转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS84427 is  
a
Crystal-to-LVDS Frequency Six LVDS outputs  
Synthesizer/Fanout Buffer. The output frequency can be  
programmed using the frequency select pins. The low phase  
noise characteristics of the ICS84427 make it an ideal clock  
source for 10 Gigabit Ethernet, 10 Gigabit Fibre Channel, OC3  
and OC12 applications.  
Crystal oscillator interface  
Output frequency range: 77.76MHz to 625MHz  
Crystal input frequency: 19.44MHz, 25MHz or 25.5MHz  
RMS phase jitter at 155.52MHz, using a 19.44MHz crystal  
(12kHz to 20MHz): 3.4ps (typical)  
Phase noise:  
Offset  
Noise Power  
100Hz ................. -95 dBc/Hz  
1kHz ............... -110 dBc/Hz  
10kHz ............... -120 dBc/Hz  
100kHz ............... -121 dBc/Hz  
FUNCTION TABLE  
Output  
Frequency  
Inputs  
F_XTAL MR F_SEL2 F_SEL1 F_SEL0  
F_OUT  
LOW  
3.3V supply voltage  
X
1
0
0
0
0
0
0
0
0
0
X
1
1
1
1
0
0
0
0
0
X
0
0
1
1
0
0
1
1
0
X
0
1
0
1
0
1
0
1
1
0°C to 70°C ambient operating temperature  
19.44MHz  
19.44MHz  
19.44MHz  
19.44MHz  
25MHz  
77.76MHz  
155.52MHz  
311.04MHz  
622.08MHz  
78.125MHz  
156.25MHz  
312.5 MHz  
625MHz  
Available in both standard and lead-free RoHS-compliant  
packages  
25MHz  
25MHz  
25MHz  
25.5MHz  
159.375MHz  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
nQ1  
Q2  
nQ2  
Q3  
nQ3  
Q4  
1
2
3
4
24  
23  
22  
21  
20  
19  
18  
VDD  
F_SEL0  
F_SEL1  
MR  
XTAL_IN  
XTAL_OUT  
F_SEL2  
VDDA  
VDD  
PLL_SEL  
GND  
XTAL_IN  
OSC  
XTAL_OUT  
6
Q0:Q5  
0
1
/
Output  
Divider  
5
6
7
8
6
/
nQ0:nQ5  
PLL  
17  
16  
15  
14  
13  
9
10  
11  
12  
nQ4  
Q5  
nQ5  
Feedback  
Divider  
VDD  
ICS84427  
24-Lead, 300-MIL SOIC  
7.5mm x 15.33mm x 2.3mm body package  
M Package  
Top View  
F_SEL2 MR PLL_SEL  
F_SEL1  
F_SEL0  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
1
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Q4, nQ4  
Q5, nQ5  
VDD  
Type  
Description  
Output  
Output  
Output  
Output  
Output  
Output  
Power  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Core supply pins.  
3, 4  
5, 6  
7, 8  
9, 10  
11, 12  
13, 16, 24  
14  
GND  
Power supply ground.  
Selects between the PLL and crystal inputs as the input to the dividers.  
When HIGH, selects PLL. When LOW, selects XTAL_IN and  
XTAL_OUT. LVCMOS / LVTTL interface levels.  
15  
PLL_SEL  
Input  
Pullup  
17  
18  
VDDA  
Power  
Input  
Analog supply pin.  
F_SEL2  
Pullup  
Feedback frequency select pin. LVCMOS/LVTTL interface levels.  
19,  
20  
XTAL_OUT,  
XTAL_IN  
Crystal oscillator interface. XTAL_IN is the input,  
XTAL_OUT is the output.  
Input  
Active High Master Reset. When logic HIGH, the internal dividers are  
reset causing the true outputs Qx to go low and the inverted outputs  
nQx to go high. When logic LOW, the internal dividers and the outputs  
are enabled. LVCMOS / LVTTL interface levels.  
21  
MR  
Input Pulldown  
22  
23  
F_SEL1  
F_SEL0  
Input Pulldown Output frequency select pin. LVCMOS/LVTTL interface levels.  
Input Pullup Output frequency select pin. LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
2
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
DD  
Inputs, V  
-0.5V to VDD + 0.5V  
I
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
Outputs, IO  
Continuous Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, θ  
50°C/W (0 lfpm)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VDD  
VDDA  
IDD  
Core Supply Voltage  
3.465  
VDD  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
VDD – 0.72  
3.3  
V
300  
30  
mA  
mA  
IDDA  
TABLE 3B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
MR, F_SEL1  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
µA  
IIH  
Input High Current  
PLL_SEL,  
F_SEL0, F_SEL2  
5
µA  
µA  
µA  
MR, F_SEL1  
V
-5  
IIL  
Input Low Current  
PLL_SEL,  
F_SEL0, F_SEL2  
VDD = 3.465V, VIN = 0V  
-150  
TABLE 3C. LVDS DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
375  
475  
575  
50  
mV  
mV  
V
Δ VOD  
VOS  
1.3  
1.45  
1.6  
50  
Δ VOS  
VOS Magnitude Change  
mV  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
3
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
TABLE 4. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
19.44  
25.5  
50  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
TABLE 5. AC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
77.76  
625  
MHz  
155.52MHz,  
(Integration Range: 12kHz-20MHz)  
156.25MHz,  
(Integration Range: 12kHz-20MHz)  
3.4  
3.1  
ps  
RMS Phase Jitter (Random);  
NOTE 1  
tjit(Ø)  
ps  
tjit(cc)  
tsk(o)  
Cycle-to-Cycle Jitter; NOTE 2  
Output Skew; NOTE 3, 4  
Output Rise/Fall Time  
Output Duty Cycle  
36  
85  
600  
52  
1
ps  
ps  
ps  
tR / tF  
20ꢀ to 80ꢀ  
200  
47  
odc  
tLOCK  
PLL Lock Time  
ms  
See Parameter Measurement Information section.  
NOTE 1: See Phase Noise Plots.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential crossing points.  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
4
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
TYPICAL PHASE NOISE AT 155.52MHZ  
0
-10  
-20  
-30  
155.52MHz  
RMS Phase Noise Jitter  
12kHz to 20MHz = 3.4ps (typical)  
SONET Filter  
-40  
-50  
-60  
-70  
-80  
-90  
Raw Phase Noise Data  
-100  
-110  
-120  
-130  
-140  
-150  
Phase Noise Result by adding a  
SONET Filter to raw data  
-160  
-170  
-180  
-190  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (HZ)  
TYPICAL PHASE NOISE AT 156.25MHZ  
0
-10  
-20  
-30  
156.25MHz  
RMS Phase Noise Jitter  
-40  
-50  
12kHz to 20MHz = 3.1ps (typical)  
10Gb Ethernet Filter  
-60  
-70  
-80  
Raw Phase Noise Data  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
Phase Noise Result by adding  
10Gb Ethernet Filter to raw data  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (HZ)  
84427CM  
www.idt.com  
REV.B JULY 27, 2010  
5
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
Phase Noise Plot  
24Ω  
VDDA  
SCOPE  
VDD  
Qx  
3.3V 5ꢀ  
POWER SUPPLY  
Float GND  
LVDS  
+
Phase Noise Mask  
nQx  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
RMS PHASE JITTER  
nQx  
Qx  
nQ0:nQ5  
Q0:Q5  
nQy  
Qy  
tcycle n  
tcycle n+1  
tsk(o)  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
CYCLE-TO-CYCLE JITTER  
OUTPUT SKEW  
VDD  
VDD  
out  
out  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
V
OD/Δ VOD  
VOS/Δ VOS  
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
OFFSET VOLTAGE SETUP  
nQ0:nQ5  
Q0:Q5  
80ꢀ  
tF  
80ꢀ  
VOD  
tPW  
Clock  
20ꢀ  
20ꢀ  
tPERIOD  
Outputs  
tR  
tPW  
odc =  
x 100ꢀ  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
www.idt.com  
84427CM  
REV. B JULY 27, 2010  
6
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS84427 provides sepa-  
rate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VDD and VDDA should  
be individually connected to the power supply plane through  
vias, and bypass capacitors should be used for each pin. To  
achieve optimum jitter performance, power supply isolation is  
required. Figure 1 illustrates how a 24Ω resistor along with a  
10μF and a .01μF bypass capacitor should be connected to  
each VDDA pin.  
3.3V  
VDD  
.01μF  
.01μF  
24Ω  
VDDA  
10 μF  
FIGURE 1. POWER SUPPLY FILTERING  
CRYSTAL INPUT INTERFACE  
nant crystal and were chosen to minimize the ppm error. The  
optimum C1 and C2 values can be slightly adjusted for differ-  
ent board layouts.  
The ICS84427 has been characterized with 18pF parallel  
resonant crystals. The capacitor values, C1 and C2, shown in  
Figure 2 below were determined using an 18pF parallel reso-  
XTAL_IN  
C1  
18p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
22p  
Figure 2. CRYSTAL INPUt INTERFACE  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
7
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
LVCMOS TO XTAL INTERFACE  
The XTAL_IN input can accept a single-ended LVCMOS signal  
series resistance (Rs) equals the transmission line  
through an AC coupling capacitor. A general interface diagram impedance. In addition, matched termination at the crystal  
input will attenuate the signal in half. This can be done in one  
of two ways. First, R1 and R2 in parallel should equal the  
is shown in Figure 3. The XTAL_OUT pin can be left floating.  
The input edge rate can be as slow as 10ns. For LVCMOS  
inputs, it is recommended that the amplitude be reduced from transmission line impedance. For most 50Ω applications, R1  
and R2 can be 100Ω. This can also be accomplished by  
removing R1 and making R2 50Ω.  
full swing to half swing in order to prevent signal interference  
with the power rail and to reduce noise. This configuration  
requires that the output impedance of the driver (Ro) plus the  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OU T  
FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
OUTPUTS:  
LVDS  
All unused LVDS output pairs can be either left floating or  
terminated with 100Ω across. If they are left floating, we  
recommend that there is no trace attached.  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
8
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
LVDS DRIVER TERMINATION  
A general LVDS interface is shown in Figure 4. In a 100Ω receiver input. For a multiple LVDS outputs buffer, if only par-  
differential transmission line environment, LVDS drivers re- tial outputs are used, it is recommended to terminate the un-  
quire a matched load termination of 100Ω across near the used outputs.  
3.3V  
3.3V  
LVDS_Driver  
+
R1  
100  
-
100 Ohm Differiential Transmission Line  
FIGURE 4. TYPICAL LVDS DRIVER TERMINATION  
SCHEMATIC EXAMPLE  
Figure 5A shows a schematic example of using an ICS84427.  
In this example, the input is a 25MHz parallel resonant crystal  
with load capacitor CL=18pF. The frequency fine tuning ca-  
pacitors C1 and C2 is 22pF and 18pF respectively. This ex-  
ample also shows logic control input handling. The configura-  
tion is set at F_SEL[2:0]=101, therefore, the output frequency  
is 156.25MHz. It is recommended to have one decouple ca-  
pacitor per power pin. Each decoupling capacitor should be  
located as close as possible to the power pin. The low pass  
filter R7, C11 and C16 for clean analog supply should also be  
located as close to the VDDA pin as possible.  
VDD  
U1  
VDD  
R4  
1K  
VDD  
Zo = 50  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
12  
VDD  
VEE  
nQ5  
Q5  
nQ4  
Q4  
nQ3  
Q3  
nQ2  
Q2  
nQ1  
Q1  
nQ0  
Q0  
+
-
R7  
24  
11  
10  
9
8
7
6
5
4
3
PLL_SEL  
VDD  
VDDA  
F_SEL2  
XTAL_OU T  
XTAL_IN  
MR  
F_SEL1  
F_SEL0  
VDD  
R1  
100  
VDDA  
22p  
F_SEL2  
C11  
0.1u  
C16  
10u  
C1  
Zo = 50  
LVDS_input  
F_SEL1  
F_SEL0  
X1  
25MHz,18pF  
R5  
1K  
2
1
C2  
VDD  
VDD  
18p  
ICS84427  
RU1  
1K  
RU2  
SP  
RU3  
1K  
VDD=3.3V  
F_SEL2  
F_SEL1  
F_SEL0  
VDD  
(U1,13)  
(U1,16)  
(U1,24)  
C6  
0.1u  
C5  
0.1u  
C3  
0.1u  
e.g. F_SEL[2:0]=101  
RD1  
SP  
RD2  
1K  
RD3  
SP  
SP = Spare, Not Installed  
FIGURE 5A. ICS84427 SCHEMATIC EXAMPLE  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
9
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
• The differential 100Ω output traces should have the  
same length.  
The following component footprints are used in this layout  
example:  
• Avoid sharp angles on the clock trace. Sharp angle  
turns cause the characteristic impedance to change  
on the transmission lines.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C3, C5 and C6, as close as  
possible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling ca-  
pacitor and the power pin caused by the via.  
• Keep the clock traces on the same layer. Whenever  
possible, avoid placing vias on the clock traces. Place-  
ment of vias on the traces can affect the trace charac-  
teristic impedance and hence degrade signal integ-  
rity.  
• To prevent cross talk, avoid routing other signal traces  
in parallel with the clock traces. If running parallel traces  
is unavoidable, allow a separation of at least three  
trace widths between the differential clock trace and  
the other signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VDDA pin as possible.  
• Make sure no other signal traces are routed between  
the clock trace pair.  
CLOCK TRACES AND TERMINATION  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location. While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
20 (XTAL_IN) and 19 (XTAL_OUT). The trace length between  
the X1 and U1 should be kept to a minimum to avoid unwanted  
parasitic inductance and capacitance. Other signal traces  
should not be routed near the crystal traces.  
C6  
GND  
VDD  
C1  
C5  
Signals  
VIA  
R7  
VDDA  
C16  
C11  
X1  
C3  
C2  
50 Ohm Traces  
Pin1  
U1 ICS84427  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS84427  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
10  
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS84427.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84427 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
Power (core)MAX = VDD_MAX * (IDD_MAX + IDDA_MAX) = 3.465V * (300mA + 30mA) = 1143.45mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of  
the device. The maximum recommended junction temperature for the devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming  
a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 43°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 1.143W * 43°C/W = 119.1°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air  
flow, and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 24-PIN SOIC, FORCED CONVECTION  
θJA by Velocity (Linear Feet per Minute)  
0
200  
43°C/W  
500  
38°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
50°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
11  
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 24 LEAD SOIC  
θJA by Velocity (Linear Feet per Minute)  
0
200  
43°C/W  
500  
38°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
50°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS84427 is: 2804  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
12  
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
PACKAGE OUTLINE - M SUFFIX FOR 24 LEAD SOIC  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
24  
--  
2.65  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
15.20  
7.40  
2.55  
0.51  
0.32  
15.85  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-013, MO-119  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
13  
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
84427CM  
84427CMT  
ICS84427CM  
ICS84427CM  
24 Lead SOIC  
24 Lead SOIC  
1000 tape & reel  
tube  
84427CMLF  
84427CMLFT  
ICS84427CMLF  
ICS84427CMLF  
24 Lead "Lead-Free" SOIC  
24 Lead "Lead-Free" SOIC  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS complaint.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of  
any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial  
applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves  
the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
14  
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
Updated datasheet's header/footer with IDT from ICS.  
Removed ICS prefix from Part/Order Number column.  
Added Contact Page.  
B
T9  
14  
16  
7/27/10  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
15  
ICS84427  
CRYSTAL-TO-LVDS  
INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc.  
Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of  
their respective owners.  
Printed in USA  
84427CM  
www.idt.com  
REV. B JULY 27, 2010  
16