SI9110_11

更新时间:2024-09-15 10:19:20
品牌:VISHAY
描述:High-Voltage Switchmode Controllers

SI9110_11 概述

High-Voltage Switchmode Controllers 高压开关模式控制器

SI9110_11 数据手册

通过下载SI9110_11数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Si9110, Si9111  
Vishay Siliconix  
High-Voltage Switchmode Controllers  
DESCRIPTION  
FEATURES  
10 V to 120 V Input Range  
The Si9110/9111 are BiC/DMOS integrated circuits  
designed for use as high-performance switchmode  
controllers. A high-voltage DMOS input allows the controller  
to work over a wide range of input voltages (10 to 120 VDC).  
Current-mode PWM control circuitry is implemented in  
CMOS to reduce internal power consumption to less than  
10 mW.  
Current-Mode Control  
High-Speed, Source-Sink Output Drive  
High Efficiency Operation (> 80 %)  
Internal Start-Up Circuit  
Internal Oscillator (1 MHz)  
SHUTDOWN and RESET  
A push-pull output driver provides high-speed switching for  
MOSPOWER devices large enough to supply 50 W of output  
power. When combined with an output MOSFET and  
transformer, the Si9110/9111 can be used to implement  
single-ended power converter topologies (i.e., flyback,  
forward, and cuk).  
Reference Selection  
Si9110 - 1 %  
Si9111 - 10 %  
The Si9110/9111 are available in both standard and lead  
(Pb)-free 14-pin plastic DIP and SOIC packages which are  
specified to operate over the industrial temperature range of  
- 40 °C to 85 °C.  
FUNCTIONAL BLOCK DIAGRAM  
OSC OSC  
IN OUT  
FB  
14  
COMP DISCHARGE  
9
13  
8
7
Error  
Amplifier  
OSC  
Clock ( /  
To  
CC  
-
V
10  
1
f )  
2 OSC  
V
REF  
+
4 V  
2 V  
Current-Mode  
Comparator  
4
5
-
Ref  
Gen  
OUTPUT  
R
+
Q
- V  
IN  
S
+
-
C/L  
Comparator  
1
Current  
To  
BIAS  
Sources  
Internal  
Circuits  
1.2 V  
3
SENSE  
V
CC  
6
2
V
CC  
Undervoltage  
Comparator  
11  
12  
SHUTDOWN  
RESET  
S
R
+V  
IN  
-
Q
+
8.1 V  
-
+
8.6 V  
Pre-Regulator/Start-Up  
Document Number: 70004  
S11-0975-Rev. I, 16-May-11  
www.vishay.com  
1
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si9110, Si9111  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Limit  
Unit  
Voltages Referenced to - VIN (Note: VCC < + VIN + 0.3 V)  
VCC  
15  
+VIN  
120  
V
Logic Inputs (RESET, SHUTDOWN, OSC IN, OSC OUT)  
- 0.3 to VCC + 0.3  
Linear Inputs (FEEDBACK, SENSE, BIAS, VREF  
HV Pre-Regulator Input Current (continuous)  
Storage Temperature  
)
- 0.3 to VCC + 0.3  
5
- 65 to 150  
- 40 to 85  
150  
mA  
°C  
Operating Temperature  
Junction Temperature (TJ)  
14-Pin Plastic DIP (J Suffix)b  
14-Pin SOIC (Y Suffix)c  
750  
Power Dissipation (Package)a  
mW  
900  
14-Pin Plastic DIP  
167  
Thermal Impedance (JA  
Notes:  
)
°C/W  
14-Pin SOIC  
140  
a. Device Mounted with all leads soldered or welded to PC board.  
b. Derate 6 mW/°C above 25 °C.  
c. Derate 7.2 mW/°C above 25 °C.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING RANGE  
Parameter  
Limit  
Unit  
Voltages Referenced to - VIN  
VCC  
9.5 to 13.5  
10 to 120  
V
+ VIN  
fOSC  
40 kHzto 1 MHz  
25 kto 1 M  
0 to VCC - 3  
0 to VCC  
ROSC  
Linear Inputs  
Digital Inputs  
V
a
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
DISCHARGE = - VIN = 0 V  
D Suffix  
- 40 °C to 85 °C  
VCC = 10 V, + VIN = 48 V  
RBIAS = 390 k, ROSC = 330 k  
Parameter  
Reference  
Symbol  
Temp.b Min.d  
Typ.c  
Max.d  
Unit  
Si9110 Room  
Si9111 Room  
3.92  
3.60  
3.86  
3.52  
15  
4.0  
4.0  
4.08  
4.40  
4.14  
4.46  
45  
OSC IN = - VIN  
(OSC Disabled)  
RL = 10 M  
VR  
Output Voltage  
V
Si9110  
Si9111  
Full  
Full  
Output Impedancee  
Short Circuit Current  
Temperature Stabilitye  
ZOUT  
ISREF  
TREF  
Room  
Room  
Full  
30  
100  
0.5  
k  
µA  
VREF = - VIN  
70  
130  
1.0  
mV/°C  
Oscillator  
Maximum Frequencye  
fMAX  
fOSC  
ROSC = 0  
Room  
Room  
Room  
Room  
Full  
1
3
MHz  
kHz  
ROSC = 330 k, See Note f  
ROSC = 150 k, See Note f  
80  
100  
200  
10  
120  
240  
15  
Initial Accuracy  
160  
Voltage Stability  
Temperature Coefficiente  
f/f  
f/f = f(13.5 V) - f(9.5 V)/f(9.5 V)  
%
TOSC  
200  
500  
ppm/°C  
www.vishay.com  
2
Document Number: 70004  
S11-0975-Rev. I, 16-May-11  
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si9110, Si9111  
Vishay Siliconix  
a
SPECIFICATIONS  
Test Conditions  
D Suffix  
- 40 °C to 85 °C  
Unless Otherwise Specified  
DISCHARGE = - VIN = 0 V  
V
CC = 10 V, + VIN = 48 V  
Parameter  
Symbol  
Temp.b Min.d  
Typ.c  
Max.d  
Unit  
RBIAS = 390 k, ROSC = 330 k  
Error Amplifier  
Si9110 Room  
3.96  
3.60  
4.00  
4.00  
25  
4.04  
4.40  
500  
40  
FB Tied to COMP  
VFB  
Feedback Input Voltage  
V
OSC IN = - VIN, (OSC Disabled)  
Si9111 Room  
Room  
IFB  
VOS  
AVOL  
BW  
OSC IN = - VIN, VFB = 4 V  
Input BIAS Current  
nA  
mV  
dB  
Input OFFSET Voltage  
Room  
15  
Open Loop Voltage Gaine  
Unity Gain Bandwidthe  
Dynamic Output Impedancee  
Room  
60  
1
80  
OSC IN = - VIN  
(OSC Disabled)  
Room  
1.3  
MHz  
ZOUT  
Room  
1000  
- 2.0  
0.15  
70  
2000  
- 1.4  
Source (VFB = 3.4 V)  
Sink (VFB = 4.5 V)  
Room  
IOUT  
Output Current  
mA  
dB  
Room  
0.12  
50  
9.5 V VCC 13.5 V  
Power Supply Rejection  
Current Limit  
PSRR  
Room  
VSOURCE  
td  
VFB = 0  
Threshold Voltage  
Room  
Room  
1.0  
1.2  
1.4  
V
Delay to Outpute  
VSENSE = 1.5 V, See Figure 1  
100  
150  
ns  
Pre-Regulator/Start-Up  
+ VIN  
+ IIN  
IIN = 10 µA  
Input Voltage  
Room  
Room  
120  
V
VCC 9.4 V  
Input Leakage Current  
Pre-Regulator Start-Up Current  
10  
µA  
mA  
ISTART  
Pulse Width 300 µs, VCC = VULVO  
Room  
8
15  
V
CC Pre-Regulator Turn-Off  
VREG  
IPRE-REGULATOR = 10 µA  
Room  
7.8  
8.6  
9.4  
8.9  
Threshold Voltage  
V
VUVLO  
VDELTA  
Undervoltage Lockout  
Room  
Room  
7.0  
0.3  
8.1  
0.6  
V
REG - VUVLO  
Supply  
ICC  
VLOAD 75 pF (Pin 4)  
Supply Current  
Bias Current  
Logic  
Room  
Room  
0.45  
10  
0.6  
15  
1.0  
20  
mA  
µA  
IBIAS  
SHUTDOWN Delaye  
SHUTDOWN Pulse Widthe  
RESET Pulse Widthe  
Latching Pulse Width  
SHUTDOWN and RESET Lowe  
Input Low Voltage  
tSD  
tSW  
tRW  
CL = 500 pF, VSENSE = - VIN, See Figure 2  
See Figure 3  
Room  
Room  
Room  
50  
100  
50  
50  
ns  
tLW  
See Figure 3  
Room  
25  
VIL  
VIH  
IIH  
Room  
Room  
Room  
Room  
2.0  
5
V
Input High Voltage  
8.0  
VIN = 10 V  
VIN = 0 V  
Input Current Input Voltage High  
Input Current Input Voltage Low  
Output  
1
µA  
IIL  
- 35  
- 25  
Room  
Full  
Room  
Full  
Room  
Full  
9.7  
9.5  
VOH  
VOL  
IOUT = - 10 mA  
IOUT = 10 mA  
Output High Voltage  
Output Low Voltage  
Output Resistance  
V
0.30  
0.50  
30  
50  
20  
25  
ROUT  
IOUT = 10 mA, Source or Sink  
Rise Timee  
Fall Timee  
tr  
tf  
Room  
Room  
40  
75  
CL = 500 pF  
ns  
40  
75  
Notes:  
a. Refer to PROCESS OPTION FLOWCHART for additional information.  
b. Room = 25 °C, Full = as determined by the operating temperature suffix.  
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.  
e. Guaranteed by design, not subject to production test.  
f. CSTRAY Pin 8 = 5 pF.  
Document Number: 70004  
S11-0975-Rev. I, 16-May-11  
www.vishay.com  
3
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si9110, Si9111  
Vishay Siliconix  
TIMING WAVEFORMS  
V
CC  
1.5 V  
-
t
f
10 ns  
90 %  
SHUTDOWN  
0
50 %  
t
r
10 ns  
50 %  
SENSE  
0
-
t
SD  
t
d
V
V
CC  
CC  
90 %  
OUTPUT  
OUTPUT  
0
-
0 -  
Figure 2.  
Figure 1.  
t
SW  
V
CC  
t , t 10 ns  
r
f
50 %  
50 %  
SHUTDOWN  
0
-
-
t
LW  
V
CC  
50 %  
50 %  
50 %  
RESET  
0
t
RW  
Figure 3.  
TYPICAL CHARACTERISTICS  
1 M  
140  
V
CC  
= - V  
IN  
120  
100  
80  
60  
40  
20  
0
100 k  
10 k  
10 k  
100 k  
1 M  
10  
15  
20  
r
(Ω)  
+I (mA)  
IN  
OSC  
Figure 4. + VIN vs. + IIN at Start-Up  
Figure 5. Output Switching Frequency  
vs. Oscillator Resistance  
www.vishay.com  
4
Document Number: 70004  
S11-0975-Rev. I, 16-May-11  
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si9110, Si9111  
Vishay Siliconix  
PIN CONFIGURATIONS AND ORDERING INFORMATION  
Dual-In-Line and SOIC  
ORDERING INFORMATION  
Part Number  
Temperature Range  
Package  
BIAS  
FB  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Si9110DY  
+V  
IN  
COMP  
Si9110DY-T1  
Si9110DY-T1-E3  
Si9111DY  
SENSE  
RESET  
SOIC-14  
OUTPUT  
SHUTDOWN  
- V  
IN  
V
REF  
Si9111DY-T1  
Si9111DY-T1-E3  
Si9110DJ  
- 40 °C to 85 °C  
V
CC  
DISCHARGE  
OSC IN  
OSC OUT  
8
Si9110DJ-E3  
Si9111DJ  
PDIP-14  
Top View  
Si9111DJ-E3  
DETAILED DESCRIPTION  
Pre-Regulator/Start-Up Section  
sections and the pull-up current for the SHUDOWN and  
RESET pins. The current flowing in the bias resistor is  
nominally 15 µA.  
Due to the low quiescent current requirement of the Si9110/  
9111 control circuitry, bias power can be supplied from the  
unregulated input power source, from an external regulated  
low-voltage supply, or from an auxiliary "bootstrap" winding  
on the output inductor or transformer.  
Reference Section  
The reference section of the Si9110 consists of a  
temperature compensated buried zener and trimmable  
divider network. The output of the reference section is  
connected internally to the non-inverting input of the error  
amplifier. Nominal reference output voltage is 4 V. The  
trimming procedure that is used on the Si9110 brings the  
output of the error amplifier (which is configured for unity gain  
during trimming) to within 1 % of 4 V. This compensates for  
input offset voltage in the error amplifier.  
When power is first applied during start-up, + VIN (pin 2) will  
draw a constant current. The magnitude of this current is  
determined by a high-voltage depletion MOSFET device  
which is connected between + VIN and VCC (pin 6). This  
start-up circuitry provides initial power to the IC by charging  
an external bypass capacitance connected to the VCC pin.  
The constant current is disabled when VCC exceeds 8.6 V. If  
VCC is not forced to exceed the 8.6 V threshold, then VCC will  
be regulated to a nominal value of 8.6 V by the pre-regulator  
circuit.  
The output impedance of the reference section has been  
purposely made high so that a low impedance external  
voltage source can be used to override the internal voltage  
source, if desired, without otherwise altering the  
performance of the device.  
As the supply voltage rises toward the normal operating  
conditions, an internal undervoltage (UV) lockout circuit  
keeps the output driver disabled until VCC exceeds the  
undervoltage lockout threshold (typically 8.1 V). This  
guarantees that the control logic will be functioning properly  
and that sufficient gate drive voltage is available before the  
MOSFET turns on. The design of the IC is such that the  
undervoltage lockout threshold will be at least 300 mV less  
than the pre-regulator turn-off voltage. Power dissipation can  
be minimized by providing an external power source to VCC  
such that the constant current source is always disabled.  
Applications which use a separate external reference, such  
as non-isolated converter topologies and circuits employing  
optical coupling in the feedback loop, do not require a  
trimmed voltage reference with 1 % accuracy. The Si9111  
accommodates the requirements of these applications at a  
lower cost, by leaving the reference voltage untrimmed. The  
10 % accurate reference thus provided is sufficient to  
establish a dc bias point for the error amplifier.  
Note: During start-up or when VCC drops below 8.6 V the  
start-up circuit is capable of sourcing up to 20 mA. This may  
lead to a high level of power dissipation in the IC (for a 48 V  
input, approximately 1 W). Excessive start-up time caused  
by external loading of the VCC supply can result in device  
damage. Figure 6 gives the typical pre-regulator current at  
BiC/DMOS as a function of input voltage.  
Error Amplifier  
Closed-loop regulation is provided by the error amplifier,  
which is intended for use with "around-the-amplifier"  
compensation. A MOS differential input stage provides for  
low input current. The noninverting input to the error amplifier  
(VREF) is internally connected to the output of the reference  
supply and should be bypassed with a small capacitor to  
ground.  
BIAS  
To properly set the bias for the Si9110/9111, a 390 k  
resistor should be tied from BIAS (pin 1) to - VIN (pin 5). This  
determines the magnitude of bias current in all of the analog  
Document Number: 70004  
S11-0975-Rev. I, 16-May-11  
www.vishay.com  
5
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si9110, Si9111  
Vishay Siliconix  
DETAILED DESCRIPTION (CONT’D)  
Oscillator Section  
Table 1. Truth Table for the SHUTDOWN and RESET Pins  
The oscillator consists of a ring of CMOS inverters,  
capacitors, and a capacitor discharge switch. Frequency is  
set by an external resistor between the OSC IN and OSC  
OUT pins. (See Figure 5 for details of resistor value vs.  
frequency.) The DISCHARGE pin should be tied to - VIN for  
normal internal oscillator operation. A frequency divider in  
the logic section limits switch duty cycle to 50 % by locking  
the switching frequency to one half of the oscillator  
frequency.  
SHUTDOWN  
RESET  
Output  
H
H
L
H
Normal Operation  
Normal Operation (No Change)  
Off (Not Latched)  
H
L
L
L
Off (Latched)  
Off (Latched, No Change)  
Both pins have internal current source pull-ups and should  
be left disconnected when not in use. An added feature of the  
current sources is the ability to connect a capacitor and an  
open-collector driver to the SHUTDOWN or RESET pins to  
provide variable shutdown time.  
Remote synchronization is accomplished by capacitive  
coupling of a positive SYNC pulse into the OSC IN (pin 8)  
terminal. For a 5 V pulse amplitude and 0.5 µs pulse width,  
typical values would be 100 pF in series with 3 kto pin 8.  
SHUTDOWN and RESET  
Output Driver  
The push-pull driver output has a typical on-resistance of  
20 . Maximum switching times are specified at 75 ns for a  
500 pF load. This is sufficient to directly drive MOSFETs  
such as the 2N7004, 2N7005, IRFD120 and IRFD220.  
Larger devices can be driven, but switching times will be  
longer, resulting in higher switching losses. In order to drive  
large MOSPOWER devices, it is necessary to use an  
external driver IC, such as the Vishay Siliconix D469A. The  
D469A can switch very large devices such as the  
SMM20N50 (500 V, 0.3 ) in approximately 100 ns.  
SHUTDOWN (pin 11) and RESET (pin 12) are intended for  
overriding the output MOSFET switch via external control  
logic. The two inputs are fed through a latch preceding the  
output switch. Depending on the logic state of RESET,  
SHUTDOWN can be either a latched or unlatched input. The  
output is off whenever SHUTDOWN is low. By  
simultaneously having SHUTDOWN and RESET low, the  
latch is set and SHUTDOWN has no effect until RESET goes  
high. The truth table for these inputs is given in Table 1.  
APPLICATIONS  
1N5822  
+ 5 V  
GND  
at 0.75 A  
OSC SYNC PULSE  
(If Needed)  
220 µF  
47 µF  
3 k  
2
Si9110  
5
0.022 µF  
100 pF  
8
1N5819  
13  
14  
6
0.1 µF  
20 µF  
- 5 V  
240 k  
at 0.25 A  
150 k  
FEEDBACK  
1N4148  
7
4
To Pin 6 V  
V
CC  
CC  
2N7004  
10  
18 k  
12 k  
1 µF  
Feedback  
To Pin 14  
1
3
0.1 µF  
1 Ω  
390 k  
9
1
/
2
W
- 48 V  
Figure 6. 5 Watt Power Supply for Telecom Applications  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?70004.  
www.vishay.com  
6
Document Number: 70004  
S11-0975-Rev. I, 16-May-11  
This document is subject to change without notice.  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Package Information  
Vishay Siliconix  
SOIC (NARROW): 14-LEAD (POWER IC ONLY)  
MILLIMETERS  
INCHES  
Min  
1.35  
0.10  
0.38  
0.18  
8.55  
3.8  
Max  
1.75  
0.20  
0.51  
0.23  
8.75  
4.00  
Min  
Max  
0.069  
0.008  
0.020  
0.009  
0.344  
0.157  
Dim  
A
A1  
B
C
D
0.053  
0.004  
0.015  
0.007  
0.336  
0.149  
14  
1
13  
2
12  
3
11  
4
10  
5
9
6
8
7
E
E
1.27 BSC  
0.050 BSC  
e
5.80  
0.50  
0_  
6.20  
0.93  
8_  
0.228  
0.020  
0_  
0.244  
0.037  
8_  
H
L
Ø
ECN: S-40080—Rev. A, 02-Feb-04  
DWG: 5914  
D
H
C
A
ALL LEADS  
0.101 mm  
Ø
A
1
e
B
L
0.004  
Document Number: 72809  
28-Jan-04  
www.vishay.com  
1
Package Information  
Vishay Siliconix  
PDIP: 14-LEAD (POWER IC ONLY)  
14  
1
13  
2
12  
3
11  
4
10  
5
9
6
8
7
E
E
1
D
S
1
Q
A
A
1
L
15°  
MAX  
C
e
1
B
B
1
e
A
MILLIMETERS  
INCHES  
Min  
Dim  
A
A1  
B
B1  
C
D
Min  
3.81  
0.38  
0.38  
0.89  
0.20  
17.27  
7.62  
5.59  
2.29  
7.37  
2.79  
1.27  
1.02  
Max  
5.08  
1.27  
0.51  
1.65  
0.30  
19.30  
8.26  
7.11  
2.79  
7.87  
3.81  
2.03  
2.03  
Max  
0.200  
0.050  
0.020  
0.065  
0.012  
0.760  
0.325  
0.280  
0.110  
0.310  
0.150  
0.080  
0.080  
0.150  
0.015  
0.015  
0.035  
0.008  
0.680  
0.300  
0.220  
0.090  
0.290  
0.110  
0.050  
0.040  
E
E1  
e1  
eA  
L
Q1  
S
ECN: S-40081—Rev. A, 02-Feb-04  
DWG: 5919  
Document Number: 72814  
28-Jan-04  
www.vishay.com  
1
Legal Disclaimer Notice  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree  
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and  
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay  
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to  
obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 11-Mar-11  
www.vishay.com  
1

SI9110_11 相关器件

型号 制造商 描述 价格 文档
SI9111 VISHAY High-Voltage Switchmode Controllers 获取价格
SI9111DJ VISHAY High-Voltage Switchmode Controllers 获取价格
SI9111DJ-E3 VISHAY High-Voltage Switchmode Controllers 获取价格
SI9111DJ-T1 VISHAY High-Voltage Switchmode Controllers 获取价格
SI9111DY VISHAY High-Voltage Switchmode Controllers 获取价格
SI9111DY-E3 VISHAY Current Mode PWM Controller 14-Pin SOIC N 获取价格
SI9111DY-T1 VISHAY High-Voltage Switchmode Controllers 获取价格
SI9111DY-T1-E3 VISHAY High-Voltage Switchmode Controllers 获取价格
SI9112 VISHAY High-Voltage Switchmode Controller 获取价格
SI9112DJ VISHAY High-Voltage Switchmode Controller 获取价格

SI9110_11 相关文章

  • CTS EMI/RFI 滤波器和电容器产品选型手册(英文版)
    2024-09-18
    6
  • CTS Controls 产品线手册(英文版)
    2024-09-18
    8
  • CTS先进材料和解决方案—产品手册(英文版)
    2024-09-18
    9
  • 松下(Panasonic)机器用传感器[产品选型手册(2024)
    2024-09-14
    22