转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
700MHz, Low Jitter, Crystal-To-3.3V  
LVPECL Frequency Synthesizer  
PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES MAY 6, 2017 (84330CV-01)  
84330-01  
DATA SHEET  
General Description  
Features  
The 84330-01 is a general purpose, single output high frequency  
synthesize. The VCO operates at a frequency range of 250MHz to  
700MHz. The VCO and output frequency can be programmed using  
the serial or parallel interfaces to the configuration logic. The output  
can be configured to divide the VCO frequency by 1, 2, 4, and 8.  
Output frequency steps from 250kHz to 2MHz can be achieved using  
a 16MHz crystal depending on the output divider setting.  
Fully integrated PLL, no external loop filter requirements  
One differential 3.3V LVPECL output  
Crystal oscillator interface: 10MHz – 25MHz  
Output frequency range: 31.25MHz – 700MHz  
VCO range: 250MHz – 700MHz  
Parallel or serial interface for programming M and N dividers  
during power-up  
RMS period jitter: 5ps (maximum)  
Cycle-to-cycle jitter: 40ps (maximum)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
For functional replacement part use 8T49N242  
Block Diagram  
Pin Assignments  
M0  
M1  
1
2
28 nP_LOAD  
27  
VCC  
M2  
M3  
3
4
26 XTAL_OUT  
25 XTAL_IN  
XTAL_IN  
OSC  
M4  
M5  
M6  
M7  
M8  
N0  
N1  
VEE  
TEST  
nc  
nc  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
VCCO  
FOUT  
nFOUT  
VEE  
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
XTAL_OUT  
9
÷16  
10  
11  
12  
13  
PLL  
PHASEDETECTOR  
÷M  
÷1  
÷2  
÷4  
÷8  
VCC 14  
1
0
FOUT  
nFOUT  
84330-01  
VCO  
÷2  
28 Lead SOIC  
7.5mm x 18.05mm x 2.25mm package body  
M Package  
Top View  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
M0:M8  
N0:N1  
25 24 23 22 21 20 19  
26  
27  
28  
1
N1  
17 N0  
S_CLOCK  
18  
84330-01  
28 Lead PLCC  
11.5mm x 11.5mm x 4.4mm  
package body  
S_DATA  
S_LOAD  
M8  
M7  
M6  
16  
15  
14  
13  
VCCA  
nc  
V Package  
Top View  
2
nc  
M5  
M4  
3
XTAL_IN  
4
12  
5
6
7
8
9
10 11  
84330-01 Rev A 5/26/16  
1
©2016 Integrated Device Technology, Inc.  
84330-01 DATA SHEET  
Functional Description  
NOTE: The functional description that follows describes operation  
using a 16MHz crystal. Valid PLL loop divider values for different  
crystal or input frequencies are defined in the Input Frequency  
Characteristics, Table 5, NOTE 1.  
LOW-to-HIGH transition of the nP_LOAD input, the data is latched  
and the M divider remains loaded until the next LOW transition on  
nP_LOAD or until a serial event occurs. The TEST output is Mode  
000 (shift register out) when operating in the parallel input mode. The  
relationship between the VCO frequency, the crystal frequency and  
the M divider is defined as follows:  
The 84330-01 features a fully integrated PLL and therefore requires  
no external components for setting the loop bandwidth. A  
parallel-resonant, fundamental crystal is used as the input to the  
on-chip oscillator. The output of the oscillator is divided by 16 prior to  
the phase detector. With a 16MHz crystal, this provides a 1MHz  
reference frequency. The VCO of the PLL operates over a range of  
250MHz to 700MHz. The output of the M divider is also applied to the  
phase detector.  
fVCO = fXTAL x 2M  
16  
The M value and the required values of M0 through M8 are shown in  
Table 3B, Programmable VCO Frequency Function Table. Valid M  
values for which the PLL will achieve lock are defined as  
125 M 350. The frequency out is defined as follows:  
fout = fVCO = fXTAL x 2M  
The phase detector and the M divider force the VCO output  
frequency to be M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too high  
or too low), the PLL will not achieve lock. The output of the VCO is  
scaled by a divider prior to being sent to each of the LVPECL output  
buffers. The divider provides a 50% output duty cycle.  
N
16  
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is  
LOW. The shift register is loaded by sampling the S_DATA bits with  
the rising edge of S_CLOCK. The contents of the shift register are  
loaded into the M divider when S_LOAD transitions from  
LOW-to-HIGH. The M divide and N output divide values are latched  
on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is held HIGH,  
data at the S_DATA input is passed directly to the M divider on each  
rising edge of S_CLOCK. The serial mode can be used to program  
the M and N bits and test bits T2:T0. The internal registers T2:T0  
determine the state of the TEST output as follows in the table below:  
The programmable features of the 84330-01 support two input  
modes and to program the M divider and N output divider. The two  
input operational modes are parallel and serial. Figure 1 shows the  
timing diagram for each mode. In parallel mode, the nP_LOAD input  
is initially LOW. The data on inputs M0 through M8 and N0 through  
N1 is passed directly to the M divider and N output divider. On the  
T2  
0
T1  
0
T0  
0
TEST Output  
fOUT  
fOUT  
fOUT  
fOUT  
fOUT  
fOUT  
fOUT  
Shift Register Out  
0
0
1
HIGH  
0
1
0
PLL Reference XTAL ÷16  
0
1
1
(VCO ÷ M) /2 (non 50% Duty Cycle M Divider)  
fOUT, LVCMOS Output Frequency < 200MHz  
LOW  
1
0
0
1
0
1
1
1
0
(S_CLOCK ÷ M) /2 (non 50% Duty Cycle M Divider)  
fOUT ÷ 4  
S_CLOCK ÷ N Divider  
fOUT  
1
1
1
SERIAL LOADING  
S_CLOCK  
T2 T1 T0 N1 N0 M8 M7 M6 M5 M4 M3 M2 M1 M0  
S_DATA  
S_LOAD  
t
t
S
H
t
nP_LOAD  
S
PARALLEL LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
t
t
H
S
nP_LOAD  
Time  
Figure 1. Parallel & Serial Load Operations  
Rev A 5/26/16  
2
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
84330-01 DATA SHEET  
Table 1. Pin Descriptions  
Name  
Type  
Description  
M0, M1, M2, M3, M4,  
M5, M6, M7, M8  
M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD input.  
LVCMOS/LVTTL interface levels.  
Input  
Pullup  
Pullup  
Determines output divider value as defined in Table 3C, Function Table.  
LVCMOS/LVTTL interface levels.  
N0, N1  
VEE  
Input  
Power  
Output  
Negative supply pins.  
Test output which is used in the serial mode of operation.  
Single-ended LVPECL interface levels.  
TEST  
VCC  
Power  
Output  
Power  
Unused  
Core supply pins.  
Differential output pair for the synthesizer. LVPECL interface levels.  
Output supply pin for LVPECL outputs.  
No connect.  
FOUT, nFOUT  
VCCO  
nc  
Clocks the serial data present at S_DATA input into the shift register on the rising edge of  
S_CLOCK. LVCMOS/LVTTL interface levels.  
S_CLOCK  
Input  
Input  
Pulldown  
Pulldown  
Pulldown  
Shift register serial input. Data sampled on the rising edge of S_CLOCK.  
LVCMOS/LVTTL interface levels.  
S_DATA  
Controls transition of data from shift register into the M divider.  
LVCMOS/LVTTL interface levels.  
S_LOAD  
VCCA  
Input  
Power  
Input  
Analog supply pin.  
XTAL_IN  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.  
Parallel load input. Determines when data present at M8:M0 is loaded into M divider, and  
when data present at N1:N0 sets the N output divider value.  
LVCMOS/LVTTL interface levels.  
nP_LOAD  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
k  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
3
Rev A 5/26/16  
84330-01 DATA SHEET  
Function Tables  
Table 3A. Parallel and Serial Mode Function Table  
Inputs  
nP_LOAD  
M
N
S_LOAD  
S_CLOCK  
S_DATA Conditions  
X
X
X
X
X
X
Reset. M and N bits are all set HIGH.  
Data on M and N inputs passed directly to the M divider and  
N output divider. TEST mode 000.  
L
Data  
Data  
X
Data  
Data  
X
X
L
L
X
X
L
X
Data is latched into input registers and remains loaded until next  
LOW transition or until a serial event occurs.  
X
Serial input mode. Shift register is loaded with data on S_DATA  
on each rising edge of S_CLOCK.  
H
H
Data  
Data  
Contents of the shift register are passed to the M divider and  
N output divider.  
X
X
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don’t care  
= Rising edge transition  
= Falling edge transition  
Table 3B. Programmable VCO Frequency Function Table  
256  
M8  
0
128  
M7  
0
64  
M6  
1
32  
M5  
1
16  
M4  
1
8
M3  
1
4
M2  
1
2
M1  
0
1
M0  
1
VCO Frequency  
(MHz)  
M Divide  
125  
126  
127  
128  
250  
252  
254  
256  
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
0
1
0
1
0
0
0
0
0
1
0
696  
698  
700  
348  
349  
350  
1
0
1
0
1
1
1
0
0
1
0
1
0
1
1
1
0
1
1
0
1
0
1
1
1
1
0
NOTE 1: These M divide values and the resulting frequencies correspond to a TEST_CLK or crystal frequency of 16MHz.  
Rev A 5/26/16  
4
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
84330-01 DATA SHEET  
Table 3C. Programmable Output DividerFunction Table  
Inputs  
Output Frequency (MHz)  
Minimum Maximum  
125 350  
N1  
0
N0  
0
N Divider Value  
2
4
8
1
0
1
62.5  
31.25  
250  
175  
87.5  
700  
1
0
1
1
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
4.6V  
Inputs, VI  
XTAL_IN  
0V to VCC  
Other Inputs  
-0.5V to VCC + 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, JA  
28 Lead SOIC  
57C/W (0 mps)  
28 Lead PLCC  
45.7C/W (0 mps)  
Storage Temperature, TSTG  
-65C to 150C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
3.465  
3.465  
160  
Units  
V
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
V
3.135  
3.3  
V
mA  
mA  
ICCA  
16  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
5
Rev A 5/26/16  
84330-01 DATA SHEET  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
0.8  
Units  
VIH  
VIL  
Input High Voltage  
2
V
V
Input Low Voltage  
-0.3  
S_CLOCK,  
S_DATA, S_LOAD  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
nP_LOAD,  
M0:M8, N0, N1  
S_CLOCK,  
S_DATA, S_LOAD  
VCC = 3.465V, VIN = 0V  
-5  
Input  
Low Current  
IIL  
nP_LOAD,  
M0:M8, N0, N1  
V
CC = 3.465V, VIN = 0V  
-150  
2.6  
µA  
V
VOH  
VOL  
Output High Voltage TEST; NOTE 1  
VCCO = 3.3V 5%  
Output  
TEST; NOTE 1  
Low Voltage  
V
CCO = 3.3V 5%  
0.5  
V
NOTE 1: Outputs terminated with 50to VCCO/2. See Parameter Measurement Information section. Load Test Circuit diagrams.  
Table 4C. LVPECL DC Characteristics,VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO – 1.4  
VCCO– 2.0  
0.6  
Typical  
Maximum  
VCCO – 0.9  
VCCO – 1.7  
1.0  
Units  
µA  
Output High Current; NOTE 1  
Output Low Current; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VOL  
µA  
VSWING  
V
NOTE 1: Outputs terminated with 50to VCCO – 2V.  
Table 5. Input Frequency Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
Maximum  
Units  
MHz  
MHz  
XTAL_IN, XTAL_OUT; NOTE 1  
S_CLOCK  
10  
25  
50  
Input  
fIN  
Frequency  
NOTE 1: For the crystal frequency range, the M value must be set to achieve the minimum or maximum VCO frequency range of 250MHz to  
700MHz range. Using the minimum input frequency of 10MHz, valid values of M are 200 M 511. Using the maximum input frequency of  
25MHz, valid values of M are 80 M 224.  
Table 6. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
10  
25  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
Rev A 5/26/16  
6
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
84330-01 DATA SHEET  
AC Electrical Characteristics  
Table 7. AC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
fOUT  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
ps  
Output Frequency  
700  
40  
tjit(cc)  
tjit(per)  
tR / tF  
Cycle-to-Cycle Jitter; NOTE 1, 2  
Period Jitter, RMS; NOTE 1, 2  
Output Rise/Fall Time  
M, N to nP_LOAD  
5
ps  
20% to 80%  
200  
20  
20  
20  
20  
20  
45  
600  
ps  
ns  
tS  
Setup Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
ns  
ns  
ns  
tH  
Hold Time  
S_DATA to S_CLOCK  
ns  
odc  
Output Duty Cycle  
PLL Lock Time  
55  
10  
%
tLOCK  
ms  
See Parameter Measurement Information section.  
Characterized using XTAL inputs.  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 2: See Applications Section.  
Rev A 5/26/16  
7
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
84330-01 DATA SHEET  
Parameter Measurement Information  
2V  
VOH  
VREF  
SCOPE  
V
CC,  
Qx  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
V
CCA,  
V
CCO  
nQx  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
VEE  
-1.3V 0.165V  
3.3/3.3V LVPECL Output Load AC Test Circuit  
Period Jitter  
nFOUT  
FOUT  
nFOUT  
FOUT  
tcycle n  
tcycle n+1  
tjit(cc) = tcycle n – tcycle n+1  
|
|
1000 Cycles  
Cycle-to-Cycle Jitter  
Output Duty Cycle/Pulse Width/Period  
nFOUT  
FOUT  
Output Rise/Fall Time  
Rev A 5/26/16  
8
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
84330-01 DATA SHEET  
Application Information  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The 84330-01 provides separate  
power supplies to isolate any high switching noise from the outputs  
to the internal PLL. VCC, VCCA and VCCO should be individually  
connected to the power supply plane through vias, and 0.01µF  
bypass capacitors should be used for each pin. Figure 2 illustrates  
this for a generic VCC pin and also shows that VCCA requires that an  
additional 10resistor along with a 10F bypass capacitor be  
connected to the VCCA pin. The 10resistor can also be replaced by  
a ferrite bead.  
3.3V  
0.01µF  
VCC  
VCCA  
0.01µF 10µF  
Figure 2. Power Supply Filtering  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
TEST Output  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
The unused TEST output can be left floating. There should be no  
trace attached.  
LVPECL Output  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
9
Rev A 5/26/16  
84330-01 DATA SHEET  
Crystal Input Interface  
The 84330-01 has been characterized with 18pF parallel resonant  
crystals. The capacitor values, C1 and C2, shown in Figure 3 below  
were determined using an 18pF parallel resonant crystal and were  
chosen to minimize the ppm error. These same capacitor values will  
tune any 18pF parallel resonant crystal over the frequency range and  
other parameters specified in this data sheet. The optimum C1 and  
C2 values can be slightly adjusted for different board layouts.  
XTAL_IN  
C1  
22pF  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
22pF  
Figure 3. Crystal Input Interface  
Overdriving the XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 4A. The XTAL_OUT pin can be left floating. The  
maximum amplitude of the input signal should not exceed 2V and the  
input edge rate can be as slow as 10ns. This configuration requires  
that the output impedance of the driver (Ro) plus the series  
resistance (Rs) equals the transmission line impedance. In addition,  
matched termination at the crystal input will attenuate the signal in  
half. This can be done in one of two ways. First, R1 and R2 in parallel  
should equal the transmission line impedance. For most 50  
applications, R1 and R2 can be 100. This can also be  
accomplished by removing R1 and making R2 50. By overdriving  
the crystal oscillator, the device will be functional, but note, the device  
performance is guaranteed by using a quartz crystal.  
3.3V  
3.3V  
R1  
100  
C1  
Ro  
~ 7 Ohm  
Zo = 50 Ohm  
XTAL_I N  
RS  
43  
0.1uF  
R2  
Driver_LVCMOS  
100  
XTAL_OU T  
Crystal Input Interf ace  
Figure 4A. General Diagram for LVCMOS Driver to XTAL Input Interface  
VCC=3.3V  
C1  
Zo = 50 Ohm  
XTAL_IN  
0.1uF  
R1  
50  
Zo = 50 Ohm  
XTAL_OUT  
LVPECL  
Cry stal Input Interface  
R2  
50  
R3  
50  
Figure 4B. General Diagram for LVPECL Driver to XTAL Input Interface  
Rev A 5/26/16  
10  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
84330-01 DATA SHEET  
50  
40  
30  
20  
10  
Spec Limit  
N = 1  
0
200  
300  
400  
500  
600  
700  
Output Frequency (MHz)  
Figure 5. Cycle-to-Cycle Jitter vs. fOUT (using a 16MHz crystal)  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 6A and 6B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50  
3.3V  
R3  
R4  
125  
125  
3.3V  
3.3V  
Zo = 50  
+
_
Input  
Zo = 50  
R1  
84  
R2  
84  
Figure 6A. 3.3V LVPECL Output Termination  
Figure 6B. 3.3V LVPECL Output Termination  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
11  
Rev A 5/26/16  
84330-01 DATA SHEET  
Schematic Example  
Figure 7 shows a schematic example of using an 84330-01. The  
crystal inputs are parallel resonant crystals with load capacitor CL =  
18pF. The frequency fine tuning capacitors C1 and C2 are  
approximately 22pF. The tuning capacitor value can be slightly  
adjusted to optimize the frequency accuracy. This schematic  
example shows hardwired logic control input handling. The logic  
inputs can also be driven by 3.3V LVCMOS drivers. It is  
general, the bypass capacitor values are ranged from 0.01µF to  
0.1µF. Each bypass capacitor should be located as close as possible  
to the power pin. The low pass filter R7, C11 and C16 for clean  
analog supply should also be located as close to the VCCA pin as  
possible. Only one example of LVPECL termination is shown in this  
schematic. Additional LVPECL terminations can be found in the  
LVPECL Termination Application Note.  
recommended to have one bypass capacitor per power pin. In  
C1  
X1  
C2  
22p  
16MHz, 18pF  
22p  
3.3V  
U1  
R7  
10  
M4  
M5  
M6  
M7  
M8  
N2  
N1  
12  
4
M4  
M5  
M6  
M7  
M8  
N0  
N1  
X_I N  
3
13  
14  
15  
16  
17  
18  
nc  
2
nc  
1
VCCA  
VCCA  
28  
SP = Space (i.e. not intstalled)  
S_LOAD  
S_DATA  
S_CLOCK  
27  
26  
C11  
0.01u  
C16  
10u  
M[8:0]= 110010000 (400)  
N[1:0] =00 (Divide by 2)  
ICS84330-01  
3.3V  
C3  
VCC  
0.1uF  
3.3V  
Zo = 50 Ohm  
Zo = 50 Ohm  
RU0  
SP  
RU1  
SP  
RU7  
1K  
RU8  
1K  
RU9  
SP  
RU10  
1K  
RU11  
SP  
Fout = 200 MHz  
+
-
C4  
0.1u  
R2  
50  
R1  
50  
RD0  
1K  
RD1  
1K  
RD7  
SP  
RD8  
SP  
RD9  
1K  
RD10  
SP  
RD6  
1K  
R3  
50  
Figure 7. 84330-01 Schematic of Recommended Layout  
Rev A 5/26/16  
12  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
84330-01 DATA SHEET  
Power Considerations  
This section provides information on power dissipation and junction temperature for the 84330-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the 84330-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 160mA = 554.4mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
Total Power_MAX (3.3V, with all outputs switching) = 554.4mW + 30mW = 584.4mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 57°C/W per Table 8A below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.584W * 57°C/W = 103.3°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 8A. Thermal Resistance JA for 28 Lead SOIC, Forced Convection  
JA by Velocity  
Meters per Second  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
57°C/W  
Table 8B. Thermal Resistance JA for 28 Lead PLCC, Forced Convection  
JA by Velocity  
Meters per Second  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
45.7°C/W  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
13  
Rev A 5/26/16  
84330-01 DATA SHEET  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 8. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCCO – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.9V  
(VCCO_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCO_MAX 1.7V  
(VCCO_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOH_MAX) = [(2V - (VCCO_MAX – VOH_MAX))/RL] * (VCCO_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOL_MAX) = [(2V – (VCCO_MAX – VOL_MAX))/RL] * (VCCO_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
Rev A 5/26/16  
14  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
84330-01 DATA SHEET  
Reliability Information  
Table 9A. JA vs. Air Flow Table for a 28 Lead SOIC  
JA vs. Air Flow  
Meters per Second  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
57°C/W  
Table 9B. JA vs. Air Flow Table for a 28 Lead PLCC  
JA vs. Air Flow  
Meters per Second  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
45.7°C/W  
Transistor Count  
The transistor count for 84330-01 is: 4498  
Pin compatible with the SY89430V  
Package Outline and Package Dimensions  
Package Outline - M Suffix for 28 Lead SOIC  
Table 10A. Package Dimensions for 28 Lead SOIC  
JEDEC: 300 MIL  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
A1  
A2  
B
C
D
E
28  
2.65  
0.10  
2.05  
0.33  
0.18  
17.70  
7.40  
2.55  
0.51  
0.32  
18.40  
7.60  
e
1.27 Basic  
10.65  
H
h
10.0  
0.25  
0.40  
0°  
0.75  
1.27  
8°  
L
Reference Document: JEDEC Publication 95, MS-013, MS-119  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
15  
Rev A 5/26/16  
84330-01 DATA SHEET  
Package Outline - V Suffix for 28 Lead PLCC  
Table 10B. Package Dimensions for 28 Lead PLCC  
JEDEC  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
28  
4.19  
2.29  
1.57  
0.33  
0.19  
12.32  
11.43  
4.85  
4.57  
3.05  
2.11  
0.53  
0.32  
12.57  
11.58  
5.56  
A1  
A2  
b
c
D & E  
D1 & E1  
D2 & E2  
Reference Document: JEDEC Publication 95, MS-018  
Rev A 5/26/16  
16  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
84330-01 DATA SHEET  
Ordering Information  
Table 11. Ordering Information  
Part/Order Number  
84330CV-01LF  
84330CV-01LFT  
84330CM-01LF  
84330CM-01LFT  
Marking  
Package  
Shipping Packaging  
Tube  
1000 Tape & Reel  
Tube  
Temperature  
0C to 70C  
0C to 70C  
0C to 70C  
0C to 70C  
ICS84330CV-01LF  
ICS84330CV-01LF  
ICS84330CM-01LF  
ICS84330CM-01LF  
“Lead-Free” 28 Lead PLCC  
“Lead-Free” 28 Lead PLCC  
“Lead-Free” 28 Lead SOIC  
“Lead-Free” 28 Lead SOIC  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
17  
Rev A 5/26/16  
84330-01 DATA SHEET  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
T7  
7
10  
17  
AC Electrical Characteristics - Added Thermal Note.  
Updated Overdriving the XTAL Interface section.  
Ordering Information - Added “Lead Free” Marking to lead-free 28 Lead SOIC.  
Updated head/footer throughout the datasheet.  
A
2/23/10  
T11  
T11  
17  
Ordering Information - removed leaded devices.  
Updated data sheet format.  
A
A
4/22/15  
5/26/16  
Product Discontinuation Notice - Last time buy expires May 6, 2017.  
PDN CQ-16-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY  
SYNTHESIZER  
18  
Rev A 5/26/16  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
Sales  
Tech Support  
email: clocks@idt.com  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in  
this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined  
in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether  
express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This  
document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably  
expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or  
other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as  
those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any  
circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected  
names, logos and designs, are the property of IDT or their respective third party owners.  
Copyright ©2016 Integrated Device Technology, Inc.. All rights reserved.