MCP14E4

更新时间:2024-12-04 05:42:11
品牌:MICROCHIP
描述:The MCP14E3/E4/E5 devices are a family of 4 A, dual output MOSFET gate drivers with separate enabl

MCP14E4 概述

The MCP14E3/E4/E5 devices are a family of 4 A, dual output MOSFET gate drivers with separate enabl

MCP14E4 数据手册

通过下载MCP14E4数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
MCP14E3/MCP14E4/MCP14E5  
4.0A Dual High-Speed Power MOSFET Drivers With Enable  
Features  
General Description  
• High Peak Output Current: 4.0A (typical)  
The MCP14E3/MCP14E4/MCP14E5 devices are a  
family of 4.0A buffers/MOSFET drivers. Dual-inverting,  
dual-noninvertering, and complementary outputs are  
standard logic options offered.  
• Independent Enable Function for Each Driver  
Output  
• Low Shoot-Through/Cross-Conduction Current in  
Output Stage  
The MCP14E3/MCP14E4/MCP14E5 drivers are  
capable of operating from a 4.5V to 18V single power  
supply and can easily charge and discharge 2200 pF  
gate capacitance in under 15 ns (typical). They provide  
low impedance in both the ON and OFF states to  
ensure the MOSFET’s intended state will not be  
affected, even by large transients. The MCP14E3/  
MCP14E4/MCP14E5 inputs may be driven directly  
from either TTL or CMOS (2.4V to 18V).  
• Wide Input Supply Voltage Operating Range:  
- 4.5V to 18V  
• High Capacitive Load Drive Capability:  
- 2200 pF in 15 ns (typical)  
- 5600 pF in 26 ns (typical)  
• Short Delay Times: 50 ns (typical)  
• Latch-Up Protected: Will Withstand 1.5A Reverse  
Current  
Additional control of the MCP14E3/MCP14E4/  
MCP14E5 outputs is allowed by the use of separate  
enable functions. The ENB_A and ENB_B pins are  
active high and are internally pulled up to VDD. The pins  
maybe left floating for standard operation.  
• Logic Input Will Withstand Negative Swing Up To  
5V  
• Space-Saving Packages:  
- 8-Lead 6x5 DFN, PDIP, SOIC  
The MCP14E3/MCP14E4/MCP14E5 dual-output 4.0A  
driver family is offered in both surface-mount and pin-  
through-hole packages with a -40°C to +125°C  
temperature rating. The low thermal resistance of the  
thermally enhanced DFN package allows for greater  
power dissipation capability for driving heavier  
capacitive or resistive loads.  
Applications  
• Switch Mode Power Supplies  
• Pulse Transformer Drive  
• Line Drivers  
• Motor and Solenoid Drive  
These devices are highly latch-up resistant under any  
conditions within their power and voltage ratings. They  
are not subject to damage when up to 5V of noise  
spiking (of either polarity) occurs on the ground pin.  
They can accept, without damage or logic upset, up to  
1.5A of reverse current being forced back into their  
outputs. All terminals are fully protect against  
Electrostatic Discharge (ESD) up to 4 kV.  
Package Types  
MCP14E4  
8-Pin  
MCP14E4  
8-Pin  
MCP14E3  
MCP14E5  
MCP14E3  
MCP14E5  
6x5 DFN (1)  
PDIP/SOIC  
ENB_A  
IN A  
ENB_B  
OUT A  
VDD  
ENB_B  
OUT A  
VDD  
ENB_B  
OUT A  
VDD  
ENB_B  
ENB_B  
ENB_B  
ENB_A  
8
7
6
5
1
IN A 2  
GND 3  
IN B 4  
OUT A  
VDD  
OUT A  
VDD  
OUT A  
VDD  
GND  
IN B  
OUT B  
OUT B  
OUT B  
OUT B  
OUT B  
OUT B  
Note 1: Exposed pad of the DFN package is electrically isolated.  
© 2008 Microchip Technology Inc.  
DS22062B-page 1  
MCP14E3/MCP14E4/MCP14E5  
Functional Block Diagram  
VDD  
Inverting  
VDD  
Output  
Internal  
Pull-up  
Non-inverting  
Enable  
4.7 V  
Input  
Dual Inverting  
MCP14E3  
MCP14E4  
MCP14E5  
Effective  
Input C = 20 pF  
(Each Input)  
4.7 V  
Dual Noninverting  
One Inverting, One Noninverting  
GND  
DS22062B-page 2  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
Notice: Stresses above those listed under "Maximum  
Ratings" may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational sections of this specification is not intended.  
Exposure to maximum rating conditions for extended periods  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Voltage ................................................................+20V  
Input Voltage ...............................(VDD + 0.3V) to (GND – 5V)  
Enable Voltage.............................(VDD + 0.3V) to (GND - 5V)  
Input Current (VIN>VDD)................................................50 mA  
Package Power Dissipation (TA = 50°C)  
may affect device reliability.  
8L-DFN ....................................................................... Note 3  
8L-PDIP ........................................................................1.10W  
8L-SOIC.....................................................................665 mW  
DC CHARACTERISTICS (NOTE 2)  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, with 4.5V VDD 18V.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input  
Logic ‘1’, High Input Voltage  
Logic ‘0’, Low Input Voltage  
Input Current  
VIH  
VIL  
IIN  
2.4  
–1  
-5  
1.5  
1.3  
0.8  
V
V
1
µA 0V VIN VDD  
Input Voltage  
VIN  
VDD+0.3  
V
Output  
High Output Voltage  
Low Output Voltage  
Output Resistance, High  
Output Resistance, Low  
Peak Output Current  
VOH  
VOL  
ROH  
ROL  
IPK  
VDD – 0.025  
0.025  
3.5  
3.0  
V
V
Ω
Ω
A
A
DC Test  
DC Test  
2.5  
2.5  
4.0  
>1.5  
IOUT = 10 mA, VDD = 18V  
IOUT = 10 mA, VDD = 18V  
VDD = 18V (Note 2)  
Duty cycle 2%, t 300 µs  
Latch-Up Protection With-  
stand Reverse Current  
IREV  
Switching Time (Note 1)  
Rise Time  
tR  
tF  
15  
18  
30  
30  
ns  
ns  
Figure 4-1, Figure 4-2  
CL = 2200 pF  
Fall Time  
Figure 4-1, Figure 4-2  
CL = 2200 pF  
Propagation Delay Time  
Propagation Delay Time  
tD1  
tD2  
46  
50  
55  
55  
ns  
ns  
Figure 4-1, Figure 4-2  
Figure 4-1, Figure 4-2  
Enable Function (ENB_A, ENB_B)  
High-Level Input Voltage  
Low-Level Input Voltage  
Hysteresis  
VEN_H  
1.60  
1.30  
0.10  
40  
1.90  
2.20  
0.30  
85  
2.90  
2.40  
0.60  
115  
V
V
V
VDD = 12V, LO to HI Transition  
VDD = 12V, HI to LO Transition  
VEN_L  
VHYST  
IENBL  
Enable Leakage Current  
µA VDD = 12V,  
ENB_A = ENB_B = GND  
Propagation Delay Time  
Propagation Delay Time  
tD3  
tD4  
60  
50  
ns  
ns  
Figure 4-3 (Note 1)  
Figure 4-3 (Note 1)  
Note 1: Switching times ensured by design.  
2: Tested during characterization, not production tested.  
3: Package power dissipation is dependent on the copper pad area on the PCB.  
© 2008 Microchip Technology Inc.  
DS22062B-page 3  
MCP14E3/MCP14E4/MCP14E5  
DC CHARACTERISTICS (NOTE 2) (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, with 4.5V VDD 18V.  
Parameters  
Power Supply  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Supply Voltage  
Supply Current  
VDD  
IDD  
4.5  
18.0  
2.00  
V
1.60  
mA VIN_A = 3V, VIN_B = 3V,  
ENB_A = ENB_B = High  
IDD  
IDD  
IDD  
IDD  
IDD  
IDD  
IDD  
0.60  
1.20  
1.20  
1.40  
0.55  
1.00  
1.00  
0.90  
1.40  
1.40  
1.80  
0.75  
1.20  
1.20  
mA VIN_A = 0V, VIN_B = 0V,  
ENB_A = ENB_B = High  
mA VIN_A = 3V, VIN_B = 0V,  
ENB_A = ENB_B = High  
mA VIN_A = 0V, VIN_B = 3V,  
ENB_A = ENB_B = High  
mA VIN_A = 3V, VIN_B = 3V,  
ENB_A = ENB_B = Low  
mA VIN_A = 0V, VIN_B = 0V,  
ENB_A = ENB_B = Low  
mA VIN_A = 3V, VIN_B = 0V,  
ENB_A = ENB_B = Low  
mA VIN_A = 0V, VIN_B = 3V,  
ENB_A = ENB_B = Low  
Note 1: Switching times ensured by design.  
2: Tested during characterization, not production tested.  
3: Package power dissipation is dependent on the copper pad area on the PCB.  
DS22062B-page 4  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)  
Electrical Specifications: Unless otherwise indicated, operating temperature range with 4.5V VDD 18V.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input  
Logic ‘1’, High Input Voltage VIH  
2.4  
0.8  
+10  
V
V
Logic ‘0’, Low Input Voltage  
Input Current  
VIL  
IIN  
–10  
µA  
0V VIN VDD  
Output  
High Output Voltage  
Low Output Voltage  
Output Resistance, High  
Output Resistance, Low  
Switching Time (Note 1)  
Rise Time  
VOH VDD – 0.025  
0.025  
6.0  
V
V
Ω
Ω
DC TEST  
VOL  
ROH  
ROL  
DC TEST  
3.0  
3.0  
IOUT = 10 mA, VDD = 18V  
IOUT = 10 mA, VDD = 18V  
5.0  
tR  
tF  
25  
28  
40  
40  
ns  
ns  
Figure 4-1, Figure 4-2  
CL = 2200 pF  
Fall Time  
Figure 4-1, Figure 4-2  
CL = 2200 pF  
Delay Time  
Delay Time  
tD1  
tD2  
50  
50  
70  
70  
ns  
ns  
Figure 4-1, Figure 4-2  
Figure 4-1, Figure 4-2  
Enable Function (ENB_A, ENB_B)  
High-Level Input Voltage  
Low-Level Input Voltage  
Hysteresis  
VEN_H  
VEN_L  
VHYST  
IENBL  
tD3  
1.60  
1.30  
2.20  
1.80  
0.40  
87  
2.90  
2.40  
V
V
VDD = 12V, LO to HI Transition  
VDD = 12V, HI to LO Transition  
V
Enable Leakage Current  
Propagation Delay Time  
Propagation Delay Time  
Power Supply  
40  
115  
µA  
ns  
ns  
VDD = 12V, ENB_A = ENB_B = GND  
50  
Figure 4-3  
Figure 4-3  
tD4  
60  
Supply Voltage  
VDD  
IDD  
4.5  
18.0  
3.0  
V
Supply Current  
2.0  
mA  
VIN_A = 3V, VIN_B = 3V,  
ENB_A = ENB_B = High  
IDD  
IDD  
IDD  
IDD  
IDD  
IDD  
IDD  
0.8  
1.5  
1.5  
1.8  
0.6  
1.1  
1.1  
1.1  
2.0  
2.0  
2.8  
0.8  
1.8  
1.8  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VIN_A = 0V, VIN_B = 0V,  
ENB_A = ENB_B = High  
VIN_A = 3V, VIN_B = 0V,  
ENB_A = ENB_B = High  
VIN_A = 0V, VIN_B = 3V,  
ENB_A = ENB_B = High  
VIN_A = 3V, VIN_B = 3V,  
ENB_A = ENB_B = Low  
VIN_A = 0V, VIN_B = 0V,  
ENB_A = ENB_B = Low  
VIN_A = 3V, VIN_B = 0V,  
ENB_A = ENB_B = Low  
VIN_A = 0V, VIN_B = 3V,  
ENB_A = ENB_B = Low  
Note 1: Switching times ensured by design.  
© 2008 Microchip Technology Inc.  
DS22062B-page 5  
MCP14E3/MCP14E4/MCP14E5  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V VDD 18V.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
Package Thermal Resistances  
Thermal Resistance, 8L-6x5 DFN  
TA  
TJ  
TA  
–40  
+125  
+150  
+150  
°C  
°C  
°C  
–65  
θJA  
35.7  
°C/W Typical four-layer board with  
vias to ground plane  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
θJA  
θJA  
89.3  
°C/W  
°C/W  
149.5  
DS22062B-page 6  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD 18V.  
120  
90  
60  
30  
0
100  
80  
60  
40  
20  
0
10,000 pF  
6,800 pF  
10,000 pF  
6,800 pF  
4,700 pF  
4,700 pF  
100 pF  
2,200 pF  
2,200 pF  
100 pF  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-1:  
Rise Time vs. Supply  
FIGURE 2-4:  
Fall Time vs. Supply  
Voltage.  
Voltage.  
60  
50  
40  
30  
20  
10  
60  
50  
40  
30  
20  
10  
12V  
12V  
18V  
5V  
5V  
18V  
0
0
100  
1000  
10000  
100  
1000  
10000  
Capacitive Load (pF)  
Capacitive Load (pF)  
FIGURE 2-2:  
Rise Time vs. Capacitive  
FIGURE 2-5:  
Fall Time vs. Capacitive  
Load.  
Load.  
60  
24  
VDD = 18V  
VDD = 12V  
22  
20  
18  
16  
14  
12  
10  
55  
tD1  
tFALL  
50  
tRISE  
45  
tD2  
40  
35  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
4
5
6
7
8
9
10  
11  
12  
Input Amplitude (V)  
FIGURE 2-3:  
Rise and Fall Times vs.  
FIGURE 2-6:  
Propagation Delay vs. Input  
Temperature.  
Amplitude.  
© 2008 Microchip Technology Inc.  
DS22062B-page 7  
MCP14E3/MCP14E4/MCP14E5  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD 18V.  
140  
120  
100  
80  
80  
70  
60  
50  
40  
VDD = 12V  
tD1  
tD1  
tD2  
tD2  
60  
40  
20  
4
6
8
10  
12  
14  
16  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-7:  
Propagation Delay Time vs.  
FIGURE 2-10:  
Propagation Delay Time vs.  
Supply Voltage.  
Temperature.  
1.4  
1.2  
1.8  
VDD = 18V  
1.6  
Input = 1  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Input = 1  
Input = 0  
Input = 0  
0.2  
4
6
8
10  
12  
14  
16  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-8:  
Quiescent Current vs.  
FIGURE 2-11:  
Quiescent Current vs.  
Supply Voltage.  
Temperature.  
8
7
6
8
7
VIN = 5V (MCP14E3)  
VIN = 0V (MCP14E4)  
VIN = 0V (MCP14E3)  
VIN = 5V (MCP14E4)  
TA = 125°C  
6
5
4
3
2
1
TA = 125°C  
5
4
3
2
1
TA = 25°C  
TA = 25°C  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-9:  
Output Resistance (Output  
FIGURE 2-12:  
Output Resistance (Output  
High) vs. Supply Voltage.  
Low) vs. Supply Voltage.  
DS22062B-page 8  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD 18V.  
120  
120  
100  
80  
60  
40  
20  
0
VDD = 18V  
VDD = 18V  
10,000 pF  
50 kHz  
100  
6,800 pF  
100 kHz  
80  
400 kHz  
200 kHz  
4,700 pF  
60  
40  
20  
0
2,200 pF  
650 kHz  
100 pF  
100  
1000  
10000  
10000  
10000  
10  
100  
Frequency (kHz)  
1000  
1000  
1000  
Capacitive Load (pF)  
FIGURE 2-13:  
Capacitive Load.  
Supply Current vs.  
FIGURE 2-16:  
Frequency.  
Supply Current vs.  
70  
70  
VDD = 12V  
VDD = 12V  
10,000 pF  
6,800 pF  
50 kHz  
60  
50  
60  
50  
40  
30  
20  
10  
100 kHz  
200 kHz  
4,700 pF  
400 kHz  
40  
30  
20  
10  
0
2,200 pF  
650 kHz  
100 pF  
0
100  
1000  
10  
100  
Capacitive Load (pF)  
Frequency (kHz)  
FIGURE 2-14:  
Capacitive Load.  
Supply Current vs.  
FIGURE 2-17:  
Frequency.  
Supply Current vs.  
35  
35  
VDD = 6V  
VDD = 6V  
10,000 pF  
6,800 pF  
50 kHz  
30  
25  
20  
15  
30  
25  
20  
15  
10  
5
100 kHz  
400 kHz  
200 kHz  
4,700 pF  
2,200 pF  
650 kHz  
10  
5
100 pF  
0
0
100  
1000  
10  
100  
Capacitive Load (pF)  
Frequency (kHz)  
FIGURE 2-15:  
Supply Current vs.  
FIGURE 2-18:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
© 2008 Microchip Technology Inc.  
DS22062B-page 9  
MCP14E3/MCP14E4/MCP14E5  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD 18V.  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD = 18V  
VDD = 12V  
VHI  
VLO  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-19:  
Input Threshold vs.  
FIGURE 2-22:  
Enable Hysteresis vs.  
Temperature.  
Temperature.  
2.0  
1.8  
1E-06  
1E-07  
1E-08  
VHI  
1.6  
VLO  
1.4  
1.2  
1.0  
1E-09  
4
4
6
8
10  
12  
14  
16  
18  
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
Note:  
The values on this graph represent the  
loss seen by both drivers in a package  
during one complete cycle.  
FIGURE 2-20:  
Voltage.  
Input Threshold vs. Supply  
For a single driver, divide the stated  
value by 2.  
For a signal transition of a single driver,  
divide the state value by 4.  
3.1  
2.9  
2.7  
VDD = 12V  
VEN_H  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
FIGURE 2-23:  
Supply Voltage.  
Crossover Energy vs.  
VEN_L  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-21:  
Enable Threshold vs.  
Temperature.  
DS22062B-page 10  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
8-Pin  
PDIP, SOIC  
8-Pin  
Symbol  
6x5 DFN  
Description  
1
2
1
2
ENB_A  
IN A  
Output A Enable  
Input A  
3
3
GND  
Ground  
4
4
IN B  
Input B  
5
5
OUT B  
VDD  
Output B  
6
6
Supply Input  
Output A  
7
7
OUT A  
ENB_B  
NC  
8
8
Output B Enable  
Exposed Metal Pad  
PAD  
Note:  
Duplicate pins must be connected for proper operation.  
3.1  
Control Inputs A and B  
3.5  
Enable A (ENB_A)  
The MOSFET driver inputs are a high-impedance TTL/  
CMOS compatible input. The inputs also have hystere-  
sis between the high and low input levels, allowing  
them to be driven from slow rising and falling signals  
and to provide noise immunity.  
The ENB_A pin is the enable control for Output A. This  
enable pin is internally pulled up to VDD for active high  
operation and can be left floating for standard  
operation. When the ENB_A pin is pulled below the  
enable pin Low Level Input Voltage (VEN_L), Output A  
will be in the off state regardless of the input pin state.  
3.2  
Outputs A and B  
3.6  
Enable B (ENB_B)  
Outputs A and B are CMOS push-pull outputs that are  
capable of sourcing and sinking 4.0A of peak current  
(VDD = 18V). The low output impedance ensures the  
gate of the MOSFET will stay in the intended state even  
during large transients. These outputs also have a  
reverse latch-up rating of 1.5A.  
The ENB_B pin is the enable control for Output B. This  
enable pin is internally pulled up to VDD for active high  
operation and can be left floating for standard  
operation. When the ENB_B pin is pulled below the  
enable pin Low-Level Input Voltage (VEN_L), Output B  
will be in the off state regardless of the input pin state.  
3.3  
Supply Input (VDD)  
3.7  
DFN Exposed Pad  
VDD is the bias supply input for the MOSFET driver and  
has a voltage range of 4.5V to 18V. This input must be  
decoupled to ground with a local ceramic capacitor.  
This bypass capacitor provides a localized low-imped-  
ance path for the peak currents that are to be provided  
to the load.  
The exposed metal pad of the DFN package is not  
internally connected to any potential. Therefore, this  
pad can be connected to a ground plane or other  
copper plane on a printed circuit board to aid in heat  
removal from the package.  
3.4  
Ground (GND)  
Ground is the device return pin. The ground pin(s)  
should have a low impedance connection to the bias  
supply source return. High peak currents will flow out  
the ground pin(s) when the capacitive load is being  
discharged.  
© 2008 Microchip Technology Inc.  
DS22062B-page 11  
MCP14E3/MCP14E4/MCP14E5  
4.0  
4.1  
APPLICATION INFORMATION  
General Information  
VDD = 18V  
1 µF  
MOSFET drivers are high-speed, high current devices  
which are intended to source/sink high peak currents to  
charge/discharge the gate capacitance of external  
MOSFETs or IGBTs. In high frequency switching power  
supplies, the PWM controller may not have the drive  
capability to directly drive the power MOSFET. A MOS-  
FET driver like the MCP14E3/MCP14E4/MCP14E5  
family can be used to provide additional source/sink  
current capability.  
0.1 µF  
Ceramic  
Input  
Input  
Output  
CL = 2200 pF  
MCP14E4  
(1/2 MCP14E5)  
An additional degree of control has been added to the  
MCP14E3/MCP14E4/MCP14E5 family. There are  
separate enable functions for each driver that allow for  
the immediate termination of the output pulse  
regardless of the state of the input signal.  
+5V  
90%  
Input  
4.2  
MOSFET Driver Timing  
10%  
0V  
The ability of a MOSFET driver to transition from a fully  
off state to a fully on state are characterized by the  
drivers rise time (tR), fall time (tF), and propagation  
delays (tD1 and tD2). The MCP14E3/MCP14E4/  
MCP14E5 family of drivers can typically charge and  
discharge a 2200 pF load capacitance in 15 ns along  
with a typical matched propagation delay of 50 ns.  
Figure 4-1 and Figure 4-2 show the test circuit and  
timing waveform used to verify the MCP14E3/  
MCP14E4/MCP14E5 timing.  
18V  
90%  
90%  
tD1  
tD2  
tF  
tR  
Output  
0V  
10%  
10%  
FIGURE 4-2:  
Waveform.  
Non-Inverting Driver Timing  
4.3  
Enable Function  
The ENB_A and ENB_B enable pins allow for indepen-  
dent control of OUT A and OUT B respectively. They  
are active high and are internally pulled up to VDD so  
that the default state is to enable the driver. These pins  
can be left floating for normal operation.  
VDD = 18V  
0.1 µF  
1 µF  
Ceramic  
When an enable pin voltage is above the enable pin  
high threshold voltage, VEN_H (2.4V typical), that driver  
output is enabled and allowed to react to changes in  
the INPUT pin voltage state. Likewise, when the enable  
pin voltage falls below the enable pin low threshold  
voltage, VEN_L (2.0V typical), that driver output is dis-  
abled and does not respond the changes in the INPUT  
pin voltage state. When the driver is disabled, the out-  
put goes to a low state. Refer to Table 4-1 for enable  
pin logic. The threshold voltages of the enable function  
are compatible with logic levels. Hysteresis is provided  
to help increase the noise immunity of the enable  
function, avoiding false triggers of the enable signal  
during driver switching. For robust designs, it is  
recommended that the slew rate of the enable pin  
signal be greater than 1 V/ns.  
Input  
Input  
Output  
CL = 2200 pF  
MCP14E3  
(1/2 MCP14E5)  
+5V  
90%  
Input  
0V  
10%  
tD1  
tD2  
tF  
tR  
18V  
90%  
90%  
10%  
Output  
There are propagation delays associated with the  
driver receiving an enable signal and the output  
reacting. These propagation delays, tD3 and tD4, are  
graphically represented in Figure 4-3.  
10%  
0V  
FIGURE 4-1:  
Waveform.  
Inverting Driver Timing  
DS22062B-page 12  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
TABLE 4-1:  
ENB_A  
ENABLE PIN LOGIC  
MCP14E3  
MCP14E4  
MCP14E5  
ENB_B  
IN A  
IN B  
OUT A  
OUT B  
OUT A  
OUT B  
OUT A  
OUT B  
H
H
H
H
L
H
H
H
H
L
H
H
L
H
L
L
L
L
H
L
H
H
L
H
L
L
L
H
L
H
L
H
H
L
H
L
H
H
L
H
L
L
H
L
L
X
X
L
L
L
Placing a ground plane beneath the MCP14E3/  
MCP14E4/MCP14E5 will help as a radiated noise  
shield as well as providing some heat sinking for power  
dissipated within the device.  
5V  
ENB_x  
0V  
VEN_H  
4.6  
Power Dissipation  
VEN_L  
The total internal power dissipation in a MOSFET driver  
is the summation of three separate power dissipation  
elements.  
tD3  
tD4  
VDD  
EQUATION 4-1:  
90%  
PT = PL + PQ + PCC  
OUT x  
Where:  
PT  
PL  
=
=
=
=
Total power dissipation  
10%  
Load power dissipation  
0V  
PQ  
Quiescent power dissipation  
Operating power dissipation  
PCC  
FIGURE 4-3:  
Enable Timing Waveform.  
4.6.1  
CAPACITIVE LOAD DISSIPATION  
4.4  
Decoupling Capacitors  
The power dissipation caused by a capacitive load is a  
direct function of frequency, total capacitive load, and  
supply voltage. The power lost in the MOSFET driver  
for a complete charging and discharging cycle of a  
MOSFET is:  
Careful layout and decoupling capacitors are highly  
recommended when using MOSFET drivers. Large  
currents are required to charge and discharge  
capacitive loads quickly. For example, 2.5A are needed  
to charge a 2200 pF load with 18V in 16 ns.  
To operate the MOSFET driver over a wide frequency  
range with low supply impedance, a ceramic and low  
ESR film capacitor are recommended to be placed in  
parallel between the driver VDD and GND. A 1.0 µF low  
ESR film capacitor and a 0.1 µF ceramic capacitor  
should be used. These capacitors should be placed  
close to the driver to minimized circuit board parasitics  
and provide a local source for the required current.  
EQUATION 4-2:  
2
PL = f × CT × VDD  
Where:  
f
CT  
=
=
=
Switching frequency  
Total load capacitance  
MOSFET driver supply voltage  
VDD  
4.5  
PCB Layout Considerations  
Proper PCB layout is important in a high current, fast  
switching circuit to provide proper device operation and  
robustness of design. PCB trace loop area and  
inductance should be minimized by the use of ground  
planes or trace under MOSFET gate drive signals,  
separate analog and power grounds, and local driver  
decoupling.  
© 2008 Microchip Technology Inc.  
DS22062B-page 13  
MCP14E3/MCP14E4/MCP14E5  
4.6.2  
QUIESCENT POWER DISSIPATION  
The power dissipation associated with the quiescent  
current draw of the MCP14E3/MCP14E4/MCP14E5  
depends upon the state of the input and enable pins.  
Refer to the DC Characteristic table for the quiescent  
current draw for specific combinations of input and  
enable pin states. The quiescent power dissipation is:  
EQUATION 4-3:  
PQ = (IQH × D + IQL × (1 – D)) × VDD  
Where:  
IQH  
=
Quiescent current in the high  
state  
D
=
=
Duty cycle  
IQL  
Quiescent current in the low  
state  
VDD  
=
MOSFET driver supply voltage  
4.6.3  
OPERATING POWER DISSIPATION  
The operating power dissipation occurs each time the  
MOSFET driver output transitions because for a very  
short period of time both MOSFETs in the output stage  
are on simultaneously. This cross-conduction current  
leads to a power dissipation describes as:  
EQUATION 4-4:  
PCC = CC × f × VDD  
Where:  
CC  
=
Cross-conduction constant  
(A*sec)  
f
=
=
Switching frequency  
VDD  
MOSFET driver supply voltage  
DS22062B-page 14  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information (Not to Scale)  
8-Lead DFN-S (6x5)  
Example:  
XXXXXXX  
XXXXXXX  
XXYYWW  
NNN  
MCP14E3  
e
3
E/MF^
0814  
256  
8-Lead PDIP (300 mil)  
Example:  
MCP14E3  
XXXXXXXX  
XXXXXNNN  
e
3
E/P^^256  
0814  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
MCP14E3E  
XXXXXXXX  
XXXXYYWW  
e
3
SN^0814  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS22062B-page 15  
MCP14E3/MCP14E4/MCP14E5  
8-Lead Plastic Dual Flat, No Lead Package (MF) – 6x5 mm Body [DFN-S]  
PUNCH SINGULATED  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
e
L
D1  
b
N
N
K
E
E2  
E1  
EXPOSED  
PAD  
NOTE 1  
1
2
2
1
NOTE 1  
D2  
TOP VIEW  
BOTTOM VIEW  
φ
A2  
A
A3  
A1  
NOTE 2  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
8
1.27 BSC  
0.85  
Overall Height  
A
1.00  
0.80  
0.05  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
D
0.65  
0.00  
0.01  
Base Thickness  
0.20 REF  
4.92 BSC  
4.67 BSC  
4.00  
Overall Length  
Molded Package Length  
Exposed Pad Length  
Overall Width  
D1  
D2  
E
3.85  
4.15  
5.99 BSC  
5.74 BSC  
2.31  
Molded Package Width  
Exposed Pad Width  
Contact Width  
E1  
E2  
b
2.16  
0.35  
0.50  
0.20  
2.46  
0.47  
0.75  
0.40  
Contact Length  
L
0.60  
Contact-to-Exposed Pad  
Model Draft Angle Top  
K
φ
12°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-113B  
DS22062B-page 16  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
8
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
.130  
.310  
.250  
.365  
.130  
.010  
.060  
.018  
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located with the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-018B  
© 2008 Microchip Technology Inc.  
DS22062B-page 17  
MCP14E3/MCP14E4/MCP14E5  
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
8
1.27 BSC  
Overall Height  
A
1.75  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
1.25  
0.10  
0.25  
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
E1  
D
h
3.90 BSC  
4.90 BSC  
Chamfer (optional)  
Foot Length  
0.25  
0.40  
0.50  
1.27  
L
Footprint  
L1  
φ
1.04 REF  
Foot Angle  
0°  
0.17  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.25  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-057B  
DS22062B-page 18  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢓꢔꢆMꢆꢓꢄꢕꢕꢖꢗꢘꢆꢙꢚꢛꢜꢆꢎꢎꢆ ꢖꢅ!ꢆ"ꢍꢏ#$%  
ꢓꢖꢊꢃ& A‚ꢀꢁ‡urꢁ€‚†‡ꢁpˆꢀꢀr‡ꢁƒhpxhtrꢁqꢀhvt†ꢂꢁƒyrh†rꢁ†rrꢁ‡urꢁHvpꢀ‚puvƒꢁQhpxhtvtꢁTƒrpvsvph‡v‚ꢁy‚ph‡rqꢁh‡ꢁ  
u‡‡ƒ)ꢃꢃꢄ€vpꢀ‚puvƒꢄp‚€ꢃƒhpxhtvt  
© 2008 Microchip Technology Inc.  
DS22062B-page 19  
MCP14E3/MCP14E4/MCP14E5  
NOTES:  
DS22062B-page 20  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
APPENDIX A: REVISION HISTORY  
Revision B (April 2008)  
The following is the list of modifications:  
1. Correct examples in Product identification  
System page.  
Revision A (September 2007)  
• Original Release of this Document.  
© 2008 Microchip Technology Inc.  
DS22062B-page 21  
MCP14E3/MCP14E4/MCP14E5  
NOTES:  
DS22062B-page 22  
© 2008 Microchip Technology Inc.  
MCP14E3/MCP14E4/MCP14E5  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
XX  
a) MCP14E3-E/MF: 4.0A Dual Inverting  
MOSFET Driver,  
Temperature Package  
Range  
8LD DFN package.  
b) MCP14E3-E/P:  
4.0A Dual Inverting  
MOSFET Driver,  
Device:  
MCP14E3: 4.0A Dual MOSFET Driver, Inverting  
MCP14E3T: 4.0A Dual MOSFET Driver, Inverting  
Tape and Reel  
MCP14E4: 4.0A Dual MOSFET Driver, Non-Inverting  
MCP14E4T: 4.0A Dual MOSFET Driver, Non-Inverting  
Tape and Reel  
8LD PDIP package.  
c) MCP14E3-E/SN: 4.0A Dual Inverting  
MOSFET Driver,  
8LD SOIC package.  
MCP14E5: 4.0A Dual MOSFET Driver, Complementary  
MCP14E5T: 4.0A Dual MOSFET Driver, Complementary  
Tape and Reel  
a) MCP14E4-E/MF: 4.0A Dual Non-Inverting  
MOSFET Driver,  
8LD DFN package.  
b) MCP14E4-E/P:  
4.0A Dual Non-Inverting  
MOSFET Driver,  
8LD PDIP package.  
Temperature Range:  
Package: *  
E
=
-40°C to +125°C  
MF  
P
SN  
=
=
=
Dual, Flat, No-Lead (6x5 mm Body), 8-lead  
Plastic DIP, (300 mil body), 8-lead  
Plastic SOIC (150 mil Body), 8-Lead  
c) MCP14E4T-E/SN: Tape and Reel,  
4.0A Dual Non-Inverting  
MOSFET Driver,  
8LD SOIC package.  
* All package offerings are Pb Free (Lead Free)  
a) MCP14E5T-E/MF: Tape and Reel,  
4.0A Dual Complementary  
MOSFET Driver,  
8LD DFN package.  
b) MCP14E5-E/P:  
4.0A Dual Complementary  
MOSFET Driver,  
8LD PDIP package.  
c) MCP14E5-E/SN: 4.0A Dual Complementary  
MOSFET Driver,  
8LD SOIC package.  
© 2008 Microchip Technology Inc.  
DS22062B-page 23  
MCP14E3/MCP14E4/MCP14E5  
NOTES:  
DS22062B-page 24  
© 2008 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, rfPIC and SmartShunt are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2008 Microchip Technology Inc.  
DS22062B-page 25  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS22062B-page 26  
© 2008 Microchip Technology Inc.  

MCP14E4 相关器件

型号 制造商 描述 价格 文档
MCP14E4EMF MICROCHIP 4.0A Dual High-Speed Power MOSFET Drivers With Enable 获取价格
MCP14E4EP MICROCHIP 4.0A Dual High-Speed Power MOSFET Drivers With Enable 获取价格
MCP14E4ESN MICROCHIP 4.0A Dual High-Speed Power MOSFET Drivers With Enable 获取价格
MCP14E4TEMF MICROCHIP 4.0A Dual High-Speed Power MOSFET Drivers With Enable 获取价格
MCP14E4TEP MICROCHIP 4.0A Dual High-Speed Power MOSFET Drivers With Enable 获取价格
MCP14E4TESN MICROCHIP 4.0A Dual High-Speed Power MOSFET Drivers With Enable 获取价格
MCP14E5 MICROCHIP The MCP14E3/E4/E5 devices are a family of 4 A, dual output MOSFET gate drivers with separate enabl 获取价格
MCP14E5-E MICROCHIP 4.0A Dual High-Speed Power MOSFET Drivers With Enable 获取价格
MCP14E5EMF MICROCHIP 4.0A Dual High-Speed Power MOSFET Drivers With Enable 获取价格
MCP14E5EP MICROCHIP 4.0A Dual High-Speed Power MOSFET Drivers With Enable 获取价格

MCP14E4 相关文章

  • 苹果Apple Intelligence适配百度AI模型遇技术挑战
    2024-12-05
    10
  • 苹果携手亚马逊,定制AI芯片助力Apple Intelligence模型训练
    2024-12-05
    9
  • 革命性突破:光衍射极限下微型步行机器人成功面世
    2024-12-05
    11
  • Soitec将为格罗方德9SW平台供应300mm RF-SOI晶圆
    2024-12-05
    9