转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
LPC81xM  
32-bit ARM Cortex-M0+ microcontroller; up to 16 kB flash and  
4 kB SRAM  
Rev. 4.3 — 22 April 2014  
Product data sheet  
1. General description  
The LPC81xM are an ARM Cortex-M0+ based, low-cost 32-bit MCU family operating at  
CPU frequencies of up to 30 MHz. The LPC81xM support up to 16 kB of flash memory  
and 4 kB of SRAM.  
The peripheral complement of the LPC81xM includes a CRC engine, one I2C-bus  
interface, up to three USARTs, up to two SPI interfaces, one multi-rate timer, self wake-up  
timer, and state-configurable timer, one comparator, function-configurable I/O ports  
through a switch matrix, an input pattern match engine, and up to 18 general-purpose I/O  
pins.  
2. Features and benefits  
System:  
ARM Cortex-M0+ processor, running at frequencies of up to 30 MHz with  
single-cycle multiplier and fast single-cycle I/O port.  
ARM Cortex-M0+ built-in Nested Vectored Interrupt Controller (NVIC).  
System tick timer.  
Serial Wire Debug (SWD) and JTAG boundary scan modes supported.  
Micro Trace Buffer (MTB) supported.  
Memory:  
Up to 16 kB on-chip flash programming memory with 64 Byte page write and erase.  
Up to 4 kB SRAM.  
ROM API support:  
Boot loader.  
USART drivers.  
I2C drivers.  
Power profiles.  
Flash In-Application Programming (IAP) and In-System Programming (ISP).  
Digital peripherals:  
High-speed GPIO interface connected to the ARM Cortex-M0+ IO bus with up to 18  
General-Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors,  
programmable open-drain mode, input inverter, and glitch filter.  
High-current source output driver (20 mA) on four pins.  
High-current sink driver (20 mA) on two true open-drain pins.  
GPIO interrupt generation capability with boolean pattern-matching feature on eight  
GPIO inputs.  
Switch matrix for flexible configuration of each I/O pin function.  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
State Configurable Timer/PWM (SCTimer/PWM) with input and output functions  
(including capture and match) assigned to pins through the switch matrix.  
Multiple-channel multi-rate timer (MRT) for repetitive interrupt generation at up to  
four programmable, fixed rates.  
Self Wake-up Timer (WKT) clocked from either the IRC or a low-power,  
low-frequency internal oscillator.  
CRC engine.  
Windowed Watchdog timer (WWDT).  
Analog peripherals:  
Comparator with internal and external voltage references with pin functions  
assigned or enabled through the switch matrix.  
Serial interfaces:  
Three USART interfaces with pin functions assigned through the switch matrix.  
Two SPI controllers with pin functions assigned through the switch matrix.  
One I2C-bus interface with pin functions assigned through the switch matrix.  
Clock generation:  
12 MHz internal RC oscillator trimmed to 1.5 % accuracy that can optionally be  
used as a system clock.  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
Programmable watchdog oscillator with a frequency range of 9.4 kHz to 2.3 MHz.  
10 kHz low-power oscillator for the WKT.  
PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the system oscillator, the external clock  
input CLKIN, or the internal RC oscillator.  
Clock output function with divider that can reflect the crystal oscillator, the main  
clock, the IRC, or the watchdog oscillator.  
Power control:  
Integrated PMU (Power Management Unit) to minimize power consumption.  
Reduced power modes: Sleep mode, Deep-sleep mode, Power-down mode, and  
Deep power-down mode.  
Wake-up from Deep-sleep and Power-down modes on activity on USART, SPI, and  
I2C peripherals.  
Timer-controlled self wake-up from Deep power-down mode.  
Power-On Reset (POR).  
Brownout detect.  
Unique device serial number for identification.  
Single power supply.  
Operating temperature range 40 °C to 105 °C except for the DIP8 package, which is  
available for a temperature range of 40 °C to 85 °C.  
Available as DIP8, TSSOP16, SO20, TSSOP20, and XSON16 package.  
3. Applications  
8/16-bit applications  
Lighting  
Consumer  
Motor control  
Climate control  
Fire and security applications  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
2 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC810M021FN8  
DIP8  
plastic dual in-line package; 8 leads (300 mil)  
SOT097-2  
SOT403-1  
SOT403-1  
SOT163-1  
SOT360-1  
SOT1341-1  
LPC811M001JDH16 TSSOP16  
LPC812M101JDH16 TSSOP16  
plastic thin shrink small outline package; 16 leads; body width 4.4 mm  
plastic thin shrink small outline package; 16 leads; body width 4.4 mm  
plastic small outline package; 20 leads; body width 7.5 mm  
plastic thin shrink small outline package; 20 leads; body width 4.4 mm  
LPC812M101JD20  
LPC812M101JDH20 TSSOP20  
LPC812M101JTB16 XSON16  
SO20  
plastic extremely thin small outline package; no leads; 16 terminals;  
body 2.5 3.2 0.5 mm  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash/kB SRAM/kB USART  
I2C-bus SPI Comparator  
GPIO  
6
Package  
LPC810M021FN8  
LPC811M001JDH16  
LPC812M101JDH16  
LPC812M101JD20  
LPC812M101JDH20  
LPC812M101JTB16  
4
1
2
4
4
4
4
2
2
3
2
3
3
1
1
1
1
1
1
1
1
2
1
2
2
1
1
1
1
1
1
DIP8  
8
14  
TSSOP16  
TSSOP16  
SO20  
16  
16  
16  
16  
14  
18  
18  
TSSOP20  
XSON16  
14  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
3 of 76  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
5. Marking  
The LPC81xM devices typically have the following top-side marking:  
LPC81x  
xxxxx  
xxxxxxxx  
xxYWWxR[x]  
The last two letters in the last line (field ‘xR’) identify the boot code version and device  
revision.  
Table 3.  
Device revision table  
Revision identifier (xR)  
Revision description  
‘1A’  
‘2A’  
’4C’  
Initial device revision with boot code version 13.1  
Device revision with boot code version 13.2  
Device revision with boot code version 13.4  
Field ‘Y’ states the year the device was manufactured. Field ‘WW’ states the week the  
device was manufactured during that year.  
Remark: On the TSSOP16 package, the last line includes only the date code xxYWW.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
4 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
6. Block diagram  
/3&ꢃꢄ[0  
6:&/.ꢈꢄ6:'  
7(67ꢁ'(%8*  
,17(5)$&(  
ꢀꢅꢄ[ꢄ  
3,2ꢉ  
+,*+ꢇ63(('  
*3,2  
$50  
&257(;ꢀ0ꢁꢂ  
)/$6+  
ꢃꢁꢅꢁꢀꢆꢄN%  
65$0  
ꢀꢁꢂꢁꢃꢄN%  
520  
3,1ꢄ,17(558376ꢁ  
3$77(51ꢄ0$7&+  
VODYH  
VODYH  
VODYH  
&7287B>ꢊꢋꢉ@  
&7,1B>ꢊꢋꢉ@  
6&7,0(5ꢁ  
3:0  
$+%ꢇ/,7(ꢄꢄ%86  
VODYH  
&5&  
VODYH  
$+%ꢄ72ꢄ$3%  
%5,'*(ꢄ  
7;'ꢈꢄ576  
5;'ꢈꢄ&76  
6&/.  
::'7  
,2&21  
08/7,ꢇ5$7(ꢄ7,0(5  
86$57ꢉ  
86$57ꢀ  
86$57ꢂ  
7;'ꢈꢄ576  
5;'ꢈꢄ&76  
6&/.  
ꢀꢅꢄ[ꢄ  
6:,7&+  
0$75,;  
7;'ꢈꢄ576  
5;'ꢈꢄ&76  
6&/.  
6&.ꢈꢄ66(/  
0,62ꢈꢄ026,  
308  
63,ꢉ  
63,ꢀ  
6&.ꢈꢄ66(/  
0,62ꢈꢄ026,  
6(/)  
:$.(ꢇ83ꢄ7,0(5  
$/:$<6ꢇ21ꢄ32:(5ꢄ'20$,1  
6&/  
6'$  
, &ꢇ%86  
;7$/287  
;7$/,1  
;7$/  
,5&  
6<6&21  
&/2&.  
5(6(7ꢄ&/.,1  
&/.287  
*(1(5$7,21ꢈ  
32:(5ꢄ&21752/ꢈ  
6<67(0ꢄ  
:'2VF  
%2'  
)81&7,216  
325  
$&03B,ꢀꢁꢂ  
9''&03  
$&03B2  
&203$5$725  
FORFNVꢄDQGꢄ  
FRQWUROV  
DDDꢀꢁꢁꢂꢃꢄꢅ  
Fig 1. LPC81xM block diagram  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
5 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7. Pinning information  
7.1 Pinning  
5(6(7ꢁ3,2ꢉBꢌ  
3,2ꢉBꢉꢁ$&03B,ꢀꢁ7'2  
3,2ꢉBꢃꢁ:$.(83ꢁ7567  
6:&/.ꢁ3,2ꢉBꢊꢁ7&.  
6:',2ꢁ3,2ꢉBꢂꢁ706  
9
66  
9
''  
',3ꢃ  
3,2ꢉBꢀꢁ$&03B,ꢂꢁ&/.,1ꢁ7',  
DDDꢀꢁꢁꢂꢃꢄꢃ  
Fig 2. Pin configuration DIP8 package (LPC810M021JN8)  
ꢀꢆ  
ꢀꢌ  
ꢀꢃ  
ꢀꢊ  
ꢀꢂ  
ꢀꢀ  
ꢀꢉ  
3,2ꢉBꢀꢊ  
3,2ꢉBꢀꢂ  
3,2ꢉBꢉꢁ$&03B,ꢀꢁ7'2  
3,2ꢉBꢆꢁ9''&03  
3,2ꢉBꢍ  
5(6(7ꢁ3,2ꢉBꢌ  
3,2ꢉBꢃꢁ:$.(83ꢁ7567  
6:&/.ꢁ3,2ꢉBꢊꢁ7&.  
6:',2ꢁ3,2ꢉBꢂꢁ706  
3,2ꢉBꢀꢀ  
9
66  
9
''  
76623ꢄꢅ  
3,2ꢉBꢅꢁ;7$/,1  
3,2ꢉBꢎꢁ;7$/287  
3,2ꢉBꢀꢉ  
3,2ꢉBꢀꢁ$&03B,ꢂꢁ&/.,1ꢁ7',  
DDDꢀꢁꢁꢆꢃꢁꢃ  
Fig 3. Pin configuration TSSOP16 package (LPC811M001JDH16 and LPC812M101JDH16)  
ꢂꢉ  
ꢀꢎ  
ꢀꢅ  
ꢀꢍ  
ꢀꢆ  
ꢀꢌ  
ꢀꢃ  
ꢀꢊ  
ꢀꢂ  
ꢀꢀ  
3,2ꢉBꢀꢍ  
3,2ꢉBꢀꢊ  
3,2ꢉBꢀꢃ  
3,2ꢉBꢉꢁ$&03B,ꢀꢁ7'2  
3,2ꢉBꢆꢁ9''&03  
3,2ꢉBꢍ  
3,2ꢉBꢀꢂ  
5(6(7ꢁ3,2ꢉBꢌ  
3,2ꢉBꢃꢁ:$.(83ꢁ7567  
6:&/.ꢁ3,2ꢉBꢊꢁ7&.  
6:',2ꢁ3,2ꢉBꢂꢁ706  
3,2ꢉBꢀꢀ  
9
66  
9
''  
62ꢆꢁ  
3,2ꢉBꢅꢁ;7$/,1  
3,2ꢉBꢎꢁ;7$/287  
3,2ꢉBꢀꢁ$&03Bꢂꢁ&/.,1ꢁ7',  
3,2ꢉBꢀꢌ  
3,2ꢉBꢀꢉ  
ꢀꢉ  
3,2ꢉBꢀꢆ  
DDDꢀꢁꢁꢆꢃꢂꢅ  
Fig 4. Pin configuration SO20 package (LPC812M101JD20)  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
6 of 76  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
ꢂꢉ  
ꢀꢎ  
ꢀꢅ  
ꢀꢍ  
ꢀꢆ  
ꢀꢌ  
ꢀꢃ  
ꢀꢊ  
ꢀꢂ  
ꢀꢀ  
3,2ꢉBꢀꢍ  
3,2ꢉBꢀꢊ  
3,2ꢉBꢀꢃ  
3,2ꢉBꢉꢁ$&03B,ꢀꢁ7'2  
3,2ꢉBꢆꢁ9''&03  
3,2ꢉBꢍ  
3,2ꢉBꢀꢂ  
5(6(7ꢁ3,2ꢉBꢌ  
3,2ꢉBꢃꢁ:$.(83ꢁ7567  
6:&/.ꢁ3,2ꢉBꢊꢁ7&.  
6:',2ꢁ3,2ꢉBꢂꢁ706  
3,2ꢉBꢀꢀ  
9
9
66  
''  
76623ꢆꢁ  
3,2ꢉBꢅꢁ;7$/,1  
3,2ꢉBꢎꢁ;7$/287  
3,2ꢉBꢀꢁ$&03B,ꢂꢁ&/.,1ꢁ7',  
3,2ꢉBꢀꢌ  
3,2ꢉBꢀꢉ  
ꢀꢉ  
3,2ꢉBꢀꢆ  
DDDꢀꢁꢁꢆꢃꢃꢂ  
Fig 5.  
Pin configuration TSSOP20 package (LPC812M101JDH20)  
terminal 1  
XSON16  
index area  
PIO0_13  
PIO0_12  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
PIO0_0/ACMP_I1/TDO  
PIO0_6/VDDCMP  
PIO0_7  
RESET/PIO0_5  
PIO0_4/WAKEUP/TRST  
SWCLK/PIO0_3/TCK  
SWDIO/PIO0_2/TMS  
PIO0_11  
V
SS  
V
DD  
PIO0_8/XTALIN  
PIO0_9/XTALOUT  
PIO0_10  
9
PIO0_1/ACMP_I2/CLKIN/TDI  
aaa-009570  
Transparent top view  
Fig 6.  
Pin configuration XSON16 package (LPC812M101JTB16)  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
7 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7.2 Pin description  
The pin description consists of two parts showing pin functions that are fixed to a certain  
package pin (see Table 4) and showing pin functions that can be assigned to any pin on  
the package through the switch matrix (see Table 5).  
The pin description table in Table 4 shows the pin functions that are fixed to specific pins  
on each package. These fixed-pin functions are selectable between GPIO and the  
comparator inputs, SWD, RESET, and the XTAL pins. By default, the GPIO function is  
selected except on pins PIO0_2, PIO0_3, and PIO0_5. JTAG functions are available in  
boundary scan mode only.  
Table 5 shows the the I2C, USART, SPI, and SCT pin functions, which can be assigned  
through the switch matrix to any pin that is not power or ground in place of the pin’s fixed  
functions.  
The following exceptions apply:  
For full I2C-bus compatibility, assign the I2C functions to the open-drain pins PIO0_11 and  
PIO0_10.  
Do not assign more than one output to any pin. However, more than one input can be  
assigned to a pin. Once any function is assigned to a pin, the pin’s GPIO functionality is  
disabled.  
Pin PIO0_4 triggers a wake-up from Deep power-down mode. If you need to wake up  
from Deep power-down mode via an external pin, do not assign any movable function to  
this pin.  
The JTAG functions TDO, TDI, TCK, TMS, and TRST are selected on pins PIO0_0 to  
PIO0_4 by hardware when the part is in boundary scan mode.  
Table 4.  
Symbol  
Pin description table (fixed pins)  
Type Reset Description  
state  
[1]  
[5]  
[5]  
PIO0_0/ACMP_I1/  
TDO  
19  
12  
16 16  
8
5
I/O  
I; PU PIO0_0 — General purpose digital input/output port 0 pin 0.  
In ISP mode, this is the USART0 receive pin U0_RXD.  
In boundary scan mode: TDO (Test Data Out).  
AI  
-
ACMP_I1 — Analog comparator input 1.  
PIO0_1/ACMP_I2/  
CLKIN/TDI  
9
9
I/O  
I; PU PIO0_1 — General purpose digital input/output pin.  
In boundary scan mode: TDI (Test Data In).  
ISP entry pin on chip versions 1A and 2A and on the DIP8  
package (see Table 6). For these chip versions and  
packages, a LOW level on this pin during reset starts the  
ISP command handler.  
See PIO0_12 for all other packages.  
AI  
I
-
-
ACMP_I2 — Analog comparator input 2.  
CLKIN — External clock input.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
8 of 76  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description table (fixed pins)  
Type Reset Description  
state  
[1]  
[2]  
[2]  
[6]  
SWDIO/PIO0_2/TMS 7  
6
5
4
6
5
4
4
3
2
I/O  
I; PU SWDIO — Serial Wire Debug I/O. SWDIO is enabled by  
default on this pin.  
In boundary scan mode: TMS (Test Mode Select).  
I/O  
I/O  
-
PIO0_2 — General purpose digital input/output pin.  
SWCLK/PIO0_3/  
TCK  
6
5
I; PU SWCLK — Serial Wire Clock. SWCLK is enabled by default  
on this pin.  
In boundary scan mode: TCK (Test Clock).  
I/O  
I/O  
-
PIO0_3 — General purpose digital input/output pin.  
PIO0_4/WAKEUP/  
TRST  
I; PU PIO0_4 — General purpose digital input/output pin.  
In ISP mode, this is the USART0 transmit pin U0_TXD.  
In boundary scan mode: TRST (Test Reset).  
This pin triggers a wake-up from Deep power-down mode. If  
you need to wake up from Deep power-down mode via an  
external pin, do not assign any movable function to this pin.  
This pin should be pulled HIGH externally before entering  
Deep power-down mode. A LOW-going pulse as short as 50  
ns causes the chip to exit Deep power-down mode and  
wakes up the part.  
[4]  
RESET/PIO0_5  
4
3
3
1
I/O  
I; PU RESET — External reset input: A LOW-going pulse as short  
as 50 ns on this pin resets the device, causing I/O ports and  
peripherals to take on their default states, and processor  
execution to begin at address 0.  
In deep power-down mode, this pin must be pulled HIGH  
externally. The RESET pin can be left unconnected or be  
used as a GPIO or for any movable function if an external  
RESET function is not needed and the Deep power-down  
mode is not used.  
I
-
PIO0_5 — General purpose digital input/output pin.  
[9]  
PIO0_6/VDDCMP  
18  
15 15  
-
I/O  
AI  
I; PU PIO0_6 — General purpose digital input/output pin.  
-
VDDCMP — Alternate reference voltage for the analog  
comparator.  
[2]  
[8]  
PIO0_7  
17  
14  
14 14  
11 11  
-
-
I/O  
I/O  
I
I; PU PIO0_7 — General purpose digital input/output pin.  
I; PU PIO0_8 — General purpose digital input/output pin.  
PIO0_8/XTALIN  
-
XTALIN — Input to the oscillator circuit and internal clock  
generator circuits. Input voltage must not exceed 1.95 V.  
[8]  
[3]  
PIO0_9/XTALOUT  
PIO0_10  
13  
9
10 10  
-
-
I/O  
O
I
I; PU PIO0_9 — General purpose digital input/output pin.  
-
XTALOUT — Output from the oscillator circuit.  
8
7
8
7
IA  
PIO0_10 — General purpose digital input/output pin. Assign  
I2C functions to this pin when true open-drain pins are  
needed for a signal compliant with the full I2C specification.  
[3]  
PIO0_11  
8
-
I
IA  
PIO0_11 — General purpose digital input/output pin. Assign  
I2C functions to this pin when true open-drain pins are  
needed for a signal compliant with the full I2C specification.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
9 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description table (fixed pins)  
Type Reset Description  
state  
[1]  
[2]  
PIO0_12  
3
2
2
-
I/O  
I; PU PIO0_12 — General purpose digital input/output pin. ISP  
entry pin on the SO20/TSSOP20/TSSOP16/XSON16  
packages starting with chip version 4C (see Table 6). A  
LOW level on this pin during reset starts the ISP command  
handler.  
See pin PIO0_1 for the DIP8 package and chip versions 1A  
and 2A.  
[2]  
[7]  
[7]  
[7]  
[7]  
PIO0_13  
PIO0_14  
PIO0_15  
PIO0_16  
PIO0_17  
VDD  
2
1
-
1
-
-
I/O  
I/O  
I/O  
I/O  
I/O  
-
I; PU PIO0_13 — General purpose digital input/output pin.  
I; PU PIO0_14 — General purpose digital input/output pin.  
I; PU PIO0_15 — General purpose digital input/output pin.  
I; PU PIO0_16 — General purpose digital input/output pin.  
I; PU PIO0_17 — General purpose digital input/output pin.  
20  
11  
10  
1
-
-
-
-
-
-
-
-
-
-
15  
16  
12 12  
13 13  
6
7
-
-
3.3 V supply voltage.  
Ground.  
VSS  
-
[1] Pin state at reset for default function: I = Input; AI = Analog Input; O = Output; PU = internal pull-up enabled (pins pulled up to full VDD  
level); IA = inactive, no pull-up/down enabled.  
[2] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis; includes  
high-current output driver.  
[3] True open-drain pin. I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode  
Plus. Do not use this pad for high-speed applications such as SPI or USART. The pin requires an external pull-up to provide output  
functionality. When power is switched off, this pin is floating and does not disturb the I2C lines. Open-drain configuration applies to all  
functions on this pin.  
Remark: If this pin is not available on the package, prevent it from internally floating as follows: Set bits 10 and 11 in the GPIO DIR0  
register to 1 to enable the output driver and write 1 to bits 10 and 11 in the GPIO CLR0 register to drive the outputs LOW internally.  
[4] See Figure 11 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to  
reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down  
mode.  
[5] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog input. When  
configured as an analog input, the digital section of the pin is disabled, and the pin is not 5 V tolerant.  
[6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis. In Deep  
power-down mode, pulling this pin LOW wakes up the chip. The wake-up pin function can be disabled and the pin can be used for other  
purposes, if the WKT low power oscillator is enabled for waking up the part from Deep power-down mode.  
[7] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis.  
[8] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog I/O for the system  
oscillator. When configured as an analog I/O, the digital section of the pin is disabled, and the pin is not 5 V tolerant.  
[9] The digital part of this pin is 3 V tolerant pin due to special analog functionality. Pin provides standard digital I/O functions with  
configurable modes, configurable hysteresis, and an analog input. When configured as an analog input, the digital section of the pin is  
disabled.  
Table 5.  
Movable functions (assign to pins PIO0_0 to PIO_17 through switch matrix)  
Function name  
U0_TXD  
Type  
Description  
O
I
Transmitter output for USART0.  
Receiver input for USART0.  
Request To Send output for USART0.  
Clear To Send input for USART0.  
U0_RXD  
U0_RTS  
O
I
U0_CTS  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
10 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 5.  
Movable functions (assign to pins PIO0_0 to PIO_17 through switch matrix)  
Function name  
U0_SCLK  
U1_TXD  
Type  
I/O  
O
Description  
Serial clock input/output for USART0 in synchronous mode.  
Transmitter output for USART1.  
Receiver input for USART1.  
Request To Send output for USART1.  
Clear To Send input for USART1.  
Serial clock input/output for USART1 in synchronous mode.  
Transmitter output for USART2.  
Receiver input for USART2.  
Request To Send output for USART2.  
Clear To Send input for USART2.  
Serial clock input/output for USART2 in synchronous mode.  
Serial clock for SPI0.  
U1_RXD  
I
U1_RTS  
O
U1_CTS  
I
U1_SCLK  
U2_TXD  
I/O  
O
U2_RXD  
I
U2_RTS  
O
U2_CTS  
I
U2_SCLK  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
SPI0_SSEL  
SPI1_SCK  
SPI1_MOSI  
SPI1_MISO  
SPI1_SSEL  
CTIN_0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Master Out Slave In for SPI0.  
Master In Slave Out for SPI0.  
Slave select for SPI0.  
Serial clock for SPI1.  
Master Out Slave In for SPI1.  
Master In Slave Out for SPI1.  
Slave select for SPI1.  
SCT input 0.  
CTIN_1  
I
SCT input 1.  
CTIN_2  
I
SCT input 2.  
CTIN_3  
I
SCT input 3.  
CTOUT_0  
CTOUT_1  
CTOUT_2  
CTOUT_3  
I2C0_SCL  
O
SCT output 0.  
O
SCT output 1.  
O
SCT output 2.  
O
SCT output 3.  
I/O  
I2C-bus clock input/output (open-drain if assigned to pin PIO0_10).  
High-current sink only if assigned to PIO0_10 and if I2C Fast-mode  
Plus is selected in the I/O configuration register.  
I2C0_SDA  
I/O  
I2C-bus data input/output (open-drain if assigned to pin PIO0_11).  
High-current sink only if assigned to pin PIO0_11 and if I2C  
Fast-mode Plus is selected in the I/O configuration register.  
ACMP_O  
CLKOUT  
O
O
Analog comparator digital output.  
Clock output.  
GPIO_INT_BMAT O  
Output of the pattern match engine.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
11 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 6.  
Pin location in ISP mode  
ISP entry pin USART RXD USART TXD  
Marking  
Boot loader Package  
version  
PIO0_1  
PIO0_1  
PIO0_0  
PIO0_0  
PIO0_4  
PIO0_4  
1A  
v 13.1  
TSSOP20; SO20;  
TSSOP16; DIP8;  
XSON16  
2A  
v 13.2  
TSSOP20; SO20;  
TSSOP16; DIP8;  
XSON16  
PIO0_1  
PIO0_0  
PIO0_0  
PIO0_4  
PIO0_4  
4C and  
later  
v 13.4 and  
later  
DIP8  
PIO0_12  
4C and  
later  
v 13.4 and  
later  
TSSOP20; SO20;  
TSSOP16;  
XSON16  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
12 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8. Functional description  
8.1 ARM Cortex-M0+ core  
The ARM Cortex-M0+ core runs at an operating frequency of up to 30 MHz using a  
two-stage pipeline. Integrated in the core are the NVIC and Serial Wire Debug with four  
breakpoints and two watchpoints. The ARM Cortex-M0+ core supports a single-cycle I/O  
enabled port for fast GPIO access.  
The core includes a single-cycle multiplier and a system tick timer.  
8.2 On-chip flash program memory  
The LPC81xM contain up to 16 kB of on-chip flash program memory. The flash memory  
supports a 64 Byte page size with page write and erase.  
8.3 On-chip SRAM  
The LPC81xM contain a total of up to 4 kB on-chip static RAM data memory.  
8.4 On-chip ROM  
The 8 kB on-chip ROM contains the boot loader and the following Application  
Programming Interfaces (API):  
In-System Programming (ISP) and In-Application Programming (IAP) support for flash  
programming  
Power profiles for configuring power consumption and PLL settings  
USART driver API routines  
I2C-bus driver API routines  
8.5 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0+. The  
tight coupling to the CPU allows for low interrupt latency and efficient processing of late  
arriving interrupts.  
8.5.1 Features  
Controls system exceptions and peripheral interrupts.  
On the LPC81xM, the NVIC supports 32 vectored interrupts including up to 8 external  
interrupt inputs selectable from all GPIO pins.  
Four programmable interrupt priority levels with hardware priority level masking.  
Software interrupt generation using the ARM exceptions SVCall and PendSV.  
Relocatable interrupt vector table using vector table offset register.  
8.5.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
13 of 76  
 
 
 
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Up to eight pins, regardless of the selected function, can be programmed to generate an  
interrupt on a level, a rising or falling edge, or both. The interrupt generating pins can be  
selected from all digital or mixed digital/analog pins. The pin interrupt/pattern match block  
controls the edge or level detection mechanism.  
8.6 System tick timer  
The ARM Cortex-M0+ includes a 24-bit system tick timer (SysTick) that is intended to  
generate a dedicated SysTick exception at a fixed time interval (typically 10 ms).  
8.7 Memory map  
The LPC81xM incorporates several distinct memory regions. Figure 7 shows the overall  
map of the entire address space from the user program viewpoint following reset. The  
interrupt vector area supports address remapping.  
The ARM private peripheral bus includes the ARM core registers for controlling the NVIC,  
the system tick timer (SysTick), and the reduced power modes.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
14 of 76  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
$3%ꢄSHULSKHUDOV  
ꢉ[ꢃꢉꢉꢅꢄꢉꢉꢉꢉ  
/3&ꢃꢄ[0  
ꢃꢄ*%  
ꢊꢀꢄꢇꢄꢂꢅꢄUHVHUYHG  
ꢉ[ꢃꢉꢉꢍꢄꢉꢉꢉꢉ  
ꢉ[))))ꢄ))))  
UHVHUYHG  
ꢉ[(ꢉꢀꢉꢄꢉꢉꢉꢉ  
ꢉ[(ꢉꢉꢉꢄꢉꢉꢉꢉ  
SULYDWHꢄSHULSKHUDOꢄEXV  
ꢂꢍ  
ꢂꢆ  
86$57ꢂ  
ꢉ[ꢃꢉꢉꢆꢄ&ꢉꢉꢉ  
86$57ꢀ  
UHVHUYHG  
ꢉ[ꢃꢉꢉꢆꢄꢅꢉꢉꢉ  
ꢂꢌ  
86$57ꢉ  
ꢉ[$ꢉꢉꢉꢄꢅꢉꢉꢉ  
ꢉ[$ꢉꢉꢉꢄꢃꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢆꢄꢃꢉꢉꢉ  
UHVHUYHG  
SLQꢄLQWHUUXSWVꢁSDWWHUQꢄPDWFK  
*3,2  
ꢂꢃ  
ꢂꢊ  
ꢂꢂ  
ꢂꢀ  
ꢉ[ꢃꢉꢉꢆꢄꢉꢉꢉꢉ  
63,ꢀ  
ꢉ[ꢃꢉꢉꢌꢄ&ꢉꢉꢉ  
ꢉ[$ꢉꢉꢉꢄꢉꢉꢉꢉ  
63,ꢉ  
ꢉ[ꢃꢉꢉꢌꢄꢅꢉꢉꢉ  
UHVHUYHG  
UHVHUYHG  
ꢉ[ꢌꢉꢉꢉꢄꢅꢉꢉꢉ  
ꢉ[ꢌꢉꢉꢉꢄꢃꢉꢉꢉ  
ꢉ[ꢌꢉꢉꢉꢄꢉꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢌꢄꢃꢉꢉꢉ  
6&7LPHUꢁ3:0  
&5&  
ꢂꢉ  
ꢀꢎ  
,ꢂ&  
ꢉ[ꢃꢉꢉꢌꢄꢉꢉꢉꢉ  
UHVHUYHG  
ꢉ[ꢃꢉꢉꢃꢄ&ꢉꢉꢉ  
6<6&21  
ꢀꢅ  
ꢀꢍ  
ꢉ[ꢃꢉꢉꢃꢄꢅꢉꢉꢉ  
UHVHUYHG  
,2&21  
ꢉ[ꢃꢉꢉꢃꢄꢃꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢅꢄꢉꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢉꢄꢉꢉꢉꢉ  
IODVKꢄFRQWUROOHU  
UHVHUYHG  
ꢀꢆ  
ꢀꢌ  
ꢉ[ꢃꢉꢉꢃꢄꢉꢉꢉꢉ  
$3%ꢄSHULSKHUDOV  
ꢀꢄ*%  
ꢉ[ꢃꢉꢉꢊꢄ&ꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢊꢄꢅꢉꢉꢉ  
ꢀꢃ  
ꢀꢊ  
UHVHUYHG  
UHVHUYHG  
UHVHUYHG  
ꢉ[ꢃꢉꢉꢊꢄꢃꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢊꢄꢉꢉꢉꢉ  
ꢉ[ꢂꢉꢉꢉꢄꢉꢉꢉꢉ  
ꢉꢏꢌꢄ*%  
ꢀꢂ  
ꢀꢀ  
ꢀꢉ  
UHVHUYHG  
UHVHUYHG  
ꢉ[ꢀ)))ꢄꢂꢉꢉꢉ  
ꢉ[ꢀ)))ꢄꢉꢉꢉꢉ  
UHVHUYHG  
UHVHUYHG  
ꢉ[ꢃꢉꢉꢂꢄ&ꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢂꢄꢅꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢂꢄꢃꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢂꢄꢉꢉꢉꢉ  
ꢅꢄN%ꢄERRWꢄ520  
UHVHUYHG  
DQDORJꢄFRPSDUDWRU  
ꢉ[ꢀꢃꢉꢉꢄꢉꢃꢉꢉ  
ꢉ[ꢀꢃꢉꢉꢄꢉꢉꢉꢉ  
308  
ꢀꢄN%ꢄ07%ꢄUHJLVWHUV  
UHVHUYHG  
UHVHUYHG  
UHVHUYHG  
ꢉ[ꢃꢉꢉꢀꢄ&ꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢀꢄꢅꢉꢉꢉ  
ꢉ[ꢀꢉꢉꢉꢄꢀꢉꢉꢉ  
ꢉ[ꢀꢉꢉꢉꢄꢉꢅꢉꢉ  
ꢉ[ꢀꢉꢉꢉꢄꢉꢃꢉꢉ  
ꢉ[ꢀꢉꢉꢉꢄꢉꢉꢉꢉ  
UHVHUYHG  
UHVHUYHG  
ꢉ[ꢃꢉꢉꢀꢄꢃꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢀꢄꢉꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢉꢄ&ꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢉꢄꢅꢉꢉꢉ  
ꢃꢄN%ꢄꢄ65$0ꢄꢐ/3&ꢅꢀꢂꢑ  
ꢂꢄN%ꢄꢄ65$0ꢄꢐ/3&ꢅꢀꢀꢑ  
ꢀꢄN%ꢄꢄ65$0ꢄꢐ/3&ꢅꢀꢉꢑ  
VZLWFKꢄPDWUL[  
ꢄVHOIꢄZDNHꢇXSꢄWLPHU  
057  
UHVHUYHG  
ꢉ[ꢃꢉꢉꢉꢄꢃꢉꢉꢉ  
ꢉ[ꢃꢉꢉꢉꢄꢉꢉꢉꢉ  
::'7  
ꢉ[ꢉꢉꢉꢉꢄꢃꢉꢉꢉ  
ꢉ[ꢉꢉꢉꢉꢄꢂꢉꢉꢉ  
ꢉ[ꢉꢉꢉꢉꢄꢀꢉꢉꢉ  
ꢉ[ꢉꢉꢉꢉꢄꢉꢉꢉꢉ  
ꢀꢆꢄN%ꢄRQꢇFKLSꢄIODVKꢄꢐ/3&ꢅꢀꢂꢑ  
ꢅꢄN%ꢄRQꢇFKLSꢄIODVKꢄꢐ/3&ꢅꢀꢀꢑ  
ꢃꢄN%ꢄRQꢇFKLSꢄIODVKꢄꢐ/3&ꢅꢀꢉꢑ  
ꢉ[ꢉꢉꢉꢉꢄꢉꢉ&ꢉ  
ꢉ[ꢉꢉꢉꢉꢄꢉꢉꢉꢉ  
DFWLYHꢄLQWHUUXSWꢄYHFWRUV  
ꢉꢄ*%  
DDDꢀꢁꢁꢂꢃꢄꢇ  
Fig 7. LPC81xM Memory map  
8.8 I/O configuration  
The IOCON block controls the configuration of the I/O pins. Each digital or mixed  
digital/analog pin with the PIO0_n designator (except the true open-drain pins PIO0_10  
and PIO0_11) in Table 4 can be configured as follows:  
Enable or disable the weak internal pull-up and pull-down resistors.  
Select a pseudo open-drain mode. The input cannot be pulled up above VDD. This pin  
is not 5 V tolerant when VDD = 0.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
15 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Program the input glitch filter with different filter constants using one of the IOCON  
divided clock signals (IOCONCLKCDIV, see Figure 10 “LPC81xM clock generation”).  
You can also bypass the glitch filter.  
Invert the input signal.  
Hysteresis can be enabled or disabled.  
For pins PIO0_10 and PIO0_11, select the I2C-mode and output driver for standard  
digital operation, for I2C standard and fast modes, or for I2C Fast mode+.  
On mixed digital/analog pins, enable the analog input mode. Enabling the analog  
mode disconnects the digital functionality.  
Remark: The functionality of each I/O pin is flexible and is determined entirely through the  
switch matrix. See Section 8.9 for details.  
8.8.1 Standard I/O pad configuration  
Figure 8 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver with configurable open-drain output  
Digital input: Weak pull-up resistor (PMOS device) enabled/disabled  
Digital input: Weak pull-down resistor (NMOS device) enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Digital input: Input glitch filter selectable on all pins  
Analog input  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
16 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
9
''  
9
''  
RSHQꢇGUDLQꢄHQDEOH  
RXWSXWꢄHQDEOH  
GDWDꢄRXWSXW  
VWURQJ  
SXOOꢇXS  
(6'  
SLQꢄFRQILJXUHG  
DVꢄGLJLWDOꢄRXWSXW  
GULYHU  
3,1  
VWURQJ  
SXOOꢇGRZQ  
(6'  
9
66  
9
''  
ZHDN  
SXOOꢇXS  
SXOOꢇXSꢄHQDEOH  
ZHDN  
SXOOꢇGRZQ  
UHSHDWHUꢄPRGH  
HQDEOH  
SLQꢄFRQILJXUHG  
DVꢄGLJLWDOꢄLQSXW  
SXOOꢇGRZQꢄHQDEOH  
GDWDꢄLQSXW  
352*5$00$%/(  
*/,7&+ꢄ),/7(5  
VHOHFWꢄGDWD  
LQYHUWHU  
VHOHFWꢄJOLWFK  
ILOWHU  
VHOHFWꢄDQDORJꢄLQSXW  
SLQꢄFRQILJXUHG  
DVꢄDQDORJꢄLQSXW  
DQDORJꢄLQSXW  
DDDꢀꢁꢁꢄꢆꢃꢃ  
Fig 8. Standard I/O pad configuration  
8.9 Switch Matrix (SWM)  
The switch matrix controls the function of each digital or mixed analog/digital pin in a  
highly flexible way by allowing to connect many functions like the USART, SPI, SCT, and  
I2C functions to any pin that is not power or ground. These functions are called movable  
functions and are listed in Table 5.  
Functions that need specialized pads like the oscillator pins XTALIN and XTALOUT can  
be enabled or disabled through the switch matrix. These functions are called fixed-pin  
functions and cannot move to other pins. The fixed-pin functions are listed in Table 4. If a  
fixed-pin function is disabled, any other movable function can be assigned to this pin.  
8.10 Fast General-Purpose parallel I/O (GPIO)  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
LPC81xM use accelerated GPIO functions:  
GPIO registers are located on the ARM Cortex M0+ IO bus for fastest possible  
single-cycle I/O timing, allowing GPIO toggling with rates of up to 15 MHz.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
17 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
An entire port value can be written in one instruction.  
Mask, set, and clear operations are supported for the entire port.  
All GPIO port pins are fixed-pin functions that are enabled or disabled on the pins by the  
switch matrix. Therefore each GPIO port pin is assigned to one specific pin and cannot be  
moved to another pin. Except for pins SWDIO/PIO0_2, SWCLK/PIO0_3, and  
RESET/PIO0_5, the switch matrix enables the GPIO port pin function by default.  
8.10.1 Features  
Bit level port registers allow a single instruction to set and clear any number of bits in  
one write operation.  
Direction control of individual bits.  
All I/O default to inputs with internal pull-up resistors enabled after reset - except for  
the I2C-bus true open-drain pins PIO0_2 and PIO0_3.  
Pull-up/pull-down configuration, repeater, and open-drain modes can be programmed  
through the IOCON block for each GPIO pin (see Figure 8).  
8.11 Pin interrupt/pattern match engine  
The pin interrupt block configures up to eight pins from all digital pins for providing eight  
external interrupts connected to the NVIC.  
The pattern match engine can be used, in conjunction with software, to create complex  
state machines based on pin inputs.  
Any digital pin, independently of the function selected through the switch matrix, can be  
configured through the SYSCON block as input to the pin interrupt or pattern match  
engine. The registers that control the pin interrupt or pattern match engine are located on  
the IO+ bus for fast single-cycle access.  
8.11.1 Features  
Pin interrupts  
Up to eight pins can be selected from all digital pins as edge- or level-sensitive  
interrupt requests. Each request creates a separate interrupt in the NVIC.  
Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.  
Level-sensitive interrupt pins can be HIGH- or LOW-active.  
Pin interrupts can wake up the LPC81xM from sleep mode, deep-sleep mode, and  
power-down mode.  
Pin interrupt pattern match engine  
Up to eight pins can be selected from all digital pins to contribute to a boolean  
expression. The boolean expression consists of specified levels and/or transitions  
on various combinations of these pins.  
Each minterm (product term) comprising the specified boolean expression can  
generate its own, dedicated interrupt request.  
Any occurrence of a pattern match can be programmed to also generate an RXEV  
notification to the ARM CPU. The RXEV signal can be connected to a pin.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
18 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
The pattern match engine does not facilitate wake-up.  
8.12 USART0/1/2  
Remark: USART0 and USART1 are available on all LPC800 parts. USART2 is available  
on parts LPC812M101JDH16 and LPC812M101JDH20 only.  
All USART functions are movable functions and are assigned to pins through the switch  
matrix.  
8.12.1 Features  
Maximum bit rates of 1.875 Mbit/s in asynchronous mode and 10 Mbit/s in  
synchronous mode for USART functions connected to all digital pins except PIO0_10  
and PIO0_11.  
7, 8, or 9 data bits and 1 or 2 stop bits  
Synchronous mode with master or slave operation. Includes data phase selection and  
continuous clock option.  
Multiprocessor/multidrop (9-bit) mode with software address compare. (RS-485  
possible with software address detection and transceiver direction control.)  
Parity generation and checking: odd, even, or none.  
One transmit and one receive data buffer.  
RTS/CTS for hardware signaling for automatic flow control. Software flow control can  
be performed using Delta CTS detect, Transmit Disable control, and any GPIO as an  
RTS output.  
Received data and status can optionally be read from a single register  
Break generation and detection.  
Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.  
Built-in Baud Rate Generator.  
A fractional rate divider is shared among all UARTs.  
Interrupts available for Receiver Ready, Transmitter Ready, Receiver Idle, change in  
receiver break detect, Framing error, Parity error, Overrun, Underrun, Delta CTS  
detect, and receiver sample noise detected.  
Separate data and flow control loopback modes for testing.  
Supported by on-chip ROM API.  
8.13 SPI0/1  
Remark: SPI0 is available on all LPC800 parts. SPI1 is available on parts  
LPC812M101JDH16 and LPC812M101JDH20 only.  
All SPI functions are movable functions and are assigned to pins through the switch  
matrix.  
8.13.1 Features  
Maximum data rates of 30 Mbit/s in master mode and 25 Mbit/s in slave mode for SPI  
functions connected to all digital pins except PIO0_10 and PIO0_11.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
19 of 76  
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Data frames of 1 to 16 bits supported directly. Larger frames supported by software.  
Master and slave operation.  
Data can be transmitted to a slave without the need to read incoming data. This can  
be useful while setting up an SPI memory.  
Control information can optionally be written along with data. This allows very  
versatile operation, including “any length” frames.  
One Slave Select input/output with selectable polarity and flexible usage.  
Remark: Texas Instruments SSI and National Microwire modes are not supported.  
8.14 I2C-bus interface  
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line  
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
The I2C-bus functions are movable functions and can be assigned through the switch  
matrix to any pin. However, only the true open-drain PIO0_10 and PIO0_11 provide the  
electrical characteristics to support the full I2C-bus specification (see Ref. 1).  
8.14.1 Features  
Supports standard and fast mode with data rates of up to 400 kbit/s.  
Independent Master, Slave, and Monitor functions.  
Supports both Multi-master and Multi-master with Slave functions.  
Multiple I2C slave addresses supported in hardware.  
One slave address can be selectively qualified with a bit mask or an address range in  
order to respond to multiple I2C bus addresses.  
10-bit addressing supported with software assist.  
Supports SMBus.  
Supported by on-chip ROM API.  
If the I2C functions are connected to the true open-drain pins (PIO0_10 and  
PIO0_11), the I2C supports the full I2C-bus specification:  
Fail-safe operation: When the power to an I2C-bus device is switched off, the SDA  
and SCL pins connected to the I2C-bus are floating and do not disturb the bus.  
Supports Fast-mode Plus with bit rates up to 1 Mbit/s.  
8.15 State-Configurable Timer/PWM (SCTimer/PWM)  
The state configurable timer (SCTimer/PWM or SCT) can perform basic 16-bit and 32-bit  
timer/counter functions with match outputs and external and internal capture inputs. In  
addition, the SCTimer/PWM can employ up to two different programmable states, which  
can change under the control of events, to provide complex timing patterns.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
20 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
All inputs and outputs of the SCTimer/PWM are movable functions and are assigned to  
pins through the switch matrix.  
8.15.1 Features  
Two 16-bit counters or one 32-bit counter.  
Counters clocked by bus clock or selected input.  
Up counters or up-down counters.  
State variable allows sequencing across multiple counter cycles.  
The following conditions define an event: a counter match condition, an input (or  
output) condition, a combination of a match and/or and input/output condition in a  
specified state, and the count direction.  
Events control outputs, interrupts, and the SCT states.  
Match register 0 can be used as an automatic limit.  
In bi-directional mode, events can be enabled based on the count direction.  
Match events can be held until another qualifying event occurs.  
Selected events can limit, halt, start, or stop a counter.  
Supports:  
4 inputs  
4 outputs  
5 match/capture registers  
6 events  
2 states  
8.16 Multi-Rate Timer (MRT)  
The Multi-Rate Timer (MRT) provides a repetitive interrupt timer with four channels. Each  
channel can be programmed with an independent time interval, and each channel  
operates independently from the other channels.  
8.16.1 Features  
31-bit interrupt timer  
Four channels independently counting down from individually set values  
Bus stall, repeat and one-shot interrupt modes  
8.17 Windowed WatchDog Timer (WWDT)  
The watchdog timer resets the controller if software fails to periodically service it within a  
programmable time window.  
8.17.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
21 of 76  
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK)is generated by a the dedicated watchdog oscillator  
(WDOSC).  
8.18 Self Wake-up Timer (WKT)  
The self wake-up timer is a 32-bit, loadable down-counter. Writing any non-zero value to  
this timer automatically enables the counter and launches a count-down sequence. When  
the counter is used as a wake-up timer, this write can occur just prior to entering a  
reduced power mode.  
8.18.1 Features  
32-bit loadable down-counter. Counter starts automatically when a count value is  
loaded. Time-out generates an interrupt/wake up request.  
The WKT resides in a separate, always-on power domain.  
The WKT supports two clock sources: the low-power oscillator and the IRC. The  
low-power oscillator is located in the always-on power domain, so it can be used as  
the clock source in Deep power-down mode.  
The WKT can be used for waking up the part from any reduced power mode,  
including Deep power-down mode, or for general-purpose timing.  
8.19 Analog comparator (ACMP)  
The analog comparator with selectable hysteresis can compare voltage levels on external  
pins and internal voltages.  
After power-up and after switching the input channels of the comparator, the output of the  
voltage ladder must be allowed to settle to its stable value before it can be used as a  
comparator reference input. Settling times are given in Table 22.  
The analog comparator output is a movable function and is assigned to a pin through the  
switch matrix. The comparator inputs and the voltage reference are enabled or disabled  
on pins PIO0_0 and PIO0_1 through the switch matrix.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
22 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
&203$5$725ꢄ$1$/2*ꢄ%/2&.  
&203$5$725ꢄ',*,7$/ꢄ%/2&.  
9
''  
9''&03  
ꢊꢂ  
FRPSDUDWRU  
OHYHOꢄ$&03B2  
V\QF  
HGJHꢄGHWHFW  
FRPSDUDWRU  
HGJHꢄ19,&  
LQWHUQDO  
YROWDJH  
UHIHUHQFH  
$&03B,>ꢂꢋꢀ@  
DDDꢀꢁꢁꢄꢂꢁꢇ  
Fig 9. Comparator block diagram  
8.19.1 Features  
Selectable 0 mV, 10 mV (5 mV), and 20 mV (10 mV), 40 mV (20 mV) input  
hysteresis.  
Two selectable external voltages (VDD or VDDCMP on pin PIO0_6); fully configurable  
on either positive or negative input channel.  
Internal voltage reference from band gap selectable on either positive or negative  
input channel.  
32-stage voltage ladder with the internal reference voltage selectable on either the  
positive or the negative input channel.  
Voltage ladder source voltage is selectable from an external pin or the main 3.3 V  
supply voltage rail.  
Voltage ladder can be separately powered down for applications only requiring the  
comparator function.  
Interrupt output is connected to NVIC.  
Comparator level output is connected to output pin ACMP_O.  
The comparator output can be routed internally to the SCT input through the switch  
matrix.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
23 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.20 Clocking and power control  
6<6&21  
$+%ꢄFORFNꢄꢉ  
ꢐFRUHꢈꢄV\VWHPꢒꢄ  
PDLQꢄFORFN  
V\VWHPꢄFORFN  
DOZD\VꢇRQꢑ  
&/2&.ꢄ',9,'(5  
6<6$+%&/.',9  
ꢀꢎ  
PHPRULHV  
DQGꢄSHULSKHUDOVꢈ  
SHULSKHUDOꢄFORFNV  
6<6$+%&/.&75/>ꢀꢋꢀꢎ@  
ꢐV\VWHPꢄFORFNꢄHQDEOHꢑ  
86$57ꢉ  
86$57ꢀ  
86$57ꢂ  
)5$&7,21$/ꢄ5$7(  
*(1(5$725  
&/2&.ꢄ',9,'(5  
8$57&/.',9  
,5&ꢄRVFLOODWRU  
,2&21ꢄ  
JOLWFKꢄILOWHU  
&/2&.ꢄ',9,'(5  
,2&21&/.',9  
ZDWFKGRJꢄRVFLOODWRU  
0$,1&/.6(/  
ꢐPDLQꢄFORFNꢄVHOHFWꢑ  
,5&ꢄRVFLOODWRU  
,5&ꢄRVFLOODWRU  
V\VWHPꢄRVFLOODWRU  
ZDWFKGRJꢄRVFLOODWRU  
&/2&.ꢄ',9,'(5  
&/.287',9  
&/.287ꢄSLQ  
;7$/,1  
;7$/287  
6<67(0  
26&,//$725  
6<67(0ꢄꢄ3//  
&/.,1  
&/.2876(/  
ꢐ&/.287ꢄFORFNꢄVHOHFWꢑ  
6<63//&/.6(/  
V\VWHPꢄ3//ꢄFORFNꢄVHOHFW  
::'7  
:.7  
ZDWFKGRJꢄRVFLOODWRU  
,5&ꢄRVFLOODWRU  
308  
:.7  
ORZꢇSRZHUꢄRVFLOODWRU  
DDDꢀꢁꢁꢂꢃꢄꢈ  
Fig 10. LPC81xM clock generation  
8.20.1 Crystal and internal oscillators  
The LPC81xM include four independent oscillators:  
1. The crystal oscillator (SysOsc) operating at frequencies between 1 MHz and 25 MHz.  
2. The internal RC Oscillator (IRC) with a fixed frequency of 12 MHz, trimmed to 1%  
accuracy.  
3. The internal low-power, low-frequency Oscillator with a nominal frequency of 10 kHz  
with 40% accuracy for use with the self wake-up timer.  
4. The dedicated Watchdog Oscillator (WDOsc) with a programmable nominal  
frequency between 9.4 kHz and 2.3 MHz with 40% accuracy.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
24 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Each oscillator, except the low-frequency oscillator, can be used for more than one  
purpose as required in a particular application.  
Following reset, the LPC81xM will operate from the IRC until switched by software. This  
allows systems to operate without any external crystal and the bootloader code to operate  
at a known frequency.  
See Figure 10 for an overview of the LPC81xM clock generation.  
8.20.1.1 Internal RC Oscillator (IRC)  
The IRC may be used as the clock source for the WWDT, and/or as the clock that drives  
the PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is  
trimmed to 1.5 % accuracy over the entire voltage and temperature range.  
The IRC can be used as a clock source for the CPU with or without using the PLL. The  
IRC frequency can be boosted to a higher frequency, up to the maximum CPU operating  
frequency, by the system PLL.  
Upon power-up or any chip reset, the LPC81xM use the IRC as the clock source.  
Software may later switch to one of the other available clock sources.  
8.20.1.2 Crystal Oscillator (SysOsc)  
The crystal oscillator can be used as the clock source for the CPU, with or without using  
the PLL.  
The SysOsc operates at frequencies of 1 MHz to 25 MHz. This frequency can be boosted  
to a higher frequency, up to the maximum CPU operating frequency, by the system PLL.  
8.20.1.3 Internal Low-power Oscillator and Watchdog Oscillator (WDOsc)  
The nominal frequency of the WDOsc is programmable between 9.4 kHz and 2.3 MHz.  
The frequency spread over silicon process variations is 40%.  
The WDOsc is a dedicated oscillator for the windowed WWDT.  
The internal low-power 10 kHz ( 40% accuracy) oscillator serves a the clock input to the  
WKT. This oscillator can be configured to run in all low power modes.  
8.20.2 Clock input  
An external clock source can be supplied on the selected CLKIN pin. When selecting a  
clock signal for the CLKIN pin, follow the specifications for digital I/O pins in Table 9 “Static  
characteristics” and Table 15 “Dynamic characteristics: I/O pins[1].  
An 1.8 V external clock source can be supplied on the XTALIN pins to the system  
oscillator limiting the voltage of this signal ((see Section 14.2).  
The maximum frequency for both clock signals is 25 MHz.  
8.20.3 System PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
its frequency range while the PLL is providing the desired output frequency. The output  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
25 of 76  
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the  
minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle.  
The PLL is turned off and bypassed following a chip reset and may be enabled by  
software. The program must configure and activate the PLL, wait for the PLL to lock, and  
then connect to the PLL as a clock source. The PLL settling time is nominally 100 s.  
8.20.4 Clock output  
The LPC81xM features a clock output function that routes the IRC, the SysOsc, the  
watchdog oscillator, or the main clock to the CLKOUT function. The CLKOUT function can  
be connected to any digital pin through the switch matrix.  
8.20.5 Wake-up process  
The LPC81xM begin operation at power-up by using the IRC as the clock source. This  
allows chip operation to resume quickly. If the SysOsc, the external clock source, or the  
PLL is needed by the application, software must enable these features and wait for them  
to stabilize before they are used as a clock source.  
8.20.6 Power control  
The LPC81xM supports the ARM Cortex-M0 Sleep mode. The CPU clock rate may also  
be controlled as needed by changing clock sources, reconfiguring PLL values, and/or  
altering the CPU clock divider value. This allows a trade-off of power versus processing  
speed based on application requirements. In addition, a register is provided for shutting  
down the clocks to individual on-chip peripherals, allowing to fine-tune power  
consumption by eliminating all dynamic power use in any peripherals that are not required  
for the application. Selected peripherals have their own clock divider which provides even  
better power control.  
8.20.6.1 Power profiles  
The power consumption in Active and Sleep modes can be optimized for the application  
through simple calls to the power profile API. The API is accessible through the on-chip  
ROM.  
The power configuration routine configures the LPC81xM for one of the following power  
modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profile includes routines to select the optimal PLL settings for a  
given system clock and PLL input clock.  
8.20.6.2 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
26 of 76  
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
8.20.6.3 Deep-sleep mode  
In Deep-sleep mode, the LPC81xM is in Sleep-mode and all peripheral clocks and all  
clock sources are off except for the IRC and watchdog oscillator or low-power oscillator if  
selected. The IRC output is disabled. In addition all analog blocks are shut down and the  
flash is in stand-by mode. In Deep-sleep mode, the application can keep the watchdog  
oscillator and the BOD circuit running for self-timed wake-up and BOD protection.  
The LPC81xM can wake up from Deep-sleep mode via a reset, digital pins selected as  
inputs to the pin interrupt block, a watchdog timer interrupt, or an interrupt from the  
USART (if the USART is configured in synchronous slave mode), the SPI, or the I2C  
blocks (in slave mode).  
Any interrupt used for waking up from Deep-sleep mode must be enabled in one of the  
SYSCON wake-up enable registers and the NVIC.  
Deep-sleep mode saves power and allows for short wake-up times.  
8.20.6.4 Power-down mode  
In Power-down mode, the LPC81xM is in Sleep-mode and all peripheral clocks and all  
clock sources are off except for watchdog oscillator or low-power oscillator if selected. In  
addition all analog blocks and the flash are shut down. In Power-down mode, the  
application can keep the watchdog oscillator and the BOD circuit running for self-timed  
wake-up and BOD protection.  
The LPC81xM can wake up from Power-down mode via a reset, digital pins selected as  
inputs to the pin interrupt block, a watchdog timer interrupt, or an interrupt from the  
USART (if the USART is configured in synchronous slave mode), the SPI, or the I2C  
blocks (in slave mode).  
Any interrupt used for waking up from Power-down mode must be enabled in one of the  
SYSCON wake-up enable registers and the NVIC.  
Power-down mode reduces power consumption compared to Deep-sleep mode at the  
expense of longer wake-up times.  
8.20.6.5 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip except for the WAKEUP  
pin and the self wake-up timer if enabled. Four general-purpose registers are available to  
store information during Deep power-down mode. The LPC81xM can wake up from Deep  
power-down mode via the WAKEUP pin, or without an external signal by using the  
time-out of the self wake-up timer (see Section 8.18).  
The LPC81xM can be prevented from entering Deep power-down mode by setting a lock  
bit in the PMU block. Locking out Deep power-down mode enables the application to keep  
the watchdog timer or the BOD running at all times.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
27 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
When entering Deep power-down mode, an external pull-up resistor is required on the  
WAKEUP pin to hold it HIGH. Pull the RESET pin HIGH to prevent it from floating while in  
Deep power-down mode.  
8.21 System control  
8.21.1 Reset  
Reset has four sources on the LPC81xM: the RESET pin, the Watchdog reset, power-on  
reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip reset by any source, once the operating voltage attains  
a usable level, starts the IRC and initializes the flash controller.  
A LOW-going pulse as short as 50 ns resets the part.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
In Deep power-down mode, an external pull-up resistor is required on the RESET pin.  
9
''  
9
''  
9
''  
5
SX  
(6'  
ꢂꢉꢄQVꢄ5&  
*/,7&+ꢄ),/7(5  
UHVHW  
3,1  
(6'  
9
66  
DDDꢀꢁꢁꢄꢅꢉꢆ  
Fig 11. Reset pad configuration  
8.21.2 Brownout detection  
The LPC81xM includes up to four levels for monitoring the voltage on the VDD pin. If this  
voltage falls below one of the selected levels, the BOD asserts an interrupt signal to the  
NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC  
to cause a CPU interrupt. Alternatively, software can monitor the signal by reading a  
dedicated status register. Four threshold levels can be selected to cause a forced reset of  
the chip.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
28 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.21.3 Code security (Code Read Protection - CRP)  
CRP provides different levels of security in the system so that access to the on-chip flash  
and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be  
restricted. Programming a specific pattern into a dedicated flash location invokes CRP.  
IAP commands are not affected by the CRP.  
In addition, ISP entry via the ISP entry pin can be disabled without enabling CRP. For  
details, see the LPC800 user manual.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors cannot  
be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected, fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using the  
ISP entry pin as well. If necessary, the application must provide a flash update  
mechanism using IAP calls or using a call to the reinvoke ISP command to enable  
flash update via the USART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of the ISP entry pin for valid user code can  
be disabled. For details, see the LPC800 user manual.  
8.21.4 APB interface  
The APB peripherals are located on one APB bus.  
8.21.5 AHBLite  
The AHBLite connects the CPU bus of the ARM Cortex-M0+ to the flash memory, the  
main static RAM, the CRC, and the ROM.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
29 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.22 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0+. Serial wire debug functions are  
supported in addition to a standard JTAG boundary scan. The ARM Cortex-M0+ is  
configured to support up to four breakpoints and two watch points.  
The Micro Trace Buffer is implemented on the LPC81xM.  
The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM  
SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the LPC81xM  
is in reset. The JTAG boundary scan pins are selected by hardware when the part is in  
boundary scan mode on pins PIO0_0 to PIO0_3 (see Table 4).  
To perform boundary scan testing, follow these steps:  
1. Erase any user code residing in flash.  
2. Power up the part with the RESET pin pulled HIGH externally.  
3. Wait for at least 250 s.  
4. Pull the RESET pin LOW externally.  
5. Perform boundary scan operations.  
6. Once the boundary scan operations are completed, assert the TRST pin to enable the  
SWD debug mode, and release the RESET pin (pull HIGH).  
Remark: The JTAG interface cannot be used for debug purposes.  
9
''  
/3&ꢃꢁꢁ  
975()  
6:',2  
6:&/.  
Q5(6(7  
*1'  
6:',2  
IURPꢄ6:'  
FRQQHFWRU  
6:&/.  
5(6(7  
3,2ꢉBꢀꢂꢄ  
,63ꢄHQWU\  
DDDꢀꢁꢁꢅꢁꢇꢅ  
Fig 12. Connecting the SWD pins to a standard SWD connector  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
30 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
9. Limiting values  
Table 7.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
Max  
+4.6  
+5.5  
+5.5  
Unit  
V
[2]  
[3]  
[4]  
VDD  
VI  
supply voltage (core and external rail)  
input voltage  
5 V tolerant I/O pins; VDD 1.8 V  
V
5 V tolerant open-drain pins PIO0_10  
and PIO0_11  
V
[5]  
3 V tolerant I/O pin PIO0_6  
0.5  
0.5  
+3.6  
4.6  
V
V
[6]  
[7]  
VIA  
analog input voltage  
[2]  
Vi(xtal)  
IDD  
crystal input voltage  
supply current  
0.5  
+2.5  
100  
100  
100  
V
per supply pin  
-
-
-
mA  
mA  
mA  
ISS  
ground current  
per ground pin  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 C  
Ilatch  
I/O latch-up current  
[8]  
[9]  
Tstg  
storage temperature  
non-operating  
65  
+150  
150  
1.5  
C  
C  
W
Tj(max)  
maximum junction temperature  
-
-
Ptot(pack) total power dissipation (per package)  
based on package heat transfer, not  
device power consumption  
VESD electrostatic discharge voltage  
human body model; all pins  
-
-
5500  
1200  
V
V
charged device model; TSSOP20 and  
SOP20 packages  
charged device model; TSSOP16  
package  
-
-
1000  
800  
V
V
charged device model; XSON16  
package  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
c) The limiting values are stress ratings only. Operating the part at these values is not recommended and proper operation is not  
guaranteed. The conditions for functional operation are specified in Table 9.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 9) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] Including voltage on outputs in tri-state mode. Does not apply to pin PIO0_6.  
[4] VDD present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD is powered down.  
[5] VDD present or not present.  
[6] If the comparator is configured with the common mode input VIC = VDD, the other comparator input can be up to 0.2 V above or below  
VDD without affecting the hysteresis range of the comparator function.  
[7] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.  
[8] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined  
based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details.  
[9] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
31 of 76  
 
 
 
 
 
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
10. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
Tj = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 8.  
Thermal resistance  
Symbol Parameter  
DIP8  
Conditions  
Max/Min  
Unit  
Rth(j-a)  
thermal resistance from  
JEDEC (4.5 in 4 in); still air  
60 ± 15 % C/W  
junction to ambient  
Single-layer (4.5 in 3 in); still air 81 ± 15 % C/W  
38 ± 15 % C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
TSSOP16  
Rth(j-a)  
thermal resistance from  
junction to ambient  
JEDEC (4.5 in 4 in); still air  
133 ± 15 % C/W  
Single-layer (4.5 in 3 in); still air 182 ± 15 % C/W  
33 ± 15 % C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
TSSOP20  
Rth(j-a)  
thermal resistance from  
junction to ambient  
JEDEC (4.5 in 4 in); still air  
110 ± 15 % C/W  
Single-layer (4.5 in 3 in); still air 153 ± 15 % C/W  
23 ± 15 % C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
SO20  
Rth(j-a)  
thermal resistance from  
junction to ambient  
JEDEC (4.5 in 4 in); still air  
87 ± 15 % C/W  
Single-layer (4.5 in 3 in); still air 112 ± 15 % C/W  
50 ± 15 % C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
XSON16  
Rth(j-a)  
thermal resistance from  
junction to ambient  
JEDEC (4.5 in 4 in); still air  
92 ± 15 % C/W  
Single-layer (4.5 in 3 in); still air 180 ± 15 % C/W  
27 ± 15 % C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
32 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11. Static characteristics  
Table 9.  
Static characteristics  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
VDD  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
supply voltage (core  
and external rail)  
1.8  
3.3  
3.6  
V
IDD  
supply current  
Active mode; code  
while(1){}  
executed from flash;  
[2][3][4][5]  
system clock = 12 MHz; default  
mode; VDD = 3.3 V  
-
-
-
-
-
1.4  
1.0  
2.2  
3.3  
3
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
[2][3][4][5]  
[6]  
system clock = 12 MHz;  
low-current mode; VDD = 3.3 V  
[2][4][5][6]  
[7]  
system clock = 24 MHz;  
low-current mode; VDD = 3.3 V  
[2][4][5][8]  
system clock = 30 MHz; default  
mode; VDD = 3.3 V  
[2][4][5][6]  
[8]  
system clock = 30 MHz;  
low-current mode; VDD = 3.3 V  
Sleep mode  
[2][3][4][5]  
system clock = 12 MHz; default  
mode; VDD = 3.3 V  
-
-
-
-
-
0.8  
0.7  
1.3  
1.8  
1.7  
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
[2][3][4][5]  
[6]  
system clock = 12 MHz;  
low-current mode; VDD = 3.3 V  
[2][4][5][6]  
[7]  
system clock = 24 MHz;  
low-current mode; VDD = 3.3 V  
[2][4][5][8]  
system clock = 30 MHz; default  
mode; VDD = 3.3 V  
[2][4][5][6]  
[8]  
system clock = 30 MHz;  
low-current mode; VDD = 3.3 V  
Deep-sleep mode  
[2][9]  
[2][9]  
V
DD = 3.3 V, Tamb = 25 °C  
-
-
150  
-
300  
400  
A  
A  
VDD = 3.3 V, Tamb = 105 °C  
Power-down mode  
[2][9]  
[2][9]  
VDD = 3.3 V, Tamb = 25 °C  
VDD = 3.3 V, Tamb = 105 °C  
-
-
0.9  
-
5
A  
A  
40  
Deep power-down mode;  
Low-power oscillator and self  
wakeup timer (WKT) disabled  
[10]  
[10]  
VDD = 3.3 V, Tamb = 25 °C  
VDD = 3.3 V, Tamb = 105 °C  
-
-
-
170  
1000  
nA  
A  
A  
-
4
-
Deep power-down mode;  
1
Low-power oscillator and self  
wakeup timer (WKT) enabled  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
33 of 76  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 9.  
Static characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Standard port pins configured as digital pins, RESET; see Figure 13  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10  
10  
10  
5.0  
3.6  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down  
resistor disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
[11]  
[12]  
input voltage  
VDD 1.8 V; 5 V tolerant pins  
0
0
except PIO0_6  
VDD 1.8 V; on 3 V tolerant pin  
-
PIO0_6  
VDD = 0 V  
0
-
-
-
3.6  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3VDD  
V
Vhys  
VOH  
0.4  
-
V
HIGH-level output  
voltage  
2.5 V VDD 3.6 V; IOH = 4 mA  
1.8 V VDD < 2.5 V; IOH = 3 mA  
2.5 V VDD 3.6 V; IOL = 4 mA  
1.8 V VDD < 2.5 V; IOL = 3 mA  
VOH = VDD 0.4 V;  
VDD 0.4 -  
VDD 0.4 -  
-
V
-
V
VOL  
LOW-level output  
voltage  
-
-
-
-
0.4  
0.4  
-
V
-
V
IOH  
HIGH-level output  
current  
4
mA  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
3
4
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
3
-
-
-
-
mA  
mA  
[13]  
[13]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
LOW-level short-circuit VOL = VDD  
output current  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
15  
50  
50  
150  
85  
A  
A  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
0
50  
0
85  
0
A  
A  
VDD < VI < 5 V  
High-drive output pins configured as digital pins (PIO0_2, PIO0_3, PIO0_7, PIO0_12, PIO0_13); see Figure 13  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
-
-
0.5  
0.5  
0.5  
10  
10  
10  
nA  
nA  
nA  
IIH  
IOZ  
HIGH-level input  
current  
VI = VDD; on-chip pull-down  
resistor disabled  
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
34 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 9.  
Static characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[11]  
[12]  
VI  
input voltage  
VDD 1.8 V  
0
-
5.0  
V
VDD = 0 V  
0
-
-
-
3.6  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3VDD  
V
Vhys  
VOH  
0.4  
-
V
HIGH-level output  
voltage  
2.5 V VDD 3.6 V; IOH = 20 mA  
1.8 V VDD < 2.5 V; IOH = 12 mA  
2.5 V VDD 3.6 V; IOL = 4 mA  
1.8 V VDD < 2.5 V; IOL = 3 mA  
VDD 0.4 -  
VDD 0.4 -  
-
V
-
V
VOL  
LOW-level output  
voltage  
-
-
-
-
0.4  
0.4  
-
V
-
V
IOH  
HIGH-level output  
current  
VOH = VDD 0.4 V;  
2.5 V VDD 3.6 V  
20  
mA  
1.8 V VDD < 2.5 V  
VOL = 0.4 V  
12  
4
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
3
-
-
-
-
mA  
mA  
[13]  
IOLS  
LOW-level short-circuit VOL = VDD  
output current  
50  
[14]  
[14]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V  
10  
15  
50  
50  
150  
85  
A  
A  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
0
50  
0
85  
0
A  
A  
VDD < VI < 5 V  
I2C-bus pins (PIO0_10 and PIO0_11); see Figure 13  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
Vhys  
IOL  
-
0.05VDD  
-
-
-
V
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as standard mode pins  
3.5  
mA  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
3
-
-
-
-
IOL  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as Fast-mode Plus  
pins  
20  
mA  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
VI = VDD  
16  
-
-
-
[15]  
ILI  
input leakage current  
2
4
A  
A  
VI = 5 V  
-
10  
22  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
35 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 9.  
Static characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Oscillator input pins (PIO0_8 and PIO0_9)  
Vi(xtal)  
crystal input voltage  
crystal output voltage  
0.5  
0.5  
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.  
[2] IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[3] IRC enabled; system oscillator disabled; system PLL disabled.  
[4] BOD disabled.  
[5] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks to USART, CLKOUT, and IOCON disabled in system  
configuration block.  
[6] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.  
[7] IRC enabled; system oscillator disabled; system PLL enabled.  
[8] IRC disabled; system oscillator enabled; system PLL enabled.  
[9] All oscillators and analog blocks turned off in the PDSLEEPCFG register; PDSLEEPCFG = 0x0000 18FF.  
[10] WAKEUP pin pulled HIGH externally.  
[11] Including voltage on outputs in tri-state mode.  
[12] 3-state outputs go into tri-state mode in Deep power-down mode.  
[13] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[14] Pull-up and pull-down currents are measured across the weak internal pull-up/pull-down resistors. See Figure 8.  
[15] To VSS  
.
/3&ꢃꢁꢁ  
9
''  
,
,
2/  
SG  
SLQꢄ3,2ꢉBQ  
$
,
2+  
,SX  
SLQꢄ3,2ꢉBQ  
$
DDDꢇꢉꢉꢃꢆꢃꢉ  
Fig 13. Pin input/output current measurement  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
36 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.1 Power consumption  
Power measurements in Active, Sleep, Deep-sleep,and Power-down modes were  
performed under the following conditions:  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIO DIR register.  
Write 1 to the GPIO CLR register to drive the outputs LOW.  
DDDꢀꢁꢁꢃꢈꢇꢄ  
,
''  
ꢐP$ꢑ  
ꢂꢏꢃ  
ꢀꢏꢅ  
ꢀꢏꢂ  
ꢉꢏꢆ  
ꢊꢉꢄ0+]  
ꢂꢃꢄ0+]  
ꢀꢂꢄ0+]  
ꢆꢄ0+]  
ꢃꢄ0+]  
ꢊꢄ0+]  
ꢂꢄ0+]  
ꢀꢄ0+]  
ꢀꢏꢅ  
ꢂꢏꢀꢆ  
ꢂꢏꢌꢂ  
ꢂꢏꢅꢅ  
ꢊꢏꢂꢃ  
ꢊꢏꢆ  
9
''  
ꢄꢐ9ꢑ  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL =0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz - 6 MHz: IRC enabled; PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz: IRC enabled; PLL enabled.  
30 MHz: IRC disabled; SYSOSC enabled; PLL enabled.  
Fig 14. Active mode: Typical supply current IDD versus supply voltage VDD  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
37 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
DDDꢀꢁꢁꢃꢈꢇꢆ  
,,  
''  
ꢐP$ꢑ  
ꢂꢏꢃ  
ꢀꢏꢅ  
ꢀꢏꢂ  
ꢉꢏꢆ  
ꢊꢉꢄ0+]  
ꢂꢃꢄ0+]  
ꢀꢂꢄ0+]  
ꢆꢄ0+]  
ꢃꢄ0+]  
ꢊꢄ0+]  
ꢂꢄ0+]  
ꢀꢄ0+]  
ꢇꢃꢉ  
ꢇꢀꢀ  
ꢀꢅ  
ꢃꢍ  
ꢍꢆ  
ꢀꢉꢌ  
WHPSHUDWXUHꢄꢐƒ&ꢑ  
Conditions: VDD = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz - 6 MHz: IRC enabled; PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz: IRC enabled; PLL enabled.  
30 MHz: IRC disabled; SYSOSC enabled; PLL enabled.  
Fig 15. Active mode: Typical supply current IDD versus temperature  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
38 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
DDDꢀꢁꢁꢃꢈꢇꢂ  
,,  
''  
ꢐP$ꢑ  
ꢀꢏꢆ  
ꢀꢏꢂ  
ꢉꢏꢅ  
ꢉꢏꢃ  
ꢊꢉꢄ0+]  
ꢂꢃꢄ0+]  
ꢀꢂꢄ0+]  
ꢆꢄ0+]  
ꢃꢄ0+]  
ꢊꢄ0+]  
ꢂꢄ0+]  
ꢀꢄ0+]  
ꢇꢃꢉ  
ꢇꢀꢀ  
ꢀꢅ  
ꢃꢍ  
ꢍꢆ  
ꢀꢉꢌ  
WHPSHUDWXUHꢄꢐƒ&ꢑ  
Conditions: VDD = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz - 6 MHz: IRC enabled; PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz: IRC enabled; PLL enabled.  
30 MHz: IRC disabled; SYSOSC enabled; PLL enabled.  
Fig 16. Sleep mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
DDDꢀꢁꢁꢃꢈꢅꢄ  
ꢂꢉꢉ  
ꢊꢏꢆꢄ9  
ꢊꢏꢉꢄ9  
ꢀꢏꢅꢄ9  
,''  
''  
ꢐȝ$ꢑ  
ꢀꢅꢉ  
ꢀꢆꢉ  
ꢀꢃꢉ  
ꢀꢂꢉ  
ꢀꢉꢉ  
ꢇꢃꢉ  
ꢇꢀꢌ  
ꢀꢉ  
ꢊꢌ  
ꢆꢉ  
ꢅꢌ  
WHPSHUDWXUHꢄꢐƒꢄ&ꢑ  
ꢀꢀꢉ  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register  
(PDSLEEPCFG = 0x0000 18FF).  
Fig 17. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
39 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
DDDꢀꢁꢁꢃꢈꢅꢆ  
ꢊꢌ  
ꢂꢅ  
ꢂꢀ  
ꢀꢃ  
,''  
''  
ꢐȝ$ꢑ  
ꢊꢏꢆꢄ9  
ꢊꢏꢊꢄ9  
ꢀꢏꢅꢄ9  
ꢇꢃꢉ  
ꢇꢀꢌ  
ꢀꢉ  
ꢊꢌ  
ꢆꢉ  
ꢅꢌ  
ꢀꢀꢉ  
WHPSHUDWXUHꢄꢐƒꢄ&ꢑ  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register  
(PDSLEEPCFG = 0x0000 18FF).  
Fig 18. Power-down mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
DDDꢀꢁꢁꢃꢈꢅꢊ  
,''  
''  
ꢐȝ$ꢑ  
ꢂꢏꢌ  
ꢊꢏꢆꢄ9  
ꢊꢏꢉꢄ9  
ꢀꢏꢅꢄ9  
ꢀꢏꢌ  
ꢉꢏꢌ  
ꢇꢃꢉ  
ꢇꢀꢌ  
ꢀꢉ  
ꢊꢌ  
ꢆꢉ  
ꢅꢌ  
WHPSHUDWXUHꢄꢐƒꢄ&ꢑ  
ꢀꢀꢉ  
WKT not running.  
Fig 19. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
40 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.2 CoreMark data  
DDDꢀꢁꢁꢃꢈꢇꢅ  
,''  
''  
ꢐP$ꢑ  
'HIDXOW  
&38ꢁHIILFLHQF\  
/RZꢇFXUUHQW  
ꢀꢂ  
ꢀꢆ  
ꢂꢉ  
ꢂꢃ  
V\VWHPꢄFORFNꢄIUHTXHQF\ꢄꢐ0+]ꢑ  
Conditions: VDD = 3.3 V; Tamb = 25 C; active mode; all peripherals except one UART and the SCT  
disabled in the SYSAHBCLKCTRL register; system clock derived from the IRC; system oscillator  
disabled; internal pull-up resistors enabled; BOD disabled. Measured with Keil uVision v.4.7.  
Fig 20. Active mode: CoreMark power consumption IDD  
DDDꢀꢁꢁꢃꢈꢇꢃ  
ꢂꢏꢌ  
&0  
ꢐꢐLWHUDWLRQVꢁVꢑꢁ0+]ꢑꢑ  
&&3388HHIIILFLHQF\  
ꢀꢏꢌ  
'HIDXOW  
/RZꢇFXUUHQW  
ꢉꢏꢌ  
ꢀꢂ  
ꢀꢆ  
ꢂꢉ  
ꢂꢃ  
V\VWHPꢄFORFNꢄIUHTXHQF\ꢄꢐ0+]ꢑ  
Conditions: VDD = 3.3 V; active mode; all peripherals except one UART and the SCT disabled in  
the SYSAHBCLKCTRL register; internal pull-up resistors enabled; BOD disabled. Measured with  
Keil uVision v.4.7.  
Fig 21. CoreMark score  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
41 of 76  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.3 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless  
noted otherwise, the system oscillator and PLL are running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz and 30 MHz.  
Table 10. Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in mA  
Notes  
n/a  
12 MHz  
30 MHz  
IRC  
0.21  
-
-
System oscillator running; PLL off; independent  
of main clock frequency.  
System oscillator at 12 MHz  
0.28  
-
-
-
-
IRC running; PLL off; independent of main clock  
frequency.  
Watchdog oscillator at  
500 kHz/2  
0.002  
System oscillator running; PLL off; independent  
of main clock frequency.  
BOD  
0.05  
-
-
Independent of main clock frequency.  
-
Main PLL  
CLKOUT  
-
-
0.31  
0.06  
-
0.09  
Main clock divided by 4 in the CLKOUTDIV  
register.  
ROM  
I2C  
-
-
-
0.08  
0.06  
0.09  
0.19  
0.15  
0.23  
-
-
GPIO + pin interrupt/pattern  
match  
GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
SWM  
-
-
-
-
-
-
-
-
-
-
-
0.03  
0.17  
0.01  
0.09  
0.05  
0.06  
0.03  
0.04  
0.04  
0.04  
0.04  
0.07  
0.42  
0.03  
0.21  
0.13  
0.14  
0.07  
0.10  
0.11  
0.10  
0.10  
-
-
-
-
-
-
-
-
-
-
SCT  
WKT  
MRT  
SPI0  
SPI1  
CRC  
USART0  
USART1  
USART2  
WWDT  
Main clock selected as clock source for the  
WDT.  
IOCON  
-
-
0.03  
0.04  
0.08  
0.09  
-
-
Comparator  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
42 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.4 Electrical pin characteristics  
DDDꢀꢁꢁꢃꢇꢅꢁ  
ꢊꢏꢆ  
ꢇꢃꢉꢄ¡&&ꢊꢏꢊꢄ9Y  
ꢂꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢅꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢀꢉꢌꢄ¡&&ꢊꢏꢊꢄ99  
92+  
2+  
ꢐP$ꢑ  
ꢊꢏꢂ  
ꢂꢏꢅ  
ꢂꢏꢃ  
ꢇꢃꢉꢄ¡&&ꢊꢏꢊꢄ9Y  
ꢂꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢅꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢀꢉꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢀꢏꢆ  
ꢀꢏꢂ  
ꢀꢉ  
ꢂꢉ  
ꢊꢉ  
ꢃꢉ  
ꢌꢉ  
ꢆꢉ  
ꢍꢉ  
ꢄꢐP$ꢑ  
ꢅꢉ  
,
2+  
Conditions: VDD = 3.3 V and VDD = 1.8 V; on pins PIO0_2, PIO0_3, PIO0_7, PIO0_12, PIO0_13.  
Fig 22. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level  
output current IOH  
DDDꢀꢁꢁꢃꢇꢂꢈ  
ꢇꢃꢉꢄƒ"&&ꢁꢁꢊꢏꢏꢊꢄꢄ99  
ꢆꢉ  
,2/  
2/  
ꢐP$ꢑ  
ꢂꢌꢄƒ"&&ꢁꢁꢊꢏꢏꢊꢄꢄ99  
ꢅꢌꢄƒ"&&ꢁꢁꢄꢄꢊꢏꢏꢊꢄꢄ99  
ꢀꢉꢌꢄƒ"&&ꢁꢁꢄꢄꢊꢏꢏꢊꢄꢄ99  
ꢇꢃꢉꢄƒ"&&ꢁꢁꢀꢏꢏꢅꢄꢄ99  
ꢂꢌꢄƒ"&&ꢁꢁꢀꢏꢏꢅꢄꢄ99  
ꢅꢌꢄƒ"&&ꢁꢁꢀꢏꢏꢅꢄꢄ99  
ꢀꢉꢌꢄƒ"&&ꢁꢁꢄꢄꢀꢏꢏꢅꢄꢄ99  
ꢃꢌ  
ꢊꢉ  
ꢀꢌ  
ꢉꢏꢀ  
ꢉꢏꢂ  
ꢉꢏꢊ  
ꢉꢏꢃ  
ꢉꢏꢌ  
ꢉꢏꢆ  
9
ꢄꢐ9ꢑ  
2/  
Conditions: VDD = 3.3 V and VDD = 1.8 V; on pins PIO0_10 and PIO0_11.  
Fig 23. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus  
LOW-level output voltage VOL  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
43 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
DDDꢀꢁꢁꢃꢇꢂꢇ  
ꢀꢌ  
ꢀꢂ  
ꢇꢃꢉꢄ¡&&ꢊꢏꢊꢄ99  
ꢂꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢅꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢀꢉꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢇꢃꢉꢄ¡&&ꢊꢏꢊꢄ99  
ꢂꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢅꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢀꢉꢌꢄ¡&&ꢊꢏꢊꢄ99  
,2/  
2/  
ꢐP$ꢑ  
ꢉꢏꢀ  
ꢉꢏꢂ  
ꢉꢏꢊ  
ꢉꢏꢃ  
ꢉꢏꢌ  
ꢉꢏꢆ  
9
ꢄꢐ9ꢑ  
2/  
Conditions: VDD = 3.3 V and VDD = 1.8 V; standard port pins and high-drive pins PIO0_2, PIO0_3,  
PIO0_7, PIO0_12, PIO0_13.  
Fig 24. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
DDDꢀꢁꢁꢃꢃꢈꢆ  
ꢊꢏꢆ  
92+  
2+  
ꢐ9ꢑ  
ꢊꢏꢂ  
9
ꢄ ꢄꢊꢏꢊꢄ9ꢒ  
''  
7ꢄ ꢄꢄꢇꢃꢉꢄƒ&  
7ꢄ ꢄꢂꢌꢄƒ&  
7ꢄ ꢄꢅꢌꢄƒ&  
7ꢄ ꢄꢀꢉꢌꢄƒ&  
ꢂꢏꢅ  
ꢂꢏꢃ  
9
ꢄ ꢄꢀꢏꢅꢄ9ꢒ  
''  
7ꢄ ꢄꢄꢇꢃꢉꢄƒ&  
7ꢄ ꢄꢂꢌꢄƒ&  
7ꢄ ꢄꢅꢌꢄƒ&  
7ꢄ ꢄꢀꢉꢌꢄƒ&  
ꢀꢏꢆ  
ꢀꢏꢂ  
ꢀꢂ  
ꢀꢌ  
ꢀꢅ  
ꢂꢀ  
,
ꢄꢐP$ꢑ  
2+  
Conditions: VDD = 3.3 V and VDD = 1.8 V; standard port pins.  
Fig 25. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
44 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
DDDꢀꢁꢁꢃꢇꢇꢅ  
ꢉꢏꢉꢀ  
,SX  
SX  
9
ꢄ ꢄꢀꢏꢅꢄ9  
''  
ꢐP$ꢑ  
ꢀꢉꢌꢄꢄ¡&&  
ꢎꢉꢄꢄ¡&&  
ꢅꢌꢄꢄ¡&&  
ꢂꢌꢄꢄ¡&&  
ꢇꢃꢉꢄꢄ¡&&  
ꢀꢉꢌꢄ¡&&  
ꢎꢉꢄꢄ¡&&  
ꢅꢌꢄꢄ¡&&  
ꢂꢌꢄꢄ¡&&  
ꢇꢃꢉꢄ¡&&  
ꢇꢉꢏꢉꢂ  
ꢇꢉꢏꢉꢊ  
ꢇꢉꢏꢉꢃ  
ꢇꢉꢏꢉꢆ  
ꢇꢉꢏꢉꢍ  
9
ꢄ ꢄꢊꢏꢊꢄ9  
''  
9 ꢄꢐ9ꢑ  
,
Conditions: VDD = 3.3 V and VDD = 1.8 V; standard port pins.  
Fig 26. Typical pull-up current Ipu versus input voltage VI  
DDDꢀꢁꢁꢃꢇꢅꢉ  
ꢉꢏꢉꢅ  
ꢇꢃꢉꢄ¡&&ꢊꢏꢊꢄ99  
ꢂꢌꢄ¡&&ꢊꢏꢊꢄ99  
ꢅꢌꢄꢄ¡&&ꢊꢏꢊꢄ99  
ꢀꢉꢌꢄꢄ¡&&ꢊꢏꢊꢄ99  
,3'  
3'  
ꢐP$ꢑ  
ꢉꢏꢉꢆ  
ꢉꢏꢉꢃ  
ꢉꢏꢉꢂ  
ꢇꢃꢉꢄꢄ¡&&ꢀꢏꢅꢄ99  
ꢂꢌꢄꢄꢄ¡&&ꢀꢏꢅꢄ99  
ꢅꢌꢄꢄꢄ¡&&ꢀꢏꢅꢄ99  
ꢀꢉꢌꢄꢄꢄ¡&&ꢀꢏꢅꢄ99  
9 ꢄꢐ9ꢑ  
,
Conditions: VDD = 3.3 V and VDD = 1.8 V; standard port pins.  
Fig 27. Typical pull-down current Ipd versus input voltage VI  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
45 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12. Dynamic characteristics  
12.1 Flash memory  
Table 11. Flash characteristics  
amb = 40 C to +105 C. Based on JEDEC NVM qualification. Failure rate < 10 ppm for parts as  
specified below.  
T
Symbol  
Nendu  
tret  
Parameter  
Conditions  
Min  
10000  
10  
Typ  
100000  
20  
Max  
Unit  
[1]  
endurance  
-
cycles  
years  
years  
ms  
retention time  
powered  
-
unpowered  
20  
40  
-
ter  
erase time  
page or multiple  
consecutivepages,  
sector or multiple  
consecutive  
95  
100  
105  
sectors  
[2]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 64 bytes to the flash. Tamb +85 C. Flash programming with IAP  
calls (see LPC800 user manual).  
12.2 External clock for the oscillator in slave mode  
Remark: The input voltage on the XTAL1/2 pins must be 1.95 V (see Table 9). For  
connecting the oscillator to the XTAL pins, also see Section 14.2.  
Table 12. Dynamic characteristic: external clock (XTALIN inputs)  
Tamb = 40 C to +105 C; VDD over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply  
voltages.  
W
&+&;  
W
W
W
&/&+  
&+&/  
&/&;  
7
F\ꢐFONꢑ  
DDDꢀꢁꢁꢄꢅꢄꢇ  
Fig 28. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
46 of 76  
 
 
 
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12.3 Internal oscillators  
Table 13. Dynamic characteristics: IRC  
Tamb = 40 C to +105 C; 2.7 V VDD 3.6 V[1]  
.
Symbol  
Parameter  
Conditions  
Min  
Typ[2] Max  
12 12.18  
Unit  
fosc(RC)  
internal RC oscillator  
frequency  
Tamb = 40 C to  
+105 C  
11.82  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply  
voltages.  
DDDꢀꢁꢁꢃꢈꢃꢂ  
ꢀꢂꢏꢀꢂ  
I
ꢐ0+]ꢑ  
ꢀꢂꢏꢉꢅ  
ꢊꢏꢆꢄ9  
ꢊꢏꢊꢄ9  
ꢊꢏꢉꢄ9  
ꢂꢏꢍꢄ9  
ꢂꢏꢃꢄ9  
ꢂꢏꢀꢄ9  
ꢀꢏꢅꢄ9  
ꢀꢂꢏꢉꢃ  
ꢀꢂ  
ꢀꢀꢏꢎꢆ  
ꢀꢀꢏꢎꢂ  
ꢀꢀꢏꢅꢅ  
ꢇꢃꢉ  
ꢇꢀꢉ  
ꢂꢉ  
ꢌꢉ  
ꢅꢉ  
ꢀꢀꢉ  
WHPSHUDWXUHꢄꢐƒ&ꢑ  
Conditions: Frequency values are typical values. 12 MHz 1.5 % accuracy is guaranteed for  
2.7 V VDD 3.6 V and Tamb = 40 C to +105 C. Variations between parts may cause the IRC to  
fall outside the 12 MHz 1.5 % accuracy specification for voltages below 2.7 V.  
Fig 29. Typical Internal RC oscillator frequency versus temperature  
Table 14. Dynamic characteristics: Watchdog oscillator  
Symbol  
Parameter  
Conditions  
Min Typ[1] Max Unit  
[2][3]  
[2][3]  
fosc(int)  
internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
9.4  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
2300  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +105 C) is 40 %.  
[3] See the LPC81xM user manual.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
47 of 76  
 
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12.4 I/O pins  
Table 15. Dynamic characteristics: I/O pins[1]  
Tamb = 40 C to +105 C; 3.0 V VDD 3.6 V.  
Symbol Parameter Conditions  
Min  
3.0  
2.5  
Typ  
Max  
5.0  
Unit  
ns  
tr  
tf  
rise time  
fall time  
pin configured as output  
pin configured as output  
-
-
5.0  
ns  
[1] Applies to standard port pins and RESET pin.  
12.5 I2C-bus  
Table 16. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +105 C.[2]  
Symbol  
Parameter  
Conditions  
Standard-mode  
Fast-mode  
Min  
Max  
Unit  
kHz  
kHz  
MHz  
fSCL  
SCL clock  
frequency  
0
0
0
100  
400  
1
Fast-mode Plus; on  
pins PIO0_10 and  
PIO0_11  
[4][5][6][7]  
tf  
fall time  
of both SDA and  
SCL signals  
-
300  
ns  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
ns  
Fast-mode Plus;  
on pins PIO0_10  
and PIO0_11  
-
120  
tLOW  
LOW period of  
the SCL clock  
Standard-mode  
Fast-mode  
4.7  
1.3  
-
-
-
s  
s  
s  
Fast-mode Plus; on 0.5  
pins PIO0_10 and  
PIO0_11  
tHIGH  
HIGH period of  
the SCL clock  
Standard-mode  
Fast-mode  
4.0  
0.6  
-
-
-
s  
s  
s  
Fast-mode Plus; on 0.26  
pins PIO0_10 and  
PIO0_11  
[3][4][8]  
tHD;DAT  
data hold time  
Standard-mode  
Fast-mode  
0
0
0
-
-
-
s  
s  
s  
Fast-mode Plus; on  
pins PIO0_10 and  
PIO0_11  
[9][10]  
tSU;DAT  
data set-up  
time  
Standard-mode  
Fast-mode  
250  
100  
-
-
-
ns  
ns  
ns  
Fast-mode Plus; on 50  
pins PIO0_10 and  
PIO0_11  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
48 of 76  
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[9]  
tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement  
SU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the  
t
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must  
meet this set-up time.  
W
I
W
68ꢒ'$7  
ꢍꢉꢄꢔ  
ꢊꢉꢄꢔ  
ꢍꢉꢄꢔ  
ꢊꢉꢄꢔ  
6'$  
6&/  
W
W
+'ꢒ'$7  
9'ꢒ'$7  
W
I
W
+,*+  
ꢍꢉꢄꢔ  
ꢊꢉꢄꢔ  
ꢍꢉꢄꢔ  
ꢊꢉꢄꢔ  
ꢍꢉꢄꢔ  
ꢊꢉꢄꢔ  
ꢍꢉꢄꢔ  
ꢊꢉꢄꢔ  
W
/2:  
ꢀꢄꢁꢄI  
6
6&/  
DDDꢀꢁꢁꢄꢅꢄꢆ  
Fig 30. I2C-bus pins clock timing  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
49 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12.6 SPI interfaces  
The maximum data bit rate is 30 Mbit/s in master mode and 25 Mbit/s in slave mode.  
Remark: SPI functions can be assigned to all digital pins. The characteristics are valid for  
all digital pins except the open-drain pins PIO0_10 and PIO0_11.  
Table 17. SPI dynamic characteristics  
Tamb = 40 C to 105 C; 1.8 V VDD 3.6 V. Simulated parameters sampled at the 50 % level of  
the rising or falling edge; values guaranteed by design.  
Symbol  
SPI master[1]  
Tcy(clk)  
tDS  
Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
clock cycle time  
33  
0
-
ns  
ns  
ns  
ns  
ns  
data set-up time  
data hold time  
-
tDH  
16  
-
-
tv(Q)  
data output valid time  
data output hold time  
CL = 10 pF  
CL = 10 pF  
0.5  
-
th(Q)  
0.5  
SPI slave  
Tcy(clk)  
tDS  
40  
0
ns  
ns  
ns  
ns  
ns  
data set-up time  
-
tDH  
data hold time  
16  
-
-
tv(Q)  
data output valid time  
data output hold time  
CL = 10 pF  
CL = 10 pF  
10  
-
th(Q)  
10  
[1] Capacitance on pin SPIn_SCK CSCK < 5 pF.  
[2] cy(clk) = DIVVAL/CCLK with CCLK = system clock frequency. DIVVAL is the SPI clock divider. See the  
LPC800 User manual UM10601.  
T
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
50 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7
F\ꢐFONꢑ  
6&.ꢄꢐ&32/ꢄ ꢄꢉꢑ  
6&.ꢄꢐ&32/ꢄ ꢄꢀꢑ  
026,  
W
W
Kꢐ4ꢑ  
Yꢐ4ꢑ  
'$7$ꢄ9$/,'  
'$7$ꢄ9$/,'  
&3+$ꢄ ꢄꢀ  
W
W
'+  
'6  
'$7$ꢄ9$/,'  
'$7$ꢄ9$/,'  
0,62  
W
W
Kꢐ4ꢑ  
Yꢐ4ꢑ  
'$7$ꢄ9$/,'  
'$7$ꢄ9$/,'  
W
026,  
0,62  
W
&3+$ꢄ ꢄꢉ  
'6  
'+  
'$7$ꢄ9$/,'  
'$7$ꢄ9$/,'  
DDDꢀꢁꢁꢄꢅꢄꢄ  
Pin names SCK, MISO, and MOSI refer to pins for both SPI peripherals, SPI0 and SPI1.  
Fig 31. SPI master timing  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
51 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7
F\ꢐFONꢑ  
6&.ꢄꢐ&32/ꢄ ꢄꢉꢑ  
6&.ꢄꢐ&32/ꢄ ꢄꢀꢑ  
W
W
'+  
'6  
026,  
0,62  
'$7$ꢄ9$/,'  
'$7$ꢄ9$/,'  
W
W
Kꢐ4ꢑ  
Yꢐ4ꢑ  
&3+$ꢄ ꢄꢀ  
'$7$ꢄ9$/,'  
'$7$ꢄ9$/,'  
W
W
'+  
'6  
026,  
0,62  
'$7$ꢄ9$/,'  
'$7$ꢄ9$/,'  
'$7$ꢄ9$/,'  
W
W
Kꢐ4ꢑ  
&3+$ꢄ ꢄꢉ  
Yꢐ4ꢑ  
'$7$ꢄ9$/,'  
DDDꢀꢁꢁꢄꢅꢄꢂ  
Pin names SCK, MISO, and MOSI refer to pins for both SPI peripherals, SPI0 and SPI1.  
Fig 32. SPI slave timing  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
52 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12.7 USART interface  
The maximum USART bit rate is 1.875 Mbit/s in asynchronous mode and 10 Mbit/s in  
synchronous mode slave and master mode.  
Remark: USART functions can be assigned to all digital pins. The characteristics are valid  
for all digital pins except the open-drain pins PIO0_10 and PIO0_11.  
Table 18. USART dynamic characteristics  
Tamb = 40 C to 105 C; 1.8 V VDD 3.6 V. Simulated parameters sampled at the 50 % level of  
the falling or rising edge; values guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
Tcy(clk)  
clock cycle time  
100  
-
ns  
USART master (in synchronous mode)[3]  
tsu(D)  
data input set-up  
time  
44  
-
ns  
th(D)  
tv(Q)  
th(Q)  
data input hold time  
data output valid time  
data output hold time  
0
-
-
ns  
ns  
ns  
-8  
-
-8  
USART slave (in synchronous mode)  
tsu(D)  
data input set-up  
time  
5
-
ns  
th(D)  
tv(Q)  
th(Q)  
data input hold time  
0
-
ns  
ns  
ns  
data output valid time CL = 10 pF  
data output hold time CL = 10 pF  
-
40  
-
40  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), VDD = 3.3 V, typical  
samples.  
[2] Tcy(clk) = U_PCLK/BRGVAL. See the LPC800 User manual UM10601.  
[3] Capacitance on pin Un_SCLK CSCLK < 5 pF.  
7
F\ꢐFONꢑ  
8QB6&/.ꢄꢐ&/.32/ꢄ ꢄꢉꢑ  
8QB6&/.ꢄꢐ&/.32/ꢄ ꢄꢀꢑ  
7;'  
W
W
Kꢐ4ꢑ  
Yꢐ4ꢑ  
67$57  
%,7ꢉ  
%,7ꢀ  
W
W
VXꢐ'ꢑ Kꢐ'ꢑ  
%,7ꢀ  
67$57  
%,7ꢉ  
5;'  
DDDꢀꢁꢁꢃꢁꢁꢉ  
Fig 33. USART timing  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
53 of 76  
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
13. Analog characteristics  
13.1 BOD  
Table 19. BOD static characteristics[1]  
Tamb = 40 C to +105 C.  
Symbol  
Parameter  
Conditions  
interrupt level 1  
assertion  
Typ[2]  
Unit  
Vth  
threshold voltage  
2.3  
2.4  
V
V
de-assertion  
interrupt level 2  
assertion  
2.6  
2.7  
V
V
de-assertion  
interrupt level 3  
assertion  
2.8  
2.9  
V
V
de-assertion  
reset level 1  
assertion  
2.1  
2.2  
V
V
de-assertion  
reset level 2  
assertion  
2.4  
2.5  
V
V
de-assertion  
reset level 3  
assertion  
2.6  
2.8  
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL.  
[2] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), VDD = 3.3 V, typical  
samples.  
13.2 Internal voltage reference  
Table 20. Internal voltage reference static and dynamic characteristics  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
[1]  
[2]  
[2]  
[4]  
[2]  
[2]  
[2]  
[3]  
VO  
output voltage Tamb = 40 C to +105 C  
Tamb = 70 C to 105 C  
Tamb = 50 C  
0.855 0.900  
0.945  
-
-
0.906  
0.905  
-
V
-
V
Tamb = 25 C  
0.893 0.903  
0.913  
V
Tamb = 0 C  
-
-
-
-
0.902  
0.899  
0.896  
155  
-
V
Tamb = 20 C  
-
V
Tamb = 40 C  
-
V
ts(pu)  
power-up  
to 99% of VO  
195  
s  
settling time  
[1] Characterized through simulation.  
[2] Characterized on a typical silicon sample.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
54 of 76  
 
 
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[3] Typical values are derived from nominal simulation (VDD = 3.3 V; Tamb = 27 C; nominal process models).  
Maximum values are derived from worst case simulation (VDD = 2.6 V; Tamb = 105 C; slow process  
models).  
[4] Maximum and minimum values are measured on samples from the corners of the process matrix lot.  
DDDꢀꢁꢁꢃꢈꢉꢆ  
ꢎꢀꢉ  
92  
2
ꢐP9ꢑ  
ꢎꢉꢌ  
ꢎꢉꢉ  
ꢅꢎꢌ  
ꢅꢎꢉ  
ꢇꢃꢉ  
ꢇꢀꢌ  
ꢀꢉ  
ꢊꢌ  
ꢆꢉ  
ꢅꢌ  
ꢀꢀꢉ  
WHPSHUDWXUHꢄꢐƒ&ꢑ  
VDD = 3.3 V  
Fig 34. Typical internal voltage reference output voltage  
13.3 Comparator  
Table 21. Comparator characteristics  
VDD = 3.0 V and Tamb = 27 C unless noted otherwise.  
Symbol  
Parameter  
Conditions  
Min Typ  
Max  
Unit  
Static characteristics  
Vref(cmp)  
comparator reference  
voltage  
pin PIO0_6/VDDCMP configured for  
function VDDCMP  
1.5  
-
3.6  
V
IDD  
VIC  
supply current  
-
55  
-
-
A  
common-mode input  
voltage  
0
VDD  
V
DVO  
output voltage variation  
offset voltage  
0
-
-
VDD  
V
Voffset  
VIC = 0.1 V  
VIC = 1.5 V  
VIC = 2.8 V  
1.9  
2.1  
2.0  
-
-
mV  
mV  
mV  
-
-
Dynamic characteristics  
tstartup  
start-up time  
nominal process  
-
4
-
s  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
55 of 76  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 21. Comparator characteristics …continued  
VDD = 3.0 V and Tamb = 27 C unless noted otherwise.  
Symbol  
Parameter  
Conditions  
Min Typ  
Max  
Unit  
tPD  
propagation delay  
HIGH to LOW; VDD = 3.0 V;  
-
109  
121  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
V
IC = 0.1 V; 50 mV overdrive input  
ns  
ns  
ns  
ns  
ns  
ns  
VIC = 0.1 V; rail-to-rail input  
VIC = 1.5 V; 50 mV overdrive input  
VIC = 1.5 V; rail-to-rail input  
-
-
-
-
-
-
155  
95  
164  
105  
108  
129  
82  
101  
122  
74  
VIC = 2.9 V; 50 mV overdrive input  
VIC = 2.9 V; rail-to-rail input  
tPD  
propagation delay  
LOW to HIGH; VDD = 3.0 V;  
246  
260  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[2]  
V
IC = 0.1 V; 50 mV overdrive input  
IC = 0.1 V; rail-to-rail input  
ns  
ns  
ns  
ns  
ns  
ns  
mV  
V
-
-
-
-
-
-
57  
59  
VIC = 1.5 V; 50 mV overdrive input  
VIC = 1.5 V; rail-to-rail input  
218  
146  
155  
206  
286  
-
VIC = 2.9 V; 50 mV overdrive input  
VIC = 2.9 V; rail-to-rail input  
184  
250  
Vhys  
Vhys  
Rlad  
hysteresis voltage  
hysteresis voltage  
ladder resistance  
positive hysteresis; VDD = 3.0 V;  
VIC = 1.5 V  
6, 11, 21  
negative hysteresis; VDD = 3.0 V;  
VIC = 1.5 V  
[2][2]  
-
-
4, 9, 19  
1.034  
-
-
mV  
-
M  
[1] CL = 10 pF; results from measurements on silicon samples over process corners and over the full temperature range Tamb = 40 C to  
+105 C. Typical data are for Tamb = 27 C.  
[2] Input hysteresis is relative to the reference input channel and is software programmable to three levels.  
Table 22. Comparator voltage ladder dynamic characteristics  
Symbol Parameter  
ts(pu) power-up settling  
Conditions  
Min Typ  
Max  
Unit  
[1]  
to 99% of voltage  
ladder output  
value  
-
-
30  
s  
time  
[1]  
[2]  
ts(sw)  
switching settling  
time  
to 99% of voltage  
ladder output  
value  
-
-
15  
s  
[1] Maximum values are derived from worst case simulation (VDD = 2.6 V; Tamb = 105 C; slow process  
models).  
[2] Settling time applies to switching between comparator channels.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
56 of 76  
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 23. Comparator voltage ladder reference static characteristics  
VDD = 3.3 V; Tamb = 40 C to + 105C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max[1] Unit  
EV(O)  
output voltage error  
Internal VDD supply  
decimal code = 00  
decimal code = 08  
decimal code = 16  
decimal code = 24  
decimal code = 30  
decimal code = 31  
[2]  
-
-
-
-
-
-
0
0
%
%
%
%
%
%
0
0.4  
0.2  
0.2  
0.1  
0.1  
0.2  
0.2  
0.1  
0.1  
EV(O)  
output voltage error  
External VDDCMP  
supply  
decimal code = 00  
decimal code = 08  
decimal code = 16  
decimal code = 24  
decimal code = 30  
decimal code = 31  
-
-
-
-
-
-
0
0
%
%
%
%
%
%
0.1  
0.2  
0.2  
0.2  
0.1  
0.5  
0.4  
0.3  
0.2  
0.1  
[1] Measured over a polyresistor matrix lot with a 2 kHz input signal and overdrive < 100 V.  
[2] All peripherals except comparator and IRC turned off.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
57 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
14. Application information  
14.1 Typical wake-up times  
Table 24. Typical wake-up times (3.3 V, Temp = 25 °C)  
Power modes  
VDD current  
0.7 mA  
Wake-up time  
2.6 s  
Sleep mode (12 MHz)[1][2]  
Deep-sleep mode[1][3]  
Power-down mode[1][3]  
Deep Power-down mode[4]  
150 A  
4 s  
0.9 A  
50 s  
170 nA  
215 s  
[1] The wake-up time measured is the time between when a GPIO input pin is triggered to wake the device up  
from the low power modes and from when a GPIO output pin is set in the interrupt service routine (ISR)  
wake-up handler.  
[2] IRC enabled, all peripherals off.  
[3] Watchdog oscillator disabled, Brown-Out Detect (BOD) disabled.  
[4] Self wakeup-timer disabled. Wake-up from deep power-down causes the LPC800 to go through entire reset  
process. The wake-up time measured is the time between when a wake-up pin is triggered to wake the  
device up from the low power modes and from when a GPIO output pin is set in the reset handler.  
14.2 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV(RMS) is needed.  
/3&ꢃꢁꢁ  
;7$/,1  
&
L
&
J
ꢀꢉꢉꢄS)  
DDDꢀꢁꢁꢄꢅꢄꢅ  
Fig 35. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 35), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 36 and in  
Table 25 and Table 26. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
58 of 76  
 
 
 
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
RS). Capacitance CP in Figure 36 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer (see Table 25).  
/3&ꢃꢁꢁ  
/
;7$/,1  
;7$/287  
&
&
3
 
/
;7$/  
5
6
&
&
;ꢀ  
;ꢂ  
DDDꢀꢁꢁꢄꢅꢄꢃ  
Fig 36. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 25. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz to 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz to 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz to 15 MHz  
15 MHz to 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 26. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz to 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz to 25 MHz  
10 pF  
20 pF  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
59 of 76  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
14.3 XTAL Printed Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1,Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
60 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
15. Package outline  
DIP8: plastic dual in-line package; 8 leads (300 mil)  
SOT97-2  
D
M
E
A
2
A
A
1
L
e
w
Z
b
1
(e )  
1
M
H
b
b
2
8
5
pin 1 index  
E
1
4
0
2.5  
5 mm  
scale  
Dimensions (inch dimensions are derived from the original dimensions)  
(1)  
(1)  
(1)  
(1)  
Unit  
A
A
A
2
b
b
b
2
c
D
E
e
e
1
L
M
M
H
w
Z
1
1
E
max 4.2  
3.43 1.73 0.53 1.07 0.38 9.8 6.48  
3.60 7.88 9.40  
1.15  
mm nom  
min  
2.54 7.62  
0.254  
0.51  
0.02  
1.14 0.38 0.89 0.20 9.2 6.20  
3.05 7.62 7.88  
0.14 0.31 0.37  
max 0.17  
inches nom  
min  
0.14 0.068 0.021 0.042 0.015 0.39 0.26  
0.045  
0.1  
0.01  
0.045 0.015 0.035 0.008 0.36 0.24  
0.3 0.12 0.30 0.31  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included  
sot097-2_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
- - -  
JEDEC  
JEITA  
- - -  
10-10-15  
10-10-18  
SOT97-2  
MO-001  
Fig 37. Package outline SOT097-2 (DIP8)  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
61 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm  
SOT403-1  
D
E
A
X
c
y
H
v
M
A
E
Z
9
16  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.40  
0.06  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT403-1  
MO-153  
Fig 38. Package outline SOT403-1 (TSSOP16)  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
62 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
SO20: plastic small outline package; 20 leads; body width 7.5 mm  
SOT163-1  
D
E
A
X
c
y
H
E
v
M
A
Z
20  
11  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
13.0  
12.6  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
2.65  
0.1  
0.25  
0.01  
1.27  
0.05  
1.4  
0.25 0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.51  
0.014 0.009 0.49  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches  
0.055  
0.01 0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT163-1  
075E04  
MS-013  
Fig 39. Package outline SOT163-1 (SO20)  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
63 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm  
SOT360-1  
D
E
A
X
c
H
v
M
A
y
E
Z
11  
20  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
θ
L
p
L
1
10  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
6.6  
6.4  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT360-1  
MO-153  
Fig 40. Package outline SOT360-1 (TSSOP20)  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
64 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
XSON16: plastic extremely thin small outline package; no leads; 16 terminals; body 2.5 x 3.2 x 0.5 mm  
SOT1341-1  
X
D
B
A
E
A
A
1
c
detail X  
terminal 1  
index area  
e
1
C
v
C
C
A
B
terminal 1  
index area  
y
y
e
b
C
1
w
1
8
L
1
k
L
16  
9
0
1
2
3 mm  
scale  
Dimensions (mm are the original dimensions)  
(1)  
Unit  
A
A
b
c
D
E
e
e
k
L
L
1
v
w
y
y
1
1
1
max 0.5 0.05 0.25 0.152 3.3 2.6  
0.9 1.0  
mm nom  
min  
0.20  
3.2 2.5  
0.4  
2.8  
0.8 0.9 0.1 0.05 0.05 0.05  
0.7 0.8  
0.00 0.15 0.050 3.1 2.4  
0.2  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
sot1341-1_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
- - -  
JEDEC  
JEITA  
- - -  
12-09-05  
13-02-13  
SOT1341-1  
MO-252  
Fig 41. Package outline SOT1341-1 (XSON16)  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
65 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
16. Soldering  
Footprint information for reflow soldering of TSSOP16 package  
SOT403-1  
Hx  
Gx  
P2  
(0.125)  
(0.125)  
Hy Gy  
By Ay  
C
D2 (4x)  
P1  
D1  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ay  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.650 0.750 7.200 4.500 1.350 0.400 0.600 5.600 5.300 5.800 7.450  
sot403-1_fr  
Fig 42. Reflow soldering of the TSSOP16 package  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
66 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
13.40  
0.60 (20×)  
1.50  
8.00 11.00 11.40  
1.27 (18×)  
solder lands  
sot163-1_fr  
occupied area  
placement accuracy 0.25  
Dimensions in mm  
Fig 43. Reflow soldering of the SO20 package  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
67 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Footprint information for reflow soldering of TSSOP20 package  
SOT360-1  
Hx  
Gx  
P2  
(0.125)  
(0.125)  
Hy Gy  
By Ay  
C
D2 (4x)  
P1  
D1  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ay  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.650 0.750 7.200 4.500 1.350 0.400 0.600 6.900 5.300 7.300 7.450  
sot360-1_fr  
Fig 44. Reflow soldering of the TSSOP20 package  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
68 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
)RRWSULQWꢉLQIRUPDWLRQꢉIRUꢉUHIORZꢉVROGHULQJꢉRIꢉ;621ꢄꢅꢉSDFNDJHꢉ  
627ꢄꢇꢈꢄꢀꢄ  
ꢊꢏꢌ  
ꢊꢏꢀꢂ  
ꢊꢏꢉꢂ  
ꢉꢏꢃ  
ꢉꢏꢂꢂ  
ꢉꢏꢀꢅ  
ꢀꢏꢀꢍ ꢀꢏꢉꢍ  
ꢊꢏꢀꢃ  
ꢉꢏꢍ  
RFFXSLHGꢄDUHD  
VROGHUꢄUHVLVW  
VROGHUꢄSDVWH  
VROGHUꢄODQGV  
'LPHQVLRQVꢄLQꢄPP  
ꢀꢃꢇꢉꢂꢇꢂꢅ  
,VVXHꢄGDWH  
VRWꢉꢆꢄꢉꢀꢉBIU  
ꢀꢃꢇꢉꢊꢇꢉꢍ  
Fig 45. Reflow soldering of the XSON16 package  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
69 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
17. Abbreviations  
Table 27. Abbreviations  
Acronym  
AHB  
Description  
Advanced High-performance Bus  
Advanced Peripheral Bus  
BrownOut Detection  
APB  
BOD  
GPIO  
PLL  
General-Purpose Input/Output  
Phase-Locked Loop  
RC  
Resistor-Capacitor  
SPI  
Serial Peripheral Interface  
System Management Bus  
Transverse ElectroMagnetic  
SMBus  
TEM  
UART  
Universal Asynchronous Receiver/Transmitter  
18. References  
[1] I2C-bus specification UM10204.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
70 of 76  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
19. Revision history  
Table 28. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
LPC81XM v.4.3  
20140422  
Product data sheet  
-
LPC81XM v.4.2  
Modifications:  
Section 8.20.2 “Clock input” updated for clarity.  
CLKIN signal removed from Table 12 “Dynamic characteristic: external clock (XTALIN  
inputs)”.  
Name “SCT” changed to “SCTimer/PWM” for clarity.  
Remove slew rate control from GPIO features for clarity.  
MRT bus stall mode added.  
WWDT clock source corrected in Section 8.17.1.  
Pin description table updated for clarification (I2C-bus pins, WAKEUP, RESET).  
Added reflow solder diagram and thermal resistance numbers for XSON16  
(SOT1341-1).  
Table 21: Added Vref(cmp) spec for PIO0_6/VDDCMP.  
LPC81XM v.4.2  
Modifications:  
LPC81XM v.4.1  
Modifications:  
LPC81XM v.4  
Modifications:  
20131210  
Corrected vertical axis marker in Figure 21 “CoreMark score”.  
20131112 Product data sheet LPC81XM v.4  
Corrected XSON16 pin information in Figure 6 and Table 4.  
Product data sheet  
-
LPC81XM v.4.1  
-
20131025  
Product data sheet  
-
LPC81XM v.3.1  
Added Section 14.1 “Typical wake-up times”.  
Added LPC812M101JTB16 and XSON16 package.  
LPC81XM v.3.1  
Modifications:  
20130916  
Product data sheet  
-
LPC81XM v.3  
Correct the pin interrupt features: Pin interrupts can wake up the part from Sleep  
mode, Deep-sleep mode, and Power-down mode. See Section 8.11.1.  
Table 9 “Static characteristics”: Updated power numbers for Deep-sleep, Power-down,  
and Deep power-down.  
Added 30 MHz data to Figure 13 “Active mode: Typical supply current IDD versus  
supply voltage VDD”, Figure 14 “Active mode: Typical supply current IDD versus  
temperature”, and Figure 15 “Sleep mode: Typical supply current IDD versus  
temperature for different system clock frequencies”.  
LPC81XM v.3  
20130729  
Product data sheet  
-
LPC81XM v.2.1  
Operating temperature range changed to 40 °C to 105 °C.  
Type numbers updated to reflect the new operating temperature range. See Table 1  
“Ordering information” and Table 2 “Ordering options”.  
ISP entry pin moved from PIO0_1 to PIO0_12 for TSSOP, and SSOP packages. See  
Table 4 and Table 6.  
Propagation delay values updated in Table 21 “Comparator characteristics”.  
SPI characteristics updated. See Section 12.6.  
IRC characteristics updated. See Section 12.3.  
CoreMark data updated. See Figure 19 and Figure 20.  
IRC frequency changed to 12 MHz +/- 1.5 %. See Table 13.  
Data sheet status updated to Product data sheet.  
LPC81XM v.2.1  
20130325  
Preliminary data sheet -  
LPC81XM v.2  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
71 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 28. Revision history …continued  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
Editorial updates (temperature sensor removed).  
CoreMark data added. See Figure 19 “Active mode: CoreMark power consumption  
IDD” and Figure 20 “CoreMark score”.  
IDD in Deep power-down mode added for condition Low-power oscillator on/WKT  
wake-up enabled. See Table 10.  
Table note 3 updated for Table 4 “Pin description table (fixed pins)”.  
Conditions for ter and tprog updated in Table 12 “Flash characteristics”.  
Section 13.3 “Internal voltage reference” added.  
Typical timing data added for SPI. See Section 12.6.  
Typical timing data added for USART in synchronous mode. See Section 12.7.  
BOD characterization added. See Section 13.1.  
IRC characterization added. See Section 12.3.  
Internal voltage reference characteristics added. See Section 13.3.  
Data sheet status changed to Preliminary data sheet.  
LPC81XM v.2  
Modifications:  
20130128  
Objective data sheet  
-
LPC81XM v.1  
MTB memory space changed to 1 kB in Figure 6.  
Electrical pin characteristics added in Table 10.  
Figure 11 “Connecting the SWD pins to a standard SWD connector” added.  
Peripheral power consumption added in Table 11.  
Table 7 updated.  
MRT implementation changed to 31-bit timer.  
Power consumption data in active and sleep mode with IRC added. See Figure 13 to  
Figure 15.  
Power consumption (parameter IDD) in active and sleep mode for low-power mode at  
12 MHz corrected in Table 10.  
Power consumption (parameter IDD) in active and sleep mode at 24 MHz added in  
Table 10.  
Maximum USART speed in synchronous mode changed to 10 Mbit/s.  
Section 5 “Marking” added.  
LPC81XM v.1  
20121112  
Objective data sheet  
-
-
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
72 of 76  
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
20. Legal information  
20.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
20.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
20.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
73 of 76  
 
 
 
 
 
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
20.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP Semiconductors N.V.  
21. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
74 of 76  
 
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
22. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.20.1.1 Internal RC Oscillator (IRC) . . . . . . . . . . . . . . 25  
8.20.1.2 Crystal Oscillator (SysOsc) . . . . . . . . . . . . . . 25  
8.20.1.3 Internal Low-power Oscillator and Watchdog  
Oscillator (WDOsc) . . . . . . . . . . . . . . . . . . . . 25  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
4
4.1  
5
8.20.2  
8.20.3  
8.20.4  
8.20.5  
8.20.6  
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Clock output. . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 26  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 26  
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8  
8.20.6.1 Power profiles . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.20.6.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.20.6.3 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 27  
8.20.6.4 Power-down mode. . . . . . . . . . . . . . . . . . . . . 27  
8.20.6.5 Deep power-down mode . . . . . . . . . . . . . . . . 27  
8
8.1  
8.2  
8.3  
8.4  
8.5  
8.5.1  
8.5.2  
8.6  
8.7  
8.8  
8.8.1  
8.9  
8.10  
8.10.1  
8.11  
8.11.1  
8.12  
8.12.1  
8.13  
8.13.1  
8.14  
8.14.1  
8.15  
Functional description . . . . . . . . . . . . . . . . . . 13  
ARM Cortex-M0+ core . . . . . . . . . . . . . . . . . . 13  
On-chip flash program memory . . . . . . . . . . . 13  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 13  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Nested Vectored Interrupt Controller (NVIC) . 13  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 13  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 14  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 14  
I/O configuration . . . . . . . . . . . . . . . . . . . . . . . 15  
Standard I/O pad configuration. . . . . . . . . . . . 16  
Switch Matrix (SWM) . . . . . . . . . . . . . . . . . . . 17  
Fast General-Purpose parallel I/O (GPIO) . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Pin interrupt/pattern match engine . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
USART0/1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SPI0/1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
State-Configurable Timer/PWM  
(SCTimer/PWM) . . . . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Multi-Rate Timer (MRT) . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Windowed WatchDog Timer (WWDT) . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Self Wake-up Timer (WKT). . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Analog comparator (ACMP) . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Clocking and power control . . . . . . . . . . . . . . 24  
Crystal and internal oscillators . . . . . . . . . . . . 24  
8.21  
System control . . . . . . . . . . . . . . . . . . . . . . . . 28  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Brownout detection . . . . . . . . . . . . . . . . . . . . 28  
Code security (Code Read Protection - CRP) 29  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 29  
AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Emulation and debugging . . . . . . . . . . . . . . . 30  
8.21.1  
8.21.2  
8.21.3  
8.21.4  
8.21.5  
8.22  
9
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 31  
Thermal characteristics . . . . . . . . . . . . . . . . . 32  
10  
11  
Static characteristics . . . . . . . . . . . . . . . . . . . 33  
Power consumption . . . . . . . . . . . . . . . . . . . . 37  
CoreMark data . . . . . . . . . . . . . . . . . . . . . . . . 41  
Peripheral power consumption . . . . . . . . . . . 42  
Electrical pin characteristics. . . . . . . . . . . . . . 43  
11.1  
11.2  
11.3  
11.4  
12  
Dynamic characteristics. . . . . . . . . . . . . . . . . 46  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 46  
External clock for the oscillator in slave mode 46  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 47  
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
SPI interfaces. . . . . . . . . . . . . . . . . . . . . . . . . 50  
USART interface . . . . . . . . . . . . . . . . . . . . . . 53  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
8.15.1  
8.16  
8.16.1  
8.17  
8.17.1  
8.18  
8.18.1  
8.19  
13  
Analog characteristics . . . . . . . . . . . . . . . . . . 54  
BOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Internal voltage reference . . . . . . . . . . . . . . . 54  
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
13.1  
13.2  
13.3  
14  
Application information . . . . . . . . . . . . . . . . . 58  
Typical wake-up times . . . . . . . . . . . . . . . . . . 58  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
XTAL Printed Circuit Board (PCB) layout  
14.1  
14.2  
14.3  
8.19.1  
8.20  
8.20.1  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
15  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 61  
continued >>  
LPC81XM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4.3 — 22 April 2014  
75 of 76  
 
LPC81xM  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
16  
17  
18  
19  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 70  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 71  
20  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 73  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 73  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
20.1  
20.2  
20.3  
20.4  
21  
22  
Contact information. . . . . . . . . . . . . . . . . . . . . 74  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2014.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 22 April 2014  
Document identifier: LPC81XM