EL5101IC-T7

更新时间:2025-07-01 01:49:41
品牌:INTERSIL
描述:200MHz Slew Enhanced VFA

EL5101IC-T7 概述

200MHz Slew Enhanced VFA 200MHz的压摆增强VFA

EL5101IC-T7 数据手册

通过下载EL5101IC-T7数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
EL5100, EL5101, EL5300  
®
Data Sheet  
September 22, 2004  
FN7330.1  
200MHz Slew Enhanced VFA  
Features  
The EL5100, EL5101, and EL5300 represent high-speed  
voltage feedback amplifiers based on the current feedback  
amplifier architecture. This gives the typical high slew rate  
benefits of a CFA family along with the stability and ease of  
use associated with the VFA type architecture. This family is  
available in single, dual, and triple versions, with 200MHz,  
400MHz, and 700MHz versions. This family operates on  
single 5V or ±5V supplies from minimum supply current. The  
EL5100 and EL5300 also feature an output enable function,  
which can be used to put the output in to a high-impedance  
mode. This enables the outputs of multiple amplifiers to be  
tied together for use in multiplexing applications.  
• Pb-free available as an option  
• Specified for 5V or ±5V applications  
• Power-down to 17µA/amplifier  
• -3dB bandwidth = 200MHz  
• ±0.1dB bandwidth = 20MHz  
• Low supply current = 2.5mA  
• Slew rate = 2200V/µs  
• Low offset voltage = 4mV max  
• Output current = 100mA  
• A  
VOL  
= 1000  
Ordering Information  
• Diff gain/phase = 0.08%/0.1°  
PART  
NUMBER  
PACKAGE  
8-Pin SO  
TAPE & REEL PKG. DWG. #  
Applications  
EL5100IS  
-
MDP0027  
MDP0027  
MDP0027  
MDP0038  
MDP0038  
• Video amplifiers  
• PCMCIA applications  
• A/D drivers  
EL5100IS-T7  
EL5100IS-T13  
EL5100IW-T7  
8-Pin SO  
7”  
13”  
8-Pin SO  
6-Pin SOT-23  
7” (3K pcs)  
7” (250 pcs)  
7” (3K pcs)  
7” (250 pcs)  
7” (3K pcs)  
7” (250 pcs)  
-
• Line drivers  
EL5100IW-T7A 6-Pin SOT-23  
EL5101IC-T7  
EL5101IC-T7A  
EL5101IW-T7  
SC-70  
SC-70  
• Portable computers  
• High speed communications  
• RGB applications  
• Broadcast equipment  
• Active filtering  
5-Pin SOT-23  
MDP0038  
MDP0038  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
EL5101IW-T7A 5-Pin SOT-23  
EL5300IU  
16-Pin QSOP  
16-Pin QSOP  
EL5300IU-T7  
7”  
EL5300IU-T13 16-Pin QSOP  
13”  
EL5300IUZ  
(See Note)  
16-Pin QSOP  
(Pb-free)  
-
EL5300IUZ-T7 16-Pin QSOP  
7”  
MDP0040  
MDP0040  
(See Note)  
(Pb-free)  
EL5300IUZ-  
16-Pin QSOP  
(Pb-free)  
13”  
T13 (See Note)  
NOTE: Intersil Pb-free products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which is compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020C.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL5100, EL5101, EL5300  
Pinouts  
EL5100  
(6-PIN SOT-23)  
TOP VIEW  
EL5101  
(5-PIN SOT-23)  
TOP VIEW  
OUT  
VS-  
IN+  
1
2
3
6
5
4
VS+  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
ENABLE  
IN-  
+
-
+
-
EL5100  
EL5300  
(16-PIN QSOP)  
TOP VIEW  
(8-PIN SO)  
TOP VIEW  
INA+  
CEA  
VS-  
1
2
3
4
5
6
7
8
16 INA-  
15 OUTA  
14 VS+  
NC  
IN-  
1
2
3
4
8
7
6
5
ENABLE  
VS+  
-
+
-
+
IN+  
OUT  
+
-
CEB  
INB+  
NC  
13 OUTB  
12 INB-  
11 NC  
GND  
NC  
+
-
CEC  
INC+  
10 OUTC  
9
INC-  
FN7330.1  
2
EL5100, EL5101, EL5300  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and GND. . . . . . . . . . . . . . . . . . 13.2V  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature Range . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150°C  
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±V  
S
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±4V  
Maximum Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80mA  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
DC Electrical Specifications  
V
= ±5V, GND = 0V, T = 25°C, V  
= 0V, V  
= 0V, V  
= GND or OPEN, unless otherwise  
ENABLE  
S
A
CM  
OUT  
specified.  
DESCRIPTION  
Offset Voltage  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNIT  
mV  
V
-4  
4
OS  
TCV  
Offset Voltage Temperature Coefficient  
Input Bias Current  
Measured from T  
to T  
8
µV/°C  
µA  
OS  
MIN  
MAX  
MAX  
IB  
V
V
= 0V  
= 0V  
-6  
2
6
IN  
IN  
I
Input Offset Current  
-2.5  
0.5  
8
2.5  
µA  
OS  
TCI  
Input Bias Current Temperature  
Coefficient  
Measured from T  
to T  
nA/°C  
OS  
MIN  
PSRR  
CMRR  
CMIR  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
Common Mode Input Range  
Input Resistance  
70  
60  
-3  
90  
75  
dB  
dB  
V
V
from -3V to +3V  
CM  
Guaranteed by CMRR test  
= -3V to +3V  
+3  
R
V
0.7  
1.2  
1
M  
pF  
mA  
µA  
µA  
V
IN  
IN  
C
Input Capacitance  
IN  
I
I
Supply Current - Enabled  
Supply Current - Shut Down  
Per amplifier  
V +, per amplifier  
2.1  
-5  
2.5  
0
2.9  
5
S,ON  
S,OFF  
S
V -, per amplifier  
5
17  
25  
12  
S
PSOR  
AVOL  
Power Supply Operating Range  
Open Loop Gain  
3.3  
55  
3.2  
3.6  
R = 1kto GND, V  
from -2.5V to +2.5V  
OUT  
60  
3.4  
dB  
V
L
V
Positive Output Voltage Swing  
R = 150to GND  
L
OP  
R = 1kto GND  
3.8  
V
L
V
Negative Output Voltage Swing  
R = 150to GND  
-3.4  
-3.8  
±100  
-3.2  
-3.6  
V
ON  
L
R = 1kto GND  
V
L
I
Output Current  
R = 10to 0V  
±60  
mA  
V
OUT  
L
V
V
ENABLE pin Voltage for Power Up  
ENABLE pin Voltage for Shut Down  
Enable Pin Current  
V + -4  
S
IH-EN  
IL-EN  
V + -1  
S
V
I
Enabled, V  
= 0V  
= 5V  
-1  
5
1
µA  
µA  
EN  
EN  
Disabled, V  
17  
25  
EN  
FN7330.1  
3
EL5100, EL5101, EL5300  
Closed Loop AC Electrical SpecificationsV = ±5V, T = 25°C, V  
= 0V, A = +1, R = 0, R = 150to GND, unless otherwise specified.  
V F L  
S
A
ENABLE  
PARAMETER  
BW  
SR  
DESCRIPTION  
CONDITIONS  
V = ±5V, A = 1, R = 0Ω  
S
MIN  
150  
TYP  
200  
2200  
2.8  
10  
MAX  
UNIT  
MHz  
V/µs  
ns  
-3dB Bandwidth (V  
= 200mV  
)
OUT  
P-P  
V
F
Slew Rate  
R = 100, V  
= -3V to +3V, A = +2  
1500  
4500  
L
OUT  
V
t ,t  
Rise Time, Fall Time  
Overshoot  
±0.1V step  
±0.1V step  
±0.1V step  
R F  
OS  
%
t
t
Propagation Delay  
0.1% Settling Time  
Differential Gain  
Differential Phase  
Input Noise Voltage  
Input Noise Current  
Disable Time  
3.2  
20  
ns  
PD  
S
V
= ±5V, R = 500, A = 1, V  
= ±2.5V  
ns  
S
L
V
OUT  
dG  
dP  
A
= 2, R = 150, V  
= -1 to +1V  
= -1 to +1V  
0.08  
0.1  
10  
%
V
L
INDC  
INDC  
A
= 2, R = 150, V  
°
V
L
e
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
ns  
N
i
7
N
t
t
180  
650  
DIS  
EN  
Enable Time  
ns  
Typical Performance Curves  
5
4
3
2
1
5
A =+1  
V
8.8pF  
6.6pF  
4.4pF  
2.2pF  
0pF  
A =+1  
V
4
R =500  
±1.75  
L
R =50Ω  
L
C
-=0pF  
IN  
SUPPLY=±5.0V  
3
2
1
±2.0  
±3.0  
SUPPLY=±5.0V  
±4.0  
±5.0  
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 2. GAIN vs FREQUENCY FOR VARIOUS C  
FIGURE 1. GAIN vs FREQUENCY FOR VARIOUS C  
L
L
5
5
6.6pF  
4.4pF  
A =+2  
V
A =+2  
V
17.1pF  
4
3
2
1
0
4
3
2
1
0
R =R 383Ω  
R =150Ω  
F
G=  
L
11.5pF  
5.8pF  
C =2.2pF  
L
C =2.2pF  
L
R =150Ω  
R =383Ω  
L
F
2.2pF  
0pF  
-1  
-1  
-2  
-3  
-4  
-5  
-2  
-3  
-4  
-5  
2.2pF  
600M  
1M  
10M  
FREQUENCY (Hz)  
100M  
100K  
100K  
100M  
600M  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 3. GAIN vs FREQUENCY FOR VARIOUS C  
-
FIGURE 4. GAIN vs FREQUENCY FOR VARIOUS C -  
IN  
IN  
FN7330.1  
4
EL5100, EL5101, EL5300  
Typical Performance Curves (Continued)  
5
4
3
2
1
5
A =+1  
V
13.4pF  
7.8pF  
A =+5  
V
4
3
2
1
0
R =500Ω  
L
R
383Ω  
F=  
C =2.5pF  
L
C =2.2pF  
L
C
-=0pF  
IN  
R =150Ω  
L
500Ω  
200Ω  
100Ω  
SUPPLY=±5.0V  
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
50Ω  
20Ω  
2.2pF  
10M  
1M  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100M  
100K  
FREQUENCY (Hz)  
FIGURE 6. GAIN vs FREQUENCY FOR VARIOUS R  
FIGURE 5. GAIN vs FREQUENCY FOR VARIOUS C (-)  
IN  
L
5
5
A =+1  
V
A =+5  
V
4
3
2
1
0
C =2.2pF  
L
4
3
2
1
0
R
383Ω  
F=  
C =2.2pF  
L
1500Ω  
1000Ω  
R =150Ω  
L
750Ω  
150Ω  
2.0Ω  
500Ω  
400Ω  
200Ω  
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
1.5Ω  
600M  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
100K  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 8. GAIN vs FREQUENCY FOR VARIOUS R  
L
FIGURE 7. GAIN vs FREQUENCY FOR VARIOUS R  
L
5
V =±5V  
S
A =+2  
V
4
3
2
R =R =383Ω  
F
G
C =2.2pF  
L
R =150Ω  
L
100  
10  
1
1
0
1.5kΩ  
715Ω  
-1  
-2  
-3  
-4  
-5  
383Ω  
150Ω  
10  
100  
1K  
10K  
100K  
600M  
1M  
10M  
FREQUENCY (Hz)  
100M  
100K  
FREQUENCY (Hz)  
FIGURE 10. EQUIVALENT INPUT VOLTAGE NOISE vs  
FREQUENCY  
FIGURE 9. GAIN vs FREQUENCY FOR VARIOUS R  
L
FN7330.1  
5
EL5100, EL5101, EL5300  
Typical Performance Curves (Continued)  
0
100  
V =±5V  
S
V =±5V  
S
36  
72  
108  
144  
180  
90  
80  
70  
60  
50  
A =+1  
V
10  
PHASE  
1
0.1  
GAIN  
216  
252  
40  
30  
20  
10  
0
0.01  
10M 100M  
500M  
500 1K  
10K  
100K  
1M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 11. OPEN LOOP GAIN AND PHASE vs FREQUENCY  
FIGURE 12. Z  
vs FREQUENCY  
OUT  
10  
V
0
-10  
A =+10  
V
A =+1  
-20  
-30  
-40  
-50  
-60  
V =±5V  
S
V =±5V  
S
-10  
-20  
-30  
-40  
-50  
R =150Ω  
L
-V  
S
+V  
S
-70  
-60  
-70  
-80  
-90  
-80  
-90  
-100  
-110  
1M 10M 100M  
10M  
FREQUENCY (Hz)  
100M  
500M  
10  
100 1K  
10K 100K  
500M  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
FIGURE 13. PSRR vs FREQUENCY  
FIGURE 14. CMRR vs FREQUENCY  
INPUT CH1  
CH1 FALL  
OUTPUT CH2  
CH1 RISE  
1.408ns  
1.103ns  
CH1  
CH1  
INPUT CH1  
CH2 RISE  
1.787ns  
CH2  
CH2  
CH2 FALL  
1.549ns  
OUTPUT CH2  
CH1=500mV/DIV 50Ω  
CH2=100mV/DIV 50Ω  
CH1=500mV/DIV 50Ω  
CH2=100mV/DIV 50Ω  
TIME (2ns/DIV)  
TIME (2ns/DIV)  
FIGURE 15. LARGE SIGNAL RISE TIME  
FIGURE 16. LARGE SIGNAL FALL TIME  
FN7330.1  
6
EL5100, EL5101, EL5300  
Typical Performance Curves (Continued)  
V
V
= 5V  
CC EE  
A =+1  
V
A =1  
V
R =150Ω  
L
CH1  
CH2  
R =150Ω  
CHANNEL 1  
CHANNEL 2  
INPUT CH1  
L
V =±5V  
S
CH1  
CH2  
CH1 RISE  
1.717ns  
OUTPUT CH2  
CH2 RISE  
1.808ns  
CH1=10mV  
CH2=2mV  
CH1=10mV/DIV  
CH2=2mV/DIV  
TIME (2ns/DIV)  
TIME (2ns/DIV)  
FIGURE 17. SMALL SIGNAL RISE TIME  
FIGURE 18. SMALL SIGNAL RISE TIME  
V
V
= 5V  
CC EE  
A =1  
V
INPUT CH1  
R =150Ω  
L
CH1  
CH2  
100  
CH1 FALL  
1.306ns  
OUTPUT CH2  
10  
CH2 FALL  
2.351ns  
CH1=10mV/DIV  
CH2=2mV/DIV  
1
100  
1K  
10K  
100K  
TIME (2ns/DIV)  
FREQUENCY (Hz)  
FIGURE 20. CURRENT NOISE  
FIGURE 19. SMALL SIGNAL FALL TIME  
5
5
A =+1  
V
R =150Ω  
15pF  
13.4pF  
L
IN  
4
3
2
1
0
4
3
2
1
0
R =150Ω  
C
-=0pF  
24.6 pF  
L
19pF  
13.4pF  
7.8pF  
7.8pF  
2.2pF  
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
2.2pF  
600M  
600M  
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
100K  
100K  
FIGURE 21. GAIN vs FREQUENCY FOR VARIOUS C  
FIGURE 22. GAIN vs FREQUENCY FOR VARIOUS C  
L
L
FN7330.1  
7
EL5100, EL5101, EL5300  
Typical Performance Curves (Continued)  
5
5
A =+5  
A =+2  
V
72pF  
50pF  
38pF  
V
4
3
2
1
0
4
3
2
1
0
R
383Ω  
F=  
50pF  
44pF  
38pF  
26pF  
R
383Ω  
F=  
R =150Ω  
R =150Ω  
L
L
IN  
C
=0pF  
20pF  
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
7.8pF  
2.2pF  
2.2pF  
10M  
FREQUENCY (Hz)  
1M  
10M  
1M  
100M  
100M  
100K  
100K  
FREQUENCY (Hz)  
FIGURE 23. GAIN vs FREQUENCY FOR VARIOUS C  
FIGURE 24. GAIN vs FREQUENCY FOR VARIOUS C  
L
L
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.2  
CONDUCTIVITY TEST BOARD  
1.8  
1.6  
1.4  
1
791mW  
1.136W  
1.116W  
1.2  
1
0.8  
781mW  
0.6  
0.8  
0.6  
0.4  
0.2  
0
543mW  
488mW  
0.4  
QSOP16  
SO8  
θ
=160°C/W  
JA  
0.2  
0
θ
=112°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 26. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 25. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7330.1  
8
EL5100, EL5101, EL5300  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
IRE  
FIGURE 27. DIFFERENTIAL GAIN (%)  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
IRE  
FIGURE 28. DIFFERENTIAL PHASE (°)  
FN7330.1  
9
EL5100, EL5101, EL5300  
Application Information  
Video Amplifier with Reduced Size Output  
Capacitance  
If you have a video line driver Z = 75, the DC decoupling  
capacitor could be relatively large.  
1
=
C =  
2π ×R× f  
f = 10Hz, R = Z = 75, C = 132µF  
By using the circuit below, C could be reduced to C2 = 22µF.  
Vs+  
C5  
C4  
R8  
1n  
3R3  
22µF  
C6  
33nF  
R1  
20K  
U1  
C1  
EL5104  
Z = 75Ω  
3
+
R4  
C2  
6
2
22µF  
R5  
-
C
75  
500  
R2  
20K  
R3  
10k  
C3  
R7  
75  
1.5µF  
R6  
500  
FIGURE 29.  
with an 1/5 value, price and size output capacitor. There is  
another, very important issue by using high bandwidth  
amplifiers.  
10  
5
0
In the past when the bandwidth of the operational amplifier  
ended at a few hundred kHz even at few MHz, the power-  
supply bypass was not a very critical issue, since a 0.1µF  
capacitor “did the job”, but today’s amplifiers could have  
bandwidth, what used to be reserved for microwave circuits  
not to long time ago.  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
Conditions/comments:  
(1) C1 = 1µF Vs = +10V  
(2) C1 = 0.47µF Vs = +10V  
(3) C1 = 0.47µF Vs = +5V  
Therefore that high bandwidth amplifiers require the same  
respect what we reserve for microwave circuits. Particularly  
the power supply bypass and the pcb-layout could very  
heavily influence the performance of a modern high  
bandwidth amplifiers. It could happen above a few MHz, but  
it will happen above 100MHz, that the capacitor will behave  
like an inductor.  
1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08  
1.00E+01 1.00E+03 1.00E+05 1.00E+07 1.00E+09  
FREQUENCY (Hz)  
FIGURE 30. VIDEO-  
The test result is shown on Figure 30.  
By selecting a different value for C1, we could reduce the  
effect, created by C3 R3 and get flat response from 16Hz  
FN7330.1  
10  
EL5100, EL5101, EL5300  
The reason for that is the very small but not zero value serial  
Above its serial resonance C2* the ideal capacitance of C2 is  
a short, the Tantalum capacitor for high frequencies is not  
effective, the left over is C1 capacitor and L1 + L2 inductors,  
we get a parallel tank circuit, which is at it’s resonance a high  
impedance path and do not carry any high frequency  
current, it does not work as bypass at all!  
inductance of the capacitor.  
Z
Ci  
The impedance of a parallel tank circuit at resonance is  
dependent from it’s Q. High Q high impedance.  
Li  
The Q of a parallel tank circuit could be reduced by  
bypassing it with a resistor, or adding a resistor in serial to  
one of the reactive components. Since the bypassing would  
short the DC supply we do have to go to add resistor in serial  
to the reactive component, we will ad a resistor serial with  
the inductor. (See Figure 33.)  
F
F RES  
FIGURE 31.  
The capacitor will behave as a capacitor up to its resonance  
frequency, above the resonance frequency it will behave as  
an inductor.  
C3  
Z
0.1µF  
C1  
Just 1nHy inductance serial with 1nF capacitance will have  
serial resonance at:  
R3 = 0  
L3  
1
F =  
2π L×C  
C = 1nF, L = 1nHy, F = 159 MHz  
R3 = 3  
R3  
And an other 1nHy is very easy to get together with the  
inductance of traces on the pcb, and therefore you could  
encounter resonances from ca 50MHz and above anywhere.  
So if the amplifier has a bandwidth of a few hundred MHz,  
the proper power supply by-pass could become a serious if  
not difficult task.  
2 to 3Ω  
F
F RES  
FIGURE 33.  
Intuitively, you would use capacitors value 0.1µF parallel  
with a few µF tantalum, and to cure the effect of it’s serial  
resonance put a smaller one parallel to it.  
The final power supply bypass circuit will look:  
Vs+  
The result will surprise to you, because you will get even  
something worse than without the small capacitor.  
C11  
C1  
R10  
3R3  
1n  
22µF  
What is happening there? Just look what we get:  
C12  
C3  
C2  
C1  
33nF  
1n  
0.1µF  
C3  
0.1µF  
22µF  
C2  
C1  
=
1n  
22µF  
FIGURE 34.  
L1  
L2  
<
FIGURE 32.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7330.1  
11  

EL5101IC-T7 相关器件

型号 制造商 描述 价格 文档
EL5101IC-T7A INTERSIL 200MHz Slew Enhanced VFA 获取价格
EL5101IW-T7 INTERSIL 200MHz Slew Enhanced VFA 获取价格
EL5101IW-T7 RENESAS IC OPAMP VFB 1 CIRCUIT SOT23-5 获取价格
EL5101IW-T7A INTERSIL 200MHz Slew Enhanced VFA 获取价格
EL5101IW-T7A RENESAS 1 CHANNEL, VIDEO AMPLIFIER, PDSO5, SOT-23, 6 PIN 获取价格
EL5102 INTERSIL 400MHz Slew Enhanced VFAs 获取价格
EL5102IS INTERSIL 400MHz Slew Enhanced VFAs 获取价格
EL5102IS-T13 INTERSIL 400MHz Slew Enhanced VFAs 获取价格
EL5102IS-T7 INTERSIL 400MHz Slew Enhanced VFAs 获取价格
EL5102ISZ INTERSIL 400MHz Slew Enhanced VFAs 获取价格
Hi,有什么可以帮您? 在线客服 或 微信扫码咨询