TPSM86838

更新时间:2025-01-24 11:12:14
品牌:TI
描述:采用 HotRod QFN 封装的4.5V 至28V 输入、8A FCCM 模式、同步降压模块

TPSM86838 概述

采用 HotRod QFN 封装的4.5V 至28V 输入、8A FCCM 模式、同步降压模块

TPSM86838 数据手册

通过下载TPSM86838数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
参考文献  
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
TPSM8683x 4.5V 28V 输入、8A 同步降压电源模块  
1 特性  
该器件具4.5V 28V 的宽工作输入电压范围非常  
适合由 12V19V24V 线电源轨供电的系统。  
TPSM8683x 支持高达 8A 的持续输出电流相应的输  
出电压介0.6V 5.5V 之间。  
• 输入电压范围4.5V 28V  
0.6V 5.5V 输出电压范围  
8A 持续输出电流能力  
• 集MOSFET、电感器和基本无源器件  
25°C 0.6V ±1% 的基准电压  
D-CAP3控制模式用于快速瞬态响应  
TPSM86838 FCCM用于实现伪固定频率和  
较低的输出纹波  
TPSM86837 Eco-mode可实现较高的轻负  
载效率  
• 可调节软启动时间SS 电容器调节)  
• 内置输出放电功能  
TPSM8683x 使用 DCAP3 控制模式来提供快速瞬态响  
应、良好的线性调整率和负载调整率无需外部补偿,  
并支持低等效串联电阻 (ESR) 出电容器如  
MLCC。  
TPSM86838 轻负载期间以强制连续导通模式  
(FCCM) 运行并且在所有负载条件下均可保持较低的  
输出纹波。TPSM86837 Eco-mode 运行可在轻负  
载条件下实现高效率。  
• 可800kHz 1200kHz 开关频率  
• 电源正常状态指示器可监测输出电压  
• 支持高98% 的负荷运行  
• 非闭UVOVOT UVLO 保护  
• –40°C +150°C 的工作结温范围  
19 5.0mm × 5.5mm QFN HotRod封装  
TPSM8683x 提供完整的非锁OV过压UV欠  
OC过流OT过热以及 UVLO欠压锁  
保护并具有电源正常状态指示器和输出放电功能  
特性。  
TPSM8683x 可采用 19 引脚 5.0mm × 5.5mm HotRod  
QFN 封装额定结温范围40°C 150°C。  
2 应用  
器件信息  
封装和封装尺寸(1) (2)  
器件型号  
TPSM86838  
TPSM86837  
模式  
FCCM  
ECO  
• 工业应用医疗应用工厂自动化和控制IPC、  
机器人测试和测量专业音频视频  
• 适用12V19V 24V 电源总线应用的空间受限  
POL  
RCGB3QFN19),  
5.0mm× 5.5mm  
(1) 有关更多信息请参阅10。  
(2) 封装尺寸× 为标称值并包括引脚如适用。  
3 说明  
TPSM8683x 是一款高效、高压输入、易于使用的同步  
降压电源模块。该器件集成了功率 MOSFET、屏蔽式  
电感器和基本无源器件更大限度地减小了设计尺寸。  
100%  
80%  
60%  
40%  
VIN  
CIN  
VIN  
VIN  
VOUT  
VOUT  
SW  
VOUT  
EN  
EN  
BST  
TPSM8683x  
SS  
PG  
RFBT  
Css  
COUT  
MODE  
FB  
AGND  
PGND  
RMD  
RFBB  
20%  
VIN=12V  
VIN=19V  
VIN=24V  
0
0
1
2
3
4
5
6
7
8
Iout (A)  
简化版原理图  
TPSM86838 效率Vout = 5VFsw = 800kHz  
本资源的原文使用英文撰写方便起见TI 提供了译文由于翻译过程中可能使用了自动化工具TI 不保证译文的准确性确认  
准确性请务必访ti.com 参考最新的英文版本控制文档。  
English Data Sheet: SLVSH20  
 
 
 
 
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
Table of Contents  
7 Application and Implementation..................................20  
7.1 Application Information............................................. 20  
7.2 Typical Application.................................................... 20  
7.3 Power Supply Recommendations.............................25  
7.4 Layout....................................................................... 26  
8 Device and Documentation Support............................28  
8.1 Device Support......................................................... 28  
8.2 Documentation Support............................................ 28  
8.3 接收文档更新通知..................................................... 28  
8.4 支持资源....................................................................28  
8.5 Trademarks...............................................................28  
8.6 静电放电警告............................................................ 28  
8.7 术语表....................................................................... 28  
9 Revision History............................................................ 28  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Pin Configuration and Functions...................................3  
5 Specifications.................................................................. 5  
5.1 Absolute Maximum Ratings........................................ 5  
5.2 ESD Ratings............................................................... 5  
5.3 Recommended Operating Conditions.........................5  
5.4 Thermal Information....................................................6  
5.5 Electrical Characteristics.............................................6  
5.6 Typical Characteristics................................................8  
6 Detailed Description......................................................13  
6.1 Overview...................................................................13  
6.2 Functional Block Diagram.........................................14  
6.3 Feature Description...................................................14  
6.4 Device Functional Modes..........................................18  
Information.................................................................... 29  
Copyright © 2024 Texas Instruments Incorporated  
2
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
4 Pin Configuration and Functions  
1
16  
VOUT  
VOUT  
MODE  
EN  
2
3
4
5
6
7
15  
14  
13  
12  
11  
10  
NC  
17  
PGND  
NC  
FB  
NC  
18  
AGND  
PG  
PGND  
BOOT  
SW  
SW  
19  
SS  
PGND  
9
8
VIN  
VIN  
4-1. 19-Pin B3QFN RCG Package (Top View)  
4-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Output voltage. These pins are connected to the internal buck inductor. Connect these pins to the  
output load and connect external output capacitors between these pins and PGND.  
VOUT  
1, 16  
O
I
Switching frequency selection pin. Connect this pin to a resistor to AGND for different switching  
frequency options shown in 6-1.  
MODE  
EN  
2
3
Enable input control. Driving EN high or leaving this pin floating enables the module. A resistor divider  
can be used to imply an UVLO function.  
I
Feedback input. Connect the midpoint of the feedback resistor divider to this pin. Connect the upper  
resistor (RFBT) of the feedback divider to VOUT at the desired point of regulation. Connect the lower  
resistor (RFBB) of the feedback divider to AGND. Do not leave open or connect to ground.  
FB  
4
I
AGND  
PG  
5
6
G
O
Ground of internal analog circuitry. Connect AGND to PGND plane at a single point.  
Open-drain power-good monitor output that asserts low if the output voltage is out of PG threshold due  
to overvoltage, undervoltage, thermal shutdown, EN shutdown, or during soft start.  
Soft-start time selection pin. Connecting an external capacitor to AGND to set the soft-start time. A  
minimum 22nF ceramic capacitor must be connected at this pin, which sets the minimum soft-start time  
to approximately 2.2ms. Do not float.  
SS  
7
I
Input supply voltage. A 100nF input capacitor is internally connected from this pin to PGND within the  
module. Externally, connect input capacitors between these pins and PGND in close proximity to the  
device.  
VIN  
SW  
8, 9  
10, 11  
12  
P
O
Switching node. Do not place any external component on this pin or connect to any signal. The amount  
of copper placed on this pin must be kept to a minimum to prevent issues with noise and EMI.  
Bootstrap pin for the internal high-side gate driver. A 100nF bootstrap capacitor is internally connected  
from this pin to SW within the module to provide the bootstrap voltage. Do not place any external  
component on this pin or connect to any signal.  
BOOT  
I/O  
13, 14,  
15  
NC  
No connection. Tie to GND for better thermal performance.  
Copyright © 2024 Texas Instruments Incorporated  
3
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
4-1. Pin Functions )  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
17, 18,  
19  
Power ground. This pin is the return current path for the power stage of the device. Connect these pads  
to the input supply return, the load return, and the capacitors associated with the VIN and VOUT pins.  
PGND  
G
(1) I = input, O = output, G = ground, P = power  
Copyright © 2024 Texas Instruments Incorporated  
English Data Sheet: SLVSH20  
4
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of 40°C to +150°C (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
2  
MAX  
UNIT  
V
VIN  
32  
BOOT  
SW + 6  
V
Input voltage  
BOOT-SW  
EN, FB, MODE  
PGND, AGND  
SW  
6
6
V
V
0.3  
32  
35  
6
V
V
Output voltage  
SW (< 10ns transient)  
PG  
V
5  
V
0.3  
Mechanical  
vibration  
MIL-STD-883D, Method 2007.2, 20Hz to 2kHz  
20  
G
G
MIL-STD-883D, Method 2002.3, 1ms, 1/2 sine,  
mounted  
Mechanical shock  
500  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
40  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
5.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
Electrostatic  
discharge  
VESD  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
5.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of 40°C to 150°C (unless otherwise noted).  
MIN  
NOM  
MAX  
UNIT  
V
VIN  
4.5  
28  
BOOT  
SW + 5.5  
5.5  
V
0.1  
0.1  
0.1  
0.1  
1  
BOOT-SW  
EN, FB, MODE  
PGND, AGND  
SW  
V
Input voltage  
5.5  
V
0.1  
V
28  
V
Output voltage  
PG  
5.5  
V
0.1  
40  
Operating junction temperature, TJ  
150  
°C  
Copyright © 2024 Texas Instruments Incorporated  
5
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
 
 
 
 
 
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
5.4 Thermal Information  
TPSM8683x  
RCG  
(B3QFN)  
THERMAL METRIC1  
UNIT  
19 PINS  
Effective Junction-to-ambient thermal resistance  
(TPSM8683x EVM)  
Eff RθJA  
24  
°C/W  
RθJA  
ΨJT  
Junction-to-ambient thermal resistance (JEDEC)  
Junction-to-top characterization parameter2  
Junction-to-board characterization parameter3  
36  
0.5  
12  
°C/W  
°C/W  
°C/W  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The junction-to-top board characterization parameter, ΨJT, estimates the junction temperature, TJ , of a device in a real system, using  
a procedure described in JESD51-2A (section 6 and 7). TJ = ΨJT × PDIS + TT; where PDIS is the power dissipated in the device and TT  
is the temperature of the top of the device.  
(3) The junction-to-top board characterization parameter, ΨJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ΨJB × PDIS + TB; where PDIS is the power dissipated in the device and TB is  
the temperature of the board 1mm from the device.  
5.5 Electrical Characteristics  
The electrical ratings specified in this section apply to all specifications in this document unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the parametric or functional specifications of the device for  
the life of the product containing it. Typical values correspond to TJ = 25°C, VIN = 24V. Minimum and maximum limits are  
based on TJ = 40°C to +150°C, VIN = 4.5V to 28V (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
TJ = 25°C, VEN = 5V, VFB = 0.7V  
(TPSM86838)  
350  
µA  
Quiescent current,  
operating 1  
IQ  
TJ = 25°C, VEN = 5V, VFB = 0.65V  
(TPSM86837)  
45  
3
µA  
µA  
Shutdown supply  
current  
ISD  
TJ = 25°C, VEN = 0V  
UVLO  
Wake up VIN voltage  
Shutdown VIN voltage  
Hysteresis VIN voltage  
4.0  
3.5  
4.2  
3.65  
550  
4.4  
3.8  
V
V
VIN undervoltage  
lockout  
UVLO  
mV  
ENABLE(EN PIN)  
IEN_INPUT  
Input current  
VEN = 1.1V  
1
3
µA  
µA  
IEN_HYS  
Hysteresis current  
VEN = 1.3V  
EN rising  
EN falling  
VEN_ON  
1.18  
1.07  
1.26  
V
V
Enable threshold  
VEN_OFF  
1
FEEDBACK VOLTAGE  
VOUT = 5V, continuous mode operation, TJ  
= 25°C  
0.594  
0.591  
0.6  
0.6  
0.606  
0.609  
V
V
VFB  
Feedback voltage  
VOUT = 5V, continuous mode operation, TJ  
= 40°C to 150°C  
CURRENT LIMIT  
Low-side MOSFET  
valley current limit  
ILS_OCL  
8
9.6  
11.1  
A
Copyright © 2024 Texas Instruments Incorporated  
English Data Sheet: SLVSH20  
6
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
 
 
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
5.5 Electrical Characteristics )  
The electrical ratings specified in this section apply to all specifications in this document unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the parametric or functional specifications of the device for  
the life of the product containing it. Typical values correspond to TJ = 25°C, VIN = 24V. Minimum and maximum limits are  
based on TJ = 40°C to +150°C, VIN = 4.5V to 28V (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High-side MOSFET  
peak current limit  
IHS_OCL  
INOC  
12.75  
15  
17.25  
A
Reverse current limit  
for FCCM  
3
A
DUTY CYCLE and FREQUENCY CONTROL  
VIN = 24V, VOUT = 5V, continuous mode  
operation,  
FSW  
Switching frequency  
800  
kHz  
Mode setting to 800kHz  
tON(MIN)  
Minimum on time2  
Minimum off time2  
ns  
ns  
50  
tOFF(MIN)  
TJ = 25°C  
150  
SOFT START  
ISS  
Soft-start charging  
current  
6
uA  
POWER GOOD  
PG lower threshold -  
falling  
% of VFB  
% of VFB  
% of VFB  
% of VFB  
85%  
90%  
PG lower threshold -  
rising  
VPGTH  
PG upper threshold -  
falling  
110%  
115%  
PG upper threshold -  
rising  
PG from low-to-high  
PG from high-to-low  
64  
32  
us  
us  
tPG_DLY  
PG delay  
Output OVP  
threshold  
VOVP  
OVP detect(L->H)  
TJ = 25°C  
125%  
32  
tOVP_DEG  
VUVP  
OVP Prop deglitch  
us  
Output UVP  
threshold  
Hiccup detect(H->L)  
65%  
UV protection hiccup  
wait time  
tUVP_WAIT  
256  
us  
UV protection hiccup  
time before recovery  
tUVP_HICCUP  
10.5  
*tSS  
THERMAL SHUTDOWN  
Temperature rising  
Hysteresis  
150  
165  
30  
°C  
°C  
Thermal shutdown threshold3  
SW DISCHARGE RESISTANCE  
VOUT discharge resistance  
VEN = 0, VSW = 0.5V, TJ = 25°C  
200  
Ω
(1) Not representative of the total input current of the system when in regulation. Specified by design and characterization test.  
(2) Not production tested. Specified by design.  
(3) Not production tested. Specified by design and engineering sample correlation.  
Copyright © 2024 Texas Instruments Incorporated  
7
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
 
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
5.6 Typical Characteristics  
VIN = 12V (unless otherwise noted)  
50  
48  
46  
44  
42  
40  
-40  
0
40  
80  
120  
160  
Junction Temperature (C)  
5-2. TPSM86838 Quiescent Current vs Temperature  
5-1. TPSM86837 Quiescent Current vs Temperature  
5.6  
0.612  
0.608  
0.604  
0.6  
4.8  
4
3.2  
2.4  
1.6  
0.596  
0.592  
0.588  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Junction Temperature (C)  
Junction Temperature (C)  
5-4. Feedback Voltage vs Temperature  
5-3. Shutdown Current vs Temperature  
4.2  
1.2  
1.175  
1.15  
4.1  
4
VEN_Rise (V)  
VEN_Fall (V)  
VINUVLO_Rise (V)  
VINUVLO_Fall (V)  
1.125  
1.1  
3.9  
3.8  
3.7  
3.6  
1.075  
1.05  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Junction Temperature (C)  
Junction Temperature (C)  
5-6. EN Threshold vs Temperature  
5-5. VIN UVLO Threshold vs Temperature  
Copyright © 2024 Texas Instruments Incorporated  
English Data Sheet: SLVSH20  
8
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
5.6 Typical Characteristics (continued)  
VIN = 12V (unless otherwise noted)  
5-8. High-Side Peak Current Limit vs Temperature  
5-7. Low-Side Valley Current Limit vs Temperature  
900  
900  
800  
700  
600  
800  
700  
600  
Iout=0.1A  
Iout=0.1A  
Iout=6A  
Iout=6A  
Iout=8A  
Iout=8A  
500  
500  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25 30  
Vin (V)  
Vin (V)  
5-9. TPSM86838 Switching Frequency vs Input Voltage, Fsw 5-10. TPSM86838 Switching Frequency vs Input Voltage, Fsw  
= 800kHz, Vo = 1.8V = 800kHz, Vo = 3.3V  
900  
800  
700  
600  
500  
400  
1300  
1200  
1100  
1000  
900  
Iout=0.1A  
Iout=6A  
Iout=8A  
800  
Iout=0.1A  
Iout=6A  
Iout=8A  
700  
0
5
10  
15  
Vin (V)  
20  
25  
30  
5
10  
15  
20  
25  
30  
Vin (V)  
5-12. TPSM86838 Switching Frequency vs Input Voltage, Fsw  
5-11. TPSM86838 Switching Frequency vs Input Voltage, Fsw  
= 1200kHz, Vo = 1.8V  
= 800kHz, Vo = 5V  
Copyright © 2024 Texas Instruments Incorporated  
9
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
5.6 Typical Characteristics (continued)  
VIN = 12V (unless otherwise noted)  
1300  
1200  
1100  
1000  
900  
1400  
1200  
1000  
800  
600  
Iout=0.1A  
Iout=6A  
Iout=8A  
Iout=0.1A  
Iout=6A  
Iout=8A  
800  
700  
400  
0
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
Vin (V)  
Vin (V)  
5-13. TPSM86838 Switching Frequency vs Input Voltage, Fsw 5-14. TPSM86838 Switching Frequency vs Input Voltage, Fsw  
= 1200kHz, Vo = 3.3V  
= 1200kHz, Vo = 5V  
900  
800  
700  
600  
500  
Vout=1.8V  
Vout=3.3V  
Vout=5V  
0.001  
0.01  
0.1  
1
10  
Iout (A)  
5-15. TPSM86837 Switching Frequency vs Output Current,  
5-16. TPSM86838 Switching Frequency vs Output Current,  
Fsw = 800kHz, Vin = 24V  
Fsw = 800kHz, Vin = 24V  
1600  
1200  
800  
1500  
1250  
1000  
750  
400  
Vout=1.8V  
Vout=3.3V  
Vout=5V  
Vout=1.8V  
Vout=3.3V  
Vout=5V  
0
0.001  
500  
0.001  
0.01  
0.1  
Iout (A)  
1
10  
0.01  
0.1  
Iout (A)  
1
10  
5-17. TPSM86837 Switching Frequency vs Output Current,  
5-18. TPSM86838 Switching Frequency vs Output Current,  
Fsw = 1200kHz, Vin = 24V  
Fsw = 1200kHz, Vin = 24V  
Copyright © 2024 Texas Instruments Incorporated  
10  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
5.6 Typical Characteristics (continued)  
VIN = 12V (unless otherwise noted)  
100%  
80%  
60%  
40%  
20%  
0
VIN=4.5V  
VIN=12V  
VIN=24V  
0
1
2
3
4
5
6
7
8
Iout (A)  
5-19. TPSM86837 Efficiency, VOUT = 1.8V, Fsw = 800kHz  
5-20. TPSM86838 Efficiency, VOUT = 1.8V, Fsw = 800kHz  
100%  
80%  
60%  
40%  
20%  
VIN=4.5V  
VIN=12V  
VIN=24V  
0
0.001  
0.01  
0.1  
1
10  
Iout (A)  
5-21. TPSM86837 Efficiency, VOUT = 3.3V, Fsw = 800kHz  
5-22. TPSM86838 Efficiency, VOUT = 3.3V, Fsw = 800kHz  
100%  
100%  
80%  
60%  
40%  
80%  
60%  
40%  
20%  
20%  
VIN=12V  
VIN=19V  
VIN=24V  
VIN=12V  
VIN=19V  
VIN=24V  
0
0.001  
0
0.01  
0.1  
Iout (A)  
1
10  
0
1
2
3
4
5
6
7
8
Iout (A)  
5-23. TPSM86837 Efficiency, VOUT = 5V, Fsw = 800kHz  
5-24. TPSM86838 Efficiency, VOUT = 5V, Fsw = 800kHz  
Copyright © 2024 Texas Instruments Incorporated  
11  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
5.6 Typical Characteristics (continued)  
VIN = 12V (unless otherwise noted)  
100%  
80%  
60%  
40%  
20%  
0
100%  
80%  
60%  
40%  
20%  
0
VIN=4.5V  
VIN=12V  
VIN=24V  
VIN=4.5V  
VIN=12V  
VIN=24V  
0.001  
0.01  
0.1  
Iout (A)  
1
10  
0
1
2
3
4
5
6
7
8
Iout (A)  
5-25. TPSM86837 Efficiency, VOUT = 1.8V, Fsw = 1200kHz  
5-26. TPSM86838 Efficiency, VOUT = 1.8V, Fsw = 1200kHz  
100%  
80%  
60%  
40%  
20%  
VIN=4.5V  
VIN=12V  
VIN=24V  
0
0
1
2
3
4
5
6
7
8
Iout (A)  
5-27. TPSM86837 Efficiency, VOUT = 3.3V, Fsw = 1200kHz  
5-28. TPSM86838 Efficiency, VOUT = 3.3V, Fsw = 1200kHz  
100%  
100%  
80%  
60%  
40%  
80%  
60%  
40%  
20%  
20%  
VIN=12V  
VIN=19V  
VIN=24V  
VIN=12V  
VIN=19V  
VIN=24V  
0
0.001  
0
0.01  
0.1  
Iout (A)  
1
10  
0
1
2
3
4
5
6
7
8
Iout (A)  
5-29. TPSM86837 Efficiency, VOUT = 5V, Fsw = 1200kHz  
5-30. TPSM86838 Efficiency, VOUT = 5V, Fsw = 1200kHz  
Copyright © 2024 Texas Instruments Incorporated  
12  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The TPSM8683x is an easy-to-use, synchronous buck DC/DC power module designed for a wide variety of  
applications where reliability, small design size, and low EMI signature are of paramount importance. With  
integrated power MOSFETs, a shielded buck inductor, and basic passives, the TPSM8683x is a 8A synchronous  
buck module operating from 4.5V to 28V input voltage (VIN), and the output voltage ranges from 0.6V to 5.5V.  
The proprietary D-CAP3 control mode enables low external component count, ease of design, optimization of the  
power design for power, size, and efficiency. The device employs D-CAP3 control mode that provides fast  
transient response with no external compensation components and an accurate feedback voltage. TPSM86837  
operates in Eco-mode to attain high efficiency at light load. TPSM86838 operates in FCCM mode which has the  
quasi-fixed switching frequency at both light and heavy load. The TPSM8683x is able to adapt both low  
equivalent series resistance (ESR) output capacitors such as POSCAP or SP-CAP, and ultra-low ESR ceramic  
capacitors.  
The TPSM8683x incorporates specific features to improve EMI performance in noise-sensitive applications:  
An optimized package and pinout design enables a shielded switch-node layout that mitigates radiated EMI.  
Parallel input and output paths with symmetrical capacitor layouts minimize parasitic inductance, switch  
voltage ringing, and radiated field coupling  
Integrated power MOSFETs with enhanced gate drive control enable low-noise PWM switching.  
The TPSM8683x module also includes inherent protection features for robust system requirements:  
An open-drain PGOOD indicator for power-rail sequencing and fault reporting  
Precision enable input with hysteresis, providing programmable non-latched input undervoltage lockout  
(UVLO)  
Non-latched overvoltage protections  
Hiccup-mode overcurrent protection with cycle-by-cycle valley current limits  
Thermal shutdown with automatic recovery.  
Leveraging a pin arrangement designed for simple layout that requires only a few external components, the  
TPSM8683x is specified to maximum junction temperatures of 150°C.  
Copyright © 2024 Texas Instruments Incorporated  
13  
English Data Sheet: SLVSH20  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
6.2 Functional Block Diagram  
PG rising threshold  
+
PG  
PG  
Logic  
UV threshold  
OV threshold  
+
+
UV  
OV  
+
PG falling threshold  
Regulator  
VREG5  
VIN  
+
0.6 V  
UVLO  
Reference  
+
4.2 V  
/3.65 V  
GND  
FB  
SS  
SW  
HSDOC  
Limit  
Ripple Injection  
Iss  
BOOT  
Control Logic  
SS  
ꢀꢁOn/Off time  
ꢀꢁMin On/Off time  
ꢀꢁEco-mode or FCCM  
ꢀꢁSoft-start  
One Shot  
ꢀꢁPower Good  
ꢀꢁLarge Duty  
SW  
TSD  
+
165°C /  
30°C  
XCON  
ꢀꢁOCL for HSD and LSD  
ꢀꢁUVP/OVP/TSD  
ꢀꢁOutput discharge  
VREG5  
VOUT  
Ih  
Ip  
EN  
+
+
Enable  
Threshold  
OCL  
PGND  
AGND  
+
MODE  
Switching Frequency  
ZC  
+
NOCL  
Discharge Control  
6.3 Feature Description  
6.3.1 The Adaptive On-Time Control and PWM Operation  
The main control loop of the TPSM8683x is an adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP3 control mode. The D-CAP3 control mode combines adaptive on-time control with  
an internal compensation circuit for quasi-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. The D-CAP3 control mode is stable even with virtually no ripple at  
the output. The TPSM8683x also includes an error amplifier that makes the output voltage very accurate. No  
external current sense network or loop compensation is required for D-CAP3 control mode.  
Copyright © 2024 Texas Instruments Incorporated  
English Data Sheet: SLVSH20  
14  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal  
one-shot timer expires. This one-shot duration is set proportional to the output voltage, VOUT, and is inversely  
proportional to the module input voltage, VIN, to maintain a pseudo-fixed frequency over the input voltage range,  
hence called adaptive on-time control. When the feedback voltage falls below the reference voltage, the one-  
shot timer is reset and the high-side MOSFET is turned on again. An internal ripple generation circuit is added to  
the reference voltage for emulating the output ripple, and this action enables the use of very low-ESR output  
capacitors, such as multi-layered ceramic caps (MLCC).  
6.3.2 Mode Selection  
TPSM8683x has a MODE pin to configure the switching frequency, as shown in 6-1. The device reads the  
voltage on the MODE pin during start-up and latches onto one of the MODE options list in 6-1.The voltage on  
the MODE pin can be set by connecting a resistor to AGND. A guideline for the MODE resistor in 1% resistors in  
shown in 6-1. The MODE pin setting can be reset only by a VIN or EN power cycling.  
6-1 shows the typical start-up sequence of the device after the enable signal triggers the EN turn-on  
threshold. After the voltage of internal VCC crosses the UVLO rising threshold, the MODE setting is read. After  
this process, the MODE is latched and does not change until VIN or EN toggles to restart-up this device. Then  
after a delay, the internal soft-start function begins to ramp up and Vout ramps up smoothly. When Vout is up to  
the reference voltage, PGOOD turns to high after a delay.  
6-1. MODE Pin Settings for TPSM8683x  
MODE Pin  
R = 162kohm  
R = 374kohm  
Switching Frequency  
800kHz  
1200kHz  
EN Threshold  
1.18 V  
EN  
VCC UVLO  
4.2 V  
Internal  
VCC  
MODE  
Detection  
MODE  
Internal VCC  
Vss = 900 mV SS-end  
Vss = 640 mV  
Vss = 600 mV  
40 µs  
64 µs  
Tss  
(40-100) µs  
SS  
Vss = 40 mV  
Vout  
T = Tss  
64 us  
T = 0.43 × Tss  
PGOOD  
6-1. Power-Up Sequence  
6.3.2.1 FCCM Control and Eco-mode Control  
TPSM86838 operates in forced continuous conduction mode (FCCM) in light load conditions and allows the  
inductor current to become negative. In FCCM, the switching frequency is maintained at a quasi-fixed level over  
the entire load range, which is designed for applications requiring tight control of the switching frequency and  
output voltage ripple at the cost of lower efficiency under light load compared with that under Eco-mode. This  
Copyright © 2024 Texas Instruments Incorporated  
15  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
mode also can help to avoid switching frequency dropping into audible range that can introduce some audible  
noise.  
TPM86837 is set to Eco-mode to maintain high light load efficiency. As the output current decreases from heavy  
load condition, the inductor current is also reduced and eventually comes to a point that the rippled valley  
touches zero level, which is the boundary between continuous conduction and discontinuous conduction modes.  
The rectifying MOSFET is turned off when the zero inductor current is detected. As the load current further  
decreases the converter runs into discontinuous conduction mode. The on-time is kept almost the same as in the  
continuous conduction mode so that longer time is needed to discharge the output capacitor with smaller load  
current to the level of the reference voltage. This process makes the switching frequency lower, proportional to  
the load current, and keeps the light load efficiency high. The transition point to the light load operation IOUT(LL)  
current can be calculated by 方程1.  
V
V  
× V  
OUT OUT  
1
IN  
I
=
×
(1)  
OUT LL  
2 × L × Fsw  
V
IN  
6.3.3 Soft Start and Prebiased Soft Start  
The TPSM8683x has an adjustable soft-start time that can be set by connecting a capacitor between SS and  
AGND. When the EN pin becomes high, the soft-start charge current (ISS) begins charging the external capacitor  
(CSS) connected between SS and AGND. 方程2 calculates the soft-start time (TSS) :  
C
×V  
ss REF  
T
=
(2)  
ss  
I
SS  
If the external capacitor (CSS) has pre-stored voltage at start-up, the device initially discharges the external  
capacitor voltage to lower voltage then charge again to prevent inrush start-up.  
If the output capacitor is prebiased at start-up, the device initiates switching and starts ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme make sure that the  
converters ramp up smoothly into regulation point.  
6.3.4 Enable and Adjusting Undervoltage Lockout  
The EN pin provides electrical on and off control of the device. When the EN pin voltage exceeds the threshold  
voltage, the device begins operating. If the EN pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters the standby operation.  
The EN pin has an internal pullup current source which allows the user to float the EN pin to enable the device. If  
an application requires control of the EN pin, open-drain or open-collector output logic can be used to interface  
with the pin.  
The TPSM8683x implements internal undervoltage lockout (UVLO) circuitry on the VIN pin. The device is  
disabled when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold  
has a hysteresis of 550mV.  
If an application requires a higher UVLO threshold on the VIN pin, then the EN pin can be configured as shown  
in 6-2. When using the external UVLO function, TI recommends setting the hysteresis at a value greater than  
500mV.  
The EN pin has a small pullup current, Ip, which sets the default state of the pin to enable when no external  
components are connected. The pullup current is also used to control the voltage hysteresis for the UVLO  
function because the pullup current increases by Ih when the EN pin crosses the enable threshold. Use 方程式 3  
and 方程式 4 to calculate the values of R1 and R2 for a specified UVLO threshold. After R1, R2 are settled  
down, the VEN voltage can be calculated by 方程5, which must be lower than 5.5V with maximum VIN.  
Copyright © 2024 Texas Instruments Incorporated  
English Data Sheet: SLVSH20  
16  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
VIN  
Device  
R1  
R2  
Ip  
Ih  
EN  
6-2. Adjustable VIN Undervoltage Lockout  
V
ENfalling  
V
V
×
V  
START  
STOP  
V
ENrising  
R =  
1
(3)  
V
ENfalling  
I
×
1 −  
+ I  
p
h
V
ENrising  
R
× V  
1
ENfalling  
R =  
2
(4)  
(5)  
V  
+ R × I + I  
1 p h  
STOP  
ENfalling  
R
× V + R × R × I + I  
2
IN  
1
1
2
2
p
h
V
=
EN  
R
+ R  
Where  
Ip = 1µA  
Ih = 3µA  
VENfalling = 1.07V  
VENrising = 1.18V  
6.3.5 Output Overcurrent Limit and Undervoltage Protection  
The output overcurrent protection (OCP) is implemented using a cycle-by-cycle low-side MOSFET valley current  
detection and high-side MOSFET peak current detection. The switching current is monitored by measuring the  
MOSFET drain to source voltage. This voltage is proportional to the switching current. To improve accuracy, the  
voltage sensing is temperature compensated.  
There are some important considerations for this type of overcurrent limit. When the load current is higher than  
the ILS_LIMIT added by one half of the peak-to-peak inductor ripple current, or higher than IHS_LIMIT subtracted by  
one half of the peak-to-peak inductor ripple current, the OCP is triggered and the current is being limited, output  
voltage tends to drop because the load demand is higher than what the module can support. When the output  
voltage falls below 65% of the target voltage, the UVP comparator detects this fall and shuts down the device  
after a deglitch wait time of 256 us and then re-start after the hiccup time of 10.5 cycles of soft-start time. When  
the overcurrent condition is removed, the output recovers.  
6.3.6 Overvoltage Protection  
When the output voltage becomes higher than 125% of the target voltage, the OVP is triggered. The output is  
discharged after a deglitch time of 32us and both the high-side MOSFET driver and the low-side MOSFET driver  
turn off. When the overvoltage condition is removed, the output voltage recovers.  
Copyright © 2024 Texas Instruments Incorporated  
17  
English Data Sheet: SLVSH20  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
 
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
6.3.7 UVLO Protection  
Undervoltage Lockout protection(UVLO) monitors the internal regulator voltage. When the voltage is lower than  
UVLO threshold voltage, the device is shut down. This protection is non-latched.  
6.3.8 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 165°C  
(typical), the device goes into thermal shutdown. Both the high-side and low-side power FETs are turned off and  
the discharge path is turned on. When TJ decreases below the hysteresis amount, the module resumes normal  
operation, beginning with soft start. To avoid unstable conditions, a hysteresis of typically 30°C is implemented  
on the thermal shutdown temperature.  
6.3.9 Output Voltage Discharge  
The TPSM8683x has a built-in discharge function by using an integrated MOSFET with 200RDS(on), which is  
connected to the output terminal SW. The discharge is slow due to the lower current capability of the MOSFET.  
The discharge path turns on when the device is turned off due to UV, OV, OT, and EN shutdown conditions.  
6.3.10 Power Good  
The TPSM8683x has a built-in power-good (PG) function to indicate whether the output voltage has reached an  
appropriate level or not. The PG signal can be used for start-up sequencing of multiple rails. The PG pin is an  
open-drain output that requires a pullup resistor (to any voltage below 5.5V). TI recommends a pullup resistor of  
100 kΩ to pull the pin up to 5V voltage. The pin can sink 10mA of current and maintain the specified logic low  
level. After the FB pin voltage is between 90% and 110% of the internal reference voltage (VREF) and after a  
deglitch time of 64µs, the PG turns to high impedance status. The PG pin is pulled low after a deglitch time of  
32µs when FB pin voltage is lower than 85% of the internal reference voltage or greater than 115% of the  
internal reference voltage, or in events of thermal shutdown, EN shutdown, UVLO conditions. VIN must remain  
present for the PG pin to stay Low. The PG pin logic are shown in 6-2.  
6-2. Power-Good Pin Logic Table  
PG Logic Status  
Device State  
High Impedance  
Low  
VFB does not trigger VPGTH  
VFB triggers VPGTH  
Enable (EN = High)  
Shutdown (EN = Low)  
UVLO  
2V < VIN < VUVLO  
TJ > TSD  
Thermal shutdown  
Power supply removal  
VIN < 2V  
6.3.11 Large Duty Operation  
The TPSM8683x can support large duty operations by smoothly dropping down the switching frequency. The  
switching frequency is allowed to smoothly drop to make TON extended to implement the large duty operation  
and also improve the performance of the load transient performance. The TPSM8683x can support up to 98%  
duty cycle operation.  
6.4 Device Functional Modes  
6.4.1 Standby Operation  
The TPSM8683x can be placed in standby mode by pulling the EN pin low. The device operates with a  
shutdown current of 3µA (typical) when in standby condition.  
6.4.2 Light Load Operation  
TPSM86837 operates in Eco-mode, which maintains high efficiency at light loading. As the output current  
decreases from heavy load conditions, the inductor current is also reduced and eventually comes to a point  
Copyright © 2024 Texas Instruments Incorporated  
English Data Sheet: SLVSH20  
18  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
where the rippled valley touches zero level, which is the boundary between continuous conduction and  
discontinuous conduction modes. The rectifying MOSFET is turned off when the zero inductor current is  
detected. As the load current further decreases, the converter runs into discontinuous conduction mode. The on-  
time is kept almost the same as the on-time was in continuous conduction mode so that discharging the output  
capacitor with smaller load current to the level of the reference voltage takes longer. This fact makes the  
switching frequency lower, proportional to the load current, and keeps the light load efficiency high.  
TPSM86838 operates in forced CCM (FCCM) mode. The switching frequency is maintained at an almost  
constant level over the entire load range which is designed for applications requiring tight control of the switching  
frequency and output voltage ripple at the cost of lower efficiency under light load.  
Copyright © 2024 Texas Instruments Incorporated  
19  
English Data Sheet: SLVSH20  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
7 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
7.1 Application Information  
The schematic of 7-1 shows a typical application for TPSM8683x. This design converts an input voltage range  
of 4.5V to 28V down to 1.8V with a maximum output current of 8A.  
7.2 Typical Application  
The application schematic in 7-1 shows the TPSM8683x 4.5V to 28V Input, 1.8V output module design  
meeting the requirements for 8A output. This circuit is available as the evaluation module (EVM). The sections  
provide the design procedure.  
TPSM8683xRCG  
7-1. TPSM8683x 1.8V, 8A Reference Design  
7.2.1 Design Requirements  
7-1 shows the design parameters for this application.  
7-1. Design Parameters  
PARAMETER  
Input voltage range  
EXAMPLE VALUE  
24V nominal, 4.5V to 28V  
Output voltage  
1.8V  
ΔVOUT = ±5%  
20mV  
Transient response, 8A load step  
Output ripple voltage  
Output current rating  
Operating frequency  
8A  
800kHz  
Copyright © 2024 Texas Instruments Incorporated  
20  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
 
 
 
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
7.2.2 Detailed Design Procedure  
7.2.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends to use 1%  
tolerance or better divider resistors. Start by using 方程式 6 to calculate VOUT. R6 is optional and can be used to  
measure the control loop frequency response.  
To improve efficiency at very light loads consider using larger value resistors. If the resistance is too high, the  
device is more susceptible to noise and voltage errors from the VFB input current are more noticeable. Please  
note that TI does not recommend dynamically adjusting output voltage.  
R7  
V
= 0.6 × 1 +  
R8  
(6)  
OUT  
7.2.2.2 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
f
=
(7)  
p
2π ×  
L
× C  
OUT  
OUT  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off  
at a 40dB per decade rate and the phase drops rapidly. D-CAP3 control mode introduces a high frequency  
zero that reduces the gain roll off to 20dB per decade and increases the phase to 90 degrees one decade  
above the zero frequency. The inductor and capacitor for the output filter must be selected so that the double  
pole of 方程式 7 is located below the high frequency zero but close enough that the phase boost provided by the  
high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement, use the  
values recommended in 7-2.  
7-2. Recommended Component Values  
COUT (µF)(3)  
C8 (pF)(4)  
Switching  
R7  
(kΩ)(2)  
R8  
(kΩ)  
Output Voltage  
(V)(1)  
Frequency (kHz)  
Typical  
Maximum  
1.05  
1.8  
7.5  
20  
10  
10  
22uF × 3  
22uF × 3  
22uF × 10  
30-100 (47  
typical)  
22uF × 10  
22uF × 10  
800  
30-100 (47  
typical)  
3.3  
45.3  
10  
22uF × 3  
30-100 (47  
typical)  
5
73.2  
7.5  
20  
10  
10  
10  
22uF × 2  
22uF × 3  
22uF × 3  
22uF × 10  
22uF × 10  
22uF × 10  
1.05  
1.8  
30-100 (47  
typical)  
1200  
30-100 (47  
typical)  
3.3  
5
45.3  
73.2  
10  
10  
22uF × 3  
22uF × 2  
22uF × 10  
22uF × 10  
100-200  
(150 typical)  
(1) Please use the recommended COUT of the higher and closest output rail for unlisted output rails.  
(2) R7 = 0Ωfor VOUT = 0.6V.  
(3) COUT in this data sheet is using Murata GRM32ER71E226KE15L 25VDC capacitor. TI  
recommends to use the same effective output capacitance. The effective capacitance is defined as  
the actual capacitance under DC bias and temperature, not the rated or nameplate values. All high  
value ceramic capacitors have a large voltage coefficient in addition to normal tolerances and  
temperature effects. A careful study of bias and temperature variation of any capacitor bank must  
Copyright © 2024 Texas Instruments Incorporated  
21  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
 
 
 
 
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
be made to make sure that the minimum value of effective capacitance is provided. Refer to the  
information of DC bias and temperature characteristics from manufacturers of ceramic capacitors.  
Higher than Cout_max capacitance is allowed by careful tuning the feedforward compensation.  
(4) R10 and C8 can be used to improve the load transient response or improve the loop-phase margin.  
The Optimizing Transient Response of Internally Compensated DCDC Converters with Feed-  
forward Capacitor application report is helpful when experimenting with a feed-forward capacitor.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPSM8683x is intended for  
use with ceramic or other low ESR capacitors. Use 方程8 to determine the required RMS current rating for the  
output capacitor.  
V
× V V  
IN  
OUT  
OUT  
× Fsw  
I
=
(8)  
CO RMS  
12 × V × L  
IN  
OUT  
For this design, three MuRata GRM32ER71E226KE15L 25VDC 22µF output capacitors are used so that the  
effective capacitance is 68µF at DC biased voltage of 1.8V.  
7.2.2.3 Input Capacitor Selection  
The TPSM8683x requires input decoupling capacitors, and a bulk capacitor is needed depending on the  
application. TI recommends at least two 10µF ceramic capacitors for the decoupling capacitor. The capacitor  
voltage rating must be greater than the maximum input voltage. Use 方程式 9 to calculate the input voltage  
ripple.  
I
× 0.25  
OUTMAX  
V  
=
(9)  
IN  
C
× Fsw  
IN  
The capacitor must also have a ripple current rating greater than the maximum input current ripple of the  
application. Use 方程10 to calculate the input ripple current:  
V
V  
OUT  
V
IN MIN  
×
V
OUT  
I
= I  
×
(10)  
CIN RMS  
OUT  
V
IN MIN  
IN MIN  
Copyright © 2024 Texas Instruments Incorporated  
English Data Sheet: SLVSH20  
22  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
 
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
7.2.3 Application Curves  
100%  
80%  
60%  
40%  
20%  
0
VIN=4.5V  
VIN=12V  
VIN=24V  
0
1
2
3
4
5
6
7
8
Iout (A)  
7-2. TPSM86837 Efficiency  
7-3. TPSM86838 Efficiency  
1.85  
1.825  
1.8  
1.875  
1.85  
1.825  
1.8  
1.775  
1.775  
1.75  
VIN=4.5V  
VIN=12V  
VIN=24V  
Iout=0.1  
Iout=6  
Iout=8  
1.75  
0.001  
0.01  
0.1  
1
10  
0
5
10  
15  
20  
25  
30  
Iout (A)  
VIN (V)  
7-4. TPSM86838 Load Regulation  
7-5. TPSM86838 Line Regulation  
900  
800  
700  
600  
200  
150  
100  
50  
Iout=6A  
Iout=8A  
Iout=0.1A  
25 30  
500  
0
0
0
5
10  
15  
20  
25  
30  
5
10  
15  
20  
Vin (V)  
Vin (V)  
7-6. Switching Frequency vs Input Voltage  
7-7. TPSM86837 Switching Frequency vs Input  
Voltage  
Copyright © 2024 Texas Instruments Incorporated  
23  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
English Data Sheet: SLVSH20  
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
900  
800  
700  
600  
500  
Vin = 20 mV/div (AC)  
Vout = 20 mV/div (1.8V DC o set)  
SW = 20 V/div  
40 us/div  
Iout=0.1A  
25 30  
7-9. TPSM86837 Steady State Waveform, IOUT  
=
0
5
10  
15  
Vin (V)  
20  
0.01A  
7-8. TPSM86838 Switching Frequency vs Input  
Voltage  
Vin = 20 mV/div (AC)  
Vout = 10 mV/div (1.8V DC o set)  
SW = 20 V/div  
Vin = 500 mV/div (AC)  
Vout = 20 mV/div (1.8V DC o set)  
SW = 20 V/div  
1 us/div  
1 us/div  
7-10. TPSM86838 Steady State Waveform, IOUT  
=
7-11. Steady State Waveform, IOUT = 8A  
0.01A  
EN = 5 V/div  
EN = 5 V/div  
Vout = 2 V/div  
Vout = 1 V/div  
SW = 20 V/div  
PG = 2 V/div  
SW = 20 V/div  
PG = 2 V/div  
2 ms/div  
200 us/div  
7-12. Enable Relative to EN  
7-13. Disable Relative to EN  
Copyright © 2024 Texas Instruments Incorporated  
English Data Sheet: SLVSH20  
24  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
Vout = 100 mV/div  
Vout = 100 mV/div  
Iout = 5 A/div  
Iout = 5 A/div  
400 us/div  
400 us/div  
7-14. TPSM86837 Transient Response 0A to 4A 7-15. TPSM86838 Transient Response 0A to 4A  
Vout = 100 mV/div  
Iout = 5 A/div  
Vout = 100 mV/div  
Iout = 5 A/div  
400 us/div  
400 us/div  
7-16. TPSM86837 Transient Response 0A to 8A 7-17. TPSM86838 Transient Response 0A to 8A  
7.3 Power Supply Recommendations  
The TPSM8683x is designed to operate from input supply voltage in the range of 4.5V to 28V. Buck modules  
require the input voltage to be higher than the output voltage for proper operation. Input supply current must be  
appropriate for the desired output current. If the input voltage supply is located far from the TPSM8683x circuit,  
TI recommends some additional input bulk capacitance.  
7.3.1 Application Thermal Considerations  
The power module integrates the main power dissipating elements, the power switches and magnetics, all into  
one package, which enables smaller design size and simplifies the development. Therefore, in addition to the IC  
losses, the heat generated from the inductor direct current resistance (DCR) and core losses add to the total  
power dissipated in the package. Under the same operating conditions as the discrete counterparts (which have  
an external inductor), the module has the challenge of dissipating more heat through a smaller surface area.  
There is a constraint on the maximum output current that modules can deliver at higher operating ambient  
temperatures due to limitations in maximum temperature ratings for both the inductor and IC.  
The temperature rise of module can be calculated by using efficiency and EVM effective RθJA. 方程式 11  
calculates the power loss from the data sheet efficiency curves:  
1
η
Power Loss = V  
× I  
×
OUT  
1  
(11)  
OUT  
Where ƞ is the application conditions efficiency. As an example, 7-2 shows the efficiency curve at 25°C for the  
24Vin, 1.8Vout, 800kHz condition. At 8A load, with nearly 81% efficiency, 方程式 11 calculates the power loss as  
3.378W. Multiplying by the EVM effective RθJA 24 °C/W gives a temperature rise of 81°C.  
The maximum temperature rating for TPSM8683x is 150°C. Subtracting this temperature rise from the 150°C  
maximum temperature results in a maximum ambient temperature of 69°C. Consider operation within this  
ambient temperature.  
Copyright © 2024 Texas Instruments Incorporated  
25  
English Data Sheet: SLVSH20  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
7.4 Layout  
7.4.1 Layout Guidelines  
The following list summarizes the essential guidelines for PCB layout and component placement to optimize  
DC/DC module performance, including thermals and EMI signature.  
1. Use a four-layer PCB with two-ounce copper thickness for good thermal performance and with maximum  
ground plane.  
2. Place input capacitors as close as possible to the VIN pins. Note the dual and symmetrical arrangement of  
the input capacitors based on the VIN1 and VIN2 pins located on each side of the module package. The  
high-frequency currents are split in two and effectively flow in opposing directions such that the related  
magnetic fields contributions cancel each other, leading to improved EMI performance.  
Use low-ESR 1206 or 1210 ceramic capacitors with X7R or X7S dielectric.  
Make ground return paths for the input capacitors consist of localized top-side planes that connect to the  
PGND pads under the module.  
Make VIN traces as wide as possible to reduce trace impedance. The wide areas are also of advantage  
from the view point of heat dissipation. Even though the VIN pins are connected internally, use a wide  
polygon plane on a bottom PCB layer to connect these pins together and to the input supply.  
3. Place output capacitors as close as possible to the VOUT pins. A similar dual and symmetrical arrangement  
of the output capacitors enables magnetic field cancellation and EMI mitigation.  
Make ground return paths for the output capacitors consist of localized top-side planes that connect to  
the PGND pads under the module.  
Make VOUT traces as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation. Even though the VOUT pins are connected internally,  
use a wide polygon plane on a bottom PCB layer to connect these pins together and to the load, thus  
reducing conduction loss and thermal stress.  
4. Keep the FB trace as short as possible by placing the feedback resistors close to the FB pin. Reduce noise  
sensitivity of the output voltage feedback path by placing the resistor divider close to the FB pin, rather than  
close to the load. FB is the input to the voltage-loop error amplifier and represents a high-impedance node  
sensitive to noise. Route a trace from the upper feedback resistor to the required point of output voltage  
regulation. Place the voltage feedback loop away from the high-voltage switching trace, and preferably has  
ground shield.  
5. Provide enough PCB area for proper heatsinking. Use sufficient copper area to achieve a low thermal  
impedance commensurate with the maximum load current and ambient temperature conditions. For  
operation at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of  
heat-sinking vias to connect the exposed pads (PGND) of the package to the PCB ground plane. If the PCB  
has multiple copper layers, connect these thermal vias to inner-layer ground planes.  
Copyright © 2024 Texas Instruments Incorporated  
English Data Sheet: SLVSH20  
26  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
7.4.2 Layout Example  
7-18. TPSM8683x Layout  
VOUT  
Ex Vcc  
EN  
SS  
PG  
Mode  
AGND  
FB  
VOUT  
VIN  
Output Cap  
Input Cap  
PGND  
PGND  
PGND  
PGND  
Input Cap  
Output Cap  
VOUT  
VIN  
PGND  
7-19. TPSM8683x Top Layer Design  
Copyright © 2024 Texas Instruments Incorporated  
27  
English Data Sheet: SLVSH20  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
8 Device and Documentation Support  
8.1 Device Support  
8.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
8.2 Documentation Support  
8.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPSM86838 Buck Module Evaluation Module EVM user's guide  
Texas Instruments, Optimizing Transient Response of Internally Compensated DCDC Converters with Feed-  
forward Capacitor application report  
8.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击通知 进行注册即可每周接收产品信息更改摘  
要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
8.4 支持资源  
TI E2E中文支持论坛是工程师的重要参考资料可直接从专家处获得快速、经过验证的解答和设计帮助。搜索  
现有解答或提出自己的问题获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 使用条款。  
8.5 Trademarks  
D-CAP3, HotRod, and TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
8.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
8.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
9 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (December 2023) to Revision B (May 2024)  
Page  
• 通篇添加了 TPSM86837.....................................................................................................................................1  
Changes from Revision * (October 2023) to Revision A (December 2023)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................1  
Copyright © 2024 Texas Instruments Incorporated  
English Data Sheet: SLVSH20  
28  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
 
 
 
 
 
 
 
 
TPSM86837, TPSM86838  
ZHCSR53B OCTOBER 2023 REVISED MAY 2024  
www.ti.com.cn  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2024 Texas Instruments Incorporated  
29  
English Data Sheet: SLVSH20  
提交文档反馈  
Product Folder Links: TPSM86837 TPSM86838  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-May-2024  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSM86837RCGR  
TPSM86838RCGR  
ACTIVE  
ACTIVE  
B3QFN  
B3QFN  
RCG  
RCG  
19  
19  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-3-245C-168 HR  
Level-3-245C-168 HR  
-40 to 150  
-40 to 150  
TPSM86837  
TPSM86838  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-May-2024  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2024  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPSM86837RCGR  
TPSM86838RCGR  
B3QFN  
B3QFN  
RCG  
RCG  
19  
19  
1000  
1000  
330.0  
330.0  
16.4  
16.4  
5.28  
5.28  
5.78  
5.78  
4.28  
4.28  
8.0  
8.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2024  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPSM86837RCGR  
TPSM86838RCGR  
B3QFN  
B3QFN  
RCG  
RCG  
19  
19  
1000  
1000  
336.0  
336.0  
336.0  
336.0  
48.0  
48.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RCG0019A  
B3QFN - 4.1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
5.6  
5.4  
4.1  
3.9  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
3X  
1.6 0.1  
SYMM  
(0.125) TYP  
20X (0.15)  
(0.2) TYP  
4X 0.5  
4X 0.65  
9
8
19  
18  
17  
2X 1.05  
SYMM  
2X 2.5  
10X 0.5  
3X 0.8 0.1  
0.3  
12X  
0.2  
0.1  
0.05  
16  
1
C A B  
C
0.85  
0.75  
PIN 1 ID  
12X  
0.8  
0.7  
4X  
0.1  
0.05  
C A B  
C
4229318/A 12/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RCG0019A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (1.2)  
3X (1.6)  
SYMM  
4X (0.325)  
4X (0.5)  
4X (0.65)  
1
16  
SEE SOLDER MASK  
DETAIL  
10X (0.5)  
17  
2X (1.05)  
SYMM  
18  
19  
(R0.05) TYP  
20X (0.25)  
12X (1)  
3X (0.8)  
9
8
(4.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4229318/A 12/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RCG0019A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (1.2)  
4X (0.55)  
3X (1.47)  
4X (0.5)  
4X (0.65)  
16  
1
10X (0.5)  
17  
2X (1.05)  
SYMM  
18  
19  
(R0.05) TYP  
20X (0.25)  
20X (1)  
3X (0.76)  
4X (0.75)  
8
9
SYMM  
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 15X  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 8, 9 & 16: 90%  
PADS 17, 18 & 19: 82%  
4229318/A 12/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2024,德州仪器 (TI) 公司  

TPSM86838 相关器件

型号 制造商 描述 价格 文档
TPSM8A28 TI TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense 获取价格
TPSM8A28RDGR TI TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense 获取价格
TPSM8A29 TI TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense 获取价格
TPSM8A29RDGR TI TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense 获取价格
TPSM8D6B24 TI 4V 至 16V 输入、双路 25A/单路 50A PMBus&reg; 电源模块 获取价格
TPSM8D6B24MOWR TI 4V 至 16V 输入、双路 25A/单路 50A PMBus&reg; 电源模块 | MOW | 59 | -40 to 125 获取价格
TPSM8D6C24 TI 4V 至 16V 输入、双路 35A PMBus® 电源模块 获取价格
TPSM8D6C24MOWR TI 4V 至 16V 输入、双路 35A PMBus® 电源模块 | MOW | 59 | -40 to 125 获取价格
TPSM8S6B24MOYR TI 具有增强安全性的 4V 至 16V 输入、25A、4x 可堆叠 PMBus® 电源模块 | MOY | 45 | -40 至 125 获取价格
TPSM8S6B24S TI 具有增强安全性的 4V 至 16V 输入、25A、4x 可堆叠 PMBus? 电源模块 获取价格

TPSM86838 相关文章

  • 三星电子专注提升1b DRAM性能与良率,否认重新设计传闻
    2025-01-22
    25
  • 特朗普宣布OpenAI、软银等联手投资5000亿美元建设人工智能基础设施
    2025-01-22
    29
  • 思瑞浦新推车规级LIN SBC芯片TPT1028Q,引领汽车电子高效新纪元
    2025-01-22
    26
  • 比利时氮化镓制造商BelGaN破产,中国买家积极竞购设备资产
    2025-01-22
    24