E-L6258EA

更新时间:2025-01-13 05:55:35
描述:PWM controlled high current DMOS universal motor driver

E-L6258EA 概述

PWM controlled high current DMOS universal motor driver PWM控制大电流DMOS通用电机驱动器 运动控制电子器件

E-L6258EA 规格参数

生命周期:Active零件包装代码:SSOP
包装说明:ROHS COMPLIANT, SSOP-36针数:36
Reach Compliance Code:not_compliantECCN代码:EAR99
HTS代码:8542.39.00.01Factory Lead Time:16 weeks
风险等级:2.15模拟集成电路 - 其他类型:STEPPER MOTOR CONTROLLER
JESD-30 代码:R-PDSO-G36JESD-609代码:e3
长度:15.9 mm湿度敏感等级:3
功能数量:1端子数量:36
最高工作温度:125 °C最低工作温度:-40 °C
最大输出电流:2 A封装主体材料:PLASTIC/EPOXY
封装代码:HSSOP封装等效代码:SSOP36,.56
封装形状:RECTANGULAR封装形式:SMALL OUTLINE, HEAT SINK/SLUG, SHRINK PITCH
峰值回流温度(摄氏度):245电源:5,40 V
认证状态:Not Qualified座面最大高度:3.6 mm
子类别:Motion Control Electronics最大供电电压 (Vsup):5.25 V
最小供电电压 (Vsup):4.75 V标称供电电压 (Vsup):5 V
表面贴装:YES技术:BCDMOS
温度等级:AUTOMOTIVE端子面层:Matte Tin (Sn) - annealed
端子形式:GULL WING端子节距:0.65 mm
端子位置:DUAL处于峰值回流温度下的最长时间:30
宽度:11 mmBase Number Matches:1

E-L6258EA 数据手册

通过下载E-L6258EA数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
L6258EA  
PWM controlled  
high current DMOS universal motor driver  
Features  
Able to drive both windings of a bipolar stepper  
motor or two DC motors  
Output current up to 1.5A each winding  
Wide voltage range: 12V to 40V  
Four quadrant current control, ideal for  
microstepping and dc motor control  
Precision PWM control  
PowerSO36  
No need for recirculation diodes  
TTL/CMOS compatible inputs  
Cross conduction protection  
Thermal shutdow  
The power stage is a dual DMOS full bridge  
capable of sustaining up to 40V, and includes the  
diodes for current recirculation.The output current  
capability is 1.5A per winding in continuous mode,  
with peak start-up current up to 2A. A thermal  
protection circuitry disables the outputs if the chip  
temperature exceeds the safe limits.  
Extended low operating temperature range:  
-40°C  
Description  
L6258EA is a dual full bridge for motor control  
applications realized in BCD technology, with the  
capability of driving both windings of a bipolar  
stepper motor or bidirectionally control two DC  
motors.  
L6258EA and a few external components form a  
complete control and drive circuit. It has high  
efficiency phase shift chopping that allows a very  
low current ripple at the lowest current control  
levels, and makes this device ideal for steppers as  
well as for DC motors.  
Table 1.  
Device summary  
Order code  
Package  
PowerSO36  
Packing  
E-L6258EA  
Tube  
December 2007  
Rev 5  
1/32  
www.st.com  
1
Contents  
L6258EA  
Contents  
1
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input logic (I0 - I1 - I2 - I3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Phase input ( PH ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Triangular generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Charge pump circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Current control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Current control loop compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3
4
PWM current control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
3.2  
3.3  
3.4  
3.5  
Open loop transfer function analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Load attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Error amplifier and sense amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Effect of the Bemf on the current control loop stability . . . . . . . . . . . . . . . 22  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.1  
4.2  
4.3  
Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Motor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Notes on PCB design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5
6
7
Operation mode time diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2/32  
L6258EA  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Current levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Charge pump capacitor's values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3/32  
List of figures  
L6258EA  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Current control loop block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output comparator waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Ax bode plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Aloop bode plot (uncompensated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Aloop bode plot (compensated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 10. Electrical model of the load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 11. Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 12. Full step operation mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 13. Half step operation mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 14. 4 bit microstep operation mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 15. PowerSO36 mechanical data & package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4/32  
L6258EA  
1
Block diagram  
Block diagram  
Figure 1.  
Block diagram  
R1 1M  
RC1  
CC1  
CBOOT  
VS  
CP  
VCP2  
EA_IN1  
EA_OUT1  
VBOOT  
TRI_0  
+
VCP1  
OUT1A  
CHARGE  
PUMP  
C
ERROR  
AMP  
-
POWER  
BRIDGE  
1
VR  
+
-
VREF1  
I3_1  
+
-
OUT1B  
INPUT  
&
TRI_180  
C
SENSE1B  
SENSE  
AMP  
I2_1  
DAC  
VR GEN  
DAC  
Rs  
I1_1  
I0_1  
PH_1  
SENSE1A  
DISABLE  
THERMAL  
PROT.  
VDD(5V)  
VR (VDD/2)  
VS  
VREF1  
I3_2  
ERROR  
AMP  
TRI_0  
VR  
+
-
OUT2A  
INPUT  
&
SENSE  
AMP  
+
-
C
C
I2_2  
POWER  
BRIDGE  
2
I1_2  
+
-
OUT2B  
I0_2  
SENSE2B  
PH_2  
TRI_180  
Rs  
TRI_CAP  
CFREF  
TRI_0  
TRIANGLE  
GENERATOR  
TRI_180  
SENSE2A  
GND  
EA_IN2  
EA_OUT2  
D96IN430D  
RC2  
CC2  
R2 1M  
Table 2.  
Parameter  
Vs  
Absolute maximum rating  
Description  
Value  
Unit  
Supply voltage  
45  
7
V
V
VDD  
Vref1/Vref2  
IO  
Logic supply voltage  
Reference voltage  
2.5  
2
V
Output current (peak)(1)  
Output current (continuous)  
Logic input voltage range  
Bootstrap supply  
A
IO  
1.5  
A
Vin  
-0.3 to 7  
60  
V
Vboot  
Vboot - Vs  
Tj  
V
Maximum Vgate applicable  
Junction temperature  
Storage temperature range  
15  
V
150  
°C  
°C  
Tstg  
-55 to 150  
1. This current is intended as not repetitive current for max. 1 second.  
5/32  
Block diagram  
Figure 2.  
L6258EA  
Pin connection (top view)  
PWR_GND  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
PWR_GND  
SENSE1  
OUT1B  
I3_1  
2
PH_1  
I1_1  
3
4
I0_1  
5
I2_1  
OUT1A  
DISABLE  
TRI_CAP  
VDD  
6
VS  
7
EA_OUT1  
EA_IN1  
VREF1  
8
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
SIG_GND  
VREF2  
VCP1  
VCP2  
VBOOT  
VS  
EA_IN2  
EA_OUT2  
I2_2  
OUT2A  
I0_2  
I3_2  
OUT2B  
SENSE2  
PWR_GND  
I1_2  
PH_2  
PWR_GND  
D96IN432F  
Table 3.  
Pin #  
Pin functions  
Name  
Description  
Ground connection (1). They also conduct heat from die to  
printed circuit copper.  
1, 36  
2, 17  
PWR_GND  
PH_1, PH_2  
These TTL compatible logic inputs set the direction of  
current flow through the load. A high level causes current to  
flow from OUTPUT A to OUTPUT B.  
Logic input of the internal DAC (1). The output voltage of the  
DAC is a percentage of the Vref voltage applied according to  
the thruth Table 5 on page 12.  
3
I1_1  
4
5
I0_1  
See pin 3  
OUT1A  
Bridge output connection (1)  
Disables the bridges for additional safety during switching.  
When not connected the bridges are enabled  
6
7
DISABLE  
TRI_cap  
Triangular wave generation circuit capacitor. The value of  
this capacitor defines the output switching frequency  
6/32  
L6258EA  
Block diagram  
Table 3.  
Pin #  
Pin functions (continued)  
Name  
Description  
8
VDD (5V)  
GND  
Supply voltage input for logic circuitry  
9
Power ground connection of the internal charge pump circuit  
Charge pump oscillator output  
10  
11  
12  
VCP1  
VCP2  
Input for external charge pump capacitor  
VBOOT  
Overvoltage input for driving of the upper DMOS  
Supply voltage input for output stage. They are shorted  
internally  
13, 31  
14  
VS  
OUT2A  
Bridge output connection (2)  
Logic input of the internal DAC (2). The output voltage of the  
DAC is a percentage of the VRef voltage applied according  
to the truth Table 5 on page 12.  
15  
I0_2  
16  
I1_2  
See pin 15  
Ground connection. They also conduct heat from die to  
printed circuit copper  
18, 19  
20, 35  
21  
PWR_GND  
SENSE2, SENSE1 Negative input of the transconductance input amplifier (2, 1)  
Bridge output connection and positive input of the  
tranconductance (2)  
OUT2B  
22  
23  
24  
25  
I3_2  
I2_2  
See pin 15  
See pin 15  
EA_OUT_2  
EA_IN_2  
Error amplifier output (2)  
Negative input of error amplifier (2)  
Reference voltages for the internal DACs, determining the  
output current value. Output current also depends on the  
logic inputs of the DAC and on the sensing resistor value  
26, 28  
VREF2, VREF1  
27  
29  
30  
32  
33  
SIG_GND  
EA_IN_1  
EA_OUT_1  
I2_1  
Signal ground connection  
Negative input of error amplifier (1)  
Error amplifier output (1)  
See pin 3  
I3_1  
See pin 3  
Bridge output connection and positive input of the  
tranconductance (1)  
34  
OUT1B  
Note:  
The number in parenthesis shows the relevant Power Bridge of the circuit. Pins 18, 19, 1  
and 36 are connected together.  
7/32  
Block diagram  
Figure 3.  
L6258EA  
Thermal characteristics  
Power Dissipated T Ambient Thermal J-A resistance  
Conditions  
(W)  
(˚C)  
(˚C/W)  
5.3  
70  
15  
pad layout + ground layers + 16 via hol  
PCB ref.: 4 LAYER cm 12 x 12  
4.0  
2.3  
70  
70  
20  
35  
pad layout + ground layers  
PCB ref.: 4 LAYER cm 12 x 12  
pad layout + 6cm2 on board heat sink  
PCB ref.: 2 LAYER cm 12 x 12  
D02IN1370  
12  
10  
8
15˚C/W  
20˚C/W  
35˚C/W  
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
D04IN1525A  
Ambient Temperature (˚C)  
Table 4.  
Electrical characteristics  
(V = 40V; V = 5V; T = 25°; unless otherwise specified.)  
S
DD  
j
Parameter  
Description  
Test condition  
Min.  
Typ.  
Max. Unit  
VS  
Supply voltage  
12  
40  
V
V
V
VDD  
Logic supply voltage  
Storage voltage  
4.75  
VS+6  
5.25  
VBOOT  
VS = 12 to 40V  
VS+12  
Max drop across sense  
resistor  
VSense  
1.25  
V
VS(off)  
VDD(off)  
IS(on)  
IS(off)  
IDD  
Power off reset  
Off threshold  
Off threshold  
6
7.2  
4.1  
15  
7
V
Power off reset  
3.3  
V
VS quiescent current  
VS quiescent current  
VDD operative current  
Both bridges ON, no load  
Both bridges OFF  
mA  
mA  
mA  
15  
8/32  
L6258EA  
Block diagram  
Max. Unit  
Table 4.  
Electrical characteristics (continued)  
(V = 40V; V = 5V; T = 25°; unless otherwise specified.)  
S
DD  
j
Parameter  
Description  
Test condition  
Min.  
Typ.  
ΔTSD-H Shut down hysteresis  
25  
°C  
°C  
TSD  
Thermal shutdown  
150  
Triangular oscillator  
frequency(1)  
fosc  
CFREF = 1nF  
12.5  
15  
18.5 KHz  
TRANSISTORS  
IDSS  
Rds(on)  
Vf  
Leakage current  
OFF State  
ON state  
If =1.0A  
500  
0.75  
1.4  
μA  
W
V
On resistance  
0.6  
1
Flywheel diode voltage  
CONTROL LOGIC  
Vin(H)  
Vin(L)  
Iin  
lnput voltage  
All Inputs  
All inputs  
2
0
VDD  
0.8  
V
V
Input voltage  
Input current (2)  
-150  
-10  
0
+10  
μA  
μA  
V
0 < Vin < 5V  
Idis  
Disable pin input current  
Reference voltage  
Vref terminal input current  
+150  
(3)  
Vref1 ref2  
/
Operating  
Vref = 1.25  
Iref  
-2  
5
μA  
FI =  
PWM loop transfer ratio  
DAC full scale precision  
2
V
/V  
ref sense  
VFS  
Vref = 2.5V I0/I1/I2/I3 = L  
1.23  
-30  
1.34  
+30  
V
Vref = 2.5V I0/I1/I2/I3 = H  
mV  
Voffset  
Current loop offset  
Vref = 2V I0/I1/I2/I3 = H;  
Tj = -40 to 125°C  
-60  
-2  
+60  
+2  
mV  
%
Normalized @ full scale  
value  
DAC factor ratio  
SENSE AMPLIFIER  
lnput common mode  
Vcm  
-0.7  
VS+0.7  
0
V
voltage range  
Iinp  
Input bias  
sense1/sense2  
Open loop  
-200  
μA  
ERROR AMPLIFIER  
GV  
SR  
Open loop voltage gain  
70  
0.2  
400  
dB  
Output slew rate  
V/μs  
kHz  
GBW  
Gain bandwidth product  
1. Chopping frequency is twice fosc value.  
2. This is true for all the logic inputs except the disable input.  
3. If Tj is inside the range -40 to -10°C then Vref max is 2V+0.5V·(Tj + 40°C)/30°C. If Tj is greater than -10°C  
then Vref max is 2.5V.  
9/32  
Functional description  
L6258EA  
2
Functional description  
The circuit is intended to drive both windings of a bipolar stepper motor or two DC motors.  
The current control is generated through a switch mode regulation.  
With this system the direction and the amplitude of the load current are depending on the  
relation of phase and duty cycle between the two outputs of the current control loop.  
The L6258EA power stage is composed by power DMOS in bridge configuration as it is  
shown in Figure 4, where the bridge outputs OUT_A and OUT_B are driven to V with an  
s
high level at the inputs IN_A and IN_B while are driven to ground with a low level at the  
same inputs.  
The zero current condition is obtained by driving the two half bridge using signals IN_A and  
IN_B with the same phase and 50% of duty cycle.  
In this case the outputs of the two half bridges are continuously switched between power  
supply (V ) and ground, but keeping the differential voltage across the load equal to zero.  
s
In Figure 4 is shown the timing diagram of the two outputs and the load current for this  
working condition.  
Following we consider positive the current flowing into the load with a direction from OUT_A  
to OUT_B, while we consider negative the current flowing into load with a direction from  
OUT_B to OUT_A.  
Now just increasing the duty cycle of the IN_A signal and decreasing the duty cycle of IN_B  
signal we drive positive current into the load.  
In this way the two outputs are not in phase, and the current can flow into the load trough the  
diagonal bridge formed by T1 and T4 when the output OUT_A is driven to V and the output  
s
OUT_B is driven to ground, while there will be a current recirculation into the higher side of  
the bridge, through T1 and T2, when both the outputs are at Vs and a current recirculation  
into the lower side of the bridge, through T3 and T4, when both the outputs are connected to  
ground.  
Since the voltage applied to the load for recirculation is low, the resulting current discharge  
time constant is higher than the current charging time constant during the period in which  
the current flows into the load through the diagonal bridge formed by T1 and T4. In this way  
the load current will be positive with an average amplitude depending on the difference in  
duty cycle of the two driving signals.  
In Figure 4 is shown the timing diagram in the case of positive load current  
On the contrary, if we want to drive negative current into the load is necessary to decrease  
the duty cycle of the IN_A signal and increase the duty cycle of the IN_B signal. In this way  
we obtain a phase shift between the two outputs such to have current flowing into the  
diagonal bridge formed by T2 and T3 when the output OUT_A is driven to ground and  
output OUT_B is driven to Vs, while we will have the same current recirculation conditions of  
the previous case when both the outputs are driven to Vs or to ground.  
So, in this case the load current will be negative with an average amplitude always  
depending by the difference in duty cycle of the two driving signals.  
In Figure 4 is shown the timing diagram in the case of negative load current.  
Figure 5 shows the device block diagram of the complete current control loop.  
10/32  
L6258EA  
Functional description  
2.1  
Reference voltage  
The voltage applied to VREF pin is the reference for the internal DAC and, together with the  
sense resistor value, defines the maximum current into the motor winding according to the  
following relation:  
V
0,5 V  
1
FI  
REF  
REF  
----- -------------  
I
= ----------------------------- =  
MAX  
R
R
S
S
where R = sense resistor value  
s
Figure 4.  
Power bridge configuration  
VS  
IN_A  
IN_B  
T1  
T2  
OUT_B  
LOAD  
OUT_A  
T3  
T4  
OUTA  
OUTB  
Iload  
Fig. 1A  
Fig. 1B  
Fig. 1C  
0
OUTA  
OUTB  
Iload  
0
OUTA  
OUTB  
0
Iload  
D97IN624  
11/32  
Functional description  
L6258EA  
Figure 5.  
Current control loop block diagram  
POWER AMPL.  
VS  
OUTA  
LOAD  
RL  
-
Tri_0  
INPUT TRANSCONDUCTANCE  
AMPL.  
+
ERROR AMPL.  
VR  
LL  
VS  
+
-
ia  
VREF  
I0  
RS  
-
ic  
+
+
Tri_180  
I1  
DAC  
VDAC  
-
I2  
OUTB  
Rc  
Cc  
I3  
PH  
ib  
Gin=1/Ra  
-
VSENSE  
+
D97IN625  
Gs=1/Rb  
SENSE TRANSCONDUCTANCE  
AMPL.  
2.2  
Input logic (I0 - I1 - I2 - I3)  
The current level in the motor winding is selected according to this table:  
Table 5.  
I3  
Current levels  
I2  
Current level  
% of IMAX  
I1  
I0  
H
H
H
H
H
H
H
H
L
H
H
H
H
L
H
H
L
H
L
No Current  
9.5  
H
L
19.1  
L
28.6  
H
H
L
H
L
38.1  
L
47.6  
L
H
L
55.6  
L
L
63.5  
H
H
H
H
H
L
H
L
71.4  
L
77.8  
L
H
82.5  
12/32  
L6258EA  
Functional description  
Table 5.  
I3  
Current levels (continued)  
Current level  
% of IMAX  
I2  
I1  
I0  
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
88.9  
92.1  
95.2  
98.4  
100  
H
L
L
2.3  
2.4  
Phase input ( PH )  
The logic level applied to this input determines the direction of the current flowing in the  
winding of the motor.  
High level on the phase input causes the motor current flowing from OUT_A to OUT_B  
through the load.  
Triangular generator  
This circuit generates the two triangular waves TRI_0 and TRI_180 internally used to  
generate the duty cycle variation of the signals driving the output stage in bridge  
configuration.  
The frequency of the triangular wave defines the switching frequency of the output, and can  
be adjusted by changing the capacitor connected at TR1_CAP pin:  
K
C
F
= ---  
ref  
-5  
where: K = 1.5 x 10  
2.5  
Charge pump circuit  
To ensure the correct driving of the high side drivers a voltage higher than Vs is supplied on  
the Vboot pin. This boostrap voltage is not needed for the low side power DMOS transistors  
because their sources terminals are grounded. To produce this voltage a charge pump  
method is used. It is made by using two external capacitors; one connected to the internal  
oscillator (CP) and the other (Cboot) to storage the overvoltage needed for the driving the  
gates of the high side DMOS. The value suggested for the capacitors are:  
Table 6.  
Charge pump capacitor's values  
Component name  
Component's function  
Value  
Unit  
Cboot  
CP  
Storage capacitor  
Pump capacitor  
100  
10  
nF  
nF  
13/32  
Functional description  
L6258EA  
2.6  
Current control loop  
The current control loop is a transconductance amplifier working in PWM mode.  
The motor current is a function of the programmed DAC voltage.  
To keep under control the output current, the current control modulates the duty cycle of the  
two outputs OUT_A and OUT_B, and a sensing resistor Rs is connected in series with the  
motor winding in order to produce a voltage feedback compared with the programmed  
voltage of the DAC.  
The duty cycle modulation of the two outputs is generated comparing the voltage at the  
outputs of the error amplifier, with the two triangular wave references.  
In order to drive the output bridge with the duty cycle modulation explained before, the  
signals driving each output (OUTA & OUTB) are generated by the use of the two  
comparators having as reference two triangular wave signals Tri_0 and Tri_180 of the same  
amplitude, the same average value (in our case Vr), but with a 180° of phase shift each  
other.  
The two triangular wave references are respectively applied to the inverting input of the first  
comparator and to the non inverting input of the second comparator.  
The other two inputs of the comparators are connected together to the error amplifier output  
voltage resulting by the difference between the programmed DAC. The reset of the  
comparison between the mentioned signals is shown in Figure 6.  
Figure 6.  
Output comparator waveforms  
Tri_0  
Error Ampl.  
Output  
Tri_180  
First Comp.  
Output  
Second Comp.  
Output  
In the case of V  
equal to zero, the transconductance loop is balanced at the value of Vr,  
DAC  
so the outputs of the two comparators are signals having the same phase and 50% of duty  
cycle.  
As we have already mentioned, in this situation, the two outputs OUT_A and OUT_B are  
simultaneously driven from V to ground; and the differential voltage across the load in this  
s
case is zero and no current flows in the motor winding.  
14/32  
L6258EA  
Functional description  
With a positive differential voltage on V  
positively unbalanced respected Vr.  
(see Figure 5, the transconductance loop will be  
DAC  
In this case being the error amplifier output voltage greater than Vr, the output of the first  
comparator is a square wave with a duty cycle higher than 50%, while the output of the  
second comparator is a square wave with a duty cycle lower than 50%.  
The variation in duty cycle obtained at the outputs of the two comparators is the same, but  
one is positive and the other is negative with respect to the 50% level.  
The two driving signals, generated in this case, drive the two outputs in such a way to have  
switched current flowing from OUT_A through the motor winding to OUT_B.  
With a negative differential voltage V  
unbalanced respected Vr.  
, the transconductance loop will be negatively  
DAC  
In this case the output of the first comparator is a square wave with a duty cycle lower than  
50%, while the output of the second comparator is a square wave with a duty cycle higher  
than 50%.  
The variation in the duty cycle obtained at the outputs of the two comparators is always of  
the same.  
The two driving signals, generated in this case, drive the the two outputs in order to have the  
switched current flowing from OUT_B through the motor winding to OUT_A.  
2.7  
Current control loop compensation  
In order to have a flexible system able to drive motors with different electrical characteristics,  
the non inverting input and the output of the error amplifier ( EA_OUT ) are available.  
Connecting at these pins an external RC compensation network it is possible to adjust the  
gain and the bandwidth of the current control loop.  
15/32  
PWM current control loop  
L6258EA  
3
PWM current control loop  
3.1  
Open loop transfer function analysis  
Block diagram: refer to Figure 5.  
Input parameters:  
V = 24V  
S
L = 12mH  
L
R = 12Ω  
L
R = 0.33Ω  
S
R = to be calculated  
C
C = to be calculated  
C
Gs transconductance gain = 1/Rb  
Gin transconductance gain = 1/Ra  
Ampl. of the Tria_0_180 ref. = 1.6V (peak to peak)  
R = 40KΩ  
a
R = 20KΩ  
b
V = Internal reference equal to V /2 (Typ. 2.5V)  
r
DD  
these data refer to a typical application, and will be used as an example during the analysis  
of the stability of the current control loop.  
The block diagram shows the schematics of the L6258 internal current control loop working  
in PWM mode; the current into the load is a function of the input control voltage V  
the relation between the two variables is given by the following formula:  
, and  
DAC  
I
· R · G = V  
· G  
DAC in  
LOAD  
S
S
1
1
-------  
-------  
I
R  
= V  
LOAD  
DAC  
S
R
R
b
a
R
V
b
DAC  
----------------------  
--------------  
I
= V  
= 0,5 ⋅  
(A)  
LOAD  
DAC  
R R  
R
S
a
s
where:  
V
is the control voltage defining the load current value  
DAC  
G
G
is the gain of the input transconductance amplifier ( 1/Ra )  
is the gain of the sense transconductance amplifier ( 1/Rb )  
in  
s
R
is the resistor connected in series to the output to sense the load current  
s
In this configuration the input voltage is compared with the feedback voltage coming from  
the sense resistor, then the difference between this two signals is amplified by the error  
amplifier in order to have an error signal controlling the duty cycle of the output stage  
keeping the load current under control.  
It is clear that to have a good performance of the current control loop, the error amplifier  
must have an high DC gain and a large bandwidth.  
16/32  
L6258EA  
PWM current control loop  
Gain and bandwidth must be chosen depending on many parameters of the application, like  
the characteristics of the load, power supply etc..., and most important is the stability of the  
system that must always be guaranteed.  
To have a very flexible system and to have the possibility to adapt the system to any  
application, the error amplifier must be compensated using an RC network connected  
between the output and the negative input of the same.  
For the evaluation of the stability of the system, we have to consider the open loop gain of  
the current control loop:  
Aloop = ACerr · ACpw · ACload · ACsense  
where AC... is the gain of the blocks that refers to the error, power and sense amplifier plus  
the attenuation of the load block.  
The same formula in dB can be written in this way:  
Aloop = ACerr + ACpw + ACload + ACsense  
dB  
dB  
dB  
dB  
dB  
So now we can start to analyse the dynamic characteristics of each single block, with  
particular attention to the error amplifier.  
3.2  
Power amplifier  
The power amplifier is not a linear amplifier, but is a circuit driving in PWM mode the output  
stage in full bridge configuration.  
The output duty cycle variation is given by the comparison between the voltage of the error  
amplifier and two triangular wave references Tri_0 and Tri_180. Because all the current  
control loop is referred to the Vr reference, the result is that when the output voltage of the  
error amplifier is equal to the Vr voltage the two output Out_A and Out_B have the same  
phase and duty cycle at 50%; increasing the output voltage of the error amplifier above the  
Vr voltage, the duty cycle of the Out_A increases and the duty cycle of the Out_B decreases  
of the same percentage; on the contrary decreasing the voltage of the error amplifier below  
the Vr voltage, the duty cycle of the Out_A decreases and the duty cycle of the Out_B  
increases of the same percentage.  
The gain of this block is defined by the amplitude of the two triangular wave references;  
more precisely the gain of the power amplifier block is a reversed proportion of the  
amplitude of the two references.  
In fact a variation of the error amplifier output voltage produces a larger variation in duty  
cycle of the two outputs Out_A and Out_B in case of low amplitude of the two triangular  
wave references.  
The duty cycle has the max value of 100% when the input voltage is equal to the amplitude  
of the two triangular references.  
The transfer function of this block consist in the relation between the output duty cycle and  
the amplitude of the triangular references.  
Vout = 2 · V · (0.5 - DutyCycle)  
S
ΔV  
2 V  
out  
S
----------------  
ACpw  
= 20 log  
= ------------------------------------------------------  
Triangular Amplitude  
dB  
ΔV  
in  
17/32  
PWM current control loop  
L6258EA  
2 24  
----------------  
= 29,5dB  
ACpw  
= 20 log  
dB  
1,6  
Moreover, having the two references Tri_0 and Tri_180 a triangular shape it is clear that the  
transfer function of this block is a linear constant gain without poles and zeros.  
3.3  
Load attenuation  
The load block is composed by the equivalent circuit of the motor winding (resistance and  
inductance) plus the sense resistor.  
We will considered the effect of the Bemf voltage of the motor in the next chapter.  
The input of this block is the PWM voltage of the power amplifier and as output we have the  
voltage across the sense resistor produced by the current flowing into the motor winding.  
The relation between the two variable is:  
V
out  
----------------------  
V
=
R  
sense  
S
R + R  
L
S
so the gain of this block is:  
V
R
sense  
S
ACload = --------------------- = ----------------------  
v
R + R  
out  
L
S
R
S
----------------------  
ACload  
= 20 log  
dB  
R + R  
L
S
0,33  
12 + 0,33  
------------------------  
Aload  
= 20 log  
= –31,4dB  
dB  
where:  
R = equivalent resistance of the motor winding  
L
R = sense resistor  
S
Because of the inductance of the motor L , the load has a pole at the frequency:  
L
1
Fpole = -----------------------------------  
L
L
--------------------  
2π ⋅  
R + R  
L
S
1
Fpole = ---------------------------------------------- = 163Hz  
3  
12 10  
--------------------------  
6,28 ⋅  
12 + 0,33  
18/32  
L6258EA  
PWM current control loop  
Before analysing the error amplifier block and the sense transconductance block, we have to  
do this consideration:  
Aloop = Ax + Bx  
dB  
dB  
dB  
Ax| = ACpw| + ACload|  
dB  
dB  
dB  
and  
Bx| = ACerr| + ACsense|  
dB  
dB  
dB  
this means that Ax|dB is the sum of the power amplifier and load blocks;  
Ax| = (29,5) + (-31.4) = -1.9dB  
dB  
The BODE analysis of the transfer function of Ax is:  
Figure 7.  
Ax bode plot  
The Bode plot of the Ax|dB function shows a DC gain of -1.9dB and a pole at 163Hz.  
It is clear now that (because of the negative gain of the Ax function), Bx function must have  
an high DC gain in order to increment the total open loop gain increasing the bandwidth too.  
3.4  
Error amplifier and sense amplifier  
As explained before the gain of these two blocks is:  
Bx = ACerr + ACsense  
dB  
dB  
dB  
Being the voltage across the sense resistor the input of the Bx block and the error amplifier  
voltage the output of the same, the voltage gain is given by:  
1
Rb  
-------  
ib = Vsense Gs = Vsense ⋅  
19/32  
PWM current control loop  
L6258EA  
1
Zc  
------  
Verr_out = -(ic · Zc) so ic = -(Verr_out ·  
)
because ib = icwe have:  
1
Rb  
1
Zc  
-------  
------  
Vsense ·  
= -(Verr_out ·  
)
Verr_out  
Vsense Rb  
Zc  
Bx = –----------------------- = -------  
In the case of no external RC network is used to compensate the error amplifier, the typical  
open loop transfer function of the error plus the sense amplifier is something with a gain  
around 80dB and a unity gain bandwidth at 400kHz. In this case the situation of the total  
transfer function Aloop, given by the sum of the Ax and Bx is:  
dB  
dB  
Figure 8.  
Aloop bode plot (uncompensated)  
The BODE diagram shows together the error amplifier open loop transfer function, the Ax  
function and the resultant total Aloop given by the following equation:  
Aloop = AxdB + Bx  
dB  
dB  
The total Aloop has an high DC gain of 78.1dB with a bandwidth of 15KHz, but the problem  
in this case is the stability of the system; in fact the total Aloop cross the zero dB axis with a  
slope of -40dB/decade.  
Now it is necessary to compensate the error amplifier in order to obtain a total Aloop with an  
high DC gain and a large bandwidth. Aloop must have enough phase margin to guarantee  
the stability of the system.  
A method to reach the stability of the system, using the RC network showed in the block  
diagram, is to cancel the load pole with the zero given by the compensation of the error  
amplifier.  
The transfer function of the Bx block with the compensation on the error amplifier is:  
20/32  
L6258EA  
PWM current control loop  
1
------------------------------  
Rc j  
Zc  
Rb  
2π ⋅ f Cc  
Bx = –------- = ---------------------------------------------  
Rb  
In this case the Bx block has a DC gain equal to the open loop and equal to zero at a  
frequency given by the following formula:  
1
Fzero = ------------------------------------  
2π ⋅ Rc Cc  
In order to cancel the pole of the load, the zero of the Bx block must be located at the same  
frequency of 163Hz; so now we have to find a compromise between the resistor and the  
capacitor of the compensation network.  
Considering that the resistor value defines the gain of the Bx block at the zero frequency, it  
is clear that this parameter will influence the total bandwidth of the system because,  
annulling the load pole with the error amplifier zero, the slope of the total transfer function is  
-20dB/decade.  
So the resistor value must be chosen in order to have an error amplifier gain enough to  
guarantee a desired total bandwidth.  
In our example we fix at 35dB the gain of the Bx block at zero frequency, so from the  
formula:  
Rc  
Rb  
-------  
= 20 log  
Bx_gain  
@ zero freq.  
where: Rb = 20kΩ  
we have: Rc = 1.1MΩ  
Therefore we have the zero with a 163Hz the capacitor value:  
1
1
Cc = --------------------------------------------- = ---------------------------------------------------------------- = 880pF  
2π ⋅ Fzero Rc 6  
6,28 163 1,1 10  
Now we have to analyse how the new Aloop transfer function with a compensation network  
on the error amplifier is.  
The following bode diagram shows:  
the Ax function showing the position of the load pole  
the open loop transfer function of the Bx block  
the transfer function of the Bx with the RC compensation network on the error  
amplifier  
the total Aloop transfer function that is the sum of the Ax function plus the transfer  
function of the compensated Bx block.  
21/32  
PWM current control loop  
Figure 9. Aloop bode plot (compensated)  
L6258EA  
We can see that the effect of the load pole is cancelled by the zero of the Bx block ; the total  
Aloop cross a the 0dB axis with a slope of -20dB/decade, having in this way a stable system  
with an high gain at low frequency and a bandwidth of around 8KHz.  
To increase the bandwidth of the system, we should increase the gain of the Bx block,  
keeping the zero in the same position. In this way the result is a shift of the total Aloop  
transfer function up to a greater value.  
3.5  
Effect of the Bemf on the current control loop stability  
In order to evaluate what is the effect of the Bemf voltage of the stepper motor we have to  
look at the load block:  
22/32  
L6258EA  
PWM current control loop  
Figure 10. Electrical model of the load  
OUT+  
Bemf  
R
L
L
L
to Sense  
Amplifier  
R
S
OUT-  
The schematic now shows the equivalent circuit of the stepper motor including a sine wave  
voltage generator of the Bemf. The Bemf voltage of the motor is not constant, its value  
changes depending on the speed of the motor.  
Increasing the motor speed the Bemf voltage increases:  
Bemf = Kt · ω  
where:  
Kt is the motor constant  
ωis the motor speed in radiant per second  
The formula defining the gain of the load considering the Bemf of the stepper motor  
becomes:  
R
S
----------------------  
(V Bemf) ⋅  
S
R + R  
Vsense  
Vout  
L
S
ACload = --------------------- = ---------------------------------------------------------------  
V
S
V
Bemf  
R
S
S
---------------------------- ----------------------  
Acload =  
V
R + R  
S
L
S
V
Bemf  
R
S
S
---------------------------- ----------------------  
ACload  
= 20 log  
dB  
V
R + R  
S
L
S
we can see that the Bemf influences only the gain of the load block and does not introduce  
any other additional pole or zero, so from the stability point of view the effect of the Bemf of  
the motor is not critical because the phase margin remains the same.  
Practically the only effect of the Bemf is to limit the gain of the total Aloop with a consequent  
variation of the bandwidth of the system.  
23/32  
Application information  
L6258EA  
4
Application information  
A typical application circuit is shown in Figure 11.  
Note:  
For avoid current spikes on falling edge of DISABLE a "DC feedback" would be added to the  
ERROR Amplifier. (R1-R2 on Figure 11).  
4.1  
Interference  
Due to the fact that the circuit operates with switch mode current regulation, to reduce the  
effect of the wiring inductance a good capacitor (100nF) can be placed on the board near  
the package, between the power supply line (pin 13,31) and the power ground (pin  
1,36,18,19) to absorb the small amount of inductive energy.  
It should be noted that this capacitor is usually required in addition to an electrolytic  
capacitor, that has poor performance at the high frequencies, always located near the  
package, between power supply voltage (pin 13,31) and power ground (pin 1,36,18,19), just  
to have a current recirculation path during the fast current decay or during the phase  
change.  
The range value of this capacitor is between few µF and 100µF, and it must be chosen  
depending on application parameters like the motor inductance and load current amplitude.  
A decoupling capacitor of 100nF is suggested also between the logic supply and ground.  
The EA_IN1 and EA_IN2 pins carry out high impedance lines and care must be taken to  
avoid coupled noise on this signals. The suggestion is to put the components connected to  
this pins close to the L6258, to surround them with ground tracks and to keep as far as  
possible fast switching outputs of the device. Remember also an 1 Mohm resistor between  
EA_INx and EA_OUTx to avoid output current spike during supply startup/shutdown.  
A non inductive resistor is the best way to implement the sensing. Whether this is not  
possible, some metal film resistor of the same value can be paralleled.  
The two inputs for the sensing of the winding motor current (SENSE_A & SENSE_B) should  
be connected directly on the sensing resistor Rs terminals, and the path lead between the  
Rs and the two sensing inputs should be as short as possible.  
Note:  
Connect the DISABLE pin to a low impedance (< 300 Ω ) voltage source to reduce at  
minimum the interference on the output current due to capacitive coupling of OUT1A (pin5)  
and DISABLE (pin 6).  
24/32  
L6258EA  
Application information  
Figure 11. Typical application circuit  
0.33  
VCP1  
10  
21  
20  
OUT2B  
10nF  
VCP2  
11  
SENSE2  
STEPPER  
MOTOR  
VBOOT  
12  
M
OUT2A  
100nF  
VS  
14  
35  
34  
5
12mH 10Ω  
VS  
13,31  
7
SENSE1  
TRI_CAP  
0.33  
1nF  
OUT1B  
OUT1A  
GND  
L6258EA  
PH1  
I0_1  
2
9
SOP36  
PACKAGE  
4
I1_1  
3
I2_1  
PWR_GND  
1,36  
18,19  
32  
33  
17  
15  
16  
23  
22  
I3_1  
PH2  
VDD  
8
VDD(5V)  
VREF  
I0_2  
SIG_GND  
I1_2  
27  
I2_2  
I3_2  
28  
26  
24  
VREF1  
VREF2  
DISABLE  
6
29  
30  
25  
EA_IN1  
EA_OUT1  
1M  
EA_IN2  
EA_OUT2  
1M  
820pF  
820pF  
D97IN626E  
R1 1M  
R2 1M  
4.2  
Motor selection  
Some stepper motor have such high core losses that they are not suitable for switch mode  
current regulation. Furthermore, some stepper motors are not designed for continuous  
operating at maximum current. Since the circuit can drive a constant current through the  
motor, its temperature might exceed, both at low and high speed operation.  
25/32  
Application information  
L6258EA  
4.3  
Notes on PCB design  
We recommend to observe the following layout rules to avoid application problems with  
ground and anomalous recirculation current.  
The by-pass capacitors for the power and logic supply must be kept as near as possible to  
the IC.  
It's important to separate on the PCB board the logic and power grounds and the internal  
charge pump circuit ground avoiding that ground traces of the logic signals cross the ground  
traces of the power signals.  
Because the IC uses the board as a heat sink, the dissipating copper area must be sized in  
accordance with the required value of R  
.
thj-amb  
26/32  
L6258EA  
Operation mode time diagrams  
5
Operation mode time diagrams  
Figure 12. Full step operation mode timing diagram  
(Phase - DAC input and motor current)  
Position  
0
1
2
3
0
1
2
3
0
FULL Step Vector  
5V  
Phase  
1
Ph1  
0
5V  
1
0
Phase  
2
0
5V  
I0_1  
Ph2  
Ph2  
0
5V  
I1_1  
I2_1  
I3_1  
I0_2  
I1_2  
I2_2  
I3_2  
0
DAC 1  
Inputs  
2
3
5V  
0
Ph1  
5V  
0
Current  
level% of IMAX  
I3  
I2  
I1  
I0  
5V  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
100  
98.4  
DAC 2  
Inputs  
5V  
95.2  
0
5V  
92.1  
88.9  
0
0
0
82.5  
77.8  
71.4  
95.2%  
19.1%  
63.5  
Motor drive  
Current 1  
55.6  
47.6  
95.2%  
19.1%  
38.1  
Motor drive  
Current 2  
28.6  
0
19.1  
D97IN629A  
9.5  
No Current  
27/32  
Operation mode time diagrams  
L6258EA  
Figure 13. Half step operation mode timing diagram  
(Phase - DAC input and motor current)  
0
1
2
3
4
5
6
7
5V  
0
Phase 1  
Phase 2  
5V  
0
Half Step Vector  
Ph1  
2
5V  
0
I0_1  
5V  
0
3
1
DAC 1  
Inputs  
I1_1  
I2_1  
I3_1  
5V  
0
5V  
0
Ph2  
4
0 Ph2  
5V  
0
I0_2  
I1_2  
I2_2  
I3_2  
5V  
0
DAC 2  
Inputs  
5
7
5V  
0
6
5V  
0
Ph1  
100%  
71.4%  
Current  
level% of IMAX  
I3  
I2  
I1  
I0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
100  
98.4  
0
95.2  
Motor drive  
Current 1  
92.1  
88.9  
-71.4%  
-100%  
100%  
82.5  
77.8  
71.4  
71.4%  
63.5  
55.6  
47.6  
Motor drive  
Current 2  
38.1  
0
28.6  
19.1  
9.5  
-71.4%  
-100%  
No Current  
D97IN627C  
28/32  
L6258EA  
Operation mode time diagrams  
Figure 14. 4 bit microstep operation mode timing diagram  
(Phase - DAC input and motor current)  
Position  
0
4
8 12 16 20 24 28 32 36 40 44 48 52 56 60 64  
Micro Step Vector  
5V  
Ph1  
16  
0
Phase  
1
5V  
24  
8
0
Phase  
5V  
2
I0_1  
I1_1  
I2_1  
I3_1  
I0_2  
I1_2  
I2_2  
I3_2  
Ph2 32  
0 Ph2  
0
5V  
0
DAC 1  
Inputs  
40  
56  
5V  
48  
0
Ph1  
5V  
0
5V  
0
DAC 2  
Inputs  
Current  
level% of IMAX  
I3  
I2  
I1  
I0  
5V  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
100  
98.4  
5V  
95.2  
0
92.1  
88.9  
0
82.5  
100%  
95.2%  
82.5%  
63.5%  
47.6%  
38.1%  
77.8  
71.4  
Motor drive  
Current 1  
19.1%  
63.5  
0
0%  
55.6  
47.6  
38.1  
28.6  
19.1  
Motor drive  
Current 2  
9.5  
0
No Current  
D97IN628A  
29/32  
Package information  
L6258EA  
6
Package information  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 15. PowerSO36 mechanical data & package dimensions  
mm  
inch  
DIM.  
MIN.  
TYP. MAX. MIN.  
3.60  
TYP. MAX.  
0.1417  
0.0118  
0.1299  
0.0039  
0.0150  
0.0126  
0.6299  
0.3858  
0.5709  
0.4370  
0.1142  
0.2441  
0.0256  
0.4350  
0.0039  
0.6260  
0.0433  
0.0433  
OUTLINE AND  
MECHANICAL DATA  
A
a1  
a2  
a3  
b
0.10  
0.30 0.0039  
3.30  
0
0.10  
0.22  
0.23  
15.80  
9.40  
13.90  
10.90  
0.38 0.0087  
0.32 0.0091  
16.00 0.6220  
9.80 0.3701  
14.5 0.5472  
11.10 0.4291  
2.90  
c
D
D1  
E
E1  
E2  
E3  
e
5.80  
6.20 0.2283  
0.65  
e3  
G
11.05  
0
0.10  
H
15.50  
15.90 0.6102  
1.10  
h
L
0.8  
1.10 0.0315  
10˚ (max)  
8˚ (max)  
N
s
PowerSO-36  
Note: “D and E1” do not include mold flash or protusions.  
- Mold flash or protusions shall not exceed 0.15mm (0.006”)  
- Critical dimensions are "a3", "E" and "G".  
0096119 C  
30/32  
L6258EA  
Revision history  
7
Revision history  
Table 7.  
Date  
Document revision history  
Revision  
Changes  
11-May-2004  
29-Jun-2004  
1
2
First Issue  
Updated the table 1: Order Codes  
Changed on the page 5 the fosc parameter max. value from 17.5 to  
18.5kHz  
24-Sep-2004  
23-Mar-2005  
3
4
Add. note at the bottom of Table 2: Absolute maximum rating.  
Document reformatted.  
03-Dec-2007  
5
Modified the ACpw formula in Section 3.2 on page 17.  
Added the disable note in Section 4.1 on page 24.  
31/32  
L6258EA  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
32/32  

E-L6258EA 相关器件

型号 制造商 描述 价格 文档
E-L6258EP STMICROELECTRONICS PWM CONTROLLED - HIGH CURRENT DMOS UNIVERSAL MOTOR DRIVER 获取价格
E-L6258EX STMICROELECTRONICS PWM controlled high current DMOS universal motor driver 获取价格
E-L6258EXTR STMICROELECTRONICS PWM controlled high current DMOS universal motor driver 获取价格
E-L6385D STMICROELECTRONICS 0.65A HALF BRDG BASED MOSFET DRIVER, PDSO8, SO-8 获取价格
E-L6385D013TR STMICROELECTRONICS 0.65A HALF BRDG BASED MOSFET DRIVER, PDSO8, SOP-8 获取价格
E-L6386D STMICROELECTRONICS 0.65A HALF BRDG BASED MOSFET DRIVER, PDSO14, SOP-14 获取价格
E-L6386D013TR STMICROELECTRONICS 0.65A HALF BRDG BASED MOSFET DRIVER, PDSO14, SOP-14 获取价格
E-L6452 STMICROELECTRONICS Dual 13x16 Matrix Head Ink Jet Driver 获取价格
E-L6506D STMICROELECTRONICS STEPPER MOTOR CONTROLLER, PDSO20, SOP-20 获取价格
E-L6561 STMICROELECTRONICS 0.7A POWER FACTOR CONTROLLER, PDIP8, MINI, DIP-8 获取价格

E-L6258EA 相关文章

  • 英伟达CEO黄仁勋本周将访问中国,业界高度关注
    2025-01-15
    4
  • 美出台禁令:禁止进口中国联网汽车软硬件技术,引发产业震荡
    2025-01-15
    3
  • 中美科技博弈升级:中国加强美企出口审查,东南亚、印度扩产路受阻
    2025-01-15
    7
  • 台积电美国厂面临封装能力挑战,4nm芯片进入质量验证最后阶段
    2025-01-15
    4