SI8902B-A01-GSR

更新时间:2024-09-15 19:01:47
品牌:SILICON
描述:ADC, Successive Approximation, 10-Bit, 1 Func, 3 Channel, Serial Access, CMOS, PDSO16, SOIC-16

SI8902B-A01-GSR 概述

ADC, Successive Approximation, 10-Bit, 1 Func, 3 Channel, Serial Access, CMOS, PDSO16, SOIC-16 AD转换器 模数转换器

SI8902B-A01-GSR 规格参数

是否Rohs认证: 符合生命周期:Active
包装说明:SOIC-16Reach Compliance Code:compliant
HTS代码:8542.39.00.01风险等级:5.17
最大模拟输入电压:3.6 V最小模拟输入电压:
转换器类型:ADC, SUCCESSIVE APPROXIMATIONJESD-30 代码:R-PDSO-G16
长度:10.3 mm最大线性误差 (EL):0.0977%
模拟输入通道数量:3位数:10
功能数量:1端子数量:16
最高工作温度:85 °C最低工作温度:-40 °C
输出位码:BINARY输出格式:SERIAL
封装主体材料:PLASTIC/EPOXY封装代码:SOP
封装等效代码:SOP16,.4封装形状:RECTANGULAR
封装形式:SMALL OUTLINE峰值回流温度(摄氏度):NOT SPECIFIED
电源:3/3.3,3/5 V认证状态:Not Qualified
座面最大高度:2.65 mm子类别:Other Converters
标称供电电压:3.3 V表面贴装:YES
技术:CMOS温度等级:INDUSTRIAL
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7.5 mmBase Number Matches:1

SI8902B-A01-GSR 数据手册

通过下载SI8902B-A01-GSR数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Si8900/1/2  
ISOLATED MONITORING ADC  
Features  
ADC  
3 input channels  
Temperature range:  
–40 to +85 °C  
10-bit resolution  
>60-year life at rated working  
2 µs conversion time  
Isolated serial I/O port  
voltage  
CSA component notice 5A  
UART (Si8900)  
approval  
I2C/SMbus (Si8901)  
2.5 MHz SPI port (Si8902)  
Transient immunity:  
45 kV/µs (typ)  
IEC 60950, 61010, 60601  
VDE/IEC 60747-5-2  
UL1577 recognized  
Ordering Information:  
Up to 5 kVrms for 1 minute  
See page 25.  
Applications  
Pin Assignments  
I s o la t e d d a t a a c q u is it io n  
AC mains monitor  
Solar inverters  
Isolated temp/humidity sensing  
Switch mode power systems  
Telemetry  
VDDA  
VREF  
AIN0  
VDDB  
NC  
Description  
NC  
AIN1  
Rx  
Si8900  
Si8901  
Si8902  
The Si8900/1/2 series of isolated monitoring ADCs are useful as linear  
signal galvanic isolators, level shifters, and/or ground loop eliminators in  
many applications including power-delivery systems and solar inverters.  
These devices integrate a 10-bit SAR ADC subsystem, supervisory state  
Tx  
AIN2  
NC  
NC  
RST  
VDDB  
GNDB  
GNDA  
2
machine and isolated UART (Si8900), I C/SMbus port (Si8901), or SPI  
Port (Si8902) in a single package. Based on Silicon Labs’ proprietary  
CMOS isolation technology, ordering options include a choice of 2.5 or  
5 kV isolation ratings. All products are safety certified by UL, CSA, and  
VDE. The Si8900/1/2 devices offer a typical common-mode transient  
immunity performance of 45 kV/µs for robust performance in noisy and  
high-voltage environments. Devices in this family are available in 16-pin  
SOIC wide-body packages.  
VDDA  
VREF  
AIN0  
VDDB  
NC  
NC  
AIN1  
SCL  
SDA  
NC  
AIN2  
RST  
RSDA  
GNDA  
VDDB  
GNDB  
Safety Approval  
UL 1577 recognized  
U p t o 5 k V r m s f o r 1 m i n u t e  
CSA component notice 5A  
approval  
VDE certification conformity  
VDDA  
RST  
VDDB  
NC  
IED 60747-5-2 (VDE 0884 Part 2)  
NC  
SDO  
SCLK  
SDI  
VREF  
AIN0  
AIN1  
AIN2  
GNDA  
IEC 60950, 61010, 60601  
EN  
VDDB  
GNDB  
Rev. 1.1 10/12  
Copyright © 2012 by Silicon Laboratories  
Si8900/1/2  
Si8900/1/2  
2
Rev. 1.1  
Si8900/1/2  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4. ADC Data Transmission Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.1. UART (Si8900) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2
4.2. I C/SMBus (Si8901) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.3. SPI Port (Si8902) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.4. Master Controller Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5. Si8900/1/2 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
6. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
6.1. Isolated Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
6.2. Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
6.3. Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
7. Device Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
9. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
10. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
11. Top Marking: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
11.1. Si8900/1/2 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
11.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Rev. 1.1  
3
Si8900/1/2  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
Condition  
Min  
2.7  
Typ  
Max  
3.6  
Unit  
V
Input Side Supply Voltage  
Input Side Supply Current  
V
With respect to GND1  
DDA  
DDA  
I
V
= 3.3 V, Si890x active  
10  
13.3  
11.4  
5.5  
mA  
DDA  
V
= 3.3 V, Si890x idle  
8.6  
DDA  
Output Side Supply Voltage  
Output Side Supply Current  
V
With respect to GND2  
= 3.3 V to 5.5 V, Si890x active  
2.7  
V
DDB  
I
V
4.4  
3.3  
5.8  
mA  
DDB  
DDB  
V
= 3.3 V to 5.5 V, Si890x idle  
3.9  
DDB  
Operating Temperature  
T
–40  
+85  
°C  
A
Table 2. Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
ADC  
Resolution  
R
10  
bits  
LSB  
LSB  
Integral Nonlinearity  
INL  
DNL  
VREF = 2.4 V  
±0.5  
±0.5  
±1  
±1  
Differential Nonlinearity  
VREF = 2.4 V,  
Guaranteed Monotonic  
Offset Error  
OFS  
FSE  
–2  
–2  
0
0
0
+2  
+2  
LSB  
LSB  
ppm/°C  
V
Full Scale Error  
Offset Tempco  
T
45  
OS  
Input Voltage Range  
Sampling Capacitance  
Input MUX Impedance  
V
C
V
REF  
IN  
5
5
pF  
IN  
R
k  
MUX  
Power Supply  
Rejection  
PSRR  
–70  
dB  
Reference Voltage  
V
Default V  
= V  
0
12  
2
V
V
REF  
REF  
DDA  
DDA  
VREF Supply Current  
ADC Conversion Time  
I
µA  
µs  
VREF  
t
CONV  
4
Rev. 1.1  
 
Si8900/1/2  
Table 2. Electrical Specifications (Continued)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Reset and Undervoltage Lockout  
Power-on RESET  
Voltage Threshold High  
VRSTH  
1.7  
1.8  
1
V
V
Power-on RESET  
Voltage Threshold Low  
VRSTL  
VDDA Power-On Reset Ramp  
Time  
tRAMP Time from VDDA = 0 V  
to VDDA > VRST  
ms  
Power-On Reset  
Delay Time  
tPOR  
tRAMP < 1 ms  
0.3  
ms  
Output Side UVLO Threshold  
UVLO  
H
2.3  
V
Output side UVLO  
Hysteresis  
100  
mV  
Digital Inputs  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Input Current  
V
0.7 x V  
0.6  
+10  
V
V
IH  
DDB  
V
IL  
I
VIN = 0 V or V  
–10  
µA  
pF  
IN  
DD  
Input Capacitance  
C
15  
IN  
Digital Outputs  
Logic High Level Output Voltage  
V
V
= 5 V,  
= –4 mA  
V –0.4  
DDB  
4.8  
V
V
V
OH  
DDB  
I
OH  
V
= 3.3 V,  
= –4 mA  
3.1  
DDB  
I
OH  
Logic Low Level Output Voltage  
V
V
= 3.3 to 5 V,  
= 4 mA  
0.2  
85  
0.4  
OL  
DDB  
I
OL  
Digital Output Series Impedance  
Serial Ports  
R
OUT  
UART Bit Rate  
60  
234  
240  
kbps  
kbps  
2
SMBus/I C Bit Rate  
Slave  
Address = 1111000x  
SPI Port  
2.5  
Mbps  
Rev. 1.1  
5
Si8900/1/2  
Table 2. Electrical Specifications (Continued)  
Parameter  
SPI Port Timing  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
EN Falling Edge to SCLK Rising  
Edge  
t
80  
ns  
SE  
Last Clock Edge to /EN Rising  
EN Falling to SDO Valid  
EN Rising to SDO High-Z  
SCLK High Time  
t
80  
160  
160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SD  
t
SEZ  
SDZ  
CKH  
t
t
200  
200  
80  
SCLK Low Time  
t
CKL  
SDI Valid to SCLK Sample Edge  
t
SIS  
SCLK Sample Edge to SDI  
Change  
t
80  
SIH  
SCLK Shift Edge to SDO  
Change  
t
160  
ns  
SOH  
EN  
tSE  
tCKL  
tSD  
SCLK  
tCLKH  
tSIS  
tSIH  
SDI  
tSOH  
tSEZ  
tSDZ  
SDO  
Figure 1. SPI Port Timing Characteristics  
6
Rev. 1.1  
 
Si8900/1/2  
Table 3. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
WB SOIC-16 NB SOIC-16  
100 105  
Unit  
IC Junction-to-Air Thermal  
Resistance  
ºC/W  
JA  
500  
450  
370  
VDD1, VDD2 = 2.70 V  
400  
300  
200  
100  
0
VDD1, VDD2 = 3.6 V  
220  
VDD1, VDD2 = 5.5 V  
0
50  
100  
150  
200  
Temperature (ºC)  
Figure 2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
500  
430  
V
DD1, VDD2 = 2.70 V  
400  
300  
200  
100  
0
360  
VDD1, VDD2 = 3.6 V  
210  
VDD1, VDD2 = 5.5 V  
0
50  
100  
150  
200  
Temperature (ºC)  
Figure 3. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Rev. 1.1  
7
Si8900/1/2  
Table 4. Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
Typ  
Max  
150  
Unit  
°C  
°C  
V
T
STG  
Ambient Temperature under Bias  
Input-Side Supply Voltage  
Output-Side Supply Voltage  
Input/Output Voltage  
T
85  
A
V
6.0  
DDA  
DDB  
V
6.0  
V
V
VDD +0.5  
10  
V
I
Output Current Drive  
I
mA  
°C  
O
Lead Solder Temperature (10 s)  
Maximum Isolation Voltage  
260  
6500  
V
RMS  
*Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
8
Rev. 1.1  
Si8900/1/2  
2. Regulatory Information  
The Si8900/1/2 family is certified by Underwriters Laboratories, CSA International, and VDE. Table 5 summarizes  
the certification levels supported.  
Table 5. Regulatory Information  
CSA  
The Si89xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage.  
VDE  
The Si89xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
60747-5-2: Up to 1200 Vpeak for basic insulation working voltage.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
UL  
The Si89xx is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 VRMS isolation voltage for basic protection.  
Rev. 1.1  
9
 
Si8900/1/2  
3. Functional Description  
The Si8900/1/2 (Figure 4) are isolated monitoring ADCs that convert linear input signals into digital format and  
transmit the resulting data through an on-chip isolated serial port to an external master processor (typically a  
microcontroller). The Si890x access protocol is simple: The master configures and controls the start of ADC  
conversion by writing a configuration register (CNFG_0) Command Byte to the Si890x. The master then acquires  
ADC conversion data by reading the Si890x serial port. Devices in this series differ only in the type of serial port.  
2
Options include a UART with on-chip baud rate generator that operates at 234 kbps max (Si8900), an SMBus/I C  
port that operates at 240 kbps max (Si8901), and an SPI Port that operates at 2.5 MHz max (Si8902).  
The integrated ADC subsystem consists of a three-channel analog input multiplexer (MUX) followed by a series  
gain amplifier (selectable 1x or 0.5x gain) and 10-bit SAR ADC. Serial-port-accessible ADC options allow the user  
to select an internal or external voltage reference, set the programmable gain amplifier (PGA), and select the ADC  
MUX address. The master can configure the Si890x to return ADC data on-demand (Demand Mode) or  
continuously (Burst Mode). For more information, see "CNFG_0 Command Byte" on page 18.  
VDDA  
VDDB  
AIN0  
AIN1  
Tx  
Rx  
10Bit  
ADC  
Tx Data  
MUX  
PGA  
UART  
AIN2  
VREF  
VREF  
All  
Blocks  
GNDB  
ADC Subsystem  
ISOLATION  
State Machine/  
User Registers  
RST  
GNDA  
Si8900  
VDDA  
VDDB  
AIN0  
AIN1  
SDA  
SCL  
SMBus/  
I2C  
10Bit  
ADC  
Tx Data  
MUX  
PGA  
All  
Blocks  
AIN2  
VREF  
GNDB  
ADC Subsystem  
VREF  
RST  
ISOLATION  
State Machine/  
User Registers  
RSDA  
GNDA  
Si8901  
VDDA  
VDDB  
SCK  
SDI  
AIN0  
AIN1  
10Bit  
ADC  
Tx Data  
MUX  
PGA  
SPI Port  
SDO  
EN  
AIN2  
VREF  
VREF  
All  
Blocks  
ADC Subsystem  
GND2  
ISOLATION  
RST  
State Machine/  
User Registers  
GND1  
Si8902  
Figure 4. Si8900/1/2 Block Diagrams  
10  
Rev. 1.1  
 
Si8900/1/2  
4. ADC Data Transmission Modes  
The master can access ADC read-only registers ADC_H and ADC_L using either Demand Mode or Burst Mode. In  
Demand Mode (MODE = 1), the master triggers individual A/D conversions “on-demand”. In Burst Mode  
(MODE = 0), the Si890x performs ADC conversions continuously.  
Master to Slave  
Slave to Master  
Master writes CNFG_0  
Command Byte to Si8900 Rx  
CNFG_0  
Command  
Byte  
tCONV  
MODE = 1  
CNFG_0  
Command  
ADC_H  
ADC_L  
Byte  
Master reads updated CNFG_0 and ADC  
Data From Si8900 (Tx output)  
B) Si8900 Demand Mode ADC Read  
Master to Slave  
Slave to Master  
Master writes Slave Address and  
CNFG_0 Command Byte to Si8901 SDA  
CNFG_0  
Command  
Slave  
Address  
Slave Address  
Byte  
tCONV  
CNFG_0  
MODE = 1  
Command  
ADC_H  
ADC_L  
Byte  
Master reads Slave Address, updated CNFG_0  
and ADC Data from Si8901 (SDA pin)  
C) Si8901 Demand Mode ADC Read  
Master writes CNFG_0  
Command Byte to Si8902 SDI  
Master to Slave  
Slave to Master  
CNFG_0  
Command  
Byte  
tCONV  
MODE = 1  
CNFG_0  
Command  
Byte  
ADC_H  
ADC_L  
The master must wait 8µS  
(trackandhold time) before  
reading ADC data packet.  
Master reads updated CNFG_0 and  
ADC Data from Si8902 SDO  
D) Si8902 Demand Mode ADC Read  
Figure 5. ADC Demand Mode Operation  
Referring to Figure 5A, a Demand Mode ADC read is initiated when the master writes a Command Byte to the  
Si8900. (The Command Byte is a copy of the CNFG_0 register that has been properly configured by the master.)  
Upon receipt of the Command Byte, the Si8900 updates its CNFG_0 register and triggers the start of an ADC  
conversion, at which time the master may immediately begin reading ADC conversion data from the Si8900 UART.  
The ADC conversion data packet contains a copy of the Command Byte for verification and two-bytes of ADC  
conversion data. The Si8901 (Figure 5B) ADC read transaction is identical to that of the Si8900 with the exception  
2
of the added I C/SMBus Slave Address byte (Si8901 Slave Address is 0xF0). The Si8902 Demand Mode ADC  
read transaction (Figure 5C) is the same as that of the Si8900, except the master must wait 8 µs after the  
transmission of the Command Byte before reading the Si8902 SPI port because byte transmission time is two  
times shorter versus the Si8900/01.  
Rev. 1.1  
11  
 
 
Si8900/1/2  
The Burst Mode ADC transactions for the Si8900 (Figure 6A) and Si8901 (Figure 6B) are substantially the same. A  
Burst Mode ADC read is initiated when the master writes a CNFG_0 (MODE = 0) Command Byte to the Si8900/1,  
which updates the CNFG_0 register and triggers the ADC continuously. Like the Demand Mode example, the  
Si8901 has a Slave Address byte prior to the CNFG_0 Command Byte. When using the Si8901, the master must  
2
write the I C port address prior to reading the serial port. The Si8902 Burst Mode (Figure 6C) is similar to that of  
the Si8900/1, except the master must wait 8 µs before reading the first Burst Mode ADC data packet. After reading  
the first Burst Mode ADC data packet, the master may read all ADC data packets that follow without delay.  
Master writes CNFG_0  
Command Byte to Si8900 Rx  
CNFG_0  
Command  
Byte 0  
MODE = 0  
Master to Slave  
Slave to Master  
tCONV  
tCONV  
CNFG_0  
Command  
Byte  
tCONV  
ADC_H  
Data  
ADC_H  
Data  
ADC_L  
Data  
ADC_L  
Data  
Master reads updated CNFG_0 Command Byte and ADC data from Si8900 Tx  
A) Si8900 ADC Burst Mode (MODE = 0)  
Master writes Slave Address & CNFG_0  
Command Byte to Si8901 SDA  
CNFG_0  
Command  
Byte 0  
Slave Addrress  
Write  
MODE = 0  
tCONV  
tCONV  
tCONV  
CNFG_0  
Command  
Byte  
Master to Slave  
ADC_H  
Data  
ADC_H  
Data  
Slave Address  
Read  
ADC_L  
Data  
ADC_L  
Data  
Slave to Master  
Master reads Slave Address, updated CNFG_0 and ADC data from Si8901 SDA  
B) Si8901 ADC Burst Mode (MODE = 0)  
Master writes CNFG_0 Command  
Byte to Si8902 SDI  
CNFG_0  
Command  
Byte  
Master to Slave  
Slave to Master  
tCONV  
tCONV  
tCONV  
MODE = 0  
CNFG_0  
Command  
Byte  
ADC_H  
Data  
ADC_H  
Data  
ADC_L  
Data  
ADC_L  
Data  
Master reads updated CNFG_0 and ADC data from Si8902 SDO  
C) Si8902 ADC Burst Mode (MODE = 0)  
Figure 6. ADC Burst Mode Operation  
12  
Rev. 1.1  
 
Si8900/1/2  
4.1. UART (Si8900)  
The UART is a two-wire interface (Tx, Rx) and operates as an asynchronous, full-duplex serial port with internal  
auto baud rate generator that measures the period of incoming data stream and automatically adjusts the internal  
baud rate generator to match. The auto baud rate detection and matching optimizes UART timing for minimum bit  
error rate. For more information, see “AN635: AC Line Monitoring Using the Si890x Family of Isolated ADCs”.  
There are a total of 10 bits per data read/write: One start bit, eight data bits (LSB first), and one stop bit with data  
transmitted LSB first as shown in Figure 7. Figure 8A and Figure 8B show master/Si8900 ADC read transactions  
for Demand Mode and Burst Mode, respectively.  
MARK  
SPACE  
Start Bit  
D5  
D6  
D7  
D2  
D4  
D0  
D1  
D3  
STOP BIT  
BIT TIMES  
BIT SAMPLING  
Figure 7. UART Data Byte  
Master to Slave  
Slave to Master  
CNFG_0 Write Command Byte  
S
1
1
P
D0 D1 D2 D3 D4 D5 D6 D7  
ADC Data  
S
1
1
P
S
0
1
P
S
0
0 S  
D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5 D6 D7  
CNFG_0 Read Data  
D0 D1 D2 D3 D4 D5 D6 D7  
CNFG_0 Write Command Byte  
A) Si8900 Demand Mode ADC Read  
S
1
1
P
D0 D1 D2 D3 D4 D5 D6 D7  
Periodic ADC Data  
1
1
S
P
S
0 1 P S 0  
0 P S  
0 1 P S 0  
0 P S  
D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5 D6 D7  
CNFG_0 Read Data  
D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5 D6 D7  
B) Si8900 Burst Mode ADC Read  
Figure 8. Si8900 ADC Read Operation  
Rev. 1.1  
13  
 
 
Si8900/1/2  
2
4.2. I C/SMBus (Si8901)  
2
The I C/SMBus serial port is a two-wire serial bus where data line SDA is bidirectional and clock line SCL is  
2
unidirectional. Reads and writes to this interface by the master are byte-oriented, with the I C/SMBus master  
controlling the serial data rates up to 240 kbps. The SDA and SCL lines must be pulled high through pull-up  
resistors of 5 kor less. An Si8901 ADC read transaction begins with a START condition (“S” or Repeated START  
condition “SR”), which is defined as a high-to-low transition on SDA while SCL is high (Figure 9). The master  
terminates a transmission with a STOP condition (P), defined as a low-to-high transition on SDA while SCL is high.  
The data on SDA must remain stable during the high period of the SCL clock pulse because such changes in either  
line will be interpreted as a control command (e.g., S, P SR). SDA and SCL idle in the high state when the bus is  
not busy. Acknowledge bits (Figure 10) provide detection of successful data transfers, whereas unsuccessful  
transfers conclude with a not-acknowledge bit (NACK). Both the master and the Si8901 generate ACK and NACK  
bits. An ACK bit is generated when the receiving device pulls SDA low before the rising edge of the acknowledged  
related (ninth) SCL pulse and maintains it low during the high period of the clock pulse. A NACK bit is generated  
when the receiver allows SDA to be pulled high before the rising edge of the acknowledged related SCL pulse and  
maintains it high during the high period of the clock pulse. An unsuccessful data transfer occurs if a receiving  
device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master  
2
attempts communication at a later time. Figure 11A shows the I C Slave Address Byte and CNFG_0 byte for the  
Si8901. Figure 11B and Figure 11C show master/Si8901 ADC read transactions for Demand Mode and Burst  
Mode, respectively.  
SR  
P
S
SDA  
SCL  
Figure 9. Start and Stop Conditions  
Not Acknowledge (NACK)  
S
SDA  
SCL  
Acknowledge (ACK)  
9
1
2
Figure 10. Acknowledge Cycle  
14  
Rev. 1.1  
 
 
Si8900/1/2  
Master to Slave  
Slave to Master  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
S
1
1
s6 s5 s4 s3 s2 s1 s0  
A
A P  
Si8901 CNFG_0 Write Data  
Si8901 Slave Address  
A) Si8901 CNFG_0 Write  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
S
1
1
s6 s5 s4 s3 s2 s1 s0  
A
A
P
Si8901 Write  
Slave Address  
Si8901 CNFG_0 Write Data  
ADC Data  
D7 D6 D5 D4 D3 D2 D1 D0  
s6 s5 s4 s3 s2 s1 s0  
D7 D6 D5 D4 D3 D2 D1 D0  
Si8901 Slave Address = 0xF0  
S
S
1
1
1
0
0
0
A
A
A P  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Si8901 Read  
Slave Address  
Si8901 CNFG_0 Read Data  
B) Si8901 Demand Mode ADC Read  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
s6 s5 s4 s3 s2 s1 s0  
Si8901 Slave Address  
S
1
1
A
A P  
Si8901 CNFG_0 Write Data  
Periodic ADC Data  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
S
S
1
1
1
0
0
0
A
s6 s5 s4 s3 s2 s1 s0  
A
A
P
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Si8901 Read  
Slave Address  
Si8901 CNFG_0  
Read Data  
C) Si8901 Burst Mode ADC Read  
Figure 11. Si8901 ADC Read Operation  
MASTER  
Si8902  
MOSI  
MISO  
SDI  
SPI Shift Register  
7 6 5 4 3 2 1 0  
SPI Shift Register  
7 6 5 4 3 2 1 0  
SDO  
/EN  
Receive Buffer  
Receive Buffer  
Baud Rate  
Generator  
SCLK  
SCLK  
EN or Px.y  
Figure 12. Master Connection to Si8902  
Rev. 1.1  
15  
 
Si8900/1/2  
4.3. SPI Port (Si8902)  
EN  
SCLK  
SDI  
MSB  
MSB  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit 3  
Bit 3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
Bit 0  
Bit 0  
SDO  
Figure 13. Si8902 Data/Clock Timing  
The Serial Peripheral Interface (SPI port) is a slave mode, full-duplex, synchronous, 4-wire serial bus that connects  
to the master as shown in Figure 12. The master's clock and data timing must match the Si8902 timing shown  
Figure 12 (for more information about clock and data timing, please see the “SPI Port” section of Table 2 on  
page 6).  
As shown in Figure 13, an SPI bus transaction begins with the master driving EN low and maintaining this state for  
the duration of the read transaction(s). The master transmits data from its master-out/slave-in terminal (MOSI) to  
the Si8902 serial read/write input terminal (SDI). The Si8902 transmits data to the master from its serial data-out  
terminal (SDO) to the master-in/slave-out terminal (MISO), and data transfer ends when the master returns /EN to  
the high state. Figure 14A shows the Si8902 CNFG_0 Command Byte format, while Figures 14B and 14C show  
Si8902 Demand Mode and Burst Mode ADC reads.  
16  
Rev. 1.1  
 
Si8900/1/2  
D7 D6 D5 D4 D3 D2 D1 D0  
Master to Slave  
Slave to Master  
1
1
CNFG_0 Write  
Command Byte  
D7 D6 D5 D4 D3 D2 D1 D0  
A) Si8902 CNFG_0 Command Byte  
1
1
CNFG_0 Write  
Command Byte  
8µS  
Delay  
D7 D6 D5 D4 D3 D2 D1 D0  
1
1
1
0
0
0
D7 D6 D5 D4 D3 D2 D1 D0  
ADC Data  
D7 D6 D5 D4 D3 D2 D1 D0  
Si8902 CNFG_0 Read Byte  
B) Si8902 ADC Demand Mode Read  
D7 D6 D5 D4 D3 D2 D1 D0  
1
1
CNFG_0 Write  
Command Byte  
8µS  
Delay  
D7  
1
D0 D7  
D0 D7  
D0 D7  
D0 D7  
D0  
1
1 0  
0
0 1 0  
0
0
Si8902 CNFG_0  
Read Byte  
Periodic ADC Data  
C) Si8902 ADC Burst Mode Read  
Figure 14. Si8902 ADC Read Operation  
4.4. Master Controller Firmware  
The user's master controller must include firmware to manage the Si890x Demand and Burst operating modes and  
serial port control. In some cases, the master controller may also require a firmware moving average function to  
reduce noise. For more information on master controller firmware, see “AN637: Si890x Master Controller  
Recommendations”, available for download at www.silabs.com/isolation.  
Rev. 1.1  
17  
Si8900/1/2  
5. Si8900/1/2 Configuration Registers  
CNFG_0 Command Byte  
Bit  
D7  
1
D6  
1
D5  
MX1  
R/W  
1
D4  
MX0  
R/W  
1
D3  
VREF  
R/W  
1
D2  
D1  
MODE  
R/W  
1
D0  
PGA  
R/W  
1
Name  
Type  
R/W  
1
R/W  
1
R/W  
1
Default  
Bit  
7:6  
5:4  
Name  
Function  
1,1  
Internal use. These bits are always set to 1.  
MX1, MX0 ADC MUX Address.  
ADC MUX address selection is controlled by MX1, MX0 as follows:  
MX1  
MX0  
Selected ADC MUX Channel  
1
1
0
0
1
0
1
0
Not Used  
AIN2  
AIN1  
AIN0  
3
VREF  
ADC Voltage Reference Source  
VDD is selected as the reference voltage when this bit is set to 1. An externally con-  
nected voltage reference generator is selected when this bit is reset to 0.  
2
1
Not used.  
MODE  
ADC Read Mode  
ADC Demand Mode read is enabled when this bit is 1, and Burst Mode is enabled  
when this bit is 0. For more information on Demand and Burst mode operation,  
please see "ADC Data Transmission Modes" on page 11.  
0
PGA  
PGA Gain Set  
PGA gain is 1 when this bit is set to 1. PGA gain is 0.5 when this bit is reset to 0.  
18  
Rev. 1.1  
Si8900/1/2  
ADC_H Byte  
Bit  
D7  
1
D6  
0
D5  
MX1  
R
D4  
MX0  
R
D3  
D9  
R
D2  
D8  
R
D1  
D7  
R
D0  
D6  
R
Name  
Type  
R
R
Default  
Bit  
7:6  
5:4  
Name  
Function  
1,0  
Internal use. These bits are always set to 1,0.  
MX1, MX0 ADC MUX Address  
ADC input MUX address for the converted data in ADC_H, ADC_L.  
3:0  
D9: D6  
ADC conversion data bits D9:D6  
Most significant 4 bits of ADC conversion data.  
ADC_L Byte  
Bit  
D7  
0
D6  
D5  
R
D5  
D4  
R
D4  
D3  
R
D3  
D2  
R
D2  
D1  
R
D1  
D0  
R
D0  
0
Name  
Type  
R
R
Default  
Bit  
7
Name  
0
Function  
Internal use. This bit is always set to 0.  
6:1  
D5:D0  
ADC Conversion Data Bits D5:D0  
Least significant 6 bits of ADC conversion data.  
0
0
Internal use. This bit is always set to 0.  
Rev. 1.1  
19  
Si8900/1/2  
6. Applications  
6.1. Isolated Outputs  
The Si890x serial outputs are internally isolated from the device input side. To ensure safety in the end-user  
application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the safety extra-low  
voltage circuits (i.e., circuits with <30 VAC) by a certain distance (creepage/clearance). If a component straddles  
this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large  
high-voltage breakdown protection rating (commonly referred to as working voltage protection). Tables published in  
the component standards (UL1577, IEC60747, CSA 5A) are readily accepted by certification bodies to provide  
proof for end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-  
1, etc.) requirements before starting any circuit design that uses galvanic isolation. To enhance the robustness of a  
design, it is further recommended that the user also include 100 resistors in series with the Si890x inputs and  
outputs if the system is excessively noisy. The nominal impedance of an isolated Si890x output channel is  
approximately 50 and is a combination of the value of the on-chip series termination resistor and channel  
resistance of the output driver FET. When driving loads where transmission line effects are a factor, output pins  
should be appropriately terminated with controlled-impedance PCB traces.  
The Si890x supply inputs must be bypassed with a parallel combination of 10 µF and 0.1 µF capacitors at VDDA  
and VDDB as shown in Figure 15A. The capacitors should be placed as close to the package as possible. The  
Si890x uses the VDDA supply as its internal ADC voltage reference by default. A precision external reference can  
be installed as shown in Figure 15A and must be bypassed with a parallel combination of 0.1 µF and 4.7 µF  
capacitors. (Note that the CNFG_0 VREF bit must be set to 0 when using the external reference.) The Si890x has  
an on-chip power on reset circuit (POR) that maintains the device in its reset state until VDDA has stabilized. A  
2 kpull-up resistor on RST is strongly recommended to reduce the possibility of external noise coupling into the  
reset input. The Si8901 will also require a 5 kpull-up resistor to VDDA on the RSDA input.  
2.7 V to 3.6 V  
2.5 V to 5.5 V  
Board Edge  
0.1 µF  
0.1 µF  
Si890x  
10 µF  
10 µF  
VDDA  
VDDB  
VDDA  
VREF  
Si890x  
VREF  
VDDA  
4.7 µF  
0.1 µF  
5 K  
2 K  
GNDA  
GNDB  
RST  
RSDA  
GNDA  
Optional External VREF  
8 mm  
(min)  
GNDB  
GNDA  
GNDB  
Si8901  
Only  
Board Edge  
Keepout Area  
(No metal in this area)  
A
B
Figure 15. Si890x Installation  
Figure 15B shows the required PCB ground configuration, where an 8 mm (min) “keep-out area” is provided to  
ensure adequate creepage and clearance distances between the two grounds. PCB metal traces cannot be  
present or cross through the keep-out area on the PCB top, bottom, or internal layer.  
20  
Rev. 1.1  
 
Si8900/1/2  
6.2. Device Reset  
During power-up, the Si890x is held in the reset state by the internal power-on reset signal (POR) until VDDA  
settles above VRST. When this condition is met, a delay is initiated that maintains the Si890x in the reset state for  
time period tPOR, after which the reset signal is driven high allowing the Si890x to start-up. Note the maximum  
allowable VDD ramp time (i.e. time from 0 V to VDDA settled above VRST) is 1 ms. Slower ramp times may cause  
the Si890x to be released from reset before VDDA reaches the VRST level.  
Figure 16 shows typical VDDA monitor reset timing where the internal reset is driven low (Si890x in reset) when  
VDDA falls below VRST (e.g., during a power down or VDDA brownout). The internal reset is released to its high  
state when VDDA again settles above VRST. External circuitry can also be used to force a reset event by driving  
the external RST input low. A 2 kpull-up resistor on RST is recommended to avoid erroneous reset events from  
external noise coupling to the RST input.  
VDDA  
VRSTH  
VRSTL  
VDDA(min)  
Internal  
RESET  
tPOR  
VDDA  
Monitor  
Reset  
PowerOn Reset  
Figure 16. Si890x Power-on and Monitor Reset  
Rev. 1.1  
21  
 
Si8900/1/2  
6.3. Application Example  
Figure 17 shows the Si8900 operating as a single-phase ac line voltage and current monitor. The VDDA dc bias  
circuit uses a low-cost 3.3 V linear regulator referenced to the neutral (white wire). The ac current is measured on  
ADC input AIN0. The ac line voltage is scaled by resistors R17 and R18 and level-shifted by the 1.5 V VREF. AC  
line current is measured using differential amplifier U1 connected across shunt resistor R1. Data is transferred to  
the external controller or processor via the isolated UART.  
SinglePhase  
AC Line  
1.5 V  
R2  
R3  
R4  
Si8900  
R1  
AIN0  
AIN1  
R6  
C2  
U1  
Low Cost  
Dual OpAmp  
R5  
R7  
R17  
R11  
C3  
R18  
R8  
TX  
RX  
R9  
R10  
1.5 V  
External  
Master Controller  
C1  
R12  
D1  
U2  
3.3 V  
LDO  
VDDA  
GNDA  
VDDB  
GNDB  
R14  
C5  
C4  
R13  
Output Side  
Bias Supply  
1.5 V  
R15  
Figure 17. AC Line Monitor Application Example  
22  
Rev. 1.1  
 
Si8900/1/2  
7. Device Pin Assignments  
VDDA  
VREF  
AIN0  
VDDA  
VREF  
AIN0  
VDDA  
RST  
VDDB  
NC  
VDDB  
NC  
VDDB  
NC  
NC  
NC  
NC  
SDO  
AIN1  
VREF  
AIN0  
AIN1  
AIN2  
GNDA  
AIN1  
Rx  
SCL  
SDA  
NC  
SCLK  
Si8900  
Si8901  
Si8902  
Tx  
AIN2  
SDI  
AIN2  
NC  
RST  
NC  
EN  
RST  
RSDA  
GNDA  
VDDB  
GNDB  
VDDB  
GNDB  
VDDB  
GNDB  
GNDA  
Figure 18. Si8900/1/2 Pinout (16SOW)  
Table 6. Si8900/1/2 Pin Assignments  
Description  
Pin  
Si8900 Si8901 Si8902  
Pin  
Pin  
Pin  
1
2
VDDA  
Input side VDD bias voltage (typically 3.3 V)  
VREF  
RST Si8900/1: External voltage reference input.  
Si8902: Active low reset.  
3
4
5
6
7
AIN0  
AIN1  
AIN2  
NC  
AIN0  
NC Si8900: ADC analog input channel 0.  
Si8901: ADC analog input channel 0.  
Si8902: No connection  
AIN1 VREF Si8900: ADC analog input channel 1.  
Si8901: ADC analog input channel 1.  
Si8902: External VREF in.  
AIN2  
AIN0 Si8900: ADC analog input channel 2.  
Si8901: ADC analog input channel 2.  
Si8902: ADC analog input channel 0.  
RST  
AIN1 Si8900: No Connection.  
Si8901: Active low reset.  
Si8902: ADC analog input channel 1.  
RST  
RSDA AIN2 Si8900: Active low reset.  
Si8901: RSDA bias resistor (typically 5 k).  
Si8902: ADC analog input channel 2.  
8
GNDA  
GNDB  
VDDB  
Input side ground  
9
Output side ground  
10  
11  
12  
Output side VDD bias voltage (2.7 V to 5.5 V)  
EN Si8900/1: No connection. Si8902: SPI Port Enable.  
SDI Si8900: UART unidirectional transmit output.  
NC  
Tx  
SDA  
2
Si8901: I C Bidirectional data input/output.  
Si8902: SPI port Serial data in.  
Rev. 1.1  
23  
Si8900/1/2  
Table 6. Si8900/1/2 Pin Assignments (Continued)  
Pin  
Si8900 Si8901 Si8902  
Description  
Pin  
Pin  
Pin  
13  
Rx  
SCL  
SCLK Si8900: UART unidirectional receive input.  
2
Si8901: I C port unidirectional serial clock input.  
Si8902: SPI port unidirectional serial clock input.  
14  
NC  
SDO Si8900/1: No connection.  
Si8902: SPI port Serial data out (SDO)  
15  
16  
NC  
No connection  
VDDB  
Si8900/1/2: Output side VDD bias voltage (2.7 V to 5.5 V).  
24  
Rev. 1.1  
Si8900/1/2  
8. Ordering Guide  
Table 7. Product Ordering Information1,2,3  
Part Number (OPN)  
Serial Port  
Package  
Isolation Rating  
Temp Range  
Si8900B-A01-GS  
Si8900D-A01-GS  
Si8901B-A01-GS  
Si8901D-A01-GS  
Si8902B-A01-GS  
Si8902D-A01-GS  
Notes:  
UART  
UART  
WB SOIC  
WB SOIC  
WB SOIC  
WB SOIC  
WB SOIC  
WB SOIC  
2.5 kV  
5.0 kV  
2.5 kV  
5.0 kV  
2.5 kV  
5.0 kV  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
2
I C/SMBus  
2
I C/SMBus  
SPI Port  
SPI Port  
1. Add an “R” suffix to the part number to specify the tape and reel option. Example: “Si8900AB-A-ISR”.  
2. All packages are RoHS-compliant.  
3. Moisture sensitivity level is MSL3 for wide-body SOIC-16 package with peak reflow temperatures of 260 °C according  
to the JEDEC industry standard classifications and peak solder temperatures.  
Rev. 1.1  
25  
 
Si8900/1/2  
9. Package Outline: 16-Pin Wide Body SOIC  
Figure 19 illustrates the package details for the Si8900/1/2 Digital Isolator. Table 8 lists the values for the  
dimensions shown in the illustration.  
Figure 19. 16-Pin Wide Body SOIC  
26  
Rev. 1.1  
 
Si8900/1/2  
Table 8. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
A
A1  
A2  
b
2.65  
0.30  
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
10.30 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
θ
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise  
noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020C specification  
for small body, lead-free components.  
Rev. 1.1  
27  
Si8900/1/2  
10. Land Pattern: 16-Pin Wide-Body SOIC  
Figure 20 illustrates the recommended land pattern details for the Si8900/1/2 in a 16-pin wide-body SOIC. Table 9  
lists the values for the dimensions shown in the illustration.  
Figure 20. 16-Pin SOIC Land Pattern  
Table 9. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
28  
Rev. 1.1  
 
 
Si8900/1/2  
11. Top Marking: 16-Pin Wide Body SOIC  
11.1. Si8900/1/2 Top Marking  
Si890XY  
YYWWRTTTTT  
e4  
TW  
11.2. Top Marking Explanation  
Si890 = Isolator product series  
X = Serial Port  
Base Part Number  
0 = UART  
1 = I C  
Ordering Options  
2
Line 1 Marking:  
2 = SPI  
Y = Insulation rating  
(See Ordering Guide for more  
information).  
B = 2.5 kV; D = 5.0 kV  
YY = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to the  
year and workweek of the mold date.  
Line 2 Marking:  
Line 3 Marking:  
Manufacturing code from assembly house  
“R” indicates revision  
RTTTTT = Mfg Code  
Circle = 1.7 mm Diameter  
(Center-Justified)  
“e4” Pb-Free Symbol  
TW = Taiwan  
Country of Origin ISO Code  
Abbreviation  
Rev. 1.1  
29  
 
Si8900/1/2  
DOCUMENT CHANGE LIST  
Revision 0.5 to Revision 1.0  
No changes.  
Revision 1.0 to Revision 1.1  
Removed “pending” throughout.  
Changed AN638 reference to AN637.  
Updated "Top Marking: 16-Pin Wide Body SOIC" on  
page 29.  
30  
Rev. 1.1  
Si8900/1/2  
NOTES:  
Rev. 1.1  
31  
Smart.  
Connected.  
Energy-Friendly  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

SI8902B-A01-GSR 替代型号

型号 制造商 描述 替代类型 文档
Si8902B-A01-GS SILICON ISOLATED MONITORING ADC 完全替代
SI8900B-A01-GS SILICON ADC, Successive Approximation, 10-Bit, 1 Func, 3 Channel, Serial Access, CMOS, PDSO16, SOI 完全替代

SI8902B-A01-GSR 相关器件

型号 制造商 描述 价格 文档
Si8902D-A01-GS SILICON ISOLATED MONITORING ADC 获取价格
SI8902D-A01-GSR SILICON ADC, Successive Approximation, 10-Bit, 1 Func, 3 Channel, Serial Access, CMOS, PDSO16, SOIC-16 获取价格
SI8902EDB VISHAY Bi-Directional N-Channel 20-V (D-S) MOSFET 获取价格
SI8902EDB-T1 VISHAY TRANSISTOR 2 CHANNEL, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, MICRO FOOT, CSP-6, FET General Purpose Small Signal 获取价格
SI8902EDB-T2-E1 VISHAY Bi-Directional N-Channel 20-V (D-S) MOSFET 获取价格
SI8902EDB_06 VISHAY Bi-Directional N-Channel 20-V (D-S) MOSFET 获取价格
SI8902EDB_08 VISHAY Bi-Directional N-Channel 20-V (D-S) MOSFET 获取价格
SI8904EDB VISHAY Bi-Directional N-Channel 30-V (D-S) MOSFET 获取价格
SI8904EDB-T2-E1 VISHAY Small Signal Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET 获取价格
SI8904EDB-T2-E3 VISHAY TRANSISTOR 2 CHANNEL, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, 2 X 3 MM, MICRO FOOT, CSP-6, FET General Purpose Small Signal 获取价格

SI8902B-A01-GSR 相关文章

  • CTS EMI/RFI 滤波器和电容器产品选型手册(英文版)
    2024-09-18
    6
  • CTS Controls 产品线手册(英文版)
    2024-09-18
    9
  • CTS先进材料和解决方案—产品手册(英文版)
    2024-09-18
    9
  • 松下(Panasonic)机器用传感器[产品选型手册(2024)
    2024-09-14
    22