转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
Document order number: MC07XSF517  
Rev. 2.0, 9/2013  
Freescale Semiconductor  
Advance Information  
Triple 7.0 mOhm and Dual  
17 mOhm High Side Switch  
07XSF517  
The 07XSF517 is the latest achievement in DC motors and lighting  
drivers. It belongs to an expanding family to control and diagnose  
various types of loads, such as incandescent lamps or light-emitting  
diodes (LEDs) with enhanced precision. It combines flexibility through  
daisy chainable SPI 5.0 MHz, extended digital and analog feedbacks,  
safety, and robustness.  
ENHANCED PENTA HIGH SIDE SWITCH  
Output edge shaping helps to improve electromagnetic performance.  
To avoid shutting off the device upon inrush current, while still being  
able to closely track the load current, a dynamic overcurrent threshold  
profile is featured. Current of each channel can be sensed with a  
programmable sensing ratio. Whenever communication with the  
external microcontroller is lost, the device enters a Fail operation mode,  
but remains operational, controllable, and protected.  
EK SUFFIX (PB-FREE)  
98ASA00367D  
54-PIN SOICEP  
This new generation of high side switch products family facilitates ECU  
design due to compatible MCU software and PCB foot prints for each  
device variant.  
Applications  
• Low voltage exterior lighting  
• Low voltage industrial lighting  
• Low voltage automation systems  
• Halogen lamps  
• Incandescent bulbs  
• Light-emitting diodes (LEDs)  
• HID Xenon ballasts  
This family is packaged in a Pb-free power-enhanced SOIC package  
with an exposed pad, which is End of Life Vehicles directive compliant.  
This device is powered by SMARTMOS technology.  
Features  
• Triple 7.0 mand dual 17 mhigh side switches with high transient  
current capability  
• 16-bit 5.0 MHz SPI control of overcurrent profiles, channel control  
including PWM duty-cycles, output-ON and -OFF OpenLoad  
detections, thermal shut-down and prewarning, and fault reporting  
• Output current monitoring with programmable synchronization signal  
and supply voltage feedback  
• DC motors  
• Limp Home mode  
• External smart power switch control  
• Operating voltage is 7.0 to 18 V with sleep current < 5.0 µA,  
extended mode from 6.0 to 28 V  
• -16 V reverse polarity and ground disconnect protections  
• Compatible PCB foot print and SPI software driver among the family  
V
PWR  
V
PWR  
VCC  
VPWR  
07XSF517  
5.0 V  
Regulator  
VPWR  
VCC  
SI  
VCC  
CP  
SO  
CSB  
SCLK  
SI  
GND  
CSB  
SCLK  
SO  
RSTB  
CLK  
CSNS  
SYNCB  
LIMP  
IN1  
OUT1  
Solenoid  
OUT2  
OUT3  
OUT4  
OUT5  
LED Module  
RSTB  
CLK  
M
DC Motor  
Resistive load  
Bulb  
Main  
MCU  
A/D1  
TRG1  
PORT  
PORT  
PORT  
PORT  
PORT  
A/D2  
IN2  
IN3  
IN4  
OUT  
VPWR  
IN  
OUT6  
GND  
Smart Power  
Spare  
CSNS  
GND  
GND  
Figure 1. Triple 7.0 mOhm and Dual 17 mOhm Simplified Application Diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2013. All rights reserved.  
1
Orderable Parts  
This section describes the part numbers available to be purchased along with their differences.  
Table 1. Orderable Part Variations  
Temperature  
OUT1  
Rds(on)  
OUT2  
Rds(on)  
OUT3  
OUT4  
OUT5  
Part Number  
Notes  
Package  
OUT6  
(T )  
Rds(on) Rds(on) Rds(on)  
A
SOIC 54 pins  
exposed pad  
(1)  
MC07XSF517EK  
Notes  
-40 to 125 °C  
17 m  
17 m  
7.0 m  
7.0 m7.0 m  
Yes  
1. To Order parts in Tape & Reel, add the R2 suffix to the part number.  
Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://  
www.freescale.com and perform a part number search for the following device numbers: 07XSF517.  
MC07XSF517  
Analog Integrated Circuit Device Data  
2
Freescale Semiconductor  
Table of Contents  
2
3
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.2 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1 Relationship Between Ratings and Operating Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.2 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.5 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
General IC Functional Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.3.1 Self-protected High Side Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.3.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.3.3 MCU Interface and Device Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.5 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.5.1 Power Off Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.5.2 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.5.3 Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.5.4 Fail Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.5.5 Mode Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.6 SPI Interface and Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.6.2 SPI Input Register and Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.6.3 SPI Output Register and Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.6.4 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.6.5 Electrical Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Functional Block Requirements and Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1 Self-protected High Side Switches Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1.2 Output Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1.3 Output Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.1.4 Output Clamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
6.1.5 Digital Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6.1.6 Analog Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6.2 Power Supply Functional Block Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
6.2.2 Wake State Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
6.2.3 Supply Voltages Disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
6.3 Communication Interface and Device Control Functional Block Description and Application Information . . . . . . . . . 57  
6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
6.3.2 Fail Mode Input (LIMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
6.3.3 MCU Communication Interface Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
6.3.4 External Smart Power Control (OUT6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
4
5
6
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
3
7
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.1.1 Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.1.2 Application Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.1.3 Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.2 EMC and EMI Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.2.1 EMC/EMI Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.2.1 EMC/EMI Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.2.2 Fast Transient Pulse Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.3 Robustness Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
7.4 PCB Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
7.5 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
7.5.1 Thermal Transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
7.5.2 R/C Thermal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
8.1 Marking Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
8.2 Package Mechanical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
8
9
MC07XSF517  
Analog Integrated Circuit Device Data  
4
Freescale Semiconductor  
2
Internal Block Diagram  
VPWR  
VCC  
100 nF  
CP  
VCC  
VPWR  
Power  
Supply  
VS  
Reverse  
Battery  
Protection  
VPWR_PROTECTED  
UVF Under-voltage  
Detection  
Battery  
Clamp  
Power-on  
Reset  
OVF  
Charge  
CPF  
Pump  
OTW1  
OTW2  
SO  
Thermal  
Prewarning  
OTS1  
Temperature  
Shut-down  
CSB  
SPI  
Selectable  
Slope Control  
SCLK  
SI  
SPIF  
Selectable Over-  
OC1  
current Protection  
RSTB  
OLON1  
OLOFF1  
Fault  
Management  
Selectable Open-  
load Detection  
Selectable  
Current Sensing  
LIMP  
IN1  
IN2  
IN3  
IN4  
Output Voltage  
Monitoring  
OUT1  
OUT1  
OUT2  
OUT1 Channel  
OUT2 Channel  
OUT3 Channel  
PWM Module  
OUT3  
OUT4  
Logic  
VCC  
WAKEB OR  
RSTB  
OUT4 Channel  
Clock Failure  
Detection  
CLK  
OUT5  
OUT6  
VCC  
OUT5 Channel  
5k  
VCC  
CSNS  
SYNCB  
VPWR_PROTECTED  
Selectable  
Delay  
Selectable  
Analog  
VPWR_PROTECTED  
CSNS  
Feedback  
5k  
Control die  
Temperature  
Monitoring  
Power  
Voltage  
Monitoring  
GND  
Figure 2. Simplified Internal Block Diagram (Penta version)  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
5
3
Pin Connections  
3.1  
Pinout Diagram  
Transparent top view  
NC  
NC  
CLK  
LIMP  
IN4  
IN3  
IN2  
IN1  
CSNS SYNCB  
CSNS  
GND  
OUT1  
OUT1  
OUT3  
OUT3  
OUT3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
NC  
NC  
CP  
RSTB  
CSB  
SCLK  
SI  
VCC  
SO  
OUT6  
GND  
OUT2  
OUT2  
OUT4  
OUT4  
OUT4  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
55  
VPWR  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Figure 3. Pinout Diagram  
3.2  
Pin Definitions  
Table 2. 07XSF517 Pin Definitions  
Pin Number Pin Name Pin Function  
Formal Name  
Definition  
This pin is the connection for an external capacitor for charge pump use only.  
3
4
CP  
Internal  
supply  
Charge-pump  
This input pin is used to initialize the device configuration and fault registers,  
as well as place the device in a low-current sleep mode. This pin has a  
passive internal pull-down.  
RSTB  
SPI  
Reset  
This input pin is connected to a chip select output of a master microcontroller  
(MCU). When this digital signal is high, SPI signals are ignored. Asserting  
this pin low starts an SPI transaction. The transaction is indicated as  
completed when this signal returns to high level. This pin has a passive  
internal pull-up to VCC through a diode.  
5
CSB  
SPI  
Chip select  
This input pin is connected to the MCU providing the required bit shift clock  
for SPI communication. This pin has an passive internal pull-down.  
6
7
SCLK  
SI  
SPI  
SPI  
Serial clock  
Serial input  
This pin is the data input of the SPI communication interface. The data at the  
input are sampled on the positive edge of the SCLK. This pin has a passive  
internal pull-down.  
MC07XSF517  
Analog Integrated Circuit Device Data  
6
Freescale Semiconductor  
Table 2. 07XSF517 Pin Definitions (continued)  
Pin Number Pin Name Pin Function  
Formal Name  
Definition  
This pin is a power supply pin for internal logic, the SPI I/Os and the OUT6  
driver.  
8
9
VCC  
SO  
Power supply MCU power supply  
This output pin is connected to the SPI Serial Data Input pin of the MCU or  
to the SI pin of the next device of a daisychain of devices. The SPI changes  
on the negative edge of SCLK. When CSB is high, this pin is high-  
impedance.  
SPI  
Serial Output  
This output pin controls an external Smart Power Switch by logic level. This  
pin has a passive internal pull-down.  
10  
OUT6  
GND  
Output  
External Solid State  
Ground  
These pins are the ground for the logic and analog circuitries of the device.  
For ESD and electrical parameter accuracy purpose, the ground pins must  
be shorted on the board.  
11, 44  
Ground  
Protected high side power output pins to the load.  
Protected high side power output pins to the load.  
These pins are not connected.  
12, 13  
OUT2  
OUT4  
NC  
Output  
Output  
N/A  
Channel #2  
Channel #4  
14, 15, 16  
1, 2, 18… 27,  
53, 54  
Not connected  
Protected high side power output pins to the load.  
Protected high side power output pins to the load.  
Protected high side power output pins to the load.  
28… 37  
39, 40, 41  
42, 43  
OUT5  
OUT3  
OUT1  
CSNS  
Output  
Output  
Channel #5  
Channel #3  
Channel #1  
Current sense  
Output  
This pin reports an analog value proportional to the designated OUT[1:5]  
output current or the temperature of the exposed pad or the supply voltage.  
It is used externally to generate a ground-referenced voltage for the  
microcontroller (MCU). Current recopy and analog voltage feedbacks are  
SPI programmable.  
45  
Feedback  
This open drain output pin allows synchronizing the MCU A/D conversion.  
This pin requires an external pull-up resistor to VCC.  
46  
47  
CSNS  
SYNCB  
Feedback  
Input  
Current sense  
synchronization  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in Fail mode. During Normal mode the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive  
internal pull-down.  
IN1  
Direct input #1  
Direct input #2  
Direct input #3  
Direct input #4  
Limp Home  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in Fail mode. During Normal mode the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive  
internal pull-down  
48  
49  
50  
51  
IN2  
Input  
Input  
Input  
Input  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in Fail mode. During Normal mode the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive  
internal pull-down  
IN3  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in Fail mode. During Normal mode the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive  
internal pull-down  
IN4  
The Fail mode can be activated by this digital input. This pin has a passive  
internal pull-down.  
LIMP  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
7
Table 2. 07XSF517 Pin Definitions (continued)  
Pin Number Pin Name Pin Function  
Formal Name  
Definition  
This pin is an input/output pin. It is used to report the device sleep-state  
information. It is also used to apply reference PWM clock which will be  
divided by 28 in Normal operating mode. This pin has a passive internal pull-  
down.  
52  
CLK  
Input/Output  
Device mode  
feedback  
Reference PWM  
clock  
This exposed pad connects to the positive power supply and is the source of  
operational power for the device.  
55  
VPWR  
Power  
Supply  
Supply power  
supply  
Pins 17 and 38 are omitted.  
MC07XSF517  
Analog Integrated Circuit Device Data  
8
Freescale Semiconductor  
4
General Product Characteristics  
4.1  
Relationship Between Ratings and Operating Requirements  
The analog portion of device is supplied by the voltage applied to the VPWR exposed pad. Thereby the supply of internal circuitry  
(logic in case of a VCC disconnect, charge pump, gate drive,...) is derived from the VPWR pin.  
In case of a reverse supply:  
the internal supply rail is protected (max. -16 V)  
the output drivers (OUT1… OUT5) are switched on, to reduce the power consumption in the drivers when using  
incandescent bulbs  
Fatal Range  
Reverse  
protection  
Degraded Operating  
Range  
Normal  
Operating Range  
Degraded Operating  
Range  
Potential Failure  
Fatal Range  
Probable  
permanent  
failure  
- Reduced performance  
- Probable failure in  
case of short-circuit  
Probable  
permanent  
failure  
- Reduced performance Full performance - Reduced performance  
- Full protection but  
accuracy not  
- Full protection but  
accuracy not  
guaranteed  
guaranteed  
- no PMW feature for  
UV to 6.0 V  
Operating Range  
V
6
V
0
4
1
-
Fatal Range  
Accepted Industry  
Standard Practices  
Fatal Range  
Probable  
Probable  
permanent failure  
Correct operation  
permanent failure  
Handling Conditions (Power OFF)  
Figure 4. Ratings vs. Operating Requirements (VPWR pin)  
The device’s digital circuitry is powered by the voltage applied to the VCC pin. If VCC is disconnected, the logic part is supplied  
by the VPWR pin.  
The output driver for SPI signals, CLK pin (wake feedback), and OUT6 are supplied by the VCC pin only. This pin shall be  
protected externally in case of a reverse polarity, and in case of a high-voltage disturbance.  
Fatal Range  
Not Operating Range Degraded Operating Normal Operating  
Degraded Operating  
Range  
Fatal Range  
Probable  
Range  
Range  
Probable  
permanent failure  
Reduced  
Full performance Reduced performance permanent failure  
performance  
Operating Range  
Figure 5. Ratings vs. Operating Requirements (VCC pin)  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
9
4.2  
Maximum Ratings  
Table 3. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
ELECTRICAL RATINGS  
VPWR  
VPWR Voltage Range  
-16  
40  
V
V
V
V
VCC Logic Supply Voltage  
-0.3  
7.0  
CC  
(2)  
(2)  
V
Digital Input Voltage  
IN  
• IN1… IN4 and LIMP  
-0.3  
-0.3  
40  
20  
• CLK, SI, SCLK, CSB, and RSTB  
V
Digital Output Voltage  
V
OUT  
• SO, CSNS, SYNC, OUT6, CLK  
-0.3  
20  
(3)  
(4)  
I
Negative Digital Input Clamp Current  
5.0  
mA  
A
CL  
IOUT  
Power Channel Current  
• 7.0 mchannel  
• 17 mchannel  
11  
5.5  
(5)  
E
Power Channel Clamp Energy Capability  
mJ  
CL  
• 7.0 mchannel - Initial TJ = 25 °C  
200  
100  
100  
50  
• 7.0 mchannel - Initial TJ = 150 °C  
• 17 mchannel - Initial TJ = 25 °C  
• 17 mchannel - Initial TJ = 150 °C  
(6)  
V
ESD Voltage  
V
ESD  
• Human Body Model (HBM) - VPWR, Power Channel, and GND pins  
• Human Body Model (HBM) - All other pins  
• Charge Device Model (CDM) - Corner pins  
• Charge Device Model (CDM) - All other pins  
-8000  
-2000  
-750  
+8000  
+2000  
+750  
-500  
+500  
Notes  
2. Exceeding voltage limits on those pins may cause a malfunction or permanent damage to the device.  
3. Maximum current in negative clamping for IN1… IN4, LIMP, RSTB, CLK, SI, SO, SCLK, and CSB pins  
4. Continuous high side output current rating so long as maximum junction temperature is not exceeded. Calculation of maximum output  
current using package thermal resistance is required.  
5. Active clamp energy using single-pulse method (L = 2.0 mH, RL = 0 , VPWR = 14 V). Please refer to Output Clamps section.  
6. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 ), and the Charge Device  
Model.  
MC07XSF517  
Analog Integrated Circuit Device Data  
10  
Freescale Semiconductor  
4.3  
Thermal Characteristics  
Table 4. Thermal Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
THERMAL RATINGS  
(7)  
Operating Temperature  
°C  
TA  
TJ  
• Ambient  
• Junction  
-40  
-40  
+125  
+150  
TSTG  
Storage Temperature  
-55  
+ 150  
260  
°C  
°C  
(8) (9)  
TPPRT  
Peak Package Reflow Temperature During Reflow  
THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS  
(10)  
(11) (12)  
(13)  
RJB  
RJA  
RJC  
Junction-to-Board (1]Soldered to Board)  
2.5  
°/W  
°/W  
°/W  
Junction-to-Ambient, Natural Convection, Four-Layer Board (2s2p)  
Junction-to-Case (Case top surface)  
17.4  
10.6  
Notes  
7. To achieve high reliability over 10 years of continuous operation, the device's continuous operating junction temperature should not  
exceed 125C.  
8. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause malfunction or permanent damage to the device.  
9. Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow  
Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes  
and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.  
10. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top  
surface of the board near the package.  
11. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature,  
ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
12. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
13. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
4.4  
Operating Conditions  
This section describes the operating conditions of the device. Conditions apply to all the following data, unless otherwise noted.  
Table 5. Operating Conditions  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Ratings  
Min  
Max  
Unit  
Notes  
Functional operating supply voltage - Device is fully  
functional. All features are operating.  
7.0  
18  
V
VPWR  
Overvoltage range  
• Jump Start  
V
28  
40  
• Load dump  
Reverse Supply  
-16  
4.5  
V
V
VCC  
Functional operating supply voltage - Device is fully  
functional. All features are operating.  
5.5  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
11  
4.5  
Supply Currents  
This section describes the current consumption characteristics of the device.  
Table 6. Supply Currents  
Characteristics noted under conditions 4.5 V VCC 5.5 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Ratings  
Min  
Typ.  
Max  
Unit  
Notes  
VPWR CURRENT CONSUMPTIONS  
IQVPWR Sleep mode measured at VPWR = 12 V  
• TA = 25 °C  
(14) (15)  
(15)  
1.2  
10  
5.0  
30  
µA  
• TA = 125 °C  
IVPWR  
VCC CURRENT CONSUMPTIONS  
IQVCC Sleep mode measured at VCC = 5.5 V  
IVCC  
Operating mode measured at VPWR = 18 V  
7.0  
8.0  
mA  
0.05  
2.8  
5.0  
4.0  
µA  
Operating mode measured at VPWR = 5.5 V (SPI frequency  
5.0 MHz)  
mA  
Notes  
14. With the OUT1… OUT5 power channels grounded.  
15. With the OUT1… OUT5 power channels opened.  
MC07XSF517  
Analog Integrated Circuit Device Data  
12  
Freescale Semiconductor  
5
General IC Functional Description and Application  
Information  
5.1  
Introduction  
The 07XSF517 is an evolution of the successful Gen3 by providing improved features of a complete family of devices using  
Freescale's latest and unique technologies for the controller and the power stages.  
It consists of a scalable family of devices compatible in terms of software driver and package footprint. It allows diagnosing the  
light-emitting diodes (LEDs) with an enhanced current sense precision with synchronization pin, as well as driving high power  
motors with a perfect control of its current consumption. It combines flexibility through daisy chainable SPI 5.0 MHz, extended  
digital and analog feedbacks, safety, and robustness. It integrates an enhanced PWM module with 8-bit duty cycle capability and  
PWM frequency prescaler per power channel.  
5.2  
Features  
The main attributes of 07XSF517 are:  
Penta high side switches with overload, overtemperature and undervoltage protection  
control output for 1 external smart power switch  
16 Bit SPI communication interface with daisy chain capability  
integrated Fail mode (ASIL B compliant functional safety behavior)  
dedicated control inputs for use in Fail mode  
analog feedback pin with SPI programmable multiplexer and sync signal  
channel diagnosis by SPI communication  
advanced current sense mode for LED usage  
synchronous PWM module with external clock, prescaler and multiphase feature  
excellent EMC behavior  
power net and reverse polarity protection  
ultra low power mode  
scalable and flexible family concept  
board layout compatible SOIC54 package with exposed pad  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
13  
5.3  
Block Diagram  
The choice of multi-die technology in SOIC exposed pad package including low cost vertical trench FET power die associated  
with Smart Power control die lead to an optimized solution.  
Gen4 - Functional Block Diagram  
Power Supply  
MCU Interface & Device Control  
SPI Interface  
Self-Protected  
High Side  
Switches  
OUT[x]  
Parallel Control Inputs  
PWM Controller  
MCU  
Interface  
Supply  
MCU Interface & Output Control  
Self-Protected High Side Switches  
Figure 6. Functional Block Diagram  
5.3.1 Self-protected High Side Switches  
OUT1… OUT5 are the output pins of the power switches. The power channels are protected against various kinds of short-  
circuits and have active clamp circuitry that may be activated when switching off inductive loads. Many protective and diagnostic  
functions are available.  
5.3.2 Power Supply  
The device operates with supply voltages from 5.5 to 40 V (VPWR), but is full spec. compliant only between 7.0 and 18 V. The  
VPWR pin supplies power to the internal regulator, analog, and logic circuit blocks. The VCC pin (5.0 V typ.) supplies the output  
register of the serial peripheral interface (SPI). Consequently, the SPI registers cannot be read without presence of VCC. The  
employed IC architecture guarantees a low quiescent current in Sleep mode.  
5.3.3 MCU Interface and Device Control  
In Normal mode the power output channels are controlled by the embedded PWM module, which is configured by the SPI register  
settings. For bidirectional SPI communication, VCC has to be in the authorized range. Failure diagnostics and configuration are  
also performed through the SPI port. The reported failure types are: open-load, short-circuit to supply, severe short-circuit to  
ground, overcurrent, overtemperature, clock-fail, and under and overvoltage.  
The device allows driving loads at different frequencies up to 400 Hz.  
5.4  
Functional Description  
The device has four fundamental operating modes: Sleep, Normal, Fail, and Power off. It possesses multiple high side switches  
(power channels) each of which can be controlled independently:  
in Normal mode by SPI interface. For bidirectional SPI communication, a second supply voltage (VCC) is required.  
in Fail mode by the corresponding the direct inputs IN1… IN4. The OUT5 for the Penta version and the OUT6  
are off in this mode.  
MC07XSF517  
Analog Integrated Circuit Device Data  
14  
Freescale Semiconductor  
5.5  
Modes of Operation  
The operating modes are based on the signals:  
wake = (IN1_ON) OR (IN2_ON) OR (IN3_ON) OR (IN4_ON) OR (RST\). More details in Logic I/O Plausibility  
Check section.  
fail = (SPI_fail) OR (LIMP). More details in Loss of Communication Interface section.  
Sleep  
wake = [0]  
wake = [0]  
wake = [1]  
(VPWR < VPWRPOR) and  
(VCC < VCCPOR  
(VPWR > VPWRPOR) or  
(VCC > VCCPOR  
)
)
(VPWR < VPWRPOR) and  
(VCC < VCCPOR  
(VPWR < VPWRPOR) and  
(VCC < VCCPOR  
Power  
off  
)
)
Normal  
fail = [0] and valid watchdog toggle  
fail = [1]  
Fail  
Figure 7. General IC Operating Modes  
5.5.1 Power Off Mode  
The power off mode is applied when VPWR and VCC are below the power on reset threshold (VPWR POR, VCC POR).  
In power off, no functionality is available but the device is protected by the clamping circuits. Refer to Supply Voltages  
Disconnection section.  
5.5.2 Sleep Mode  
The Sleep mode is used to provide ultra low current consumption. During Sleep mode:  
the component is inactive and all outputs are disabled  
the outputs are protected by the clamping circuits  
the pull-up / pull-down resistors are present  
The Sleep mode is the default mode of the device after applying the supply voltages (VPWR or VCC) prior to any wake-up condition  
(wake = [0]).  
The wake-up from Sleep mode is provided by the wake signal.  
5.5.3 Normal Mode  
The Normal mode is the regular operating mode of the device. The device is in Normal mode, when the device is in the wake  
state (wake = [1]) and no fail condition (fail = [0]) is detected.  
During Normal mode:  
the power outputs are under control of the SPI  
the power outputs are controlled by the programmable PWM module  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
15  
the power outputs are protected by the overload protection circuit  
the control of the power outputs by SPI programming  
the digital diagnostic feature transfers status of the smart switch via the SPI  
the analog feedback output (CSNS and CSNS SYNC) can be controlled by SPI  
The channel control (CHx) can be summarized:  
CH1… 4 controlled by ONx or iINx (if ir is programmed by SPI)  
CH5… 6 controlled by ONx  
Rising CHx by definition means starting over current window for OUT1… 5.  
5.5.4 Fail Mode  
The device enters the Fail mode, when  
the LIMP input pin is high (logic [1])  
or a SPI failure is detected  
During Fail mode (wake = [1] & fail = [1]):  
the OUT1… OUT4 outputs are directly controlled by the corresponding control inputs (IN1… IN4)  
the OUT5… OUT6 are turned off  
the PWM module is not available  
while no SPI control is feasible, the SPI diagnosis is functional (depending on the fail mode condition):  
the SO shall report the content of SO register defined by SOA0 to 3 bits  
the outputs are fully protected in case of an overload, overtemperature, and undervoltage  
no analog feedback is available  
the max. output overcurrent profile is activated (OCLO and window times)  
in case of an overload condition or undervoltage, the autorestart feature controls the OUT1… OUT4 outputs  
in case of an overtemperature condition, OCHI1 detection, or severe short-circuit detection, the corresponding  
output is latched OFF until a new wake-up event.  
The channel control (CHx) can be summarized:  
CH1… 4 controlled by iINx, while the overcurrent windows are controlled by IN_ONx  
CH5… 6 are off  
5.5.5 Mode Transitions  
After a wake-up:  
a power on reset is applied and all SPI SI and SO registers are cleared (logic[0])  
the faults are blanked during tBLANKING  
The device enters in Normal mode after start-up if following sequence is provided:  
VPWR and VCC power supplies must be above their undervoltage thresholds (Sleep mode)  
generate wake-up event (wake =1) setting RSTB from 0 to 1  
The device initialization will be completed after 50 µsec (typ). During this time, the device is robust in case of VPWR interrupts  
higher than 150nsec.  
The transition from “Normal mode” to “Fail mode” is executed immediately when a fail condition is detected.  
During the transition, the SPI SI settings are cleared and the SPI SO registers are not cleared.  
When the Fail mode condition was a:  
LIMP input, WD toggle timeout, WD toggle sequence, or a SPI modulo 16 error, the SPI diagnosis is available  
during Fail mode  
SI / SO stuck to static level, the SPI diagnosis is not available during Fail mode  
The transition from “Fail mode” to “Normal mode” is enabled, when  
the fail condition is removed and  
two SPI commands are sent within a valid watchdog cycle (first WD=[0] and then WD=[1])  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
16  
During this transition:  
all SPI SI and SO registers are cleared (logic[0])  
the DSF (device status flag) in the registers #1… #7 and the RCF (Register Clearer flag) in the device status  
register #1 are set (logic[1])  
To delatch the RCF diagnosis, a read command of the quick status register #1 must be performed.  
5.6  
SPI Interface and Configurations  
5.6.1 Introduction  
The SPI is used to  
control the device in case of Normal mode  
provide diagnostics in case of Normal and Fail mode  
The SPI is a 16 Bit full-duplex synchronous data transfer interface with daisy chain capability.  
The interface consists of four I/O lines with 5.0 V CMOS logic levels and termination resistors:  
The SCLK pin clocks the internal shift registers of the device  
The SI pin accepts data into the input shift register on the rising edge of the SCLK signal  
The SO pin changes its state on the rising edge of SCLK and reads out on the falling edge  
The CSB enables the SPI interface  
with the leading edge of CS\ the registers are loaded  
while CSB is logic [0] SI/SO data are shifted  
with the trailing edge of the CSB signal, SPI data is latched into the internal registers  
when CSB is logic [1], the signals at the SCLK and SI pins are ignored and SO is high-impedance  
When the RSTB input is  
low (logic [0]), the SPI and the fault registers are reset. The Wake state then depends on the status of the input  
pins (IN_ON1… IN_ON4)  
high (logic[1]), the device is in Wake status and the SPI is enabled  
The functionality of the SPI is checked by a plausibility check. In case of a SPI failure the device enters the Fail mode.  
5.6.2 SPI Input Register and Bit Descriptions  
The first nibble of the 16 bit data word (D15… D12) serves as address bits.  
Register  
SI address  
SI data  
#
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
4 Bi t ad ress  
WD  
11 Bi t d at a  
name  
11 bits (D10… D1) are used as data bits.  
The D11 bit is the WD toggle bit. This bit has to be toggled with each write command.  
When the toggling of the bit is not executed within the WD timeout, a SPI fail is detected.  
All register values are logic [0] after a reset. The predefined value is off / inactive unless otherwise noted.  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
17  
Register  
SI address  
SI data  
D15  
D 14  
D13  
D 12  
D 11  
D 10  
D9  
D 8  
D 7  
D 6  
D 5  
D4  
D 3  
D2  
D 1  
D 0  
#
SYNC  
EN1  
SYNC  
EN0  
SOA  
MODE  
O CHI  
OD3  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
W D  
W D  
W D  
W D  
W D  
W D  
W D  
WD SEL  
OCHI  
MUX2  
M UX1  
MUX0  
SOA3  
SOA2  
SOA1  
SOA0  
Ini tia lisa tion 1  
ini tia lisa tion 2  
CH1 control  
CH2 control  
CH3 control  
CH4 control  
CH5 control  
0
1
2
3
4
5
6
O CHI  
OD5  
OCHI  
OD4  
OCHI  
OD2  
OCHI  
O D1  
PWM  
sync  
O TW  
SE L  
OCHI  
NO HID1 NO HID0  
THERMAL TRANSIENT  
PH11  
PH12  
PH13  
PH14  
PH15  
PH01  
PH02  
PH03  
PH04  
PH05  
ON1  
ON2  
ON3  
ON4  
ON5  
PW M71 PWM61 PW M51 PWM41 PW M31 PWM 21 PWM11 PW M01  
PW M72 PWM62 PW M52 PWM42 PW M32 PWM 22 PWM12 PW M02  
PW M73 PWM63 PW M53 PWM43 PW M33 PWM 23 PWM13 PW M03  
PW M74 PWM64 PW M54 PWM44 PW M34 PWM 24 PWM14 PW M04  
PW M75 PWM65 PW M55 PWM45 PW M35 PWM 25 PWM15 PW M05  
0
1
1
1
1
1
1
1
0
0
0
0
0
0
1
0
0
0
1
1
1
1
0
1
1
0
0
1
W D  
W D  
W D  
W D  
W D  
W D  
W D  
PH16  
PH06  
PSF 4  
X
ON6  
PSF3  
X
PW M76 PWM66 PW M56 PWM46 PW M36 PWM 26 PWM16 PW M06  
CH6 control  
7
output  
contr ol  
PSF5  
PSF2  
X
PSF1  
X
ON6  
ON5  
ON4  
O N3  
ON2  
ON1  
8
G PW M  
EN6  
GPWM  
EN5  
GPW M  
EN4  
GPWM  
EN3  
GPWM  
EN2  
GPW M  
EN1  
0
1
0
1
0
9-1  
9-2  
10-1  
10-2  
11  
Global P WM  
contr ol  
X
X
GPW M7 GPWM 6 GPW M5 GPWM4 GPWM3 G PW M2 GPWM 1 GPW M0  
ACM  
EN5  
ACM  
EN4  
ACM  
EN3  
ACM  
EN2  
ACM  
EN1  
OCLO5 OCLO4  
OCLO 3 OCLO2 O CLO1  
ov er curr ent  
contr ol  
NO  
NO  
NO  
NO  
NO  
SHO RT SHORT SHORT SHORT SHORT  
OCHI5 OCHI4 OCHI3 O CHI2 OCHI1  
OCHI5  
O CHI4  
OCHI3  
OCHI2  
OCHI1  
X
X
INEN14 INEN04 INEN13 INEN03 INEN12 INEN02 INEN11 INEN01  
input enable  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
W D  
W D  
W D  
W D  
0
1
0
1
PRS15  
X
PRS05  
X
PRS14  
X
PRS04  
X
PRS13  
X
PRS03  
X
PRS12  
PRS02  
PRS11  
PRS01  
12-1  
12-2  
13-1  
13-2  
presca ler  
settings  
X
X
PRS16  
OLOF F  
PRS06  
OLOFF  
O LO N  
DGL5  
OLON  
DG L4  
OLON  
DGL3  
OLON  
DGL2  
OLON  
DGL1  
OLOFF  
EN5  
OLO FF  
OLOFF  
OL control  
EN4  
OLLED  
EN4  
EN3  
OLLED  
EN3  
EN2  
OLLED  
EN2  
EN1  
OLLED  
EN1  
OLLED OLLED  
TRIG EN5  
res  
res  
res  
res  
OLLE D control  
incr eme nt /  
dercrement  
testmode  
INCR  
SG N  
1
1
1
1
1
1
0
1
W D  
X
INCR15 INCR05 INCR14 INCR04 INCR13 INCR03 INCR12 INCR02 INCR11 INCR01  
14  
15  
X
X
X
X
X
X
X
X
X
X
X
WD  
#0 ~# 14 = watchdog tog gle bit  
#0  
SYNC SYNC Sync status  
SO A0 ~ SOA3  
#0  
#0  
= address of nex t SO data word  
EN1  
EN0  
SOA MO DE  
= s ing le read a ddress of nex t SO data word  
0
0
sy nc off  
MUX0 ~ MUX2  
#0  
#0  
= CSN S m ultip lexer s etti ng  
= S YNC d ela y setti ng  
0
1
1
0
valid  
trig0  
SYNC EN0~ SYNC EN1  
WD SEL  
#0  
#1  
#1  
#1  
#1  
= watchdog tim eout select  
= over temperature warning threshold selection  
= r eset clock module  
= OC H I windo w on l oad de man d  
= HID outpu ts s elec ti on  
1
1
trig1/2  
OTW SEL  
PW M S Y NC  
OCHI ODx  
#1  
NO HID1NO HID0D Selection  
0
0
0
1
av aila ble for all c han nels  
av ailable for channe l 3 only  
NO HIDx  
OCHI THERMAL  
OCHIT RA NSIENT  
#1  
#1  
= OCH I1 level de pen ding on control die temp erature  
= OCH I1 level ad jus ted durin g OFF to ON tra nsitio n  
1
1
0
1
av ailable for channe ls 3 and 4 o nly  
unava ilab le for all ch anne ls  
PWM0x ~ PWM 7x  
PH0x ~ PH1x  
#2~ #7 = P WM val ue (8Bi t)  
#2~#7 = p has e con tro l  
#2~#7  
#11  
PH 1x PH 0x Phase  
0
0
0
1
0 °  
90°  
ONx #2~ #8 = c han nel on /o ff inc l. OC HI c ont rol  
PS Fx  
#8 = puls e skipping feature forpower output channels  
GPWM ENx # 9-1 = g lob al PWM en abl e  
1
1
0
1
180°  
27 0°  
GPWM1 ~ G PWM7  
#9-2 = global PWM value (8Bit)  
#10 -1 = adva nced curre nt s ense m ode e nable  
#10 -1 = OCLO lev el contr ol  
GPWM  
E Nx  
IN x= 0  
I Nx= 1  
ONx INEN1x INE N0x  
ACM ENx  
OCLOx  
OUTx PWMx OUTx PWMx  
0
x
x
x
OFF  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
x
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
x
individual  
individual  
SHORT OCHIx #10 -2 = use short OC HI window time  
0
0
0
gl obal  
individual  
gl obal  
global  
individual  
global  
NO OCHIx #10-2 = start with OCLO thres hold  
1
0
1
0
1
0
INE N0x ~ INE N1x  
#1 1 = inpu t en able c ontrol  
0
1
1
0
PRS0x ~ PRS1x  
#1 2 = p re sca ler se tting  
1
OLOF F ENx  
individual  
individual  
#13 -1 = OL load in off state enab le  
OLO N DGLx  
gl obal  
global  
global  
#13 -1 = OL ON degl itch ti me  
individual  
OLL ED ENx #13 -2 = OL L ED mode enable  
OLL ED TRIG #13 -2 = trigger for OLLED detetcio n in 100% d.c.  
1
1
gl obal  
individual  
1
INCR SGN  
#1 4 = P WM inc reme nt / dec reme nt si gn  
#12  
PRS 1x PRS 0x PRSdivider  
INCR0x ~ INCR1x  
#1 4 = P WM inc reme nt / dec reme nt se ttin g  
0
0
1
0
1
/4  
/2  
/1  
2 5Hz .... 10 0H z  
50Hz .... 200Hz  
100Hz.... 400Hz  
x
#0  
MUX2 MUX1 MUX0 CSNS  
0
0
0
0
0
0
1
1
0
1
0
1
off  
#14  
#14  
INCR SGN  
inc reme nt/decrement  
OUT1 cur rent  
OUT2 cur rent  
OUT3 current  
0
1
decrem ent  
increm ent  
INC R 1x INCR 0x inc reme nt/decrement  
1
1
0
0
0
1
OUT4 current  
OUT5 current  
0
0
0
1
no i ncrem ent/dec reme nt  
4 LSB  
VPWR monitor  
con tro l die temperature  
1
1
1
1
0
1
1
1
0
1
8 LSB  
16 LSB  
MC07XSF517  
Analog Integrated Circuit Device Data  
18  
Freescale Semiconductor  
5.6.3 SPI Output Register and Bit Descriptions  
The first nibble of the 16 Bit data word (D12… D15) serves as address bits.  
All register values are logic [0] after a reset, except DSF and RCF bits. The predefined value is off / inactive unless otherwise  
noted.  
#2~#6  
QSFx  
CLKF  
RCF  
#1  
#1  
#1  
#1  
= quick s tatus (OC or OTW or OTS or OLON or OLOFF)  
= PWM clock fail flag  
OC2x O C1x OC0x ove r cur rent st atus  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
no ove rcu rrent  
OCHI1  
= reg ister c lear fla g  
CPF  
= charge pum p fl ag  
OCHI2  
OLF #1 ~# 7 = open lo ad flag (wi red or of all OL s ign als )  
OVLF #1 ~# 7 = ov er loa d flag (wired or of all OC a nd OTS sig nal s)  
DSF #1 ~# 7 = devic e status flag ( UVF or OVF or CP F or RCF or CLKF or TM F)  
FM #1 ~# 8 = fail m ode fla g  
OCHI3  
OCLO  
OCHIOD  
SSC  
OLOFFx #2 ~# 6 = open lo ad in o ff state status bit  
OLONx #2 ~# 6 = open lo ad in o n state status bit  
OTWx #2 ~# 6 = ov er te mp eratur e warnin g bit  
not u sed  
#9  
DEVID2 DEV ID1 DEVID0 device type  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
P enta3 /2  
P enta0 /5  
Qu ad2 /2  
Quad0/4  
Trip le1 /2  
Trip le0 /3  
re s  
OTSx #2 ~# 6 = ov er te mp eratur e shutdown bit  
iLIM P  
SPIF  
#7  
#7  
#7  
#7  
#7  
#8  
#8  
#8  
#9  
#9  
#9  
= status o f LIM P input after deglitc her (re ported in real tim e)  
= SPI fail flag  
UVF  
= under v oltage flag  
OVF  
= ov er volta ge flag  
TMF  
= testmo de activa ti on flag  
status of VPWR/2 comparator (reported in real time)  
=
OUTx  
re s  
iINx  
= status o f INx pin after deglitc her (reported in real tim e)  
= status o f INx _ON s ignals (IN1_O N or IN2 _ON or IN 3_ON or IN4_ ON)  
= devic e ty pe  
TOGGLE  
DEVID0 ~ DE VID2  
DEVID3 ~ DE VID4  
DEVID5 ~ DE VID7  
= devic e fa mil y  
= design status (incre men te d numbe r)  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
19  
5.6.4 Timing Diagrams  
RSTB  
V
V
IH  
IL  
10% VCC  
t
t
CS  
ENBL  
t
WRST  
CSB  
90% VCC  
V
V
IH  
IL  
10% VCC  
t
RSI  
t
WSCLKh  
t
LAG  
t
LEAD  
V
V
IH  
IL  
90% VCC  
10% VCC  
SCLK  
t
SI(SU)  
t
WSCLKl  
t
FSI  
t
SI(H)  
V
V
IH  
IL  
90% VCC  
10% VCC  
SI  
Must be Valid  
Don’t Care  
Must be Valid  
Don’t Care  
Don’t Care  
t
t
SOEN  
SODIS  
V
V
IH  
IL  
Tri-stated  
Tri-stated  
SO  
Figure 8. Timing Requirements During SPI Communication  
t
t
FSI  
RSI  
V
OH  
90% VCC  
50%  
SCLK  
10% VCC  
V
V
OL  
OH  
10% VCC  
SO  
V
OL  
t
RSO  
Low to High  
t
VALID  
t
FSO  
SO  
V
V
OH  
OL  
High To Low  
90% VCC  
10% VC  
Figure 9. Timing Diagram for Serial Output (SO) Data Communication  
MC07XSF517  
Analog Integrated Circuit Device Data  
20  
Freescale Semiconductor  
5.6.5 Electrical Characterization  
Table 7. Electrical Characteristics  
Characteristics noted under conditions 4.5 V VCC 5.5 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SPI SIGNALS CSB, SI, SO, SCLK, SO  
SPI Clock Frequency  
fSPI  
VIH  
0.5  
5.0  
MHz  
V
Logic Input High State Level (SI, SCLK, CSB, RSTB)  
Logic Input High State Level for wake-up (RSTB)  
Logic Input Low State Level (SI, SCLK, CSB, RSTB)  
Logic Output High State Level (SO)  
3.5  
VIH(WAKE)  
VIL  
3.75  
V
VCC - 0.4  
0.85  
V
VOH  
V
Logic Output Low State Level (SO)  
VOL  
0.4  
+0.5  
V
Logic Input Leakage Current in Inactive State (SI = SCLK = RSTB = [0] and  
CSB = [1])  
IIN  
-0.5  
µA  
Logic Output Tri-state Leakage Current (SO from 0 V to VCC  
Logic Input Pull-up / Pull-down Resistor  
Logic Input Capacitance  
)
IOUT  
RPULL  
CIN  
-10  
25  
+1.0  
100  
20  
12.5  
20  
µA  
k  
(16)  
pF  
RSTB deglitch Time  
tRST_DGL  
tSO  
7.5  
10  
µs  
ns  
ns  
ns  
µs  
SO Rising and Falling Edges with 80 pF  
Required High State Duration of SCLK (Required Setup Time)  
Required Low State Duration of SCLK (Required Setup Time)  
tWCLKh  
tWCLKl  
tCS  
80  
80  
1.0  
Required duration from the Rising to the Falling Edge of CSB (Required  
Setup Time)  
Required Low State Duration for reset RST\  
tRST  
tLEAD  
tLAG  
1.0  
320  
100  
20  
20  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Falling Edge of CSB to Rising Edge of SCLK (Required Setup Time)  
Falling Edge of SCLK to Rising Edge of CSB (Required Setup lag Time)  
SI to Falling Edge of SCLK (Required Setup Time)  
tSI(SU)  
tSI(H)  
tRSI  
Falling Edge of SCLK to SI (Required hold Time of the SI signal)  
SI, CSB, SCLK, Max. Rise Time Allowing Operation at Maximum fSPI  
SI, CSB, SCLK, Max. Fall Time Allowing Operation at Maximum fSPI  
20  
20  
50  
50  
60  
tFSI  
Time from Falling Edge of CS\ to Reach Low-impedance on SO (access  
time)  
tSO(EN)  
Time from Rising Edge of CSB to Reach Tri-state on SO  
tSO(DIS)  
60  
ns  
Notes  
16. Parameter is derived from simulations.  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
21  
6
Functional Block Requirements and Behaviors  
6.1  
Self-protected High Side Switches Description and Application  
Information  
6.1.1 Features  
Up to five power outputs are foreseen to drive light as well as DC motor applications. The outputs are optimized for driving bulbs,  
but also HID ballasts, LEDs, and other resistive or low inductive loads.  
The smart switches are controlled by use of high sophisticated gate drivers. The gate drivers provide:  
output pulse shaping  
output protections  
active clamps  
output diagnostics  
6.1.2 Output Pulse Shaping  
The outputs are controlled with a closed loop active pulse shaping to provide the best compromise between:  
low switching losses  
low EMC emission performance  
minimum propagation delay time  
Depending on the programming of the prescaler setting register #12-1, #12-2, the switching speeds of the outputs are adjusted  
to the output frequency range of each channel.  
The edge shaping shall be designed according the following table:  
divider  
factor  
PWM freq [Hz]  
PWM period [ms]  
d.c. range [hex]  
d.c. range [LSB]  
min. on/off duty  
cycle time [µs]  
min  
max  
min  
max  
min  
max  
min  
max  
25  
50  
100  
200  
10  
5
40  
20  
4
8
252  
248  
4
2
1
03  
07  
07  
FB  
F7  
F7  
156  
156  
78  
100  
400  
2, 5  
10  
8
248  
The edge shaping provides full symmetry for rising and falling transition:  
the slopes for the rising and falling edge are matched to provide the best EMC emission performance  
the shaping of the upper edges and the lower edges are matched to provide the best EMC emission performance  
the propagation delay time for the rising edge and the falling edge is matched to provide true duty cycle control  
of the output duty cycle error, < 1 LSB at max. frequency  
a digital regulation loop is used to minimize the duty cycle error of the output signal  
MC07XSF517  
Analog Integrated Circuit Device Data  
22  
Freescale Semiconductor  
Figure 10. Typical Power Output Switching (slow & fast slew rate)  
6.1.2.1  
SPI Control and Configuration  
For optimized control of the outputs, a synchronous clock module is integrated. The PWM frequency and output timing during  
Normal mode are generated from the clock input (CLK) by the integrated PWM module. In case of clock fail (very low frequency,  
very high frequency), the output duty cycle is 100%.  
Each output (OUT1… OUT6) can be controlled by an individual channel control register:  
Register  
SI address  
SI data  
#
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
C Hx contr ol  
2~7  
channel address  
WD  
PH1x  
PH0x  
Onx  
PWM7x PWM6x PWM5x PWM4x PWM3x PWM2x PWM1x PWM0x  
where:  
PH0x… PH1x: phase assignment of the output channel x  
ONx: on/off control including overcurrent window control of the output channel x  
PWM0x… PWM7x: 8-bit PWM value individually for each output channel x  
The ONx bits are duplicated in the output control register #8 to control the outputs with either the CHx control register or the output  
control register.  
The PRS1x… PRS0x prescaler settings can be set in the prescaler settings register #12-1 and #12-2.  
The following changes of the duty cycle are performed asynchronous (with pos. edge of CSB signal)  
turn on with 100% duty cycle (CHx = ON)  
change of duty cycle value to 100%  
turn off (CHx = OFF)  
phase setting (PH0x… PH1x)  
prescaler setting (PRS1x… PRS0x)  
A change in phase setting or prescaler setting during CHx = ON may cause an unwanted long ON-time. Therefore it is  
recommended to turn off the output(s) before execution of this change.  
INCR SGN increment/decrement  
0
1
decrement  
increment  
The following changes of the duty cycle are performed synchronous (with the next PWM cycle)  
turn on with less than 100% duty cycle (OUTx = ONx)  
change of duty cycle value to less than 100%  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
23  
A change of the duty cycle value can be achieved by a change of the  
PWM0x… PWM7x bits in individual channel control register #2… #7  
GPWM EN1… GPWM EN6 bits (change between individual PWM and global PWM settings) in global PWM  
control register #9-1  
incremental/decremental register #14  
The synchronization of the switching phases between different devices is provided by the PWM SYNC bit in the initialization 2  
register #1.  
On a SPI write into initialization 2 register (#1):  
initialization when the bit D1 (PWM SYNC) is logic[1], all counters of the PWM module are reset with the positive  
edge of the CSB, i.e. the phase synchronization is performed immediately within one SPI frame. It could help to  
synchronize different Gen4 devices in the board.  
when the bit D1 is logic[0], no action is executed  
The switching frequency can be adjusted for the corresponding channel as described in the following table:  
CLK fr eq. [kHz]  
prescalersetting  
div ider  
PWM freq [Hz]  
sl ew  
rate  
PWM resolution  
min.  
max.  
PRS1x  
PRS0x  
factor  
min  
25  
max  
100  
200  
400  
[Bit]  
[steps]  
0
0
1
0
1
4
2
1
slow  
slow  
fast  
25,6  
102,4  
50  
8
256  
X
100  
PWMduty cycle  
pulse skippingframe  
S0 S1 S2 S3 S4 S5 S6 S7  
FF FF FF FF FF FF FF FF  
F7 FF FF FF FF FF FF FF  
F7 FF FF FF F7 FF FF FF  
F7 FF F7 FF F7 FF FF FF  
F7 FF F7 FF F7 FF F7 FF  
F7 F7 F7 FF F7 FF F7 FF  
F7 F7 F7 FF F7 F7 F7 FF  
F7 F7 F7 F7 F7 F7 F7 FF  
hex  
dec  
256  
255  
254  
253  
252  
251  
250  
249  
248  
247  
246  
[%]  
FF  
FE  
FD  
FC  
FB  
FA  
F9  
F8  
F7  
F6  
F5  
100,00%  
99,61%  
99,22%  
98,83%  
98,44%  
98,05%  
97,66%  
97,27%  
96,88%  
96,48%  
96,09%  
245  
F4  
95,70%  
.
.
.
.
.
.
.
.
.
.
.
.
4
3
2
1
03  
02  
01  
00  
1,56%  
1,17%  
0,78%  
0,39%  
No PWM feature is provided in case of:  
Fail mode  
clock input signal failure  
6.1.2.2  
Global PWM Control  
In addition to the individual PWM register, each channel can be assigned independently to a global PWM register.  
The setting is controlled by the GPWM EN bits inside the global PWM control register #9-1. When no control by direct input pin  
is enabled and the GPWM EN bit is  
low (logic[0]), the output is assigned to individual PWM (default status)  
high (logic[1]), the output is assigned to global PWM  
The PWM value of the global PWM channel is controlled by the global PWM control register #9-2.  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
24  
iINx=0  
iINx=1  
GPWM  
ENx  
ONx  
INEN1x INEN0x  
CHx  
PWMx  
x
CHx  
PWMx  
x
0
x
x
x
0
1
0
1
0
1
OF F  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
individual  
global  
individual  
global  
0
0
ON  
0
1
1
0
OF F  
OF F  
ON  
individual  
global  
individual  
global  
1
individual  
global  
global  
1
1
ON  
individual  
When a channel is assigned to global PWM, the switching phase the prescaler and the pulse skipping are according the  
corresponding output channel setting.  
6.1.2.3  
Incremental PWM Control  
To reduce the control overhead during soft start/stop of bulbs or DC motors (e.g. theatre dimming), an incremental PWM control  
feature is implemented.  
With the incremental PWM control feature the PWM values of all internal channels OUT1… OUT5 can be incremented or  
decremented with one SPI frame.  
The incremental PWM feature is not available for  
the global PWM channel  
the external channel OUT6  
The control is according the increment/decrement register #14:  
INCR SGN: sign of incremental dimming (valid for all channels)  
INCR 1x, INCR 0x increment/decrement  
INCR 1x INCR 0x increment/decrement  
0
0
1
1
0
1
0
1
no increment/decrement  
4
8
16  
This feature limits the duty cycle to the rails (00 resp. FF) to avoid any overflow.  
6.1.2.4  
Pulse Skipping  
Due to the output pulse shaping feature and the resulting switching delay time of the smart switches, duty cycles close to 0%  
resp. 100% can not be generated by the device. Therefore the pulse skipping feature (PSF) is integrated to interpolate this output  
duty cycle range in Normal mode.  
The pulse skipping provides a fixed duty cycle pattern with eight states to interpolate the duty cycle values between F7 (Hex) and  
FF (Hex). The range between 00 (Hex) and 07 (Hex) is not considered to be provided.  
The pulse skipping feature  
is available individually for the power output channels (OUT1… OUT5)  
is not available for the external channel (OUT6).  
The feature is enabled with the PSF bits in the output control register #8.  
When the corresponding PSF bit is  
low (logic[0]), the pulse skipping feature is disabled on this channel (default status)  
high (logic[1]), the pulse skipping feature is enabled on this channel  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
25  
6.1.2.5  
Input Control  
Up to four dedicated control inputs (IN1… IN4) are foreseen to  
wake-up the device  
fully control the corresponding output in case of Fail mode  
control the corresponding output in case of Normal mode  
The control during Normal mode is according the INEN0x and INEN1x bits in the input enable register #11 and according  
following logic table:  
An input deglitcher is provided at each control input to avoid high frequency control of the outputs. The internal signal is called  
iINx.  
The channel control (CHx) can be summarized:  
Normal mode:  
CH1… 4 controlled by ONx or INx (if it is programmed by the SPI)  
CH5… 6 controlled by ONx  
Rising CHx by definition means starting overcurrent window for OUT1… 5  
Fail mode:  
CH1… 4 controlled by iINx, while the over current windows are controlled by IN_ONx  
CH5… 6 are off  
Even so, the input thresholds are logic level compatible, the input structure of the pins shall be able to withstand supply voltage  
level (max.40 V) without damage. External current limit resistors (i.e. 1.0 k...10 k) can be used to handle reverse current  
conditions.  
The inputs have an integrated pull-down resistor.  
6.1.2.6  
Electrical Characterization  
Table 8. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
POWER OUTPUTS OUT1… OUT5  
ON-Resistance, Drain-to-Source for 7mPower Channel  
RDS(ON)  
m  
• TJ = 25 °C, VPWR > 12 V  
7.0  
8.0  
12.9  
10.5  
13  
• TJ = 150 °C, VPWR > 12 V  
• TJ = 25 °C, VPWR = 7.0 V  
• TJ = 25 °C, VPWR = -12 V  
• TJ = 150 °C, VPWR = -12 V  
18.2  
ON-Resistance, Drain-to-Source for 17 mPower Channel  
RDS(ON)  
m  
• TJ = 25 °C, VPWR > 12 V  
17  
19  
30.9  
25.5  
31  
• TJ = 150 °C, VPWR > 12 V  
• TJ = 25 °C, VPWR = 7.0 V  
• TJ = 25 °C, VPWR = -12 V  
• TJ = 150 °C, VPWR = -12 V  
43.5  
Sleep Mode Output Leakage Current (Output shorted to GND) per Channel  
• TJ = 25 °C, VPWR = 12 V  
ILEAK SLEEP  
µA  
0.5  
5.0  
5.0  
25  
• TJ = 125 °C, VPWR = 12 V  
• TJ = 25 °C, VPWR = 35 V  
• TJ = 125 °C, VPWR = 35 V  
MC07XSF517  
Analog Integrated Circuit Device Data  
26  
Freescale Semiconductor  
Table 8. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
POWER OUTPUTS OUT1… OUT5 (Continued)  
Operational Output Leakage Current in OFF-State per Channel  
IOUT OFF  
µA  
• TJ = 25 °C, VPWR = 18 V  
• TJ = 125 °C, VPWR = 18 V  
10  
20  
Output PWM Duty Cycle Range (measured at VOUT = VPWR/2)  
• Low Frequency Range (25 to 100 Hz)  
PWM  
LSB  
4.0  
8.0  
8.0  
252  
248  
248  
• Medium Frequency Range (50 to 200 Hz)  
• High Frequency Range (100 to 400 Hz)  
(17)  
Rising and Falling Edges Slew-Rate at VPWR = 14 V (measured from  
SR  
V/µs  
V
OUT = 2.5 V to VPWR - 2.5 V)  
• Low Frequency Range  
• Medium Frequency Range  
• High Frequency Range  
0.25  
0.25  
0.55  
0.42  
0.42  
0.84  
0.6  
0.6  
1.25  
(17)  
Rising and Falling Edges Slew Rate Matching at VPWR = 14 V (SRr / SRf)  
SR  
0.9  
1.0  
1.1  
(17)  
Turn-on and Turn-off Delay Times at VPWR = 14 V  
• Low Frequency Range  
tDLY  
µs  
20  
20  
10  
60  
60  
30  
100  
100  
50  
• Medium Frequency Range  
• High Frequency Range  
(17)  
Turn-on and Turn-off Delay Times Matching at VPWR = 14 V  
• Low Frequency Range  
tDLY  
µs  
-20  
-20  
-10  
0.0  
0.0  
0.0  
20  
20  
10  
• Medium Frequency Range  
• High Frequency Range  
Shutdown Delay Time in case of Fault  
tOUTPUT SD  
0.5  
2.5  
4.5  
µs  
REFERENCE PWM CLOCK  
Clock Input Frequency Range  
fCLK  
Notes  
25.6  
102.4  
kHz  
17. With nominal resistive load: 2.5 and 5.0 respectively for 7.0 mand 17 mchannel.  
6.1.3 Output Protections  
The power outputs are protected against fault conditions in Normal and Fail mode in case of  
overload conditions  
harness short-circuit  
overcurrent protection against ultra-low resistive short-circuit conditions thanks to smart overcurrent profile &  
severe short-circuit protection  
overtemperature protection including overtemperature warning  
under and overvoltage protections  
charge pump monitoring  
reverse supply protection  
In case a fault condition is detected, the corresponding output is commanded off immediately after the deglitch time tFAULT SD  
.
The turn off in case of a fault shutdown (OCHI1, OCHI2, OCHI3, OCLO, OTS, UV, CPF, OLOFF) is provided by the FTO feature  
(fast turn off).  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
27  
The FTO:  
does not use edge shaping  
is provided with high slew rate to minimize the output turn-off time tOUTPUT SD, in regards to the detected fault  
uses a latch which keeps the FTO active during an undervoltage condition (0 < VPWR < VPWR UVF  
)
Figure 11. Power Output Switching in Nominal Operation and In Case of Fault  
Normal mode  
In case of a fault condition during Normal mode  
the status is reported in the quick status register #1 and the corresponding channel status register #2… #6.  
To restart the output  
the channel must be restarted by writing the corresponding ON bit in the channel control register #2… #6 or  
output control register #8.  
MC07XSF517  
Analog Integrated Circuit Device Data  
28  
Freescale Semiconductor  
OLOFF  
OUTx = 1  
(Ioutx > I oloff thres) or (t > t oloff)  
(OLOFF ENx = 1)  
(rewrite CHx=1) & (tochi1+tochi2< t <tochi1+tochi2+tochi3)  
(rewrite CHx=1) & (tochi1< t<tochi1+tochi2)  
[(set CHx=1) & (fault x=0)] or  
[(rewrite CHx=1) & (t<tochi1)]  
(t>tochi1 + tochi2)  
& (faultx=0)  
(t > tochi1) & (fault x=0)  
off  
OCHI1  
OCHI2  
OCHI3  
OUTx = HSONx  
OUT x = HSONx  
OUTx = HSONx  
OUTx = off  
(CHx=0) or (fault x=1)  
(CHx=0) or (fault x=1)  
(CHx=0) or (fault x=1)  
(OCLOx=1) & (OCHI ODx= 1)  
(NO OCHIx=1) & (fault x=0)  
(NO OCHIx =1) & (fault x=0)  
(CHx=0) or (fault x=1)  
OCLO  
OUTx = HSONx  
[(t > tochi1+tochi2+tochi3) & (fault x=0)] or  
[(NO OCHIx=1) & (fault x=0)]  
[(rewrite CHx=1) & (t>tochi1+tochi2+tochi3)] or  
[(set CHx=1) & (NO OCHIx=1)]  
Definitions of key logic signals:  
(fault x):= (UV) or (OCHI1x) or (OCHI2x) or (OCHI3x) or (OCLOx) or (OTx) or (SSCx)  
(set CHx=1):= [(ONx=0) then (ONx=1)] 
(rewrite CHx=1):= (rewrite ONx=1) after (fault x=1)  
SSCx:= severe short circuit detection  
Figure 12. Output Control Diagram in Normal Mode  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
29  
Fail mode  
In case of an overcurrent (OCHI2, OCHI3, OCLO) or undervoltage, the restart is controlled by the autorestart feature  
Ithreshold  
IOCHI2  
driver turned off incaseof  
fault_fail x ( =OC or UV)  
event during autorestart  
IOCHI3  
driver turned on againwith  
OCHI2 after fault_fail x  
IOCLO  
In case of successful autorestart  
(nofault_fail x event)  
time  
OCLO remains active  
tOCHI2  
t AUTORESTART  
Figure 13. Autorestart in Fail Mode  
In case of overtemperature (OTSx), severe short-circuit (SSCx), or OCHI1 overcurrent, the corresponding output enters latch off  
state until the next wake-up cycle or mode change.  
auto  
(INx_ON=0)  
restart  
autorestart x=1  
OC_fail x=0  
OUTx=off  
(UV =1) or  
(OCLOx=1)  
(UV =1)  
(UV =1) or  
(OCHI3x=1)  
(UV =1) or  
(OCHI2x=1)  
(UV=0) &  
(t > t autorestart)  
(t > tochi1+tochi2)  
& (autorestart=1)  
(INx _O N=1)  
(INx_ON=0)  
(t >tochi1+  
tochi2+ tochi3)  
off  
OCHI1  
OUTx=iINx  
OCHI2  
OUTx=iINx  
OCHI3  
OUTx=iINx  
OCLO  
OUTx=iINx  
(t > tochi1+tochi2)  
& (autorestart x=0)  
(t > tochi1)  
OUTx=off  
autorestart x=0  
(INx_ON=0)  
(INx_ON=0)  
(INx_ON=0)  
(OTSx=1) or  
(SSCx=1)  
(OTSx=1) or  
(SSCx=1)  
(OTSx=1) or  
(SSC x=1) or  
(OCHI1x=1)  
(OTSx=1) or  
(SSCx=1)  
latch  
OFF  
OUTx=off  
Definition of key logic signals:  
iINx:= external Inputs IN1~IN4 after deglitcher  
SSCx := severe short circuit detection  
Figure 14. Output Control Diagram in Fail Mode  
MC07XSF517  
Analog Integrated Circuit Device Data  
30  
Freescale Semiconductor  
6.1.3.1  
Overcurrent Protections  
Each output channel is protected against overload conditions by use of a multilevel overcurrent shutdown.  
current  
I
OCHI1  
I
I
OCHI2  
Over Current Threshold Profile  
OCHI3  
I
OCLO  
Lamp Current  
tOCHI2  
tOC HI3  
tOC HI1  
Figure 15. Transient Overcurrent Profile  
The current thresholds and the threshold window times are fixed for each type of power channel.  
When the output is in PWM mode, the clock for the OCHI time counters (tOCHI1… tOCHI3) is gated (logic AND) with the referring  
output control signal:  
the clock for the tOCHI counter is activated when the output = [1] respectively CHx = 1  
the clock for the tOCHI counter is stopped when the output = [0] respectively CHx= 0  
current  
I
OCHI1  
I
I
OCHI2  
OCHI3  
I
OCLO  
time  
cumulative  
cumulative  
cumulative  
t
OCHI1  
t
OCHI2  
tO CHI3  
Figure 16. Transient Over Current Profile in PWM mode  
This strategy counts the OCHI time only when the bulb is actually heated up. The window counting is stopped in case of UV, CPF  
and OTS.  
A severe short-circuit protection (SSC) is implemented in order to limit the power dissipation in Normal and Fail modes, in case  
of severe short-circuit event. This feature is active only for a very short period of time, during OFF-to-ON transition. The load  
impedance is monitored during the output turn-on.  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
31  
Normal mode  
The enabling of the high current window (OCHI1… OCHI3) is dependent on CHx signal.  
When no control input pin is enabled, the control of the over current window depends on the ON bits inside channel control  
registers #2… #7 or the output control register #8.  
When the corresponding CHx signal is  
toggled (turn OFF and then ON), the OCHI window counter is reset and the full OCHI windows are applied  
current  
IOCHI1  
Overcurrent Threshold Profile  
IOCHI2  
IOCHI3  
OCLO fault detection  
IOCLO  
Channel Current  
time  
ON bit =0  
ON bit=1  
Figure 17. Resetable Overcurrent Profile  
rewritten (logic [1]), the OCHI window time is proceeding without reset of the OCHI counter  
current  
OCLO fault detection  
IOCLO  
time  
ON bit=1 rewriting  
Figure 18. Overcurrent Level Fixed to OCLO  
Fail mode  
The enabling of the high current window (OCHI1… OCHI3) is dependent on INx_ON toggle signal.  
The enabling of output (OUT1… 5) is dependent on CHx signal.  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
32  
6.1.3.1.1  
Over Current Control Programming  
A set of overcurrent control programming functions are implemented to provide a flexible and robust system behavior:  
HID Ballast Profile (NO_HID)  
A smart overcurrent window control strategy is implemented to turn on an HID ballast, even in the case of a long power on reset  
time.  
When the output is in 100% PWM mode (including PWM clock failure in Normal mode and iINx=1 in Fail mode), the clock for the  
OCHI2 time counter is divided by 8, when no load current is demanded from the output driver.  
the clock for the tOCHI2 counter is divided by 8 when the open load signal is high (logic[1]), to accommodate the  
HID ballast while in power on reset mode  
the clock for the tOCHI2 counter is connected directly to the window time counter when the OpenLoad signal is  
low (logic[0]), to accommodate the HID demanding load current from the output  
current  
IOCHI1  
IOCHI2  
Over Current Threshold Profile  
IOCHI3  
IOCLO  
Channel Current  
8 x tOCHI2  
tOCHI3  
time  
tOCHI1  
Figure 19. HID Ballast Overcurrent Profile  
This feature extends the OCHI2 time, depending on the status of the HID ballast, and ensures to bypass even a long power on  
reset time of HID ballast. Nominal tOCHI2 duration is up to 64 ms (instead of 8.0 ms).  
This feature is automatically active at the beginning of smart overcurrent window, except for OCHI On Demand as described by  
the following.  
The functionality is controlled by the NO_HID1 and NO_HID0 bits inside the initialization #2 register.  
When the NO_HID1 and NO_HID0 bits are respectively:  
[0 0]: smart HID feature is available for all channels (default status and during Fail mode)  
[0 1]: smart HID feature is available for channel 3 only  
[1 0]: smart HID feature is available for channels 3 and 4 only  
[1 1]: smart HID feature is not available for any channel  
OCHI On Demand (OCHI OD)  
In some instances, a lamp might be de-powered when its supply is interrupted by the opening of a switch (as in a door), or by  
disconnecting the load (as in a trailer harness). In these cases, the driver should be tolerant of the inrush current that will occur  
when the load is reconnected. The OCHI On Demand feature allows such control individually for each channel through the OCHI  
ODx bits inside the Initialization #2 register.  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
33  
When the OCHI ODx bit is:  
low (logic[0]), the channel operates in its Normal, Default mode. After end of OCHI window timeout the output is  
protected with an OCLO threshold  
high (logic[1], the channel operates in the OCHI On Demand mode and uses the OCHI2 and OCHI3 windows  
and times after an OCLO event  
To reset the OCHI ODx bit (logic[0]) and change the response of the channel, first change the bit in the Initialization #2 register  
and then turn the channel off. The OCHI ODx bit is also reset after an overcurrent event at the corresponding output.  
The fault detection status is reported in the quick status register #1 and the corresponding channel status registers #2… #6, as  
presented in Figure 20.  
current  
solid line: nominal operation  
OCHI2 fault reported  
dotted lines: fault conditions  
IOCHI2  
OCHI3 fault reported  
IOCHI3  
OCLO fault reported  
IOCLO  
OCHI OD fault reported  
tOCHI2  
tOCHI3  
time  
Figure 20. OCHI On Demand Profile  
OCLO Threshold Setting  
The static overcurrent threshold can be programmed individually for each output in two levels to adapt low duty cycle dimming  
and a variety of loads.  
The CSNS recopy factor and OCLO threshold depend on OCLO and ACM settings.  
The OCLO setting is controlled by the OCLOx bits inside the overcurrent control register #10-1.  
When the OCLOx bit is  
low (logic[0]), the output is protected with the higher OCLO threshold (default status and during Fail mode)  
high (logic[1]), the lower OCLO threshold is applied  
SHORT OCHI  
The length of the OCHI windows can be shortened by a factor of 2, to accelerate the availability of the CSNS diagnosis and to  
reduce the potential stress inside the switch during an overload condition.  
The setting is controlled individually for each output by the SHORT OCHIx bits inside the overload control register #10-2.  
When the SHORT OCHIx bit is  
low (logic[0]), the default OCHI window times are applied (default status and during Fail mode)  
high (logic[1]), the short OCHI window times are applied (50% of the regular OCHI window time)  
NO OCHI  
The switch on process of an output can be done without an OCHI window, to accelerate the availability of the CSNS diagnosis.  
The setting is controlled individually for each channel by the NO OCHIx bits inside the overcurrent control register #10-2.  
When the NO OCHIx bit is  
low (logic[0]), the regular OCHI window is applied (default status and during Fail mode)  
high (logic[1]), the turn on of the output is provided without OCHI windows  
The NO OCHI bit is applied in real time. The OCHI window is left immediately when the NO OCHI is high (logic[1]).  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
34  
The overcurrent threshold i set to OCLO when:  
the NO OCHIx bit is set to logic [1] while CHx is ON or  
CHx turns ON if NO OCHIx is already set  
THERMAL OCHI  
To minimize the electro-thermal stress inside the device in case of a short-circuit, the OCHI1 level can be automatically adjusted  
in regards to the control die temperature.  
The functionality is controlled for all channels by the OCHI THERMAL bit inside the initialization 2.  
When the OCHI THERMAL bit is:  
low (logic[0]), the output is protected with default OCHI1 level  
high (logic[1]), the output is protected with the OCHI1 level reduced by RTHERMAL OCHI = 15% (typ) when the  
control die temperature is above TTHERMAL OCHI = 63 °C (typ)  
TRANSIENT OCHI  
To minimize the electro-thermal stress inside the device in case of a short-circuit, the OCHIx levels can be dynamically evaluated  
during the OFF-to-ON output transition.  
The functionality is controlled for all channels by the OCHI TRANSIENT bit inside the initialization 2 register.  
When the OCHI TRANSIENT bit is:  
low (logic[0]), the output is protected with default OCHIx levels  
high (logic[1]), the output is protected with an OCHIx levels depending on the output voltage (VOUT):  
OCHIx level reduced by RTRANSIENT OCHI = 50% typ for 0 < VOUT < VOUT DETECT (VPWR / 2 typ),  
Default OCHIx level for VOUT DETECT < VOUT  
In case the resistive load is less than VPWR OCHI1, the overcurrent threshold will be exceeded before output reaches VPWR / 2,  
/I  
and the output current reaches IOCHI1. The output is then switched off at much lower and safer currents.  
When the load has significant series inductance, the output current transition falls behind voltage with LLOAD/RLOAD constant  
time. The intermediate overcurrent threshold could not reach and the output current continues to rise up to OCHIx levels.  
6.1.3.1.2  
Electrical Characterization  
Table 9. Electrical Characteristics  
Characteristics noted under conditions 7.0V VPWR 18V, -40C TA 125C, GND = 0V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
POWER OUTPUTS OUT1… OUT5  
High Overcurrent Level 1 for 7.0 mPower Channel  
IOCHI1  
A
• TJ = -40 °C and 25 °C  
100  
96  
111  
106  
126.5  
126.5  
• TJ = 150 °C  
High Overcurrent Level 2 for 7.0 mPower Channel  
IOCHI2  
A
• TJ = -40 °C and 25 °C  
61.2  
60  
70  
69  
77.5  
77.5  
• TJ = 150 °C  
High Overcurrent Level 3 for 7.0 mPower Channel  
IOCHI3  
IOCLO  
34  
39  
43.5  
A
A
Low Overcurrent for 7.0 mPower Channel  
• High Level  
17.6  
8.8  
21.9  
10.8  
26.4  
13.2  
• Low Level  
Low Overcurrent for 7.0 mPower Channel in ACM Mode  
IOCLO ACM  
A
A
• High Level  
• Low Level  
8.8  
4.4  
10.8  
5.5  
13.2  
6.6  
High Overcurrent Level 1 for 17 mPower Channel  
IOCHI1  
• TJ = -40 °C and 25 °C  
42  
40  
48  
46  
54.4  
54.4  
• TJ = 150 °C  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
35  
Table 9. Electrical Characteristics  
Characteristics noted under conditions 7.0V VPWR 18V, -40C TA 125C, GND = 0V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
POWER OUTPUTS OUT1… OUT5 (Continued)  
High Overcurrent Level 2 for 17 mPower Channel  
IOCHI2  
IOCHI3  
IOCLO  
24.5  
14.8  
28.2  
17.3  
32.2  
19.5  
A
A
A
High Overcurrent Level 3 for 17 mPower Channel  
Low Overcurrent for 17 mPower Channel  
• High Level  
8.8  
4.4  
10.8  
5.3  
13.2  
6.6  
• Low Level  
Low Overcurrent for 17 mPower Channel in ACM Mode  
IOCLO ACM  
A
• High Level  
• Low Level  
4.4  
2.2  
5.3  
2.6  
6.6  
3.3  
High Overcurrent Ratio 1  
RTRANSIENT  
0.45  
0.835  
50  
0.5  
0.85  
63  
0.55  
0.865  
70  
OCHI  
High Overcurrent Ratio 2  
RTHERMAL  
OCHI  
Temperature Threshold for IOCHI1 Level Adjustment  
TTHERMAL  
°C  
OCHI  
High Overcurrent Time 1  
• Default Value  
tOCHI1  
ms  
1.5  
2.0  
1.0  
2.5  
• SHORT OCHI option  
0.75  
1.25  
High Overcurrent Time 2  
• Default Value  
tOCHI2  
ms  
ms  
6.0  
3.0  
8.0  
4.0  
10  
• SHORT OCHI option  
5.0  
High Overcurrent Time 3  
• Default Value  
tOCHI3  
48  
24  
64  
32  
80  
40  
• SHORT OCHI option  
Minimum Severe Short-circuit Detection  
• 7.0 mPower Channel  
RSC MIN  
m  
5.0  
10  
• 17 mPower Channel  
(18)  
Fault Deglitch Time  
tfault SD  
µs  
• OCLO and OCHI OD  
• OCHI1… 3 and SSC  
1.0  
1.0  
2.0  
2.0  
3.0  
3.0  
Fault Autorestart Time in Fail Mode  
Fault Blanking Time after Wake-up  
tautorestart  
tBLANKING  
Notes  
48  
64  
50  
80  
ms  
µs  
100  
18. Guaranteed by testmode.  
6.1.3.2  
Overtemperature Protection  
A dedicated temperature sensor is located on each power transistor, to protect the transistors and provide SPI status monitoring.  
The protection is based on a two stage strategy.  
When the temperature at the sensor exceeds the:  
selectable overtemperature warning threshold (TOTW1, TOTW2), the output stays on and the event is reported in  
the SPI  
overtemperature threshold (TOTS), the output is switched off immediately after the deglitch time tFAULT SD and the  
event is reported in the SPI after the deglitch time tFAULT SD  
.
MC07XSF517  
Analog Integrated Circuit Device Data  
36  
Freescale Semiconductor  
6.1.3.2.1  
Overtemperature Warning (OTW)  
In case of overtemperature warning:  
the output remains in current state  
the status is reported in the quick status register #1 and the corresponding channel status register #2… #6  
The OTW threshold can be selected by the OTW SEL bit inside the initialization 2 register #1.  
When the bit is:  
low (logic[0]), the high overtemperature threshold is enabled (default status)  
high (logic[1]), the low overtemperature threshold is enabled  
To delatch the OTW bit (OTWx):  
the temperature has to drop below the corresponding overtemperature warning threshold  
a read command of the corresponding channel status register #2… #6 must be performed  
6.1.3.2.2  
Overtemperature Shutdown (OTS)  
During an overtemperature shutdown:  
the corresponding output is disabled immediately after the deglitch time tFAULT SD  
the status is reported after tFAULT SD in the quick status register #1 and the corresponding channel status register  
#2… #6.  
To restart the output after an overtemperature shutdown event in Normal mode:  
the overtemperature condition must be removed, and the channel must be restarted by a write command of the  
ON bit in the corresponding channel control register #2… #6, or in the output control register #8  
To delatch the diagnosis:  
the overtemperature condition must be removed:  
a read command of the corresponding channel status register #2… #6 must be performed  
To restart the output after an overtemperature shutdown event in Fail mode:  
a mode transition is needed. Refer to Mode Transitions section  
6.1.3.2.3  
Electrical Characterization  
Table 10. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
POWER OUTPUTS OUT1… OUT5  
(19)  
Overtemperature Warning  
• TOW1 level  
TOW  
°C  
100  
120  
115  
135  
130  
150  
• TOW2 level  
(19)  
Overtemperature Shutdown  
TOTS  
155  
2.0  
170  
5.0  
185  
10  
°C  
Fault Deglitch Time  
• OTS  
tFAULT SD  
µs  
Notes  
19. Guaranteed by testmode.  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
37  
6.1.3.3  
Undervoltage and Overvoltage Protections  
Undervoltage  
6.1.3.3.1  
During an undervoltage condition (VPWRPOR < VPWR < VPWR UVF), all outputs (OUT1… OUT5) are switched off immediately after  
deglitch time tFAULT SD  
The undervoltage condition is reported after the deglitch time tFAULT SD  
.
in the device status flag (DSF) in the registers #1… #7  
in the undervoltage flag (UVF) inside the device status register #7  
Normal mode  
The reactivation of the outputs is controlled by the microcontroller.  
To restart, the output the undervoltage condition must be removed and:  
a write command of the ON Bit must be performed in the corresponding channel control register #2… #6 or in the  
output control register #8  
To delatch the diagnosis  
the undervoltage condition must be removed  
a read command of the device status register #7 must be performed  
Fail mode  
When the device is in Fail mode, the restart of the outputs is controlled by the autorestart feature.  
6.1.3.3.2  
Overvoltage  
The device is protected against overvoltage on VPWR  
.
During:  
jump start condition, the device may be operated, but with respect to the device limits  
load dump condition (VPWR LD MAX = 40 V) the device does not conduct energy to the loads  
The overvoltage condition (VPWR > VPWR OVF) is reported in the  
device status flag (DSF) in the registers #1… #7  
overvoltage flag (OVF) inside the device status register #7  
To delatch the diagnosis  
the overvoltage condition must be removed  
a read command of the device status register #7 must be performed  
In case of an overvoltage (VPWR > VPWR HIGH), the device is not “short-circuit“ proof  
6.1.3.3.3  
Electrical Characterization  
Table 11. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SUPPLY VPWR  
Supply Undervoltage  
Supply Undervoltage Hysteresis  
VPWR UVF  
5.0  
5.25  
350  
5.5  
V
VPWR UVF  
200  
500  
mV  
HYS  
Supply Overvoltage  
VPWR OVF  
28  
30  
32  
V
V
Supply Overvoltage Hysteresis  
VPWR OVF  
0.5  
1.0  
1.5  
HYS  
Supply Load Dump Voltage (2.0 min at 25 °C)  
VPWR LD MAX  
40  
V
MC07XSF517  
Analog Integrated Circuit Device Data  
38  
Freescale Semiconductor  
Table 11. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SUPPLY VPWR (Continued)  
Maximum Supply Voltage for Short-circuit Protection  
VPWR HIGH  
tFAULT SD  
32  
V
Fault Deglitch Time  
• UV and OV  
µs  
2.0  
3.5  
5.5  
6.1.3.4  
Charge Pump Protection  
The charge pump voltage is monitored in order to protect the smart switches in case of:  
power up  
failure of external capacitor  
failure of charge pump circuitry  
During power up, when the charge pump voltage has not yet settled to its nominal output voltage range, the outputs can not be  
turned on. Any turn on command during this phase is executed immediately after settling of the charge pump.  
When the charge pump voltage is not within its nominal output voltage range:  
the power outputs are disabled immediately after the deglitch time tFAULT SD  
the failure status is reported after tFAULT SD in the device status flag DSF in the registers #1… #7 and the CPF in  
the quick status register #1  
Any turn on command during this phase is executed including the OCHI windows immediately after the charge  
pump output voltage has reached its valid range  
To delatch the diagnosis:  
the charge pump failure condition must be removed  
a read command of the quick status register #1 is necessary  
6.1.3.4.1  
Electrical Characterization  
Table 12. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
CHARGE PUMP CP  
Charge Pump Capacitor Range (Ceramic type X7R)  
Maximum Charge Pump Voltage  
CCP  
47  
220  
16  
nF  
V
VCP MAX  
tFAULT SD  
Fault Deglitch Time  
• CPF  
µs  
4.0  
6.0  
6.1.3.5  
Reverse Supply Protection  
The device is protected against reverse polarity of the VPWR line.  
In reverse polarity condition:  
the output transistors OUT1… 5 are turned ON in order to prevent the device from thermal overload  
the OUT6 pin is pulled down to GND. An external current limit resistor shall be added in series with OUT6 pin  
no output protection is available in this condition  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
39  
6.1.4 Output Clamps  
6.1.4.1  
Negative Output Clamp  
In case of an inductive load (L), the energy is dissipated after the turn-off inside the N-channel MOSFET.  
When tCL (=Io x L / VCL) > 1.0 ms, the turn-off waveform can be simplified with a rectangle as shown in Figure 21.  
Output Current  
Io  
time  
tCL  
Output Voltage  
V
PWR  
time  
time  
V
PWR  
Figure 21. Simplified Negative Output Clamp Waveform  
The energy dissipated in the N-Channel MOSFET is: ECL = 1/2 x L x Io² x (1+ VPWR / |VCL|).  
In the case of tCL < 1.0 ms, please contact the factory for guidance.  
6.1.4.2  
Supply Clamp  
The device is protected against dynamic overvoltage on the VPWR line by means of an active gate clamp, which activates the  
output transistors in order to limit the supply voltage (VDCClamp).  
In case of an overload on an output the corresponding switch is turned off, which leads to high voltage at VPWR with an inductive  
VPWR line. The maximum VPWR voltage is limited at VDCCLAMP by active clamp circuitry through the load.  
In case of an OpenLoad condition, the positive transient pulses (acc. automotive specification ISO 7637 / pulse 2 and inductive  
supply line) shall be handled by the application. In case of negative transients on the VPWR line (acc. ISO7637-2 / pulse 1), the  
energy of the pulses are dissipated inside the load, or shall be drained by an external clamping circuit, during a high ohmic load.  
6.1.4.3  
Electrical Characterization  
Table 13. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SUPPLY VPWR  
Supply Clamp Voltage  
VDCCLAMP  
41  
50  
V
V
POWER OUTPUTS OUT1… OUT5  
Negative Power Channel Clamp Voltage  
VCL  
• 7.0 m  
• 17 m  
-20.5  
-21  
-17.5  
-18  
MC07XSF517  
Analog Integrated Circuit Device Data  
40  
Freescale Semiconductor  
6.1.5 Digital Diagnostics  
The device offers several modes for load status detection in on state and off state through SPI.  
6.1.5.1  
OpenLoad Detections  
OpenLoad in ON State  
6.1.5.1.1  
OpenLoad detection during ON state is provided for each power output (OUT1… OUT5), based on the current monitoring circuit.  
The detection is activated automatically when the output is in on state.  
The detection threshold is dependent on:  
the OLLED EN bits inside the OLLED control register #13-2  
The detection result is reported in:  
the corresponding QSFx bit in the quick status register #1  
the global open load flag OLF (registers #1… #7)  
the OLON bit of the corresponding channel status registers #2… #6  
To delatch the diagnosis:  
the openload condition must be removed  
a read command of the corresponding channel status register #2… #6 must be performed  
When an open load has been detected, the output remains in on state.  
The deglitch time of the OpenLoad in on state can be controlled individually for each output in order to be compliant with different  
load types.  
The setting is dependent on the OLON DGL bits inside the OpenLoad control register #13-1:  
low (logic[0]) the deglitch time is tOLON DGL = 64 µs typ (bulb mode)  
high (logic[1]) the deglitch time is tOLON DGL = 2.0 ms typ (converter mode)  
The deglitching filter is reset whenever output falls low and is only active when the output is high.  
6.1.5.1.2  
OpenLoad in ON State for LED  
For detection of small load currents (e.g. LED) in on state of the switch a special low current detection mode is implemented by  
using the OLLED EN bit.  
The detection principle is based on a digital decision during regular switch off of the output.  
Thereby a current source (IOLLED) is switched on and the falling edge of the output voltage is evaluated by a comparator at   
VPWR - 0.75 V (typ).  
VPWR  
VPWR  
Figure 22. OpenLoad in ON State Diagram for LED  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
41  
The OLLED fault is reported when the output voltage is above VPWR - 0.75 V after 2.0 ms off-time or at each turn-on command  
in case of off-time < 2.0 ms.  
The detection mode is enabled individually for each channel with the OLLED EN bits inside the LED control register #13-2.  
When the corresponding OLLED EN bit is:  
low (logic[0]), the standard OpenLoad in on state (OLON) is enabled  
high (logic[1]), the OLLED detection is enabled  
The detection result is reported in:  
the corresponding QSFx bit in the quick status register #1  
the global open load flag OLF (register #1… #7)  
the OLON bit of the corresponding channel status register #2… #6  
When an OpenLoad has been detected, the output remains in on state.  
When output is in PWM operation:  
the detection is performed at the end of the on time of each PWM cycle  
the detection is active during the off time of the PWM signal, up to 2.0 ms max.  
The current source (IOLLED) is disabled after “no OLLED” detection or after 2.0 ms.  
hson_1  
128*DCLOCK (prescaler=0’)  
En_OLLed_1  
OUT_1  
VPWR - 0.75  
OUT_high  
check  
Analog Comparator output  
1 : olled detected  
0 : no olled detected  
TimeOut = 2.0 msec  
Figure 23. OpenLoad in ON State for LED in PWM Operation (OFF time > 2.0 ms)  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
42  
hson_1  
128*DCLOCK(prescaler=‘0’)  
En_OLLed_1  
OUT_1  
VPWR - 0.75  
OUT_high  
check  
Analog Comparator output  
1 : olled detected  
0 : no olled detected  
TimeOut = 2.0 msec  
Figure 24. Openload in ON State for LED in PWM Operation (OFF time < 2.0 ms)  
When output is in fully ON operation (100% PWM):  
the detection on all outputs is triggered by setting the OLLED TRIG bit inside the LED control register #13-2  
at the end of detection time, the current source (IOLLED) is disabled 100 µsec (typ.) after the output reactivation  
OLLED TRIG 1  
Note: OLLED TRIG bit is reset after the detection  
ONoff & PWM  
hson_1  
FF  
100 sec  
100 sec  
En_OLLed_1  
VPWR - 0.75  
OUT_1  
check  
OUT_high  
Analog Comparator output  
Check  
Precision ~9600 ns  
1 : olled detected  
0 : no olled detected  
TimeOut = 2.0 msec  
Figure 25. Openload in ON State for LED in Fully ON Operation  
The OLLED TRIG bit is reset after the detection.  
To delatch the diagnosis:  
a read command of the corresponding channel status register #2… #6 must be performed  
A false “open” result could be reported in the OLON bit:  
for high duty cycles, the PWM off-time becomes too short  
for capacitive load, the output voltage slope becomes too slow  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
43  
6.1.5.1.3  
OpenLoad in OFF State  
An OpenLoad in off state detection is provided individually for each power output (OUT1… OUT5).  
The detection is enabled individually for each channel by the OLOFF EN bits inside the open load control register #13-1.  
When the corresponding OLOFF EN is:  
low (logic[0]), the diagnosis mode is disabled (default status)  
high (logic[1]), the diagnosis mode is started for tOLOFF. It is not possible to restart any OLOFF or disable the  
diagnosis mode during active OLOFF state  
This detection can be activated independently for each power output (OUT1… OUT5). When it is activated, it is always activated  
synchronously for all selected outputs (with positive edge of CS\).  
When the detection is started, the corresponding output channel is turned on with a fixed overcurrent threshold of IOLOFF  
threshold.  
When this overcurrent threshold is:  
reached within the detection timeout tOLOFF, the output is turned off and the OLOFF EN bit is reset. No OCLOx  
and no OLOFFx will be reported.  
not reached within the detection timeout tOLOFF, the output is turned off after tOLOFF and the OLOFF EN bit is  
reset. The OLOFFx will be reported.  
The overcurrent behavior as commanded by the overcurrent control settings (NO OCHIx, OCHI ODx, SHORTOCHIx, OCLOx,  
and ACM ENx) is not be affected by applying the OLOFF ENx bit. The same is true for the output current feedback and the current  
sense synchronization.  
The detection result is reported in:  
the corresponding QSFx bit in the quick status register #1  
the global open load flag OLF (register #1… #7)  
the OLOFF bit of the corresponding channel status register #2… #6  
To delatch the diagnosis, a read command of the corresponding channel status register #2… #6 must be performed.  
In case any fault during tOLOFF (OTS, UV, CPF,), the OpenLoad in off state detection is disabled and the output(s) is (are) turned  
off after the deglitch time tFAULT SD. The corresponding fault is reported in the SPI SO registers.  
6.1.5.1.4  
Electrical Characterization  
Table 14. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
POWER OUTPUTS OUT1… OUT5  
Openload Current Threshold in ON State  
IOL  
mA  
• 7.0 mPower Channel at TJ = -40 °C  
50  
100  
30  
200  
200  
100  
100  
350  
300  
160  
150  
• 7.0 mPower Channel at TJ = 25 °C and 125 °C  
• 17 mPower Channel at TJ = -40 °C  
50  
• 17 mPower Channel at TJ = 25 °C and 125 °C  
Output PWM Duty Cycle Range for Openload Detection in ON state  
• Low Frequency Range (25 to 100 Hz)  
PWM OLON  
LSB  
18  
18  
17  
• Medium Frequency Range (100 to 200 Hz)  
• High Frequency Range (200 to 400 Hz)  
Openload Current Threshold in ON state / OLLED mode  
Maximum Openload Detection Time / OLLED mode with 100% duty cycle  
Openload Detection Time in OFF State  
IOLLED  
tOLLED100  
tOLOFF  
2.0  
1.5  
0.9  
4.0  
2.0  
1.2  
5.0  
2.6  
1.5  
mA  
ms  
ms  
MC07XSF517  
Analog Integrated Circuit Device Data  
44  
Freescale Semiconductor  
Table 14. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
POWER OUTPUTS OUT1… OUT5 (Continued)  
Fault Deglitch Time  
tFAULT SD  
• OLOFF  
2.0  
48  
3.3  
64  
5.0  
80  
µs  
ms  
ms  
• OLON with OLON DGL = 0  
• OLON with OLON DGL = 1  
1.5  
2.0  
2.5  
Openload Current Threshold in OFF state  
IOLOFF  
0.385  
0.55  
0.715  
A
6.1.5.2  
Output Shorted to VPWR in OFF State  
A short to VPWR detection during OFF state is provided individually for each power output OUT1… OUT5, based on an output  
voltage comparator referenced to VPWR / 2 (VOUT DETECT) and an external pull-down circuitry.  
The detection result is reported in the OUTx bits of the I/O status register #8 in real time.  
In case of UVF, the OUTx bits are undefined.  
6.1.5.2.1  
Electrical Characterization  
Table 15. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
POWER OUTPUTS OUT1… OUT5  
Output Voltage Comparator Threshold  
VOUT detect  
0.42  
0.5  
0.58  
VPWR  
6.1.5.3  
SPI Fault Reporting  
Protection and monitoring of the outputs during normal mode is provided by digital switch diagnosis via the SPI.  
The selection of the SO data word is controlled by the SOA0… SOA3 bits inside the initialization 1 register #0.  
The device provides two different reading modes, depending on the SOA MODE bit.  
When the SOA MODE bit is:  
low (logic[0]), the programmed SO address will be used for a single read command. After the reading the SO  
address returns to quick status register #1 (default state)  
high (logic[1]), the programmed SO address will be used for the next and all further read commands until a new  
programming  
The “quick status register” #1 provides one glance failure overview. As long as no failure flag is set (logic[1]), no control action  
by the microcontroller is necessary.  
Register  
SO address  
SO data  
#
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
quick status  
1
0
0
0
1
FM  
DSF  
OVLF  
OLF  
CPF  
RCF  
CLKF  
QSF5  
QSF4  
QSF3  
QSF2  
QSF1  
FM: Fail mode indication. This bit is also present in all other SO data words, and indicates the fail mode by a  
logic[1]. When the device is in Normal mode, the bit is logic[0]  
global device status flags (D10… D8): These flags are also present in the channel status registers #2… #6, the  
device status register #7, and are cleared when all fault bits are cleared by reading the registers #2… #7  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
45  
DSF = device status flag (RCF, or UVF, or OVF, or CPF, or CLKF, or TMF). UVF and TMF are also reported in the  
device status register #7  
OVLF = over load flag (wired OR of all OC and OTS signals)  
OLF = openload flag  
CPF: charge pump flag  
RCF: registers clear flag: this flag is set (logic[1]) when all SI and SO registers are reset  
CLKF: clock fail flag. Refer to Logic I/O Plausibility Check section  
QSF1… QSF5: channel quick status flags (QSFx = OC0x, or OC1x, or OC2x, or OTWx, or OTSx, or OLONx, or  
OLOFFx)  
The SOA address #0 is also mapped to register #1 (D15… D12 bits will report logic [0001]).  
When a fault condition is indicated by one of the quick status bits (QSF1… QSF5, OVLF, OLF), the detailed status can be  
evaluated by reading of the corresponding channel status registers #2… #6.  
Register  
SO address  
SO data  
#
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
2
0
0
0
0
1
1
0
1
F M  
F M  
DSF  
DSF  
OVLF  
OVLF  
OLF  
OLF  
res  
res  
OTS1  
OTS2  
OTW1  
OTW2  
OC21  
OC22  
OC11  
OC12  
OC01  
OC02  
OLON1 OLOFF 1  
OLON2 OLOFF 2  
CH 1 status  
CH 2 status  
3
4
0
1
0
0
F M  
DSF  
OVLF  
OLF  
res  
OTS3  
OTW3  
OC23  
OC13  
OC03  
OLON3 OLOFF 3  
CH 3 status  
CH 4 status  
5
6
0
0
1
1
0
1
1
0
F M  
F M  
DSF  
DSF  
OVLF  
OVLF  
OLF  
OLF  
res  
res  
OTS4  
OTS5  
OTW4  
OTW5  
OC24  
OC25  
OC14  
OC15  
OC04  
OC05  
OLON4 OLOFF 4  
OLON5 OLOFF 5  
CH 5 status  
OTSx: overtemperature shutdown flag  
OTWx: overtemperature warning flag  
OC0x… OC2x: overcurrent status flags  
OLONx: OpenLoad in on state flag  
OLOFFx: OpenLoad in off state flag  
The most recent OC fault is reported by the OC0x… OC2x bits, if a new OC occurs before an old OC on the same output that  
was read.  
When a fault condition is indicated by one of the global status bits (FM, DSF), the detailed status can be evaluated by reading of  
the device status registers #7:  
Register  
SO address  
SO data  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
#
7
0
1
1
1
FM  
DSF  
OVLF  
OLF  
res  
res  
res  
TMF  
OVF  
UVF  
SPIF  
iLIMP  
device status  
TMF: testmode activation flag. Testmode is used for manufacturing testing only. If this bit is set to logic [1], the  
MCU shall reset the device.  
OVF: overvoltage flag  
UVF: undervoltage flag  
SPIF: SPI fail flag  
iLIMP (real time reporting after the tIN_DGL, not latched)  
The I/O status register #8 can be used for system test, fail mode test and the power down procedure:  
Register  
SO address  
SO data  
#
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
8
1
0
0
0
FM  
res  
TOGGLE  
iIN4  
iIN3  
iIN2  
iIN1  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
I/O stat us  
MC07XSF517  
Analog Integrated Circuit Device Data  
46  
Freescale Semiconductor  
The register provides the status of the control inputs, the toggle signal, and the power outputs state in real time (not latched).  
TOGGLE = status of the 4 input toggle signals (IN1_ON, or IN2_ON, or IN3_ON, or IN4_ON), reported in real time  
iINx = status of iINx signal (real time reporting after the tIN_DGL, not latched)  
OUTx = status of output pins OUTx (the detection threshold is VPWR/2) when undervoltage condition does not  
occur  
The device can be clearly identified by the device ID register #9 when the supply voltage is within its nominal range:  
Register  
SO address  
SO data  
#
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D 7  
D 6  
D5  
D4  
D3  
D2  
D1  
D0  
DEVID  
7
DEVID  
6
DEVID  
5
DEVID  
4
DEVID  
3
DEVID  
2
DEVID  
1
DEVID  
0
device ID  
9
1
0
0
1
X
X
X
X
#2~#6  
OC2x OC1x OC0x over currentstatus  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
no ov erc urrent  
OCHI1  
OCHI2  
OCHI3  
OCLO  
OCHIOD  
SSC  
not us ed  
The register delivers DEVIDx bits = 40hex for the 07XSF517.  
During undervoltage condition (UVF = 1), DEVIDx bits report 00hex.  
6.1.6 Analog Diagnostics  
The analog feedback circuit (CSNS) is implemented to provide load and device diagnostics during Normal mode. During Fail and  
Sleep modes, the analog feedback is not available.  
The routing of the integrated multiplexer is controlled by MUX0… MUX2 bits inside the initialization 1 register #0.  
6.1.6.1  
Output Current Monitoring  
The current sense monitor provides a current proportional to the current of the selected output (OUT1… OUT5). CSNS output  
delivers 1.0 mA full scale range current source reporting channel 1… 5 current feedback (IFSR).  
ICSNS  
1.0 mA  
ICSNS / IOUT = 1.0 mA / (100% FSR) typ  
Note: FSR value depends on SPI setting  
IOUT  
0 mA  
1% FSR  
Figure 26. Output Current Sensing  
100% FSR  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
47  
The feedback is suppressed during OCHI window (t < tOCHI1 + tOCHI2 + tOCHI3) and only enabled during low overcurrent shutdown  
threshold (OCLO).  
During PWM operation, the current feedback circuit (CSNS) delivers current only during the on time of the output switch.  
Current sense settling time, tCSNS(SET), varies with current amplitude. Current sense valid time, tCSNS(VAL), depends on the PWM  
frequency (see Electrical Characterization).  
An advanced current sense mode (ACM) is implemented in order to diagnose LED loads in Normal mode and to improve current  
sense accuracy for low current loads.  
In the ACM mode, the offset sign of current sense amplifier is toggled on every CSNS SYNCB rising edge.  
The error amplifier offset contribution to the CSNS error can be fully eliminated from the measurement result by averaging each  
two sequential current sense measurements.  
The ACM mode is enabled with the ACM ENx bits inside the ACM control register #10-1.  
When the ACM ENx bit is:  
low (logic[0]), ACM disabled (default status and during Fail mode)  
high (logic[1]), ACM enabled  
In ACM mode:  
the precision of the current recopy feature (CSNS) is improved especially at low output current by averaging  
CSNS reporting on sequential PWM periods  
the current sense full scale range (FSR) is reduced by a factor of two  
the overcurrent protection threshold OCLO is reduced by a factor of two  
Figure 27 describes the timings between the selected channel current and the analog feedback current. Current sense validation  
time pertains to stabilization time needed after turn on. Current sense settling time pertains to the stabilization time needed after  
the load current changes while the output is continuously on or when another output signal is selected.  
HSONx  
time  
time  
time  
tDLY(ON)  
tDLY(OFF)  
IOUTx  
tCSNS(SET)  
tCSNS(VAL)  
CSNS  
+/- 5% of new value  
Figure 27. Current Sensing Response Time  
Internal circuitry limits the voltage of the CSNS pin when its sense resistor is absent. This feature prevents damage to other  
circuitry sharing that electrical node, such as a microcontroller pin, for example.  
Several 07XSF517 may be connected to one shared CSNS resistor.  
MC07XSF517  
Analog Integrated Circuit Device Data  
48  
Freescale Semiconductor  
6.1.6.2  
Supply Voltage Monitoring  
The VPWR monitor provides a voltage proportional to the supply tab. The CSNS voltage is proportional to the VPWR voltage as  
shown in Figure 28.  
VCSNS  
5.0 V  
VCSNS / VPWR = ¼ typ  
VPWR  
0 V  
VPWRPOR  
20 V  
Figure 28. Supply Voltage Reporting  
6.1.6.3  
Temperature Monitoring  
The average temperature of the control die is monitored by an analog temperature sensor. The CSNS pin can report the voltage  
of this sensor.  
The chip temperature monitor output voltage is independent of the resistor connected to the CSNS pin, provided the resistor is  
within the min/max range of 5.0 kto 50 k. Temperature feedback range, TFB, -40 °C to 150 °C.  
VCSNS  
VCSNS / TJ = VFBS  
VFB  
TJ  
25°C  
Figure 29. Temperature Reporting  
-40°C  
150°C  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
49  
6.1.6.4  
Analog Diagnostic Synchronization  
A current sense synchronization pin is provided to simplify the synchronous sampling of the CSNS signal.  
The CSNS SYNCB pin is an open drain requiring an external 5.0 k(min) pull-up resistor to VCC  
.
The CSNS SYNC signal is  
available during Normal mode only  
behavior depends on the type of signal selected by the MUX2 … MUX0 bits in the initialization 1 register #0. This  
signal is either a current proportional to an output current or a voltage proportional to temperature or the supply  
voltage  
Current sense signal  
When a current sense signal is selected:  
the pin delivers a recopy of the output control signal during on phase of the PWM defined by the SYNC EN0,  
SYNC EN1 bits inside the initialization 1 register #0  
.
OUT1  
OUT2  
time  
time  
time  
CSNS SYNC\ blanked  
CSNS SYNC\  
active (low)  
CSNS  
SYNCB  
tDLY(ON)+tCSNS(SET)  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 30. CSNS SYNC\ Valid Setting  
MC07XSF517  
Analog Integrated Circuit Device Data  
50  
Freescale Semiconductor  
OUT1  
OUT2  
time  
time  
time  
CSNS SYNC\ blanked until  
rising edge of the 1st  
complete PWM cycle  
CSNS  
SYNC\  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 31. CSNS SYNC\ TRIG0 Setting  
OUT1  
OUT2  
time  
time  
time  
CSNS SYNC\ blanked until 1rst valid edge  
generated in the middle of the OUT2 pulse  
CSNS  
SYNC\  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 32. CSNS SYNC\ TRIG1/2 Setting  
the CSNS SYNC\ pulse is suppressed during OCHI and during OFF phase of the PWM  
the CSNS SYNC\ is blanked during settling time of the CSNS multiplexer and ACM switching by a fixed time of  
dly(on) + tCSNS(SET)  
t
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
51  
when a PWM clock fail is detected, the CSNS SYNCB delivers a signal with 50% duty cycle at a fixed period of  
6.5 ms.  
when the output is programmed with 100% PWM, the CSNS SYNCB delivers a logic[0] a high pulse with the  
length of 100 µs (typ.) during the PWM counter overflow for TRIG0 and TRIG1/2 settings, as shown in Figure 33.  
OUT1  
time  
OUT2  
time  
CSNS  
SYNC\  
tDLY(ON)+tCSNS(SET)  
time  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 33. CSNS SYNC\ when the output is programmed with 100%  
In case of output fault, the CSNS SYNCB signal for current sensing does not deliver a trigger signal until the  
output is enabled again.  
Temperature signal or VPWR monitor signal  
When a voltage signal (average control die temperature or supply voltage) is selected:  
the CSNS SYNCB delivers a signal with 50% duty cycle and the period of the lowest prescaler setting   
(fCLK / 1024).  
and a PWM clock fail is detected, the CSNS SYNC\ delivers a signal with 50% duty cycle at a fixed period of  
6.5 ms (tSYNC DEFAULT).  
6.1.6.5  
Electrical Characterization  
Table 16. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
CURRENT SENSE CSNS  
Current Sense Resistor Range  
RCSNS  
ICSNS LEAK  
VCS  
5.0  
-1.0  
6.0  
50  
+1.0  
8.0  
k  
µA  
V
Current Sense Leakage Current when CSNS is disabled  
Current Sense Clamp Voltage  
MC07XSF517  
Analog Integrated Circuit Device Data  
52  
Freescale Semiconductor  
Table 16. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
CURRENT SENSE CSNS (Continued)  
Current Sense Full Scale Range for 7.0 mPower Channel  
• High OCLO and ACM = 0  
IFSR  
A
22  
11  
11  
5.5  
• Low OCLO and ACM = 0  
• High OCLO and ACM = 1  
• Low OCLO and ACM = 1  
Current Sense Accuracy for 9.0 V < VPWR < 18 V for 7.0 mPower  
ACC ICSNS  
%
Channel  
-11  
-14  
-20  
-29  
+11  
+14  
+20  
+29  
• IOUT = 80% FSR with ACM = 0  
• IOUT = 25% FSR with ACM = 0  
• IOUT = 10% FSR with ACM = 0  
• IOUT = 5.0% FSR with ACM = 0  
-14  
-18  
-25  
-40  
-16  
-22  
-40  
-60  
+14  
+18  
+25  
+40  
+16  
+22  
+40  
+60  
• IOUT = 80% FSR with High OCLO and ACM = 1  
• IOUT = 25% FSR with High OCLO and ACM = 1  
• IOUT = 10% FSR with High OCLO and ACM = 1  
• IOUT = 5.0% FSR with High OCLO and ACM = 1  
• IOUT = 80% FSR with Low OCLO and ACM = 1  
• IOUT = 25% FSR with Low OCLO and ACM = 1  
• IOUT = 10% FSR with Low OCLO and ACM = 1  
• IOUT = 5.0% FSR with Low OCLO and ACM = 1  
(24) (22)  
Current Sense Accuracy for 9.0 V < VPWR < 18 V with 1 calibration point at  
ACC ICSNS 1  
%
25 °C for 50% FSR and VPWR = 14 V for 7.0 mPower Channel  
CAL  
• IOUT = 80% FSR  
• IOUT = 25% FSR  
• IOUT = 10% FSR  
• IOUT = 5.0% FSR  
-7.0  
-7.0  
-20  
-29  
+7.0  
+7.0  
+20  
+29  
(24) (22)  
Current Sense Accuracy for 9.0 V < VPWR < 18 V with 2 calibration points  
at 25 °C for 2.0% and 50% FSR and VPWR = 14 V for 7.0 mPower  
Channel  
ACC ICSNS 2  
%
CAL  
-6.0  
-6.0  
-8.0  
-21  
+6.0  
+6.0  
+8.0  
+21  
• IOUT = 80% FSR  
• IOUT = 25% FSR  
• IOUT = 10% FSR  
• IOUT = 5.0% FSR  
Minimum Current Sense Reporting for 17 m  
ICSNSMIN  
%
A
• 9.0 V < VPWR < 12 V  
2.0  
3.0  
• 9.0 V < VPWR < 18 V  
Current Sense Full Scale Range for 17 mPower Channel  
• High OCLO and ACM = 0  
IFSR  
11  
5.5  
• Low OCLO and ACM = 0  
• High OCLO and ACM = 1  
5.5  
• Low OCLO and ACM = 1  
2.75  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
53  
Table 16. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
CURRENT SENSE CSNS (Continued)  
(20)  
Current Sense Accuracy for 9.0 V < VPWR < 18 V for 17 mPower  
ACC ICSNS  
%
Channel  
-11  
-14  
-20  
-29  
+11  
+14  
+20  
+29  
• IOUT = 80% FSR  
• IOUT = 25% FSR  
• IOUT = 10% FSR  
• IOUT = 5.0% FSR  
(20) (22)  
Current Sense Accuracy for 9.0 V < VPWR < 18 V with 1 calibration point at  
ACC ICSNS 1  
%
25 °C for 50% FSR and VPWR = 14 V for 17 mPower Channel  
CAL  
• IOUT = 80% FSR  
• IOUT = 25% FSR  
• IOUT = 10% FSR  
• IOUT = 5.0% FSR  
-7.0  
-7.0  
-20  
-29  
+7.0  
+7.0  
+20  
+29  
(20) (22)  
Current Sense Accuracy for 9.0 V < VPWR < 18 V with 2 calibration points  
at 25 °C for 2.0% and 50% FSR and VPWR = 14 V for 17 mPower  
Channel  
ACC ICSNS 2  
%
CAL  
-6.0  
-6.0  
-8.0  
-11  
+6.0  
+6.0  
+8.0  
+11  
• IOUT = 80% FSR  
• IOUT = 25% FSR  
• IOUT = 10% FSR  
• IOUT = 5.0% FSR  
(20) (23)  
Minimum Current Sense Reporting for 17 m  
ICSNSMIN  
%
• for 9.0 V < VPWR < 18 V, max. = 1%  
1.0  
20  
Supply Voltage Feedback Range  
VPWR  
VPWRMAX  
V
(22)  
Supply Feedback Precision  
ACC VPWR  
%
• Default  
-5.0  
-1.0  
-2.2  
+5.0  
+1.0  
+2.2  
• 1 calibration point at 25 °C and VPWR = 12 V, for 7.0 V < VPWR < 20 V  
• 1 calibration point at 25 °C and VPWR = 12 V, for 6.0 V < VPWR  
7.0 V  
<
(21)  
Temperature Feedback Range  
TFB  
VFB  
-40  
150  
°C  
Temperature Feedback Voltage at 25 °C  
Temperature Feedback Thermal Coefficient  
2.31  
7.72  
V
(22)  
COEF VFB  
ACCTFB  
mV/°C  
(22)  
Temperature Feedback Voltage Precision  
• Default  
°C  
-15  
+15  
• 1 calibration point at 25 °C and VPWR = 7.0 V  
-5.0  
+5.0  
(21)  
Current Sense Settling Time  
tCSNS(SET)  
µs  
• Current Sensing Feedback for IOUT from 75% FSR to 50% FSR  
• Current Sensing Feedback for IOUT from 10% FSR to 1.0% FSR  
Temperature and Supply Voltage Feedbacks  
40  
260  
10  
Notes  
20. Precision either OCLO and ACM setting.  
21. Parameter is derived mainly from simulations.  
22. Parameter is guaranteed by design characterization. Measurements are taken from a statistically relevant sample size across process  
variations.  
23. Error of 100% without calibration and 50% with 1 calibration point done at 25 °C.  
MC07XSF517  
Analog Integrated Circuit Device Data  
54  
Freescale Semiconductor  
Table 16. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
CURRENT SENSE CSNS (Continued)  
(24)  
Current Sense Valid Time  
Current Sensing Feedback  
tCSNS(VAL)  
µs  
• Low / Medium Frequency Ranges for IOUT > 20% FSR  
• Low / Medium Frequency Ranges for IOUT < 20% FSR  
• High Frequency Range for IOUT > 20% FSR  
10  
70  
5.0  
70  
150  
300  
75  
300  
10  
• High Frequency Range for IOUT < 20% FSR  
Temperature Voltage Feedback  
Supply Voltage Feedback  
15  
Current Sense Synchronization Period for PWM Clock Failure  
tSYNC  
4.8  
6.5  
8.2  
ms  
DEFAULT  
CURRENT SENSE SYNCHRONIZATION CSNS SYNCB  
Pull-up Current Sense Synchronization Resistor Range  
RCSNS SYNC  
5.0  
k  
V
Current Sense Synchronization Logic Output Low State Level at 1.0 mA  
VOL  
0.4  
Current Sense Synchronization Leakage Current in Tri-state (CSNS SYNC  
from 0 to 5.5 V)  
IOUT max  
-1.0  
+1.0  
µA  
Notes  
24. Tested at 5% of final value @ VPWR = 14 V, current step from 0 A to 2.8 A (or 5.6 A). Parameter guaranteed by design at 1% of final value.  
6.2  
Power Supply Functional Block Description and Application  
Information  
6.2.1 Introduction  
The device is functional when wake = [1] with supply voltages from 5.5 to 40 V (VPWR), but is fully specification compliant only  
between 7.0 and 18 V. The VPWR pin supplies power to the internal regulator, analog, and logic circuit blocks. The VCC pin (5.0  
V typ.) supplies the output register of the Serial Peripheral Interface (SPI) and the OUT6 driver. Consequently, the SPI registers  
cannot be read without presence of VCC. The employed IC architecture guarantees a low quiescent current in Sleep mode  
(wake= [0]).  
6.2.2 Wake State Reporting  
The CLK input/output pin is also used to report the wake state of the device to the microcontroller as long as RSTB is logic [0].  
When the device is in:  
“wake state” and RSTB is inactive, the CLK pin reports a high signal (logic[1])  
“sleep mode” or the device is wake by the RSTB pin, the CLK is an input pin  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
55  
6.2.2.1  
Electrical Characterization  
Table 17. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
CLOCK INPUT/OUTPUT CLK  
Logic Output High State Level (CLK) at 1.0 mA  
VOH  
VCC -  
0.6  
V
6.2.3 Supply Voltages Disconnection  
6.2.3.1 Loss of VPWR  
In case of VPWR disconnection (VPWR < VPWR POR) the device behavior depends on VCC voltage value:  
VCC < VCC POR: the device enters the power off mode. All outputs are shut off immediately. All registers and faults  
are cleared.  
VCC > VCC POR: all registers and faults are maintained. OUT1… 5 are shut off immediately. The ON/OFF state of  
OUT6 depends on the current SPI configuration. SPI reporting is available when VCC remains within its operating  
voltage range (4.5 to 5.5 V).  
The wake-up event is not reported to the CLK pin.  
The clamping structures (supply clamp, negative output clamp) are available to protect the device.  
No current is conducted from VCC to VPWR  
.
An external current path shall be available to drain the energy from an inductive load, in case a supply disconnection occurs when  
an output is ON.  
6.2.3.2  
Loss of VCC  
In case of a VCC disconnection, the device behavior depends on VPWR voltage:  
VPWR < VPWR POR: the device enters the power off mode. All outputs are shut off immediately. All registers and  
faults are cleared.  
VPWR > VPWR POR: the SPI is not available. Therefore, the device will enter WD timeout.  
The clamping structures (supply clamp, negative output clamp) are available to protect the device.  
No current is conducted from VPWR to VCC  
.
6.2.3.3  
Loss of Device GND  
During loss of ground, the device cannot drive the loads, therefore the OUT1… OUT5 outputs are switched off and the OUT6  
voltage is pulled up.  
The device shall not be damaged by this failure condition.  
For protection of the digital inputs series resistors (1.0 ktyp) can be provided externally in order to limit the current to I  
.
CL  
MC07XSF517  
Analog Integrated Circuit Device Data  
56  
Freescale Semiconductor  
6.2.3.4  
Electrical Characterization  
Table 18. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SUPPLY VPWR  
Supply Power On Reset  
VPWR POR  
VCC  
2.0  
2.0  
3.0  
3.0  
4.0  
4.0  
V
V
V
VCC Power On Reset  
VCC POR  
GROUND GND  
Maximum Ground Shift between GND Pin and Load Grounds  
VGND SHIFT  
-1.5  
+1.5  
6.3  
Communication Interface and Device Control Functional Block  
Description and Application Information  
6.3.1 Introduction  
In Normal mode, the power output channels are controlled by the embedded PWM module, which is configured by the SPI  
register settings. For bidirectional SPI communication, VCC has to be in the authorized range. Failure diagnostics and  
configuration are also performed through the SPI port. The reported failure types are: OpenLoad, short-circuit to supply, severe  
short-circuit to ground, overcurrent, overtemperature, clock fail, and under and overvoltage.  
For direct input control, the device shall be in Fail-safe mode. VCC is not required and this mode can be forced by the LIMP input  
pin.  
6.3.2 Fail Mode Input (LIMP)  
The Fail mode of the component can be activated by LIMP direct input. The Fail mode is activated when the input is logic [1].  
In Fail mode, the channel power outputs are controlled by the corresponding inputs. Even though the input thresholds are logic  
level compatible, the input structure of the pins are able to withstand supply voltage level (max. 40 V) without damage. External  
current limit resistors (i.e. 1.0 k...10 k) can be used to handle reverse current conditions. The direct inputs have an integrated  
pull-down resistor.  
The LIMP input has an integrated pull-down resistor. The status of the LIMP input can be monitored by the LIMP IN bit inside the  
device status register #7.  
6.3.2.1  
Electrical Characterization  
Table 19. Electrical Characteristics  
Characteristics noted under conditions 4.5 V VPWR 5.5 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
FAIL MODE INPUT LIMP  
Logic Input High State Level  
Logic Input Low State Level  
VIH  
VIL  
3.5  
V
V
1.5  
Logic Input Leakage Current in Inactive State (LIMP = [0])  
Logic Input Pull-down Resistor  
IIN  
-0.5  
25  
+0.5  
100  
µA  
k  
RPULL  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
57  
Table 19. Electrical Characteristics  
Characteristics noted under conditions 4.5 V VPWR 5.5 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
(25)  
Logic Input Capacitance  
CIN  
20  
pF  
DIRECT INPUTS IN1… IN4  
Logic Input High State Level  
VIH  
VIH(WAKE)  
VIL  
3.5  
3.75  
V
V
Logic Input High State Level for wake-up  
Logic Input Low State Level  
1.5  
+0.5  
100  
20  
V
Logic Input Leakage Current in Inactive State (forced to [0])  
Logic Input Pull-down Resistor  
IIN  
-0.5  
25  
µA  
k  
RPULL  
CIN  
Notes  
(25)  
Logic Input Capacitance  
pF  
25. Parameter is derived mainly from simulations.  
6.3.3 MCU Communication Interface Protections  
6.3.3.1  
Loss of Communication Interface  
If a SPI communication error occurs, the device is switched into Fail mode.  
A SPI communication fault is detected if:  
the WD bit is not toggled with each SPI message or  
WD timeout is reached or  
protocol length error (modulo 16 check)  
The SI stuck to static levels during CSB period and VCC fail (SPI not functional) are indirectly detected by a WD toggle error.  
The SPI communication error is reported in:  
SPI failure flag (SPIF) inside the device status register #7 in the next SPI communication  
As long as the device is in Fail mode, the SPIF bit retains its state.  
The SPIF bit is delatched during the transition from fail-to-normal modes.  
6.3.3.2  
Logic I/O Plausibility Check  
The logic and signal I/O are protected against fatal mistreatment by a signal plausibility check, according following table:  
I/O  
Signal check strategy  
IN1 ~ IN4  
LIMP  
frequency above limit (low pass filter)  
frequency above limit (low pass filter)  
frequency above limit (low pass filter)  
frequency above limit (low pass filter)  
RST\  
CLK  
The LIMP and IN1… IN4 have an input symmetrically deglitch time tIN_DGL = 200 µs (typ).  
If the LIMP input is set to logic [1] for a delay longer than 200 µs typ, the device is switched into Fail mode (internal signal called  
iLIMP).  
MC07XSF517  
Analog Integrated Circuit Device Data  
58  
Freescale Semiconductor  
LIMP  
iLIMP  
tIN_DGL  
200µs typ.  
tIN_DGL  
200µs typ.  
time  
time  
Figure 34. LIMP and iLIMP signal  
In case the INx input is set to logic [1] for a delay longer than 200 µs (typ.), the corresponding channel is controlled by the direct  
signal (internal signal called iINx).  
INx  
tIN_DGL  
time  
tIN_DGL  
tIN_DGL  
tIN_DGL  
tIN_DGL  
tIN_DGL  
iINx  
200µs typ.  
time  
ttoggle  
1024ms typ.  
ttoggle  
INx_ON  
time  
Figure 35. IN, iIN and IN_ON signal  
The RSTB has an input deglitch time tRST_DGL = 10 µs (typ) for the falling edge only.  
The CLK has an input symmetrically deglitch time tCLK_DGL = 2.0 µs (typ). Due to the input deglitcher (at the CLK input) a very  
high input frequency leads to a clock fail detection.  
The CLK fail detection (clock input frequency detection fCLK LOW) is started immediately with the positive edge of RSTB signal.  
If the CLK frequency is below fCLK LOW limit, the output state will depend on the corresponding CHx signal.  
As soon as the CLK signal is valid, the output duty cycle depends on the corresponding SPI configuration.  
To delatch the CLK fail diagnosis  
the clock failure condition must be removed  
a read command of the quick status register #1 must be performed  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
59  
6.3.3.3  
Electrical Characterization  
Table 20. Electrical Characteristics  
Characteristics noted under conditions 7.0V VPWR 18V, -40C TA 125C, GND = 0V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
LOGIC I/O LIMP IN1… IN4 CLK  
SPI Watchdog Timeout  
• WD SEL = 0  
tWD  
ms  
24  
96  
32  
40  
• WD SEL = 1  
128  
160  
Input Toggle Time for IN1… IN4  
tTOGGLE  
tDGL  
768  
1024  
1280  
ms  
µs  
Input Deglitching Time  
• LIMP and IN1… IN4  
• CLK  
150  
1.5  
7.5  
200  
2.0  
10  
250  
2.5  
• RST\  
12.5  
Clock Low Frequency Detection  
fCLOCK LOW  
50  
100  
200  
Hz  
6.3.4 External Smart Power Control (OUT6)  
The device provides a control output to drive an external smart power device in Normal mode only.  
The control is according to the channel 6 settings in the SPI input data register.  
The protection and current feedback of the external SmartMOS device are under the responsibility of the  
microcontroller.  
The output delivers a 5.0 V CMOS logic signal from VCC  
.
The output is protected against overvoltage.  
An external current limit resistor (i.e. 1.0 k...10 k) shall be used to handle negative output voltage conditions.  
The output has an integrated pull-down resistor to provide a stable OFF condition in Sleep mode and Fail mode.  
In case of a ground disconnection, the OUT6 voltage is pulled up. External components are mandatory to define the state of  
external smart power device and to limit possible reverse OUT6 current (i.e. resistor in series).  
6.3.4.1  
Electrical Characterization  
Table 21. Electrical Characteristics  
Characteristics noted under conditions 7.0 V VPWR 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
EXTERNAL SMART POWER OUTPUT OUT6  
OUT6 Rising Edge for 100 pF capacitive load  
tOUT6 RISE  
ROUT6 DWN  
VOH  
10  
5.0  
20  
µs  
k  
V
OUT6 Pull-down Resistor  
5.0  
Logic Output High State Level (OUT6)  
VCC -  
0.6  
Logic Output Low State Level (OUT6)  
VOL  
0.6  
V
MC07XSF517  
Analog Integrated Circuit Device Data  
60  
Freescale Semiconductor  
7
Typical Applications  
7.1  
Introduction  
The 07XSF517 is the latest achievement in drivers for all types of centralized lighting applications.  
7.1.1 Application Diagram  
V
RIGHT  
PWR  
20V  
5V Regulator  
VPWR  
VCC  
10µ  
10n…100n  
100n  
GND  
100n  
5k  
VCC VBAT  
VCC  
SI  
CP  
SO  
CS\  
CS\  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
10n  
10n  
10n  
10n  
10n  
Parking Light  
Flasher  
SCLK  
SI  
SCLK  
VCC  
SO  
Main MCU  
VCC Clamp  
RST\  
RST\  
CLK  
CSNS  
SYNC\  
LIMP  
IN1  
GND  
CLK  
A/D1  
Low Beam  
Fog Light  
High Beam  
Spare  
10k  
TRIG1  
A/D2  
A/D3  
GND  
10n  
IN2  
1k  
1k  
5k  
VPWR  
IN3  
IN  
OUT  
10n  
1k  
IN4  
Smart Power  
CSNS  
GND  
GND  
1k  
GND  
CSNS  
GND  
IN4  
Smart Power  
IN OUT  
Spare  
High Beam  
Fog Light  
1k  
IN3  
OUT6  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
VPWR  
V
10n  
IN2  
IN1  
10n  
LIMP  
SYNC\  
CSNS  
CLK  
RST\  
SO  
10n  
10n  
Low Beam  
Flasher  
VBAT  
VPWR  
LIMP  
IN1  
1k  
10n  
10n  
1k  
1k  
1k  
1k  
SCLK  
CS\  
Parking Light  
IN2  
Watchdog  
IN3  
IN4  
SI  
CP  
VCC VBAT  
GND  
100n  
10n…100n  
100n  
20V  
V
LEFT  
PWR  
Figure 36. Typical Front Lighting Application for Automotive  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
61  
7.1.2 Application Instructions  
7.1.3 Bill of Material  
Table 22. 07XSF517 Bill of Material (26)  
Signal  
Location  
Mission  
Value  
close to Gen4  
reduction of emission and immunity  
VPWR  
100 nF (X7R 50 V)  
eXtreme Switch  
close to Gen4  
eXtreme Switch  
charge pump tank capacitor  
CP  
VCC  
100 nF (X7R 50 V)  
10 to 100 nF (X7R 16 V)  
10 to 22 nF (X7R 50 V)  
5.0 k (1.0%)  
close to Gen4  
eXtreme Switch  
reduction of emission and immunity  
sustain ESG gun and fast transient pulses  
close to output  
connector  
OUT1… OUT5  
close to MCU  
close to MCU  
output current sensing  
CSNS  
CSNS  
low pass filter removing noise  
10 k(1.0%) &  
10 nF (X7R 16V)  
N/A  
N/A  
N/A  
pull-up resistor for the synchronization of A/D conversion  
sustain high-voltage  
CSNS SYNCB  
IN1… IN4  
OUT6  
5.0 k (1.0%)  
1.0 k(1.0%)  
1.0 k(1.0%)  
sustain reverse supply  
To Increase Fast Transient Pulses Robustness  
close to connector sustain pulse #1 in case of LED loads or without loads  
VPWR  
20 V zener diode and diode in series  
per supply line  
close to Gen4  
sustain pulse #2 without loads  
VPWR  
additional 10 µF (X7R 50 V)  
eXtreme Switch  
To Sustain 5.0 V Voltage Regulator Failure Mode  
prevent high-voltage application on the MCU  
close to 5.0 V  
voltage regulator  
VCC  
5.0 V zener diode and a bipolar  
transistor  
Notes  
26. Freescale does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings  
or tables. While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to validate their  
application.  
MC07XSF517  
Analog Integrated Circuit Device Data  
62  
Freescale Semiconductor  
7.2  
EMC and EMI Considerations  
7.2.1 EMC/EMI Tests  
This paragraph gives EMC/EMI performances, according to automotive specifications. Further generic design recommendations  
can be e.g. found on the Freescale website www.freescale.com.  
Table 23. 07XSF517 EMC/EMI Performances  
Automotive  
Test  
Signals  
Conditions  
Criteria  
Standard  
VPWR  
CISPR25  
Class 5  
150 Method  
Global pins: VPWR and OUT1… OUT5  
150 Method  
Global pins: 12-K level  
Local pins: 10-J level  
Conducted Emission  
IEC 61967-4  
IEC 62132-4  
outputs off  
outputs on  
in PWM  
Local pins: VCC, CP, and CSNS  
Global pins: VPWR and OUT1… OUT5  
Local pins: VCC  
Class A related to the outputs state and  
the analog diagnostics (20%)  
Conducted Immunity  
30 dBm for Global pins  
12 dBm for Local pins  
7.2.2 Fast Transient Pulse Tests  
This paragraph gives the device performances.against fast transient disturbances.  
Table 24. 07XSF517 Fast Transient Capability on VPWR  
Automotive  
Criteria  
Test  
Conditions  
Standard  
Pulse 1  
Pulse 2a  
outputs loaded with lamps  
other cases with external transient voltage suppressor  
ISO 7637-2  
Class A  
Pulse 3a / 3b  
Pulse 5b (40 V)  
outputs loaded  
outputs unloaded  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
63  
7.3  
Robustness Considerations  
The short-circuit protections embedded in 07XSF517 are preferred to conventional current limitations, to minimize the thermal  
overstress within the device in case of an overload condition. The junction temperature elevation is drastically reduced to a value  
which does not affect the device’s reliability. Moreover, the availability of the lighting is guaranteed in fail mode by the unlimited  
autorestart feature.  
The chapter 12 of AEC-Q100 specification published by the Automotive Electronics Council, presents turn-on into short-circuit  
condition. It is not enough, because the short-circuit event can also occur in on-state. The 07XSF517 test plan at TA = 70 °C is  
presented in Table 25. The tests are performed on 30 parts from three engineering lots (total 90 pieces).  
Table 25. 07XSF517 Repetitive Short-circuit Test Results at TA = 70 °C  
7.0 moutput cycle 17 moutput cycle  
Short-circuit Case  
Supply Voltage  
Supply Line  
Load Line  
without Failure  
without Failure  
5.0 m /1.0 mm²  
0.3 m / 1.0 mm²  
5.0 m /1.0 mm²  
0.3 m / 1.0 mm²  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
0.3 m /2.5 mm²  
5.0 m /2.5 mm²  
0.3 m /2.5 mm²  
5.0 m /2.5 mm²  
Turn-on into short-circuit  
condition  
16 V  
Short-circuit in On-state (27)  
14 V  
2.6 m / 6.0 mm²  
in series with  
0.3 m / 1.0 mm²  
On-state overload 95% of  
min OCHI1/2/3 levels  
16 V  
16 V  
1.0 m / 6.0 mm²  
1.0 m / 6.0 mm²  
250 k  
500 k  
500 k  
500 k  
On-state overload 95% of  
min OCHI1/2/3 levels with  
thermal OCHI feature active  
2.6 m / 6.0 mm²  
in series with  
0.3 m / 1.0 mm²  
Notes  
27. The channel was loaded in the on-state with 100 mA.  
Table 26. 07XSF517 AECQ100-12 Reliability Test Results at TA = 85 °C and Supply Voltage = 14 V  
Short-circuit Case  
Supply Line  
Load Line  
AECQ100-12 Grade  
Load short-circuit on 7.0 mOutput  
Load short-circuit on 17.0 mOutput  
5.0 H/50 m  
5.0 H/100 m  
D
D
5.0 H/10 m  
For either condition, contact our local Field Application Engineer (email: support@freescale.com).  
MC07XSF517  
Analog Integrated Circuit Device Data  
64  
Freescale Semiconductor  
7.4  
PCB Layout Recommendations  
This new generation of high-side switch products family facilitates ECU design thanks to compatible MCU software and PCB foot  
print for each device variant. The PCB Copper layer is similar for all devices in the family, only the solder Stencil opening is  
different.  
Figure 37. PCB Copper Layer & Solder Stencil Opening Recommendations  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
65  
7.5  
Thermal Information  
This section is to provide thermal information.  
7.5.1 Thermal Transient  
Figure 38. Transient Thermal Response Curve  
7.5.2 R/C Thermal Model  
Contact our local Field Application Engineer (email: support@freescale.com).  
MC07XSF517  
Analog Integrated Circuit Device Data  
66  
Freescale Semiconductor  
8
Packaging  
8.1  
Marking Information  
Device markings indicate information on the week and year of manufacturing. The date is coded with the last four characters of  
the nine character build information code (e.g. “CTKAH1229”). The date is coded as four numerical digits where the first two digits  
indicate the year and the last two digits indicate the week. For instance, the date code “1229” indicates the 29th week of the year  
2012.  
8.2  
Package Mechanical Dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to  
www.freescale.com and perform a keyword search for the drawing’s document number.  
Table 27. Package Outline  
Package  
Suffix  
Package Outline Drawing Number  
98ASA00367D  
54-Pin SOICEP  
EK  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
67  
EK SUFFIX  
54-PIN SOIC-EP  
98ASA00367D  
ISSUE 0  
MC07XSF517  
Analog Integrated Circuit Device Data  
68  
Freescale Semiconductor  
EK SUFFIX  
54-PIN SOIC-EP  
98ASA00367D  
ISSUE 0  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
69  
EK SUFFIX  
54-PIN SOIC-EP  
98ASA00367D  
ISSUE 0  
MC07XSF517  
Analog Integrated Circuit Device Data  
70  
Freescale Semiconductor  
9
Revision History  
REVISION  
1.0  
DATE  
9/2013  
9/2013  
DESCRIPTION OF CHANGES  
Initial release  
Added the note “To achieve high reliability over 10 years of continuous operation, the device's  
2.0  
continuous operating junction temperature should not exceed 125C.” to Operating Temperature  
MC07XSF517  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
71  
Information in this document is provided solely to enable system and software implementers to use Freescale products.  
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no  
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.  
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo, are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.  
SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their  
respective owners.  
© 2013 Freescale Semiconductor, Inc.  
Document Number: MC07XSF517  
Rev. 2.0  
9/2013