转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
S25FL032P  
32-Mbit CMOS 3.0 Volt Flash Memory  
with 104-MHz SPI (Serial Peripheral Interface) Multi I/O Bus  
Data Sheet  
S25FL032P Cover Sheet  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Each product described herein may be designated as Advance Information,  
Preliminary, or Full Production. See Notice On Data Sheet Designations for definitions.  
Publication Number S25FL032P_00  
Revision 09  
Issue Date January 29, 2013  
D a t a S h e e t  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of  
product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to verify  
that they have the latest information before finalizing their design. The following descriptions of Spansion data  
sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue. Spansion  
Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion Inc.  
The information is intended to help you evaluate this product. Do not design in this product without  
contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a commitment  
to production has taken place. This designation covers several aspects of the product life cycle, including  
product qualification, initial production, and the subsequent phases in the manufacturing process that occur  
before full production is achieved. Changes to the technical specifications presented in a Preliminary  
document should be expected while keeping these aspects of production under consideration. Spansion  
places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification has been  
completed, and that initial production has begun. Due to the phases of the manufacturing process that  
require maintaining efficiency and quality, this document may be revised by subsequent versions or  
modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their designations  
wherever necessary, typically on the first page, the ordering information page, and pages with the DC  
Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first  
page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal changes  
are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include  
those affecting the number of ordering part numbers available, such as the addition or deletion of a speed  
option, temperature range, package type, or V range. Changes may also include those needed to clarify a  
IO  
description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following  
conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production volume such  
that subsequent versions of this document are not expected to change. However, typographical or  
specification corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local sales office.  
2
S25FL032P  
S25FL032P_00_09 January 29, 2013  
S25FL032P  
32-Mbit CMOS 3.0 Volt Flash Memory  
with 104-MHz SPI (Serial Peripheral Interface) Multi I/O Bus  
Data Sheet  
Distinctive Characteristics  
CFI (Common Flash Interface) compliant: allows host system  
Architectural Advantages  
Single power supply operation  
to identify and accommodate multiple flash devices  
Process technology  
– Full voltage range: 2.7 to 3.6V read and write operations  
– Manufactured on 0.09 µm MirrorBit® process technology  
Memory architecture  
Package option  
– Uniform 64 KB sectors  
– Industry Standard Pinouts  
– 8-pin SO package (208 mils)  
– 16-pin SO package (300 mils)  
Top or bottom parameter block (Two 64-KB sectors (top or  
bottom) broken down into sixteen 4-KB sub-sectors each)  
– 256-byte page size  
– 8-contact USON package (5 x 6 mm)  
– 8-contact WSON package (6 x 8 mm)  
– 24-ball BGA 6 x 8 mm package, 5 x 5 pin configuration  
– 24-ball BGA 6 x 8 mm package, 6 x 4 pin configuration  
– Backward compatible with the S25FL032A device  
Program  
– Page Program (up to 256 bytes) in 1.5 ms (typical)  
– Program operations are on a page by page basis  
– Accelerated programming mode via 9V W#/ACC pin  
– Quad Page Programming  
Performance Characteristics  
Speed  
Erase  
– Normal READ (Serial): 40 MHz clock rate  
– FAST_READ (Serial): 104 MHz clock rate (maximum)  
– DUAL I/O FAST_READ: 80 MHz clock rate or  
20 MB/s effective data rate  
– QUAD I/O FAST_READ: 80 MHz clock rate or  
40 MB/s effective data rate  
– Bulk erase function  
– Sector erase (SE) command (D8h) for 64 KB sectors  
– Sub-sector erase (P4E) command (20h) for 4 KB sectors  
– Sub-sector erase (P8E) command (40h) for 8 KB sectors  
Cycling endurance  
– 100,000 cycles per sector typical  
Data retention  
Power saving standby mode  
– Standby Mode 80 µA (typical)  
– 20 years typical  
– Deep Power-Down Mode 3 µA (typical)  
Device ID  
– JEDEC standard two-byte electronic signature  
– RES command one-byte electronic signature for backward  
compatibility  
Memory Protection Features  
Memory protection  
– W#/ACC pin works in conjunction with Status Register Bits to  
protect specified memory areas  
– Status Register Block Protection bits (BP2, BP1, BP0) in status  
One time programmable (OTP) area for permanent, secure  
identification; can be programmed and locked at the factory  
or by the customer  
Publication Number S25FL032P_00  
Revision 09  
Issue Date January 29, 2013  
D a t a S h e e t  
General Description  
The S25FL032P is a 3.0 Volt (2.7V to 3.6V), single-power-supply Flash memory device. The device consists  
of 64 uniform 64 KB sectors with the two (Top or Bottom) 64 KB sectors further split up into thirty-two 4KB sub  
sectors. The S25FL032P device is fully backward compatible with the S25FL032A device.  
The device accepts data written to SI (Serial Input) and outputs data on SO (Serial Output). The devices are  
designed to be programmed in-system with the standard system 3.0-volt V supply.  
CC  
The S25FL032P device adds the following high-performance features using 5 new instructions:  
Dual Output Read using both SI and SO pins as output pins at a clock rate of up to 80 MHz  
Quad Output Read using SI, SO, W#/ACC and HOLD# pins as output pins at a clock rate of up to 80 MHz  
Dual I/O High Performance Read using both SI and SO pins as input and output pins at a clock rate of up  
to 80 MHz  
Quad I/O High Performance Read using SI, SO, W#/ACC and HOLD# pins as input and output pins at a  
clock rate of up to 80 MHz  
Quad Page Programming using SI, SO, W#/ACC and HOLD# pins as input pins to program data at a clock  
rate of up to 80 MHz  
The memory can be programmed 1 to 256 bytes at a time, using the Page Program command. The device  
supports Sector Erase and Bulk Erase commands.  
Each device requires only a 3.0-volt power supply (2.7V to 3.6V) for both read and write functions. Internally  
generated and regulated voltages are provided for the program operations. This device requires a high  
voltage supply to the W#/ACC pin to enable the Accelerated Programming mode.  
The S25FL032P device also offers a One-Time Programmable area (OTP) of up to 128-bits (16 bytes) for  
permanent secure identification and an additional 490 bytes of OTP space for other use. This OTP area can  
be programmed or read using the OTPP or OTPR instructions.  
4
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Table of Contents  
Distinctive Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.  
2.  
3.  
4.  
5.  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Input/Output Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1  
Valid Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
6.  
7.  
Spansion SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Device Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Byte or Page Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Quad Page Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Dual and Quad I/O Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Sector Erase / Bulk Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Monitoring Write Operations Using the Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Active Power and Standby Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data Protection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.10 Hold Mode (HOLD#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.11 Accelerated Programming Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.  
9.  
Sector Address Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
Read Data Bytes (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Read Data Bytes at Higher Speed (FAST_READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Dual Output Read Mode (DOR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Quad Output Read Mode (QOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DUAL I/O High Performance Read Mode (DIOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Quad I/O High Performance Read Mode (QIOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Read Identification (RDID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Read-ID (READ_ID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.10 Write Disable (WRDI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.11 Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.12 Read Configuration Register (RCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.13 Write Registers (WRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.14 Page Program (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.15 QUAD Page Program (QPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.16 Parameter Sector Erase (P4E, P8E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.17 Sector Erase (SE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
9.18 Bulk Erase (BE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.19 Deep Power-Down (DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.20 Release from Deep Power-Down (RES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
9.21 Clear Status Register (CLSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
9.22 OTP Program (OTPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
9.23 Read OTP Data Bytes (OTPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10. OTP Regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.1 Programming OTP Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.2 Reading OTP Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.3 Locking OTP Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
11. Power-up and Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12. Initial Delivery State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
5
D a t a S h e e t  
13. Program Acceleration via W#/ACC Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
14. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
14.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
15. Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
16. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
17. Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
18. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
18.1 Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
19. Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
19.1 SOC008 wide — 8-pin Plastic Small Outline Package (208-mils Body Width) . . . . . . . . . . . 61  
19.2 SO3 016 — 16-pin Wide Plastic Small Outline Package (300-mil Body Width) . . . . . . . . . . 62  
19.3 UNE008 — USON 8-contact (5 x 6 mm) No-Lead Package . . . . . . . . . . . . . . . . . . . . . . . . . 63  
19.4 WNF008 — WSON 8-contact (6 x 8 mm) No-Lead Package . . . . . . . . . . . . . . . . . . . . . . . . 64  
19.5 FAB024 — 24-ball Ball Grid Array (6 x 8 mm) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
19.6 FAC024 — 24-ball Ball Grid Array (6 x 8 mm) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
20. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
6
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Figures  
Figure 2.1  
Figure 2.2  
Figure 2.3  
Figure 2.4  
Figure 2.5  
Figure 2.6  
Figure 6.1  
Figure 6.2  
Figure 7.1  
Figure 9.1  
Figure 9.2  
Figure 9.3  
Figure 9.4  
Figure 9.5  
Figure 9.6  
Figure 9.7  
Figure 9.8  
Figure 9.9  
16-pin Plastic Small Outline Package (SO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
8-pin Plastic Small Outline Package (SO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
8-contact USON (5 x 6 mm) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
8-contact WSON Package (6 x 8 mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6x8 mm 24-ball BGA Package, 5x5 pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6x8 mm 24-ball BGA Package, 6x4 pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Bus Master and Memory Devices on the SPI Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SPI Modes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Hold Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Read Data Bytes (READ) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Read Data Bytes at Higher Speed (FAST_READ) Command Sequence . . . . . . . . . . . . . . . 25  
Dual Output Read Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Quad Output Read Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DUAL I/O High Performance Read Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Continuous Dual I/O High Performance Read Instruction Sequence . . . . . . . . . . . . . . . . . . 29  
QUAD I/O High Performance Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Continuous QUAD I/O High Performance Instruction Sequence. . . . . . . . . . . . . . . . . . . . . . 31  
Read Identification (RDID) Command Sequence and Data-Out Sequence . . . . . . . . . . . . . 32  
Figure 9.10 Read-ID (RDID) Command Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 9.11 Write Enable (WREN) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 9.12 Write Disable (WRDI) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 9.13 Read Status Register (RDSR) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 9.14 Read Configuration Register (RCR) Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Figure 9.15 Write Registers (WRR) Instruction Sequence – 8 data bits. . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 9.16 Write Registers (WRR) Instruction Sequence – 16 data bits. . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 9.17 Page Program (PP) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 9.18 QUAD Page Program Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 9.19 Parameter Sector Erase (P4E, P8E) Instruction Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 9.20 Sector Erase (SE) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 9.21 Bulk Erase (BE) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 9.22 Deep Power-Down (DP) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 9.23 Release from Deep Power-Down (RES) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 9.24 Release from Deep Power-Down and RES Command Sequence . . . . . . . . . . . . . . . . . . . . 48  
Figure 9.25 Clear Status Register (CLSR) Instruction Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 9.26 OTP Program Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 9.27 Read OTP Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 10.1 OTP Memory Map - Part 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 10.2 OTP Memory Map - Part 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 11.1 Power-Up Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 11.2 Power-down and Voltage Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 13.1 ACC Program Acceleration Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 14.1 Maximum Negative Overshoot Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 14.2 Maximum Positive Overshoot Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 17.1 AC Measurements I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 18.1 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 18.2 SPI Mode 0 (0,0) Input Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 18.3 SPI Mode 0 (0,0) Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 18.4 HOLD# Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 18.5 Write Protect Setup and Hold Timing during WRR when SRWD = 1 . . . . . . . . . . . . . . . . . . 60  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
7
D a t a S h e e t  
Tables  
Table 5.1  
Table 7.1  
Table 7.2  
Table 7.3  
Table 7.4  
Table 8.1  
Table 8.2  
Table 9.1  
Table 9.2  
Table 9.3  
Table 9.4  
Table 9.5  
Table 9.6  
Table 9.7  
Table 9.8  
Table 9.9  
Table 10.1  
Table 11.1  
Table 13.1  
Table 15.1  
Table 16.1  
Table 17.1  
S25FL032P Valid Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Suggested Cross Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Configuration Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
TBPROT = 0 (Starts Protection from TOP of Array) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
TBPROT=1 (Starts Protection from BOTTOM of Array) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
S25FL032P Sector Address Table TBPARM=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
S25FL032P Sector Address Table TBPARM=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Manufacturer & Device ID - RDID (JEDEC 9Fh): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Product Group CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Product Group CFI System Interface String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Product Group CFI Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Product Group CFI Primary Vendor-Specific Extended Query . . . . . . . . . . . . . . . . . . . . . . . .34  
READ_ID Data-Out Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
S25FL032P Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Protection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
ESN1 and ESN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Power-Up / Power-Down Voltage and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
ACC Program Acceleration Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
DC Characteristics (CMOS Compatible) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
8
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
1. Block Diagram  
SRAM  
PS  
X
D
E
C
Array - L  
Array - R  
Logic  
RD  
DATA PATH  
IO  
2. Connection Diagrams  
Figure 2.1 16-pin Plastic Small Outline Package (SO)  
16  
15  
14  
SCK  
1
2
3
HOLD#/IO3  
VCC  
SI/IO0  
DNC  
DNC  
DNC  
DNC  
DNC  
13  
4
5
DNC  
DNC  
12  
6
11  
DNC  
GND  
CS#  
7
10  
9
SO/IO1  
8
W#/ACC/IO2  
Note  
DNC = Do Not Connect (Reserved for future use)  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
9
D a t a S h e e t  
Figure 2.2 8-pin Plastic Small Outline Package (SO)  
VCC  
8
1
2
CS#  
7
SO/IO1  
HOLD#/IO3  
SCK  
3
W#/ACC/IO2  
GND  
6
5
4
SI/IO0  
Figure 2.3 8-contact USON (5 x 6 mm) Package  
CS#  
SO/IO1  
VCC  
8
7
6
1
2
HOLD#/IO3  
USON  
W#/ACC/IO2  
GND  
3
4
SCK  
SI/IO0  
5
Note  
There is an exposed central pad on the underside of the USON package. This should not be connected to any voltage or signal line on the  
PCB. Connecting the central pad to GND (VSS) is possible, provided PCB routing ensures 0mV difference between voltage at the USON  
GND (VSS) lead and the central exposed pad.  
Figure 2.4 8-contact WSON Package (6 x 8 mm)  
CS#  
SO/IO1  
VCC  
8
7
6
1
2
HOLD#/IO3  
WSON  
W#/ACC/IO2  
GND  
3
4
SCK  
SI/IO0  
5
Note  
There is an exposed central pad on the underside of the WSON package. This should not be connected to any voltage or signal line on the  
PCB. Connecting the central pad to GND (VSS) is possible, provided PCB routing ensures 0mV difference between voltage at the WSON  
GND (VSS) lead and the central exposed pad.  
Figure 2.5 6x8 mm 24-ball BGA Package, 5x5 pin Configuration  
A2  
NC  
A3  
NC  
A4  
NC  
B4  
A5  
NC  
B5  
NC  
C5  
B2  
B3  
B1  
NC  
C1  
NC  
D1  
SCK  
C2  
GND  
C3  
VCC  
C4  
CS#  
D2  
NC W#/ACC/IO2 NC  
D3  
D4  
D5  
NC  
E5  
NC  
E1  
SO/IO1  
E2  
SI/IO0 HOLD#/IO3  
E4  
E3  
NC  
NC  
NC  
NC  
NC  
10  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Figure 2.6 6x8 mm 24-ball BGA Package, 6x4 pin Configuration  
A1  
A2  
NC  
A3  
NC  
A4  
NC  
B4  
NC  
B2  
B3  
B1  
NC  
C1  
NC  
D1  
SCK  
C2  
GND  
C3  
VCC  
C4  
CS#  
D2  
NC W#/ACC/IO2  
D3 D4  
SI/IO0 HOLD#/IO3  
NC  
E1  
SO/IO1  
E2  
E3  
E4  
NC  
NC  
NC  
NC  
F1  
F2  
F3  
F4  
NC  
NC  
NC  
NC  
3. Input/Output Descriptions  
Signal  
I/O  
Description  
Serial Data Output: Transfers data serially out of the device on the falling edge of SCK.  
Functions as an input pin in Dual and Quad I/O, and Quad Page Program modes.  
SO/IO1  
I/O  
Serial Data Input: Transfers data serially into the device. Device latches commands,  
addresses, and program data on SI on the rising edge of SCK. Functions as an output pin in  
Dual and Quad I/O mode.  
SI/IO0  
SCK  
I/O  
Serial Clock: Provides serial interface timing. Latches commands, addresses, and data on SI on  
rising edge of SCK. Triggers output on SO after the falling edge of SCK.  
Input  
Chip Select: Places device in active power mode when driven low. Deselects device and places  
SO at high impedance when high. After power-up, device requires a falling edge on CS# before  
any command is written. Device is in standby mode when a program, erase, or Write Status  
Register operation is not in progress.  
CS#  
Input  
Hold: Pauses any serial communication with the device without deselecting it. When driven low,  
SO is at high impedance, and all input at SI and SCK are ignored. Requires that CS# also be  
driven low. Functions as an output pin in Quad I/O mode.  
HOLD#/IO3  
I/O  
I/O  
Write Protect: Protects the memory area specified by Status Register bits BP2:BP0. When  
driven low, prevents any program or erase command from altering the data in the protected  
memory area. Functions as an output pin in Quad I/O mode.  
W#/ACC/IO2  
VCC  
Input Supply Voltage  
Input Ground  
GND  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
11  
D a t a S h e e t  
4. Logic Symbol  
V
CC  
SO/IO1  
SI/IO0  
SCK  
CS#  
W#/ACC/IO2  
HOLD#/IO3  
GND  
12  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
5. Ordering Information  
The ordering part number is formed by a valid combination of the following:  
S25FL  
032  
P
0X  
M
F
I
00  
1
Packing Type  
0
1
3
=
=
=
Tray  
Tube  
13” Tape and Reel  
Model Number (Additional Ordering Options)  
03  
02  
01  
00  
=
=
=
=
6 x 4 pin configuration BGA package  
5 x 5 pin configuration BGA package  
8-pin SO package / 8-contact USON package  
16-pin SO package / 8-contact WSON package  
Temperature Range  
I
=
Industrial (–40°C to +85°C)  
V
=
Automotive In-cabin (–40°C to +105°C)  
Package Materials  
F
H
=
=
Lead (Pb)-free  
Low-Halogen, Lead (Pb)-free  
Package Type  
M
N
B
=
=
=
8-pin / 16-pin SO package  
8-contact USON / WSON package  
24-ball BGA 6 x 8 mm package, 1.00 mm pitch  
Speed  
0X  
=
104 MHz  
Device Technology  
P
=
0.09 µm MirrorBit® Process Technology  
Density  
032  
=
32 Mbit  
Device Family  
S25FL  
Spansion Memory 3.0 Volt-only, Serial Peripheral Interface (SPI) Flash Memory  
5.1  
Valid Combinations  
Table 5.1 lists the valid combinations configurations planned to be supported in volume for this device.  
Table 5.1 S25FL032P Valid Combinations  
S25FL032P Valid Combinations  
Base Ordering  
Part Number  
Package &  
Temperature  
Model  
Number  
Speed Option  
Packing Type  
Package Marking  
MFI, NFI  
MFV, NFV  
BHI  
00, 01  
02, 03  
0, 1, 3  
S25FL032P  
0X  
FL032P + (Temp) + F  
0, 3  
BHV  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
13  
D a t a S h e e t  
6. Spansion SPI Modes  
A microcontroller can use either of its two SPI modes to control Spansion SPI Flash memory devices:  
CPOL = 0, CPHA = 0 (Mode 0)  
CPOL = 1, CPHA = 1 (Mode 3)  
Input data is latched in on the rising edge of SCK, and output data is available from the falling edge of SCK for  
both modes.  
When the bus master is in standby mode, SCK is as shown in Figure 6.2 for each of the two modes:  
SCK remains at 0 for (CPOL = 0, CPHA = 0 Mode 0)  
SCK remains at 1 for (CPOL = 1, CPHA = 1 Mode 3)  
Figure 6.1 Bus Master and Memory Devices on the SPI Bus  
SO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SI  
SCK  
SCK SO SI  
SCK SO SI  
SCK SO SI  
Bus Master  
SPI Memory  
SPI Memory  
SPI Memory  
Device  
Device  
Device  
CS3 CS2 CS1  
CS#  
HOLD#  
CS#  
HOLD#  
CS#  
HOLD#  
W#/ACC  
W#/ACC  
W#/ACC  
Note  
The Write Protect/Accelerated Programming (W#/ACC) and Hold (HOLD#) signals should be driven high (logic level 1) or low (logic level 0)  
as appropriate.  
Figure 6.2 SPI Modes Supported  
CS#  
CPOL CPHA  
Mode 0  
SCK  
0
0
1
1
Mode 3  
SCK  
SI  
MSB  
SO  
MSB  
14  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
7. Device Operations  
All Spansion SPI devices accept and output data in bytes (8 bits at a time). The SPI device is a slave device  
that supports an inactive clock while CS# is held low.  
7.1  
Byte or Page Programming  
Programming data requires two commands: Write Enable (WREN), which is one byte, and a Page Program  
(PP) sequence, which consists of four bytes plus data. The Page Program sequence accepts from 1 byte up  
to 256 consecutive bytes of data (which is the size of one page) to be programmed in one operation.  
Programming means that bits can either be left at 0, or programmed from 1 to 0. Changing bits from 0 to 1  
requires an erase operation.  
7.2  
7.3  
Quad Page Programming  
The Quad Page Program (QPP) instruction allows up to 256 bytes of data to be programmed using 4 pins as  
inputs at the same time, thus effectively quadrupling the data transfer rate, compared to the Page Program  
(PP) instruction. The Write Enable Latch (WEL) bit must be set to a 1 using the Write Enable (WREN)  
command prior to issuing the QPP command.  
Dual and Quad I/O Mode  
The S25FL032P device supports Dual and Quad I/O operation when using the Dual/Quad Output Read Mode  
and the Dual/Quad I/O High Performance Mode instructions. Using the Dual or Quad I/O instructions allows  
data to be transferred to or from the device at two to four times the rate of standard SPI devices. When  
operating in the Dual or Quad I/O High Performance Mode (BBh or EBh instructions), data can be read at fast  
speed using two or four data bits at a time, and the 3-byte address can be input two or four address bits at a  
time.  
7.4  
7.5  
7.6  
Sector Erase / Bulk Erase  
The Sector Erase (SE) and Bulk Erase (BE) commands set all the bits in a sector or the entire memory array  
to 1. While bits can be individually programmed from 1 to 0, erasing bits from 0 to 1 must be done on a sector-  
wide (SE) or array-wide (BE) level. In addition to the 64-KB Sector Erase (SE), the S25FL032P device also  
offers 4-KB Parameter Sector Erase (P4E) and 8-KB Parameter Sector Erase (P8E).  
Monitoring Write Operations Using the Status Register  
The host system can determine when a Write Register, program, or erase operation is complete by  
monitoring the Write in Progress (WIP) bit in the Status Register. The Read from Status Register command  
provides the state of the WIP bit. In addition, the S25FL032P device offers two additional bits in the Status  
Register (P_ERR, E_ERR) to indicate whether a Program or Erase operation was a success or failure.  
Active Power and Standby Power Modes  
The device is enabled and in the Active Power mode when Chip Select (CS#) is Low. When CS# is high, the  
device is disabled, but may still be in the Active Power mode until all program, erase, and Write Registers  
operations have completed. The device then goes into the Standby Power mode, and power consumption  
drops to I . The Deep Power-Down (DP) command provides additional data protection against inadvertent  
SB  
signals. After writing the DP command, the device ignores any further program or erase commands, and  
reduces its power consumption to I  
.
DP  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
15  
D a t a S h e e t  
7.7  
Status Register  
The Status Register contains the status and control bits that can be read or set by specific commands (see  
Table 9.1 on page 23). These bits configure different protection configurations and supply information of  
operation of the device. (for details see Table 9.8, S25FL032P Status Register on page 37):  
Write In Progress (WIP): Indicates whether the device is performing a Write Registers, program or erase  
operation.  
Write Enable Latch (WEL): Indicates the status of the internal Write Enable Latch.  
Block Protect (BP2, BP1, BP0): Non-volatile bits that define memory area to be software-protected  
against program and erase commands.  
Erase Error (E_ERR): The Erase Error Bit is used as an Erase operation success and failure check.  
Program Error (P_ERR): The Program Error Bit is used as an program operation success and failure check.  
Status Register Write Disable (SRWD): Places the device in the Hardware Protected mode when this bit  
is set to 1 and the W#/ACC input is driven low. In this mode, the non-volatile bits of the Status Register  
(SRWD, BP2, BP1, BP0) become read-only bits.  
7.8  
Configuration Register  
The Configuration Register contains the control bits that can be read or set by specific commands. These bits  
configure different configurations and security features of the device.  
The FREEZE bit locks the BP2-0 bits in Status Register and the TBPROT and TBPARM bits in the  
Configuration Register. Note that once the FREEZE bit has been set to ‘1’, then it cannot be cleared to ‘0’  
until a power-on-reset is executed. As long as the FREEZE bit is set to ‘0’, then the other bits of the  
Configuration Register, including FREEZE bit, can be written to.  
The QUAD bit is non-volatile and sets the pin out of the device to Quad mode; that is, W#/ACC becomes  
IO2 and HOLD# becomes IO3. The instructions for Serial, Dual Output, and Dual I/O reads function as  
normal. The W#/ACC and HOLD# functionality does not work when the device is set in Quad mode.  
The TBPARM bit defines the logical location of the 4 KB parameter sectors. The parameter sectors consist  
of thirty two 4 KB sectors. All sectors other than the parameter sectors are defined to be 64-KB uniform in  
size. When TBPARM is set to a ‘1’, the 4 KB parameter sectors starts at the top of the array. When  
TBPARM is set to a ‘0’, the 4 KB parameter sectors starts at the bottom of the array. Note that once this bit  
is set to a '1', it cannot be changed back to '0'.  
The BPNV bit defines whether or not the BP2-0 bits in the Status Register are volatile or non-volatile.  
When BPNV is set to a ‘1’, the BP2-0 bits in the Status Register are volatile and will be reset to binary 111  
after power on reset. When BPNV is set to a ‘0’, the BP2-0 bits in the Status Register are non-volatile. Note  
that once this bit is set to a '1', it cannot be changed back to '0'.  
The TBPROT bit defines the operation of the block protection bits BP2, BP1, and BP0 in the Status  
Register. When TBPROT is set to a ‘0’, then the block protection is defined to start from the top of the array.  
When TBPROT is set to a ‘1’, then the block protection is defined to start from the bottom of the array. Note  
that once this bit is set to a '1', it cannot be changed back to '0'.  
Note: It is suggested that the Block Protection and Parameter sectors not be set to the same area of the  
array; otherwise, the user cannot utilize the Parameter sectors if they are protected. The following matrix  
shows the recommended settings.  
Table 7.1 Suggested Cross Settings  
TBPARM  
TBPROT  
Array Overview  
Parameter Sectors – Bottom  
BP Protection – Top  
0
0
(default)  
0
1
1
0
Not recommended (Parameters & BP Protection are both Bottom)  
Not recommended (parameters & BP Protection are both Top)  
Parameter Sectors - Top of Array (high address)  
BP Protection - Bottom of Array (low address)  
1
1
16  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Table 7.2 Configuration Register Table  
Bit  
7
Bit Name  
NA  
Bit Function  
Description  
-
-
Not Used  
Not Used  
6
NA  
1 = Bottom Array (low address)  
0 = Top Array (high address) (Default)  
5
4
3
TBPROT  
NA  
Configures start of block protection  
-
Do not use  
1 = Volatile  
0 = Non-volatile (Default)  
BPNV  
Configures BP2-0 bits in the Status Register  
1 = Top Array (high address)  
0 = Bottom Array (low address) (Default)  
2
1
0
TBPARM  
QUAD  
Configures Parameter sector location  
Puts the device into Quad I/O mode  
Locks BP2-0 bits in the Status Register  
1 = Quad I/O  
0 = Dual or Serial I/O (Default)  
1 = Enabled  
0 = Disabled (Default)  
FREEZE  
Note  
(Default) indicates the value of each Configuration Register bit set upon initial factory shipment.  
7.9  
Data Protection Modes  
Spansion SPI Flash memory devices provide the following data protection methods:  
The Write Enable (WREN) command: Must be written prior to any command that modifies data. The  
WREN command sets the Write Enable Latch (WEL) bit. The WEL bit resets (disables writes) on power-up  
or after the device completes the following commands:  
– Page Program (PP)  
– Sector Erase (SE)  
– Bulk Erase (BE)  
– Write Disable (WRDI)  
– Write Register (WRR)  
– Parameter 4 KB Sector Erase (P4E)  
– Parameter 8 KB Sector Erase (P8E)  
– Quad Page Programming (QPP)  
– OTP Byte Programming (OTPP)  
Software Protected Mode (SPM): The Block Protect (BP2, BP1, BP0) bits define the section of the  
memory array that can be read but not programmed or erased. Table 7.3 and Table 7.4 shows the sizes  
and address ranges of protected areas that are defined by Status Register bits BP2:BP0.  
Hardware Protected Mode (HPM): The Write Protect (W#/ACC) input and the Status Register Write  
Disable (SRWD) bit together provide write protection.  
Clock Pulse Count: The device verifies that all program, erase, and Write Register commands consist of  
a clock pulse count that is a multiple of eight before executing them.  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
17  
D a t a S h e e t  
Table 7.3 TBPROT = 0 (Starts Protection from TOP of Array)  
Status Register Block  
Memory Array  
Protected  
Portion of  
Total Memory  
Area  
Protected  
Address Range  
Protected  
Sectors  
Unprotected  
Address Range  
Unprotected  
Sectors  
BP2  
0
BP1  
0
BP0  
0
None  
0
000000h-3FFFFFh  
000000h-3EFFFFh  
000000h-3DFFFFh  
000000h-3BFFFFh  
000000h-37FFFFh  
000000h-2FFFFFh  
000000h-1FFFFFh  
None  
SA63:SA0  
SA62:SA0  
SA61:SA0  
SA59:SA0  
SA55:SA0  
SA47:SA0  
SA31:SA0  
None  
0
0
0
1
3F0000h-3FFFFFh  
3E0000h-3FFFFFh  
3C0000h-3FFFFFh  
380000h-3FFFFFh  
300000h-3FFFFFh  
200000h-3FFFFFh  
000000h-3FFFFFh  
(1) SA63  
1/64  
1/32  
1/16  
1/8  
0
1
0
(2) SA63:SA62  
(4) SA63:SA60  
(8) SA63:SA56  
(16) SA63:SA48  
(32) SA63:SA32  
(64) SA63:SA0  
0
1
1
1
0
0
1
0
1
1/4  
1
1
0
1/2  
1
1
1
All  
Table 7.4 TBPROT=1 (Starts Protection from BOTTOM of Array)  
Status Register Block  
Memory Array  
Protected  
Portion of  
Total Memory  
Area  
Protected  
Address Range  
Protected  
Sectors  
Unprotected  
Address Range  
Unprotected  
Sectors  
BP2  
0
BP1  
0
BP0  
0
None  
0
000000h-3FFFFFh  
010000h-3FFFFFh  
020000h-3FFFFFh  
040000h-3FFFFFh  
080000h-3FFFFFh  
100000h-3FFFFFh  
200000h-3FFFFFh  
None  
SA0:SA63  
SA1:SA63  
SA2:SA63  
SA4:SA63  
SA8:SA63  
SA16:SA63  
SA32:SA63  
None  
0
0
0
1
000000h-00FFFFh  
000000h-01FFFFh  
000000h-03FFFFh  
000000h-07FFFFh  
000000h-0FFFFFh  
000000h-1FFFFFh  
000000h-3FFFFFh  
(1) SA0  
1/64  
1/32  
1/16  
1/8  
0
1
0
(2) SA0:SA1  
(4) SA0:SA3  
(8) SA0:SA7  
(16) SA0:SA15  
(32) SA0:SA31  
(64) SA0:SA63  
0
1
1
1
0
0
1
0
1
1/4  
1
1
0
1/2  
1
1
1
ALL  
7.10 Hold Mode (HOLD#)  
The Hold input (HOLD#) stops any serial communication with the device, but does not terminate any Write  
Registers, program or erase operation that is currently in progress.  
The Hold mode starts on the falling edge of HOLD# if SCK is also low (see Figure 7.1, standard use). If the  
falling edge of HOLD# does not occur while SCK is low, the Hold mode begins after the next falling edge of  
SCK (non-standard use).  
The Hold mode ends on the rising edge of HOLD# signal (standard use) if SCK is also low. If the rising edge  
of HOLD# does not occur while SCK is low, the Hold mode ends on the next falling edge of CLK (non-  
standard use) See Figure 7.1.  
The SO output is high impedance, and the SI and SCK inputs are ignored (don’t care) for the duration of the  
Hold mode.  
CS# must remain low for the entire duration of the Hold mode to ensure that the device internal logic remains  
unchanged. If CS# goes high while the device is in the Hold mode, the internal logic is reset. To prevent the  
device from reverting to the Hold mode when device communication is resumed, HOLD# must be held high,  
followed by driving CS# low.  
Note: The HOLD Mode feature is disabled during Quad I/O Mode.  
18  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Figure 7.1 Hold Mode Operation  
SCK  
HOLD#  
Hold  
Hold  
Condition  
Condition  
(standard use)  
(non-standard use)  
7.11 Accelerated Programming Operation  
The device offers accelerated program operations through the ACC function. This function is primarily  
intended to allow faster manufacturing throughput at the factory. If the system asserts V on this pin, the  
HH  
device uses the higher voltage on the pin to reduce the time required for program operations. Removing V  
HH  
from the W#/ACC pin returns the device to normal operation. Note that the W#/ACC pin must not be at V  
HH  
for operations other than accelerated programming, or device damage may result. In addition, the W#/ACC  
pin must not be left floating or unconnected; inconsistent behavior of the device may result.  
Note: The ACC function is disabled during Quad I/O Mode.  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
19  
D a t a S h e e t  
8. Sector Address Table  
The Sector Address tables show the size of the memory array, sectors, and pages. The device uses pages to  
cache the program data before the data is programmed into the memory array. Each page or byte can be  
individually programmed (bits are changed from 1 to 0). The data is erased (bits are changed from 0 to 1) on  
a sub-sector, sector- or device-wide basis using the P4E/P8E, SE or BE commands. Table 8.1 and Table 8.2  
show the starting and ending address for each sector. The complete set of sectors comprises the memory  
array of the Flash device.  
Table 8.1 S25FL032P Sector Address Table TBPARM=0  
Address range  
Start address  
Address range  
Start address  
Address range  
Start address  
Sector  
Sector  
Sector  
End address  
3FFFFFh  
3EFFFFh  
3DFFFFh  
3CFFFFh  
3BFFFFh  
3AFFFFh  
39FFFFh  
38FFFFh  
37FFFFh  
36FFFFh  
35FFFFh  
34FFFFh  
33FFFFh  
32FFFFh  
31FFFFh  
30FFFFh  
2FFFFFh  
2EFFFFh  
2DFFFFh  
2CFFFFh  
2BFFFFh  
2AFFFFh  
29FFFFh  
28FFFFh  
27FFFFh  
26FFFFh  
25FFFFh  
24FFFFh  
23FFFFh  
22FFFFh  
21FFFFh  
20FFFFh  
End address  
1FFFFFh  
1EFFFFh  
1DFFFFh  
1CFFFFh  
1BFFFFh  
1AFFFFh  
19FFFFh  
18FFFFh  
17FFFFh  
16FFFFh  
15FFFFh  
14FFFFh  
13FFFFh  
12FFFFh  
11FFFFh  
10FFFFh  
0FFFFFh  
0EFFFFh  
0DFFFFh  
0CFFFFh  
0BFFFFh  
0AFFFFh  
09FFFFh  
08FFFFh  
07FFFFh  
06FFFFh  
05FFFFh  
04FFFFh  
03FFFFh  
02FFFFh  
01FFFFh  
00FFFFh  
End address  
01FFFFh  
01EFFFh  
01DFFFh  
01CFFFh  
01BFFFh  
01AFFFh  
019FFFh  
018FFFh  
017FFFh  
016FFFh  
015FFFh  
014FFFh  
013FFFh  
012FFFh  
011FFFh  
010FFFh  
00FFFFh  
00EFFFh  
00DFFFh  
00CFFFh  
00BFFFh  
00AFFFh  
009FFFh  
008FFFh  
007FFFh  
006FFFh  
005FFFh  
004FFFh  
003FFFh  
002FFFh  
001FFFh  
000FFFh  
SA63  
SA62  
SA61  
SA60  
SA59  
SA58  
SA57  
SA56  
SA55  
SA54  
SA53  
SA52  
SA51  
SA50  
SA49  
SA48  
SA47  
SA46  
SA45  
SA44  
SA43  
SA42  
SA41  
SA40  
SA39  
SA38  
SA37  
SA36  
SA35  
SA34  
SA33  
SA32  
3F0000h  
3E0000h  
3D0000h  
3C0000h  
3B0000h  
3A0000h  
390000h  
380000h  
370000h  
360000h  
350000h  
340000h  
330000h  
320000h  
310000h  
300000h  
2F0000h  
2E0000h  
2D0000h  
2C0000h  
2B0000h  
2A0000h  
290000h  
280000h  
270000h  
260000h  
250000h  
240000h  
230000h  
220000h  
210000h  
200000h  
SA31  
SA30  
SA29  
SA28  
SA27  
SA26  
SA25  
SA24  
SA23  
SA22  
SA21  
SA20  
SA19  
SA18  
SA17  
SA16  
SA15  
SA14  
SA13  
SA12  
SA11  
SA10  
SA9  
1F0000h  
1E0000h  
1D0000h  
1C0000h  
1B0000h  
1A0000h  
190000h  
180000h  
170000h  
160000h  
150000h  
140000h  
130000h  
120000h  
110000h  
100000h  
0F0000h  
0E0000h  
0D0000h  
0C0000h  
0B0000h  
0A0000h  
090000h  
080000h  
070000h  
060000h  
050000h  
040000h  
030000h  
020000h  
010000h  
000000h  
SS31  
SS30  
SS29  
SS28  
SS27  
SS26  
SS25  
SS24  
SS23  
SS22  
SS21  
SS20  
SS19  
SS18  
SS17  
SS16  
SS15  
SS14  
SS13  
SS12  
SS11  
SS10  
SS9  
01F000h  
01E000h  
01D000h  
01C000h  
01B000h  
01A000h  
019000h  
018000h  
017000h  
016000h  
015000h  
014000h  
013000h  
012000h  
011000h  
010000h  
00F000h  
00E000h  
00D000h  
00C000h  
00B000h  
00A000h  
009000h  
008000h  
007000h  
006000h  
005000h  
004000h  
003000h  
002000h  
001000h  
000000h  
SA8  
SS8  
SA7  
SS7  
SA6  
SS6  
SA5  
SS5  
SA4  
SS4  
SA3  
SS3  
SA2  
SS2  
SA1  
SS1  
SA0  
SS0  
Note  
Sector SA0 is split up into sub-sectors SS0 - SS15 (dark gray shading)  
Sector SA1 is split up into sub-sectors SS16 - SS31(light gray shading)  
20  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Table 8.2 S25FL032P Sector Address Table TBPARM=1  
Address Range  
Address Range  
Start Address  
Address Range  
Start Address  
Sector  
Sector  
Sector  
Start Address  
3FF000h  
3FE000h  
3FD000h  
3FC000h  
3FB000h  
3FA000h  
3F9000h  
3F8000h  
3F7000h  
3F6000h  
3F5000h  
3F4000h  
3F3000h  
3F2000h  
3F1000h  
3F0000h  
3EF000h  
3EE000h  
3ED000h  
3EC000h  
3EB000h  
3EA000h  
3E9000h  
3E8000h  
3E7000h  
3E6000h  
3E5000h  
3E4000h  
3E3000h  
3E2000h  
3E1000h  
3E0000h  
End Address  
3FFFFFh  
3FEFFFh  
3FDFFFh  
3FCFFFh  
3FBFFFh  
3FAFFFh  
3F9FFFh  
3F8FFFh  
3F7FFFh  
3F6FFFh  
3F5FFFh  
3F4FFFh  
3F3FFFh  
3F2FFFh  
3F1FFFh  
3F0FFFh  
3EFFFFh  
3EEFFFh  
3EDFFFh  
3ECFFFh  
3EBFFFh  
3EAFFFh  
3E9FFFh  
3E8FFFh  
3E7FFFh  
3E6FFFh  
3E5FFFh  
3E4FFFh  
3E3FFFh  
3E2FFFh  
3E1FFFh  
3E0FFFh  
End Address  
3FFFFFh  
3EFFFFh  
3DFFFFh  
3CFFFFh  
3BFFFFh  
3AFFFFh  
39FFFFh  
38FFFFh  
37FFFFh  
36FFFFh  
35FFFFh  
34FFFFh  
33FFFFh  
32FFFFh  
31FFFFh  
30FFFFh  
2FFFFFh  
2EFFFFh  
2DFFFFh  
2CFFFFh  
2BFFFFh  
2AFFFFh  
29FFFFh  
28FFFFh  
27FFFFh  
26FFFFh  
25FFFFh  
24FFFFh  
23FFFFh  
22FFFFh  
21FFFFh  
20FFFFh  
End Address  
1FFFFFh  
1EFFFFh  
1DFFFFh  
1CFFFFh  
1BFFFFh  
1AFFFFh  
19FFFFh  
18FFFFh  
17FFFFh  
16FFFFh  
15FFFFh  
14FFFFh  
13FFFFh  
12FFFFh  
11FFFFh  
10FFFFh  
0FFFFFh  
0EFFFFh  
0DFFFFh  
0CFFFFh  
0BFFFFh  
0AFFFFh  
09FFFFh  
08FFFFh  
07FFFFh  
06FFFFh  
05FFFFh  
04FFFFh  
03FFFFh  
02FFFFh  
01FFFFh  
00FFFFh  
SS31  
SS30  
SS29  
SS28  
SS27  
SS26  
SS25  
SS24  
SS23  
SS22  
SS21  
SS20  
SS19  
SS18  
SS17  
SS16  
SS15  
SS14  
SS13  
SS12  
SS11  
SS10  
SS9  
SA63  
SA62  
SA61  
SA60  
SA59  
SA58  
SA57  
SA56  
SA55  
SA54  
SA53  
SA52  
SA51  
SA50  
SA49  
SA48  
SA47  
SA46  
SA45  
SA44  
SA43  
SA42  
SA41  
SA40  
SA39  
SA38  
SA37  
SA36  
SA35  
SA34  
SA33  
SA32  
3F0000h  
3E0000h  
3D0000h  
3C0000h  
3B0000h  
3A0000h  
390000h  
380000h  
370000h  
360000h  
350000h  
340000h  
330000h  
320000h  
310000h  
300000h  
2F0000h  
2E0000h  
2D0000h  
2C0000h  
2B0000h  
2A0000h  
290000h  
280000h  
270000h  
260000h  
250000h  
240000h  
230000h  
220000h  
210000h  
200000h  
SA31  
SA30  
SA29  
SA28  
SA27  
SA26  
SA25  
SA24  
SA23  
SA22  
SA21  
SA20  
SA19  
SA18  
SA17  
SA16  
SA15  
SA14  
SA13  
SA12  
SA11  
SA10  
SA9  
1F0000h  
1E0000h  
1D0000h  
1C0000h  
1B0000h  
1A0000h  
190000h  
180000h  
170000h  
160000h  
150000h  
140000h  
130000h  
120000h  
110000h  
100000h  
0F0000h  
0E0000h  
0D0000h  
0C0000h  
0B0000h  
0A0000h  
090000h  
080000h  
070000h  
060000h  
050000h  
040000h  
030000h  
020000h  
010000h  
000000h  
SS8  
SA8  
SS7  
SA7  
SS6  
SA6  
SS5  
SA5  
SS4  
SA4  
SS3  
SA3  
SS2  
SA2  
SS1  
SA1  
SS0  
SA0  
Note  
Sector SA62 is split up into sub-sectors SS0 - SS15 (dark gray shading)  
Sector SA63 is split up into sub-sectors SS16 - SS31 (light gray shading)  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
21  
D a t a S h e e t  
9. Command Definitions  
The host system must shift all commands, addresses, and data in and out of the device, beginning with the  
most significant bit. On the first rising edge of SCK after CS# is driven low, the device accepts the one-byte  
command on SI (all commands are one byte long), most significant bit first. Each successive bit is latched on  
the rising edge of SCK. Table 9.1 lists the complete set of commands.  
Every command sequence begins with a one-byte command code. The command may be followed by  
address, data, both, or nothing, depending on the command. CS# must be driven high after the last bit of the  
command sequence has been written.  
The Read Data Bytes (READ), Read Data Bytes at Higher Speed (FAST_READ), Dual Output Read (DOR),  
Quad Output Read (QOR), Dual I/O High Performance Read (DIOR), Quad I/O High Performance Read  
(QIOR), Read Status Register (RDSR), Read Configuration Register (RCR), Read OTP Data (OTPR), Read  
Manufacturer and Device ID (READ_ID), Read Identification (RDID) and Release from Deep Power-Down  
and Read Electronic Signature (RES) command sequences are followed by a data output sequence on SO.  
CS# can be driven high after any bit of the sequence is output to terminate the operation.  
The Page Program (PP), Quad Page Program (QPP), 64 KB Sector Erase (SE), 4 KB Parameter Sector  
Erase (P4E), 8 KB Parameter Sector Erase (P8E), Bulk Erase (BE), Write Status and Configuration Registers  
(WRR), Program OTP space (OTPP), Write Enable (WREN), or Write Disable (WRDI) commands require that  
CS# be driven high at a byte boundary, otherwise the command is not executed. Since a byte is composed of  
eight bits, CS# must therefore be driven high when the number of clock pulses after CS# is driven low is an  
exact multiple of eight.  
The device ignores any attempt to access the memory array during a Write Registers, program, or erase  
operation, and continues the operation uninterrupted.  
The instruction set is listed in Table 9.1.  
22  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Table 9.1 Instruction Set  
Mode  
Bit  
Cycle  
Data  
Byte  
Cycle  
One byte Command  
Code  
Address  
Byte Cycle  
Dummy  
Byte Cycle  
Operation  
Command  
Description  
READ  
FAST_READ  
DOR  
(03h) 0000 0011  
(0Bh) 0000 1011  
(3Bh) 0011 1011  
(6Bh) 0110 1011  
(BBh) 1011 1011  
(EBh) 1110 1011  
(9Fh) 1001 1111  
(90h) 1001 0000  
(06h) 0000 0110  
(04h) 0000 0100  
(20h) 0010 0000  
(40h) 0100 0000  
(D8h) 1101 1000  
Read Data bytes  
3
3
3
3
3
3
0
3
0
0
3
3
3
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
2
0
0
0
0
0
0
0
1 to  
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
1 to 81  
1 to ∞  
0
Read Data bytes at Fast Speed  
Dual Output Read  
QOR  
Quad Output Read  
Read  
DIOR  
Dual I/O High Performance Read  
Quad I/O High Performance Read  
Read Identification  
QIOR  
RDID  
READ_ID  
WREN  
WRDI  
P4E  
Read Manufacturer and Device Identification  
Write Enable  
Write Control  
Erase  
Write Disable  
0
4 KB Parameter Sector Erase  
8 KB (two 4KB) Parameter Sector Erase  
64KB Sector Erase  
0
P8E  
0
SE  
0
(60h) 0110 0000 or  
(C7h) 1100 0111  
BE  
Bulk Erase  
0
0
0
0
PP  
(02h) 0000 0010  
(32h) 0011 0010  
(05h) 0000 0101  
(01h) 0000 0001  
(35h) 0011 0101  
Page Programming  
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
1 to 256  
1 to 256  
1 to ∞  
Program  
QPP  
RDSR  
WRR  
RCR  
Quad Page Programming  
Read Status Register  
Write (Status & Configuration) Register  
Read Configuration Register (CFG)  
1 to 2  
Status &  
Configuration  
Register  
1 to ∞  
Reset the Erase and Program Fail Flag (SR5 and  
SR6) and restore normal operation)  
CLSR  
DP  
(30h) 0011 0000  
0
0
0
0
(B9h) 1011 1001  
(ABh) 1010 1011  
Deep Power-Down  
0
0
0
0
0
0
0
0
Release from Deep Power-Down Mode  
Power Saving  
OTP  
RES  
Release from Deep Power-Down and Read  
Electronic Signature  
(ABh) 1010 1011  
0
0
3
1 to ∞  
OTPP  
OTPR  
(42h) 0100 0010  
(4Bh) 0100 1011  
Program one byte of data in OTP memory space  
Read data in the OTP memory space  
3
3
0
0
0
1
1
1 to ∞  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
23  
D a t a S h e e t  
9.1  
Read Data Bytes (READ)  
The Read Data Bytes (READ) command reads data from the memory array at the frequency (f ) presented at  
R
the SCK input, with a maximum speed of 40 MHz. The host system must first select the device by driving CS#  
low. The READ command is then written to SI, followed by a 3 byte address (A23-A0). Each bit is latched on  
the rising edge of SCK. The memory array data, at that address, are output serially on SO at a frequency f ,  
R
on the falling edge of SCK.  
Figure 9.1 and Table 9.1 on page 23 detail the READ command sequence. The first address byte specified  
can start at any location of the memory array. The device automatically increments to the next higher address  
after each byte of data is output. The entire memory array can therefore be read with a single READ  
command. When the highest address is reached, the address counter reverts to 00000h, allowing the read  
sequence to continue indefinitely.  
The READ command is terminated by driving CS# high at any time during data output. The device rejects any  
READ command issued while it is executing a program, erase, or Write Registers operation, and continues  
the operation uninterrupted.  
Figure 9.1 Read Data Bytes (READ) Command Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
28 29 30 31 32 33 34 35 36 37 38 39  
Mode 3  
SCK  
Mode 0  
Command  
24 Bit Address  
23 22 21  
2
0
1
3
SI  
MSB  
Data Out 1  
Data Out 2  
Hi-Z  
SO  
6
4
2
7
1 0  
7
5
3
MSB  
24  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
9.2  
Read Data Bytes at Higher Speed (FAST_READ)  
The FAST_READ command reads data from the memory array at the frequency (f ) presented at the SCK  
C
input, with a maximum speed of 104 MHz. The host system must first select the device by driving CS# low.  
The FAST_READ command is then written to SI, followed by a 3 byte address (A23-A0) and a dummy byte.  
Each bit is latched on the rising edge of SCK. The memory array data, at that address, are output serially on  
SO at a frequency f , on the falling edge of SCK.  
C
The FAST_READ command sequence is shown in Figure 9.2 and Table 9.1 on page 23. The first address  
byte specified can start at any location of the memory array. The device automatically increments to the next  
higher address after each byte of data is output. The entire memory array can therefore be read with a single  
FAST_READ command. When the highest address is reached, the address counter reverts to 000000h,  
allowing the read sequence to continue indefinitely.  
The FAST_READ command is terminated by driving CS# high at any time during data output. The device  
rejects any FAST_READ command issued while it is executing a program, erase, or Write Registers  
operation, and continues the operation uninterrupted.  
Figure 9.2 Read Data Bytes at Higher Speed (FAST_READ) Command Sequence  
CS#  
33  
0
1
2
5
6
7
8
9
29 30  
32  
38 39 40 41  
44 45 46  
42 43  
Mode 3  
31  
34 35 36 37  
3
4
10  
28  
47  
SCK  
Mode 0  
24 Bit Address  
Dummy Byte  
Command  
23  
3
2
22 21  
1
0
6
5
4
2
0
1
7
3
SI  
Hi-Z  
3
7
6
4
2
1
0
5
7
SO  
MSB  
MSB  
DATA OUT 1  
DATA OUT 2  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
25  
D a t a S h e e t  
9.3  
Dual Output Read Mode (DOR)  
The Dual Output Read instruction is similar to the FAST_READ instruction, except that the data is shifted out  
2 bits at a time using 2 pins (SI/IO0 and SO/IO1) instead of 1 bit, at a maximum frequency of 80 MHz. The  
Dual Output Read mode effectively doubles the data transfer rate compared to the FAST_READ instruction.  
The host system must first select the device by driving CS# low. The Dual Output Read command is then  
written to SI, followed by a 3-byte address (A23-A0) and a dummy byte. Each bit is latched on the rising edge  
of SCK. Then the memory contents, at the address that is given, are shifted out two bits at a time through the  
IO0 (SI) and IO1 (SO) pins at a frequency f on the falling edge of SCK.  
C
The Dual Output Read command sequence is shown in Figure 9.3 and Table 9.1 on page 23. The first  
address byte specified can start at any location of the memory array. The device automatically increments to  
the next higher address after each byte of data is output. The entire memory array can therefore be read with  
a single Dual Output Read command. When the highest address is reached, the address counter reverts to  
00000h, allowing the read sequence to continue indefinitely.  
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.  
The Dual Output Read command is terminated by driving CS# high at any time during data output. The  
device rejects any Dual Output Read command issued while it is executing a program, erase, or Write  
Registers operation, and continues the operation uninterrupted.  
Figure 9.3 Dual Output Read Instruction Sequence  
CS#  
0
1
2
5
6
7
8
9
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
3
4
10  
SCK  
24 Bit  
Address  
Instruction  
Dummy Byte  
SI Switches from Input to Output  
SI/IO0  
23 22 21  
6
3
2
1
0
7
*
6
5
4
3
2
1
0
6
4
2
0
6
4
5
2
0
1
*
Hi-Z  
3
5
3
1
7
7
*
7
*
SO/IO1  
Byte 1  
Byte 2  
*MSB  
26  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
9.4  
Quad Output Read Mode (QOR)  
The Quad Output Read instruction is similar to the FAST_READ instruction, except that the data is shifted out  
4 bits at a time using 4 pins (SI/IO0, SO/IO1, W#/ACC/IO2 and HOLD#/IO3) instead of 1 bit, at a maximum  
frequency of 80 MHz. The Quad Output Read mode effectively doubles the data transfer rate compared to the  
Dual Output Read instruction, and is four times the data transfer rate of the FAST_READ instruction.  
The host system must first select the device by driving CS# low. The Quad Output Read command is then  
written to SI, followed by a 3-byte address (A23-A0) and a dummy byte. Each bit is latched on the rising edge  
of SCK. Then the memory contents, at the address that are given, are shifted out four bits at a time through  
IO0 (SI), IO1 (SO), IO2 (W#/ACC), and IO3 (HOLD#) pins at a frequency f on the falling edge of SCK.  
C
The Quad Output Read command sequence is shown in Figure 9.4 and Table 9.1 on page 23. The first  
address byte specified can start at any location of the memory array. The device automatically increments to  
the next higher address after each byte of data is output. The entire memory array can therefore be read with  
a single Quad Output Read command. When the highest address is reached, the address counter reverts to  
00000h, allowing the read sequence to continue indefinitely.  
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.  
The Quad Output Read command is terminated by driving CS# high at any time during data output. The  
device rejects any Quad Output Read command issued while it is executing a program, erase, or Write  
Registers operation, and continues the operation uninterrupted.  
The Quad bit of Configuration Register must be set (CR Bit1 = 1) to enable the Quad mode capability of the  
S25FL device.  
Figure 9.4 Quad Output Read Instruction Sequence  
CS#  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
0
1
2
3
4
5
6
7
8
9 10  
SCK  
24 Bit  
Address  
Instruction  
Dummy Byte  
SI Switches from Input to Output  
SI/IO0  
3
2
1
0
7
6
5
4
3
1
0
23 22 21  
0
1
0
1
2
*
0
1
4
5
4
5
0
4
4
5
4
*
Hi-Z  
Hi-Z  
5
1
5
SO/IO1  
W#/ACC/IO2  
6
2
6
2
6
6
6
2
2
Hi-Z  
3
3
7
*
7
*
3
7
*
3
7
*
7
*
HOLD#/IO3  
DATA DATA DATA DATA  
OUT 1 OUT 2 OUT 3 OUT 4  
*MSB  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
27  
D a t a S h e e t  
9.5  
DUAL I/O High Performance Read Mode (DIOR)  
The Dual I/O High Performance Read instruction is similar to the Dual Output Read instruction, except that it  
improves throughput by allowing input of the address bits (A23-A0) using 2 bits per SCK via two input pins  
(SI/IO2 and SO/IO1), at a maximum frequency of 80 MHz.  
The host system must first select the device by driving CS# low. The Dual I/O High Performance Read  
command is then written to SI, followed by a 3-byte address (A23-A0) and a 1-byte Mode instruction, with two  
bits latched on the rising edge of SCK. Then the memory contents, at the address that is given, are shifted out  
two bits at a time through IO0 (SI) and IO1 (SO).  
The DUAL I/O High Performance Read command sequence is shown in Figure 9.5 and Table 9.1  
on page 23. The first address byte specified can start at any location of the memory array. The device  
automatically increments to the next higher address after each byte of data is output. The entire memory  
array can therefore be read with a single DUAL I/O High Performance Read command. When the highest  
address is reached, the address counter reverts to 00000h, allowing the read sequence to continue  
indefinitely.  
In addition, address jumps can be done without exiting the Dual I/O High Performance Mode through the  
setting of the Mode bits (after the Address (A23-0) sequence, as shown in Figure 9.5). This added feature  
removes the need for the instruction sequence and greatly improves code execution (XIP). The upper nibble  
(bits 7-4) of the Mode bits control the length of the next Dual I/O High Performance instruction through the  
inclusion or exclusion of the first byte instruction code. The lower nibble (bits 3-0) of the Mode bits are DON’T  
CARE (“x”). If the Mode bits equal Axh, then the device remains in Dual I/O High Performance Read Mode  
and the next address can be entered (after CS# is raised high and then asserted low) without requiring the  
BBh instruction opcode, as shown in Figure 9.6, thus eliminating eight cycles for the instruction sequence.  
However, if the Mode bits are any value other than Axh, then the next instruction (after CS# is raised high and  
then asserted low) requires the instruction sequence, which is normal operation. The following sequences will  
release the device from Dual I/O High Performance Read mode; after which, the device can accept standard  
SPI instructions:  
1. During the Dual I/O High Performance Instruction Sequence, if the Mode bits are any value other  
than Axh, then the next time CS# is raised high and then asserted low, the device will be released  
from Dual I/O High Performance Read mode.  
2. Furthermore, during any operation, if CS# toggles high to low to high for eight cycles (or less) and  
data input (IO0 & IO1) are not set for a valid instruction sequence, then the device will be released  
from Dual I/O High Performance Read mode.  
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.  
The read instruction can be terminated by driving the CS# pin to the logic high state. The CS# pin can be  
driven high at any time during data output to terminate a read operation.  
Figure 9.5 DUAL I/O High Performance Read Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
18 19 20 21 22 23 24 25 26 27 28 29 30 31  
SCK  
24 Bit  
Address  
Instruction  
IO0 & IO1 Switches from Input to Output  
2
2
6
4
5
6
2
6
4
5
6
4
5
0
1
0
1
20  
21  
2
0
1
22  
0
1
SI/IO0  
Hi-Z  
3
3
3
7
*
3
7
7
*
23  
7
*
SO/IO1  
*
*
Mode Bits  
Byte 1  
Byte 2  
*MSB  
28  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Figure 9.6 Continuous Dual I/O High Performance Read Instruction Sequence  
CS#  
SCK  
0
1
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
24 Bit  
Address  
IO0 & IO1 Switches from Input to Output  
22 20  
2
6
4
2
0
1
6
4
5
2
0
6
0
1
6
4
5
2
0
1
SI/IO0  
SO/IO1  
23  
7
*
21  
3
3
3
5
3
7
*
1
7
*
7
*
*
Byte 2  
*MSB  
Byte 1  
Mode Bits  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
29  
D a t a S h e e t  
9.6  
Quad I/O High Performance Read Mode (QIOR)  
The Quad I/O High Performance Read instruction is similar to the Quad Output Read instruction, except that  
it further improves throughput by allowing input of the address bits (A23-A0) using 4 bits per SCK via four  
input pins (SI/IO0, SO/IO1, W#/ACC/IO2 and HOLD#/IO3), at a maximum frequency of 80 MHz.  
The host system must first select the device by driving CS# low. The Quad I/O High Performance Read  
command is then written to SI, followed by a 3-byte address (A23-A0) and a 1-byte Mode instruction, with four  
bits latched on the rising edge of SCK. Note that four dummy clocks are required prior to the data input. Then  
the memory contents, at the address that is given, are shifted out four bits at a time through IO0 (SI), IO1  
(SO), IO2 (W#/ACC), and IO3 (HOLD#).  
The Quad I/O High Performance Read command sequence is shown in Figure 9.7 and Table 9.1 on page 23.  
The first address byte specified can start at any location of the memory array. The device automatically  
increments to the next higher address after each byte of data is output. The entire memory array can  
therefore be read with a single Quad I/O High Performance Read command. When the highest address is  
reached, the address counter reverts to 00000h, allowing the read sequence to continue indefinitely.  
In addition, address jumps can be done without exiting the Quad I/O High Performance Mode through the  
setting of the Mode bits (after the Address (A23-0) sequence, as shown in Figure 9.7). This added feature the  
removes the need for the instruction sequence and greatly improves code execution (XIP). The upper nibble  
(bits 7-4) of the Mode bits control the length of the next Quad I/O High Performance instruction through the  
inclusion or exclusion of the first byte instruction code. The lower nibble (bits 3-0) of the Mode bits are DON'T  
CARE (“x”). If the Mode bits equal Axh, then the device remains in Quad I/O High Performance Read Mode  
and the next address can be entered (after CS# is raised high and then asserted low) without requiring the  
EBh instruction opcode, as shown in Figure 9.8, thus eliminating eight cycles for the instruction sequence.  
The following sequences will release the device from Quad I/O High Performance Read mode; after which,  
the device can accept standard SPI instructions:  
1. During the Quad I/O High Performance Instruction Sequence, if the Mode bits are any value other  
than Axh, then the next time CS# is raised high and then asserted low the device will be released  
from Quad I/O High Performance Read mode.  
2. Furthermore, during any operation, if CS# toggles high to low to high for eight cycles (or less) and  
data input (IO0, IO1, IO2, & IO3) are not set for a valid instruction sequence, then the device will be  
released from Quad I/O High Performance Read mode.  
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.  
The read instruction can be terminated by driving the CS# pin to the logic high state. The CS# pin can be  
driven high at any time during data output to terminate a read operation.  
Figure 9.7 QUAD I/O High Performance Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
13 14 15 16 17 18 19 20 21 22 23 24 25 26  
SCK  
24 Bit  
Address  
Instruction  
IO’s Switches from Input to Output  
SI/IO0  
16  
0
1
0
4
20  
0
1
4
5
4
5
0
4
Hi-Z  
5
17  
18  
19  
1
5
6
21  
22  
1
2
3
SO/IO1  
Hi-Z  
Hi-Z  
W#/ACC/IO2  
6
2
6
2
6
2
7
7
3
3
3
7
HOLD#/IO3  
23  
7
*
*
*
*
*
DUMMY DUMMY  
Mode Bits  
Byte 1  
Byte 2  
*MSB  
30  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Figure 9.8 Continuous QUAD I/O High Performance Instruction Sequence  
CS#  
SCK  
0
1
4
5
6
7
8
9
10 11  
12 13 14 15 16  
24 Bit  
Address  
IO’s Switches from Input to Output  
16  
20  
SI/IO0  
0
0
4
0
4
4
5
0
1
4
5
17  
21  
22  
5
6
1
2
3
1
5
6
1
2
3
SO/IO1  
W#/ACC/IO2  
18  
6
2
6
2
7
7
*
3
3
HOLD#/IO3  
7
*
19  
7
23  
*
*
*
DUMMY  
DUMMY  
Mode Bits  
Byte 1  
Byte 2  
*MSB  
9.7  
Read Identification (RDID)  
The Read Identification (RDID) command outputs the one-byte manufacturer identification, followed by the  
two-byte device identification and the bytes for the Common Flash Interface (CFI) tables. The manufacturer  
identification is assigned by JEDEC; for Spansion devices, it is 01h. The device identification (2 bytes) and  
CFI bytes are assigned by the device manufacturer.  
See Table 9.2 on page 32 for device ID data.  
The Common Flash Interface (CFI) specification outlines device and host system software interrogation  
handshake, which allows vendor-specified software algorithms to be used for entire families of devices.  
Software support can then be device-independent, JEDEC ID-independent, and forward- and backward-  
compatible for the specified flash device families. Flash vendors can standardize their existing interfaces for  
long-term compatibility. The system can read CFI information at the addresses given in Table 9.3.  
The host system must first select the device by driving CS# low. The RDID command is then written to SI,  
and each bit is latched on the rising edge of SCK. One byte of manufacture identification, two bytes of device  
identification and sixty-six bytes of extended device identification are then output from the memory array on  
SO at a frequency f , on the falling edge of SCK. The maximum clock frequency for the RDID (9Fh)  
R
command is 50 MHz (Normal Read). The manufacturer ID and Device ID can be read repeatedly by applying  
multiples of 648 clock cycles. The manufacturer ID, Device ID and CFI table can be continuously read as long  
as CS# is held low with a clock input.  
The RDID command sequence is shown in Figure 9.9 and Table 9.1 on page 23.  
Driving CS# high after the device identification data has been read at least once terminates the RDID  
command. Driving CS# high at any time during data output (for example, while reading the extended CFI  
bytes), also terminates the RDID operation.  
The device rejects any RDID command issued while it is executing a program, erase, or Write Registers  
operation, and continues the operation uninterrupted.  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
31  
D a t a S h e e t  
Figure 9.9 Read Identification (RDID) Command Sequence and Data-Out Sequence  
Table 9.2 Manufacturer & Device ID - RDID (JEDEC 9Fh):  
Manuf.  
ID  
# Extended  
bytes  
Device Id  
Device  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
S25FL032P SPI Flash  
01h  
02h  
15h  
4Dh  
Notes  
1. Byte 0 is Manufacturer ID of Spansion.  
2. Byte 1 & 2 is Device Id.  
3. Byte 3 is Extended Device Information String Length, to indicate how many Extended Device Information bytes will follow.  
4. Bytes 4, 5 and 6 are Spansion reserved (do not use).  
5. For Bytes 07h-0Fh and 3Dh-3Fh, the data will be read as 0xFF.  
6. Bytes 10h-50h are factory programmed per JEDEC standard.  
Table 9.3 Product Group CFI Query Identification String  
Byte  
Data  
Description  
10h  
11h  
12h  
51h  
52h  
59h  
Query Unique ASCII string “QRY”  
13h  
14h  
02h  
00h  
Primary OEM Command Set  
15h  
16h  
40h  
00h  
Address for Primary Extended Table  
17h  
18h  
00h  
00h  
Alternate OEM Command Set  
(00h = none exists)  
19h  
1Ah  
00h  
00h  
Address for Alternate OEM Extended Table  
(00h = none exists)  
Table 9.4 Product Group CFI System Interface String  
Byte  
Data  
Description  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
27h  
36h  
00h  
00h  
0Bh  
V
CC Min. (erase/program): (D7-D4: Volt, D3-D0: 100 mV)  
VCC Max. (erase/program): (D7-D4: Volt, D3-D0: 100 mV)  
PP Min. voltage (00h = no VPP pin present)  
V
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte program 2N µs  
Typical timeout for Min. size Page program 2N µs  
(00h = not supported)  
20h  
21h  
0Bh  
09h  
Typical timeout per individual sector erase 2N ms  
32  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Table 9.4 Product Group CFI System Interface String  
22h  
23h  
24h  
25h  
0Fh  
01h  
01h  
02h  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte program 2N times typical  
Max. timeout for page program 2N times typical  
Max. timeout per individual sector erase 2N times typical  
Max. timeout for full chip erase 2N times typical  
(00h = not supported)  
26h  
01h  
Table 9.5 Product Group CFI Device Geometry Definition  
Byte  
27h  
28h  
Data  
16h  
05h  
Description  
Device Size = 2 N byte;  
Flash Device Interface Description;  
00h = x8 only  
01h = x16 only  
02h = x8/x16 capable  
29h  
05h  
03h = x32 only  
04h = Single I/O SPI, 3-byte address  
05h = Multi I/O SPI, 3-byte address  
Max. number of bytes in multi-byte write = 2N  
(00 = not supported)  
2Ah  
2Bh  
08h  
00h  
Number of Erase Block Regions within device  
1 = Uniform Device, 2 = Parameter Block  
2Ch  
02h  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
1Fh  
00h  
10h  
00h  
3Dh  
00h  
00h  
01h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
Erase Block Region 1 Information (refer to CFI publication 100)  
Erase Block Region 2 Information (refer to CFI publication 100)  
Erase Block Region 3 Information (refer to CFI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
33  
D a t a S h e e t  
Table 9.6 Product Group CFI Primary Vendor-Specific Extended Query  
Byte  
40h  
41h  
42h  
43h  
44h  
Data  
50h  
52h  
49h  
31h  
33h  
Description  
Query-unique ASCII string “PRI”  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
00b = Required, 01b = Not Required  
Process Technology (Bits 5-2)  
0000b = 0.23 µm Floating Gate  
0001b = 0.17 µm Floating Gate  
0010b = 0.23 µm MirrorBit  
45h  
15h  
0010b = 0.20 µm MirrorBit  
0011b = 0.11 µm Floating Gate  
0100b = 0.11 µm MirrorBit  
0101b = 0.09 µm MirrorBit  
1000b = 0.065 µm MirrorBit  
Erase Suspend  
0 = Not Supported, 1 = Read Only, 2 = Read & Write  
46h  
47h  
48h  
00h  
01h  
00h  
Sector Protect  
00 = Not Supported, X = Number of sectors in per smallest group  
Temporary Sector Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect Scheme  
04 = High Voltage Method  
05 = Software Command Locking Method  
08 = Advanced Sector Protection Method  
49h  
05h  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors outside Bank 1  
4Ah  
4Bh  
00h  
01h  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
4Ch  
03h  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page,  
03 = 256 Byte Page  
ACC (Acceleration) Supply Minimum  
00 = Not Supported, (D7-D4: Volt, D3-D0: 100 mV)  
4Dh  
4Eh  
4Fh  
50h  
85h  
95h  
07h  
00h  
ACC (Acceleration) Supply Maximum  
00 = Not Supported, (D7-D4: Volt, D3-D0: 100 mV)  
W# Protection  
07 = Uniform Device with Top or Bottom Write Protect (user select)  
Program Suspend  
00 = Not Supported, 01 = Supported  
Note  
CFI data related to VCC and time-outs may differ from actual VCC and time-outs of the product. Please consult the Ordering Information  
tables to obtain the VCC range for particular part numbers. Please consult the AC Characteristics on page 57 for typical timeout  
specifications.  
34  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
9.8  
Read-ID (READ_ID)  
The READ_ID instruction provides the S25FL032P manufacturer and device information and is provided as  
an alternative to the Release from Deep Power-Down and Read Electronic Signature (RES), and the JEDEC  
Read Identification (RDID) commands.  
The instruction is initiated by driving the CS# pin low and shifting in (via the SI input pin) the instruction code  
“90h” followed by a 24-bit address (which is either 00000h or 00001h). Following this, the Manufacturer ID  
and the Device ID are shifted out on the SO output pin starting after the falling edge of the SCK serial clock  
input signal. If the 24-bit address is set to 000000h, the Manufacturer ID is read out first followed by the  
Device ID. If the 24-bit address is set to 000001h, then the Device ID is read out first followed by the  
Manufacturer ID. The Manufacturer ID and the Device ID are always shifted out on the SO output pin with the  
MSB first, as shown in Figure 10-14. Once the device is in Read-ID mode, the Manufacturer ID and Device ID  
output data toggles between address 000000H and 000001H until terminated by a low to high transition on  
the CS# input pin. The maximum clock frequency for the Read-ID (90h) command is at 104 MHz  
(FAST_READ). The Manufacturer ID & Device ID is output continuously until terminated by a low to high  
transition on CS# chip select input pin.  
Figure 9.10 Read-ID (RDID) Command Timing Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
Instruction  
24-Bit Address  
SI  
23  
21  
2
22  
3
1
0
MSB  
Manufacture Identification  
Device Identification  
High Impedance  
7
6
5
4
3
2
1
SO  
0
Table 9.7 READ_ID Data-Out Sequence  
Address  
00000h  
00001h  
Uniform  
01h  
Manufacturer Identification  
Device Identification  
15h  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
35  
D a t a S h e e t  
9.9  
Write Enable (WREN)  
The Write Enable (WREN) command (see Figure 9.11) sets the Write Enable Latch (WEL) bit to a 1, which  
enables the device to accept a Write Status Register, program, or erase command. The WEL bit must be set  
prior to every Page Program (PP), Quad Page Program (QPP), Parameter Sector Erase (P4E, P8E), Erase  
(SE or BE), Write Registers (WRR) and OTP Program (OTPP) command.  
The host system must first drive CS# low, write the WREN command, and then drive CS# high.  
Figure 9.11 Write Enable (WREN) Command Sequence  
CS#  
6
7
0
1
2
3
4
5
Mode 3  
SCK  
SI  
Mode 0  
Command  
Hi-Z  
SO  
9.10 Write Disable (WRDI)  
The Write Disable (WRDI) command (see Figure 9.12) resets the Write Enable Latch (WEL) bit to a 0, which  
disables the device from accepting a Page Program (PP), Quad Page Program (QPP), Parameter Sector  
Erase (P4E, P8E), Erase (SE, BE), Write Registers (WRR) and OTP Program (OTPP) command. The host  
system must first drive CS# low, write the WRDI command, and then drive CS# high.  
Any of following conditions resets the WEL bit:  
Power-up  
Write Disable (WRDI) command completion  
Write Registers (WRR) command completion  
Page Program (PP) command completion  
Quad Page Program (QPP) completion  
Parameter Sector Erase (P4E, P8E) completion  
Sector Erase (SE) command completion  
Bulk Erase (BE) command completion  
OTP Program (OTPP) completion  
Figure 9.12 Write Disable (WRDI) Command Sequence  
CS#  
0
3
4
7
6
1 2  
5
Mode 3  
SCK  
SI  
Mode 0  
Command  
Hi-Z  
SO  
36  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
9.11 Read Status Register (RDSR)  
The Read Status Register (RDSR) command outputs the state of the Status Register bits. Table 9.8 shows  
the status register bits and their functions. The RDSR command may be written at any time, even while a  
program, erase, or Write Registers operation is in progress. The host system should check the Write In  
Progress (WIP) bit before sending a new command to the device if an operation is already in progress.  
Figure 9.13 shows the RDSR command sequence, which also shows that it is possible to read the Status  
Register continuously until CS# is driven high. The maximum clock frequency for the RDSR command is  
104 MHz.  
Table 9.8 S25FL032P Status Register  
Bit  
Status Register Bit  
Bit Function  
Description  
1 = Protects when W#/ACC is low  
7
SRWD  
Status Register Write Disable  
0 = No protection, even when W#/ACC is low  
0 = No Error  
6
5
P_ERR  
E_ERR  
Programming Error Occurred  
Erase Error Occurred  
1 = Error occurred  
0 = No Error  
1 = Error occurred  
4
3
2
BP2  
BP1  
BP0  
Block Protect  
Protects selected Block from Program or Erase  
1 = Device accepts Write Registers, program or erase commands  
0 = Ignores Write Registers, program or erase commands  
1
0
WEL  
WIP  
Write Enable Latch  
Write in Progress  
1 = Device Busy a Write Registers, program or erase operation is in  
progress  
0 = Ready. Device is in standby mode and can accept commands.  
Figure 9.13 Read Status Register (RDSR) Command Sequence  
CS#  
SCK  
7
0
2
3
4
5
6
9
11  
12 13 14  
15  
1
8
10  
Mode 3  
Mode 0  
Command  
SI  
Hi-Z  
SO  
6
4
2
6
5
7
5
3
1
0
4
2
7
0
7
3
1
MSB  
MSB  
Status Register Out  
Status Register Out  
The following describes the status and control bits of the Status Register.  
Write In Progress (WIP) bit: Indicates whether the device is busy performing a Write Registers, program, or  
erase operation. This bit is read-only, and is controlled internally by the device. If WIP is 1, one of these  
operations is in progress; if WIP is 0, no such operation is in progress. This bit is a Read-only bit.  
Write Enable Latch (WEL) bit: Determines whether the device will accept and execute a Write Registers,  
program, or erase command. When set to 1, the device accepts these commands; when set to 0, the device  
rejects the commands. This bit is set to 1 by writing the WREN command, and set to 0 by the WRDI  
command, and is also automatically reset to 0 after the completion of a Write Registers, program, or erase  
operation, and after a power down/power up sequence. WEL cannot be directly set by the WRR command.  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
37  
D a t a S h e e t  
Block Protect (BP2, BP1, BP0) bits: Define the portion of the memory area that will be protected against  
any changes to the stored data. The Block Protection (BP2, BP1, BP0) bits are either volatile or non-volatile,  
depending on the state of the non-volatile bit BPNV in the Configuration register. The Block Protection (BP2,  
BP1, BP0) bits are written with the Write Registers (WRR) instruction. When one or more of the Block Protect  
(BP2, BP1, BP0) bits is set to 1’s, the relevant memory area is protected against Page Program (PP),  
Parameter Sector Erase (P4E, P8E), Sector Erase (SE), Quad Page Programming (QPP) and Bulk Erase  
(BE) instructions. If the Hardware Protected mode is enabled, BP2:BP0 cannot be changed.  
The Bulk Erase (BE) instruction can be executed only when the Block Protection (BP2, BP1, BP0) bits are set  
to 0’s.  
The default condition of the BP2-0 bits is binary 000 (all 0’s).  
Erase Error bit (E_ERR): The Erase Error Bit is used as a Erase operation success and failure check. When  
the Erase Error bit is set to a “1”, it indicates that there was an error which occurred in the last erase  
operation. With the Erase Error bit set to a “1”, this bit is reset with the Clear Status Register (CLSR)  
command.  
Program Error bit (P_ERR): The Program Error Bit is used as a Program operation success and failure  
check. When the Program Error bit is set to a “1”, it indicates that there was an error which occurred in the last  
program operation. With the Program Error bit set to a “1”, this bit is reset with the Clear Status Register  
(CLSR) command.  
Status Register Write Disable (SRWD) bit: Provides data protection when used together with the Write  
Protect (W#/ACC) signal. The Status Register Write Disable (SRWD) bit is operated in conjunction with the  
Write Protect (W#/ACC) input pin. The Status Register Write Disable (SRWD) bit and the Write Protect (W#/  
ACC) signal allow the device to be put in the Hardware Protected mode. With the Status Register Write  
Disable (SRWD) bit set to a “1” and the W#/ACC driven to the logic low state, the device enters the Hardware  
Protected mode; the non-volatile bits of the Status Register (SRWD, BP2, BP1, BP0) and the nonvolatile bits  
of the Configuration Register (TBPARM, TBPROT, BPNV and QUAD) become read-only bits and the Write  
Registers (WRR) instruction opcode is no longer accepted for execution.  
Note: the P_ERR and E_ERR bits will not be set to a 1 if the application writes to a protected memory area.  
9.12 Read Configuration Register (RCR)  
The Read Configuration Register (RCR) instruction opcode allows the Configuration Register contents to be  
read out of the SO serial output pin. The Configuration Register contents may be read at any time, even while  
a program, erase, or write cycle is in progress. When one of these cycles is in progress, it is recommended to  
the user to check the Write In Progress (WIP) bit of the Status Register before issuing a new instruction  
opcode to the device. The Configuration Register originally shows 00h when the device is first shipped from  
the factory to the customer. Refer to Section 7.8 on page 16 for more details.  
Figure 9.14 Read Configuration Register (RCR) Instruction Sequence  
CS#  
SCK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
Instruction  
SI  
Configuration Register Out  
Configuration Register Out  
High Impedance  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
SO  
MSB  
MSB  
MSB  
38  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
9.13 Write Registers (WRR)  
The Write Registers (WRR) command allows changing the bits in the Status and Configuration Registers. A  
Write Enable (WREN) command, which itself sets the Write Enable Latch (WEL) in the Status Register, is  
required prior to writing the WRR command. Table 9.8 shows the status register bits and their functions.  
The host system must drive CS# low, then write the WRR command and the appropriate data byte on SI  
Figure 9.15.  
The WRR command cannot change the state of the Write Enable Latch (bit 1). The WREN command must be  
used for that purpose.  
The Status Register consists of one data byte in length; similarly, the Configuration Register is also one data  
byte in length. The CS# pin must be driven to the logic low state during the entire duration of the sequence.  
The WRR command also controls the value of the Status Register Write Disable (SRWD) bit. The SRWD bit  
and W#/ACC pin together place the device in the Hardware Protected Mode (HPM). The device ignores all  
WRR commands once it enters the Hardware Protected Mode (HPM). Table 9.9 shows that W#/ACC must be  
driven low and the SRWD bit must be 1 for this to occur.  
The Write Registers (WRR) instruction has no effect on the P/E Error and the WIP bits of the Status &  
Configuration Registers. Any bit reserved for the future is always read as a ‘0’  
The CS# chip select input pin must be driven to the logic high state after the eighth (see Figure 9.15) or  
sixteenth (see Figure 9.16) bit of data has been latched in. If not, the Write Registers (WRR) instruction is not  
executed. If CS# is driven high after the eighth cycle then only the Status Register is written to; otherwise,  
after the sixteenth cycle both the Status and Configuration Registers are written to. As soon as the CS# chip  
select input pin is driven to the logic high state, the self-timed Write Registers cycle is initiated. While the  
Write Registers cycle is in progress, the Status Register may still be read to check the value of the Write In  
Progress (WIP) bit. The Write In Progress (WIP) bit is a ‘1’ during the self-timed Write Registers cycle, and is  
a ‘0’ when it is completed. When the Write Registers cycle is completed, the Write Enable Latch (WEL) is set  
to a ‘0’. The WRR command can operate at a maximum clock frequency of 104 MHz.  
Figure 9.15 Write Registers (WRR) Instruction Sequence – 8 data bits  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCK  
Instruction  
Status Register In  
SI  
7
6
5
4
3
2
1
0
MSB  
High Impedance  
SO  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
39  
D a t a S h e e t  
Figure 9.16 Write Registers (WRR) Instruction Sequence – 16 data bits  
CSS#  
SCK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
Status Register In  
14 15  
16 17 18 19 20 21  
Configuration Register In  
22  
23  
Instruction  
7
6
5
4
3
2
1
0
SI  
7
6
5
4
3
2
1
0
MSB  
MSB  
High Impedance  
SO  
Table 9.9 Protection Modes  
Memory Content  
W#/  
ACC  
SRWD  
Bit  
Mode  
Write Protection of Registers  
Protected Area  
Unprotected Area  
1
1
1
0
Status & Configuration Registers are Writable  
(if WREN instruction has set the WEL bit). The  
values in the SRWD, BP2, BP1, & BP0 bits &  
those in the Configuration Register can be  
changed  
Protected against Page  
Program, Parameter  
Sector Erase, Sector  
Erase, and Bulk Erase  
Ready to accept Page  
Program, Parameter  
Sector Erase, & Sector  
Erase instructions  
Software  
Protected  
(SPM)  
0
0
Status & Configuration Registers are Hardware Protected against Page  
Ready to accept Page  
Program, Parameter  
Sector Erase, Sector  
Erase instructions  
Hardware  
Protected  
(HPM)  
Write Protected. The values in the SRWD,  
BP2, BP1, & BP0 bits & those in the  
Program, Parameter  
Sector Erase, Sector  
Erase, and Bulk Erase  
0
1
Configuration Register cannot be changed  
Note  
As defined by the values in the Block Protect (BP2, BP1, BP0) bits of the Status Register, as shown in Table 7.3 on page 18.  
Table 9.9 shows that neither W#/ACC or SRWD bit by themselves can enable HPM. The device can enter  
HPM either by setting the SRWD bit after driving W#/ACC low, or by driving W#/ACC low after setting the  
SRWD bit. However, the device disables HPM only when W#/ACC is driven high.  
Note that HPM only protects against changes to the status register. Since BP2:BP0 cannot be changed in  
HPM, the size of the protected area of the memory array cannot be changed. Note that HPM provides no  
protection to the memory array area outside that specified by BP2:BP0 (Software Protected Mode, or SPM).  
If W#/ACC is permanently tied high, HPM can never be activated, and only the SPM (BP2:BP0 bits of the  
Status Register) can be used.  
The Status and Configuration registers originally default to 00h, when the device is first shipped from the  
factory to the customer.  
Note: HPM is disabled when the Quad I/O Mode is enabled (Quad bit = 1 in the Configuration Register).  
W# becomes IO2; therefore, HPM cannot be utilized.  
40  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
9.14 Page Program (PP)  
The Page Program (PP) command changes specified bytes in the memory array (from 1 to 0 only). A WREN  
command is required prior to writing the PP command.  
The host system must drive CS# low, and then write the PP command, three address bytes, and at least one  
data byte on SI. If the 8 least significant address bits (A7-A0) are not all zero, all transmitted data that goes  
beyond the end of the currently selected page are programmed from the starting address of the same page  
(from the address whose 8 least significant bits are all zero). CS# must be driven low for the entire duration of  
the PP sequence. The command sequence is shown in Figure 9.17 and Table 9.1 on page 23.  
The device programs only the last 256 data bytes sent to the device. If the 8 least significant address bits (A7-  
A0) are not all zero, all transmitted data that goes beyond the end of the currently selected page are  
programmed from the starting address of the same page (from the address whose 8 least significant bits are  
all zero). If fewer than 256 data bytes are sent to device, they are correctly programmed at the requested  
addresses without having any effect on the other bytes in the same page.  
The host system must drive CS# high after the device has latched the 8th bit of the data byte, otherwise the  
device does not execute the PP command. The PP operation begins as soon as CS# is driven high. The  
device internally controls the timing of the operation, which requires a period of t . The Status Register may  
PP  
be read to check the value of the Write In Progress (WIP) bit while the PP operation is in progress. The WIP  
bit is 1 during the PP operation, and is 0 when the operation is completed. The device internally resets the  
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).  
The device does not execute a Page Program (PP) command that specifies a page that is protected by the  
Block Protect bits (BP2:BP0) (see Table 7.3 on page 18).  
Figure 9.17 Page Program (PP) Command Sequence  
CS#  
5
8
34  
37 38 39  
35 36  
0
2
4
6
7
10  
28 32 33  
29 30 31  
1
3
9
Mode 3  
Mode 0  
SCK  
SI  
24 Bit Address  
22 21  
Data Byte 1  
Command  
4
3
2
3
2
1
0
7
6
5
1
0
23  
MSB  
MSB  
CS#  
SCK  
53 54 55  
52  
49 50 51  
46  
44 45  
40  
47 48  
41 42 43  
Data Byte 2  
Data Byte 3  
Data Byte 256  
0
7
6
0
1
7
MSB  
7
6
5
4
3
2
1
0
6
5
4
3
2
1
5
4
3
2
SI  
MSB  
MSB  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
41  
D a t a S h e e t  
9.15 QUAD Page Program (QPP)  
The Quad Page Program instruction is similar to the Page Program instruction, except that the Quad Page  
Program (QPP) instruction allows up to 256 bytes of data to be programmed at previously erased (FFh)  
memory locations using four pins: IO0 (SI), IO1 (SO), IO2 (W#/ACC), and IO3 (HOLD#), instead of just one  
pin (SI) as in the case of the Page Program (PP) instruction. This effectively increases the data transfer rate  
by up to four times, as compared to the Page Program (PP) instruction. The QPP feature can improve  
performance for PROM Programmer and applications that have slow clock speeds < 5 MHz. Systems with  
faster clock speed will not realize much benefit for the QPP instruction since the inherent page program time  
is much greater than the time it take to clock-in the data.  
To use QPP, the Quad Enable Bit in the Configuration Register must be set (QUAD = 1). A Write Enable  
instruction must be executed before the device will accept the Quad Page Program instruction (Status  
Register-1, WEL = 1). The instruction is initiated by driving the CS# pin low then shifting the instruction code  
“32h” followed by a 24 bit address (A23-A0) and at least one data byte, into the IO pins. The CS# pin must be  
held low for the entire length of the instruction while data is being sent to the device. All other functions of  
Quad Input Page Program are identical to standard Page Program. The QPP instruction sequence is shown  
below.  
Figure 9.18 QUAD Page Program Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCK  
24 Bit  
Address  
Instruction  
3
2
0
1
SI/IO0  
0
4
5
6
1
0
4
5
4
5
6
22 21  
0
1
0
1
23  
4
5
*
1
2
3
SO/IO1  
W#/ACC/IO2  
2
6
6
2
2
3
7
7
*
3
3
7
*
HOLD#/IO3  
7
*
*
Byte 1 Byte 2  
Byte 3  
Byte 4  
CS#  
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  
SCK  
SI/IO0  
0
0
0
0
4
5
4
5
0
0
0
4
5
4
5
4
5
4
5
0
4
5
0
0
0
4
5
4
5
4
5
4
5
0
4
5
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
SO/IO1  
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
W#/ACC/IO2  
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
*
7
7
7
7
7
7
7
HOLD#/IO3  
7
*
*
*
*
*
*
*
*
*
*
*
Byte 5  
Byte 6  
Byte 7  
Byte 8 Byte 9 Byte 10 Byte 11 Byte 12  
Byte 253 Byte 254 Byte 255 Byte 256  
*MSB  
42  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
9.16 Parameter Sector Erase (P4E, P8E)  
The Parameter Sector Erase (P4E, P8E) command sets all bits at all addresses within a specified sector to a  
logic 1 (FFh). A WREN command is required prior to writing the Parameter Sector Erase commands.  
The host system must drive CS# low, and then write the P4E or P8E command, plus three address bytes on  
SI. Any address within the sector (see Table 8.1 on page 20 and Table 8.2 on page 21) is a valid address for  
the P4E or P8E command. CS# must be driven low for the entire duration of the P4E/P8E sequence. The  
command sequence is shown in Figure 9.19 and Table 9.1 on page 23.  
The host system must drive CS# high after the device has latched the 24th bit of the P4E/P8E address,  
otherwise the device does not execute the command. The parameter sector erase operation begins as soon  
as CS# is driven high. The device internally controls the timing of the operation, which requires a period of  
t
. The Status Register may be read to check the value of the Write In Progress (WIP) bit while the  
SE  
parameter sector erase operation is in progress. The WIP bit is 1 during the P4E/P8E operation, and is 0  
when the operation is completed. The device internally resets the Write Enable Latch to 0 before the  
operation completes (the exact timing is not specified).  
A Parameter Sector Erase (P4E, P8E) instruction applied to a sector that has been Write Protected through  
the Block Protect Bits will not be executed.  
The Parameter Sector Erase Command (P8E) erases two of the 4 KB Sectors in selected address space.  
The Parameter Sector Erase Command (P8E) erases two sequential 4 KB Parameter Sectors in the selected  
address space. The address LSB is disregarded so that two sequential 4 KB Parameter Sectors are erased.  
The 24 Bit Address is any location within the first Sector to be erased (n), and the next sequential 4 KB  
Parameter Sector will also be erased (n+1). The 4 KB parameter Sector will only be erased properly if n or  
n+1 is a valid 4 KB parameter Sector. i.e. If n is not a valid 4K parameter Sector, then it will not be erased. If  
n+1 is not a valid 4 KB parameter Sector, then it will not be erased.  
Figure 9.19 Parameter Sector Erase (P4E, P8E) Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
SCK  
SI  
Instruction  
24 Bit Address  
23  
3
2
1
0
22 21  
20h or 40h  
MSB  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
43  
D a t a S h e e t  
9.17 Sector Erase (SE)  
The Sector Erase (SE) command sets all bits at all addresses within a specified sector to a logic 1. A WREN  
command is required prior to writing the SE command.  
The host system must drive CS# low, and then write the SE command plus three address bytes on SI. Any  
address within the sector (see Table 7.3 on page 18) is a valid address for the SE command. CS# must be  
driven low for the entire duration of the SE sequence. The command sequence is shown in Figure 9.20 and  
Table 9.1 on page 23.  
The host system must drive CS# high after the device has latched the 24th bit of the SE address, otherwise  
the device does not execute the command. The SE operation begins as soon as CS# is driven high. The  
device internally controls the timing of the operation, which requires a period of t . The Status Register may  
SE  
be read to check the value of the Write In Progress (WIP) bit while the SE operation is in progress. The WIP  
bit is 1 during the SE operation, and is 0 when the operation is completed. The device internally resets the  
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).  
The device only executes a SE command if all Block Protect bits (BP2:BP0) are 0 (see Table 7.3  
on page 18). Otherwise, the device ignores the command.  
Figure 9.20 Sector Erase (SE) Command Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
Mode 3  
SCK  
Mode 0  
Command  
24 bit Address  
1
SI  
23 22 21  
MSB  
3
2
0
Hi-Z  
SO  
44  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
9.18 Bulk Erase (BE)  
The Bulk Erase (BE) command sets all the bits within the entire memory array to logic 1s. A WREN command  
is required prior to writing the BE command.  
The host system must drive CS# low, and then write the BE command on SI. CS# must be driven low for the  
entire duration of the BE sequence. The command sequence is shown in Figure 9.21 and Table 9.1  
on page 23.  
The host system must drive CS# high after the device has latched the 8th bit of the CE command, otherwise  
the device does not execute the command. The BE operation begins as soon as CS# is driven high. The  
device internally controls the timing of the operation, which requires a period of t . The Status Register may  
BE  
be read to check the value of the Write In Progress (WIP) bit while the BE operation is in progress. The WIP  
bit is 1 during the BE operation, and is 0 when the operation is completed. The device internally resets the  
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).  
The device only executes a BE command if all Block Protect bits (BP2:BP0) are 0 (see Table 7.3  
on page 18). Otherwise, the device ignores the command.  
Figure 9.21 Bulk Erase (BE) Command Sequence  
CS#  
Mode 3  
0
1
2
3
4
5
6
7
SCK  
Mode 0  
Command  
SI  
Hi-Z  
SO  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
45  
D a t a S h e e t  
9.19 Deep Power-Down (DP)  
The Deep Power-Down (DP) command provides the lowest power consumption mode of the device. It is  
intended for periods when the device is not in active use, and ignores all commands except for the Release  
from Deep Power-Down (RES) command. The DP mode therefore provides the maximum data protection  
against unintended write operations. The standard standby mode, which the device goes into automatically  
when CS# is high (and all operations in progress are complete), should generally be used for the lowest  
power consumption when the quickest return to device activity is required.  
The host system must drive CS# low, and then write the DP command on SI. CS# must be driven low for the  
entire duration of the DP sequence. The command sequence is shown in Figure 9.22 and Table 9.1  
on page 23.  
The host system must drive CS# high after the device has latched the 8th bit of the DP command, otherwise  
the device does not execute the command. After a delay of t the device enters the DP mode and current  
DP,  
reduces from I to I (see Table 16.1 on page 56).  
SB  
DP  
Once the device has entered the DP mode, all commands are ignored except the RES command (which  
releases the device from the DP mode). The RES command also provides the Electronic Signature of the  
device to be output on SO, if desired (see Section 9.20 and 9.20.1).  
DP mode automatically terminates when power is removed, and the device always powers up in the standard  
standby mode. The device rejects any DP command issued while it is executing a program, erase, or Write  
Registers operation, and continues the operation uninterrupted.  
Figure 9.22 Deep Power-Down (DP) Command Sequence  
CS#  
t
DP  
0
1
2
3
4
5
6
7
Mode 3  
SCK  
Mode 0  
Command  
SI  
Hi-Z  
SO  
Standby Mode  
Deep Power-down Mode  
46  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
9.20 Release from Deep Power-Down (RES)  
The device requires the Release from Deep Power-Down (RES) command to exit the Deep Power-Down  
mode. When the device is in the Deep Power-Down mode, all commands except RES are ignored.  
The host system must drive CS# low and write the RES command to SI. CS# must be driven low for the entire  
duration of the sequence. The command sequence is shown in Figure 9.23 and Table 9.1 on page 23.  
The host system must drive CS# high t  
after the 8-bit RES command byte. The device transitions  
RES(max)  
from DP mode to the standby mode after a delay of t  
can execute any read or write command.  
(see Figure 18.1). In the standby mode, the device  
RES  
Note: The RES command does not reset the Write Enable Latch (WEL) bit.  
Figure 9.23 Release from Deep Power-Down (RES) Command Sequence  
CS#  
7
0
2
3
5
1
4
6
Mode 3  
SCK  
Mode 0  
tRES  
Command  
SI  
Hi-Z  
SO  
Deep Power-down Mode  
Standby Mode  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
47  
D a t a S h e e t  
9.20.1  
Release from Deep Power-Down and Read Electronic Signature (RES)  
The device features an 8-bit Electronic Signature, which can be read using the RES command. See  
Figure 9.24 and Table 9.1 on page 23 for the command sequence and signature value. The Electronic  
Signature is not to be confused with the identification data obtained using the RDID command. The device  
offers the Electronic Signature so that it can be used with previous devices that offered it; however, the  
Electronic Signature should not be used for new designs, which should read the RDID data instead.  
After the host system drives CS# low, it must write the RES command followed by 3 dummy bytes to SI (each  
bit is latched on SI during the rising edge of SCK). The Electronic Signature is then output on SO; each bit is  
shifted out on the falling edge of SCK. The RES operation is terminated by driving CS# high after the  
Electronic Signature is read at least once. Additional clock cycles on SCK with CS# low cause the device to  
output the Electronic Signature repeatedly.  
When CS# is driven high, the device transitions from DP mode to the standby mode after a delay of t  
, as  
RES  
previously described. The RES command always provides access to the Electronic Signature of the device  
and can be applied even if DP mode has not been entered.  
Any RES command issued while an erase, program, or Write Registers operation is in progress not executed,  
and the operation continues uninterrupted.  
Figure 9.24 Release from Deep Power-Down and RES Command Sequence  
CS#  
2
28 29 30  
31 32 33 34  
1
8
36 37  
35  
9
38 39  
0
3
4
5
6
7
10  
SCK  
t
RES  
3 Dummy Bytes  
Command  
SI  
3
1
0
2
23 22  
MSB  
21  
Electronic ID  
Hi-Z  
7
6
5
4
3
2
1
0
SO  
MSB  
Deep Power-Down Mode  
Standby Mode  
9.21 Clear Status Register (CLSR)  
The Clear Status Register command resets bit SR5 (Erase Fail Flag) and bit SR6 (Program Fail Flag). It is not  
necessary to set the WEL bit before the Clear SR Fail Flags command is executed. The WEL bit will be  
unchanged after this command is executed. This command also resets the State machine and loads latches  
Figure 9.25 Clear Status Register (CLSR) Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
SCK  
SI  
Instruction  
48  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
9.22 OTP Program (OTPP)  
The OTP Program command programs data in the OTP region, which is in a different address space from the  
main array data. Refer to, OTP Regions on page 50 for details on the OTP region. The protocol of the OTP  
Program command is the same as the Page Program command, except that the OTP Program command  
requires exactly one byte of data; otherwise, the command will be ignored. To program the OTP in bit  
granularity, the rest of the bits within the data byte can be set to “1”.  
The OTP memory space can be programmed one or more times, provided that the OTP memory space is not  
locked (as described in “Locking OTP Regions”). Subsequent OTP programming can be performed only on  
the unprogrammed bits (that is, “1” data).  
Note: The Write Enable (WREN) command must precede the OTPP command before programming of the  
OTP can occur.  
Figure 9.26 OTP Program Instruction Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCK  
SI  
24 Bit  
Instruction  
Data Byte 1  
Address  
23 22 21  
MSB  
3
2
1
0
7
6
5
4
3
2
1
0
MSB  
9.23 Read OTP Data Bytes (OTPR)  
The Read OTP Data Bytes command reads data from the OTP region. Refer to “OTP Regions” for details on  
the OTP region. The protocol of the Read OTP Data Bytes command is the same as the Fast Read Data  
Bytes command except that it will not wrap to the starting address after the OTP address is at its maximum;  
instead, the data will be indeterminate.  
Figure 9.27 Read OTP Instruction Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
24 Bit  
Instruction  
Dummy Byte  
Address  
SI  
23 22 21  
3
2
1
0
7
6
5
4
3
2
1
0
DATA OUT 1  
DATA OUT 2  
High Impedance  
SO  
7
6
5
4
3
2
1
0
7
MSB  
MSB  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
49  
D a t a S h e e t  
10. OTP Regions  
The OTP Regions are separately addressable from the main array and consists of two 8-byte (ESN), thirty  
16-byte, and one 10-byte regions that can be individually locked.  
The two 8-byte ESN region is a special order part (please contact your local Spansion sales representative  
for further details). The two 8-byte regions enable permanent part identification through an Electronic  
Serial Number (ESN). The customer can utilize the ESN to pair a Flash device with the system CPU/ASIC  
to prevent system cloning. The Spansion factory programs and locks the lower 8-byte ESN with a 64-bit  
randomly generated, unique number. The upper 8-byte ESN is left blank for customer use or, if special  
ordered, Spansion can program (and lock) in a unique customer ID.  
Table 10.1 ESN1 and ESN2  
Lock register ESN1 (Bit 0) Lock register ESN2 (Bit 1)  
ESN1 region contains  
ESN2 region contains  
Standard part  
1h  
1h  
1h  
0h  
0h  
Factory/Customer  
programmed pattern  
Special order part  
1h/0h  
Unique random pattern  
The thirty 16-byte and one 10-byte OTP regions are open for the customer usage.  
The thirty 16-byte, one 10-byte, and upper 8-byte ESN OTP regions can be individually locked by the end  
user. Once locked, the data cannot changed. The locking process is permanent and cannot be undone.  
The following general conditions should be noted with respect to the OTP Regions:  
On power-up, or following a hardware reset, or at the end of an OTPP or an OTPR command, the device  
reverts to sending commands to the normal address space.  
Reads or Programs outside of the OTP Regions will be ignored  
The OTP Region is not accessible when the device is executing an Embedded Program or Embedded  
Erase algorithm.  
The ACC function is not available when accessing the OTP Regions.  
The thirty 16-byte and one 10-byte OTP regions are left open for customer usage, but special care of the  
OTP locking must be maintained, or else a malevolent user can permanently lock the OTP regions. This is  
not a concern, if the OTP regions are not used.  
10.1 Programming OTP Address Space  
The protocol of the OTP Program command (42h) is the same as the Page Program command. Refer to  
Table 9.1 for the command description and protocol. The OTP Program command can be issued multiple  
times to any given OTP address, but this address space can never be erased. After a given OTP region is  
programmed, it can be locked to prevent further programming with the OTP lock registers (refer to  
Section 10.3). The valid address range for OTP Program is depicted in the figure below. OTP Program  
operations outside the valid OTP address range will be ignored.  
10.2 Reading OTP Data  
The protocol of the OTP Read command (4Bh) is the same as that of the Fast Read command. Refer to  
Table 9.1 for the command description and protocol. The valid address range for OTP Reads is depicted in  
the figure below. OTP Read operations outside the valid OTP address range will yield indeterminate data.  
10.3 Locking OTP Regions  
In order to permanently lock the ESN and OTP regions, individual bits at the specified addresses can be set  
to lock specific regions of OTP memory, as highlighted in Figures 10.1 and 10.2.  
50  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Figure 10.1 OTP Memory Map - Part 1  
ADDRESS  
0x213h  
OTP REGION  
16 bytes (OTP16)  
0x204h  
0x203h  
16 bytes (OTP15)  
16 bytes (OTP14)  
16 bytes (OTP13)  
16 bytes (OTP12)  
16 bytes (OTP11)  
16 bytes (OTP10)  
16 bytes (OTP9)  
16 bytes (OTP8)  
16 bytes (OTP7)  
16 bytes (OTP6)  
16 bytes (OTP5)  
16 bytes (OTP4)  
16 bytes (OTP3)  
16 bytes (OTP2)  
16 bytes (OTP1)  
0x1F4h  
0x1F3h  
0x1E4h  
0x1E3  
0x1D4h  
0x1D3h  
0x1C4h  
0x1C3h  
0x1B4h  
0x1B3h  
0x1A4h  
0x1A3h  
0x194h  
0x193h  
0x184h  
0x183h  
0x174h  
0x173h  
0x164h  
0x163h  
0x154h  
0x153h  
Address  
0x112h  
Bit  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
Locks Region…  
OTP1  
0x144h  
0x143h  
OTP2  
OTP3  
OTP4  
OTP5  
OTP6  
OTP7  
OTP8  
OTP9  
OTP10  
OTP11  
OTP12  
OTP13  
OTP14  
OTP15  
OTP16  
ESN1  
0x134h  
0x133h  
0x124h  
0x123h  
0x113h  
0x114h  
0x113h  
0x112h  
0x111h  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
8 bytes (ESN2)  
0x10Ah  
0x109h  
8 bytes (ESN1)  
Reserved  
0x100h  
0x102h  
0x101h  
0x100h  
1
ESN2  
Reserved  
X
X
X
X
X
X
Bit 1 Bit 0  
2 - 7  
Notes  
1. Bit 0 at address 0x100h locks ESN1 region.  
2. Bit 1 at address 0x100h locks ESN2 region.  
3. Bits 2-7 (“X”) are NOT programmable and will be ignored.  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
51  
D a t a S h e e t  
Figure 10.2 OTP Memory Map - Part 2  
ADDRESS  
OTP REGION  
0x2FFh  
10 bytes (OTP31)  
16 bytes (OTP30)  
16 bytes (OTP29)  
16 bytes (OTP28)  
16 bytes (OTP27)  
16 bytes (OTP26)  
16 bytes (OTP25)  
16 bytes (OTP24)  
16 bytes (OTP23)  
16 bytes (OTP22)  
16 bytes (OTP21)  
16 bytes (OTP20)  
16 bytes (OTP19)  
16 bytes (OTP18)  
0x2F6h  
0x2F5h  
0x2E6h  
0x2E5  
0x2D6h  
0x2D5h  
0x2C6h  
0x2C5h  
0x2B6h  
0x2B5h  
0x2A6h  
0x2A5h  
0x296h  
0x295h  
0x286h  
0x285h  
0x276h  
0x275h  
0x266h  
0x265h  
Address  
0x214h  
Bit Locks Region…  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
OTP17  
OTP18  
OTP19  
OTP20  
OTP21  
OTP22  
OTP23  
OTP24  
OTP25  
OTP26  
OTP27  
OTP28  
OTP29  
OTP30  
OTP31  
0x256h  
0x255h  
0x246h  
0x245h  
0x236h  
0x235h  
0x215h  
0x226h  
0x225h  
16 bytes (OTP17)  
0x216h  
0x215h  
0x214h  
X
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Reserved  
Note  
1. Bit 7 (“X”) at address 0x215h is NOT programmable and will be ignored.  
52  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
11. Power-up and Power-down  
During power-up and power-down, certain conditions must be observed. CS# must follow the voltage applied  
on V , and must not be driven low to select the device until V reaches the allowable values as follows  
CC  
CC  
(see Figure 11.1 and Table 11.1 on page 54):  
At power-up, V (min.) plus a period of t  
CC  
PU  
At power-down, GND  
A pull-up resistor on Chip Select (CS#) typically meets proper power-up and power-down requirements.  
No Read, Write Registers, program, or erase command should be sent to the device until V rises to the  
CC  
V
min., plus a delay of t . At power-up, the device is in standby mode (not Deep Power-Down mode) and  
CC  
PU  
the WEL bit is reset (0).  
Each device in the host system should have the V rail decoupled by a suitable capacitor close to the  
CC  
package pins (this capacitor is generally of the order of 0.1 µF), as a precaution to stabilizing the V feed.  
CC  
When V drops from the operating voltage to below the minimum V threshold at power-down, all  
CC  
CC  
operations are disabled and the device does not respond to any commands. Note that data corruption may  
result if a power-down occurs while a Write Registers, program, or erase operation is in progress.  
Figure 11.1 Power-Up Timing Diagram  
Vcc  
(max)  
cc  
V
(min)  
cc  
V
tPU  
Full Device Access  
Time  
Figure 11.2 Power-down and Voltage Drop  
Vcc  
V
(max)  
CC  
No Device Access Allowed  
V
(min)  
CC  
Device Access  
Allowed  
t
PU  
V
(cut-off)  
CC  
V
(low)  
CC  
t
PD  
Time  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
53  
D a t a S h e e t  
Table 11.1 Power-Up / Power-Down Voltage and Timing  
Symbol  
VCC(min)  
CC(cut-off)  
Parameter  
VCC (minimum operation voltage)  
Min  
2.7  
2.4  
Max  
Unit  
V
V
VCC (Cut off where re-initialization is needed)  
V
0.2  
2.3  
V
VCC (Low voltage for initialization to occur at read/standby)  
VCC (Low voltage for initialization to occur at embedded)  
V
CC(low)  
tPU  
tPD  
VCC(min.) to device operation  
VCC (low duration time)  
300  
µs  
µs  
1.0  
12. Initial Delivery State  
The device is delivered with the memory array erased i.e. all bits are set to 1 (FFh) upon initial factory  
shipment. The Status Register and Configuration Register contains 00h (all bits are set to 0).  
13. Program Acceleration via W#/ACC Pin  
The program acceleration function requires applying V to the W#/ACC input, and then waiting a period of  
HH  
t
. Minimum t  
rise and fall times is required for W#/ACC to change to V from V or V . Removing  
WC  
VHH HH IL IH  
V
from the W#/ACC pin returns the device to normal operation after a period of t  
.
HH  
WC  
Figure 13.1 ACC Program Acceleration Timing Requirements  
V
HH  
ACC  
t
t
WC  
WC  
V
or V  
IH  
V
or V  
IH  
IL  
IL  
Command OK  
t
VHH  
t
VHH  
Note  
Only Read Status Register (RDSR) and Page Program (PP) operation are allow when ACC is at (VHH).  
The W#/ACC pin is disabled during Quad I/O mode.  
Table 13.1 ACC Program Acceleration Specifications  
Symbol  
VHH  
Parameter  
ACC Pin Voltage High  
Min.  
8.5  
2.2  
5
Max  
Unit  
9.5  
V
tVHH  
ACC Voltage Rise and Fall time  
µs  
µs  
tWC  
ACC at VHH and VIL or VIH to First command  
54  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
14. Electrical Specifications  
14.1 Absolute Maximum Ratings  
Description  
Rating  
-65°C to +150°C  
-0.5V to VCC+0.5V  
200 mA  
Ambient Storage Temperature  
Voltage with Respect to Ground: All Inputs and I/Os  
Output Short Circuit Current (Note 2)  
Notes  
1. Minimum DC voltage on input or I/Os is -0.5V. During voltage transitions, inputs or I/Os may undershoot GND to -2.0V for periods of up to  
20 ns. See Figure 14.1. Maximum DC voltage on input or I/Os is VCC + 0.5V. During voltage transitions inputs or I/Os may overshoot to  
VCC + 2.0V for periods up to 20 ns. See Figure 14.2.  
2. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.  
3. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is  
not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.  
Figure 14.1 Maximum Negative Overshoot Waveform  
20 ns  
20 ns  
+0.8V  
–0.5V  
–2.0V  
20 ns  
Figure 14.2 Maximum Positive Overshoot Waveform  
20 ns  
VCC  
+2.0V  
VCC  
+0.5V  
2.0V  
20 ns  
20 ns  
15. Operating Ranges  
Table 15.1 Operating Ranges  
Description  
Rating  
Industrial  
–40°C to +85°C  
–40°C to +105°C  
2.7V to 3.6V  
Ambient Operating Temperature (TA)  
Automotive In-Cabin  
Voltage Range  
Positive Power Supply  
Note  
Operating ranges define those limits between which functionality of the device is guaranteed.  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
55  
D a t a S h e e t  
16. DC Characteristics  
This section summarizes the DC Characteristics of the device. Designers should check that the operating  
conditions in their circuit match the measurement conditions specified in the Test Specifications in Table 17.1  
on page 57, when relying on the quoted parameters.  
Table 16.1 DC Characteristics (CMOS Compatible)  
Limits  
Symbol  
Parameter  
Supply Voltage  
Test Conditions  
Unit  
Min.  
Typ*  
Max  
VCC  
VHH  
2.7  
3.6  
V
V
ACC Program Acceleration  
Voltage  
VCC = 2.7V to 3.6V  
8.5  
9.5  
VIL  
VIH  
Input Low Voltage**  
Input High Voltage**  
-0.3  
0.3 x VCC  
V
V
0.7 x VCC  
VCC +0.5  
0.4  
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 1.6 mA, VCC = VCC min.  
IOH = -0.1 mA  
V
V
VCC-0.6  
VCC = VCC Max,  
VIN = VCC or GND  
ILI  
Input Leakage Current  
Output Leakage Current  
2
2
µA  
µA  
VCC = VCC Max,  
ILO  
VIN = VCC or GND  
At 80 MHz  
(Dual or Quad)  
38  
Active Power Supply Current -  
READ  
(SO = Open)  
ICC1  
mA  
At 104 MHz (Serial)  
At 40 MHz (Serial)  
25  
12  
Active Power Supply Current  
(Page Program)  
ICC2  
ICC3  
ICC4  
ICC5  
ISB1  
IPD  
CS# = VCC  
CS# = VCC  
CS# = VCC  
CS# = VCC  
26  
15  
mA  
mA  
mA  
mA  
µA  
Active Power Supply Current  
(WRR)  
Active Power Supply Current  
(SE)  
26  
Active Power Supply Current  
(BE)  
26  
CS# = VCC  
;
Standby Current  
80  
3
200  
10  
SO + VIN = GND or VCC  
CS# = VCC  
;
Deep Power-down Current  
µA  
SO + VIN = GND or VCC  
*Typical values are at TAI = 25°C and VCC = 3V  
56  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
17. Test Conditions  
Figure 17.1 AC Measurements I/O Waveform  
0.8 VCC  
0.7 VCC  
0.5 VCC  
0.3 VCC  
Input Levels  
0.2 VCC  
Input and Output  
Timing Reference levels  
Table 17.1 Test Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
pF  
ns  
V
CL  
Load Capacitance  
30  
Input Rise and Fall Times  
Input Pulse Voltage  
5
0.2 VCC to 0.8 VCC  
0.3 VCC to 0.7 VCC  
0.5 VCC  
Input Timing Reference Voltage  
Output Timing Reference Voltage  
V
V
18. AC Characteristics  
Figure 18.1 AC Characteristics (Sheet 1 of 2)  
Symbol  
(Notes)  
Parameter  
(Notes)  
Min.  
(Notes)  
Typ  
(Notes)  
Max  
(Notes)  
Unit  
SCK Clock Frequency for READ command  
SCK Clock Frequency for RDID command  
DC  
DC  
40  
50  
MHz  
fR  
SCK Clock Frequency for all others:  
FAST_READ, PP, QPP, P4E, P8E, SE, BE, DP,  
RES, WREN, WRDI, RDSR, WRR, READ_ID  
104 (serial)  
80 (dual/quad)  
fC  
DC  
MHz  
t
WH, tCH  
Clock High Time (5)  
4.5  
4.5  
0.1  
0.1  
ns  
ns  
t
WL, tCL  
CRT, tCLCH  
CFT, tCHCL  
Clock Low Time (5)  
t
Clock Rise Time (slew rate)  
Clock Fall Time (slew rate)  
V/ns  
V/ns  
t
10  
50  
CS# High Time (Read Instructions)  
CS# High Time (Program/Erase)  
tCS  
ns  
ns  
ns  
CS# Active Setup Time  
(relative to SCK)  
tCSS  
3
3
CS# Active Hold Time  
(relative to SCK)  
tCSH  
tSU:DAT  
tHD:DAT  
Data in Setup Time  
Data in Hold Time  
3
2
ns  
ns  
8 (Serial)Δ  
9.5 (Dual/Quad)Δ  
6.5 (Serial)∞  
tV  
Clock Low to Output Valid  
0
2
ns  
8 (Dual/Quad)∞  
7 (Dual/Quad)Ω  
tHO  
tDIS  
Output Hold Time  
ns  
ns  
Output Disable Time  
8
HOLD# Active Setup Time  
(relative to SCK)  
tHLCH  
tCHHH  
tHHCH  
3
3
3
ns  
ns  
ns  
HOLD# Active Hold Time  
(relative to SCK)  
HOLD# Non Active Setup Time  
(relative to SCK)  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
57  
D a t a S h e e t  
Figure 18.1 AC Characteristics (Sheet 2 of 2)  
Symbol  
(Notes)  
Parameter  
(Notes)  
Min.  
(Notes)  
Typ  
(Notes)  
Max  
(Notes)  
Unit  
HOLD# Non Active Hold Time  
(relative to SCK)  
tCHHL  
3
ns  
tHZ  
tLZ  
HOLD# enable to Output Invalid  
HOLD# disable to Output Valid  
W#/ACC Setup Time (4)  
8
8
ns  
ns  
ns  
tWPS  
20  
tWPH  
tW  
W#/ACC Hold Time (4)  
100  
ns  
ms  
ms  
ms  
sec  
WRR Cycle Time  
50  
3
tPP  
tEP  
tSE  
Page Programming (1)(2)  
Page Programming (ACC = 9V) (1)(2)(3)  
Sector Erase Time (64 KB) (1)(2)  
1.5  
1.2  
0.5  
2.4  
2
Parameter Sector Erase Time (1)(2)  
(4 KB or 8 KB)  
tPE  
200  
32  
800  
ms  
tBE  
tRES  
tDP  
Bulk Erase Time (1)(2)  
64  
30  
10  
sec  
µs  
µs  
µs  
µs  
Deep Power-down to Standby Mode  
Time to enter Deep Power-down Mode  
ACC Voltage Rise and Fall time  
tVHH  
tWC  
2.2  
5
ACC at VHH and VIL or VIH to first command  
Notes  
1. Typical program and erase times assume the following conditions: 25°C, VCC = 3.0V; 10,000 cycles; checkerboard data pattern.  
2. Under worst-case conditions of 85°C; VCC = 2.7V; 100,000 cycles.  
3. Acceleration mode (9V ACC) only in Program mode, not Erase.  
4. Only applicable as a constraint for WRR instruction when SRWD is set to a ‘1’.  
5. tWH + tWL must be less than or equal to 1/fC.  
6. Δ Full Vcc range (2.7 – 3.6V) & CL = 30 pF  
7. Regulated Vcc range (3.0 – 3.6V) & CL = 30 pF  
8. ΩRegulated Vcc range (3.0 – 3.6V) & CL = 15 pF  
18.1 Capacitance  
Symbol  
Parameter  
Input Capacitance  
Test Conditions  
OUT = 0V  
IN = 0V  
Min  
Typ  
Max  
Unit  
CIN  
V
9.0  
12.0  
pF  
(applies to SCK, PO7-PO0, SI, CS#)  
Output Capacitance  
(applies to PO7-PO0, SO)  
COUT  
V
12.0  
16.0  
pF  
Notes  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
3. For more information on pin capacitance, please consult the IBIS models.  
58  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Figure 18.2 SPI Mode 0 (0,0) Input Timing  
tCS  
CS#  
SCK  
SI  
tCSH  
tCSS  
tCSS  
tCSH  
tSU:DAT  
tCRT  
tHD:DAT  
tCFT  
MSB IN  
LSB IN  
Hi-Z  
SO  
Figure 18.3 SPI Mode 0 (0,0) Output Timing  
CS#  
tWH  
SCK  
tV  
tWL  
tDIS  
tV  
tHO  
tHO  
SO  
LSB OUT  
Figure 18.4 HOLD# Timing  
CS#  
tHHCH  
tHLCH  
tCHHL  
SCK  
SO  
tCHHH  
tHZ  
tLZ  
SI  
HOLD#  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
59  
D a t a S h e e t  
Figure 18.5 Write Protect Setup and Hold Timing during WRR when SRWD = 1  
W#  
tWPS  
tWPH  
CS#  
SCK  
SI  
Hi-Z  
SO  
60  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
19. Physical Dimensions  
19.1 SOC008 wide — 8-pin Plastic Small Outline Package (208-mils Body Width)  
NOTES:  
1.  
2.  
3.  
ALL DIMENSIONS ARE IN BOTH INCHES AND MILLMETERS.  
DIMENSIONING AND TOLERANCING PER ASME Y14.5M - 1994.  
PACKAGE SOC 008 (inches)  
SOC 008 (mm)  
JEDEC  
DIMENSION D DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm  
PER END. DIMENSION E1 DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION  
SHALL NOT EXCEED 0.25 mm PER SIDE. D AND E1  
DIMENSIONS ARE DETERMINED AT DATUM H.  
SYMBOL  
MIN  
MAX  
0.085  
0.0098  
0.075  
0.019  
0.018  
MIN  
MAX  
2.159  
0.249  
1.91  
A
A1  
A2  
b
0.069  
0.002  
0.067  
0.014  
0.013  
1.753  
0.051  
1.70  
0.356  
0.330  
0.191  
0.152  
0.483  
0.457  
0.241  
0.203  
4.  
THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE  
BOTTOM. DIMENSIONS D AND E1 ARE DETERMINED AT THE  
OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF  
MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD  
FLASH. BUT INCLUDING ANY MISMATCH BETWEEN THE TOP  
AND BOTTOM OF THE PLASTIC BODY.  
b1  
c
0.0075 0.0095  
0.006 0.008  
0.208 BSC  
c1  
D
5.283 BSC  
5.  
6.  
DATUMS A AND B TO BE DETERMINED AT DATUM H.  
E
0.315 BSC  
0.208 BSC  
.050 BSC  
8.001 BSC  
5.283 BSC  
1.27 BSC  
"N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR  
THE SPECIFIED PACKAGE LENGTH.  
E1  
e
7.  
THE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD  
BETWEEN 0.10 TO 0.25 mm FROM THE LEAD TIP.  
L
0.020  
0.030  
0.508  
0.762  
8.  
DIMENSION "b" DOES NOT INCLUDE DAMBAR PROTRUSION.  
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10 mm TOTAL  
IN EXCESS OF THE "b" DIMENSION AT MAXIMUM MATERIAL  
CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE  
LOWER RADIUS OF THE LEAD FOOT.  
L1  
L2  
N
.049 REF  
1.25 REF  
0.25 BSC  
8
.010 BSC  
8
θ
0˚  
5˚  
8˚  
15˚  
0˚  
0˚  
5˚  
8˚  
9.  
THIS CHAMFER FEATURE IS OPTIONAL. IF IT IS NOT PRESENT,  
THEN A PIN 1 IDENTIFIER MUST BE LOCATED WITHIN THE INDEX  
AREA INDICATED.  
θ1  
θ2  
15˚  
0˚  
10. LEAD COPLANARITY SHALL BE WITHIN 0.10 mm AS MEASURED  
FROM THE SEATING PLANE.  
3602 \ 16-038.03 \ 9.1.6  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
61  
D a t a S h e e t  
19.2  
SO3 016 — 16-pin Wide Plastic Small Outline Package (300-mil Body Width)  
62  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
19.3 UNE008 USON 8-contact (5 x 6 mm) No-Lead Package  
NOTES:  
1. DIMENSIONING AND TOLERANCING CONFORMS TO  
ASME Y14.5M - 1994.  
PACKAGE  
UNE008  
NOM  
2. ALL DIMENSIONS ARE IN MILLMETERS.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
SYMBOL  
MIN  
MAX  
NOTE  
e
N
1.27 BSC.  
8
4
DIMENSION “b” APPLIES TO METALLIZED TERMINAL AND IS  
MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL  
TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE  
OTHER END OF THE TERMINAL, THE DIMENSION “b”  
SHOULD NT BE MEASURED IN THAT RADIUS AREA.  
3
5
ND  
L
4
0.55  
0.35  
3.90  
3.30  
0.60  
0.65  
0.45  
4.10  
3.50  
b
0.40  
4
5
ND REFER TO THE NUMBER OF TERMINALS ON D SIDE.  
D2  
E2  
D
4.00  
6. MAX. PACKAGE WARPAGE IS 0.05mm.  
3.40  
7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS.  
5.00 BSC  
6.00 BSC  
0.50  
8
9
PIN #1 ID ON TOP WILL BE LASER MARKED.  
E
BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED  
HEAT SINK SLUG AS WELL AS THE TERMINALS.  
A
0.45  
0.00  
0.55  
0.05  
A1  
K
0.02  
0.20 MIN.  
g1017 \ 16-038.30 \ 07.21.11  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
63  
D a t a S h e e t  
19.4 WNF008 — WSON 8-contact (6 x 8 mm) No-Lead Package  
NOTES:  
1. DIMENSIONING AND TOLERANCING CONFORMS TO  
ASME Y14.5M - 1994.  
PACKAGE  
WNF008  
2. ALL DIMENSIONS ARE IN MILLMETERS.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
SYMBOL  
MIN  
NOM  
1.27 BSC.  
8
MAX  
NOTE  
e
N
4
DIMENSION “b” APPLIES TO METALLIZED TERMINAL AND IS  
MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL  
TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE  
OTHER END OF THE TERMINAL, THE DIMENSION “b”  
SHOULD NT BE MEASURED IN THAT RADIUS AREA.  
3
5
ND  
L
4
0.45  
0.35  
4.70  
5.70  
0.50  
0.55  
0.45  
4.90  
5.90  
b
0.40  
4
5
ND REFER TO THE NUMBER OF TERMINALS ON D SIDE.  
D2  
E2  
D
4.80  
6. MAX. PACKAGE WARPAGE IS 0.05mm.  
5.80  
7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS.  
6.00 BSC  
8.00 BSC  
0.75  
8
9
PIN #1 ID ON TOP WILL BE LASER MARKED.  
E
BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED  
HEAT SINK SLUG AS WELL AS THE TERMINALS.  
A
0.70  
0.00  
0.80  
0.05  
A1  
K
0.02  
10 A MAXIMUM 0.15mm PULL BACK (L1) MAY BE PRESENT.  
0.20 MIN.  
---  
L1  
0.00  
0.15  
10  
g1015 \ 16-038.30 \ 07.21.11  
64  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
19.5 FAB024 — 24-ball Ball Grid Array (6 x 8 mm) Package  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
65  
D a t a S h e e t  
19.6 FAC024 — 24-ball Ball Grid Array (6 x 8 mm) Package  
NOTES:  
PACKAGE  
JEDEC  
FAC024  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
D x E  
8.00 mm x 6.00 mm NOM  
PACKAGE  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
3. BALL POSITION DESIGNATION PER JEP95, SECTION  
4.3, SPP-010.  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
A
A1  
A2  
D
---  
1.20  
---  
PROFILE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
0.25  
0.70  
---  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
---  
0.90  
BODY THICKNESS  
BODY SIZE  
8.00 BSC.  
6.00 BSC.  
5.00 BSC.  
3.00 BSC.  
6
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
E
BODY SIZE  
n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
MD  
ME  
N
4
DATUM C IS THE SEATING PLANE AND IS DEFINED BY THE  
CROWNS OF THE SOLDER BALLS.  
24  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
Øb  
e
0.35  
0.40  
0.45  
BALL DIAMETER  
1.00 BSC.  
0.5/0.5  
BALL PITCHL  
SD/ SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
J
PACKAGE OUTLINE TYPE  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
9
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
10 OUTLINE AND DIMENSIONS PER CUSTOMER REQUIREMENT.  
3642 F16-038.9 \ 09.10.09  
66  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
20. Revision History  
Section  
Description  
Revision 01 (June 9, 2008)  
Initial release  
Revision 02 (February 12, 2009)  
Connection Diagrams  
Added USON package  
Valid Combinations Table  
Configuration Register  
Added Tray packing type  
Added OTP description for BPNV bit  
Corrected TBPARM description  
Configuration Register Table  
Added “Default” setting information upon initial factory shipment  
Separated Mode bit and Dummy bytes  
Instruction Set  
Product Group CFI Primary Vendor-Specific  
Extended Query  
Corrected data of 45h bytes  
Read-ID (READ_ID)  
Removed statement of 8-cycle buffer for Manufacturer ID and the Device ID  
Corrected description for SRWD bit in the Status Register Table  
Modified E_ERR and P_ERR descriptions  
Read Status Register  
Read Configuration Register  
Updated figure  
Updated figure  
Parameter Sector Erase (P4E, P8E)  
Release from Deep Power-Down and Read  
Electronic Signature (RES)  
Updated figure  
OTP Regions  
Modified description for the ACC function  
Changed specification for tPU  
Corrected the Table  
Power-up and Power-down  
Absolute Maximum Ratings  
Changed maximum specifications for ICC1 and ICC3  
Modified Test Conditions for ISB1 and IPD  
DC Characteristics  
AC Characteristics  
Changed maximum specifications for tW  
Added note for max values assume 100k cycles  
Changed Clock High/Low time  
Revision 03 (May 26, 2009)  
Connection Diagrams  
Corrected package name  
Dual Output Read Mode (DOR)  
Quad Output Read Mode (QOR)  
Power Up & Power Down  
AC Characteristics  
Added statement for Dual Output Read command  
Added statement for Quad Output Read command  
Updated VCC(low) Min in Table: Power-Up / Power-Down Voltage and Timing  
Updated tWH, tCH and tWL, tCL  
Revision History  
Corrected “Revision 02 (February 12, 2009)” for AC Characteristics  
Revision 04 (July 22, 2009)  
Distinctive Characteristics  
Connection Diagrams  
Added BGA package information  
Added BGA package  
Added Automotive In-cabin information  
Added BGA package information  
Ordering Information  
Valid Combinations  
Corrected Valid Combinations Table  
Added Suggested Cross Settings Table  
Added note for ACC function  
Configuration Register  
Accelerated Programming Operation  
Updated Read Identification description  
Updated figure for RDID  
Read Identification (RDID)  
Updated CFI table for 29h  
Write Registers (WRR)  
Added note for HPM  
Parameter Sector Erase (P4E, P8E)  
Sector Erase (SE)  
Updated description for P4E/P8E command  
Updated description for SE command  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
67  
D a t a S h e e t  
Section  
Description  
Release from Deep Power-Down (RES)  
Added note for RES command  
Updated descriptions  
OTP Regions  
Added ESN1 and ESN2 Table  
Operating Ranges  
AC Characteristics  
Added Automotive In-cabin temperature range  
Added Automotive In-cabin spec for fC  
Updated tWH, tCH and tWL, tCL  
Physical Dimensions  
Revision 05 (October 5, 2009)  
Global  
Added BGA 6 x 8 mm package  
Changed all references to RDID clock rate from 40 to 50 MHz  
Added “5 x 5 pin configuration” to Figure 2.5 title  
Added 6 x 4 pin configuration BGA connection diagram  
Connection Diagrams  
Added note regarding exposed central pad on bottom of package to the WSON and USON  
connection diagram  
Added Automotive In-Cabin temperature valid combinations for BGA packages  
Added 02 and 03 model numbers for BGA packages  
Removed BGA from 00 model number description  
Added Low-Halogen material option  
Ordering Information  
Valid Combinations  
Changed valid BGA model number combinations to 02 and 03  
Changed valid BGA material option to Low-Halogen  
Removed Note 1  
Physical Dimensions  
Added FAC024 BGA package  
AC Characteristics  
Removed 76 MHz Automotive in-cabin spec from fC and Note 9  
Revision 06 (December 7, 2011)  
Instruction Set Table  
Updated QIOR command  
Updated tPU (max)  
Power-Up / Power-Down Voltage and  
Timing Table  
Initial Delivery State  
Modified section  
Capacitance  
Added notes to table  
Physical Dimensions  
Updated the package outline drawing for SOIC, WSON, USON, and BGA 5x5 packages.  
Revision 07 (September 21, 2012)  
AC Characteristics  
Changed Output Hold Time (tHO) to 2 ns (min)  
Revision 08 (October 30, 2012)  
Command Definitions  
Instruction Set table: Corrected the value of CLSR command  
Protection Modes table: Added Parameter Sector Erase to Memory Content columns for clarification  
Updated the table reference  
Write Registers (WRR)  
Parameter Sector Erase (P4E, P8E)  
Revision 09 (January 29, 2013)  
Added “Typical” values column  
Capacitance  
Corrected “Max” values for CIN / COUT (Input / Output Capacitance)  
68  
S25FL032P  
S25FL032P_00_09 January 29, 2013  
D a t a S h e e t  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as  
contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the  
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,  
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for  
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to  
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor  
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design  
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal  
operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country,  
the prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under  
development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this  
document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose,  
merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any  
damages of any kind arising out of the use of the information in this document.  
Copyright © 2008-2013 Spansion Inc. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™ and  
combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used  
are for informational purposes only and may be trademarks of their respective owners.  
January 29, 2013 S25FL032P_00_09  
S25FL032P  
69