转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
Document Number: MW6IC2420N  
Rev. 3, 12/2010  
Freescale Semiconductor  
Technical Data  
RF LDMOS Integrated  
Power Amplifier  
The MW6IC2420NB integrated circuit is designed with on--chip matching  
that makes it usable at 2450 MHz. This multi--stage structure is rated for 26 to  
32 Volt operation and covers all typical industrial, scientific and medical  
modulation formats.  
MW6IC2420NBR1  
2450 MHz, 20 W, 28 V  
CW  
RF LDMOS INTEGRATED POWER  
AMPLIFIER  
Driver Applications  
Typical CW Performance at 2450 MHz: VDD = 28 Volts, IDQ1 = 210 mA,  
IDQ2 = 370 mA, Pout = 20 Watts  
Power Gain — 19.5 dB  
Power Added Efficiency — 27%  
Capable of Handling 3:1 VSWR, @ 28 Vdc, 2170 MHz, 20 Watts CW  
Output Power  
Stable into a 3:1 VSWR. All Spurs Below --60 dBc @ 100 mW to 10 Watts  
CW Pout  
.
Features  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
and Common Source Scattering Parameters  
On--Chip Matching (50 Ohm Input, DC Blocked, >3 Ohm Output)  
Integrated Quiescent Current Temperature Compensation with  
Enable/Disable Function (1)  
Integrated ESD Protection  
225°C Capable Plastic Package  
RoHS Compliant  
CASE 1329--09  
TO--272 WB--16  
PLASTIC  
In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13 inch Reel  
GND  
DS1  
NC  
NC  
NC  
1
2
3
4
5
16  
15  
GND  
NC  
V
V
DS1  
RF  
V
/
out  
RF  
6
14  
in  
RF  
RF /V  
out DS2  
DS2  
in  
7
8
NC  
GS1  
GS2  
V
V
9
V
V
GS1  
GS2  
Quiescent Current  
Temperature Compensation  
10  
13  
12  
NC  
GND  
V
DS1  
(1)  
GND  
11  
V
DS1  
(Top View)  
Note: Exposed backside of the package is  
the source terminal for the transistors.  
Figure 1. Functional Block Diagram  
Figure 2. Pin Connections  
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control  
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1977 or AN1987.  
© Freescale Semiconductor, Inc., 2007--2010. All rights reserved.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +68  
--0.5, +6  
--65 to +150  
150  
Unit  
Vdc  
Vdc  
°C  
Drain--Source Voltage  
V
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
Input Power  
T
stg  
T
C
°C  
(1,2)  
T
225  
°C  
J
P
23  
dBm  
in  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
θ
°C/W  
JC  
W--CDMA Application  
(P = 4.5 W Avg.)  
out  
Stage 1, 28 Vdc, I = 210 mA  
1.8  
1
DQ  
Stage 2, 28 Vdc, I = 370 mA  
DQ  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
1A (Minimum)  
A (Minimum)  
III (Minimum)  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak  
Temperature  
Unit  
Per JESD 22--A113, IPC/JEDEC J--STD--020  
3
260  
°C  
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
= 210 mA, I = 370 mA,  
DQ2  
Max  
Unit  
Functional Tests (In Freescale Wideband 2110--2170 MHz Test Fixture, 50 ohm system) V = 28 Vdc, I  
DD  
DQ1  
P
= 4.5 W Avg., f1 = 2157.5 MHz, f2 = 2167.5 MHz, 2--Carrier W--CDMA, 3.84 MHz Channel Bandwidth Carriers. ACPR measured in  
out  
3.84 MHz Channel Bandwidth @ ±5 MHz Offset. IM3 measured in 3.84 MHz Channel Bandwidth @ ±10 MHz Offset. Input Signal  
PAR = 8.5 dB @ 0.01% Probability on CCDF.  
Power Gain  
G
25.5  
13.7  
28  
15  
30  
dB  
%
ps  
Power Added Efficiency  
PAE  
IM3  
Intermodulation Distortion  
-- 4 3  
-- 4 6  
-- 1 5  
-- 4 0  
-- 4 3  
-- 1 0  
dBc  
dBc  
dB  
Adjacent Channel Power Ratio  
Input Return Loss  
ACPR  
IRL  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access  
MTTF calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
(continued)  
MW6IC2420NBR1  
RF Device Data  
Freescale Semiconductor  
2
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
= 210 mA, I = 370 mA, 2110--2170 MHz  
DQ2  
Max  
Unit  
Typical Performances (In Freescale Test Fixture, 50 ohm system) V = 28 Vdc, I  
DD  
DQ1  
Video Bandwidth @ 20 W PEP P where IM3 = --30 dBc  
VBW  
MHz  
out  
(Tone Spacing from 100 kHz to VBW)  
IMD3 = IMD3 @ VBW frequency -- IMD3 @ 100 kHz <1 dBc (both  
sidebands)  
30  
Quiescent Current Accuracy over Temperature  
I  
±5  
%
QT  
(1)  
with 18 kGate Feed Resistors (--10 to 85°C)  
Gain Flatness in 30 MHz Bandwidth @ P = 1 W CW  
out  
G
0.2  
2
dB  
F
Average Deviation from Linear Phase in 30 MHz Bandwidth  
Φ
°
@ P = 1 W CW  
out  
Average Group Delay @ P = 1 W CW Including Output Matching  
Delay  
2.8  
18  
ns  
out  
Part--to--Part Insertion Phase Variation @ P = 1 W CW,  
∆Φ  
°
out  
Six Sigma Window  
Table 6. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Typical Performances (In Freescale Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 110 mA, I  
= 370 mA, 2110--2170 MHz  
DQ2  
DD  
DQ1  
Saturated Pulsed Output Power  
P
60  
W
sat  
(8 μsec(on), 1 msec(off))  
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control  
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1977 or AN1987.  
MW6IC2420NBR1  
RF Device Data  
Freescale Semiconductor  
3
V
DS2  
1
2
3
4
5
DUT  
16  
C2  
C11  
V
DS1  
NC 15  
NC  
NC  
C1  
Z3  
Z10  
Z5  
RF  
INPUT  
RF  
OUTPUT  
Z1  
Z2  
Z4  
C6 Z6  
Z7  
Z8  
Z9  
14  
6
C8  
C14  
C15  
C7  
C9  
C10  
7
8
9
NC  
Z11  
Quiescent Current  
Temperature  
Compensation  
V
GS1  
NC 13  
12  
10  
11  
C5  
NC  
NC  
R1  
V
GS  
C4  
C12  
C3  
V
C13  
R2  
GS2  
Z1  
Z2  
Z3, Z8  
Z4  
0.510x 0.054Microstrip  
0.300x 0.054Microstrip  
0.410x 0.054Microstrip  
0.138x 0.237Microstrip  
0.086x 0.237Microstrip  
Z6  
Z7  
Z9  
Z10, Z11  
PCB  
0.189x 0.237Microstrip  
0.127x 0.054Microstrip  
0.182x 0.054Microstrip  
1.073x 0.054Microstrip  
Z5  
Taconic RF35, 0.020, ε = 3.5  
r
Figure 3. MW6IC2420NBR1 Test Circuit Schematic — 2450 MHz  
Table 7. MW6IC2420NBR1 Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
C32225X5R1H225MT  
C1206C104K1KAC  
08051J0R5BS  
Manufacturer  
C1, C2, C3, C4  
2.2 μF Chip Capacitors  
TDK  
Kemet  
AVX  
C5, C13  
C6, C7  
C8  
100 nF Chip Capacitors  
0.5 pF Chip Capacitors  
6.8 pF Chip Capacitor  
08051J6R8BS  
AVX  
C9  
2.2 pF Chip Capacitor  
08051J2R2BS  
AVX  
C10  
1 pF Chip Capacitor  
08051J1R0BS  
AVX  
C11, C12  
C14  
5.6 pF Chip Capacitors  
0.3 pF Chip Capacitor  
08051J5R6BS  
AVX  
ATC100B0R3BT500XT  
ATC100B0R5BT500XT  
3224W--1--502E  
ATC  
C15  
0.5 pF Chip Capacitor  
ATC  
R1, R2  
5 kPotentiometer CMS Cermet Multi--turn  
Bourns  
MW6IC2420NBR1  
RF Device Data  
Freescale Semiconductor  
4
V
V
DS2  
DS1  
C2  
C11  
C9  
C1  
MW6IC2420  
Rev. 0  
C10  
C6  
C7  
C8  
C14  
C15  
C13  
C5  
C4  
C12  
C3  
R1  
R2  
V
GS  
Figure 4. MW6IC2420NBR1 Test Circuit Component Layout — 2450 MHz  
MW6IC2420NBR1  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS — 2450 MHz  
24  
40  
35  
30  
25  
V
= 32 V  
30 V  
DD  
23  
22  
21  
28 V  
G
ps  
20  
15  
20  
19  
PAE  
28 V  
32 V 30 V  
10  
18  
17  
16  
I
I
= 210 mA  
= 370 mA  
DQ1  
DQ2  
5
0
f = 2450 MHz  
1
10  
, OUTPUT POWER (WATTS) CW  
50  
P
out  
Figure 5. Power Gain and Power Added Efficiency  
versus CW Output Power as a Function of VDD  
22  
40  
35  
30  
25  
21.5  
21  
G
ps  
20.5  
20  
15  
20  
19.5  
V
I
I
= 28 V  
= 210 mA  
= 370 mA  
DD  
DQ1  
DQ2  
10  
19  
18.5  
18  
5
0
PAE  
P
f = 2450 MHz  
0.5  
1
10  
50  
, OUTPUT POWER (WATTS) CW  
out  
Figure 6. Power Gain and Power Added  
Efficiency versus CW Output Power  
9
24  
10  
23  
22  
21  
20  
19  
8
10  
I
= 620 mA  
DQ  
1st Stage  
580 mA  
7
10  
540 mA  
6
10  
2nd Stage  
18  
17  
16  
5
G
10  
ps  
V
= 28 V  
DD  
f = 2450 MHz  
4
10  
0.5  
1
10  
, OUTPUT POWER (WATTS) CW  
50  
90  
110  
130  
150  
170  
190  
210  
230  
250  
P
T , JUNCTION TEMPERATURE (°C)  
J
out  
This above graph displays calculated MTTF in hours when the device  
is operated at V = 28 Vdc, P = 20 W Avg., and PAE = 27%.  
Figure 7. Power Gain and Power Added  
Efficiency versus CW Output Power as a  
Function of Total IDQ  
DD  
out  
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 8. MTTF versus Junction Temperature  
MW6IC2420NBR1  
RF Device Data  
Freescale Semiconductor  
6
Z = 50 Ω  
o
Z
load  
Z
source  
f = 2450 MHz  
f = 2450 MHz  
V
= 28 Vdc, I  
= 210 mA, I = 370 mA, P = 20 W CW  
DQ2 out  
DD  
DQ1  
f
Z
Z
load  
source  
MHz  
2450  
54.8 + j16.6  
0.42 + j4.3  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
=
Test circuit impedance as measured  
from drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 9. Series Equivalent Source and Load Impedance  
MW6IC2420NBR1  
RF Device Data  
Freescale Semiconductor  
7
PACKAGE DIMENSIONS  
MW6IC2420NBR1  
RF Device Data  
Freescale Semiconductor  
8
MW6IC2420NBR1  
RF Device Data  
Freescale Semiconductor  
9
MW6IC2420NBR1  
RF Device Data  
Freescale Semiconductor  
10  
PRODUCT DOCUMENTATION  
Refer to the following documents to aid your design process.  
Application Notes  
AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family  
AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family  
AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
Mar. 2007  
Apr. 2008  
Initial Release of Data Sheet  
Changed 220°C to 225°C in Capable Plastic Package bullet, p. 1  
Added Footnote 1 to Quiescent Current Temperature bullet under Features section and to callout in Fig. 1,  
Functional Block Diagram, p. 1  
Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related  
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 2  
Replaced Case Outline 1329--09, Issue L, with 1329--09, Issue M, p. 8--10. Added pin numbers 1 through  
17.  
2
3
Feb. 2009  
Dec. 2010  
Changed Storage Temperature Range in Max Ratings table from --65 to +200 to --65 to +150 for  
standardization across products, p. 2  
Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification  
number, PCN13232, p. 2  
Corrected data sheet to reflect RF Test Reduction described in Product and Process Change Notification  
number, PCN13232, and Product Discontinuance Notification number, PCN14260, adding applicable  
overlay, p. 1, 2  
MW6IC2420NBR1  
RF Device Data  
Freescale Semiconductor  
11  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2007--2010. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MW6IC2420N  
Rev. 3, 12/2010