转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
ICS853013  
General Description  
Features  
The ICS853013 is a low skew, high performance  
Two differential LVPECL/ECL bank outputs  
Two differential LVPECL clock input pairs  
S
IC  
dual 1-to-3 Differential-to-2.5V/3.3V/5V LVPECL/  
ECL Fanout Buffer and a member of the  
HiperclocksTM family of High Performance Clock  
Solutions from IDT. The ICS853013 operates with a  
HiPerClockS™  
PCLKx, nPCLKx pairs can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
Output frequency: >2GHz (typical)  
positive or negative power supply at 2.5V, 3.3V, or 5V. Guaranteed  
output and part-to-part skew characteristics make the ICS853013  
ideal for those clock distribution applications demanding well  
defined performance and repeatability.  
Translates any single-ended input signal to LVPECL levels with  
resistor bias on nPCLKx input  
Output skew: 40ps (maximum)  
Part-to-part skew: 250ps (maximum)  
Propagation delay: 5780ps (maximum)  
Additive phase jitter, RMS: 0.03ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 5.25V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -5.25V to -2.375V  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Block Diagram  
Pin Assignment  
QA0  
nQA0  
QA0  
1
2
20 QA1  
Pulldown  
nQA0  
PCLKA  
19  
nQA1  
Pullup/Pulldown  
VCC  
PCLKA  
3
4
18  
17  
QA2  
nQA2  
VCC  
QB2  
nQB2  
QB1  
nPCLKA  
QA1  
nQA1  
nPCLKA  
PCLKB  
nPCLKB  
5
6
7
8
9
16  
15  
14  
13  
QA2  
nQA2  
VCC  
nQB0  
QB0 10  
12 nQB1  
11  
VEE  
QB0  
Pulldown  
nQB0  
PCLKB  
ICS853013  
Pullup/Pulldown  
nPCLKB  
QB1  
20-Lead SOIC  
7.5mm x 12.8mm x 2.3mm package body  
nQB1  
M Package  
Top View  
QB2  
nQB2  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
1
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 2  
Output  
Power  
Input  
Differential output pair. LVPECL interface levels.  
Power supply pins.  
nQA0, QA0  
VCC  
3, 8, 16  
4
PCLKA  
Pulldown Non-inverting differential LVPECL clock input.  
Pullup/  
5
6
7
nPCLKA  
PCLKB  
Input  
Input  
Input  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Pulldown  
Pulldown Non-inverting differential LVPECL clock input.  
Pullup/  
nPCLKB  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Pulldown  
9, 10  
11  
Output  
Power  
Output  
Output  
Output  
Output  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
nQB0, QB0  
VEE  
12, 13  
14, 15  
17, 18  
19, 20  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
nQB1, QB1  
nQB2, QB2  
nQA2, QA2  
nQA1, QA1  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
RPULLDOWN Input Pulldown Resistor  
RVCC/2 Pullup/Pulldown Resistors  
Parameter  
Test Conditions  
Minimum  
Typical  
75  
Maximum  
Units  
k  
50  
kΩ  
Function Table  
Table 3. Clock Input Function Table  
Inputs  
Outputs  
PCLKA or PCLKB  
nPCLKA or nPCLKB  
QA0:Q2,  
nQA0:nQA2,  
QB0:QB2 nQB0:nQB2  
Input to Output Mode  
Differential to Differential  
Differential to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Polarity  
0
1
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Inverting  
1
0
0
Biased; NOTE 1  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
Inverting  
NOTE 1: Please refer to the Application Information, Wiring the Differential Input to Accept Single Ended Levels.  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
2
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
5.5V (LVPECL mode, VEE = 0V)  
-5.5V (ECL mode, VCC = 0V)  
-0.5V to VCC + 0.5V  
0.5V to VEE – 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
50mA  
100mA  
Operating Temperature Range, TA  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
-40°C to +85°C  
46.2°C/W (0 lfpm)  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = 2.375V to 5.25V; VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
VCC Positive Supply Voltage  
IEE Power Supply Current  
Test Conditions  
Minimum  
Typical  
Maximum  
5.25  
Units  
V
2.375  
3.3  
60  
mA  
Table 4B. LVPECL DC Characteristics, VCC = 3.3V, VEE = 0V; TA = -40°C to 85°C  
-40°C  
Typ  
25°C  
Typ  
80°C  
Symbol Parameter  
Min  
2.175  
1.405  
2.075  
1.43  
Max  
2.38  
1.68  
2.36  
1.765  
1200  
Min  
2.225  
1.425  
2.075  
1.43  
Max  
2.37  
Min  
2.295  
1.44  
2.075  
1.43  
150  
Typ  
2.33  
Max  
Units  
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
2.275  
1.545  
2.295  
1.52  
2.365  
1.63  
V
V
V
V
V
Output Low Voltage; NOTE 1  
Input High Voltage (Single-ended)  
Input Low Voltage (Single-ended)  
Peak-to-Peak Input Voltage  
1.615  
2.36  
1.535  
2.36  
1.765  
1200  
1.765  
1200  
VPP  
150  
800  
150  
800  
800  
Input High Voltage Common Mode  
Range; NOTE 2, 3  
VCMR  
IIH  
1.2  
3.3  
1.2  
3.3  
1.2  
3.3  
V
Input  
PCLKA, PCLKB  
200  
200  
200  
µA  
High Current nPCLKA, nPCLKB  
PCLKA, PCLKB  
Input  
-10  
-10  
-10  
µA  
µA  
IIL  
Low Current  
nPCLKA, nPCLKB  
-200  
-200  
-200  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC – 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLKx, nPCLKx is VCC + 0.3V.  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
3
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
.Table 4C. LVPECL DC Characteristics, VCC = 2.5V, VEE = 0V; TA = -40°C to 85°C  
-40°C  
Typ  
25°C  
Typ  
80°C  
Typ  
Symbol Parameter  
Min  
1.375  
0.605  
1.275  
0.63  
Max  
1.58  
0.88  
1.56  
0.965  
1200  
Min  
1.425  
0.625  
1.275  
0.63  
Max  
1.57  
Min  
1.495  
0.64  
1.275  
0.63  
150  
Max  
1.565  
0.83  
Units  
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
1.475  
0.745  
1.495  
0.72  
1.53  
V
V
V
V
V
Output Low Voltage; NOTE 1  
Input High Voltage (Single-ended)  
Input Low Voltage (Single-ended)  
Peak-to-Peak Input Voltage  
0.815  
1.56  
0.735  
-0.8  
0.965  
1200  
0.965  
1200  
VPP  
150  
800  
150  
800  
800  
Input High Voltage Common Mode  
Range; NOTE 2, 3  
VCMR  
IIH  
1.2  
2.5  
1.2  
2.5  
1.2  
2.5  
V
Input  
PCLKA, PCLKB  
200  
200  
200  
µA  
High Current nPCLKA, nPCLKB  
PCLKA, PCLKB  
Input  
-10  
-10  
-10  
µA  
µA  
IIL  
Low Current  
nPCLKA, nPCLKB -200  
-200  
-200  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC – 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLKx, nPCLKx is VCC + 0.3V.  
Table 4D. LVPECL DC Characteristics, VCC = 5V, VEE = 0V; TA = -40°C to 85°C  
-40°C  
Typ  
25°C  
Typ  
80°C  
Typ  
Symbol Parameter  
Min  
Max  
Min  
Max  
Min  
Max Units  
VOH  
VOL  
Output High Voltage; NOTE 1  
-1.125 -1.025 -0.92  
-1.895 -1.755 -1.62  
-1.075 -1.005 -0.93  
-1.005  
-0.97 -0.935  
V
V
-1.76  
-1.67  
5
Output Low Voltage; NOTE 1  
-1.875  
-1.78 -1.685  
-1.86  
VIH  
VIL  
Input High Voltage (Single-ended)  
Input Low Voltage (Single-ended)  
Peak-to-Peak Input Voltage  
-1.225  
-1.87  
150  
-0.94  
-1.535  
1200  
-1.225  
-1.87  
150  
-0.94  
-1.225  
-1.87  
150  
-0.94  
V
V
V
-1.535  
-1.535  
VPP  
800  
800  
1200  
0
800  
1200  
0
Input High Voltage Common  
Mode Range; NOTE 2, 3  
VCMR  
IIH  
VEE+1.2  
0
VEE+1.2  
VEE+1.2  
V
Input  
PCLKA, PCLKB  
200  
200  
200  
µA  
High Current nPCLKA, nPCLKB  
PCLKA, PCLKB  
Input  
-10  
-10  
-10  
µA  
µA  
IIL  
Low Current  
nPCLKA, nPCLKB  
-200  
-200  
-200  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC – 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLKx, nPCLKx is VCC + 0.3V.  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
4
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Table 4E. ECL DC Characteristics, VCC = 0V, VEE = -5.25V to -2.375V; TA = -40°C to 85°C  
-40°C  
Typ  
25°C  
Typ  
80°C  
Typ  
Symbol Parameter  
Min  
Max  
Min  
Max  
Min  
-1.005  
-1.86  
-1.225  
-1.87  
150  
Max Units  
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
-1.125 -1.025 -0.92  
-1.895 -1.755 -1.62  
-1.075 -1.005 -0.93  
-0.97 -0.935  
-1.765 -1.67  
-0.94  
V
V
V
V
V
Output Low Voltage; NOTE 1  
Input High Voltage (Single-ended)  
Input Low Voltage (Single-ended)  
Peak-to-Peak Input Voltage  
-1.875  
-1.225  
-1.87  
150  
-1.78 -1.685  
-0.94  
-1.225  
-1.87  
150  
-0.94  
-1.535  
1200  
-1.535  
-1.535  
VPP  
800  
800  
1200  
0
800  
1200  
0
Input High Voltage Common  
Mode Range; NOTE 2, 3  
VCMR  
IIH  
VEE+1.2  
0
VEE+1.2  
VEE+1.2  
V
Input  
PCLKA, PCLKB  
200  
200  
200  
µA  
High Current nPCLKA, nPCLKB  
PCLKA, PCLKB  
Input  
-10  
-10  
-10  
µA  
µA  
IIL  
Low Current  
nPCLKA, nPCLKB  
-200  
-200  
-200  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC – 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLKx, nPCLKx is VCC + 0.3V  
AC Electrical Characteristics  
Table 5. AC Characteristics, VCC = 0V, VEE = -5.25V to -2.375V or; VCC = 2.375V to 5.25V, VEE = 0V; TA = -40°C to 85°C  
-40°C  
Typ  
>2  
25°C  
Typ  
>2  
80°C  
Typ  
>2  
Symbol Parameter  
fMAX Output Frequency  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
GHz  
PropagationDelay;Low-to-High;  
NOTE 1  
tPLH  
300  
300  
410  
410  
510  
510  
330  
330  
425  
425  
520  
520  
360  
360  
465  
465  
570  
570  
ps  
ps  
PropagationDelay;High-to-Low;  
NOTE 1  
tPHL  
tsk(o)  
Output Skew; NOTE 2, 4  
40  
40  
40  
40  
40  
40  
ps  
ps  
ps  
tsk(odc) Output Duty Cycle Skew  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
250  
250  
250  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jjitter Section  
tjit  
0.03  
180  
0.03  
180  
0.03  
180  
ps  
ps  
Output  
tR / tF  
20% to 80%  
Rise/Fall Time  
120  
250  
120  
250  
120  
250  
All parameters are measured at f 1GHz, unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions.  
Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
5
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Additive Phase Jitter  
The spectral purity in a band at a specific offset from the  
to the power in the fundamental. When the required offset is  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz band  
specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
0
-10  
-20  
-30  
Additive Phase Jitter @ 156.25MHz  
= 0.03ps (typical)  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
Offset Frequency (Hz)  
As with most timing specifications, phase noise measurements  
has issues relating to the limitations of the equipment. Often the  
noise floor of the equipment is higher than the noise floor of the  
device. This is illustrated above. The device meets the noise floor  
of what is shown, but can actually be lower. The phase noise is  
dependent on the input source and measurement equipment.  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
6
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Parameter Measurement Information  
2V  
V
CC  
SCOPE  
nPCLKx  
VCC  
Qx  
VPP  
VCMR  
Cross Points  
PCLKx  
LVPECL  
nQx  
VEE  
V
EE  
-3.25V to -0.375V  
LVPECL Output Load AC Test Circuit  
Differential Input Level  
nQx  
Qx  
Part 1  
nQx  
Qx  
nQy  
Part 2  
nQy  
Qy  
Qy  
tsk(o)  
tsk(pp)  
Part-to-Part Skew  
Output Skew  
nPCLKx  
PCLKx  
80%  
tF  
80%  
VSWING  
20%  
Clock  
20%  
nQA[0:2],  
nQB[0:2]  
Outputs  
tR  
QA[0:2],  
QB[0:2]  
tpLH  
tpHL  
Output Rise/Fall Time  
Propagation Delay  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
7
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Parameter Measurement Information, continued  
nPCLKx  
PCLKx  
nQA[0:2],  
nQB[0:2]  
QA[0:2],  
QB[0:2]  
tpLH  
tpHL  
tsk(odc) = tpLH - tpHL  
Output Duty Cycle Skew  
Application Information  
Wiring the Differential Input to Accept Single-ended LVCMOS Levels  
Figure 1 shows an example of the differential input that can be  
wired to accept single-ended LVCMOS levels. The reference  
voltage level VBB generated from the device is connected to the  
negative input. The C1 capacitor should be located as close as  
possible to the input pin.  
VCC  
R1  
1K  
Single Ended Clock Input  
PCLKx  
V_REF  
nPCLKx  
C1  
0.1u  
R2  
1K  
Figure 1. Single-Ended LVCMOS Signal Driving Differential Input  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
8
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
LVPECL Clock Input Interface  
The PCLK/nPCLK accepts LVPECL, LVDS, CML, SSTL and other  
differential signals. Both VSWING and VOH must meet the VPP and  
VCMR input requirements. Figures 2A to 2F show interface  
examples for the HiPerClockS PCLK/nPCLK input driven by the  
most common driver types. The input interfaces suggested here  
are examples only. If the driver is from another vendor, use their  
termination recommendation. Please consult with the vendor of the  
driver component to confirm the driver termination requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50Ω  
3.3V  
R1  
50  
R2  
50  
Zo = 50Ω  
Zo = 50Ω  
PCLK  
R1  
100  
PCLK  
nPCLK  
Zo = 50Ω  
HiPerClockS  
nPCLK  
CML Built-In Pullup  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
CML  
Figure 2B. HiPerClockS PCLK/nPCLK Input  
Driven by a Built-In Pullup CML Driver  
Figure 2A. HiPerClockS PCLK/nPCLK Input  
Driven by an Open Collector CML Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
R3  
84  
R4  
84  
C1  
C2  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
3.3V LVPECL  
PCLK  
PCLK  
nPCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
LVPECL  
R1  
125  
R2  
125  
R1  
84  
R2  
84  
Figure 2D. HiPerClockS PCLK/nPCLKInput Driven by  
a 3.3V LVPECL Driver with AC Couple  
Figure 2C. HiPerClockS PCLK/nPCLK Input  
Driven by a 3.3V LVPECL Driver  
3.3V  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
R3  
1k  
R4  
1k  
R3  
R4  
Zo = 50Ω  
Zo = 50Ω  
120  
120  
C1  
C2  
Zo = 60Ω  
Zo = 60Ω  
PCLK  
PCLK  
R5  
100  
nPCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
LVDS  
HiPerClockS  
PCLK/nPCLK  
SSTL  
R1  
1k  
R2  
1k  
R1  
120  
R2  
120  
Figure 2F. HiPerClockS PCLK/nPCLK Input  
Driven by a 3.3V LVDS Driver  
Figure 2E. HiPerClockS PCLK/nPCLK Input  
Driven by an SSTL Driver  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
9
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Recommendations for Unused Output Pins  
Inputs:  
Outputs:  
PCLK/nPCLK INPUTS  
LVPECL Outputs  
For applications not requiring the use of a differential input, both  
the PCLK and nPCLK pins can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied  
from PCLK to ground. For applications  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
LVCMOS Control Pins  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
Figure 3A. 3.3V LVPECL Output Termination  
Figure 3B. 3.3V LVPECL Output Termination  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
10  
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Termination for 2.5V LVPECL Outputs  
Figure 4A and Figure 4B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50to VCC – 2V. For VCC = 2.5V, the VCC – 2V is very close to  
ground level. The R3 in Figure 4B can be eliminated and the  
termination is shown in Figure 4C.  
2.5V  
VCC = 2.5V  
2.5V  
2.5V  
VCC = 2.5V  
R1  
R3  
50Ω  
250  
250  
+
50Ω  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
2.5V LVPECL Driver  
R2  
62.5  
R4  
62.5  
R3  
18  
Figure 4A. 2.5V LVPECL Driver Termination Example  
Figure 4B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCC = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
Figure 4C. 2.5V LVPECL Driver Termination Example  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
11  
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Termination for 5V LVPECL Outputs  
This section shows examples of 5V LVPECL output termination.  
Figure 5A shows standard termination for 5V LVPECL. The  
termination requires matched load of 50resistors pull down to  
VCC – 2V = 3V at the receiver. Figure 5B shows Thevenin  
equivalence of Figure 5A. In actual application where the 3V DC  
power supply is not available, this approached is normally used.  
5V  
5V  
5V  
5V  
R3  
84  
R4  
84  
PECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
PECL  
PECL  
R1  
125  
R2  
125  
R1  
50  
R2  
50  
3V  
Figure 5A. 5V LVPECL Driver Termination Example  
Figure 5B. 5V LVPECL Driver Termination Example  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
12  
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS853013.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853013 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 5.25V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 5.25V * 60mA = 315mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 6 * 30.94mW = 185.64mW  
Total Power_MAX (3.8V, with all outputs switching) = 315mW + 185.64mW = 500.64mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 46.2°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.501W * 46.2°C/W = 108.1°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 6. Thermal Resistance θJA for 20 Lead SOIC Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
65.7°C/W  
39.7°C/W  
57.5°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
13  
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50Ω  
VCC - 2V  
Figure 6. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage  
of VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.935V  
(VCC_MAX – VOH_MAX) = 0.935V  
For logic low, VOUT = VOL_MAX = VCC_MAX – 1.67V  
(VCC_MAX – VOL_MAX) = 1.67V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX– (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.935V)/50] * 0.935V = 19.92mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.67V)/50] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
14  
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 20 Lead SOIC  
θJA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
65.7°C/W  
39.7°C/W  
57.5°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Transistor Count  
The transistor count for ICS853013 is: 226  
Pin compatible with MC100LVEL13 and MC100EL13  
Package Outline and Package Dimensions  
Package Outline - M Suffix for 20 Lead SOIC  
Table 8. Package Dimensions for 20 Lead SOIC  
300 Millimeters  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
A1  
A2  
B
C
D
E
20  
2.65  
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
2.55  
0.51  
0.32  
13.00  
7.60  
e
1.27 Basic  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
7°  
L
α
Reference Document: JEDEC Publication 95, MS-013,  
MS-119  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
15  
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
853013AM  
853013AMT  
853013AMLF  
853013AMLFT  
Marking  
Package  
20 Lead SOIC  
20 Lead SOIC  
Shipping Packaging  
Tube  
1000 Tape & Reel  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS853013AM  
ICS853013AM  
ICS853013AMLF  
ICS853013AMLF  
“Lead-Free” 20 Lead SOIC  
“Lead-Free” 20 Lead SOIC  
1000 Tape & Reel  
NOTE: Parts that are ordered with an “LF” suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT  
product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
16  
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
8
16  
Added Recommendations for Unused Input and Output Pins.  
Ordering Information Table - added Lead-Free marking.  
A
10/19/05  
T8  
T4B  
3
4
4
5
3.3V LVPECL DC Characteristics - changed IIH max. from 150µA to 200µA.  
Changed IIL min. from -150µA to -200µA.  
2.5V LVPECL DC Characteristics - changed IIH max. from 150µA to 200µA.  
Changed IIL min. from -150µA to -200µA.  
5V LVPECL DC Characteristics - changed IIH max. from 150µA to 200µA.  
Changed IIL min. from -150µA to -200µA.  
ECL DC Characteristics - changed IIH max. from 150µA to 200µA.  
Changed IIL min. from -150µA to -200µA.  
T4C  
T4D  
T4E  
B
2/7/08  
9
Updated LVPECL Clock Input Interface Section.  
12  
13  
Added Termination for 5V LVPECL Outputs.  
Power Considerations - updated Junction Temperature equation with worst  
case thermal resistance of 46.2°C/W.  
IDT™ / ICS™ 2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
17  
ICS853013AM REV. B OCTOBER 24, 2008  
ICS853013  
LOW SKEW, DUAL,1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters Asia  
Japan  
Europe  
Integrated Device Technology, Inc. Integrated Device Technology NIPPON IDT KK  
IDT Europe, Limited  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
IDT (S) Pte. Ltd.  
Sanbancho Tokyu, Bld. 7F,  
8-1 Sanbancho  
Chiyoda-ku, Tokyo 102-0075 KT22 7TU  
321 Kingston Road  
Leatherhead, Surrey  
1 Kallang Sector, #07-01/06  
Kolam Ayer Industrial Park  
Singapore 349276  
800 345 7015  
+81 3 3221 9822  
England  
+408 284 8200 (outside U.S.)  
+65 67443356  
Fax: +65 67441764  
Fax: +81 3 3221 9824  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 37885  
idteurope@idt.com  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA