UPD16878GS-BGG-A

更新时间:2024-12-04 13:11:23
品牌:NEC
描述:Stepper Motor Controller, 0.3A, MOS, PDSO38, 7.62 MM, PLASTIC, SSOP-38

UPD16878GS-BGG-A 概述

Stepper Motor Controller, 0.3A, MOS, PDSO38, 7.62 MM, PLASTIC, SSOP-38 运动控制电子器件

UPD16878GS-BGG-A 规格参数

是否Rohs认证: 符合生命周期:Transferred
零件包装代码:SSOP包装说明:SSOP,
针数:38Reach Compliance Code:compliant
ECCN代码:EAR99HTS代码:8542.39.00.01
风险等级:5.38其他特性:CAN SIMULTANEOUSLY DRIVE TWO STEPPER MOTORS
模拟集成电路 - 其他类型:STEPPER MOTOR CONTROLLERJESD-30 代码:R-PDSO-G38
JESD-609代码:e6长度:12.7 mm
功能数量:1端子数量:38
最高工作温度:85 °C最低工作温度:-10 °C
最大输出电流:0.3 A封装主体材料:PLASTIC/EPOXY
封装代码:SSOP封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, SHRINK PITCH峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified座面最大高度:1.8 mm
最大供电电压 (Vsup):5.5 V最小供电电压 (Vsup):2.7 V
标称供电电压 (Vsup):3.3 V表面贴装:YES
技术:MOS温度等级:OTHER
端子面层:TIN BISMUTH端子形式:GULL WING
端子节距:0.65 mm端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED宽度:5.6 mm
Base Number Matches:1

UPD16878GS-BGG-A 数据手册

通过下载UPD16878GS-BGG-A数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ
PD16878  
MONOLITHIC QUAD H BRIDGE DRIVER CIRCUIT  
DESCRIPTION  
The µPD16878 is a monolithic quad H bridge driver IC that employs a CMOS control circuit and a MOS FET  
output circuit. Because it uses MOS FETs in its output stage, this driver IC consumes less power than conventional  
driver ICs that use bipolar transistors.  
Because the µPD16878 controls a motor by inputting serial data, its package has been shrunk and the number of  
pins reduced. As a result, the performance of the application set can be improved and the size of the set has been  
reduced.  
The µPD16878 employs a current-controlled 64-step micro step driving method that drives stepper motor with low  
vibration.  
The µPD16878 is housed in a 38-pin plastic shrink SOP to contribute to the miniaturization of the application set.  
The µPD16878 can simultaneously drive two stepper motors and is ideal for the mechanisms of camcorders.  
FEATURES  
Four H bridge circuits employing power MOS FETs  
Current-controlled 64-step micro step driving  
Motor control by serial data (8 bytes x 8 bits) (original oscillation: 4-MHz input)  
Data is input with the LSB first.  
EVR reference setting voltage: 100 to 250 mV (@VREF = 250 mV) ... 4-bit data input (10-mV step)  
Chopping frequency: 32 to 124 kHz ... 5-bit data input (4-kHz step)  
Original oscillation division or internal oscillation selectable  
Number of pulses in 1 VD: 0 to 126 pulses ... 6 bits + 2-bit data input (2 pulses/step)  
Step cycle: 0.25 to 8191.75 µs ... 15-bit data input (0.25- µs step)  
3-V power supply. Minimum operating voltage: 2.7 V (MIN.)  
Low current consumption IDD: 3.0 mA (MAX.), IDD (RESET): 100 µA (MAX.), IMO(RESET): 1.0 µA (MAX.)  
38-pin plastic shrink SOP (7.62 mm (300))  
ORDERING INFORMATION  
Part number  
Package  
µPD16878GS-BGG  
38-pin plastic shrink SOP (7.62 mm (300))  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No.  
Date Published February 2002 N CP(K)  
Printed in Japan  
S15974EJ1V0DS00 (1st edition)  
2002  
©
OSCIN  
37  
OSCOUT  
36  
VD  
V
REF  
SCLK  
35  
SDATA  
34  
LATCH  
33  
EXP0 EXP1 EXP2 EXP3  
17 18 19 21  
32  
7
RESET  
38  
8
VDD  
VM1  
VM2  
VM3  
VM4  
x 2  
23  
27  
9
SERIAL-PARARELLE DECODER  
PULSE GENERATER  
EXTOUT SELECTOR  
1/N  
13  
EVR1  
EVR2  
EVR1  
EVR2  
22  
31  
EXT  
α
2
C
OSC  
SELECTOR  
OSC  
CURRENT SET  
CURRENT SET  
EXT  
+
+
+
+
+
+
+
+
FILTER  
FILTER  
FILTER  
FILTER  
VM  
VM  
VM  
VM  
LGND  
PGND  
1
20  
H BRIDGE  
1ch  
H BRIDGE  
2ch  
H BRIDGE  
1ch  
H BRIDGE  
2ch  
25  
24  
26  
FIL  
3
29  
28  
30  
FIL  
4
15  
16  
14  
FIL  
5
11  
12  
10  
FIL  
6
FB  
A
A
1
A
2
A
FBB  
B1  
B2  
B
FB  
C
C1  
C2  
C
FBD  
D1  
D
2
D
µ
µ
µPD16878  
PIN CONFIGURATION  
38-pin plastic shrink SOP (7.62 mm (300))  
1
2
LGND  
RESET  
OSCOUT  
OSCIN  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
COSC  
3
FIL  
FIL  
FIL  
FIL  
A
B
C
D
4
SCLK  
5
SDATA  
LATCH  
6
7
V
V
V
REF  
VD  
8
DD  
EXT  
9
M3  
B2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
D2  
FBB  
FB  
D
B1  
D1  
VM2  
V
M4  
A2  
C2  
FBA  
FB  
C
A1  
C1  
VM1  
EXP0  
EXP1  
EXP2  
EXT  
EXP3  
PGND  
3
Data Sheet S15974EJ1V0DS  
µPD16878  
1. PIN FUNCTIONS  
Pin No.  
1
Symbol  
Function  
LGND  
COSC  
FILA  
FILB  
FILC  
FILD  
VREF  
VDD  
Control circuit GND pin  
2
Chopping capacitor connection pin  
3
α 1-ch filter capacitor connection pin (1000 pF TYP.)  
α 2-ch filter capacitor connection pin (1000 pF TYP.)  
β 1-ch filter capacitor connection pin (1000 pF TYP.)  
β 2-ch filter capacitor connection pin (1000 pF TYP.)  
Reference voltage input pin (250 mV TYP.)  
Control circuit supply voltage input pin  
Output circuit supply voltage input pin  
β 2-ch output pin  
4
5
6
7
8
9
VM3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
D2  
FBD  
β 2-ch sense resistor connection pin  
β 2-ch output pin  
D1  
VM4  
Output circuit supply voltage connection pin  
β 1-ch output pin  
C2  
FBC  
β 1-ch sense resistor connection pin  
β 1-ch output pin  
C1  
EXP0  
EXP1  
EXP2  
PGND  
EXP3  
EXTα  
VM1  
Output monitor pin (open drain)  
Output monitor pin (open drain)  
Output monitor pin (open drain)  
Power circuit GND pin  
Output monitor pin (open drain)  
Logic circuit monitor pin  
Output circuit supply voltage input pin  
α 1-ch output pin  
A1  
FBA  
α 1-ch sense resistor connection pin  
α 1-ch output pin  
A2  
VM2  
Output circuit supply voltage input pin  
α 2-ch output pin  
B1  
FBB  
α 2-ch sense resistor connection pin  
α 2-ch output pin  
B2  
EXTβ  
VD  
Logic circuit monitor pin  
Video sync signal input pin  
LATCH  
SDATA  
SCLK  
OSCIN  
OSCOUT  
RESET  
Latch signal input pin  
Serial data input pin  
Serial clock input pin  
Original oscillation input pin (4 MHz TYP.)  
Original oscillation output pin  
Reset signal output pin  
4
Data Sheet S15974EJ1V0DS  
µPD16878  
2. I/O PIN EQUIVALENT CIRCUIT  
Pin Name  
Equivalent Circuit  
Pin Name  
Equivalent Circuit  
VDD  
VDD  
VDD  
LATCH  
SDATA  
SCLK  
Pad  
Pad  
Pad  
Pad  
OSCIN  
RESET  
Pull-down  
resistor (125 )  
V
DD  
VDD  
EXP0  
EXP1  
EXP2  
EXP3  
Pad  
OSCOUT  
EXTα  
EXT  
β
VDD  
V
DD  
FIL  
FIL  
FIL  
FIL  
A
B
C
D
Pad  
VREF  
Buffer  
VM  
Parasitic diodes  
Pad  
A
B
C
D
1
1
, A  
, B  
, C  
, D  
2
2
1
2
2
1
FB  
5
Data Sheet S15974EJ1V0DS  
250 mV  
EVR : 1010  
CPU  
fOSC : 64 kHz  
4 MHz  
OSCIN  
100 kx 4  
OSCOUT  
VD  
V
REF  
SCLK SDATA LATCH  
EXP0 EXP1 EXP2 EXP3  
RESET  
3.3 V  
x2  
REGULATOR  
VDD  
V
V
V
M1  
M2  
M3  
SERIAL-PARARELLE DECODER  
PULSE GENERATER  
EXTOUT SELECTOR  
1/N  
V
M4  
EVR1 EVR2  
EVR1 EVR2  
EXT  
EXT  
COSC  
SELECTOR  
OSC  
CURRENT SET  
CURRENT SET  
BATTERY  
4.8 to 11 V  
33 pF  
+
+
+
+
+
+
+
+
FILTER  
FILTER  
FILTER  
FILTER  
VM  
V
M
VM  
VM  
LGND  
PGND  
H BRIDGE  
1ch  
H BRIDGE  
2ch  
H BRIDGE  
1ch  
H BRIDGE  
2ch  
FBA  
A1  
A2  
FILA  
FBB  
B1  
B2  
FIL  
B
FBC  
C
1
C2  
FILC  
FBD  
D
1
D2  
FILD  
6.8 x 2  
1000 pF  
6.8 Ω  
6.8 Ω  
1000 pF  
1000 pF x 2  
MOTOR 1  
MOTOR 2  
µ
µ
µPD16878  
4. STANDARD CHARACTERISTICS CURVES  
P
T
vs. T  
A
Characteristics  
I
MO (RESET) vs. V Characteristics  
M
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
T = 25°C,  
A
no load,  
after reset  
µ
125°C/W  
80  
20  
Ambient Temperature T (°C)  
100  
120  
10  
0
40  
60  
4
2
2
6
8
10  
12  
A
Output Circuit Supply Voltage V  
M
(V)  
I
DD vs. VDD Characteristics  
IDD (RESET) vs. VDD Characteristics  
5
4
3
2
1
0
200  
150  
100  
50  
T = 25°C,  
A
T
A
= 25°C,  
µ
operating,  
output open  
after reset  
0
2
3
4
5
6
3
4
5
6
Control Circuit Supply Volage VDD (V)  
Control Circuit Supply Volage VDD (V)  
V
IH/VDD, VIL/VDD vs. VDD Characteristics  
IIH/IIL vs. VIN Characteristics  
1
0.8  
0.6  
0.4  
0.2  
0
60  
40  
20  
0
T
A
= 25°C,  
TA = 25°C  
I
IH  
: VIN = VDD,  
µ
IIL  
: VIN = 0V  
V
IH  
IL  
IIH  
V
I
IL  
2
3
4
5
6
3
4
5
6
Control Circuit Supply Volage VDD (V)  
Input Voltage VIN (V)  
7
Data Sheet S15974EJ1V0DS  
µPD16878  
f
OSC vs. VDD Characteristics  
f
STEP vs. VDD Characteristics  
= 25°C,  
150  
140  
130  
120  
110  
100  
90  
6
5
4
3
2
T
A
= 25°C,  
T
A
C
OSC = 100 pF,  
COSC = 100 pF  
DATA: all high  
2
2
4
3
4
5
6
2
3
4
5
6
Control Circuit Supply Voltage VDD (V)  
Control Circuit Supply Voltage VDD (V)  
VREFVER vs. VDD Characteristics  
I
M (MAX) vs. EVR Characteristics  
= 25°C, V = 6 V  
80  
70  
60  
50  
40  
30  
20  
40  
30  
20  
10  
0
TA  
M
T
A
= 25°C,  
Rs = 6.8 , fOSC = 64 kHz,  
L = 25 mH/R = 100 at 1 kHz  
VREF = 250 mV  
3
4
5
6
50  
100  
150  
200  
250  
300  
Control Circuit Supply Voltage VDD (V)  
Reference Setting Voltage EVR (mV)  
t
ON, tOFF vs. V Characteristics  
M
500  
400  
300  
200  
100  
0
T
A
= 25°C,  
I
M
= 100 mA,  
FIL : none  
C
tON  
tOFF  
6
8
10  
12  
Output Circuit Supply Voltage V  
M
(V)  
8
Data Sheet S15974EJ1V0DS  
µPD16878  
5. INTERFACE (I/F) CIRCUIT DATA CONFIGURATION (fCLK = 4-MHz EXTERNAL CLOCK INPUT)  
Input data consists of serial data (8 bytes x 8 bits).  
Input serial data with the LSB first, from the 1st byte to 8th byte.  
(1) Initial data  
(2) Standard data  
<1st byte>  
<1st byte>  
Bit  
Data  
Function  
HEADER DATA2  
HEADER DATA1  
HEADER DATA0  
Setting  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
HEADER DATA2  
HEADER DATA1  
HEADER DATA0  
Setting  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
1
1
0
DATA selection  
0
DATA selection  
0
0
Hi-Z or L  
Hi-Z or L  
Hi-Z or L  
Hi-Z or L  
0
Hi-Z or L  
Hi-Z or L  
Hi-Z or L  
Hi-Z or L  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
EXP3  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
EXP3  
EXP2  
EXP2  
EXP1  
EXP1  
EXP0  
EXP0  
Remark Hi-Z : High impedance,  
Remark Hi-Z : High impedance,  
L : Low level (current sink)  
L : Low level (current sink)  
<2nd byte>  
<2nd byte>  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
1 or 0  
Function  
α ROTATION  
α ENABLE  
Setting  
α ch CCW/CW  
α ch ON/OFF  
1 or 0  
Start point wait  
8 µs to 2.04 ms  
α ch  
8-bit data  
input Note  
First Point Wait Setting  
(1 to 255)  
t = 8 µs  
Number of  
6-bit data  
input  
pulses in 1 VD  
Setting (0 to 63)  
n = 2 pulses Note  
α Pulse Number  
Note Input other than 0.  
Note The number of pulses can be varied in 2-pulse  
steps.  
<3rd byte>  
<3rd byte>  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
15-bit data  
Start point drive  
wait  
α ch pulse  
cycle  
8-bit data  
input Note  
First Point  
8 µs to 2.04 ms  
0.25 to 8191.75 µs  
Setting  
α Pulse Width  
Low-order  
8-bit data  
input  
Magnetize Wait Setting  
(1 to 255)  
t = 8 µs  
(1 to 32767)  
t = 0.25 µs  
Note Input other than 0.  
9
Data Sheet S15974EJ1V0DS  
µPD16878  
<4th byte>  
Bit  
<4th byte>  
Bit  
Data  
Function  
OSCSEL  
Setting  
Data  
Function  
Setting  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1 or 0  
Internal/external  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1 or 0  
Current Set α  
set2/set1  
0
0
-
-
-
-
15-bit data  
α ch  
pulse cycle :  
0.25 to 8191.75 µs  
Setting  
Chopping  
frequency :  
32 to 124 kHz  
Setting  
α Pulse Width  
High-order  
7-bit data  
input  
5-bit data  
input  
Chopping  
(1 to 32767)  
t = 0.25 µs  
Frequency  
(8 to 31)Note  
f = 4 kHz  
Note The frequency is 0 kHz if 0 to 7 is input.  
<5th byte>  
<5th byte>  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
EXTα  
-
EXTβ  
-
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
1 or 0  
Function  
β ROTATION  
β ENABLE  
Setting  
0
β ch CCW/CW  
β ch ON/OFF  
ENABLE α Note1  
ROTATION αNote2  
Pulse Out α  
FF7 α  
ENABLE β Note1  
ROTATION β Note2  
Pulse Out β  
FF7 β  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
1 or 0  
β ch  
Number of  
6-bit data  
input  
pulses in 1 VD  
Setting (1 to 63)  
n = 2 pulses Note  
β Pulse Number  
FF3 α  
ChecksumNote3  
ChoppingNote4  
FF3 β  
FF2 β  
FF1 β  
Notes 1. H level : Conducts, L level : Stops  
2. H level : Reverse (CCW),  
Note The number of pulses can be varied in 2-pulse  
steps.  
L level : Forward (CW)  
3. H level : Normal data input,  
L level : Abnormal data input  
4. Not output in internal oscillation mode.  
5. Select one of D0 to D6 and input 1.  
If two or more of D0 to D6 are selected,  
they are positively ORed for output.  
<6th byte>  
<6th byte>  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
15-bit data  
α ch Output current  
setting 2 EVR : 100  
to 250 mV  
4-bit data  
input  
α ch  
β ch pulse  
cycle:  
Current Set2  
Setting (0 to 15) Note  
0.25 to 8191.75 µs  
Setting  
β Pulse Width  
Low-order  
8-bit data  
input  
α ch Output current  
setting 1 EVR : 100  
to 250 mV  
(1 to 32767)  
t = 0.25 µs  
4-bit data  
input  
α ch  
Current Set1  
Setting (0 to 15) Note  
Note A voltage of about double EVR is output to  
the FIL pin.  
10  
Data Sheet S15974EJ1V0DS  
µPD16878  
<7th byte>  
<7th byte>  
Bit  
Bit  
D7  
D6  
Data  
Function  
Setting  
Data  
Function  
Setting  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1 or 0  
Current Set β  
set2/set1  
β ch Output  
15-bit data  
4-bit data  
input  
β ch  
current setting 2  
β ch pulse  
cycle:  
Current Set2  
D5  
D4  
D3  
D2  
D1  
D0  
EVR: 100 to 250 mV  
Setting (0 to 15)Note  
0.25 to 8191.75 µs  
Setting  
High-order  
7-bit data  
input  
β Pulse Width  
β ch Output  
4-bit data  
input  
β ch  
current setting 1  
(1 to 32767)  
t = 0.25 µs  
Current Set1  
EVR: 100 to 250 mV  
Setting (0 to 15)Note  
Note A voltage of about double EVR is output to  
the FIL pin.  
<8th byte>  
<8th byte>  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
1 or 0  
Function  
Setting  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
Function  
Setting  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
1 or 0  
Checksum  
Checksum Note  
Checksum  
Checksum Note  
Note Data is input so that the sum of the 1st  
Note Data is input so that the sum of the 1st  
through the 8th bytes is 00H.  
through the 8th bytes is 00H.  
11  
Data Sheet S15974EJ1V0DS  
µPD16878  
Data Configuration  
Data can be input in either of two ways. Initial data can be input when the power is first applied, or standard data  
can be input during normal operation. Input serial data with the LSB first, i.e., starting from the D0 bit (LSB) of the 1st  
byte. Therefore, the D7 bit of the 8th byte is the most significant bit (MSB).  
When inputting initial data, set a start point wait time that specifies the delay from power application to pulse  
output, and the start point drive wait time. At the same time, also set a chopping frequency and a reference voltage  
(EVR) that determines the output current of each channel. Because the µPD16878 has an EXT pin for monitoring the  
internal operations, the parameter to be monitored can be selected by initial data.  
When inputting standard data, input the rotation direction of each channel, the number of pulses, and the data for  
the pulse cycle.  
Initial data or standard data is selected by using bits D5 to D7 of the 1st byte (see Table 5-1).  
Table 5-1. Data Selection Mode (1st byte)  
D7  
1
D6  
1
D5  
1
Data type  
Initial data  
Standard data  
0
0
0
Remark If the high-order three bits are high, the initial data is selected;  
if they are low, the standard data is selected.  
Data other than (0, 0, 0) and (1, 1, 1) must not be input.  
Input the serial data during start point wait time.  
Details of Data Configuration  
How to input initial data and standard data is described below.  
(1) Initial data input  
<1st byte>  
The 1st byte specifies the type of data (initial data or standard data) and determines the presence or absence of  
the EXP pin output. Bits D5 to D7 of this byte specify the type of data as shown in Table 5-1, while bits D0 to D3  
select the EXP output (open drain).  
Table 5-2. 1st Byte Data Configuration  
Bit  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
The EXP pin goes low (current sink) when the input data is 0, and high (high impedance state) when the input  
data is 1. Pull this pin up to VDD for use. Input 0to bit D4.  
12  
Data Sheet S15974EJ1V0DS  
µPD16878  
<2nd byte>  
The 2nd byte specifies the delay between data being read and data being output. This delay is called the start up  
wait time, and the motor can be driven from that point at which the start up wait time is “0”. This time is counted at the  
rising edge of VD. The start up wait time can be set to 2.04 ms (when a 4-MHz clock is input), and can be fine-tuned  
by means of 8-bit division (8-µs step: with 4-MHz clock). The start up wait time is set to 2.04 ms when all the bits of  
the 2nd byte are set to “1”.  
Caution Always input data other than “0” to this byte because the start up wait time is necessary for  
latching data. If “0” is input to this byte, data cannot be updated. Transfer standard data during the  
start up wait time.  
<3rd byte>  
The 3rd byte specifies the delay between the start point wait time being cleared and the output pulse being  
generated. This time is called the start up drive wait time, and the output pulse is generated from the point at which  
the start up drive wait time reaches “0”. The start up drive wait time is counted at the falling edge of the start up wait  
time. The start up drive wait time can be set to 2.04 ms (with 4-MHz clock) and can be fine-tuned by means of 8-bit  
division (8 µs step: with 4-MHz clock). The start up drive wait time is set to 2.04 ms when all the bits of the 3rd byte  
are “1”.  
Caution Always input data other than “0” to this byte because the start up drive wait time is necessary for  
latching data. If “0” is input to this byte, data cannot be updated.  
<4th byte>  
The 4th byte selects a chopping frequency by using 5-bit data. It also selects whether the chopping frequency is  
created by dividing the original oscillation (external clock) or whether the internal oscillator is used. The chopping  
frequency is selected by bits D0 to D4. Bit D7 specifies the method used to create the chopping frequency. When this  
bit is “0”, the original oscillation (external clock input to OSCIN) is used; when it is “1”, the internal oscillator is used.  
Bits D5 and D6 are fixed to “0”.  
The chopping signal is output after the initial data has been input and the first standard data has been latched  
(see Timing Chart).  
Table 5-3. 4th Byte Data Configuration (Initial data)  
Bit  
D7  
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
The chopping frequency is set to 0 kHz and to a value in the range of 32 to 124 kHz (in 4-kHz steps), as follows.  
Although the chopping frequency is set by 5 bits of data, it is internally configured using 7-bit data (with the low-  
order 2 bits fixed to 0).  
13  
Data Sheet S15974EJ1V0DS  
µPD16878  
Bit  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
fOSC = 0 kHz  
Data  
0 or 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
fOSC = 0 kHz  
fOSC = 32 kHz  
fOSC = 36 kHz  
fOSC = 124 kHz  
Data  
0 or 1  
0
0
0
0
1
1
Bit  
D7  
D6  
0
D5  
0
D4  
0
D3  
1
D2  
0
D1  
0
D0  
0
Data  
0 or 1  
Bit  
D7  
D6  
0
D5  
0
D4  
0
D3  
1
D2  
0
D1  
0
D0  
1
Data  
0 or 1  
Bit  
D7  
D6  
0
D5  
0
D4  
1
D3  
1
D2  
1
D1  
1
D0  
1
Data  
0 or 1  
<5th byte>  
The 5th byte selects a parameter to be output to the EXT pin (logic operation monitor pin). Input data to bits D0 to  
D6 of this byte. Bit D7 is fixed to 0.  
There are two EXT pins. EXTα indicates the operating status of α ch, and EXTβ indicates that of β ch. The  
relationship between each bit and each EXT pin is as shown in Table 5-4.  
Table 5-4. 5th Byte Data Configuration (Initial data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0
EXTα  
Not used  
EXTβ  
Not used  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
ENABLE α  
ROTATION α  
PULSEOUT α  
FF7 α  
ENABLE β  
ROTATION β  
PULSEOUT β  
FF7 β  
FF3 α  
FF3 β  
CHECKSUM  
CHOPPING  
FF2 β  
FF1 β  
The checksum bit is cleared to 0in the event of an error. Normally, it is 1.  
If two or more signals that output signals to EXTα and EXTβ are selected, they are positively ORed for output.  
Caution The CHOPPING signal is not output in internal oscillation mode.  
14  
Data Sheet S15974EJ1V0DS  
µPD16878  
Remark The meanings of the symbols listed in Table 5-4 are as follows:  
ENABLE : Output setting (H : Conducts, L : Stops)  
ROTATION : Rotation direction (H : Reverse (CCW), L : Forward (CW))  
PULSEOUT : Output pulse signal  
FF7 : Presence/absence of pulse in LATCH cycle (Outputs H level if output pulse information exists in  
standard data.)  
FF3 : Pulse gate (output while pulse exists)  
FF2 : Outputs H level during start up wait time + start up drive wait time  
FF1 : Outputs H level during start up wait time  
CHECKSUM : Checksum output (H : when normal data is transmitted,  
L : when abnormal data is transmitted)  
CHOPPING : Chopping wave output (in original oscillation mode only)  
<6th byte>  
The 6th byte sets the peak output current value of α ch. The output current is determined by the EVR reference  
voltage.  
The 250-mV (TYP.) voltage input from an external source to the VREF pin is internally doubled and input to a 4-bit  
D/A converter. By dividing this voltage by 4-bit data, an EVR reference voltage can be set inside the IC within the  
range of 200 to 500 mV, in units of 20 mV.  
The µPD16878 can set two values of the EVR reference voltage in advance. This is done by using bits D0 to D3  
or D4 to D7. Which of the two EVR reference voltage values is to be used is specified by the CURRENT SET bit in  
the standard data.  
If all the bits of the 6th byte are 0, the EVR reference voltage of 200 mV is selected; if they are 1, the EVR  
reference voltage of 500 mV is selected.  
Table 5-5. 6th Byte Data Configuration (Initial data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
Remark Bits D4 to D7 : Reference voltage 2 (EVR α2)  
Bits D0 to D3 : Reference voltage 1 (EVR α1)  
<7th byte>  
The 7th byte specifies the peak output current value of β ch. The output current is determined by the EVR  
reference voltage.  
The 250-mV (TYP.) voltage input from an external source to the VREF pin is internally doubled and input to a 4-bit  
D/A converter. By dividing this voltage by 4-bit data, an EVR reference voltage can be set inside the IC within a range  
of 200 to 500 mV, in units of 20 mV.  
The µPD16878 can set two values of the EVR reference voltage in advance. This is done using bits D0 to D3 or  
D4 to D7. Which of the two EVR reference voltage values is to be used is specified by the CURRENT SET bit in the  
standard data.  
If all the bits of the 7th byte are 0, the EVR reference voltage of 200 mV is selected; if they are 1, the EVR  
reference voltage of 500 mV is selected.  
15  
Data Sheet S15974EJ1V0DS  
µPD16878  
Table 5-6. 7th Byte Data Configuration (Initial data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
Remark Bits D4 to D7 : Reference voltage 2 (EVR β2)  
Bits D0 to D3 : Reference voltage 1 (EVR β1)  
<8th byte>  
The 8th byte is checksum data. Normally, the sum of the 8-byte data is 00H.  
If the sum is not 00H because data transmission is abnormal, the stepping operation is inhibited and the  
checksum output pin (EXT pin) is kept L.  
(2) Standard data input  
<1st byte>  
The 1st byte specifies the type of data and whether the EXP pin output is used, such as when the initial data is  
input.  
Table 5-7. 1st Byte Data Configuration  
Bit  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
The EXP pin goes low (current sink) when the input data is 0, and high (high impedance state) when the input  
data is 1. Input 0to bit D4.  
<2nd byte>  
The 2nd byte specifies the rotation direction of the α channel, enables output of the α channel, and the number of  
pulses (126 pulses MAX.) during the 1VD period (in 1 cycle of FF2) of the α channel.  
Bit D7 is used to specify the rotation direction. The rotation is in the forward direction (CW mode) when this bit is  
0; it is in the reverse direction (CCW mode) when the bit is 1.  
Bit D6 is used to enable the output of the α channel. The α channel enters the high impedance state when this bit  
is 0; it is in conduction mode when the bit is 1.  
The number of pulses is set by bits D0 to D5. It is set by 6 bits in terms of software. However, the actual circuit  
uses an 8-bit counter with the low-order two bits fixed to 0. Therefore, the number of pulses that is actually  
generated during start up wait time + start up drive wait (FF2) cycle is the number of pulses input x 2. The number of  
pulses can be set to a value in the range of 0 to 126, in units of 2 pulses.  
16  
Data Sheet S15974EJ1V0DS  
µPD16878  
Table 5-8. 2nd Byte Data Configuration (Standard data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
Rotation direction  
<3rd and 4th bytes>  
ENABLE  
Number of pulses  
The 3rd and 4th bytes select the pulse cycle of the α channel and which of the two reference voltages, created in  
the initial mode, is to be used (CURRENT SETα).  
The pulse cycle is specified using 15 bits : bits D0 (least significant bit) to D7 of the 3rd byte, and bits D0 to D6  
(most significant bit) of the 4th byte. The pulse cycle can be set to a value in the range of 0.25 to 8191.75 µs in units  
of 0.25 µs (with a 4-MHz clock).  
CURRENT SETα is specified by bit D7 of the 4th byte. When this bit is 0, reference voltage 1 (EVRα1) is  
selected; when it is 1, reference voltage 2 (EVRα2) is selected. For further information, refer to the description of the  
6th byte of the initial data.  
Table 5-9. 4th Byte Data Configuration (Standard data)  
Table 5-10. 3rd Byte Data Configuration (Standard data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
CURRENT SETα Most significant  
Least significant bit  
bit  
(Reference) 6th Byte Data Configuration for Initial Data  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0 or 1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
Remark Bits D4 to D7 : Reference voltage 2 (EVR α2)  
Bits D0 to D3 : Reference voltage 1 (EVR α1)  
<5th byte>  
The 5th byte specifies the rotation direction of the β channel, enables output of the β channel, and the number of  
pulses (126 pulses MAX.) during the 1VD period (in one cycle of FF2) of the β channel.  
Bit D7 is used to specify the rotation direction. The rotation is in the forward direction (CW mode) when this bit is  
0; it is in the reverse direction (CCW mode) when the bit is 1.  
Bit D6 is used to enable the output of the β channel. The β channel goes into a high impedance state when this bit  
is 0; it is in the conduction mode when the bit is 1.  
The number of pulses is set by bits D0 to D5. It is set by six bits in terms of software. However, the actual circuit  
uses an 8-bit decoder with the low-order two bits fixed to 0. Therefore, the number of pulses that is actually  
generated during start up wait time + start up drive wait (FF2) cycle is the number of pulses input x 2. The number of  
pulses can be set in a range of 0 to 126 and in units of 2 pulses.  
17  
Data Sheet S15974EJ1V0DS  
µPD16878  
Table 5-11. 5th Byte Data Configuration (Standard data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
Rotation direction  
<6th and 7th bytes>  
ENABLE  
Number of pulses  
The 6th and 7th bytes select the pulse cycle of the β channel and which of the two reference voltages, created in  
the initial mode, is to be used (CURRENT SETβ).  
The pulse cycle is specified using 15 bits : bits D0 (least significant bit) to D7 of the 6th byte, and bits D0 to D6  
(most significant bit) of the 7th byte. The pulse cycle can be set to a value in the range of 0.25 to 8191.75 µs in units  
of 0.25 µs (with a 4-MHz clock).  
CURRENT SETβ is specified by bit D7 of the 7th byte. When this bit is 0, reference voltage 1 (EVRβ1) is  
selected; when it is 1, reference voltage 2 (EVRβ2) is selected. For further information, refer to the description of the  
7th byte of the initial data.  
Table 5-12. 7th Byte Data Configuration (Standard data)  
Table 5-13. 6th Byte Data Configuration (Standard data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
CURRENT SETβ Most significant bit  
(Reference) 7th Byte Data Configuration for Initial Data  
Least significant bit  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0 or 1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
Remark Bits D4 to D7 : Reference voltage 2 (EVR β2)  
Bits D0 to D3 : Reference voltage 1 (EVR β1)  
<8th byte>  
The 8th byte is checksum data. Normally, the sum of the 8-byte data is 00H.  
If the sum is not 00H because data transmission is abnormal, the stepping operation is inhibited and the  
checksum output pin (EXT pin) is held at L.  
18  
Data Sheet S15974EJ1V0DS  
µPD16878  
(Data Update Timing)  
The standard data (pulse width, number of pulses, rotation direction, current setting, and ENABLE) of this product  
are set and updated at the following latch timing.  
Table 5-14. Data Update Timing  
ENABLE change  
Pulse width  
1 1  
FF2↓  
FF2↓  
FF2↓  
FF2↓  
FF2↓  
0 1  
FF2↓  
FF2↓  
FF2↓  
FF1↓  
FF1↓  
1 0  
FF2↓  
FF2↓  
FF2↓  
FF2↓  
FF2↓  
0 0  
Number of pulses  
Rotation direction  
Current setting  
ENABLE  
The timing at which data is to be updated differs, as shown in Table 5-14, depending on the enabled status.  
For example, suppose the enable signal is currently 0(output high impedance) and 1(output conduction) is  
input by the next data. In this case, the pulse width, number of pulses, and rotation direction signals are updated at  
FF2(upon the completion of start up wait), and the current setting and ENABLE signals are updated at FF1 (upon  
completion of start up drive wait).  
V
D
FF1  
Start up wait  
FF2  
Start up wait +  
start up drive wait  
Pulse output  
Pulse width, number of pulses, and rotation direction  
are updated.  
Current setting and ENABLE are updated  
(ENABLE change: 0 to 1).  
VD  
(1)  
(2)  
(3)  
LATCH  
I1  
S1  
S2  
S3  
Initial data  
identification  
Standard data  
identification  
I1 data is output.  
FF1, FF2 output  
19  
Data Sheet S15974EJ1V0DS  
µPD16878  
(1)  
(2)  
Not output  
(3)  
Pulse width  
Internal data retained.  
Output reset  
Updated to S2 data at FF2  
Rotation direction  
Number of pulses  
Internal output retained  
Not output  
Not output  
Internal data retained.  
Output reset  
Current setting  
ENABLE  
Internal output retained  
Internal output retained  
Not output  
Not output  
Updated to S2 data at either FF1 or FF2  
by enable data of (2)  
The initial mode of this product is as follows.  
The IC operation can be initialized as follows:  
(1) Turns ON VDD.  
(2) Make RESET input L.  
(3) Input serial initial data.  
In initial mode, the operating status of the IC is as shown in Table 5-15.  
Table 5-15. Operations in Initial Mode  
Item  
Current consumption  
OSC  
Specifications  
100 µA  
Oscillation stops.  
Input of external clock is inhibited.  
Input inhibited.  
VD  
FF1 to FF7  
PULSE OUT  
EXP0 to EXP3  
Llevel  
Llevel  
Undefined in the case of (1) above.  
Previous value is retained in the case of (2) above.  
Can be updated by serial data in the case of (3) above.  
Can be accessed after initialization in the case of (1) above.  
Can be accessed after RESET has gone Hin the case of (2) above.  
Can be accessed in the case of (3) above.  
Serial operation  
Step pulse output is inhibited and FF7 is made Lif the following conditions are satisfied.  
(1) If the set number of pulses (2nd/5th: standard data) is 00H.  
(2) If the checksum value is other than 00H.  
(3) If the start up wait time is set to 1 VD or longer.  
(4) If the start up wait time + start up drive wait time is set to 1 VD or longer.  
(5) If start up wait is completed earlier than LATCH ().  
(6) If VD is not input.  
20  
Data Sheet S15974EJ1V0DS  
µPD16878  
Cautions on Correct Use  
(1) With this product, input the data for start up wait and start up drive wait. Because the standard data are  
set or updated by these wait times, if the start up wait time and start up drive wait time are not input, the  
data are not updated.  
(2) The start up wait time must be longer than LATCH.  
(3) If the rising of the start up drive wait time is the same as the falling of the last output pulse, a count error  
occurs, and the IC may malfunction.  
(4) Input the initial data in a manner that it does not straddle the video sync signal (VD). If it does, the initial  
data is not latched.  
(5) Transmit the standard data during the start up wait time (FF1). If it is input at any other time, the data  
may  
not be transmitted correctly.  
(6) If the LGND potential is undefined, the data may not be input correctly. Keep the LGND potential to the  
minimum level. It is recommended that LGND and PGND be divided for connection (single ground) to  
prevent the leakage of noise from the output circuit.  
21  
Data Sheet S15974EJ1V0DS  
µPD16878  
6. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
Condition  
Rating  
0.5 to +6.0  
0.5 to +11.2  
0.5 to VDD+ 0.5  
500  
Unit  
VDD  
V
VM  
V
V
Input voltage  
VIN  
Reference voltage  
VREF  
IM(DC)  
IM(pulse)  
mV  
H bridge drive current Note 1  
Instantaneous H bridge drive  
current Note 1  
DC  
PW 10 ms, Duty 5%  
150  
mA/phase  
mA/phase  
300  
Power consumption Note 2  
Peak junction temperature  
Storage temperature  
PT  
1.0  
150  
W
°C  
°C  
TCH(MAX.)  
Tstg  
55 to +150  
Notes 1. Permissible current per phase with the IC mounted on a PCB.  
2. When the IC is mounted on a glass epoxy PCB (10 cm x 10 cm x 1 mm).  
Caution If the absolute maximum rating of even one of the above parameters is exceeded even  
momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore,  
specify the values exceeding which the product may be physically damaged. Be sure to use the  
product within the range of the absolute maximum ratings.  
Recommended Operating Range  
Parameter  
Supply voltage  
Symbol  
MIN.  
2.7  
4.8  
0
TYP.  
250  
MAX.  
5.5  
Unit  
V
VDD  
VM  
11  
V
Input voltage  
VIN  
VDD + 0.4  
275  
V
Reference voltage  
VREF  
225  
mV  
V
EXP pin input voltage  
EXP pin input current  
H bridge drive current  
H bridge drive current  
Clock frequency (OSCIN)  
Clock frequency amplitude  
Serial clock frequency (SCLK)  
Video sync signal width  
LATCH signal wait time  
SCLK wait time  
VEXPIN  
VDD  
IEXPIN  
100  
µA  
mA  
mA  
MHz  
V
IM(DC)  
100  
200  
3.9  
+100  
+200  
5.0  
IM(pulse) Note 1  
fCLK Note 2  
VfCLK Note 2  
fSCLK  
PW(VD) Note 3  
t(VD-LATCH) Note 4  
t(SCLK-LATCH) Note 4  
tsetup Note 4  
thold Note 4  
fOSC Note 3  
tRST  
4
0.7 VDD  
VDD  
5.0  
MHz  
ns  
250  
400  
400  
80  
ns  
ns  
SDATA setup time  
ns  
SDATA hold time  
80  
ns  
Chopping frequency  
Reset signal pulse width  
Operating temperature  
Peak junction temperature  
32  
124  
kHz  
µs  
100  
10  
TA  
+85  
125  
°C  
°C  
TCH(MAX.)  
Notes 1. PW 10 ms, duty 5%  
2. COSC = 33 pF, VREF = 250 mV  
3. fCLK = 4 MHz  
4. Serial data delay time(see the figure on the next page.)  
22  
Data Sheet S15974EJ1V0DS  
µPD16878  
V
D
t
(VD-LATCH)  
LATCH  
SCLK  
64 clocks (8 bits x 8 bytes)  
t
(SCLK-LATCH)  
t
(SCLK-LATCH)  
Ignored because LATCH is at H level.  
Ignored because LATCH is at H level.  
50%  
LATCH  
SDATA  
SCLK  
D1  
D2  
D3  
50%  
50%  
t
(SCLK-LATCH)  
t
setup  
t
hold  
23  
Data Sheet S15974EJ1V0DS  
µPD16878  
ELECTRICAL CHARACTERISTICS  
DC Characteristics (Unless otherwise specified, VDD = 3.3 V, VM = 6.0 V, VREF = 250 mV, TA = 25°C, fCLK = 4 MHz,  
COSC = 33 pF, CFIL = 1000 pF, EVR = 100 mV (0000))  
Parameter  
Off VM pin current  
VDD pin current  
Symbol  
IMO(RESET)  
Condition  
MIN.  
TYP.  
MAX.  
1.0  
Unit  
µA  
mA  
µA  
V
No load, reset period  
Output open  
IDD  
3.0  
VDD pin current  
IDD(RESET)  
VIH  
Reset period  
100  
High level input voltage  
LATCH, SCLK, SDATA, VD,  
RESET, OSCIN  
0.7 VDD  
0.9 VDD  
Low level input voltage  
Input hysteresis voltage  
VIL  
VH  
0.3 VDD  
V
300  
mV  
Monitor output voltage 1  
(EXT α, β)  
VOM α (H), VOM β (H) 5th byte  
VOM α (L), VOM β (L) 5th byte  
V
V
V
0.1 VDD  
VDD  
Monitor output voltage 2  
VOEXP(H)  
Pull up (VDD)  
(EXP0 to EXP3 : open drain)  
VOEXP(L)  
IOEXP = 100 µA  
0.1 VDD  
0.06  
V
High level input current  
IIH  
VIN = VDD  
mA  
Low level input current  
Reset pin high level input  
current  
IIL  
VIN = 0 V  
1.0  
µA  
µA  
IIH(RST)  
VRST = VDD  
1.0  
Reset pin low level input  
current  
IIL(RST)  
VRST = 0  
1.0  
µA  
Input pull down resistor  
RIND  
RON  
LATCH, SCLK, SDATA, VD  
IM = 100 mA  
50  
200  
5.0  
kΩ  
H bridge ON resistance Note 1  
3.5  
Chopping frequency (internal  
oscillation: COSC = 100 pF)  
fOSC(1)  
fOSC(2)  
DATA: 00000 (4th byte)  
DATA: 11111 (4th byte)  
0
kHz  
100  
124  
150  
250  
Step frequency  
VD delay time Note 2  
fSTEP  
Minimum step  
4
kHz  
ns  
tVD  
Sine wave peak output  
current Note 3  
IM  
L = 25 mH/R = 100 (1 kHz)  
EVR = 200 mV (1010)  
52  
mA  
RS = 6.8 , fOSC = 64 kHz  
EVR = 200 mV (1010)  
FIL pin voltage Note 4  
VEVR  
370  
400  
20  
430  
mV  
mV  
FIL pin step voltage Note 4  
VEVRSTEP  
Minimum step  
AC Characteristics (Unless otherwise specified, VDD = 3.3 V, VM = 6.0 V, TA = 25°C, fCLK = 4 MHz)  
Parameter  
Symbol  
Condition  
IM = 100 mA Note 5  
MIN.  
TYP.  
1.0  
MAX.  
2.0  
Unit  
H bridge output circuit turn on tONH  
time  
µs  
H bridge output circuit turn off tOFFH  
time  
IM = 100 mA Note 5  
1.0  
2.0  
µs  
Notes 1. Total of ON resistance at top and bottom of output H bridge  
2. By OSCIN and VD sync circuit  
3. FB pin is monitored.  
4. FIL pin is monitored. A voltage about twice that of the EVR value is output to the FIL pin.  
5. 10 to 90% of the pulse peak value without filter capacitor (CFIL)  
24  
Data Sheet S15974EJ1V0DS  
Initialization  
RESET  
VD  
LATCH  
DATA  
Initial  
Standard  
S1  
Standard  
Standard  
Standard  
EXP : 0  
ENABLE: 1  
Standard  
S5  
EXP  
: 1  
EXP : 1  
error DATA  
I1  
S2  
S3  
S4  
Dummy data  
ENABLE: 1  
EXP: 1  
EXP  
: 0  
EXP  
: 1  
ENABLE: 0  
ENABLE: 0  
OSCOUT  
(original oscillation)  
Input at rising  
edge of RESET  
Output by  
I1 data  
Start point wait  
(FF1)  
Start point wait +  
start point drive wait  
(FF2)  
Output by  
I1 data  
Output by S2  
data setting  
ENABLE OUTNote 1  
Output by S5  
data setting  
Output by chopping  
setting of I1 data  
Chopping pulse  
Output by EXP  
setting of S1 data  
Output by EXP  
setting of S2DATA  
Output by EXP  
setting of I1 data  
EXP0 to EXP3  
PULSE OUT  
S4DATA output  
Pulse error  
S2DATA output  
Enable  
Outputs high level while  
pulse is being generated  
PULSE GATE  
(FF3)  
Outputs high level for standard data while a  
pulse output signal exists (LATCH cycle)  
No pulse output because  
data is erroneous  
PULSE CHECKNote 2  
(FF7)  
CHECK SUMNote 3  
High level because  
data is normal.  
Low level because  
data is abnormal.  
Restore to high level because  
data is normal.  
Notes 1. ENABLE is set at the falling edge of FF1 when the level changes from low  
to high, and at the falling edge of FF2 when the level changes from high  
to low.  
SCLK  
SDATA  
8th byte  
µ
µ
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
1st byte  
2. FF7 is an output signal that is used to check for the presence or absence  
of a pulse in the standard data, is updated at the rising edge of LATCH  
and reset once at the falling edge of LATCH. If CHECK SUM is other than  
00H, FF7 goes low, inhibiting pulse output, even if a pulse is generated.  
3. CHECK SUM output is updated at the rising edge of LATCH.  
(LSB)  
Data is held at rising edge of SCLK.  
µPD16878  
TIMING CHART (2)  
CLK  
(PULSE OUT)  
MOB  
(CW mode)  
Current direction: A2  
A1  
H bridge  
1ch output status  
α , β  
Current direction: A1  
A2  
Current direction: B2  
B1  
Current direction: B2  
B1  
H bridge ,  
α β  
2ch output status  
Current direction: B1  
B2  
(Expanded view)  
CLK  
CW modeNote1  
Note1  
CW mode  
Note2  
CCW mode  
PULSE OUT  
Position No.  
1
2
3
4
5
6
5
4
3
2
3
4
CCW  
CW  
H bridge  
CW  
1ch output status  
CCW  
CW  
CW  
CCW  
H bridge  
2ch output status  
CW  
CW  
Notes1. In CW mode : Position No. is incremented.  
2. In CCW mode : Position No. is decremented.  
CCW  
Remarks 1. The current value of the actual wave is approximated to the value shown on the next page.  
2. The C1, C2, D1, and D2 pins of β channel correspond to the A1, A2, B1, and B2 pins of α channel.  
3. The CW mode is set if the D7 bit of the 2nd and 5th bytes of the standard data is 0.  
4. The CCW mode is set if the D7 bit of the 2nd and 5th bytes of the standard data is 1.  
26  
Data Sheet S15974EJ1V0DS  
µPD16878  
RELATION BETWEEN ROTATION ANGLE, PHASE CURRENT, AND VECTOR QUANTITY  
(64-DIVISION MICRO STEP)  
(Values of µPD16878 for reference)  
Step  
Rotation angle (θ )  
A phase current  
TYP.  
0
B phase current  
TYP.  
100  
Vector quantity  
TYP.  
MIN.  
MAX.  
MIN.  
MAX.  
θ 0  
0
100  
θ 1  
5.6  
2.5  
9.8  
17.0  
26.5  
36.1  
45.3  
54.1  
62.6  
68.4  
75.7  
82.3  
88.1  
93.2  
97.4  
100.7  
103  
100  
100.48  
100  
θ 2  
11.3  
16.9  
22.5  
28.1  
33.8  
39.4  
45  
12.4  
22.1  
31.3  
40.1  
48.6  
58.4  
65.7  
72.3  
78.1  
83.2  
87.4  
90.7  
93.2  
19.5  
29.1  
38.3  
47.1  
55.6  
63.4  
70.7  
77.3  
83.1  
88.2  
92.4  
95.7  
98.1  
100  
93.2  
90.7  
87.4  
83.2  
78.1  
72.3  
65.7  
58.4  
48.6  
40.1  
31.3  
22.1  
12.4  
2.5  
98.1  
95.7  
92.4  
88.2  
83.1  
77.3  
70.7  
63.4  
55.6  
47.1  
38.3  
29.1  
19.5  
9.8  
103  
100.7  
97.4  
93.2  
88.1  
82.3  
75.7  
68.4  
62.6  
54.1  
45.3  
36.1  
26.5  
17.0  
θ 3  
100.02  
100.02  
99.99  
99.98  
99.97  
99.98  
99.97  
99.98  
99.99  
100.02  
100.02  
100  
θ 4  
θ 5  
θ 6  
θ 7  
θ 8  
θ 9  
50.6  
56.3  
61.9  
67.5  
73.1  
78.8  
84.4  
90  
θ 10  
θ 11  
θ 12  
θ 13  
θ 14  
θ 15  
θ 16  
100.48  
100  
100  
0
Remark These data do not indicate guaranteed values.  
27  
Data Sheet S15974EJ1V0DS  
µPD16878  
7. PACKAGE DRAWING  
38-PIN PLASTIC SSOP (7.62 mm (300))  
38  
20  
detail of lead end  
G
F
P
L
1
19  
A
E
H
I
J
S
B
C
N
S
K
M
M
D
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.10 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
12.7 0.3  
0.65 MAX.  
0.65 (T.P.)  
+0.05  
0.37  
D
0.1  
E
F
G
H
I
0.125 0.075  
1.675 0.125  
1.55  
7.7 0.2  
5.6 0.2  
J
1.05 0.2  
+0.1  
0.2  
K
0.05  
L
M
N
0.6 0.2  
0.10  
0.10  
+7°  
3°  
P
3°  
P38GS-65-BGG-1  
28  
Data Sheet S15974EJ1V0DS  
µPD16878  
8. RECOMMENDED SOLDERING CONDITIONS  
When soldering this product, it is highly recommended to observe the conditions as shown below. If other  
soldering processes are used, or if the soldering is performed under different conditions, please make sure to consult  
with our sales offices.  
For more details, refer to our document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL”  
(C10535E).  
Type of Surface Mount Device  
µPD16878GS-BGG: 38-pin plastic shrink SOP (7.62 mm (300))  
Process  
Soldering conditions  
Symbol  
Infrared Ray Reflow  
Peak temperature: 235°C or below (Package surface temperature),  
Reflow time: 30 seconds or less (at 210°C or higher),  
Maximum number of reflow processes: 3 time or less,  
IR35-00-3  
Number of days: None Note  
,
Flux: Rosin-based flux with low chlorine content (chlorine 0.2 Wt% or below) is  
recommended.  
Vapor Phase Soldering Peak temperature: 215°C or below (Package surface temperature),  
Reflow time: 40 seconds or less (at 200°C or higher),  
VP15-00-3  
Maximum number of reflow processes: 3 time or less,  
Number of days: None Note  
,
Flux: Rosin-based flux with low chlorine content (chlorine 0.2 Wt% or below) is  
recommended.  
Wave Soldering  
Solder temperature: 260°C or below, Flow time: 10 seconds or less,  
Maximum number of flow processes: 1 time,  
WS60-00-1  
Pre-heating temperature: 120°C or below (Package surface temperature),  
Flux: Rosin-based flux with low chlorine content (chlorine 0.2 Wt% or below) is  
recommended.  
Partial Heating Method Pin temperature: 300°C or below,  
Heat time: 3 seconds or less (Per each side of the device).  
Note Number of days the device can be stored after the dry pack has been opened, at conditions of 25°C, 65%RH.  
Caution Apply only one kind of soldering condition to a device, except for partial heating method, or the  
device will be damaged by heat stress.  
29  
Data Sheet S15974EJ1V0DS  
µPD16878  
[MEMO]  
30  
Data Sheet S15974EJ1V0DS  
µPD16878  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
31  
Data Sheet S15974EJ1V0DS  
µPD16878  
The information in this document is current as of January, 2002. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or  
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all  
products and/or types are available in every country. Please check with an NEC sales representative  
for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

UPD16878GS-BGG-A 相关器件

型号 制造商 描述 价格 文档
UPD16878GS-BGG-E1-A RENESAS IC,MOTOR CONTROLLER,CMOS/MOS,SSOP,38PIN 获取价格
UPD16878GS-BGG-E2-A RENESAS IC,MOTOR CONTROLLER,CMOS/MOS,SSOP,38PIN 获取价格
UPD16879 NEC MONOLITHIC QUAD H BRIDGE DRIVER CIRCUIT 获取价格
UPD16879GS-BGG NEC MONOLITHIC QUAD H BRIDGE DRIVER CIRCUIT 获取价格
UPD16879GS-BGG-A RENESAS IC,MOTOR CONTROLLER,CMOS,SSOP,38PIN 获取价格
UPD16879GS-BGG-E2-A RENESAS IC,MOTOR CONTROLLER,CMOS,SSOP,38PIN 获取价格
UPD168807K9-4EG-E1-A RENESAS 1.9A SWITCHING CONTROLLER, 1500kHz SWITCHING FREQ-MAX, PQCC48, 6 X 6 MM, 0.40 MM PITCH, PLASTIC, VQFN-48 获取价格
UPD16882 NEC MONOLITHIC CD-ROM/DVD-ROM 3-PHASE SPINDLE MOTOR DRIVER 获取价格
UPD16882GS NEC MONOLITHIC CD-ROM/DVD-ROM 3-PHASE SPINDLE MOTOR DRIVER 获取价格
UPD16882GS-A RENESAS IC,MOTOR CONTROLLER,CMOS/MOS,SOP,30PIN 获取价格

UPD16878GS-BGG-A 相关文章

  • Nidec交付全球首款4U 250kw CDU,助力英伟达GB200 NVL72高效冷却
    2024-12-06
    9
  • 博通推出行业首个3.5D F2F封装技术,将赋能富士通2nm MONAKA处理器
    2024-12-06
    9
  • 东方晶源回应被美国商务部列入实体清单:预计对公司影响可控
    2024-12-06
    9
  • 台积电与英伟达就美国工厂生产AI芯片展开谈判
    2024-12-06
    9