转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
R5212D SERIES  
Step-down DC/DC Converter with VR and Reset  
NO.EA-128-0510  
OUTLINE  
The R5212D is CMOS-based PWM step-down DC/DC converter combined with a voltage regulator (VR) and  
a voltage detector (VD), with low supply current.  
Each of these ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a  
soft-start circuit, a current limit circuit, a phase compensation circuit, a resistor net for voltage detect circuit, an  
output driver transistor, and so on. A low ripple, high efficiency step-down DC/DC converter can be easily  
composed of this IC with some external components, or an inductor, a diode, and capacitors.  
The oscillator frequency is 1.2MHz, therefore small inductor and capacitor can be used with this IC. Further,  
this IC equips the under voltage lockout function (UVLO). If the input voltage becomes equal or less than 2.35V  
(Typ.), the output of DC/DC converter turns off. However, in the A/B version, embedded voltage regulator and  
detector continue to operate. In the C/D version, LDO output also turns off and only the voltage detector is  
working.  
The voltage regulator consists of a voltage reference unit, a resistor net for voltage detect circuit, an error  
amplifier, an output driver transistor, and so on.  
The input source voltage of the built-in voltage regulator is VIN pin (A/B version) or VOUT1 pin, the output of  
DC/DC converter (C/D version).  
The built-in voltage detector supervises the input voltage and the output is N-channel open drain.  
Power-on reset delay time is also included and internally set typically at 12ms (A/C version) or 50ms(B/D  
version).  
FEATURES  
Range of Input Voltage ............................. 3.0V~5.5V  
Built-in Soft-start Function (Typ. 1ms) and built-in power-on reset delay (Typ. 12ms or 50ms)  
Maximum Output Current...........................500mA (DC/DC), 200mA (VR)  
Accuracy Output Voltage .......................... ±2.0% (DC/DC and Voltage Regulator Output)  
Accuracy of voltage detector .................... ±2.5%  
Output Voltage (VR)(A/B Version) ............ Stepwise Setting with a step of 0.1V in the range of 2.0V to 3.6V  
(C/D Version)............ Stepwise Setting with a step of 0.1V in the range of 1.2V to 3.0V  
Output Voltage (DC/DC) (A/B Version)..... Stepwise Setting with a step of 0.1V in the range of 1.2V to 3.6V  
(C/D Version)..... Stepwise Setting with a step of 0.1V in the range of 2.5V to 3.6V  
Output Voltage (VD).................................. Stepwise Setting with a step of 0.1V in the range of 3.0V to 4.5V  
Package.................................................... HSON-6 (t=0.9mm)  
APPLICATIONS  
Power source for hand-held communication equipment, CD or DVD drives.  
Power source for battery-powered equipment.  
1
R5212D  
BLOCK DIAGRAMS  
R5212xxxA/B  
VIN  
LX  
6
1
Current Limit  
OSC  
VOUT1  
4
Output Control Logic  
Vref  
Soft Start  
Current Limit  
Vref  
U.V.L.O.  
Delay Circuit  
5
Vref  
VDOUT  
3
VOUT2  
2
GND  
R5212DxxxC/D  
VIN  
6
1
Current Limit  
& Feedback  
OSC  
VOUT1  
4
LX  
Output Control Logic  
Vref  
Soft Start  
Current Limit  
U.V.L.O.  
Vref  
Vref  
Delay Circuit  
5
VOUT2  
3
VDOUT  
2
GND  
2
R5212D  
SELECTION GUIDE  
In the R5212D Series, the output voltage combination for the ICs can be selected at the user’s re-quest.  
The selection can be made with designating the part number as shown below;  
R5212Dxxxx-TR Part Number  
↑ ↑  
a b  
c
Code  
Contents  
a
Output Voltage Combination Code Number  
Designation of Optional Function  
A: VR input pin=VIN pin, VD delay=12ms  
B: VR input pin=VIN pin, VD delay=50ms  
C: VR input pin=DC/DC Output, VD delay=Typ. 12ms  
D: VR input pin=DC/DC Output, VD delay=Typ. 50ms  
b
c
Designation of Taping Type: Refer to Taping specification.  
3
R5212D  
PIN CONFIGURATION  
HSON-6  
Top View  
Bottom View  
6
5
4
4
5
6
1
2
3
3
2
1
PIN DESCRIPTIONS  
Pin No  
Symbol  
LX  
Pin Description  
Switching Pin (P-channel open-drain output type)  
Ground Pin  
Output Pin of Voltage Detector (N-channel open-drain out-put type)  
DC/DC converter Step-down Output monitoring Pin  
Output Pin of Voltage Regulator  
1
2
3
4
5
6
GND  
VDOUT  
VOUT1  
VOUT2  
VIN  
Voltage Supply Pin  
Tab in the  
parts have GND level. (They are connected to the reverse side of this IC.)  
Do not connect to other wires or land patterns.  
ABSOLUTE MAXIMUM RATINGS  
(GND=0V)  
Symbol  
VIN  
Item  
Rating  
6.5  
Unit  
V
V
V
V
VIN Pin Voltage  
Lx Pin Voltage  
VOUT1 Pin Voltage  
VOUT2 Pin Voltage  
VDOUT Pin Voltage  
VLX  
0.3 ~ VIN+0.3  
0.3 ~ VIN+0.3  
0.3 ~ VIN+0.3  
0.3 ~ 6.5  
800  
VOUT1  
VOUT2  
VDOUT  
ILX  
V
Lx Pin Output Current  
VOUT2 Pin Output Current  
Power Dissipation (On Board)  
Operating Temperature Range  
Storage Temperature Range  
mA  
mA  
mW  
°C  
°C  
IOUT2  
PD  
400  
900  
1
Topt  
Tstg  
40 ~ +85  
55 ~ +125  
1 ) For Power Dissipation please refer to PACKAGE INFORMATION to be described.  
4
R5212D  
ELECTRICAL CHARACTERISTICS  
R5212DxxxA  
Topt=25°C  
Symbol  
VIN  
IDD  
VUVLO2  
Item  
Operating Input Voltage  
Supply Current  
Conditions  
Min.  
3.0  
Typ.  
Max.  
5.5  
800  
2.65  
Unit  
V
µA  
V
400  
2.50  
VIN=5.0V, VOUT1=0V  
UVLO Release Voltage  
2.35  
0.05  
UVLO Detector Threshold  
VUVLOHYS  
0.15  
0.25  
V
Voltage Hysteresis  
DC/DC Part  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VOUT1  
VOUT1  
VIN=5.0V, at no load  
VOUT1  
DC/DC Output Voltage  
V
OPEN LOOP  
×0.98  
×1.02  
ppm  
VOUT1/  
DC/DC Output Voltage  
Temperature Coefficient  
40°C Topt 85°C  
±100  
=
=
/°C  
Topt  
fosc  
RLX  
ILXleak  
ILXLIM  
Oscillator Frequency  
Lx on Resistance  
Lx Leakage Current  
Lx Current Limit  
960  
1200  
0.4  
0.01  
800  
1440  
0.8  
5.00  
kHz  
VIN=5.0V  
VIN=5.0V, ILX=100mA  
VIN=VOUT1=5.5V, VLX=0V  
VIN=5.0V  
µA  
mA  
%
600  
100  
0.35  
Maxduty Maximum duty cycle  
Soft-start Time  
tstart  
1.00  
3.00  
ms  
VIN=5.0V  
VR Part  
Topt=25°C  
Symbol  
Item  
Conditions  
VIN=5.0V, IOUT2=10mA  
VIN=5.0V  
Min.  
Typ.  
Max.  
Unit  
VOUT2  
VOUT2  
VOUT2  
VR Output Voltage  
V
×0.98  
×1.02  
IOUT2  
Maximum Output Current of VR  
VR Load Regulation  
200  
mA  
mV  
1VmINAVOUITO2=UT02V 80mA  
VREG2  
20  
60  
=
=
VDIF2  
ILIM2  
Dropout Voltage  
Short Current Limit  
0.2  
50  
0.3  
V
mA  
IOUT2=100mA  
VOUT2=0V  
ppm  
VOUT2/  
VR Output Voltage  
40°C Topt 85°C  
±100  
=
=
Temperature Coefficient  
/°C  
Topt  
VD Part  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VDET  
VDET  
VD Detector Threshold  
V
VDET  
×0.975  
×1.025  
ppm  
∆−VDET/  
VD Detector Threshold  
Temperature Coefficient  
40°C Topt 85°C  
±100  
=
=
/°C  
Topt  
VDET  
×0.05  
12  
VHYS  
Hysteresis Range  
V
VD Output Delay Time for Release  
VDOUT “L” Output Current  
tPLH  
IDOUTL  
3
2
30  
20  
ms  
mA  
VIN=VDOUT=−VDET×0.9 to 5.0  
VIN=2.0V, IOUT=0.1V  
7
5
R5212D  
R5212DxxxB  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
3.0  
Typ.  
Max.  
5.5  
Unit  
V
VIN  
Operating Input Voltage  
IDD  
VUVLO2  
Supply Current  
UVLO Release Voltage  
400  
2.50  
800  
2.65  
VIN=5.0V, VOUT1=0V  
µA  
V
2.35  
0.05  
UVLO Detector Threshold  
VUVLOHYS  
0.15  
0.25  
V
Voltage Hysteresis  
DC/DC Part  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VOUT1  
VOUT1  
VIN=5.0V, at no load  
VOUT1  
DC/DC Output Voltage  
V
OPEN LOOP  
×0.98  
×1.02  
ppm  
VOUT1/  
DC/DC Output Voltage  
Temperature Coefficient  
40°C Topt 85°C  
±100  
=
=
/°C  
Topt  
fosc  
RLX  
ILXleak  
ILXLIM  
Oscillator Frequency  
Lx on Resistance  
Lx Leakage Current  
Lx Current Limit  
960  
1200  
0.4  
0.01  
850  
1440  
0.8  
5.00  
kHz  
VIN=5.0V  
VIN=5.0V, ILX=100mA  
VIN=VOUT1=5.5V, VLX=0V  
VIN=5.0V  
µA  
mA  
%
600  
100  
0.35  
Maxduty Maximum duty cycle  
Soft-start Time  
tstart  
1.00  
3.00  
ms  
VIN=5.0V  
VR Part  
Topt=25°C  
Symbol  
Item  
Conditions  
VIN=5.0V, IOUT2=10mA  
VIN=5.0V  
Min.  
Typ.  
Max.  
Unit  
VOUT2  
VOUT2  
VOUT2  
VR Output Voltage  
V
×0.98  
×1.02  
IOUT2  
Maximum Output Current of VR  
VR Load Regulation  
200  
mA  
mV  
1VmINAVOUITO2=UT02V 80mA  
VREG2  
20  
60  
=
=
VDIF2  
ILIM2  
Dropout Voltage  
Short Current Limit  
0.2  
50  
0.3  
V
mA  
IOUT2=100mA  
VOUT2=0V  
ppm  
VOUT2/  
VR Output Voltage  
40°C Topt 85°C  
±100  
=
=
Temperature Coefficient  
/°C  
Topt  
VD Part  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VDET  
VDET  
VD Detector Threshold  
V
VDET  
×0.975  
×1.025  
ppm  
∆−VDET/  
VD Detector Threshold  
Temperature Coefficient  
40°C Topt 85°C  
±100  
=
=
/°C  
Topt  
VDET  
×0.05  
VHYS  
Hysteresis Range  
V
VD Output Delay Time for  
Release  
VDOUT “L” Output Current  
tPLH  
3
2
12  
7
30  
20  
ms  
VIN=VDOUT=−VDET×0.9 to 5.0  
VIN=2.0V, VDOUT=0.1V  
IDOUTL  
mA  
6
R5212D  
R5212DxxxC  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
3.0  
Typ.  
Max.  
5.5  
Unit  
V
VIN  
Operating Input Voltage  
IDD  
VUVLO2  
Supply Current  
UVLO Release Voltage  
400  
2.50  
800  
2.65  
VIN=5.0V, VOUT1=0V  
µA  
V
2.35  
0.05  
UVLO Detector Threshold  
VUVLOHYS  
0.15  
0.25  
V
Voltage Hysteresis  
DC/DC Part  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VOUT1  
VOUT1  
VIN=5.0V, at no load  
VOUT1  
DC/DC Output Voltage  
V
OPEN LOOP  
×0.98  
×1.02  
ppm  
VOUT1/  
DC/DC Output Voltage  
Temperature Coefficient  
40°C Topt 85°C  
±100  
=
=
/°C  
Topt  
fosc  
RLX  
ILXleak  
ILXLIM  
Oscillator Frequency  
Lx on Resistance  
Lx Leakage Current  
Lx Current Limit  
960  
1200  
0.4  
0.01  
850  
1440  
0.8  
5.00  
kHz  
VIN=5.0V  
VIN=5.0V, ILX=100mA  
VIN=VOUT1=5.5V, VLX=0V  
VIN=5.0V  
µA  
mA  
%
600  
100  
0.35  
Maxduty Maximum duty cycle  
Soft-start Time  
tstart  
1.00  
3.00  
ms  
VIN=5.0V  
VR Part  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VOUT2  
VOUT2  
VOUT1=3.3V  
VOUT2  
VR Output Voltage  
V
×0.98  
×1.02  
IOUT2=10mA  
IOUT2  
Maximum Output Current of VR  
VR Load Regulation  
200  
mA  
mV  
VIN=5.0V  
1VmINAVOUITO2=UT02V 80mA  
VREG2  
20  
60  
=
=
VDIF2  
ILIM2  
Dropout Voltage  
Short Current Limit  
0.2  
50  
0.3  
V
mA  
IOUT2=100mA  
VOUT2=0V  
ppm  
VOUT2/  
VR Output Voltage  
40°C Topt 85°C  
±100  
=
=
Temperature Coefficient  
/°C  
Topt  
VD Part  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VDET  
VDET  
VD Detector Threshold  
V
VDET  
×0.975  
×1.025  
ppm  
∆−VDET/  
VD Detector Threshold  
Temperature Coefficient  
40°C Topt 85°C  
±100  
=
=
/°C  
Topt  
VDET  
×0.05  
VHYS  
Hysteresis Range  
V
VD Output Delay Time  
for Release  
VDOUT “L” Output Current  
tPLH  
3
2
12  
7
30  
20  
ms  
VIN=VDOUT=−VDET×0.9 to 5.0  
VIN=2.0V, VDOUT=0.1V  
IDOUTL  
mA  
7
R5212D  
R5212DxxxD  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
3.0  
Typ.  
Max.  
5.5  
Unit  
V
VIN  
Operating Input Voltage  
IDD  
VUVLO2  
Supply Current  
UVLO Release Voltage  
400  
2.50  
800  
2.65  
VIN=5.0V, VOUT1=0V  
µA  
V
2.35  
0.05  
UVLO Detector Threshold  
VUVLOHYS  
0.15  
0.25  
V
Voltage Hysteresis  
DC/DC Part  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VOUT1  
VOUT1  
VIN=5.0V, at no load  
VOUT1  
DC/DC Output Voltage  
V
OPEN LOOP  
×0.98  
×1.02  
ppm  
VOUT1/  
DC/DC Output Voltage  
Temperature Coefficient  
40°C Topt 85°C  
±100  
=
=
/°C  
Topt  
fosc  
RLX  
ILXleak  
ILXLIM  
Oscillator Frequency  
Lx on Resistance  
Lx Leakage Current  
Lx Current Limit  
960  
1200  
0.4  
0.01  
850  
1440  
0.8  
5.00  
kHz  
VIN=5.0V  
VIN=5.0V, ILX=100mA  
VIN=VOUT1=5.5V, VLX=0V  
VIN=5.0V  
µA  
mA  
%
600  
100  
0.35  
Maxduty Maximum duty cycle  
Soft-start Time  
tstart  
1.00  
3.00  
ms  
VIN=5.0V  
VR Part  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VOUT2  
VOUT2  
VOUT1=3.3V  
VOUT2  
VR Output Voltage  
V
×0.98  
×1.02  
IOUT2=10mA  
IOUT2  
Maximum Output Current of VR  
VR Load Regulation  
200  
mA  
mV  
VIN=5.0V, VOUT1=3.3V  
1VmINAVOUITO2=UT02V 80mA  
VREG2  
20  
60  
=
=
VDIF2  
ILIM2  
Dropout Voltage  
Short Current Limit  
0.2  
50  
0.3  
V
mA  
IOUT2=100mA  
VOUT2=0V  
ppm  
VOUT2/  
VR Output Voltage  
40°C Topt 85°C  
±100  
=
=
Temperature Coefficient  
/°C  
Topt  
VD Part  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VDET  
VDET  
VD Detector Threshold  
V
VDET  
×0.975  
×1.025  
ppm  
∆−VDET/  
VD Detector Threshold  
Temperature Coefficient  
40°C Topt 85°C  
±100  
=
=
/°C  
Topt  
VDET  
×0.05  
VHYS  
Hysteresis Range  
V
VD Output Delay Time for  
Release  
VDOUT “L” Output Current  
tPLH  
10  
2
50  
7
120  
20  
ms  
VIN=VDOUT=−VDET×0.9 to 5.0  
VIN=2.0V, VDOUT=0.1V  
IDOUTL  
mA  
8
R5212D  
TYPICAL APPLICATION AND APPLICATION HINTS  
R5212Dxxxx  
3
C
1
R
OUT2  
V
OUT2  
V
DOUT  
V
OUT1  
V
IN  
V
1
C
DOUT  
V
GND  
X
L
2
C
1
L
OUT1  
V
1
D
Examples of Components  
Symbol  
Item  
<
(VOUT1  
1.6V)  
LQH43C Series  
VLP5610 Series  
LQH43C Series  
VLP5610 Series  
Murata  
TDK  
Murata  
TDK  
4.7µH  
=
4.7µH  
6.8µH  
6.8µH  
L1  
(VOUT1 > 1.6V)  
D1  
R1  
C1  
C2  
C3  
RB491D(ROHM) or EP05Q03 (Nihon Inter)  
50kΩ  
10µF Ceramic Capacitor  
10µF Ceramic Capacitor  
2.2µF Ceramic Capacitor  
9
R5212D  
When you use these ICs, consider the following issues;  
Set external components as close as possible to the IC and minimize the connection between the components  
and the IC. In particular, a capacitor should be connected to between VIN and GND with the minimum connection.  
Make sufficient grounding, and reinforce supplying. A large switching current may flow through the connection of  
power supply, an inductor and the connection of VOUT1. If the impedance of the connection of power supply or  
ground is high, the voltage level of power supply of the IC fluctuates with the switching current. This may cause  
unstable operation of the IC.  
Use a capacitor with a capacity of 10µF or more for VIN and GND, and with low ESR ceramic type. In terms of  
VOUT1, use a ceramic capacitor with a capacity of 10µF or more. For VOUT2 pin, use a ceramic capacitor with a  
capacitance of 2.2µF or around.  
Choose an inductor that has a small D.C. resistance and large allowable current and which is hard to reach  
magnetic saturation. If the value of inductance of an inductor is extremely small, the ILX , which flows through Lx  
transistor and an inductor, may exceed the absolute maximum rating at the maximum loading.  
Use an inductor with appropriate inductance.  
Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity.  
If the spike noise of Lx pin is too large, make snub circuit (such as serial connection of CR) between Lx and  
GND, then the noise will be reduced. The time constant of the CR depends on the actual PCB, so evaluate it on  
the actual PCB.  
If the load current of the voltage regulator is small, because of the switching noise of DC/DC converter, the  
output voltage of VOUT2 may be large. To avoid this, use the voltage regulator with a load current at least 0.5mA.  
In terms of LDO, the difference between the set output voltage and input voltage should be 0.5V or more,  
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.  
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that  
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their  
respected rated values.  
10  
R5212D  
OPERATION of step-down DC/DC converter and Output Current  
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the  
energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output  
voltage than the input voltage is obtained. The operation will be explained with reference to the following  
diagrams:  
<Basic Circuits>  
<Current through L>  
IL  
ILmax  
i1  
I
OUT  
ILxmin  
topen  
L
Lx Tr  
SD  
VIN  
VOUT  
i2  
CL  
ton  
toff  
t=1/fosc  
Step 1 : Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment,  
IL increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of LX Tr.  
Step 2 : When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax,  
and current IL (=i2) flows.  
Step 3 : IL decreases gradually and reaches ILmin after a time period of topen, and SD turns off,  
provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not  
enough. In this case, IL value is from this ILmin (>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton),  
with the oscillator frequency (fosc) being maintained constant.  
11  
R5212D  
Discontinuous Conduction Mode and Continuous Conduction Mode  
The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the  
same as those when Lx Tr. turns on and when it turns off.  
The difference between ILmax and ILmin, which is represented by I;  
I=ILmaxILmin=VOUT×topen/L=(VINVOUT)×ton/L ........................................................Equation 1  
Where, t=1/fosc=ton+toff  
duty (%)=ton/t×100=ton×fosc×100  
<
topen toff  
=
In Equation A, VOUT×topen/L and (VINVOUT) ×ton/L are respectively shown the change of the current at ON,  
and the change of the current at OFF.  
When the output current (IOUT) is relatively small, topen < toff as illustrated in the above diagram. In this case,  
the energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time  
period of toff, therefore ILmin becomes to zero (ILmin=0). When IOUT is gradually increased, eventually, topen  
becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The  
former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.  
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc  
tonc=t×VOUT/VIN .............................................................................................................Equation 2  
When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode.  
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
When Lx Tr. is “ON”:  
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of LX Tr. is described as RP the direct  
current of the inductor is described as RL. The threshold level of Shottky diode is described as VF.)  
VIN=VOUT+(RP+RL)×IOUT+L×IRP/ton..................................................................................Equation 3  
When Lx Tr. is “OFF”:  
L×IRP/toff=VF+VOUT+RL×IOUT ...........................................................................................Equation 4  
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON,  
DON=(VOUT+VF+RL×IOUT)/(VIN+VFRP×IOUT)......................................................................Equation 5  
Ripple Current is as follows;  
IRP=(VINVOUTRP×IOUTRL×IOUT)×DON/f/L .......................................................................Equation 6  
Wherein, peak current that flows through L, Lx Tr., and SD is as follows;  
ILmax=IOUT+IRP/2...........................................................................................................Equation 7  
Consider ILmax, condition of input and output and select external components.  
ÌThe above explanation is directed to the calculation in an ideal case in continuous mode.  
12  
R5212D  
Timing Chart  
R5212DxxxA/B  
(-VDET+VHYS  
)
-VDET  
V
V
UVLO2  
UVLO1  
V
V
IN Voltage  
Soft-start  
Time  
OUT1 Voltage  
LX  
Voltage  
VD Delay  
for Release  
VD Delay  
for Release  
VDOUT Voltage  
V
OUT2 Voltage  
13  
R5212D  
R5212DxxxC/D  
DET  
HYS  
(-V +V  
)
DET  
-V  
UVLO2  
V
V
UVLO1  
Soft-start  
Time  
IN  
V Voltage  
OUT1  
V
Voltage  
x
L Voltage  
VD Delay  
VD Delay  
For Release  
For Release  
DOUT  
V
Voltage  
OUT2  
V
Voltage  
The timing chart which is shown in the previous page describes the relation of supply voltage changes with  
time and each output of DC/DC converter, voltage detector, and voltage regulator.  
(1) DC/DC converter  
When the power turns on and in the case of rising the VIN voltage, while the VIN voltage is at UVLO release  
level (VUVLO2) or less, the operation of the DC/DC converter stops and does not make switching, therefore VOUT1  
voltage does not rise.  
When the VIN voltage becomes UVLO release level or more, the DC/DC converter starts soft-start operation,  
and start switching, then VOUT1 will rise. After the soft-start time, if VIN voltage becomes set VOUT1 level or more,  
VOUT1 will be settled at VOUT1 set output voltage. If VIN voltage becomes UVLO detector threshold level (VUVLO1) or  
less, the DC/DC converter stops switching then Lx transistor in the IC turns off.  
(2) Voltage Detector  
If the VIN voltage is at VD detector threshold level or less, the N-channel transistor of VDOUT pin turns on and  
outputs “L” to VDOUT pin. Then, when the VIN voltage becomes VD detector threshold level + its hysteresis range  
(VDET +VHYS ) or more, after VD delay for release (tPLH) passing, the N-channel transistor inside the IC turns off,  
VDOUT pin voltage reaches to the pull-up voltage. Besides, the release circuit for VD starts from when VIN voltage  
reaches (VDET +VHYS ).  
14  
R5212D  
(3)Voltage Regulator  
R5212DxxxA/B  
The voltage regulator always operates even if UVLO function would work. Therefore, VOUT2 voltage is nearly  
equal to VIN voltage. Actual value depends on the load current. When the VIN voltage becomes set VOUT2 voltage  
or more, VOUT2 voltage will be the set output voltage. The short current limit can operate after soft-start time.  
R5212DxxxC/D  
VOUT1 voltage is the input voltage for the built-in LDO, when the VOUT1 voltage is equal or less than VOUT2 set  
voltage, VOUT2 voltage is depending on the load current for VOUT2, however almost same as VOUT1 Voltage. When  
the VOUT1 voltage is equal or more than set VOUT2 voltage, VOUT2 voltage becomes the set output voltage. Short  
Current Limit works after soft-start operation.  
TEST CIRCUITS  
OSCILLOSCOPE  
VIN  
VIN  
LX  
A
VOUT1  
VOUT1  
GND  
GND  
Supply Current  
UVLO Detector Threshold/ Released Voltage  
VIN  
L
X
VIN  
LX  
A
VOUT1  
VOUT1  
V
GND  
GND  
Lx Leakage Current  
Lx On Resistance  
OSCILLOSCOPE  
OSCILLOSCOPE  
V
IN  
LX  
VIN  
LX  
V
V
OUT1  
OUT2  
VOUT1  
GND  
GND  
Lx Current Limit  
VOUT1 Output Voltage  
15  
R5212D  
OSCILLOSCOPE  
OSCILLOSCOPE  
V
OUT1  
VIN  
LX  
VOUT1  
GND  
Oscillator Frequency, Soft-start Time  
V
IN  
LX  
VIN  
LX  
VOUT1  
V
OUT1  
VOUT2  
GND  
VDOUT  
GND  
V
I
OUT2  
OSCILLOSCOPE  
VOUT2 Output Voltage, Load Regulation, Dropout  
Voltage, Current Limit, Short Current Limit  
VDOUT Detector Threshold, Hysteresis Range,  
VD Output Delay Time for Release  
VIN  
V
OUT1  
GND VDOUT  
A
VDOUT “L” Output Current  
16  
R5212D  
TYPICAL CHARACTERISTICS  
1) DC/DC Output Voltage vs. Output Current (Topt=25°C)  
R5212D011A  
R5212D014C  
1.63  
1.62  
1.61  
1.60  
1.59  
1.58  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
VIN=4.0V  
VIN=5.0V  
VIN=5.5V  
V
V
V
IN=4.0V  
IN=5.0V  
IN=5.5V  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Output Current IOUT1(mA)  
Output Current IOUT1(mA)  
2) Efficiency vs. Output Current (Topt=25°C)  
R5211D011A  
R5211D014C  
V
OUT1=1.6V  
V
OUT1=3.3V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
IN=4.0V  
IN=5.0V  
IN=5.5V  
V
V
V
IN=4.0V  
IN=5.0V  
IN=5.5V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current IOUT1(mA)  
Output Current IOUT1(mA)  
3) VR Output Voltage vs. Output Current (Topt=25°C)  
R5212D011A  
R5212D011A  
VIN=5V  
VIN=5V  
2.65  
2.63  
2.61  
2.59  
2.57  
2.55  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
50  
100  
150  
200  
0
100  
200  
300  
400  
500  
Output Current IOUT2(mA)  
Output Current IOUT2(mA)  
17  
R5212D  
R5212D011A  
VIN=5V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-40°C  
25°C  
85°C  
0
100  
200  
300  
400  
500  
Output Current IOUT2(mA)  
4) DC/DC Output Voltage vs. Temperature  
R5212D011A  
5) VR Output Voltage vs. Temperature  
R5212D011A  
VIN=5V OpenLooP  
VIN=5V IOUT2=10mA  
1.70  
1.65  
1.60  
1.55  
1.50  
2.70  
2.65  
2.60  
2.55  
2.50  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
6) VD Detector Threshold vs. Temperature  
R5212D011A  
7) VD Released Delay Time vs. Temperature  
R5212D  
VIN=5V  
50  
45  
40  
35  
30  
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
B/D version  
25  
20  
15  
10  
5
A/C version  
50  
0
-50  
0
50  
100  
-50  
0
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
18  
R5212D  
8) Soft-start time vs. Temperature  
R5212D011A  
9)Frequency vs. Temperature  
R5212D011A  
VIN=5V  
VIN=5V  
2.0  
1.5  
1.0  
0.5  
0.0  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
10) Supply Current vs. Temperature  
R5212D011A  
11) ON Resistance vs. Temperature  
R5212D011A  
VIN=5V  
VIN=5V  
400  
380  
360  
340  
320  
300  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
12) UVLO Released Voltage vs. Temperature 13) Lx Current Limit vs. Temperature  
R5212D011A  
R5212D011A  
VIN=5V  
2.70  
2.60  
2.50  
2.40  
2.30  
1000  
900  
800  
700  
600  
500  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
19  
R5212D  
14) Soft-start Output Waveform (Topt=25°C)  
R5212D011A  
V
IN=5V  
10  
8
6
4
2
0
V
IN  
6
V
V
OUT2  
OUT1  
4
2
0
-0.5  
0
0.5  
1
1.5  
2
Time (ms)  
15) VD Released Delay Waveform (Topt=25°C)  
R5212D011A  
15  
10  
5
10  
5
V
IN  
0
V
DOUT  
0
-10  
-5  
0
5
10  
Time (ms)  
15  
20  
25  
30  
16) DC/DC Load Transient Response 1 (Topt=25°C)  
R5212D011A  
L=4.7µH, C1=C2=10µF, VIN=5V  
1.7  
1000  
800  
600  
400  
200  
0
V
OUT1  
1.6  
1.5  
1.4  
1.3  
1.2  
I
OUT1:10mA200mA  
-20  
0
20  
40  
60  
80  
100  
Time (µs)  
20  
R5212D  
R5212D014C  
L=10µH, C1=C2=10µF, VIN=5V  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
1000  
800  
600  
400  
200  
0
V
OUT1  
IOUT1:10mA200mA  
-20  
0
20  
40  
60  
80  
100  
Time (µs)  
R5212D011A  
L=4.7µH, C1=C2=10µF, VIN=5V  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1000  
800  
600  
400  
200  
0
V
OUT1  
I
OUT1:200mA10mA  
-100  
0
100  
200  
300  
400  
Time (µs)  
R5212D014C  
L=10µH, C1=C2=10µF VIN=5V  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
1000  
800  
600  
400  
200  
0
V
OUT1  
IOUT1:200mA10mA  
-100  
0
100  
200  
300  
400  
600  
700  
800  
Time (µs)  
21  
R5212D  
17) VR Load Transient Response (Topt=25°C)  
R5212D011A  
C1=C2=10µF, C3=2.2µF VIN=5V  
2.63  
2.62  
2.61  
2.60  
2.59  
2.58  
2.57  
2.56  
2.55  
2.54  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
OUT2:10mA150mA  
-4  
-2  
0
2
4
6
8
10  
Time (µs)  
18) DC/DC, VR Ripple Waveform (C=10µF, VIN=5V, IOUT1=280mA, IOUT2=150mA, Topt=25°C)  
R5212D011A  
L=4.7µH, VOUT1=1.6V, VOUT2=2.6V  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DC/DC  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VR  
-10  
-20  
-30  
-0.5  
0
0.5  
1
1.5  
2
Time (µs)  
R5212D014C  
L=10µH, VOUT1=3.3V, VOUT2=2.5V  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
DC/DC  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VR  
-0.5  
0
0.5  
1
1.5  
2
Time (µs)  
22  
R5212D  
19) DC/DC Output Voltage vs. Input Voltage (Topt=25°C)  
R5212D011A  
R5212D014C  
IOUT1=10mA  
IOUT1=10mA  
1.62  
1.61  
1.60  
1.59  
1.58  
3.31  
3.30  
3.29  
3.28  
3.27  
3
3.5  
4
4.5  
5
5.5  
3.5  
4
4.5  
5
5.5  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
20) VR Output Voltage vs. Input Voltage (Topt=25°C)  
R5212D011A  
IOUT2=10mA  
2.65  
2.63  
2.61  
2.59  
2.57  
2.55  
3
3.5  
4
4.5  
5
5.5  
Input Voltage VIN(V)  
23  
PE-HSON-6-0510  
PACKAGE INFORMATION  
HSON-6  
Unit: mm  
PACKAGE DIMENSIONS  
2.9 0.2  
(1.5)  
0.5TYP  
4
6
3
1
Bottom View  
Attention: Tabs or Tab suspension leads in the  
parts have VDD or GND level.(They are  
connected to the reverse side of this IC.)  
Refer to PIN DESCRIPTIONS.  
0.1  
0.1  
0.95  
Do not connect to other wires or land patterns.  
0.3 0.1  
M
TAPING SPECIFICATION  
4.0 0.1  
+0.1  
0
1.5  
2.0 0.05  
0.2 0.1  
3.3  
4.0 0.1  
2.0MAX.  
1.1 0.1  
TR  
User Direction of Feed  
TAPING REEL DIMENSIONS  
(1reel=3000pcs)  
11.4 1.0  
9.0 0.3  
2 0.5  
21 0.8  
PE-HSON-6-0510  
PACKAGE INFORMATION  
POWER DISSIPATION (HSON-6)  
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.  
This specification is based on the measurement at the condition below:  
Measurement Conditions  
Standard Land Pattern  
Environment  
Board Material  
Board Dimensions  
Copper Ratio  
Mounting on Board (Wind velocity=0m/s)  
Glass cloth epoxy plactic (Double sided)  
40mm × 40mm × 1.6mm  
Top side : Approx. 50% , Back side : Approx. 50%  
Through-hole  
φ0.5mm × 44pcs  
Measurement Result  
(Topt=25°C,Tjmax=125°C)  
Standard Land Pattern  
900mW  
Free Air  
400mW  
Power Dissipation  
Thermal Resistance  
θja=(12525°C)/0.9W=111°C/W  
250°C/W  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
On Board  
40  
Free Air  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Power Dissipation  
Measurement Board Pattern  
IC Mount Area Unit : mm  
RECOMMENDED LAND PATTERN  
0.35  
0.95  
1.6  
(Unit: mm)  
ME-R5212D-0510  
MARK INFORMATION  
R5212D SERIES MARK SPECIFICATION  
HSON-6  
1
5
4
to : Product Code (refer to Part Number vs. Product Code)  
6
,
: Lot Number  
1
4
2
5
3
6
Part Number vs. Product Code  
Product Code  
Part Number  
1
2
3
4
R5212D011A  
R5212D014C  
R5212D017A  
R5212D016B  
D
D
D
D
1
1
1
1
1
4
7
6
A
C
A
B