH005EG  
Z8F0823PH005EG  
Z8F0823SJ005EG  
Z8F0823HJ005EG  
Z8F0823PJ005EG  
8 KB 1 KB  
8 KB 1 KB  
8 KB 1 KB  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
8 KB 1 KB 16  
8 KB 1 KB 16  
8 KB 1 KB 16  
8 KB 1 KB 22  
8 KB 1 KB 22  
8 KB 1 KB 22  
PS024317-0914  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
214  
Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)  
Z8 Encore! XP F0823 Series with 8 KB Flash  
Standard Temperature: 0°C to 70°C  
Z8F0813PB005SG  
Z8F0813QB005SG  
Z8F0813SB005SG  
Z8F0813SH005SG  
Z8F0813HH005SG  
Z8F0813PH005SG  
Z8F0813SJ005SG  
Z8F0813HJ005SG  
Z8F0813PJ005SG  
8 KB 1 KB  
8 KB 1 KB  
8 KB 1 KB  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
8 KB 1 KB 16  
8 KB 1 KB 16  
8 KB 1 KB 16  
8 KB 1 KB 24  
8 KB 1 KB 24  
8 KB 1 KB 24  
Extended Temperature: –40°C to 105°C  
Z8F0813PB005EG  
Z8F0813QB005EG  
Z8F0813SB005EG  
Z8F0813SH005EG  
Z8F0813HH005EG  
Z8F0813PH005EG  
Z8F0813SJ005EG  
Z8F0813HJ005EG  
Z8F0813PJ005EG  
8 KB 1 KB  
8 KB 1 KB  
8 KB 1 KB  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
8 KB 1 KB 16  
8 KB 1 KB 16  
8 KB 1 KB 16  
8 KB 1 KB 24  
8 KB 1 KB 24  
8 KB 1 KB 24  
PS024317-0914  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
215  
Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)  
Z8 Encore! XP F0823 Series with 4 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0°C to 70°C  
Z8F0423PB005SG  
Z8F0423QB005SG  
Z8F0423SB005SG  
Z8F0423SH005SG  
Z8F0423HH005SG  
Z8F0423PH005SG  
Z8F0423SJ005SG  
Z8F0423HJ005SG  
Z8F0423PJ005SG  
4 KB 1 KB  
4 KB 1 KB  
4 KB 1 KB  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
4 KB 1 KB 16  
4 KB 1 KB 16  
4 KB 1 KB 16  
4 KB 1 KB 22  
4 KB 1 KB 22  
4 KB 1 KB 22  
Extended Temperature: –40°C to 105°C  
Z8F0423PB005EG  
Z8F0423QB005EG  
Z8F0423SB005EG  
Z8F0423SH005EG  
Z8F0423HH005EG  
Z8F0423PH005EG  
Z8F0423SJ005EG  
Z8F0423HJ005EG  
Z8F0423PJ005EG  
4 KB 1 KB  
4 KB 1 KB  
4 KB 1 KB  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
4 KB 1 KB 16  
4 KB 1 KB 16  
4 KB 1 KB 16  
4 KB 1 KB 22  
4 KB 1 KB 22  
4 KB 1 KB 22  
PS024317-0914  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
216  
Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)  
Z8 Encore! XP F0823 Series with 4 KB Flash  
Standard Temperature: 0°C to 70°C  
Z8F0413PB005SG  
Z8F0413QB005SG  
Z8F0413SB005SG  
Z8F0413SH005SG  
Z8F0413HH005SG  
Z8F0413PH005SG  
Z8F0413SJ005SG  
Z8F0413HJ005SG  
Z8F0413PJ005SG  
4 KB 1 KB  
4 KB 1 KB  
4 KB 1 KB  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
4 KB 1 KB 16  
4 KB 1 KB 16  
4 KB 1 KB 16  
4 KB 1 KB 24  
4 KB 1 KB 24  
4 KB 1 KB 24  
Extended Temperature: –40°C to 105°C  
Z8F0413PB005EG  
Z8F0413QB005EG  
Z8F0413SB005EG  
Z8F0413SH005EG  
Z8F0413HH005EG  
Z8F0413PH005EG  
Z8F0413SJ005EG  
Z8F0413HJ005EG  
Z8F0413PJ005EG  
4 KB 1 KB  
4 KB 1 KB  
4 KB 1 KB  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
4 KB 1 KB 16  
4 KB 1 KB 16  
4 KB 1 KB 16  
4 KB 1 KB 24  
4 KB 1 KB 24  
4 KB 1 KB 24  
PS024317-0914  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
217  
Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)  
Z8 Encore! XP F0823 Series with 2 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0°C to 70°C  
Z8F0223PB005SG  
Z8F0223QB005SG  
Z8F0223SB005SG  
Z8F0223SH005SG  
Z8F0223HH005SG  
Z8F0223PH005SG  
Z8F0223SJ005SG  
Z8F0223HJ005SG  
Z8F0223PJ005SG  
2 KB 512 B  
2 KB 512 B  
2 KB 512 B  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
2 KB 512 B 16  
2 KB 512 B 16  
2 KB 512 B 16  
2 KB 512 B 22  
2 KB 512 B 22  
2 KB 512 B 22  
Extended Temperature: –40°C to 105°C  
Z8F0223PB005EG  
Z8F0223QB005EG  
Z8F0223SB005EG  
Z8F0223SH005EG  
Z8F0223HH005EG  
Z8F0223PH005EG  
Z8F0223SJ005EG  
Z8F0223HJ005EG  
Z8F0223PJ005EG  
2 KB 512 B  
2 KB 512 B  
2 KB 512 B  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
2 KB 512 B 16  
2 KB 512 B 16  
2 KB 512 B 16  
2 KB 512 B 22  
2 KB 512 B 22  
2 KB 512 B 22  
PS024317-0914  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
218  
Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)  
Z8 Encore! XP F0823 Series with 2 KB Flash  
Standard Temperature: 0°C to 70°C  
Z8F0213PB005SG  
Z8F0213QB005SG  
Z8F0213SB005SG  
Z8F0213SH005SG  
Z8F0213HH005SG  
Z8F0213PH005SG  
Z8F0213SJ005SG  
Z8F0213HJ005SG  
Z8F0213PJ005SG  
2 KB 512 B  
2 KB 512 B  
2 KB 512 B  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
2 KB 512 B 16  
2 KB 512 B 16  
2 KB 512 B 16  
2 KB 512 B 24  
2 KB 512 B 24  
2 KB 512 B 24  
Extended Temperature: –40°C to 105°C  
Z8F0213PB005EG  
Z8F0213QB005EG  
Z8F0213SB005EG  
Z8F0213SH005EG  
Z8F0213HH005EG  
Z8F0213PH005EG  
Z8F0213SJ005EG  
Z8F0213HJ005EG  
Z8F0213PJ005EG  
2 KB 512 B  
2 KB 512 B  
2 KB 512 B  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
2 KB 512 B 16  
2 KB 512 B 16  
2 KB 512 B 16  
2 KB 512 B 24  
2 KB 512 B 24  
2 KB 512 B 24  
PS024317-0914  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
219  
Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)  
Z8 Encore! XP F0823 Series with 1 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0°C to 70°C  
Z8F0123PB005SG  
Z8F0123QB005SG  
Z8F0123SB005SG  
Z8F0123SH005SG  
Z8F0123HH005SG  
Z8F0123PH005SG  
Z8F0123SJ005SG  
Z8F0123HJ005SG  
Z8F0123PJ005SG  
1 KB 256 B  
1 KB 256 B  
1 KB 256 B  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
1 KB 256 B 16  
1 KB 256 B 16  
1 KB 256 B 16  
1 KB 256 B 22  
1 KB 256 B 22  
1 KB 256 B 22  
Extended Temperature: –40°C to 105°C  
Z8F0123PB005EG  
Z8F0123QB005EG  
Z8F0123SB005EG  
Z8F0123SH005EG  
Z8F0123HH005EG  
Z8F0123PH005EG  
Z8F0123SJ005EG  
Z8F0123HJ005EG  
Z8F0123PJ005EG  
1 KB 256 B  
1 KB 256 B  
1 KB 256 B  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
1 KB 256 B 16  
1 KB 256 B 16  
1 KB 256 B 16  
1 KB 256 B 22  
1 KB 256 B 22  
1 KB 256 B 22  
PS024317-0914  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
220  
Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)  
Z8 Encore! XP F0823 Series with 1 KB Flash  
Standard Temperature: 0°C to 70°C  
Z8F0113PB005SG  
Z8F0113QB005SG  
Z8F0113SB005SG  
Z8F0113SH005SG  
Z8F0113HH005SG  
Z8F0113PH005SG  
Z8F0113SJ005SG  
Z8F0113HJ005SG  
Z8F0113PJ005SG  
1 KB 256 B  
1 KB 256 B  
1 KB 256 B  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
1 KB 256 B 16  
1 KB 256 B 16  
1 KB 256 B 16  
1 KB 256 B 24  
1 KB 256 B 24  
1 KB 256 B 24  
Extended Temperature: –40°C to 105°C  
Z8F0113PB005EG  
Z8F0113QB005EG  
Z8F0113SB005EG  
Z8F0113SH005EG  
Z8F0113HH005EG  
Z8F0113PH005EG  
Z8F0113SJ005EG  
Z8F0113HJ005EG  
Z8F0113PJ005EG  
1 KB 256 B  
1 KB 256 B  
1 KB 256 B  
6
6
6
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
1 KB 256 B 16  
1 KB 256 B 16  
1 KB 256 B 16  
1 KB 256 B 24  
1 KB 256 B 24  
1 KB 256 B 24  
PS024317-0914  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
221  
Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)  
Z8 Encore! XP F0823 Series Development Kit  
Z8F08A28100KITG  
Z8F04A28100KITG  
Z8F04A08100KITG  
ZUSBSC00100ZACG  
ZUSBOPTSC01ZACG  
ZENETSC0100ZACG  
Z8 Encore! XP F082A Series Development Kit (20- and 28-Pin)  
Z8 Encore! XP F042A Series Development Kit (20- and 28-Pin)  
Z8 Encore! XP F042A Series Development Kit (8-Pin)  
USB Smart Cable Accessory Kit  
Opto-Isolated USB Smart Cable Accessory Kit  
Ethernet Smart Cable Accessory Kit  
PS024317-0914  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
222  
Part Number Suffix Designations  
Zilog part numbers consist of a number of components, as indicated in the following  
example.  
Example. Part number Z8F0423SH005SG is an 8-bit 20MHz Flash MCU with 4KB of  
Program Memory and equipped with 6–22 I/O lines and 4–8 ADC channels in a 20-pin  
SOIC package, operating within a 0ºC to +70ºC temperature range and built using lead-  
free solder.  
Z8  
F
04 23  
S
H
005  
S
G
Environmental Flow  
G = Green Plastic Packaging Compound  
Temperature Range  
S = Standard, 0°C to 70°C  
E = Extended, –40°C to +105°C  
Speed  
020 = 20MHz  
Pin Count  
B = 8  
H = 20  
J = 28  
Package  
H = SSOP  
P = PDIP  
S = SOIC  
Device Type  
23 = 6–22 I/O lines, 4–8 ADC channels  
13 = 6–24 I/O lines, no ADC channels  
Memory Size  
08 = 8 KB Flash, 1 KB RAM  
04 = 4 KB Flash, 1 KB RAM  
02 = 2 KB Flash, 512 B RAM  
01 = 1 KB Flash, 256 B RAM  
Memory Type  
F = Flash  
Device Family  
Z8 = Zilog’s 8-Bit Microcontroller  
PS024317-0914  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
223  
Index  
b 176  
Numerics  
10-bit ADC 4  
baud rate generator, UART 108  
BCLR 179  
binary number suffix 177  
BIT 179  
bit 176  
A
absolute maximum ratings 196  
AC characteristics 200  
ADC 178  
clear 179  
manipulation instructions 179  
set 179  
set or clear 179  
swap 179  
architecture 121  
block diagram 122  
continuous conversion 124  
control register 126, 129  
control register definitions 126  
data high byte register 130  
data low bits register 131  
electrical characteristics and timing 203  
operation 122  
test and jump 181  
test and jump if non-zero 181  
test and jump if zero 181  
bit jump and test if non-zero 181  
bit swap 181  
block diagram 3  
block transfer instructions 179  
BRK 181  
BSET 179  
BSWAP 179, 181  
BTJ 181  
BTJNZ 181  
BTJZ 181  
single-shot conversion 123  
ADCCTL register 126, 129  
ADCDH register 130  
ADCDL register 131  
ADCX 178  
ADD 178  
add - extended addressing 178  
add with carry 178  
add with carry - extended addressing 178  
additional symbols 177  
address space 13  
ADDX 178  
analog signals 10  
analog-to-digital converter (ADC) 121  
AND 181  
ANDX 181  
arithmetic instructions 178  
assembly language programming 174  
assembly language syntax 175  
C
CALL procedure 181  
Capture Mode 89  
Capture/Compare Mode 89  
cc 176  
CCF 180  
characteristics, electrical 196  
clear 180  
CLR 180  
COM 181  
Compare 89  
compare - extended addressing 178  
Compare Mode 89  
compare with carry 178  
B
B 177  
PS024317-0914  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
224  
compare with carry - extended addressing 178  
complement 181  
Watchdog Timer 202, 204  
enable interrupt 180  
complement carry flag 179, 180  
condition code 176  
ER 176  
extended addressing register 176  
external pin reset 25  
eZ8 CPU features 4  
eZ8 CPU instruction classes 178  
eZ8 CPU instruction notation 176  
eZ8 CPU instruction set 174  
eZ8 CPU instruction summary 182  
continuous conversion (ADC) 124  
Continuous Mode 88  
control register definition, UART 108  
Control Registers 13, 16  
Counter modes 89  
CP 178  
CPC 178  
CPCX 178  
CPU and peripheral overview 4  
CPU control instructions 180  
CPX 178  
F
FCTL register 141, 148, 149  
features, Z8 Encore! 1  
first opcode map 194  
FLAGS 177  
Customer Support 230  
flags register 177  
flash  
D
DA 176, 178  
controller 4  
data memory 15  
DC characteristics 197  
debugger, on-chip 156  
DEC 178  
decimal adjust 178  
decrement 178  
option bit address space 149  
option bit configuration - reset 146  
program memory address 0000h 149  
program memory address 0001h 150  
flash memory 134  
arrangement 135  
decrement and jump non-zero 181  
decrement word 178  
DECW 178  
byte programming 139  
code protection 137  
configurations 134  
destination operand 177  
device, port availability 33  
DI 180  
direct address 176  
disable interrupts 180  
DJNZ 181  
control register definitions 141, 148  
controller bypass 140  
electrical characteristics and timing 202  
flash control register 141, 148, 149  
flash option bits 138  
flash status register 142  
flow chart 136  
dst 177  
frequency high and low byte registers 144  
mass erase 139  
E
operation 135  
operation timing 137  
page erase 139  
EI 180  
electrical characteristics 196  
ADC 203  
page select register 142, 144  
FPS register 142, 144  
FSTAT register 142  
flash memory and timing 202  
GPIO input data sample timing 204  
PS024317-0914  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
225  
indirect register pair 176  
G
indirect working register 176  
indirect working register pair 176  
infrared encoder/decoder (IrDA) 117  
Instruction Set 174  
instruction set, eZ8 CPU 174  
instructions  
Gated Mode 89  
general-purpose I/O 33  
GPIO 4, 33  
alternate functions 34  
architecture 34  
control register definitions 40  
input data sample timing 204  
interrupts 40  
Port A–C Pull-Up Enable subregisterss 47, 48,  
49  
Port A–H Address registers 41  
Port A–H Alternate Function subregisters 43  
Port A–H Control registers 42  
Port A–H Data Direction subregisters 43  
Port A–H High Drive Enable subregisters 45  
Port A–H Input Data registers 50  
Port A–H Output Control subregisters 44  
Port A–H Output Data registers 51  
Port A–H Stop-Mode Recovery subregisters 46  
port availability by device 33  
port input timing 205  
ADC 178  
ADCX 178  
ADD 178  
ADDX 178  
AND 181  
ANDX 181  
arithmetic 178  
BCLR 179  
BIT 179  
bit manipulation 179  
block transfer 179  
BRK 181  
BSET 179  
BSWAP 179, 181  
BTJ 181  
BTJNZ 181  
BTJZ 181  
port output timing 206  
CALL 181  
CCF 179, 180  
CLR 180  
COM 181  
CP 178  
CPC 178  
H
HALT 180  
Halt Mode 31, 180  
hexadecimal number prefix/suffix 177  
CPCX 178  
CPU control 180  
CPX 178  
DA 178  
DEC 178  
DECW 178  
DI 180  
DJNZ 181  
EI 180  
HALT 180  
INC 178  
INCW 178  
IRET 181  
JP 181  
I
I2C 4  
IM 176  
immediate data 176  
immediate operand prefix 177  
INC 178  
increment 178  
increment word 178  
INCW 178  
indexed 177  
indirect address prefix 177  
indirect register 176  
PS024317-0914  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
226  
LD 180  
LDC 180  
Interrupt Controller 54  
interrupt controller  
LDCI 179, 180  
LDE 180  
LDEI 179  
architecture 54  
interrupt assertion types 57  
interrupt vectors and priority 57  
operation 56  
LDX 180  
LEA 180  
load 180  
logical 181  
MULT 179  
NOP 180  
OR 181  
ORX 181  
POP 180  
POPX 180  
register definitions 59  
software interrupt assertion 58  
interrupt edge select register 66  
interrupt request 0 register 59  
interrupt request 1 register 60  
interrupt request 2 register 61  
interrupt return 181  
interrupt vector listing 54  
interrupts  
program control 181  
PUSH 180  
UART 105  
IR 176  
PUSHX 180  
RCF 179, 180  
RET 181  
Ir 176  
IrDA  
architecture 117  
RL 181  
block diagram 117  
RLC 181  
rotate and shift 181  
RR 182  
control register definitions 120  
operation 117  
receiving data 119  
RRC 182  
SBC 179  
transmitting data 118  
IRET 181  
SCF 179, 180  
SRA 182  
SRL 182  
IRQ0 enable high and low bit registers 61  
IRQ1 enable high and low bit registers 63  
IRQ2 enable high and low bit registers 65  
IRR 176  
SRP 180  
STOP 180  
Irr 176  
SUB 179  
SUBX 179  
SWAP 182  
TCM 179  
J
JP 181  
TCMX 179  
TM 179  
TMX 179  
jump, conditional, relative, and relative conditional  
181  
TRAP 181  
Watchdog Timer refresh 180  
XOR 181  
XORX 181  
instructions, eZ8 classes of 178  
interrupt control register 68  
L
LD 180  
LDC 180  
LDCI 179, 180  
LDE 180  
PS024317-0914  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
227  
LDEI 179, 180  
LDX 180  
N
NOP (no operation) 180  
notation  
b 176  
LEA 180  
load 180  
load constant 179  
cc 176  
DA 176  
ER 176  
IM 176  
IR 176  
Ir 176  
IRR 176  
Irr 176  
p 176  
R 176  
r 176  
RA 177  
RR 177  
rr 177  
vector 177  
X 177  
load constant to/from program memory 180  
load constant with auto-increment addresses 180  
load effective address 180  
load external data 180  
load external data to/from data memory and auto-  
increment addresses 179  
load external to/from data memory and auto-incre-  
ment addresses 180  
load instructions 180  
load using extended addressing 180  
logical AND 181  
logical AND/extended addressing 181  
logical exclusive OR 181  
logical exclusive OR/extended addressing 181  
logical instructions 181  
logical OR 181  
logical OR/extended addressing 181  
low power modes 30  
notational shorthand 176  
O
OCD  
M
architecture 156  
master interrupt enable 56  
memory  
auto-baud detector/generator 159  
baud rate limits 160  
block diagram 156  
breakpoints 161  
commands 162  
control register 166  
data format 159  
DBG pin to RS-232 Interface 157  
Debug Mode 158  
debugger break 181  
interface 157  
serial errors 160  
status register 168  
data 15  
program 13  
mode  
Capture 89  
Capture/Compare 89  
Continuous 88  
Counter 89  
Gated 89  
One-Shot 88  
PWM 89  
modes 89  
MULT 179  
multiply 179  
MULTIPROCESSOR mode, UART 103  
timing 207  
OCD commands  
execute instruction (12h) 166  
read data memory (0Dh) 165  
read OCD control register (05h) 163  
PS024317-0914  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
228  
read OCD revision (00h) 163  
read OCD status register (02h) 163  
read program counter (07h) 164  
read program memory (0Bh) 164  
read program memory CRC (0Eh) 165  
read register (09h) 164  
power supply signals 10  
Power-on and Voltage Brownout electrical charac-  
teristics and timing 201  
Power-On Reset (POR) 23  
program control instructions 181  
program counter 177  
read runtime counter (03h) 163  
step instruction (10h) 165  
stuff instruction (11h) 166  
write data memory (0Ch) 165  
write OCD control register (04h) 163  
write program counter (06h) 163  
write program memory (0Ah) 164  
write register (08h) 164  
program memory 13  
PUSH 180  
push using extended addressing 180  
PUSHX 180  
PWM mode 89  
PxADDR register 41  
PxCTL register 42  
on-chip debugger (OCD) 156  
on-chip debugger signals 10  
One-Shot Mode 88  
R
R 176  
opcode map  
r 176  
RA  
abbreviations 193  
cell description 192  
first 194  
second after 1Fh 195  
register address 177  
RCF 179, 180  
receive  
Operational Description 21, 30, 33, 69, 91, 97, 117,  
121, 132, 134, 146, 156, 169, 173  
OR 181  
ordering information 211  
ORX 181  
IrDA data 119  
receiving UART data-interrupt-driven method 102  
receiving UART data-polled method 101  
register 176  
ADC control (ADCCTL) 126, 129  
ADC data high byte (ADCDH) 130  
ADC data low bits (ADCDL) 131  
flash control (FCTL) 141, 148, 149  
flash high and low byte (FFREQH and FRE-  
EQL) 144  
P
p 176  
Packaging 210  
part selection guide 2  
PC 177  
peripheral AC and DC electrical characteristics 201  
pin characteristics 11  
Pin Descriptions 7  
flash page select (FPS) 142, 144  
flash status (FSTAT) 142  
GPIO Port A–H address (PxADDR) 41  
GPIO Port A–H alternate function subregisters  
44  
polarity 176  
POP 180  
pop using extended addressing 180  
POPX 180  
GPIO Port A–H control address (PxCTL) 42  
GPIO Port A–H data direction subregisters 43  
OCD control 166  
OCD status 168  
port availability, device 33  
port input timing (GPIO) 205  
port output timing, GPIO 206  
UARTx baud rate high byte (UxBRH) 115  
UARTx baud rate low byte (UxBRL) 115  
UARTx Control 0 (UxCTL0) 112, 115  
PS024317-0914  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
229  
UARTx control 1 (UxCTL1) 113  
UARTx receive data (UxRXD) 109  
UARTx status 0 (UxSTAT0) 110  
UARTx status 1 (UxSTAT1) 111  
UARTx transmit data (UxTXD) 109  
Watchdog Timer control (WDTCTL) 94, 133  
watch-dog timer control (WDTCTL) 172  
Watchdog Timer reload high byte (WDTH) 95  
Watchdog Timer reload low byte (WDTL) 95  
Watchdog Timer reload upper byte (WDTU)  
95  
software trap 181  
source operand 177  
SP 177  
SRA 182  
src 177  
SRL 182  
SRP 180  
stack pointer 177  
STOP 180  
Stop Mode 30, 180  
Stop-Mode Recovery  
sources 26  
register file 13  
register pair 177  
register pointer 177  
reset  
using a GPIO port pin transition 27, 28  
using Watchdog Timer time-out 27  
SUB 179  
and Stop Mode characteristics 21  
and Stop-Mode Recovery 21  
carry flag 179  
subtract 179  
subtract - extended addressing 179  
subtract with carry 179  
subtract with carry - extended addressing 179  
SUBX 179  
sources 23  
RET 181  
return 181  
SWAP 182  
RL 181  
RLC 181  
swap nibbles 182  
symbols, additional 177  
rotate and shift instructions 181  
rotate left 181  
rotate left through carry 181  
rotate right 182  
rotate right through carry 182  
RP 177  
RR 177, 182  
rr 177  
T
TCM 179  
TCMX 179  
test complement under mask 179  
test complement under mask - extended addressing  
179  
test under mask 179  
test under mask - extended addressing 179  
timer signals 9  
RRC 182  
S
timers 69  
SBC 179  
architecture 70  
SCF 179, 180  
block diagram 70  
second opcode map after 1Fh 195  
set carry flag 179, 180  
set register pointer 180  
shift right arithmetic 182  
shift right logical 182  
signal descriptions 9  
single-sho conversion (ADC) 123  
Capture Mode 78, 79, 89  
Capture/Compare Mode 82, 89  
Compare Mode 80, 89  
Continuous Mode 71, 88  
Counter Mode 72, 73  
Counter modes 89  
Gated Mode 81, 89  
PS024317-0914  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
230  
One-Shot Mode 70, 88  
UxSTAT1 register 111  
operating mode 70  
UxTXD register 109  
PWM mode 75, 76, 89  
reading the timer count values 83  
reload high and low byte registers 84  
timer control register definitions 83  
timer output signal operation 83  
V
vector 177  
Voltage Brownout reset (VBR) 24  
timers 0-3  
control registers 86, 87  
high and low byte registers 83, 86  
TM 179  
TMX 179  
tools, hardware and software 220  
W
Watchdog Timer  
approximate time-out delay 91  
CNTL 24  
transmit  
control register 94, 171  
electrical characteristics and timing 202, 204  
interrupt in normal operation 92  
interrupt in Stop Mode 92  
refresh 92, 180  
reload unlock sequence 93  
reload upper, high and low registers 94  
reset 25  
IrDA data 118  
transmitting UART data-polled method 99  
transmitting UART dat-interrupt-driven method  
100  
TRAP 181  
U
reset in normal operation 93  
reset in Stop Mode 93  
time-out response 92  
UART 4  
architecture 97  
baud rate generator 108  
control register definitions 108  
controller signals 9  
interrupts 105  
Watchdog Timer Control Register (WDTCTL) 94  
WDTCTL register 94, 133, 172  
WDTH register 95  
WDTL register 95  
MULTIPROCESSOR mode 103  
receiving data using interrupt-driven method  
102  
WDTU register 95  
working register 176  
working register pair 177  
receiving data using the polled method 101  
transmitting data using the interrupt-driven  
method 100  
X
transmitting data using the polled method 99  
x baud rate high and low registers 115  
x control 0 and control 1 registers 112  
x status 0 and status 1 registers 110, 111  
UxBRH register 115  
X 177  
XOR 181  
XORX 181  
UxBRL register 115  
UxCTL0 register 112, 115  
UxCTL1 register 113  
UxRXD register 109  
UxSTAT0 register 110  
Z
Z8 Encore!  
block diagram 3  
features 1  
part selection guide 2  
PS024317-0914  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
231  
Customer Support  
To share comments, get your technical questions answered, or report issues you may be  
experiencing with our products, please visit Zilog’s Technical Support page at   
http://support.zilog.com.  
To learn more about this product, find additional documentation, or to discover other fac-  
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://  
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.  
This publication is subject to replacement by a later edition. To determine whether a later  
edition exists, please visit the Zilog website at http://www.zilog.com.  
PS024317-0914  
P R E L I M I N A R Y  
Customer Support  

相关型号:

Z8F0423PJ005SG2156

IC MCU 8BIT 4KB FLASH 28DIP
ZILOG

Z8F0423QB005EC

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, QFN-8
IXYS

Z8F0423QB005EG

IC MCU 8BIT 4KB FLASH 8QFN
ZILOG

Z8F0423QB005SG

IC 8-BIT, FLASH, 20 MHz, MICROCONTROLLER, PDSO8, GREEN, QFN-8, Microcontroller
ZILOG

Z8F0423SB005EG

IC MCU 8BIT 4KB FLASH 8SOIC
ZILOG

Z8F0423SB005SC

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PDSO8, SOIC-8
IXYS

Z8F0423SB005SG

High-Performance 8-Bit Microcontrollers
ZILOG

Z8F0423SH005EC

IC 8-BIT, FLASH, 20 MHz, MICROCONTROLLER, PDSO20, SOIC-20, Microcontroller
IXYS

Z8F0423SH005EG

IC MCU 8BIT 4KB FLASH 20SOIC
ZILOG

Z8F0423SH005EG2156

IC MCU 8BIT 4KB FLASH 20SOIC
ZILOG

Z8F0423SH005SG

IC MCU 8BIT 4KB FLASH 20SOIC
ZILOG

Z8F0423SH005SG2156

IC MCU 8BIT 4KB FLASH 20SOIC
ZILOG