转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
EFR32MG24 ワイヤレス SoC ファミリ デー  
タ シート  
EFR32MG24 ワイヤレス SoC MatterOpenThreadZigbee を  
主な機能  
使用したメッシュ IoT ワイヤレス接続に最適です。  
32 ビット ARM® Cortex®-M33、最大動作  
周波数 78.0 MHz  
高性能 2.4 GHz RF消費電流 AI/ML ハードウェクセラレーターSecure Vault  
などの主要機能によりIoT デバイス・メーカーはモートおよびローカルサイバー攻  
撃から安全なスマートで堅牢かつエネルギー効率の高い 製品を作成できます。最大  
78.0 MHz、最大 1536 Flash256 kB RAM で動作する Cortex®-M33 は、将来の成  
長のための余地を残しながら、要求の厳しいアプリケーションのための リソースを提供  
します。  
• 最大 1536 kB のフラッシュと 256 kB の  
RAM  
• 最大 +19.5 dBm 出力パワーの高性能無線  
• 低アクティブ およびスリープ電流の高エ  
ネルギー効率設計  
対象アプリケーションには、以下が含まれます。  
• セキュア・ボールト™  
AI/ML ハードウェア・アクセラレータ  
• スマートホーム - ゲートウェイとハブ、センサー、 スイッチ、ドアロック、スマート  
プラグ  
• 照明 - LED 電球、照明器具  
• ビル・オートメーション - ゲートウェイ、センサー、スイッチ、位置情報サービス  
AI/ML - 予知保全、ガラス破損検出、ウェイクワード 検出  
Core / Memory / Acceleration  
Clock Management  
Energy Management  
Security  
Crypto Acceleration  
HF Crystal  
Oscillator  
HF  
Voltage  
Regulator  
DC-DC  
Converter  
RC Oscillator  
ARM CortexTM M33 processor  
with DSP extensions,  
FPU and TrustZone  
AI/ML Hardware  
Accelerator  
(MVP)  
True Random  
Number Generator  
Flash Program  
Memory  
Fast Startup  
RC Oscillator  
LF  
DPA  
RC Oscillator  
Countermeasures  
Secure Debug  
Authentication  
Power-On  
Reset  
Brown-Out  
Detector  
LDMA  
Controller  
LF Crystal  
Oscillator  
Ultra LF RC  
Oscillator  
ETM  
Debug Interface  
RAM Memory  
Secure Engine  
32-bit bus  
Peripheral Reflex System  
Radio Subsystem  
Serial  
Interfaces  
I/O Ports  
Timers and Triggers  
Analog I/F  
IADC  
ARM CortexTM  
M0+ Radio  
Controller  
USART  
EUSART  
EUSART  
Keypad Scanner  
Timer/Counter  
DEMOD  
IFADC  
AGC  
Protocol Timer  
RX/TX Frontend with  
Integrated 0dBm,  
+10dBm, and +20dBm  
PA  
External  
Interrupts  
ACMP  
Watchdog Timer  
Low Energy Timer  
BUFC RAM  
FRC  
General  
Purpose I/O  
System Real Time  
Counter  
Back-Up Real  
Time Counter  
VDAC  
Pin Reset  
Frequency Synthesizer  
Temperature  
Sensor  
I2C  
MOD  
CRC  
Pulse Counter  
Pin Wakeup  
Lowest power mode with peripheral operational:  
EM0—Active  
EM1—Sleep  
EM2—Deep Sleep  
EM3—Stop  
EM4—Shutoff  
silabs.com | Building a more connected world.  
Copyright © 2022 by Silicon Laboratories  
Rev. 1.0  
EFR32MG24 ワイヤレス SoC ファミリ データ シート  
機能リスト  
1 章 機能リスト  
EFR32MG24 主な 特徴は以下のとおりです。  
低消費電力 ワイヤレス・システム・オンチップ  
MCU 周辺機器の幅広い選択  
DSP 命令と浮動小数点演算ユニットを備えた高性能 32 ビ  
AD コンバータ(IADC)  
ット 78.0 MHz ARM Cortex®-M33 により、効率的な 信号処  
12 ビット(1 Msps)または 16 ビット(76.9 ksps)  
• 一部の OPN は高速 モー最大 2 Mspsよび高精度  
モード(3.8 ksps で最大 16 ビットの ENOB)に対応  
• 最大 1536 kB のフラッシュ・プログラム・メモリ  
• 最大 256 kB RAM のデータ・メモリ  
2.4 GHz 無線操作  
2 × アナログ・コンパレータ (ACMP)  
2 x AD コンバータ (VDAC)  
AI/ML アクセラレーション用マトリッククタプロセッ  
• 最大 32 本の汎用 I/O 力状態保持および非同期割り  
込み付き)  
無線性能  
8 チャネル DMA コントローラ (LDMA)  
-105.4 dBm 感度 (250 kbps O-QPSK DSSS)  
-105.7 dBm 感度(125 kbps GFSK)  
-97.6 dBm 感度(1 Mbps GFSK)  
-94.8 dBm 感度(2 Mbps GFSK)  
• 最大 19.5 dBm TX 電力  
16 チャネリフェラフレックステム (PRS)  
3 x 16 ビットのタイマ/カウンタ、3 つの比較/キャプチ  
/PWM チャネル 付き(TIMER2/3/4)  
3 つの比較/キャプチャ/PWM チャネル を備えた 2 x 32 ビ  
ット タイマ/カウンタ(TIMER0/1)  
2 x 32 ビットのリアルタイム・カウンタ (SYSRTC/  
BURTC)  
低システム•エネルギー消費  
4.4 mA RX 電流(1 Mbps GFSK)  
5.1 mA RX 電流(250 kbps O-QPSK DSSS)  
5 mA TX 電流(0 dBm 出力 パワー)  
19.1 mA TX 電流(10 dBm 出力 パワー)  
156.8 mA TX 電流(19.5 dBm 出力 パワー)  
33.4 μA/MHz(アクティブモード(EM0)で 39.0 MHz )  
• 波形生成用 24 ビット低エネルギー・タイマ (LETIMER)  
16 ビット・パルス・カウンタ、非同期 動作(PCNT)  
2 x ウオッチドッグ・タイマ (WDOG)  
1 x 汎用同期/非同期 レシーバ/トランスミッタ(USART、  
UART/SPI/ SmartCardISO 7816/IrDA/I 対応 2S  
2 x 拡張汎用 同期/非同期レシーバ/トランスミッタ  
EUSARTUART/SPI/ DALI/IrDA 対応  
1.3μA EM2 デ ィープ・スリープ電流(16 kB RAM 保持およ  
LFRCO からの RTCC の実行)  
2 × I2C インターフェイス、SMBus 対応  
サポートされている変調形式  
2 (G)FSK および完全に構成可能な シェーピング  
OQPSK DSSS  
32 kHz スリープ水晶(LFRCO)に代わる高精度モードを備  
えた 低周波数 RC 発振器  
• 最大 6 x 8 のマトリックス 対応のキーパッドスキャナ  
KEYSCAN)  
(G)MSK  
サポートされているプロトコル  
Matter  
• 単一点校正後の精度 +/-1.5°C の ダイ温度センサー  
広範な動作範囲  
OpenThread  
1.71 V 3.8 V 単一電源  
-40 °C 125 °C  
Zigbee  
Bluetooth Low EnergyBLE 5.3)  
Bluetooth Mesh  
パッケージ  
QFN40 5 mm × 5 mm × 0.85 mm  
QFN48 6 mm × 6 mm × 0.85 mm  
• 独自規格 2.4 GHz  
• マルチプロトコル  
セキュア・ボールト  
AES128/192/256ChaCha20-Poly1305SHA-1,  
SHA-2/256/384/512ECDSA+ECDH(P-192P-256、  
P-384P-521)Ed25519Curve25519, J-PAKE, PBKDF2  
用ハードウェア暗号化アクセラレーション  
• 真の乱数発生器 (TRNG)  
ARM® TrustZone®  
• セキュアブート(Root of Trust セキュア ローダー)  
• セキュア・デバッグのロック解除  
DPA 対策  
PUF による安全なキー管理  
• 改ざん防止  
• 安全な認証  
silabs.com | Building a more connected world.  
Rev. 1.0 | 2  
EFR32MG24 Wireless SoC Family Data Sheet  
Ordering Information  
2. Ordering Information  
Table 2.1. Ordering Information  
IADC High-  
Multi  
Max TX  
Power  
Flash  
(kB)  
RAM  
(kB)  
Secure  
Vault  
Speed /  
High-Accu-  
racy  
Vector  
Ordering Code  
GPIO Package / Pinout  
Pro-  
cessor  
EFR32MG24B310F1536IM48-B  
10 dBm  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1024  
1536  
1536  
1024  
1536  
1536  
1536  
1536  
1024  
1024  
1536  
1536  
1024  
1024  
1536  
1536  
1024  
1024  
256  
256  
256  
256  
256  
256  
256  
128  
256  
256  
128  
256  
256  
256  
256  
128  
128  
192  
192  
128  
128  
192  
192  
128  
128  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Mid  
Yes  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
28 QFN48 / ADC  
EFR32MG24B220F1536IM48-B 19.5 dBm  
EFR32MG24B210F1536IM48-B 10 dBm  
EFR32MG24B120F1536IM48-B 19.5 dBm  
EFR32MG24B110F1536IM48-B 10 dBm  
32 QFN48 / Standard  
32 QFN48 / Standard  
28 QFN48 / ADC  
28 QFN48 / ADC  
EFR32MG24B020F1536IM48-B 19.5 dBm  
EFR32MG24B020F1536IM40-B 19.5 dBm  
EFR32MG24B020F1024IM48-B 19.5 dBm  
32 QFN48 / Standard  
26 QFN40 / Standard  
32 QFN48 / Standard  
32 QFN48 / Standard  
26 QFN40 / Standard  
32 QFN48 / Standard  
32 QFN48 / Standard  
26 QFN40 / Standard  
32 QFN48 / Standard  
26 QFN40 / Standard  
28 QFN48 / ADC  
EFR32MG24B010F1536IM48-B  
EFR32MG24B010F1536IM40-B  
EFR32MG24B010F1024IM48-B  
10 dBm  
10 dBm  
10 dBm  
EFR32MG24A420F1536IM48-B 19.5 dBm  
EFR32MG24A420F1536IM40-B 19.5 dBm  
Mid  
EFR32MG24A410F1536IM48-B  
EFR32MG24A410F1536IM40-B  
EFR32MG24A110F1024IM48-B  
10 dBm  
10 dBm  
10 dBm  
Mid  
Mid  
Mid  
EFR32MG24A021F1024IM40-B 19.5 dBm  
EFR32MG24A020F1536IM48-B 19.5 dBm  
EFR32MG24A020F1536IM40-B 19.5 dBm  
EFR32MG24A020F1024IM48-B 19.5 dBm  
EFR32MG24A020F1024IM40-B 19.5 dBm  
Mid  
25 QFN40 / HFCLKOUT  
32 QFN48 / Standard  
26 QFN40 / Standard  
32 QFN48 / Standard  
26 QFN40 / Standard  
32 QFN48 / Standard  
26 QFN40 / Standard  
32 QFN48 / Standard  
26 QFN40 / Standard  
Mid  
Mid  
Mid  
Mid  
EFR32MG24A010F1536IM48-B  
EFR32MG24A010F1536IM40-B  
EFR32MG24A010F1024IM48-B  
EFR32MG24A010F1024IM40-B  
10 dBm  
10 dBm  
10 dBm  
10 dBm  
Mid  
Mid  
Mid  
Mid  
silabs.com | Building a more connected world.  
Rev. 1.0 | 3  
EFR32MG24 Wireless SoC Family Data Sheet  
Ordering Information  
-
EFR32MG24B 020 F 1536 I M 48 BR  
Product Family  
Security  
Features  
Memory  
Size  
Temperature Grade  
Package  
Pins  
Revision  
Tape & Reel  
Field  
Options  
Product Family  
EFR32MG24: Mighty Gecko 24 Family  
Security  
A: Secure Vault Mid  
B: Secure Vault High  
Features [f1][f2][f3]  
• f1  
0: Base Configuration  
1: IADC High-Speed / High-Accuracy Available  
2: Matrix Vector Processor (MVP) Available  
3: IADC High-Speed / High-Accuracy and Matrix Vector Processor (MVP) Available  
4: 256K RAM and Secure Vault – Mid  
• f2  
1: 10 dBm PA Transmit Power  
2: 19.5 dBm PA Transmit Power  
• f3  
0: No feature enabled  
1: High Quality HFCLKOUT Pin Available  
Memory  
F: Flash  
Size  
Memory Size in kBytes  
Temperature Grade  
G: -40 to +85 °C  
I: -40 to +125 °C  
Package  
Pins  
M: QFN  
Number of Package Pins  
B: Revision B  
Revision  
Tape & Reel  
R: Tape & Reel (optional)  
Figure 2.1. Ordering Code Key  
silabs.com | Building a more connected world.  
Rev. 1.0 | 4  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2 Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2.1 Antenna Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2.2 Fractional-N Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . .10  
3.2.3 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2.4 Transmitter Architecture . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2.5 Packet and State Trace . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2.6 Data Buffering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2.7 Radio Controller (RAC). . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2.8 RF Signal Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.3 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . .11  
3.4 Keypad Scanner (KEYSCAN) . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.5 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.5.1 Clock Management Unit (CMU) . . . . . . . . . . . . . . . . . . . . . . .11  
3.5.2 Internal and External Oscillators. . . . . . . . . . . . . . . . . . . . . . .11  
3.6 Counters/Timers and PWM . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.6.1 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.6.2 Low Energy Timer (LETIMER) . . . . . . . . . . . . . . . . . . . . . . .12  
3.6.3 System Real Time Clock with Capture (SYSRTC). . . . . . . . . . . . . . . . .12  
3.6.4 Back-Up Real Time Counter (BURTC) . . . . . . . . . . . . . . . . . . . .12  
3.6.5 Watchdog Timer (WDOG). . . . . . . . . . . . . . . . . . . . . . . . .12  
3.7 Communications and Other Digital Peripherals . . . . . . . . . . . . . . . . . . .12  
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . . . . . . . . . .12  
3.7.2 Enhanced Universal Synchronous/Asynchronous Receiver/Transmitter (EUSART) . . . . .12  
2
3.7.3 Inter-Integrated Circuit Interface (I C) . . . . . . . . . . . . . . . . . . . . .13  
3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . . . . . . . . .13  
3.8 Secure Vault Features . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.8.1 Secure Boot with Root of Trust and Secure Loader (RTSL) . . . . . . . . . . . . .14  
3.8.2 Cryptographic Accelerator. . . . . . . . . . . . . . . . . . . . . . . . .14  
3.8.3 True Random Number Generator . . . . . . . . . . . . . . . . . . . . . .14  
3.8.4 Secure Debug with Lock/Unlock. . . . . . . . . . . . . . . . . . . . . . .14  
3.8.5 DPA Countermeasures. . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.8.6 Secure Key Management with PUF . . . . . . . . . . . . . . . . . . . . .15  
3.8.7 Anti-Tamper . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.8.8 Secure Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.9 Analog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.9.1 Analog to Digital Converter (IADC) . . . . . . . . . . . . . . . . . . . . . .15  
3.9.2 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . . .16  
3.9.3 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . . .16  
silabs.com | Building a more connected world.  
Rev. 1.0 | 5  
3.10 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.10.1 Energy Management Unit (EMU) . . . . . . . . . . . . . . . . . . . . . .17  
3.10.2 Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.10.3 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.10.4 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.11 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . . .18  
3.12 Core, Memory, and Accelerators . . . . . . . . . . . . . . . . . . . . . . .19  
3.12.1 Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.12.2 Memory System Controller (MSC) . . . . . . . . . . . . . . . . . . . . .19  
3.12.3 Linked Direct Memory Access Controller (LDMA) . . . . . . . . . . . . . . . .19  
3.12.4 Matrix Vector Processor (MVP) . . . . . . . . . . . . . . . . . . . . . .19  
3.13 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.14 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.3 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.6 Current Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.6.1 MCU current consumption using DC-DC at 3.0 V input . . . . . . . . . . . . . . .29  
4.6.2 Radio current consumption at 3.0V using DCDC . . . . . . . . . . . . . . . . .32  
4.6.3 MCU current consumption at 3.0 V . . . . . . . . . . . . . . . . . . . . . .34  
4.6.4 Radio current consumption at 3.0V. . . . . . . . . . . . . . . . . . . . . .37  
4.6.5 MCU current consumption at 1.8 V . . . . . . . . . . . . . . . . . . . . . .39  
4.6.6 Radio current consumption at 1.8V. . . . . . . . . . . . . . . . . . . . . .42  
4.7 Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
4.8 Energy Mode Wake-up and Entry Times . . . . . . . . . . . . . . . . . . . . .45  
4.9 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . .46  
4.9.1 RF Transmitter Characteristics . . . . . . . . . . . . . . . . . . . . . . .46  
4.9.2 RF Receiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . .54  
4.10 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
4.10.1 High Frequency Crystal Oscillator (HFXO) . . . . . . . . . . . . . . . . . . .60  
4.10.2 Low Frequency Crystal Oscillator (LFXO) . . . . . . . . . . . . . . . . . . .61  
4.10.3 High Frequency RC Oscillator (HFRCO) . . . . . . . . . . . . . . . . . . .62  
4.10.4 Fast Start-Up RC Oscillator (FSRCO) . . . . . . . . . . . . . . . . . . . .63  
4.10.5 Precision Low Frequency RC Oscillator (LFRCO) . . . . . . . . . . . . . . . .64  
4.10.6 Ultra Low Frequency RC Oscillator (ULFRCO) . . . . . . . . . . . . . . . . .64  
4.11 GPIO Pins (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
4.12 Analog to Digital Converter (IADC) . . . . . . . . . . . . . . . . . . . . . . .67  
4.13 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . . . .73  
4.14 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . . . .75  
silabs.com | Building a more connected world.  
Rev. 1.0 | 6  
4.15 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
4.16 Brown Out Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
4.16.1 DVDD BOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
4.16.2 Low-Energy DVDD BOD . . . . . . . . . . . . . . . . . . . . . . . . .78  
4.16.3 AVDD and IOVDD BODs . . . . . . . . . . . . . . . . . . . . . . . .79  
4.17 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
4.18 USART SPI Main Timing . . . . . . . . . . . . . . . . . . . . . . . . . .80  
4.18.1 USART SPI Main Timing, Voltage Scaling = VSCALE2 . . . . . . . . . . . . . .81  
4.18.2 USART SPI Main Timing, Voltage Scaling = VSCALE1 . . . . . . . . . . . . . .81  
4.19 USART SPI Secondary Timing . . . . . . . . . . . . . . . . . . . . . . . .82  
4.19.1 USART SPI Secondary Timing, Voltage Scaling = VSCALE2 . . . . . . . . . . . .83  
4.19.2 USART SPI Secondary Timing, Voltage Scaling = VSCALE1 . . . . . . . . . . . .83  
4.20 EUSART SPI Main Timing. . . . . . . . . . . . . . . . . . . . . . . . . .84  
4.20.1 EUSART SPI Main Timing, Voltage Scaling = VSCALE2 . . . . . . . . . . . . . .84  
4.20.2 EUSART SPI Main Timing, Voltage Scaling = VSCALE1 . . . . . . . . . . . . . .85  
4.21 EUSART SPI Secondary Timing . . . . . . . . . . . . . . . . . . . . . . .86  
4.21.1 EUSART SPI Secondary Timing, Voltage Scaling = VSCALE2 . . . . . . . . . . . .86  
4.21.2 EUSART SPI Secondary Timing, Voltage Scaling = VSCALE1 . . . . . . . . . . . .87  
4.21.3 EUSART SPI Secondary Timing, Voltage Scaling = VSCALE0 . . . . . . . . . . . .87  
4.22 I2C Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . .88  
4.22.1 I2C Standard-mode (Sm) . . . . . . . . . . . . . . . . . . . . . . . .88  
4.22.2 I2C Fast-mode (Fm) . . . . . . . . . . . . . . . . . . . . . . . . . .89  
4.22.3 I2C Fast-mode Plus (Fm+) . . . . . . . . . . . . . . . . . . . . . . . .90  
4.23 Boot Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
4.24 Crypto Operation Timing for SE Manager API . . . . . . . . . . . . . . . . . . .92  
4.25 Crypto Operation Average Current for SE Manager API. . . . . . . . . . . . . . . .94  
4.26 Matrix Vector Processor (MVP) . . . . . . . . . . . . . . . . . . . . . . . .96  
4.27 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . .97  
4.27.1 Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
4.27.2 RF Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
4.27.3 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . .102  
4.27.4 IADC  
4.27.5 GPIO  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
5. Typical Connections  
. . . . . . . . . . . . . . . . . . . . . . . . . . 1.05  
5.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
5.2 Other Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
6.1 QFN48 / Standard Device Pinout . . . . . . . . . . . . . . . . . . . . . . . 107  
6.2 QFN48 / ADC Device Pinout  
. . . . . . . . . . . . . . . . . . . . . . . .109  
6.3 QFN40 / Standard Device Pinout . . . . . . . . . . . . . . . . . . . . . . . 111  
6.4 QFN40 / HFCLKOUT Device Pinout . . . . . . . . . . . . . . . . . . . . . . 113  
6.5 Alternate Function Table. . . . . . . . . . . . . . . . . . . . . . . . . . 115  
silabs.com | Building a more connected world.  
Rev. 1.0 | 7  
6.6 Analog Peripheral Connectivity  
. . . . . . . . . . . . . . . . . . . . . . 1. 16  
6.7 Digital Peripheral Connectivity . . . . . . . . . . . . . . . . . . . . . . . . 117  
7. QFN40 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 121  
7.1 QFN40 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .121  
7.2 QFN40 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . .123  
7.3 QFN40 Package Marking  
. . . . . . . . . . . . . . . . . . . . . . . . .124  
8. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 125  
8.1 QFN48 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .125  
8.2 QFN48 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . .127  
8.3 QFN48 Package Marking  
. . . . . . . . . . . . . . . . . . . . . . . . .128  
9. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
silabs.com | Building a more connected world.  
Rev. 1.0 | 8  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3. System Overview  
3.1 Introduction  
The EFR32 product family combines an energy-friendly MCU with a high performance radio transceiver. The devices are well suited for  
secure connected IoT multi-protocol devices requiring high performance and low energy consumption. This section gives a short intro-  
duction to the full radio and MCU system. The detailed functional description can be found in the EFR32xG24 Reference Manual.  
A block diagram of the EFR32MG24 family is shown in Figure 3.1 Detailed EFR32MG24 Block Diagram on page 9. The diagram  
shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult  
Ordering Information.  
Radio Subsystem  
Port I/O Configuration  
Digital Peripherals  
IOVDD  
ARM CortexTM M0+  
Radio Controller  
DEMOD  
IFADC  
AGC  
USART  
EUSART  
I2C  
RX/TX Frontend  
with Integrated PA  
BUFC RAM  
FRC  
Port A  
Drivers  
RF2G4_IO  
PAn  
Frequency  
Synthesizer  
MOD  
Port B  
CRC  
PBn  
PCn  
PDn  
Drivers  
LETIMER  
DBUS  
Port  
Mappers  
TIMER  
SYSRTC  
KEYSCAN  
TRNG  
Core and Memory  
Port C  
Drivers  
Reset Management Unit,  
Brown Out and POR  
RESETn  
ARM Cortex-M33 Core  
with Floating Point Unit  
Serial Wire and ETM  
Debug / Programming  
with Debug Challenge I/F  
Port D  
Drivers  
Debug Signals  
(shared w/GPIO)  
Up to 1536 KB ISP Flash  
Program Memory  
A
H
B
A
P
B
CRYPTOACC  
CRC  
Up to 256 KB RAM  
Trust Zone  
Energy Management  
PAVDD  
RFVDD  
IOVDD  
AVDD  
LDMA Controller  
Analog Peripherals  
Voltage  
Monitor  
Watchdog  
Timer  
Internal  
Reference  
Temperature  
Sensor  
DVDD  
bypass  
VREGVDD  
VREGSW  
DC-DC  
Converter  
Voltage  
Regulator  
Clock Management  
ULFRCO  
VDD  
12-20 bit  
ADC  
DECOUPLE  
FSRCO  
LFRCO  
LFXO  
LFXTAL_I  
LFXTAL_O  
HFXTAL_I  
HFXTAL_O  
ACMP  
VDAC  
HFRCO  
HFXO  
Security  
Accelerators  
Crypto  
Acceleration  
Secure Debug  
Authentication  
True Random  
Number Generator  
DPA  
Countermeasures  
Matrix Vector  
Processor  
Secure Engine  
Figure 3.1. Detailed EFR32MG24 Block Diagram  
3.2 Radio  
The EFR32MG24 Wireless SoC features a highly configurable radio transceiver supporting Zigbee, Bluetooth Low Energy and Blue-  
tooth Mesh wireless protocols.  
3.2.1 Antenna Interface  
The 2.4 GHz antenna interface consists of a single-ended pin (RF2G4_IO). The external components for the antenna interface in typi-  
cal applications are shown in the RF Matching Networks section.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 9  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.2.2 Fractional-N Frequency Synthesizer  
The EFR32MG24 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is  
used in receive mode to generate the LO frequency for the down-conversion mixer. It is also used in transmit mode to directly generate  
the modulated RF carrier.  
The fractional-N architecture provides excellent phase noise performance, frequency resolution better than 100 Hz, and low energy  
consumption. The synthesizer’s fast frequency settling allows for very short receiver and transmitter wake up times to reduce system  
energy consumption.  
3.2.3 Receiver Architecture  
The EFR32MG24 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion  
mixer. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital converter (IFADC).  
The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, provid-  
ing flexibility with respect to known interferers at the image frequency.  
The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selec-  
tivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance.  
Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow re-  
ceive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and  
compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by  
block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS).  
A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF chan-  
nel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received  
frame and the dynamic RSSI measurement can be monitored throughout reception.  
3.2.4 Transmitter Architecture  
The EFR32MG24 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls  
phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping  
filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shap-  
ing.  
Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by  
the EFR32MG24. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth be-  
tween devices that otherwise lack synchronized RF channel access.  
3.2.5 Packet and State Trace  
The EFR32MG24 Frame Controller has a packet and state trace unit that provides valuable information during the development phase.  
It features:  
• Non-intrusive trace of transmit data, receive data and state information  
• Data observability on a single-pin UART data output, or on a two-pin SPI data output  
• Configurable data output bitrate / baudrate  
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream  
3.2.6 Data Buffering  
The EFR32MG24 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64  
bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.  
3.2.7 Radio Controller (RAC)  
The Radio Controller controls the top level state of the radio subsystem in the EFR32MG24. It performs the following tasks:  
• Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry  
• Run-time calibration of receiver, transmitter and frequency synthesizer  
• Detailed frame transmission timing, including optional LBT or CSMA-CA  
silabs.com | Building a more connected world.  
Rev. 1.0 | 10  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.2.8 RF Signal Identifier  
When an IoT radio is placed next to a high duty-cycle co-located Wi-Fi radio transmission, IoT radios are blocked from receiving weak  
signals. The RF Signal Identifier feature available on EFR32MG24 devices enables the IoT radio to detect partial 802.15.4 or BLE/BT  
Mesh packets. When a partial packet is detected, the IoT radio can communicate this information to the corresponding Wi-Fi device  
(through serial interface or GPIO asserts), which can consequently halt transmission while the IoT radio waits for a packet retry to be  
received. This helps provide a higher success rate of receiving packets from other devices on the network, when co-located with an  
interfering Wi-Fi radio.  
3.3 General Purpose Input/Output (GPIO)  
EFR32MG24 has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or  
input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO  
pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to  
several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripher-  
als. The GPIO subsystem supports asynchronous external pin interrupts.  
All of the pins on ports A and port B are EM2 capable. These pins may be used by Low-Energy peripherals in EM2/3 and may also be  
used as EM2/3 pin wake-ups. Pins on ports C and D are latched/retained in their current state when entering EM2 until EM2 exit upon  
which internal peripherals could once again drive those pads.  
A few GPIOs also have EM4 wake functionality. These pins are listed in the Alternate Function Table.  
3.4 Keypad Scanner (KEYSCAN)  
A low-energy keypad scanner (KEYSCAN) is included, which can scan up to a 6 x 8 matrix of keyboard switches. The KEYSCAN pe-  
ripheral contains logic for debounce and settling time, allowing it to scan through the switch matrix autonomously in EM0 and EM1, and  
interrupt the processor when a key press is detected. A wake-on-keypress feature is also supported, allowing for the detection of any  
key press down to EM3.  
3.5 Clocking  
3.5.1 Clock Management Unit (CMU)  
The Clock Management Unit controls oscillators and clocks in the EFR32MG24. Individual enabling and disabling of clocks to all periph-  
eral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility  
allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and  
oscillators.  
3.5.2 Internal and External Oscillators  
The EFR32MG24 supports two crystal oscillators and fully integrates four RC oscillators, listed below.  
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing refer-  
ence for the MCU. The HFXO provides excellent RF clocking performance using a 39.0 MHz crystal. The HFXO can also support an  
external clock source such as a TCXO for applications that require an extremely accurate clock frequency over temperature.  
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.  
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The  
HFRCO employs fast start-up at minimal energy consumption combined with a wide frequency range, from 1 MHz to 78 MHz.  
• An integrated fast start-up RC oscillator (FSRCO) that runs at a fixed 20 MHz  
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) for low power operation without an external crystal. Precision mode  
enables periodic recalibration against the 39.0 MHz HFXO crystal to improve accuracy to +/- 500 ppm, suitable for BLE sleep inter-  
val timing.  
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy con-  
sumption in low energy modes.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 11  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.6 Counters/Timers and PWM  
3.6.1 Timer/Counter (TIMER)  
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the  
Peripheral Reflex System (PRS). The core of each TIMER is a 16-bit or 32-bit counter with up to 3 compare/capture channels. Each  
channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In  
compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER  
supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the  
compare registers. In addition some timers offer dead-time insertion.  
See 3.14 Configuration Summary for information on the feature set of each timer.  
3.6.2 Low Energy Timer (LETIMER)  
The unique LETIMER is a 24-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This  
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed  
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of wave-  
forms with minimal software intervention. The LETIMER is connected to the Peripheral Reflex System (PRS), and can be configured to  
start counting on compare matches from other peripherals such as the Real Time Clock.  
3.6.3 System Real Time Clock with Capture (SYSRTC)  
The System Real Time Clock (SYSRTC) is a 32-bit counter providing timekeeping down to EM3. The SYSRTC can be clocked by any  
of the on-board low-frequency oscillators, and it is capable of providing system wake-up at user defined intervals.  
3.6.4 Back-Up Real Time Counter (BURTC)  
The Back-Up Real Time Counter (BURTC) is a 32-bit counter providing timekeeping in all energy modes, including EM4. The BURTC  
can be clocked by any of the on-board low-frequency oscillators, and it is capable of providing system wake-up at user-defined inter-  
vals.  
3.6.5 Watchdog Timer (WDOG)  
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed  
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can  
also monitor autonomous systems driven by the Peripheral Reflex System (PRS).  
3.7 Communications and Other Digital Peripherals  
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)  
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous  
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices sup-  
porting:  
• ISO7816 SmartCards  
• IrDA  
I2S  
3.7.2 Enhanced Universal Synchronous/Asynchronous Receiver/Transmitter (EUSART)  
The Enhanced Universal Synchronous/Asynchronous Receiver/Transmitter supports full duplex asynchronous UART communication  
with hardware flow control, RS-485, and IrDA support. The EUSART also supports high-speed SPI. In EM0 and EM1 the EUSART pro-  
vides a high-speed, buffered communication interface.  
When routed to GPIO ports A or B, the EUSART0 may also be used in a low-energy mode and operate in EM2. A 32.768 kHz clock  
source allows full duplex UART communication up to 9600 baud. EUSART0 can also act as a SPI secondary device in EM2 and EM3,  
and wake the system when data is received from an external bus controller.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 12  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.7.3 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as a main or secondary interface  
and supports multi-drop buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from  
10 kbit/s up to 1 Mbit/s. Bus arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The  
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated trans-  
fers. Automatic recognition of addresses is provided in active and low energy modes. Note that not all instances of I2C are available in  
all energy modes.  
3.7.4 Peripheral Reflex System (PRS)  
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.  
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer periph-  
erals which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT)  
can be applied by the PRS to the signals. The PRS allows peripherals to act autonomously without waking the MCU core, saving pow-  
er.  
3.8 Secure Vault Features  
A dedicated hardware secure engine containing its own CPU enables the Secure Vault functions. It isolates cryptographic functions and  
data from the host Cortex-M33 core, and provides several additional security features. The EFR32MG24 family includes devices with  
Secure Vault High and Secure Vault Mid capabilities, which are summarized in the table below.  
Table 3.1. Secure Vault Features  
Feature  
Secure Vault Mid  
Secure Vault High  
True Random Number Generator (TRNG) Yes  
Yes  
Yes  
Secure Boot with Root of Trust and Secure Yes  
Loader (RTSL)  
Secure Debug with Lock/Unlock  
DPA Countermeasures  
Anti-Tamper  
Yes  
Yes  
Yes  
Yes  
Yes  
Secure Attestation  
Yes  
Secure Key Management  
Symmetric Encryption  
Yes  
• AES 128 / 192 / 256 bit  
• AES 128 / 192 / 256 bit  
• ECB, CTR, CBC, CFB, CCM, GCM,  
CBC-MAC, and GMAC  
• ECB, CTR, CBC, CFB, CCM, GCM,  
CBC-MAC, and GMAC  
• ChaCha20  
Public Key Encryption - ECDSA / ECDH /  
EdDSA  
• p192 and p256  
• p192, p256, p384 and p521  
• Curve25519 (ECDH)  
• Ed25519 (EdDSA)  
Key Derivation  
Hashes  
• ECJ-PAKE p192 and p256  
• ECJ-PAKE p192, p256, p384, and p521  
• PBKDF2  
• HKDF  
• SHA-1  
• SHA-1  
• SHA-2/256  
• SHA-2 256, 384, and 512  
• Poly1305  
silabs.com | Building a more connected world.  
Rev. 1.0 | 13  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.8.1 Secure Boot with Root of Trust and Secure Loader (RTSL)  
The Secure Boot with RTSL authenticates a chain of trusted firmware that begins from an immutable memory (ROM).  
It prevents malware injection, prevents rollback, ensures that only authentic firmware is executed, and protects Over The Air updates.  
For more information about this feature, see AN1218: Series 2 Secure Boot with RTSL.  
3.8.2 Cryptographic Accelerator  
The Cryptographic Accelerator is an autonomous hardware accelerator with Differential Power Analysis (DPA) countermeasures to pro-  
tect keys.  
It supports AES encryption and decryption with 128/192/256-bit keys, ChaCha20 encryption, and Elliptic Curve Cryptography (ECC) to  
support public key operations, and hashes.  
Supported block cipher modes of operation for AES include:  
• ECB (Electronic Code Book)  
• CTR (Counter Mode)  
• CBC (Cipher Block Chaining)  
• CFB (Cipher Feedback)  
• GCM (Galois Counter Mode)  
• CCM (Counter with CBC-MAC)  
• CBC-MAC (Cipher Block Chaining Message Authentication Code)  
• GMAC (Galois Message Authentication Code)  
The Cryptographic Accelerator accelerates Elliptical Curve Cryptography and supports the NIST (National Institute of Standards and  
Technology) recommended curves including P-192, P-256, P-384, and P-521 for ECDH (Elliptic Curve Diffie-Hellman) key derivation,  
and ECDSA (Elliptic Curve Digital Signature Algorithm) sign and verify operations. Also supported is the non-NIST Curve25519 for  
ECDH and Ed25519 for EdDSA (Edwards-curve Digital Signature Algorithm) sign and verify operations.  
Secure Vault also supports ECJ-PAKE (Elliptic Curve variant of Password Authenticated Key Exchange by Juggling) and PBKDF2  
(Password-Based Key Derivation Function 2).  
Supported hashes include SHA-1, SHA-2/256/384/512 and Poly1305.  
This implementation provides a fast and energy efficient solution to state of the art cryptographic needs.  
3.8.3 True Random Number Generator  
The True Random Number Generator module is a non-deterministic random number generator that harvests entropy from a thermal  
energy source. It includes start-up health tests for the entropy source as required by NIST SP800-90B and AIS-31 as well as online  
health tests required for NIST SP800-90C.  
The TRNG is suitable for periodically generating entropy to seed an approved pseudo random number generator.  
3.8.4 Secure Debug with Lock/Unlock  
For obvious security reasons, it is critical for a product to have its debug interface locked before being released in the field.  
In addition, Secure Vault High also provides a secure debug unlock function that allows authenticated access based on public key cryp-  
tography. This functionality is particularly useful for supporting failure analysis while maintaining confidentiality of IP and sensitive end-  
user data.  
For more information about this feature, see AN1190: Series 2 Secure Debug.  
3.8.5 DPA Countermeasures  
The AES and ECC accelerators have Differential Power Analysis (DPA) countermeasures support. This makes it very expensive from a  
time and effort standpoint to use DPA to recover secret keys.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 14  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.8.6 Secure Key Management with PUF  
Key material in Secure Vault High products is protected by "key wrapping" with a standardized symmetric encryption mechanism. This  
method has the advantage of protecting a virtually unlimited number of keys, limited only by the storage that is accessible by the  
Cortex-M33, which includes off-chip storage as well. The symmetric key used for this wrapping and unwrapping must be highly secure  
because it can expose all other key materials in the system. The Secure Vault Key Management system uses a Physically Unclonable  
Function (PUF) to generate a persistent device-unique seed key on power up to dynamically generate this critical wrapping/unwrapping  
key which is only visible to the AES encryption engine and is not retained when the device loses power.  
3.8.7 Anti-Tamper  
Secure Vault High devices provide internal tamper protection which monitors parameters such as voltage, temperature, and electro-  
magnetic pulses as well as detecting tamper of the security sub-system itself. Additionally, 8 external configurable tamper pins support  
external tamper sources, such as enclosure tamper switches.  
For each tamper event, the user is able to select the severity of the tamper response ranging from an interrupt, to a reset, to destroying  
the PUF reconstruction data which will make all protected key materials un-recoverable and effectively render the device inoperable.  
The tamper system also has an internal resettable event counter with programmable trigger threshold and refresh periods to mitigate  
false positive tamper events.  
For more information about this feature, see AN1247: Anti-Tamper Protection Configuration and Use.  
3.8.8 Secure Attestation  
Secure Vault High products support Secure Attestation, which begins with a secure identity that is created during the Silicon Labs man-  
ufacturing process. During device production, each device generates its own public/private keypair and securely stores the wrapped  
private key into immutable OTP memory and this key never leaves the device. The corresponding public key is extracted from the de-  
vice and inserted into a binary DER-encoded X.509 device certificate, which is signed into a Silicon Labs CA chain and then program-  
med back into the chip into an immutable OTP memory.  
The secure identity can be used to authenticate the chip at any time in the life of the product. The production certification chain can be  
requested remotely from the product. This certification chain can be used to verify that the device was authentically produced by Silicon  
Labs. The device unique public key is also bound to the device certificate in the certification chain. A challenge can be sent to the chip  
at any point in time to be signed by the device private key. The public key in the device certificate can then be used to verify the chal-  
lenge response, proving that the device has access to the securely-stored private key, which prevents counterfeit products or imperso-  
nation attacks.  
For more information about this feature, see AN1268: Authenticating Silicon Labs Devices Using Device Certificates.  
3.9 Analog  
3.9.1 Analog to Digital Converter (IADC)  
The IADC is a hybrid architecture combining techniques from both SAR and Delta-Sigma style converters. Flexible controls allow fine-  
tuned performance and speed to meet the needs of a wide variety of applications. Hardware oversampling reduces system-level noise  
over multiple front-end samples. The IADC includes integrated voltage reference options. Inputs are selectable from a wide range of  
sources, including pins configurable as either single-ended or differential.  
The IADC supports three operational modes:  
• Normal Mode (all devices): Flexible speed and performance, 12-16 bits output resolution  
• 11.7 bits ENOB performance at 1 Msps (OSR = 2)  
• 14.3 bits ENOB performance at 76.9 ksps (OSR = 32)  
• High Speed Mode (select devices): Doubles output speed of Normal mode with similar performance, 12-16 bits output resolution  
• 11.7 bits ENOB performance at 2 Msps (OSR = 2)  
• 14.3 bits ENOB performance at 153.8 ksps (OSR = 32)  
• High Accuracy Mode (select devices): Optimized for low-rate, high performance applications, with 20 bit output resolution  
• 16 bits ENOB performance at 3.8 ksps (OSR = 256)  
• 15 bits ENOB performance at 15.3 ksps (OSR = 64)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 15  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.9.2 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is high-  
er. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption  
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The  
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the  
programmable threshold.  
3.9.3 Digital to Analog Converter (VDAC)  
The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500  
ksps, 12-bit converter. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The  
VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consump-  
tion. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all  
energy modes down to and including EM3.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 16  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.10 Power  
The EFR32MG24 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only  
a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator  
can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capaci-  
tor.  
The EFR32MG24 device family includes support for internal supply voltage scaling, as well as two different power domains groups for  
peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.  
3.10.1 Energy Management Unit (EMU)  
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and  
features are available and the amount of current the device consumes. The EMU can also be used to implement system-wide voltage  
scaling and turn off the power to unused RAM blocks to optimize the energy consumption in the target application. The DC-DC regula-  
tor operation is tightly integrated with the EMU.  
3.10.2 Voltage Scaling  
The EFR32MG24 supports supply voltage scaling for the LDO powering DECOUPLE, with independent selections for EM0 / EM1 and  
EM2 / EM3. Voltage scaling helps to optimize the energy efficiency of the system by operating at lower voltages when possible. The  
EM0 / EM1 voltage scaling level defaults to VSCALE2, which allows the core to operate in active mode at full speed. The intermediate  
level, VSCALE1, allows operation in EM0 and EM1 at up to 40 MHz. The lowest level, VSCALE0, can be used to conserve power fur-  
ther in EM2 and EM3. The EMU will automatically switch the target voltage scaling level when transitioning between energy modes.  
3.10.3 DC-DC Converter  
The DC-DC buck converter covers a wide range of load currents, providing high efficiency in energy modes EM0, EM1, EM2 and EM3.  
RF noise mitigation allows operation of the DC-DC converter without significantly degrading sensitivity of radio components. An on-chip  
supply-monitor signals when the supply voltage is low to allow bypass of the regulator via programmable software interrupt. It employs  
soft switching at boot and DCDC regulating-to-bypass transitions to limit the max supply slew-rate and mitigate inrush current.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 17  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.10.4 Power Domains  
Peripherals may exist on one of several independent power domains which are powered down to minimize supply current when not in  
use. Power domains are managed automatically by the EMU.  
The lowest-energy power domain is the "high-voltage" power domain (PDHV), which supports extremely low-energy infrastructure and  
peripherals. Circuits powered from PDHV are always on and available in all energy modes down to EM4.  
The next power domain is the low power domain (PD0), which is further divided to power subsets of peripherals. All PD0 power do-  
mains are shut down in EM4. Circuits powered from PD0 power domains may be available in EM0, EM1, EM2, and EM3.  
Low power domain A (PD0A) is the base power domain for EM2 and EM3 and will always remain on in EM0-EM3. It powers the most  
commonly-used EM2 and EM3-capable peripherals and infrastructure required to operate in EM2 and EM3. Auxiliary PD0 power do-  
mains (PD0B, PD0C, PD0D, PD0E) power additional EM2 and EM3-capable peripherals on demand. If any peripherals on one of the  
auxiliary power domains is enabled, that power domain will be active in EM2 and EM3. Otherwise, the auxiliary PD0 power domains will  
be shut down to reduce current.  
Note: Power domain PD0E is also turned on when peripherals on PD0B, PD0C, or PD0D are used.  
The active power domain (PD1) powers the rest of the device circuitry, including the CPU core and EM0 / EM1 peripherals. PD1 is  
always powered on in EM0 and EM1. PD1 is always shut down in EM2, EM3, and EM4.  
Table 3.2 Peripheral Power Subdomains on page 18 shows the peripherals on the PDHV and PD0x domains. Any peripheral not lis-  
ted is on PD1.  
Table 3.2. Peripheral Power Subdomains  
Always On in EM2/EM3  
Selectively On in EM2/3  
PDHV1  
PD0B2  
PD0C2  
PD0D2  
PD0A  
PD0E  
LFRCO (Non-preci- SYSRTC  
sion Mode)  
LETIMER0  
LFRCO (Precision  
Calibration Mode)  
DEBUG  
GPIO  
LFXO  
FSRCO  
IADC0  
HFRCOEM23  
HFXO  
WDOG0/1  
EUSART0  
I2C0  
KEYSCAN  
PRS  
BURTC  
ULFRCO  
PCNT0  
ACMP0/1  
VDAC0/1  
Note:  
1. Peripherals on PDHV are also available in EM4.  
2. If any of PD0B, PD0C, or PD0D are enabled, PD0E will also be automatically enabled.  
3.11 Reset Management Unit (RMU)  
The RMU is responsible for handling reset of the EFR32MG24. A wide range of reset sources are available, including several power  
supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 18  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.12 Core, Memory, and Accelerators  
3.12.1 Processor Core  
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:  
• ARM Cortex-M33 RISC processor achieving 1.50 Dhrystone MIPS/MHz  
• ARM TrustZone security technology  
• Embedded Trace Macrocell (ETM) for real-time trace and debug  
• Up to 1536 kB flash program memory  
• Up to 256 kB RAM data memory  
• Configuration and event handling of all modules  
• 2-pin Serial-Wire debug interface  
3.12.2 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable  
from both the Cortex-M33 and LDMA. In addition to the main flash array where Program code is normally written the MSC also provides  
an Information block where additional information such as special user information or flash-lock bits are stored. There is also a read-  
only page in the information block containing system and device calibration data. Read and write operations are supported in energy  
modes EM0 Active and EM1 Sleep.  
3.12.3 Linked Direct Memory Access Controller (LDMA)  
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This  
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-  
phisticated operations to be implemented.  
3.12.4 Matrix Vector Processor (MVP)  
The Matrix Vector Processor (MVP) is designed to offload the major computationally intensive floating point operations, particularly ma-  
trixed complex floating point multiplications and additions. The MVP supports the acceleration of the key Angle-of-Arrival (AoA) MUSIC  
(MUltiple SIgnal Classification) algorithm computations, as well as other heavily floating-point computational problems such as Machine  
Learning (ML) or linear algebra.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 19  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.13 Memory Map  
The EFR32MG24 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.  
Figure 3.2. EFR32MG24 Memory Map — Core Peripherals and Code Space  
silabs.com | Building a more connected world.  
Rev. 1.0 | 20  
EFR32MG24 Wireless SoC Family Data Sheet  
System Overview  
3.14 Configuration Summary  
The features of the EFR32MG24 are a subset of the feature set described in the device reference manual. The table below describes  
device specific implementation of the features. Remaining modules support full configuration. Refer to the Energy Modes table in the  
Reference Manual EMU Chapter for a more comprehensive list of energy mode support for all device peripherals.  
Table 3.3. Configuration Summary  
Module  
Lowest Energy Mode  
Configuration  
I2C0  
EM1 - Full functionality  
EM2/31 - Functionality limited to receive address recog-  
nition  
I2C1  
EM1 - Full functionality  
EM2/31  
LETIMER0  
24-bit, 2-channels  
TIMER0  
TIMER1  
TIMER2  
TIMER3  
TIMER4  
EUSART0  
EM1  
32-bit, 3-channels, +DTI  
32-bit, 3-channels, +DTI  
16-bit, 3-channels, +DTI  
16-bit, 3-channels, +DTI  
16-bit, 3-channels, +DTI  
UART, SPI, IrDA, DALI  
EM1  
EM1  
EM1  
EM1  
EM1 - Full high-speed operation, all modes  
EM21 - Low-energy UART operation, 9600 Baud  
EM2/31 - Low-energy SPI secondary receiver  
EUSART1  
USART0  
Note:  
EM1  
EM1  
UART, SPI, IrDA, DALI  
UART, SPI, IrDA, I2S, SmartCard  
1. EM2 and EM3 operation is only supported for digital peripheral I/O on Port A and Port B. All GPIO ports support digital peripheral  
operation in EM0 and EM1.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 21  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
4.1 Electrical Characteristics  
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:  
• Typical values are based on TA=25 °C and all supplies at 3.0 V, by production test and/or technology characterization.  
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output pow-  
er-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.  
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,  
unless stated otherwise.  
Due to on-chip circuitry (e.g., diodes), some EFR32MG24 power supply pins have a dependent relationship with one or more other  
power supply pins. These internal relationships between the external voltages applied to the various EFR32MG24 supply pins are de-  
fined below. Exceeding the below constraints can result in damage to the device and/or increased current draw.  
• VREGVDD and DVDD  
• In systems using the DCDC converter, DVDD (the buck converter output) should not be driven externally and VREGVDD (the  
buck converter input) must be greater than DVDD (VREGVDD ≥ DVDD)  
• In systems not using the DCDC converter, DVDD must be shorted to VREGVDD on the PCB (VREGVDD = DVDD)  
• AVDD, IOVDD: No dependency with each other or any other supply pin. Additional leakage may occur if DVDD remains unpowered  
with power applied to these supplies.  
• DVDD ≥ DECOUPLE  
• PAVDD ≥ RFVDD  
silabs.com | Building a more connected world.  
Rev. 1.0 | 22  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.2 Absolute Maximum Ratings  
Stresses beyond those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of  
the devices at those or any other conditions beyond those indicated in the operation listings of this specification is not implied. Exposure  
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and relia-  
bility data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.  
Table 4.1. Absolute Maximum Ratings  
Parameter  
Symbol  
TSTG  
Test Condition  
Min  
-50  
Typ  
Max  
+150  
3.8  
Unit  
°C  
Storage temperature range  
Voltage on any supply pin1  
Junction temperature  
VDDMAX  
-0.3  
V
TJMAX  
-I grade  
+125  
1.0  
°C  
Voltage ramp rate on any  
supply pin  
VDDRAMPMAX  
V / µs  
Voltage on HFXO pins  
VHFXOPIN  
-0.3  
-0.3  
1.2  
V
V
DC voltage on any GPIO pin VDIGPIN  
VIOVDD  
0.3  
+
DC voltage on RESETn pin2  
VRESETn  
VMAX2G4  
-0.3  
-0.3  
3.8  
1.2  
V
V
DC voltage on RF pin  
RF2G4_IO  
Total current into VDD power IVDDMAX  
lines  
Source  
Sink  
200  
200  
mA  
mA  
Total current into VSS  
ground lines  
IVSSMAX  
Current per I/O pin  
Current for all I/O pins  
Note:  
IIOMAX  
Sink  
50  
50  
mA  
mA  
mA  
mA  
Source  
Sink  
IIOALLMAX  
200  
200  
Source  
1. The maximum supply voltage on VREGVDD is limited under certain conditions when using the DC-DC. See the DC-DC specifica-  
tions for more details.  
2. The RESETn pin has a pull-up device to the DVDD supply. For minimum leakage, RESETn should not exceed the voltage at  
DVDD.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 23  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.3 General Operating Conditions  
Table 4.2. General Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
-I temperature grade 1  
Operating ambient tempera- TA  
ture range  
-40  
+125  
° C  
DVDD supply voltage  
VDVDD  
EM0/1  
1.71  
1.71  
3.0  
3.0  
3.8  
3.8  
V
V
EM2/3/42  
AVDDBODEN=03  
IOVDDxBODEN=03  
AVDD supply voltage  
VAVDD  
1.71  
1.71  
3.0  
3.0  
3.8  
3.8  
V
V
IOVDDx operating supply  
voltage (All IOVDD pins)  
VIOVDDx  
RFVDD operating supply  
voltage  
VRFVDD  
1.71  
2.2  
3.0  
3.0  
VPAVDD  
V
V
DC-DC in regulation4  
VREGVDD operating supply VVREGVDD  
voltage  
3.8  
DC-DC in bypass 60 mA load  
1.8  
3.0  
3.0  
3.8  
3.8  
V
V
DC-DC not in use. DVDD exter-  
nally shorted to VREGVDD  
1.71  
PAVDD operating supply  
voltage  
VPAVDD  
1.71  
1.0  
3.0  
3.8  
V
DECOUPLE output capaci-  
tor5  
CDECOUPLE  
1.0 µF ± 10% X8L capacitor used  
for performance characterization.  
2.75  
µF  
HCLK and SYSCLK frequen- fHCLK  
cy  
VSCALE2, MODE = WS1  
VSCALE2, MODE = WS0  
VSCALE2 or VSCALE1  
VSCALE2  
78  
40  
40  
78  
40  
78  
40  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
PCLK frequency  
fPCLK  
EM01 Group A clock fre-  
quency  
fEM01GRPACLK  
VSCALE1  
EM01 Group C clock fre-  
quency  
fEM01GRPCCLK  
VSCALE2  
VSCALE1  
Radio HCLK frequency6  
External Clock Input  
fRHCLK  
VSCALE2 or VSCALE1  
39.0  
fCLKIN  
VSCALE2 or VSCALE1  
VSCALE2 or VSCALE1  
40  
40  
MHz  
MHz  
DPLL Reference Clock  
fDPLLREFCLK  
silabs.com | Building a more connected world.  
Rev. 1.0 | 24  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. The device may operate continuously at the maximum allowable ambient TA rating as long as the absolute maximum TJMAX is not  
exceeded. For an application with significant power dissipation, the allowable TA may be lower than the maximum TA rating. TA =  
TJMAX - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for  
TJMAX and THETAJA  
.
2. The DVDD supply is monitored by the DVDD BOD in EM0/1 and the LE DVDD BOD in EM2/3/4.  
3. The AVDD and IOVDD enable bits are in the EMU_BOD3SENSE register. These BODs are disabled on reset.  
4. The maximum supply voltage on VREGVDD is limited under certain conditions when using the DC-DC. See the DC-DC specifica-  
tions for more details.  
5. Murata GCM21BL81C105KA58L used for performance characterization. Actual capacitor values can be significantly de-rated  
from their specified nominal value by the rated tolerance, as well as the application's AC voltage, DC bias, and temperature. The  
minimum capacitance counting all error sources should be no less than 0.6 µF.  
6. The recommended radio crystal frequency for the 2.4GHz radio is 39 MHz. The minimum and maximum RHCLK frequency in this  
table represent the design timing limits, which are much wider than the typical crystal tolerance.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 25  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.4 DC-DC Converter  
Test conditions: LDCDC = 2.2 µH (Murata DFE2HCAH2R2MJ0), CDCDC = 4.7 µF (TDK CGA5L3X8R1C475K160AB), VVREGVDD = 3.0 V,  
VOUT = 1.8 V, IPKVAL in EM0/1 modes is set to 150 mA, and in EM2/3 modes is set to 90 mA, unless otherwise indicated.  
Table 4.3. DC-DC Converter  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input voltage range at  
VREGVDD pin  
VVREGVDD  
DCDC in regulation, ILOAD = ILOAD  
MAX1, EM0/EM1 mode  
2.2  
3.8  
V
DCDC in regulation, ILOAD = 5  
1.8  
3.8  
V
mA, EM0/EM1 or EM2/EM3 mode  
Bypass Mode, ILOAD ≤ 60 mA  
Bypass Mode, ILOAD ≤ 120 mA  
1.8  
1.9  
3.8  
3.8  
V
V
Regulated output voltage  
Regulation DC accuracy  
VOUT  
1.8  
V
ACCDC  
VVREGVDD ≥ 2.2 V, Steady state in  
EM0/EM1 mode or EM2/EM3  
mode  
-2.5  
4.0  
%
Regulation total accuracy  
ACCTOT  
All error sources (including DC er-  
rors, overshoot, undershoot)  
-5  
7
%
Steady-state output ripple  
DC line regulation  
VR  
ILOAD = 20 mA in EM0/EM1 mode  
12  
mVpp  
mV/V  
VREG  
ILOAD = ILOAD MAX in EM0/EM1  
mode, VVREGVDD ≥ 2.2 V  
-2.6  
Efficiency  
EFF  
Load current between 100 µA and  
60 mA in EM0/EM1 mode  
90  
89  
60  
%
%
Load current between 10 µA and  
5 mA in EM2/EM3 mode  
DC load regulation  
Output load current  
IREG  
Load current between 100 µA and  
ILOAD MAX in EM0/EM1 mode  
-0.08  
mV/mA  
mA  
ILOAD  
EM0/EM1 mode, DCDC in regula-  
tion, DCDC_EM01CTRL0.IPKVAL  
= 9, Radio not transmitting  
EM0/EM1 mode, DCDC in regula-  
tion, Radio in receive mode  
36  
mA  
mA  
EM0/EM1 mode, DCDC in regula-  
tion, Radio transmitting1  
120  
EM2/EM3 mode, DCDC in regula-  
tion  
5
mA  
mA  
mA  
µF  
Bypass mode, 1.8 V ≤ VVREGVDD  
≤ 3.8 V  
60  
Bypass mode, 1.9 V ≤ VVREGVDD  
≤ 3.8 V  
120  
10  
Nominal output capacitor  
CDCDC  
4.7 µF ± 10% X7R capacitor used  
for performance characterization2  
4.7  
Nominal inductor  
LDCDC  
CIN  
± 20% tolerance  
2.2  
µH  
µF  
Nominal input capacitor  
CDCDC  
silabs.com | Building a more connected world.  
Rev. 1.0 | 26  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Resistance in bypass mode RBYP  
Bypass switch from VREGVDD to  
DVDD, VVREGVDD = 1.8 V  
0.45  
0.69  
Powertrain PFET switch from  
VREGVDD to VREGSW,  
VVREGVDD = 1.8 V  
0.6  
0.9  
Supply monitor threshold  
programming range  
VCMP_RNG  
Programmable in 0.1 V steps  
Supply falling edge trip point  
2
4
2.3  
5
V
%
%
Supply monitor threshold ac- VCMP_ACC  
curacy  
-5  
Supply monitor threshold  
hysteresis  
VCMP_HYST  
Positive hysteresis on the supply  
rising edge referred to the falling  
edge trip point  
Supply monitor response  
time  
tCMP_DELAY  
Supply falling edge at -100 mV /  
µs  
0.6  
µs  
Note:  
1. During radio transmit operations, the RAIL library will place the DCDC into a mode that increases the maximum load current, to  
support higher TX output power supplied from the DCDC converter.  
2. Actual capacitor values can be significantly de-rated from their specified nominal value by the rated tolerance, as well as the ap-  
plication's AC voltage, DC bias, and temperature. The minimum capacitance counting all error sources should be no less than 3.6  
µF.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 27  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.5 Thermal Characteristics  
Table 4.4. Thermal Characteristics  
Package  
Board  
Parameter  
Symbol Test Condition  
ΘJA Still Air  
Value  
Unit  
40QFN  
(5x5mm)  
JEDEC - High  
Thermal Cond.  
(2s2p)1  
Thermal Resistance, Junction  
to Ambient  
29.2  
°C/W  
Thermal Resistance, Junction  
to Board  
ΘJB  
ѰJT  
ѰJB  
ΘJC  
15.2  
0.3  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance, Junction  
to Top Center  
Thermal Resistance, Junction  
to Board  
11.2  
24.6  
No Board  
Thermal Resistance, Junction  
to Case  
Temperature controlled heat sink on  
top of package, all other sides of  
package insulated to prevent heat  
flow.  
48QFN  
(6x6mm)  
JEDEC - High  
Thermal Cond.  
Thermal Resistance, Junction  
to Ambient  
ΘJA  
ΘJB  
ѰJT  
ѰJB  
ΘJC  
Still Air  
27.7  
14.6  
0.69  
11.85  
23.0  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
(2s2p)1  
Thermal Resistance, Junction  
to Board  
Thermal Resistance, Junction  
to Top Center  
Thermal Resistance, Junction  
to Board  
No Board  
Thermal Resistance, Junction  
to Case  
Temperature controlled heat sink on  
top of package, all other sides of  
package insulated to prevent heat  
flow.  
Note:  
1. Based on 4 layer PCB with dimension 3" x 4.5", PCB Thickness of 1.6 mm, per JEDEC. PCB Center Land with 9 Via to top inter-  
nal plane of PCB.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 28  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.6 Current Consumption  
4.6.1 MCU current consumption using DC-DC at 3.0 V input  
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.0 V. DVDD = RFVDD = PAVDD = 1.8 V from DC-  
DC. Voltage scaling level = VSCALE1. TA = 25 °C. Minimum and maximum values in this table represent the worst conditions across  
process variation at TA = 25 °C.  
Table 4.5. MCU current consumption using DC-DC at 3.0 V input  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE  
mode with all peripherals dis-  
abled  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal, CPU  
running Prime from flash,  
VSCALE2  
33.3  
µA/MHz  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal, CPU  
running while loop from flash,  
VSCALE2  
32.8  
49.1  
µA/MHz  
µA/MHz  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal, CPU  
running CoreMark loop from flash,  
VSCALE2  
39 MHz crystal, CPU running  
Prime from flash  
33.9  
33.4  
49.4  
28.1  
31.0  
37.6  
281.8  
22.6  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
39 MHz crystal, CPU running  
while loop from flash  
39 MHz crystal, CPU running  
CoreMark loop from flash  
38 MHz HFRCO, CPU running  
while loop from flash  
26 MHz HFRCO, CPU running  
while loop from flash  
16 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
Current consumption in EM1 IEM1  
mode with all peripherals dis-  
abled  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal,  
VSCALE2  
39 MHz crystal  
38 MHz HFRCO  
26 MHz HFRCO  
16 MHz HFRCO  
1 MHz HFRCO  
24.4  
19.0  
22.0  
28.5  
272.1  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 29  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM2 IEM2_VS  
mode, VSCALE0  
256 kB RAM and full Radio RAM  
retention, RTC running from  
LFXO1  
2.9  
µA  
256 kB RAM and full Radio RAM  
retention, RTC running from  
2.9  
1.3  
1.3  
1.9  
2.7  
1.1  
µA  
µA  
µA  
µA  
µA  
µA  
LFRCO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
LFXO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
LFRCO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
LFRCO in precision mode1  
Current consumption in EM3 IEM3_VS  
mode, VSCALE0  
256 kB RAM and full Radio RAM  
retention, RTC running from  
ULFRCO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
ULFRCO1  
Change in current consump- IEM23_CPUCACHE  
tion if CPU cached unre-  
tained in EM2 or EM3  
-0.06  
-0.01  
µA  
µA  
Change in current consump- IEM23_STATERET  
tion if EM0/1 peripheral  
states unretained in EM2 or  
EM3  
Change in current consump- IEM23_RAM  
tion for retained RAM bank in  
EM2 or EM3  
Per 16 kB RAM bank  
0.11  
0.93  
µA  
µA  
Additional current in EM2 or IPD0B_VS  
EM3 when any peripheral in  
PD0B is enabled2  
Additional current in EM2 or IPD0C_VS  
EM3 when any peripheral in  
0.26  
1.1  
µA  
µA  
µA  
PD0C is enabled2  
Additional current in EM2 or IPD0D_VS  
EM3 when any peripheral in  
PD0D is enabled2  
Additional current in EM2 or IPD0E_VS  
EM3 when any peripheral in  
PD0E is enabled2  
0.09  
Current consumption in EM4 IEM4  
mode  
No BURTC, no LF oscillator  
BURTC with LFXO  
0.25  
0.64  
µA  
µA  
silabs.com | Building a more connected world.  
Rev. 1.0 | 30  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. CPU cache retained, EM0/1 peripheral states retained  
2. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.10.4 Power  
Domains for a list of the peripherals in each power domain. Note that if the PD0B, PD0C, or PD0D domains are enabled, PD0E  
will also automatically be enabled.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 31  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.6.2 Radio current consumption at 3.0V using DCDC  
RF current consumption measured with MCU in EM1, HCLK = 39.0 MHz, and all MCU peripherals disabled. Unless otherwise indica-  
ted, typical conditions are: VREGVDD = IOVDD = 3.0 V. AVDD = DVDD = RFVDD = PAVDD = 1.8 V powered from DCDC. TA = 25 °C.  
Minimum and maximum values in this table represent the worst conditions across process variation at TA = 25 °C.  
Table 4.6. Radio current consumption at 3.0V using DCDC  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
System current consumption IRX_ACTIVE  
in receive mode, active pack-  
et reception  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
4.6  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
4.9  
5.2  
4.7  
mA  
mA  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
5
mA  
mA  
mA  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
5.2  
4.4  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
4.7  
4.9  
5.1  
mA  
mA  
mA  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
5.4  
5.6  
5.1  
mA  
mA  
mA  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
802.15.4 receiving frame, f = 2.4  
GHz, VSCALE1, EM1P (Radio  
clocks only)  
802.15.4 receiving frame, f = 2.4  
GHz, VSCALE1  
5.4  
5.7  
mA  
mA  
802.15.4 receiving frame, f = 2.4  
GHz, VSCALE2  
silabs.com | Building a more connected world.  
Rev. 1.0 | 32  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
System current consumption IRX_LISTEN  
in receive mode, listening for  
packet  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
4.7  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
4.9  
5.2  
4.7  
mA  
mA  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
5
mA  
mA  
mA  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
5.2  
4.3  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
4.6  
4.9  
5.1  
mA  
mA  
mA  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
5.4  
5.7  
5
mA  
mA  
mA  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
802.15.4, f = 2.4 GHz, VSCALE1,  
EM1P (Radio clocks only)  
802.15.4, f = 2.4 GHz, VSCALE1  
802.15.4, f = 2.4 GHz, VSCALE2  
5.3  
5.6  
5
mA  
mA  
mA  
System current consumption ITX  
in transmit mode  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power, VSCALE1  
f = 2.4 GHz, CW, 10 dBm PA, 10  
dBm output power, VSCALE1  
19.1  
mA  
mA  
f = 2.4 GHz, CW, 20 dBm PA,  
19.5 dBm output power,  
VSCALE1, VREGVDD = PAVDD  
= 3.3 V  
156.8  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power, VSCALE2  
5.2  
19.2  
157.2  
mA  
mA  
mA  
f = 2.4 GHz, CW, 10 dBm PA, 10  
dBm output power, VSCALE2  
f = 2.4 GHz, CW, 20 dBm PA,  
19.5 dBm output power,  
VSCALE2, VREGVDD = PAVDD  
= 3.3 V  
silabs.com | Building a more connected world.  
Rev. 1.0 | 33  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.6.3 MCU current consumption at 3.0 V  
Unless otherwise indicated, typical conditions are: AVDD = DVDD = RFVDD = PAVDD = VREGVDD = 3.0 V. DC-DC not used. Voltage  
scaling level = VSCALE1. TA = 25 °C. Minimum and maximum values in this table represent the worst conditions across process varia-  
tion at TA = 25 °C.  
Table 4.7. MCU current consumption at 3.0 V  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE  
mode with all peripherals dis-  
abled  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal, CPU  
running Prime from flash,  
VSCALE2  
47.3  
µA/MHz  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal, CPU  
running while loop from flash,  
VSCALE2  
46.1  
69.5  
µA/MHz  
µA/MHz  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal, CPU  
running CoreMark loop from flash,  
VSCALE2  
39 MHz crystal, CPU running  
Prime from flash  
48.4  
47.1  
69.6  
39.4  
43.6  
52.7  
392.4  
32.2  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
39 MHz crystal, CPU running  
while loop from flash  
39 MHz crystal, CPU running  
CoreMark loop from flash  
38 MHz HFRCO, CPU running  
while loop from flash  
62  
26 MHz HFRCO, CPU running  
while loop from flash  
16 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
1170  
Current consumption in EM1 IEM1  
mode with all peripherals dis-  
abled  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal,  
VSCALE2  
39 MHz crystal  
38 MHz HFRCO  
26 MHz HFRCO  
16 MHz HFRCO  
1 MHz HFRCO  
34.5  
26.8  
30.9  
40.0  
380.0  
49  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
1160  
silabs.com | Building a more connected world.  
Rev. 1.0 | 34  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM2 IEM2_VS  
mode, VSCALE0  
256 kB RAM and full Radio RAM  
retention, RTC running from  
LFXO1  
4.2  
µA  
256 kB RAM and full Radio RAM  
retention, RTC running from  
4.2  
1.8  
1.9  
2.8  
3.9  
1.5  
9.2  
µA  
µA  
µA  
µA  
µA  
µA  
LFRCO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
LFXO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
LFRCO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
LFRCO in precision mode1  
Current consumption in EM3 IEM3_VS  
mode, VSCALE0  
256 kB RAM and full Radio RAM  
retention, RTC running from  
ULFRCO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
ULFRCO1  
2.5  
Change in current consump- IEM23_CPUCACHE  
tion if CPU cached unre-  
tained in EM2 or EM3  
-0.07  
-0.01  
µA  
µA  
Change in current consump- IEM23_STATERET  
tion if EM0/1 peripheral  
states unretained in EM2 or  
EM3  
Change in current consump- IEM23_RAM  
tion for retained RAM bank in  
EM2 or EM3  
Per 16 kB RAM bank  
0.16  
1.4  
µA  
µA  
Additional current in EM2 or IPD0B_VS  
EM3 when any peripheral in  
PD0B is enabled2  
Additional current in EM2 or IPD0C_VS  
EM3 when any peripheral in  
0.39  
1.6  
µA  
µA  
µA  
PD0C is enabled2  
Additional current in EM2 or IPD0D_VS  
EM3 when any peripheral in  
PD0D is enabled2  
Additional current in EM2 or IPD0E_VS  
EM3 when any peripheral in  
PD0E is enabled2  
0.11  
Current consumption in EM4 IEM4  
mode  
No BURTC, no LF oscillator  
BURTC with LFXO  
0.26  
0.64  
457  
0.65  
µA  
µA  
µA  
Current consumption during IRST  
reset  
Hard pin reset held  
silabs.com | Building a more connected world.  
Rev. 1.0 | 35  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. CPU cache retained, EM0/1 peripheral states retained  
2. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.10.4 Power  
Domains for a list of the peripherals in each power domain. Note that if the PD0B, PD0C, or PD0D domains are enabled, PD0E  
will also automatically be enabled.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 36  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.6.4 Radio current consumption at 3.0V  
RF current consumption measured with MCU in EM1, HCLK = 39.0 MHz, and all MCU peripherals disabled. Unless otherwise indica-  
ted, typical conditions are: AVDD = DVDD = IOVDD = RFVDD = PAVDD = 3.0 V. DCDC disabled. TA = 25 °C. Minimum and maximum  
values in this table represent the worst conditions across process variation at TA = 25 °C.  
Table 4.8. Radio current consumption at 3.0V  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in re-  
ceive mode, active packet  
reception  
IRX_ACTIVE  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
7.1  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
7.5  
7.9  
7.2  
mA  
mA  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
7.6  
8
mA  
mA  
mA  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
6.7  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
7.1  
7.4  
7.7  
mA  
mA  
mA  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
8.1  
8.6  
7.8  
mA  
mA  
mA  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
802.15.4 receiving frame, f = 2.4  
GHz, VSCALE1, EM1P (Radio  
clocks only)  
802.15.4 receiving frame, f = 2.4  
GHz, VSCALE1  
8.2  
8.6  
mA  
mA  
802.15.4 receiving frame, f = 2.4  
GHz, VSCALE2  
silabs.com | Building a more connected world.  
Rev. 1.0 | 37  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in re-  
ceive mode, listening for  
packet  
IRX_LISTEN  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
7.1  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
7.5  
7.9  
7.1  
mA  
mA  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
7.5  
7.9  
6.6  
mA  
mA  
mA  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
7
mA  
mA  
mA  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
7.4  
7.7  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
8.2  
8.6  
7.6  
mA  
mA  
mA  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
802.15.4, f = 2.4 GHz, VSCALE1,  
EM1P (Radio clocks only)  
802.15.4, f = 2.4 GHz, VSCALE1  
802.15.4, f = 2.4 GHz, VSCALE2  
8
8.5  
8
mA  
mA  
mA  
Current consumption in  
transmit mode  
ITX  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power, VSCALE2  
f = 2.4 GHz, CW, 10 dBm PA, 10  
dBm output power, VSCALE2  
28.7  
mA  
mA  
f = 2.4 GHz, CW, 20 dBm PA,  
19.5 dBm output power,  
159.3  
VSCALE2, PAVDD = 3.3 V  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power, VSCALE1  
7.8  
28.4  
160  
mA  
mA  
mA  
f = 2.4 GHz, CW, 10 dBm PA, 10  
dBm output power, VSCALE1  
f = 2.4 GHz, CW, 20 dBm PA,  
19.5 dBm output power,  
VSCALE1, PAVDD = 3.3 V  
silabs.com | Building a more connected world.  
Rev. 1.0 | 38  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.6.5 MCU current consumption at 1.8 V  
Unless otherwise indicated, typical conditions are: AVDD = DVDD = RFVDD = PAVDD = VREGVDD = 1.8 V. DC-DC not used. Voltage  
scaling level = VSCALE1. TA = 25 °C. Minimum and maximum values in this table represent the worst conditions across process varia-  
tion at TA = 25 °C.  
Table 4.9. MCU current consumption at 1.8 V  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE  
mode with all peripherals dis-  
abled  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal, CPU  
running Prime from flash,  
VSCALE2  
47.8  
µA/MHz  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal, CPU  
running while loop from flash,  
VSCALE2  
46.1  
69.4  
µA/MHz  
µA/MHz  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal, CPU  
running CoreMark loop from flash,  
VSCALE2  
39 MHz crystal, CPU running  
Prime from flash  
48.1  
47.1  
69.8  
39.4  
43.5  
52.5  
390.0  
32.2  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
39 MHz crystal, CPU running  
while loop from flash  
39 MHz crystal, CPU running  
CoreMark loop from flash  
38 MHz HFRCO, CPU running  
while loop from flash  
26 MHz HFRCO, CPU running  
while loop from flash  
16 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
Current consumption in EM1 IEM1  
mode with all peripherals dis-  
abled  
78 MHz HFRCO w/ DPLL refer-  
enced to 39 MHz crystal,  
VSCALE2  
39 MHz crystal  
38 MHz HFRCO  
26 MHz HFRCO  
16 MHz HFRCO  
1 MHz HFRCO  
34.5  
26.7  
30.8  
39.8  
377.3  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 39  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM2 IEM2_VS  
mode, VSCALE0  
256 kB RAM and full Radio RAM  
retention, RTC running from  
LFXO1  
4.1  
µA  
256 kB RAM and full Radio RAM  
retention, RTC running from  
4.1  
1.8  
1.8  
2.7  
3.7  
1.4  
µA  
µA  
µA  
µA  
µA  
µA  
LFRCO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
LFXO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
LFRCO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
LFRCO in precision mode1  
Current consumption in EM3 IEM3_VS  
mode, VSCALE0  
256 kB RAM and full Radio RAM  
retention, RTC running from  
ULFRCO1  
16 kB RAM and full Radio RAM  
retention, RTC running from  
ULFRCO1  
Change in current consump- IEM23_CPUCACHE  
tion if CPU cached unre-  
tained in EM2 or EM3  
-0.07  
-0.01  
µA  
µA  
Change in current consump- IEM23_STATERET  
tion if EM0/1 peripheral  
states unretained in EM2 or  
EM3  
Change in current consump- IEM23_RAM  
tion for retained RAM bank in  
EM2 or EM3  
Per 16 kB RAM bank  
0.16  
1.4  
µA  
µA  
Additional current in EM2 or IPD0B_VS  
EM3 when any peripheral in  
PD0B is enabled2  
Additional current in EM2 or IPD0C_VS  
EM3 when any peripheral in  
0.38  
1.6  
µA  
µA  
µA  
PD0C is enabled2  
Additional current in EM2 or IPD0D_VS  
EM3 when any peripheral in  
PD0D is enabled2  
Additional current in EM2 or IPD0E_VS  
EM3 when any peripheral in  
PD0E is enabled2  
0.12  
Current consumption in EM4 IEM4  
mode  
No BURTC, no LF oscillator  
BURTC with LFXO  
0.18  
0.53  
391  
µA  
µA  
µA  
Current consumption during IRST  
reset  
Hard pin reset held  
silabs.com | Building a more connected world.  
Rev. 1.0 | 40  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. CPU cache retained, EM0/1 peripheral states retained  
2. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.10.4 Power  
Domains for a list of the peripherals in each power domain. Note that if the PD0B, PD0C, or PD0D domains are enabled, PD0E  
will also automatically be enabled.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 41  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.6.6 Radio current consumption at 1.8V  
RF current consumption measured with MCU in EM1, HCLK = 39.0 MHz, and all MCU peripherals disabled. Unless otherwise indica-  
ted, typical conditions are: AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8 V. DCDC disabled. TA = 25 °C. Minimum and maximum  
values in this table represent the worst conditions across process variation at TA = 25 °C.  
Table 4.10. Radio current consumption at 1.8V  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in re-  
ceive mode, active packet  
reception  
IRX_ACTIVE  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
7
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
7.5  
7.9  
7.1  
mA  
mA  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
7.6  
8
mA  
mA  
mA  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
6.6  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
7.1  
7.4  
7.7  
mA  
mA  
mA  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
8.1  
8.6  
7.8  
mA  
mA  
mA  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
802.15.4 receiving frame, f = 2.4  
GHz, VSCALE1, EM1P (Radio  
clocks only)  
802.15.4 receiving frame, f = 2.4  
GHz, VSCALE1  
8.2  
8.6  
mA  
mA  
802.15.4 receiving frame, f = 2.4  
GHz, VSCALE2  
silabs.com | Building a more connected world.  
Rev. 1.0 | 42  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in re-  
ceive mode, listening for  
packet  
IRX_LISTEN  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
7.1  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
7.9  
7.1  
mA  
mA  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
7.9  
6.6  
mA  
mA  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
7.4  
7.7  
mA  
mA  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
8.6  
7.6  
mA  
mA  
802.15.4, f = 2.4 GHz, VSCALE1,  
EM1P (Radio clocks only)  
802.15.4, f = 2.4 GHz, VSCALE2  
8.4  
7.8  
mA  
mA  
Current consumption in  
transmit mode  
ITX  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power, VSCALE2  
f = 2.4 GHz, CW, 10 dBm PA, 10  
dBm output power, VSCALE2  
28.5  
7.5  
mA  
mA  
mA  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power, VSCALE1  
f = 2.4 GHz, CW, 10 dBm PA, 10  
dBm output power, VSCALE1  
28.2  
silabs.com | Building a more connected world.  
Rev. 1.0 | 43  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.7 Flash Characteristics  
Table 4.11. Flash Characteristics  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Flash Supply voltage during VFLASH  
write or erase  
1.71  
3.8  
V
Flash data retention1  
RETFLASH  
ECFLASH  
TA ≤ 125 °C  
TA ≤ 125 °C  
10  
years  
Flash erase cycles before  
failure1  
10,000  
cycles  
Program Time  
tPROG  
TA = 25 °C, one word (32-bits)  
41.9  
10.6  
43.4  
10.9  
45.0  
11.3  
µs  
µs  
TA = 25 °C, average per word  
over 128 words  
Page Erase Time 2  
tPERASE  
tMERASE  
IWRITE  
TA = 25 °C  
11.6  
144.3  
12.9  
150.5  
14.0  
156.8  
2.8  
ms  
ms  
mA  
mA  
mA  
Mass Erase Time3 4  
Program Current  
Page Erase Current  
Mass Erase Current  
Note:  
TA = 25 °C, 1536kB  
IPERASE  
IMERASE  
Page Erase  
Mass Erase  
1.9  
2.0  
1. Flash data retention information is published in the Quarterly Quality and Reliability Report.  
2. Page Erase time is measured from setting the ERASEPAGE bit in the MSC_WRITECMD register until the BUSY bit in the MSC-  
STATUS register is cleared to 0. Internal set-up and hold times are included.  
3. Mass Erase is issued by the CPU and erases all of User space.  
4. Mass Erase time is measured from setting the ERASEMAIN0 bit in the MSC_WRITECMD register until the BUSY bit in the MSC-  
STATUS register is cleared to 0. Internal set-up and hold times are included.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 44  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.8 Energy Mode Wake-up and Entry Times  
Unless otherwise specified, these times are measured using the HFRCO at 19 MHz.  
Table 4.12. Energy Mode Wake-up and Entry Times  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
3
Max  
Unit  
HCLKs  
µs  
Wake-up Time from EM1  
tEM1_WU  
Code execution from flash  
Code execution from RAM  
1.4  
13.7  
Wake-up Time from EM2  
tEM2_WU  
Code execution from flash, No  
Voltage Scaling  
µs  
Code execution from RAM, No  
Voltage Scaling  
5.1  
µs  
Voltage scaling up one level1  
Voltage scaling up two levels2  
37.7  
50.7  
13.7  
µs  
µs  
µs  
Wake-up Time from EM3  
tEM3_WU  
Code execution from flash, No  
Voltage Scaling  
Code execution from RAM, No  
Voltage Scaling  
5.1  
µs  
Voltage scaling up one level1  
37.7  
50.7  
µs  
µs  
Voltage scaling up two levels2  
Code execution from flash  
Code execution from flash  
Code execution from flash  
Code execution from flash  
Code execution from flash  
Up from VSCALE1 to VSCALE2  
Wake-up Time from EM4  
Entry time to EM1  
Entry time to EM2  
Entry time to EM3  
Entry time to EM4  
tEM4_WU  
tEM1_ENT  
tEM2_ENT  
tEM3_ENT  
tEM4_ENT  
tSCALE  
21.7  
1.5  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
6.1  
6.0  
11.2  
32  
Voltage scaling time in EM03  
Down from VSCALE2 to  
VSCALE1  
172  
Note:  
1. Voltage scaling one level is between VSCALE0 and VSCALE1 or between VSCALE1 and VSCALE2.  
2. Voltage scaling two levels is between VSCALE0 and VSCALE2.  
3. During voltage scaling in EM0, RAM is inaccessible and processor will be halted until complete.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 45  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9 2.4 GHz RF Transceiver Characteristics  
4.9.1 RF Transmitter Characteristics  
4.9.1.1 RF Transmitter General Characteristics for the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TA = 25 °C, Crystal frequency=39.0 MHz, RF center frequency = 2.45 GHz.  
• For 0 dBm / 10 dBm PA: VREGVDD = IOVDD = AVDD = 3.0 V, DVDD = RFVDD = PAVDD = 1.8 V powered from DCDC  
• For 20 dBm PA: VREGVDD = IOVDD = AVDD = PAVDD = 3.3 V, DVDD = RFVDD = 1.8 V powered from DCDC  
Table 4.13. RF Transmitter General Characteristics for the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
2400  
Typ  
Max  
2483.5  
Unit  
MHz  
mA  
RF tuning frequency range  
FRANGE  
Radio-only current consump- ITX_RADIO  
tion while transmitting1  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power  
3.5  
f = 2.4 GHz, CW, 10 dBm PA, 10  
dBm output power  
17.6  
mA  
Maximum TX power2  
POUTMAX  
20 dBm PA, PAVDD = 3.3 V  
19.5  
10  
dBm  
dBm  
10 dBm PA3  
0 dBm PA  
-0.7  
-34  
dBm  
dBm  
dBm  
dBm  
dB  
Minimum active TX power  
POUTMIN  
20 dBm PA, PAVDD = 3.3 V  
10 dBm PA  
-29.8  
-25.2  
0.75  
0 dBm PA  
Output power variation vs  
supply voltage variation, fre-  
quency = 2450 MHz  
POUTVAR_V  
20 dBm PA Pout = POUTMAX out-  
put power with PAVDD voltage  
swept from 3.0 V to 3.8 V  
10 dbm PA output power with  
PAVDD voltage swept from 1.8 V  
to 3.0 V  
0.03  
0.02  
dB  
dB  
0 dBm PA output power with  
PAVDD voltage swept from 1.8 V  
to 3.0 V  
Output power variation vs  
temperature, Frequency =  
2450 MHz  
POUTVAR_T  
PAVDD = 3.3 V supply, 20 dBm  
PA at POUTMAX, (-40 to +125 °C)  
0.7  
0.2  
dB  
dB  
dB  
dB  
10 dBm PA at 10 dBm, (-40 to  
+125 °C)  
0 dBm PA at 0 dBm, (-40 to +125  
°C)  
1.23  
0.17  
Output power variation vs RF POUTVAR_F  
frequency  
20 dBm PA, POUTMAX, PAVDD =  
3.3 V  
10 dBm PA, 10 dBm  
0 dBm PA, 0 dBm  
0.11  
0.16  
-47  
dB  
dB  
Spurious emissions of har-  
monics in restricted bands  
per FCC Part 15.205/15.209  
SPURHRM_FCC_ Continuous transmission of CW  
dBm  
carrier, Pout = POUTMAX, Test  
Frequency = 2450 MHz.  
R
silabs.com | Building a more connected world.  
Rev. 1.0 | 46  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Spurious emissions of har-  
monics in non-restricted  
bands per FCC Part  
15.247/15.35  
SPURHRM_FCC_ Continuous transmission of CW  
-26  
dBc  
carrier. Pout = POUTMAX. Test  
NRR  
Frequency = 2450 MHz.  
Spurious emissions out-of-  
band (above 2.483 GHz or  
below 2.4 GHz) in restricted  
bands, per FCC part  
SPUROOB_FCC_ Restricted bands 30-88 MHz,  
-61  
-58  
-55  
-47  
-26  
dBm  
dBm  
dBm  
dBm  
dBc  
Continuous transmission of CW  
R
carrier, Pout = POUTMAX, Test  
Frequency = 2450 MHz  
15.205/15.209  
Restricted bands 88 - 216 MHz,  
Continuous transmission of CW  
carrier, Pout = POUTMAX, Test  
Frequency = 2450 MHz  
Restricted bands 216 - 960 MHz,  
Continuous transmission of CW  
carrier, Pout = POUTMAX, Test  
Frequency = 2450 MHz  
Restricted bands > 960 MHz,  
Continuous transmission of CW  
carrier, Pout = POUTMAX, Test  
Frequency = 2450 MHz  
Spurious emissions out-of-  
band in non-restricted bands  
per FCC Part 15.247  
SPUROOB_FCC_ Frequencies above 2.483 GHz or  
below 2.4 GHz, continuous trans-  
NR  
mission CW carrier, Pout  
=
POUTMAX, Test Frequency =  
2450 MHz  
Spurious emissions per ETSI SPURETSI440  
EN300.440  
47-74 MHz,87.5-108 MHz,  
174-230 MHz, 470-862 MHz, Pout  
= 10 dBm, Test Frequency = 2450  
MHz  
-60  
-42  
dBm  
dBm  
25-1000 MHz, excluding above  
frequencies. Pout = 10 dBm, Test  
Frequency = 2450 MHz  
1G-14G, Pout = 10 dBm, Test Fre-  
quency = 2450 MHz  
-36  
-26  
dBm  
dBm  
Spurious emissions out-of-  
band, per ETSI 300.328  
SPURETSI328  
[2400-2BW to 2400-BW],  
[2483.5+BW to 2483.5+2BW],  
Pout = 10 dBm, Test Frequency =  
2450 MHz  
47-74 MHz, 87.5-118 MHz,  
174-230 MHz, 470-862 MHz, Pout  
= 10 dBm, Test Frequency = 2450  
MHz  
-60  
-42  
dBm  
dBm  
30-47 MHz, 74-87.5 MHz,  
118-174 MHz, 230-470 MHz,  
862-1000 MHz , Pout = 10 dBm,  
Test Frequency = 2450 MHz  
1G-12.75 GHz, excluding bands  
listed above, Pout = 10 dBm, Test  
Frequency = 2450 MHz  
-36  
-16  
dBm  
dBm  
[2400-BW to 2400], [2483.5 to  
2483.5+BW] Pout = 10 dBm, Test  
Frequency = 2450 MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 47  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Supply current to radio, supplied by DC-DC with 3.0 V, measured at VREGVDD.  
2. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this data sheet can be found in the Max TX Power column of the Ordering Information Table.  
3. The PA is capable of delivering higher than 10 dBm output power (refer to Output Power plots in 4.27.2 RF Characteristics). How-  
ever, all transmitter characteristics and recommended application circuits are specified at 10 dBm output. If used with the recom-  
mended application circuits above 10 dBm, harmonics may be higher than regulatory limits.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 48  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.1.2 RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TA = 25 °C, Crystal frequency=39.0 MHz, RF center frequency = 2.45 GHz.  
• For 0 dBm / 10 dBm PA: VREGVDD = IOVDD = AVDD = 3.0 V, DVDD = RFVDD = PAVDD = 1.8 V powered from DCDC  
• For 20 dBm PA: VREGVDD = IOVDD = AVDD = PAVDD = 3.3 V, DVDD = RFVDD = 1.8 V powered from DCDC  
Table 4.14. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Error vector magnitude per  
802.15.4-2011  
EVM  
Average across frequency, signal  
is DSSS-OQPSK reference pack-  
3
% rms  
et, PAVDD = 3.3 V, Pout  
=
POUTMAX  
Average across frequency, signal  
is DSSS-OQPSK reference pack-  
et, Pout = 10 dBm  
2.9  
2.9  
% rms  
% rms  
Average across frequency, signal  
is DSSS-OQPSK reference pack-  
et, Pout = 0 dBm  
Power spectral density limit  
PSDLIMIT  
Relative, at carrier ± 3.5 MHz,  
PAVDD = 3.3 V, Pout = POUTMAX  
-50.2  
-50.1  
-50.7  
-38.3  
-48.7  
-59.2  
0.5  
dBc/  
100kHz  
Relative, at carrier ± 3.5 MHz,  
Pout = 10 dBm  
dBc/  
100kHz  
Relative, at carrier ± 3.5 MHz,  
Pout = 0 dBm  
dBc/  
100kHz  
Absolute, at carrier ± 3.5 MHz,  
PAVDD = 3.3 V, Pout = POUTMAX  
dBm/  
100kHz  
Absolute, at carrier ± 3.5 MHz,  
Pout = 10 dBm  
dBm/  
100kHz  
Absolute, at carrier ± 3.5 MHz,  
Pout = 0 dBm  
dBm/  
100kHz  
Per FCC part 15.247, PAVDD =  
3.3 V, Pout = POUTMAX  
dBm/  
3kHz  
Per FCC part 15.247, Pout = 10  
dBm  
-9.2  
dBm/  
3kHz  
Per FCC part 15.247, Pout = 0  
dBm  
-19.9  
dBm/  
3kHz  
ETSI 300.328 Pout = 10 dBm  
ETSI 300.328 Pout = 0 dbm  
8
dBm  
dBm  
MHz  
-2.8  
2.2  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
99% BW at highest and lowest  
channels in band, Pout = 10 dBm  
99% BW at highest and lowest  
channels in band, Pout = 0 dBm  
2.2  
MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 49  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.1.3 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, Crystal frequency=39.0 MHz, RF center frequency = 2.45 GHz.  
• For 0 dBm / 10 dBm PA: VREGVDD = IOVDD = AVDD = 3.0 V, DVDD = RFVDD = PAVDD = 1.8 V powered from DCDC  
• For 20 dBm PA: VREGVDD = IOVDD = AVDD = PAVDD = 3.3 V, DVDD = RFVDD = 1.8 V powered from DCDC  
Table 4.15. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
718  
714  
715  
-0.5  
Max  
Unit  
kHz  
kHz  
kHz  
Transmit 6 dB bandwidth  
TXBW  
PAVDD = 3.3 V, Pout = POUTMAX  
Pout = 10 dBm  
Pout = 0 dBm  
Power spectral density limit  
PSDLIMIT  
PAVDD = 3.3 V, Pout = POUTMAX  
Per FCC part 15.247  
,
dBm/  
3kHz  
Pout = 10 dBm, Per FCC part  
15.247 at 10 dBm  
-10.4  
-21.2  
9.7  
dBm/  
3kHz  
Pout = 0 dBm, Per FCC part  
15.247 at 0 dBm  
dBm/  
3kHz  
Per ETSI 300.328 at 10 dBm/1  
MHz  
dBm  
MHz  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
Pout = 10 dBm 99% BW at highest  
and lowest channels in band  
1
Pout = 0 dBm 99% BW at highest  
and lowest channels in band  
1
In-band spurious emissions, SPURINB  
with allowed exceptions1  
PAVDD = 3.3 V, Pout = POUTMAX  
Inband spurs at ± 2 MHz  
,
-26.9  
-38.8  
-49.8  
-33.2  
-43.8  
-54.6  
Pout = 10 dBm, Inband spurs at ±  
2 MHz  
Pout = 0 dBm, Inband spurs at ± 2  
MHz  
PAVDD = 3.3 V, Pout = POUTMAX  
Inband spurs at ± 3 MHz  
Pout = 10 dBm Inband spurs at ± 3  
MHz  
Pout = 0 dBm Inband spurs at ± 3  
MHz  
Note:  
1. Per Bluetooth Core_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a  
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 50  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.1.4 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, Crystal frequency=39.0 MHz, RF center frequency = 2.45 GHz.  
• For 0 dBm / 10 dBm PA: VREGVDD = IOVDD = AVDD = 3.0 V, DVDD = RFVDD = PAVDD = 1.8 V powered from DCDC  
• For 20 dBm PA: VREGVDD = IOVDD = AVDD = PAVDD = 3.3 V, DVDD = RFVDD = 1.8 V powered from DCDC  
Table 4.16. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
1307  
1308  
1306  
1.5  
Max  
Unit  
kHz  
kHz  
kHz  
Transmit 6 dB bandwidth  
TXBW  
PAVDD = 3.3 V, Pout = POUTMAX  
Pout = 10 dBm  
Pout = 0 dBm  
Power spectral density limit  
PSDLIMIT  
PAVDD = 3.3 V, Pout = POUTMAX  
Per FCC part 15.247  
,
dBm/  
3kHz  
Pout = 10 dBm, Per FCC part  
15.247 at 10 dBm  
-8.5  
-19.3  
8.7  
dBm/  
3kHz  
Pout = 0 dBm, Per FCC part  
15.247 at 0 dBm  
dBm/  
3kHz  
Per ETSI 300.328 at 10 dBm/1  
MHz  
dBm  
MHz  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
Pout = 10 dBm 99% BW at highest  
and lowest channels in band  
2.1  
Pout = 0 dBm 99% BW at highest  
and lowest channels in band  
2.1  
In-band spurious emissions, SPURINB  
with allowed exceptions1  
PAVDD = 3.3 V, Pout = POUTMAX  
Inband spurs at ± 2 MHz  
,
-33.7  
-43.7  
-54.5  
-38.9  
-48.8  
-59.5  
Pout = 10 dBm, Inband spurs at ±  
4 MHz  
Pout = 0 dBm, Inband spurs at ± 4  
MHz  
PAVDD = 3.3 V, Pout = POUTMAX  
Inband spurs at ± 6 MHz  
Pout = 10 dBm Inband spurs at ± 6  
MHz  
Pout = 0 dBm Inband spurs at ± 6  
MHz  
Note:  
1. Per Bluetooth Core_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a  
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 51  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.1.5 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, Crystal frequency=39.0 MHz, RF center frequency = 2.45 GHz.  
• For 0 dBm / 10 dBm PA: VREGVDD = IOVDD = AVDD = 3.0 V, DVDD = RFVDD = PAVDD = 1.8 V powered from DCDC  
• For 20 dBm PA: VREGVDD = IOVDD = AVDD = PAVDD = 3.3 V, DVDD = RFVDD = 1.8 V powered from DCDC  
Table 4.17. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
717  
718  
717  
-0.5  
Max  
Unit  
kHz  
kHz  
kHz  
Transmit 6 dB bandwidth  
TXBW  
PAVDD = 3.3 V, Pout = POUTMAX  
Pout = 10 dBm  
Pout = 0 dBm  
Power spectral density limit  
PSDLIMIT  
PAVDD = 3.3 V, Pout = POUTMAX  
Per FCC part 15.247  
,
dBm/  
3kHz  
Pout = 10 dBm, Per FCC part  
15.247 at 10 dBm  
-10.4  
-21.2  
9.7  
dBm/  
3kHz  
Pout = 0 dBm, Per FCC part  
15.247 at 0 dBm  
dBm/  
3kHz  
Per ETSI 300.328 at 10 dBm/1  
MHz  
dBm  
MHz  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
Pout = 10 dBm 99% BW at highest  
and lowest channels in band  
1
Pout = 0 dBm 99% BW at highest  
and lowest channels in band  
1
In-band spurious emissions, SPURINB  
with allowed exceptions1  
PAVDD = 3.3 V, Pout = POUTMAX  
Inband spurs at ± 2 MHz  
,
-26.9  
-38.9  
-49.8  
-33.2  
-43.8  
-54.6  
Pout = 10 dBm, Inband spurs at ±  
2 MHz  
Pout = 0 dBm, Inband spurs at ± 2  
MHz  
PAVDD = 3.3 V, Pout = POUTMAX  
Inband spurs at ± 3 MHz  
Pout = 10 dBm Inband spurs at ± 3  
MHz  
Pout = 0 dBm Inband spurs at ± 3  
MHz  
Note:  
1. Per Bluetooth Core_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a  
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 52  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.1.6 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, Crystal frequency=39.0 MHz, RF center frequency = 2.45 GHz.  
• For 0 dBm / 10 dBm PA: VREGVDD = IOVDD = AVDD = 3.0 V, DVDD = RFVDD = PAVDD = 1.8 V powered from DCDC  
• For 20 dBm PA: VREGVDD = IOVDD = AVDD = PAVDD = 3.3 V, DVDD = RFVDD = 1.8 V powered from DCDC  
Table 4.18. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
651  
651  
651  
13.7  
Max  
Unit  
kHz  
kHz  
kHz  
Transmit 6 dB bandwidth  
TXBW  
PAVDD = 3.3 V, Pout = POUTMAX  
Pout = 10 dBm  
Pout = 0 dBm  
Power spectral density limit  
PSDLIMIT  
PAVDD = 3.3 V, Pout = POUTMAX  
Per FCC part 15.247  
,
dBm/  
3kHz  
Pout = 10 dBm, Per FCC part  
15.247 at 10 dBm  
3.8  
-7  
dBm/  
3kHz  
Pout = 0 dBm, Per FCC part  
15.247 at 0 dBm  
dBm/  
3kHz  
Per ETSI 300.328 at 10 dBm/1  
MHz  
9.7  
dBm  
MHz  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
Pout = 10 dBm 99% BW at highest  
and lowest channels in band  
1
Pout = 0 dBm 99% BW at highest  
and lowest channels in band  
1
In-band spurious emissions, SPURINB  
with allowed exceptions1  
PAVDD = 3.3 V, Pout = POUTMAX  
Inband spurs at ± 2 MHz  
,
-26.9  
-39  
Pout = 10 dBm, Inband spurs at ±  
2 MHz  
Pout = 0 dBm, Inband spurs at ± 2  
MHz  
-49.7  
-33.1  
-43.7  
-54.5  
PAVDD = 3.3 V, Pout = POUTMAX  
Inband spurs at ± 3 MHz  
Pout = 10 dBm Inband spurs at ± 3  
MHz  
Pout = 0 dBm Inband spurs at ± 3  
MHz  
Note:  
1. Per Bluetooth Core_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a  
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 53  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.2 RF Receiver Characteristics  
4.9.2.1 RF Receiver General Characteristics for the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = IOVDD = AVDD = PAVDD = 3.0V, RFVDD = DVDD = 1.8  
V powered from DCDC. Crystal frequency = 39.0 MHz, RF center frequency = 2.45 GHz.  
Table 4.19. RF Receiver General Characteristics for the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
2400  
Typ  
Max  
2483.5  
Unit  
MHz  
mA  
RF tuning frequency range  
FRANGE  
Radio-only current consump- IRX_RADIO  
tion in receive mode1  
2.8  
Receive mode maximum  
spurious emission  
SPURRX  
30 MHz to 1 GHz  
1 GHz to 12 GHz  
-63  
-53  
-55  
dBm  
dBm  
dBm  
Max spurious emissions dur- SPURRX_FCC  
ing active receive mode, per  
FCC Part 15.109(a)  
216 MHz to 960 MHz, conducted  
measurement  
Above 960 MHz, conducted  
measurement.  
-47  
dBm  
2GFSK Sensitivity  
SENS2GFSK  
2 Mbps 2GFSK signal, 1% PER  
-92.5  
dBm  
dBm  
250 kbps 2GFSK signal, 0.1%  
BER  
-102.9  
Note:  
1. Supply current to radio, supplied by DC-DC with 3.0 V, measured at VREGVDD.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 54  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.2.2 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = IOVDD = AVDD = PAVDD = 3.0V, RFVDD = DVDD = 1.8  
V powered from DCDC. Crystal frequency = 39.0 MHz, RF center frequency = 2.45 GHz.  
Table 4.20. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1, packet  
length is 20 octets  
Max usable receiver input  
level, 1% PER  
SAT  
10  
dBm  
Sensitivity, 1% PER  
SENS  
Signal is reference signal, packet  
length is 20 octets  
-105.4  
-0.7  
dBm  
dB  
Co-channel interferer rejec- CCR  
tion, 1% PER  
Desired signal 3 dB above sensi-  
tivity limit  
Adjacent channel rejection,  
Interferer is reference signal,  
1% PER, desired is refer-  
ence signal at 3 dB above  
ACRREF1  
Interferer is reference signal at +1  
channel spacing  
36.8  
37.5  
dB  
Interferer is reference signal at -1  
channel spacing  
dB  
reference sensitivity level2  
Alternate channel rejection,  
interferer is reference signal,  
1% PER, desired is refer-  
ence signal at 3 dB above  
ACRREF2  
Interferer is reference signal at +2  
channel spacing  
48.9  
49.4  
dB  
dB  
Interferer is reference signal at -2  
channel spacing  
reference sensitivity level2  
Interferer is CW in image band3  
Image rejection, 1% PER,  
desired is reference signal at  
3 dB above reference sensi-  
tivity level2  
IR  
53.5  
dB  
Blocking rejection of all other BLOCK  
channels, 1% PER, desired  
is reference signal at 3 dB  
above reference sensitivity  
level2, interferer is reference  
signal  
Interferer frequency < desired fre-  
quency -3 channel spacing  
55.3  
55.1  
dB  
dB  
Interferer frequency > desired fre-  
quency +3 channel spacing  
RSSI resolution  
RSSIRES  
RSSILIN  
-100 dBm to +5 dBm  
0.25  
+/-6  
dB  
dB  
RSSI accuracy in the linear  
region as defined by  
802.15.4-2003  
Note:  
1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksym-  
bols/s.  
2. Reference sensitivity level is -85 dBm.  
3. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker  
tests place the Interferer center frequency at the Desired frequency ± 5 MHz on the channel raster, whereas the image rejection  
test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 55  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.2.3 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = IOVDD = AVDD = PAVDD = 3.0V, RFVDD = DVDD = 1.8  
V powered from DCDC. Crystal frequency = 39.0 MHz, RF center frequency = 2.45 GHz, Packet length is 255 bytes.  
Table 4.21. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1  
Max usable receiver input  
level  
SAT  
10  
dBm  
Sensitivity  
SENS  
Signal is reference signal, 37 byte  
payload2  
-97.6  
-96  
dBm  
dBm  
Signal is reference signal, 255  
byte payload1  
With non-ideal signals3 1  
(see notes)1 4  
-95.7  
8.7  
dBm  
dB  
Signal to co-channel interfer- C/ICC  
er  
N ± 1 Adjacent channel se-  
lectivity  
C/I1  
C/I2  
C/I3  
Interferer is reference signal at +1  
MHz offset1 5 4 6  
-5.4  
-5.3  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Interferer is reference signal at -1  
MHz offset1 5 4 6  
N ± 2 Alternate channel se-  
lectivity  
Interferer is reference signal at +2  
MHz offset1 5 4 6  
-40.9  
-39.7  
-45.5  
-45.7  
-23.3  
Interferer is reference signal at -2  
MHz offset1 5 4 6  
N ± 3 Alternate channel se-  
lectivity  
Interferer is reference signal at +3  
MHz offset1 5 4 6  
Interferer is reference signal at -3  
MHz offset1 5 4 6  
Selectivity to image frequen- C/IIM  
cy  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion1 6  
Selectivity to image frequen- C/IIM_1  
cy ± 1 MHz  
Interferer is reference signal at im-  
age frequency +1 MHz with 1  
-40.9  
-5.4  
dB  
dB  
MHz precision1 6  
Interferer is reference signal at im-  
age frequency -1 MHz with 1 MHz  
precision1 6  
n = 3 (see note7)  
Intermodulation performance IM  
-17.3  
dBm  
Note:  
1. 0.017% Bit Error Rate.  
2. 0.1% Bit Error Rate.  
3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1  
4. Desired signal -67 dBm.  
5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.  
6. With allowed exceptions.  
7. As specified in Bluetooth Core specification version 5.1, Vol 6, Part A, Section 4.4  
silabs.com | Building a more connected world.  
Rev. 1.0 | 56  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.2.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = IOVDD = AVDD = PAVDD = 3.0V, RFVDD = DVDD = 1.8  
V powered from DCDC. Crystal frequency = 39.0 MHz, RF center frequency = 2.45 GHz, Packet length is 255 bytes.  
Table 4.22. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1  
Max usable receiver input  
level  
SAT  
10  
dBm  
Sensitivity  
SENS  
Signal is reference signal, 37 byte  
payload2  
-94.8  
-93.3  
dBm  
dBm  
Signal is reference signal, 255  
byte payload1  
With non-ideal signals3 1  
(see notes)1 4  
-93.1  
8.6  
dBm  
dB  
Signal to co-channel interfer- C/ICC  
er  
N ± 1 Adjacent channel se-  
lectivity  
C/I1  
C/I2  
C/I3  
Interferer is reference signal at +2  
MHz offset1 5 4 6  
-5.3  
-5.8  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Interferer is reference signal at -2  
MHz offset1 5 4 6  
N ± 2 Alternate channel se-  
lectivity  
Interferer is reference signal at +4  
MHz offset1 5 4 6  
-42.2  
-44.2  
-48.1  
-50.2  
-22.8  
Interferer is reference signal at -4  
MHz offset1 5 4 6  
N ± 3 Alternate channel se-  
lectivity  
Interferer is reference signal at +6  
MHz offset1 5 4 6  
Interferer is reference signal at -6  
MHz offset1 5 4 6  
Selectivity to image frequen- C/IIM  
cy  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion1 6  
Selectivity to image frequen- C/IIM_1  
cy ± 2 MHz  
Interferer is reference signal at im-  
age frequency +2 MHz with 1  
-42.2  
-5.3  
dB  
dB  
MHz precision1 6  
Interferer is reference signal at im-  
age frequency -2 MHz with 1 MHz  
precision1 6  
n = 3 (see note7)  
Intermodulation performance IM  
-18.3  
dBm  
Note:  
1. 0.017% Bit Error Rate.  
2. 0.1% Bit Error Rate.  
3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1  
4. Desired signal -64 dBm.  
5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.  
6. With allowed exceptions.  
7. As specified in Bluetooth Core specification version 5.1, Vol 6, Part A, Section 4.4  
silabs.com | Building a more connected world.  
Rev. 1.0 | 57  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.2.5 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = IOVDD = AVDD = PAVDD = 3.0V, RFVDD = DVDD = 1.8  
V powered from DCDC. Crystal frequency = 39.0 MHz, RF center frequency = 2.45 GHz, Packet length is 255 bytes.  
Table 4.23. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1  
Max usable receiver input  
level  
SAT  
10  
dBm  
Sensitivity  
SENS  
Signal is reference signal, 37 byte  
payload2  
-101.4  
-100.1  
dBm  
dBm  
Signal is reference signal, 255  
byte payload1  
With non-ideal signals3 1  
(see notes)1 4  
-99.1  
2.7  
dBm  
dB  
Signal to co-channel interfer- C/ICC  
er  
N ± 1 Adjacent channel se-  
lectivity  
C/I1  
C/I2  
C/I3  
Interferer is reference signal at +1  
MHz offset1 5 4 6  
-7.1  
-7.4  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Interferer is reference signal at -1  
MHz offset1 5 4 6  
N ± 2 Alternate channel se-  
lectivity  
Interferer is reference signal at +2  
MHz offset1 5 4 6  
-46.8  
-49.7  
-49.4  
-54.5  
-49  
Interferer is reference signal at -2  
MHz offset1 5 4 6  
N ± 3 Alternate channel se-  
lectivity  
Interferer is reference signal at +3  
MHz offset1 5 4 6  
Interferer is reference signal at -3  
MHz offset1 5 4 6  
Selectivity to image frequen- C/IIM  
cy  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion1 6  
Selectivity to image frequen- C/IIM_1  
cy ± 1 MHz  
Interferer is reference signal at im-  
age frequency +1 MHz with 1  
-49.4  
-46.8  
dB  
dB  
MHz precision1 6  
Interferer is reference signal at im-  
age frequency -1 MHz with 1 MHz  
precision1 6  
Note:  
1. 0.017% Bit Error Rate.  
2. 0.1% Bit Error Rate.  
3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1  
4. Desired signal -72 dBm.  
5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.  
6. With allowed exceptions.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 58  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.9.2.6 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = IOVDD = AVDD = PAVDD = 3.0V, RFVDD = DVDD = 1.8  
V powered from DCDC. Crystal frequency = 39.0 MHz, RF center frequency = 2.45 GHz, Packet length is 255 bytes.  
Table 4.24. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1  
Max usable receiver input  
level  
SAT  
10  
dBm  
Sensitivity  
SENS  
Signal is reference signal, 37 byte  
payload2  
-105.7  
-105.3  
dBm  
dBm  
Signal is reference signal, 255  
byte payload1  
With non-ideal signals3 1  
(see notes)1 4  
-104.8  
0.9  
dBm  
dB  
Signal to co-channel interfer- C/ICC  
er  
N ± 1 Adjacent channel se-  
lectivity  
C/I1  
C/I2  
C/I3  
Interferer is reference signal at +1  
MHz offset1 5 4 6  
-12.4  
-12.8  
-52.6  
-55.5  
-53.8  
-60  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Interferer is reference signal at -1  
MHz offset1 5 4 6  
N ± 2 Alternate channel se-  
lectivity  
Interferer is reference signal at +2  
MHz offset1 5 4 6  
Interferer is reference signal at -2  
MHz offset1 5 4 6  
N ± 3 Alternate channel se-  
lectivity  
Interferer is reference signal at +3  
MHz offset1 5 4 6  
Interferer is reference signal at -3  
MHz offset1 5 4 6  
Selectivity to image frequen- C/IIM  
cy  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion1 6  
-53  
Selectivity to image frequen- C/IIM_1  
cy ± 1 MHz  
Interferer is reference signal at im-  
age frequency +1 MHz with 1  
-53.8  
-52.6  
dB  
dB  
MHz precision1 6  
Interferer is reference signal at im-  
age frequency -1 MHz with 1 MHz  
precision1 6  
Note:  
1. 0.017% Bit Error Rate.  
2. 0.1% Bit Error Rate.  
3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1  
4. Desired signal -79 dBm.  
5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.  
6. With allowed exceptions.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 59  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.10 Oscillators  
4.10.1 High Frequency Crystal Oscillator (HFXO)  
Unless otherwise indicated, typical conditions are: AVDD = DVDD = 3.0 V. TA = 25 °C. Minimum and maximum values in this table  
represent the worst conditions across process variation, operating supply voltage range, and operating temperature range.  
Table 4.25. High Frequency Crystal Oscillator (HFXO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
see note1 2  
Crystal Frequency  
FHFXO  
38.0  
39.0  
40.0  
MHz  
Supported crystal maximum ESRHFXO  
equivalent series resistance  
(ESR)  
Crystal Frequency = 39.0 MHz  
60  
39.0 MHz, ESR = 40 Ω 4  
39.0 MHz  
Supported range of crystal  
load capacitance3  
CL_HFXO  
10  
pF  
Supply Current  
Startup Time5  
IHFXO  
565  
188  
µA  
µs  
TSTARTUP  
39.0 MHz, ESR = 40 Ω, CL = 10  
pF  
On-chip tuning cap step  
size6  
SSHFXO  
0.04  
20  
pF  
pF  
HFCLKOUT load capaci-  
tance  
CHFCLKOUT  
30  
HFCLKOUT output voltage  
VHFCLKOUT  
0
1.2  
V
HFCLKOUT AC output am-  
plitude, XOUTBIASANA = 5,  
CHFCLKOUT = 20 pF  
VACHFCLKOUT  
XOUTCFANA = 0  
XOUTCFANA = 1  
XOUTCFANA = 2  
XOUTCFANA = 3  
470  
510  
560  
615  
3.1  
mVpp  
mVpp  
mVpp  
mVpp  
mA  
HFCLKOUT current con-  
sumption  
IHFCLKOUT  
CHFCLKOUT ≤ 10 pF, XOUTBIA-  
SANA = 3  
10 pF < CHFCLKOUT ≤ 20 pF,  
XOUTBIASANA = 5  
3.9  
6.3  
mA  
mA  
ppm  
20 pF < CHFCLKOUT ≤ 30 pF,  
XOUTBIASANA = 15  
Frequency shift of HFXTAL  
when HFCLKOUT is active  
FSHFCLKOUT  
Assuming crystal pullability of 13  
ppm/pF  
-1.5  
4.5  
HFCLKOUT shorting output RSHFCLKOUT  
resistance  
When output is disabled  
150  
Total harmonic distortion,  
XOUTBIASANA = 5,  
CHFCLKOUT = 20 pF  
THDHFCLKOUT  
XOUTCFANA = 0  
XOUTCFANA = 1  
XOUTCFANA = 2  
XOUTCFANA = 3  
8.53  
10.05  
11.98  
14.39  
%
%
%
%
silabs.com | Building a more connected world.  
Rev. 1.0 | 60  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. The BLE radio requires a 39.0 MHz crystal with a tolerance of ± 50 ppm over temperature and aging. Please use a crystal with  
the recommended frequency and tolerance.  
2. The ZigBee radio requires a 39.0 MHz crystal with a tolerance of ± 40 ppm over temperature and aging. Please use a crystal with  
the recommended frequency and tolerance.  
3. Total load capacitance as seen by the crystal.  
4. RF performance characteristics have been determined using crystals with an ESR of 40 Ω and CL of 10 pF.  
5. Startup time does not include time implemented by programmable TIMEOUTSTEADY delay.  
6. The tuning step size is the effective step size when incrementing both of the tuning capacitors by one count. The step size for the  
each of the individual tuning capacitors is twice this value.  
4.10.2 Low Frequency Crystal Oscillator (LFXO)  
Table 4.26. Low Frequency Crystal Oscillator (LFXO)  
Parameter  
Symbol  
Test Condition  
Min  
4
Typ  
32.768  
Max  
Unit  
kHz  
kΩ  
kΩ  
pF  
Crystal Frequency  
FLFXO  
Supported Crystal equivalent ESRLFXO  
series resistance (ESR)  
GAIN = 0  
80  
GAIN = 1 to 3  
GAIN = 0  
100  
6
Supported range of crystal  
load capacitance 1  
CL_LFXO  
GAIN = 1  
6
10  
pF  
GAIN = 2 (see note2)  
GAIN = 3 (see note2)  
10  
12.5  
pF  
12.5  
18  
pF  
nA  
Current consumption  
Startup Time  
ICL12p5  
ESR = 70 kΩ, CL = 12.5 pF,  
GAIN3 = 2, AGC4 = 1  
294  
ESR = 70 kΩ, CL = 7 pF, GAIN3 =  
1, AGC4 = 1  
TSTARTUP  
52  
ms  
On-chip tuning cap step size SSLFXO  
0.26  
5.2  
pF  
pF  
On-chip tuning capacitor val- CLFXO_MIN  
ue at minimum setting5  
CAPTUNE = 0  
On-chip tuning capacitor val- CLFXO_MAX  
ue at maximum setting5  
CAPTUNE = 0x4F  
26.2  
pF  
Note:  
1. Total load capacitance seen by the crystal  
2. Crystals with a load capacitance of greater than 12 pF require external load capacitors.  
3. In LFXO_CAL Register  
4. In LFXO_CFG Register  
5. The effective load capacitance seen by the crystal will be CLFXO/2. This is because each XTAL pin has a tuning cap and the two  
caps will be seen in series by the crystal  
silabs.com | Building a more connected world.  
Rev. 1.0 | 61  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.10.3 High Frequency RC Oscillator (HFRCO)  
Unless otherwise indicated, typical conditions are: AVDD = DVDD = 3.0 V. TA = 25 °C. Minimum and maximum values in this table  
represent the worst conditions across process variation, operating supply voltage range, and operating temperature range.  
Table 4.27. High Frequency RC Oscillator (HFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Frequency Accuracy  
FHFRCO_ACC  
For all production calibrated fre-  
quencies  
-3  
3
%
Current consumption on all  
supplies1  
IHFRCO  
FHFRCO = 4 MHz  
28  
29  
µA  
µA  
FHFRCO = 5 MHz 2  
FHFRCO = 7 MHz  
59  
63  
µA  
µA  
FHFRCO = 10 MHz 2  
FHFRCO = 13 MHz  
FHFRCO = 16 MHz  
FHFRCO = 19 MHz  
77  
87  
µA  
µA  
µA  
µA  
90  
FHFRCO = 20 MHz 2  
FHFRCO = 26 MHz  
FHFRCO = 32 MHz  
107  
116  
139  
170  
µA  
µA  
µA  
FHFRCO = 38 MHz 3  
FHFRCO = 40 MHz 2  
FHFRCO = 48 MHz 3  
FHFRCO = 56 MHz 3  
FHFRCO = 64 MHz 3  
FHFRCO = 80 MHz 3  
172  
207  
228  
269  
285  
4.5  
µA  
µA  
µA  
µA  
µA  
Clock Out current for  
HFRCODPLL4  
ICLKOUT_HFRCOD FORCEEN bit of HFRCO0_CTRL  
µA/MHz  
= 1  
PLL  
Clock Out current for  
HFRCOEM234  
ICLKOUT_HFRCOE FORCEEN bit of  
2.0  
µA/MHz  
HFRCOEM23_CTRL = 1  
M23  
Startup Time5  
TSTARTUP  
FREQRANGE = 0 to 7  
FREQRANGE = 8 to 15  
1.2  
0.6  
µs  
µs  
silabs.com | Building a more connected world.  
Rev. 1.0 | 62  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
3.71  
4.39  
5.25  
6.22  
7.88  
9.9  
Typ  
Max  
5.24  
6.26  
7.55  
9.01  
11.6  
14.6  
17.0  
20.9  
24.7  
30.4  
34.9  
44.4  
51.0  
64.6  
74.8  
87.4  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Band Frequency Limits6  
fHFRCO_BAND  
FREQRANGE = 0  
FREQRANGE = 1  
FREQRANGE = 2  
FREQRANGE = 3  
FREQRANGE = 4  
FREQRANGE = 5  
FREQRANGE = 6  
FREQRANGE = 7  
FREQRANGE = 8  
FREQRANGE = 9  
FREQRANGE = 10  
FREQRANGE = 11  
FREQRANGE = 12  
FREQRANGE = 13  
FREQRANGE = 14  
FREQRANGE = 15  
11.5  
14.1  
16.4  
19.8  
22.7  
28.6  
33.0  
42.2  
48.8  
57.6  
Note:  
1. Does not include additional clock tree current. See specifications for additional current when selected as a clock source for a par-  
ticular clock multiplexer.  
2. This frequency is calibrated for the HFRCOEM23 only.  
3. This frequency is calibrated for the HFRCODPLL (HFRCO0) only.  
4. When the HFRCO is enabled for characterization using the FORCEEN bit, the total current will be the HFRCO core current plus  
the specified CLKOUT current. When the HFRCO is enabled on demand, the clock current may be different.  
5. Hardware delay ensures settling to within ± 0.5%. Hardware also enforces this delay on a band change.  
6. The frequency band limits represent the lowest and highest frequency which each band can achieve over the operating range.  
4.10.4 Fast Start-Up RC Oscillator (FSRCO)  
Table 4.28. Fast Start-Up RC Oscillator (FSRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
FSRCO frequency  
FFSRCO  
17.2  
20  
21.2  
MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 63  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.10.5 Precision Low Frequency RC Oscillator (LFRCO)  
Table 4.29. Precision Low Frequency RC Oscillator (LFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Nominal oscillation frequen- FLFRCO  
cy  
32.768  
kHz  
Frequency accuracy  
FLFRCO_ACC  
Normal mode  
-3  
3
%
Precision mode1, across operat-  
ing temperature range2  
-500  
500  
ppm  
Startup time  
tSTARTUP  
Normal mode  
204  
µs  
Precision mode1  
Normal mode  
11.7  
ms  
Current consumption  
ILFRCO  
189.9  
649.8  
nA  
nA  
Precision mode1, T = stable at 25  
°C 3  
Note:  
1. The LFRCO operates in high-precision mode when CFG_HIGHPRECEN is set to 1. High-precision mode is not available in EM4.  
2. Includes ± 40 ppm frequency tolerance of the HFXO crystal.  
3. Includes periodic re-calibration against HFXO crystal oscillator.  
4.10.6 Ultra Low Frequency RC Oscillator (ULFRCO)  
Table 4.30. Ultra Low Frequency RC Oscillator (ULFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Oscillation Frequency  
FULFRCO  
0.944  
1.0  
1.095  
kHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 64  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.11 GPIO Pins (GPIO)  
Table 4.31. GPIO Pins (GPIO)  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Leakage current  
ILEAK_IO  
MODEx = DISABLED, IOVDD =  
1.71 V  
1.9  
nA  
MODEx = DISABLED, IOVDD =  
3.0 V  
2.5  
nA  
nA  
MODEx = DISABLED, IOVDD =  
3.8 V TA = 125 °C, PB00-PB03,  
PC06-PC09, PA00  
250  
MODEx = DISABLED, IOVDD =  
3.8 V TA = 125 °C, All Other Pins  
200  
nA  
V
Input low voltage1  
VIL  
Any GPIO pin  
0.3 *  
IOVDD  
RESETn  
0.3 * DVDD  
V
V
Input high voltage1  
VIH  
Any GPIO pin  
0.7 *  
IOVDD  
RESETn  
0.7 * DVDD  
V
V
Hysteresis of input voltage  
VHYS  
Any GPIO pin  
0.05 *  
IOVDD  
RESETn  
0.05 *  
DVDD  
V
V
Output high voltage  
Output low voltage  
GPIO rise time  
VOH  
Sourcing 20mA, IOVDD = 3.0 V  
Sourcing 8mA, IOVDD = 1.71 V  
Sinking 20mA, IOVDD = 3.0 V  
Sinking 8mA, IOVDD = 1.71 V  
0.8 *  
IOVDD  
0.6 *  
IOVDD  
V
VOL  
35  
0.2 *  
IOVDD  
V
0.4 *  
IOVDD  
V
TGPIO_RISE  
IOVDD = 3.0 V, Cload = 50pF,  
SLEWRATE = 4, 10% to 90%  
8.4  
13  
55  
ns  
ns  
ns  
ns  
kΩ  
IOVDD = 1.7 V, Cload = 50pF,  
SLEWRATE = 4, 10% to 90%  
GPIO fall time  
TGPIO_FALL  
IOVDD = 3.0 V, Cload = 50pF,  
SLEWRATE = 4, 90% to 10%  
7.1  
11.9  
44  
IOVDD = 1.7 V, Cload = 50pF,  
SLEWRATE = 4, 90% to 10%  
Pull up/down resistance2  
RPULL  
Any GPIO pin. Pull-up to IOVDD:  
MODEn = DISABLE DOUT=1.  
Pull-down to VSS: MODEn =  
WIREDORPULLDOWN DOUT =  
0.  
RESETn pin. Pull-up to DVDD  
MODE = INPUT, DOUT = 1  
35  
44  
27  
55  
kΩ  
ns  
Maximum filtered glitch width TGF  
silabs.com | Building a more connected world.  
Rev. 1.0 | 65  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
RESETn low time to ensure TRESET  
pin reset  
100  
ns  
Note:  
1. GPIO input thresholds are proportional to the IOVDD pin. RESETn input thresholds are proportional to DVDD.  
2. GPIO pull-ups connect to IOVDD supply, pull-downs connect to VSS. RESETn pull-up connects to DVDD.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 66  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.12 Analog to Digital Converter (IADC)  
Specified at 1 Msps, ADCCLK = 10 MHz, OSR=2, unless otherwise indicated.  
Table 4.32. Analog to Digital Converter (IADC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
3.8  
Unit  
V
Main analog supply  
VAVDD  
Normal mode  
1.71  
1.71  
1.71  
0
High-Speed mode  
3.8  
V
High-Accuracy mode  
Maximum allowable input voltage  
3.8  
V
Maximum Input Range1  
Full-Scale Voltage  
VIN_MAX  
VFS  
AVDD  
V
Voltage required for Full-Scale  
measurement  
-VFS  
0
VREF / Gain  
V
V
V
Input Measurement Range  
VIN  
Differential Mode - Plus and Mi-  
nus inputs  
+VFS  
VFS  
Single Ended Mode - One input  
tied to ground  
Input Sampling Capacitance Cs  
Analog Gain = 1x  
1.8  
3.6  
5.4  
7.2  
0.9  
10  
5
pF  
pF  
Analog Gain = 2x  
Analog Gain = 3x  
pF  
Analog Gain = 4x  
pF  
Analog Gain = 0.5x  
pF  
ADC clock frequency  
fADC_CLK  
Normal mode, Gain = 1x or 0.5x  
Normal mode, Gain = 2x  
Normal mode, Gain = 3x or 4x  
MHz  
MHz  
MHz  
MHz  
2.5  
20  
High-Speed mode, Gain = 1x or  
0.5x  
High-Speed mode, Gain = 2x  
10  
5
MHz  
MHz  
High-Speed mode, Gain = 3x or  
4x  
High-Accuracy mode  
Normal Mode  
5
MHz  
MHz  
MHz  
MHz  
Msps  
Input sampling frequency  
Throughput rate  
fS  
fADC_CLK/4  
fADC_CLK/4  
fADC_CLK/4  
1
High-Speed Mode  
High-Accuracy Mode  
fSAMPLE  
Normal mode, fADC_CLK = 10  
MHz, OSR = 2  
Normal mode, fADC_CLK = 10  
MHz, OSR = 32  
76.9  
2
ksps  
Msps  
ksps  
ksps  
High-Speed mode, fADC_CLK = 20  
MHz, OSR = 2  
High-Accuracy mode, fADC_CLK  
5 MHz, OSR = 92  
=
10.7  
3.88  
High-Accuracy mode, fADC_CLK  
5 MHz, OSR = 256  
=
silabs.com | Building a more connected world.  
Rev. 1.0 | 67  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current from all supplies,  
Continuous operation  
IADC_CONT  
Normal Mode, 1 Msps, OSR = 2,  
fADC_CLK = 10 MHz  
305  
385  
µA  
High-Speed Mode, 2 Msps, OSR  
= 2, fADC_CLK = 20 MHz  
550  
655  
µA  
Current in Standby mode.  
ADC is not functional but can  
wake up in 1us.  
ISTBY  
Normal mode  
High-Speed mode  
High-Accuracy mode  
From power down state  
From standby state  
OSR = 2  
17  
21  
10  
5
20  
µA  
µA  
µA  
ADC Startup Time  
tstartup  
µs  
1
µs  
Normal Mode ADC Resolu-  
tion2  
Resolution  
12  
16  
12  
16  
16  
bits  
bits  
bits  
bits  
bits  
OSR = 32  
High-Speed Mode ADC Res- ResolutionHS  
olution2  
OSR = 2  
OSR = 32  
HIgh-Accuracy Mode ADC  
Resolution  
ResolutionHA  
High Accuracy mode. Typical val-  
ue is for default OSR = 92 for 10.7  
ksps, max value is limited by code  
length.  
Differential Nonlinearity  
DNL  
Normal mode. Differential Input.  
OSR = 2 (No missing codes)  
-1  
-1  
-1  
+/- 0.25  
+/- 0.25  
1.5  
1.5  
1
LSB12  
LSB12  
LSB16  
High Speed mode. Differential In-  
put. OSR = 2  
High-Accuracy mode3. Differential  
Input. 10.7 ksps with OSR = 92  
Integral Nonlinearity  
INL  
Normal mode. Differential Input,  
OSR = 2  
-2.5  
-2.5  
+/- 0.65  
+/- 0.65  
+/- 0.25  
2.5  
2.5  
LSB12  
LSB12  
LSB16  
High-Speed mode. Differential In-  
put.  
High-Accuracy mode3. Differential  
Input. External VREF = 1.25 V.  
10.7 ksps with OSR = 92  
silabs.com | Building a more connected world.  
Rev. 1.0 | 68  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Effective number of bits4  
ENOB  
Normal Mode, Differential Input.  
Gain = 1x, OSR = 2, fIN = 10 kHz,  
Internal VREF = 1.21V  
10.7  
11.7  
bits  
Normal Mode, Differential Input.  
Gain = 1x, OSR = 32, fIN = 2.5  
kHz, Internal VREF = 1.21 V.  
13.5  
14.3  
11.5  
15.3  
bits  
bits  
bits  
bits  
Normal Mode, Differential Input.  
Gain = 1x, OSR = 32, fIN = 2.5  
kHz, External VREF = 1.25 V.  
High Speed mode. Differential In-  
put. Gain = 1x, OSR = 2, fIN = 10  
kHz, Internal VREF = 1.21 V  
10.7  
14.0  
High-Accuracy mode3. Differential  
Input. Gain = 1x, fIN = 100 Hz, Ex-  
ternal VREF = 1.25 V. 10.7 ksps  
with OSR = 92  
High-Accuracy mode3. Differential  
Input. Gain = 1x, fIN = 100 Hz, Ex-  
ternal VREF = 1.25 V. 3.88 ksps  
with OSR = 256  
16.1  
bits  
Signal to Noise + Distortion  
Ratio Normal Mode4  
SNDR  
Differential Input. Gain=1x, OSR =  
2, fIN = 10 kHz, Internal VREF =  
1.21V  
66  
66  
72.3  
72.3  
68.8  
72.5  
83.9  
72.3  
72.3  
68.8  
72.5  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Differential Input. Gain=2x, OSR =  
2, fIN = 10 kHz, Internal VREF =  
1.21V  
Differential Input. Gain=4x, OSR =  
2, fIN = 10 kHz, Internal VREF =  
1.21V  
Differential Input. Gain=0.5x, OSR  
= 2, fIN = 10 kHz, Internal VREF =  
1.21V  
Differential Input. Gain = 1x, OSR  
= 64, fIN = 1.25 kHz, Internal  
VREF = 1.21 V  
Signal to Noise + Distortion  
Ratio High-Speed mode  
SNDRHS  
High Speed mode. Differential In-  
put. Gain = 1x, OSR = 2, fIN = 10  
kHz, Internal VREF = 1.21 V  
High Speed mode. Differential In-  
put. Gain = 2x, OSR = 2, fIN = 10  
kHz, Internal VREF = 1.21 V  
High Speed mode. Differential In-  
put. Gain = 4x, OSR = 2, fIN = 10  
kHz, Internal VREF = 1.21 V  
High Speed mode. Differential In-  
put. Gain = 0.5x, OSR = 2, fIN  
=
10 kHz, Internal VREF = 1.21 V  
silabs.com | Building a more connected world.  
Rev. 1.0 | 69  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal to Noise + Distortion  
Ratio High-Accuracy mode3  
SNDRHA  
High-Accuracy. Differential Input.  
Gain = 1x, fIN = 100 Hz, External  
VREF = 1.25 V. 3.88 ksps with  
OSR = 256  
98.7  
dB  
High-Accuracy. Differential Input.  
Gain = 1x, fIN = 100 Hz, External  
VREF = 1.25 V. 10.7 ksps with  
OSR = 92  
86  
93.8  
93.5  
91.0  
94.7  
dB  
dB  
dB  
dB  
High-Accuracy. Differential Input.  
Gain = 2x, fIN = 100 Hz, External  
VREF = 1.25 V. 10.7 ksps with  
OSR = 92  
High-Accuracy. Differential Input.  
Gain = 4x, fIN = 100 Hz, External  
VREF = 1.25 V. 10.7 ksps with  
OSR = 92  
High-Accuracy. Differential Input.  
Gain = 0.5x, fIN = 100 Hz, Exter-  
nal VREF = 1.25 V. 10.7 ksps with  
OSR = 92  
Total Harmonic Distortion  
THD  
Normal mode, Differential Input.  
Gain = 1x, OSR = 2, fIN = 10 kHz,  
Internal VREF = 1.21 V  
-80.8  
-84.3  
-101  
-70  
-70  
-80  
dB  
dB  
dB  
High Speed mode, Differential In-  
put. Gain = 1x, OSR = 2, fIN = 10  
kHz, Internal VREF = 1.21 V  
High-Accuracy mode3, Differential  
Input. fIN = 100 Hz, External  
VREF = 1.25 V. 10.7 ksps with  
OSR = 92  
Spurious-Free Dynamic  
Range  
SFDR  
Normal mode, Differential Input.  
Gain = 1x, OSR = 2, fIN = 10 kHz,  
Internal VREF = 1.21 V  
72  
72  
86.5  
84.3  
dB  
dB  
dB  
High Speed mode, Differential In-  
put. Gain = 1x, fIN = 10 kHz, Inter-  
nal VREF = 1.21 V  
High-Accuracy mode3, Differential  
Input. fIN = 100 Hz, External  
VREF = 1.25 V. 10.7 ksps with  
OSR = 92  
118.1  
Common Mode Rejection  
Ratio  
CMRR  
Normal mode. DC to 100 Hz  
87.0  
68.6  
86.3  
59.0  
dB  
dB  
dB  
dB  
Normal mode. AC high frequency.  
High-Speed mode. DC to 100 Hz  
High-Speed mode. AC high fre-  
quency.  
High-Accuracy mode3. DC to 100  
Hz  
93.8  
87.0  
dB  
dB  
High Accuracy mode3. AC high  
frequency.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 70  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
80.4  
33.4  
Max  
Unit  
dB  
Power Supply Rejection Ra- PSRR  
tio  
Normal mode. DC to 100 Hz  
Normal mode. AC high frequency,  
using internal VBGR  
dB  
Normal mode. AC high frequency,  
using VREF pad  
65.2  
dB  
High Speed modes. DC to 100 Hz  
79.8  
31.0  
dB  
dB  
High-Speed mode. AC high fre-  
quency, using internal VBGR  
High Speed mode. AC high fre-  
quency, using VREF pad  
65.0  
124  
dB  
dB  
High Accuracy mode3. DC to 100  
Hz  
High-Accuracy mode3. AC high  
frequency, using external VREF  
pin.  
85.0  
dB  
External reference voltage  
range1  
VEVREF  
1.0  
-3  
AVDD  
3
V
Offset Error, Normal mode  
OFFSET  
GAIN = 1 and 0.5, Differential In-  
put  
0.27  
LSB12  
GAIN = 2, Differential Input  
GAIN = 3, Differential Input  
GAIN = 4, Differential Input  
-4  
-4  
-4  
-3  
0.27  
0.25  
0.29  
0.27  
4
4
4
3
LSB12  
LSB12  
LSB12  
LSB12  
Offset Error, High-speed  
mode  
OFFSETHS  
GAIN = 1 and 0.5, Differential In-  
put  
GAIN = 2, Differential Input  
GAIN = 3, Differential Input  
GAIN = 4, Differential Input  
GAIN = 1, Differential Input  
-4  
-4  
-4  
-7  
0.27  
0.25  
0.29  
-2.36  
4
4
4
7
LSB12  
LSB12  
LSB12  
LSB16  
Offset Error, High-accuracy  
mode3  
OFFSETHA  
GE  
Gain Error, Normal mode  
GAIN = 1 and 0.5, using external  
VREF, direct mode, fADC_CLK = 10  
MHz  
-0.6  
-0.155  
0.6  
%
GAIN = 2, using external VREF,  
direct mode, fADC_CLK = 5 MHz  
-0.6  
-0.7  
-1.1  
-1.5  
-0.155  
0.186  
0.227  
0.023  
0.6  
0.7  
1.1  
1.5  
%
%
%
%
GAIN = 3, using external VREF,  
direct mode, fADC_CLK = 2.5 MHz  
GAIN = 4, using external VREF,  
direct mode, fADC_CLK = 2.5 MHz  
Internal VREF 5, all GAIN settings  
silabs.com | Building a more connected world.  
Rev. 1.0 | 71  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Gain Error, High-speed  
mode  
GEHS  
GAIN = 1 and 0.5, using external  
VREF, direct mode, fADC_CLK = 20  
MHz  
-0.6  
-0.155  
0.6  
%
GAIN = 2, using external VREF,  
direct mode, fADC_CLK = 10 MHz  
-0.6  
-0.7  
-1.1  
-0.055  
0.186  
0.227  
0.6  
0.7  
1.1  
%
%
%
GAIN = 3, using external VREF,  
direct mode, fADC_CLK = 5 MHz  
GAIN = 4, using external VREF,  
direct mode, fADC_CLK = 5 MHz  
Internal VREF 5, all GAIN settings  
-1.5  
-0.5  
0.023  
1.5  
0.5  
%
%
Gain Error, High-accuracy  
mode3  
GEHA  
GAIN = 1, using external VREF,  
direct mode.  
0.0055  
Internal Reference voltage  
VIVREF  
1.21  
V
Note:  
1. When inputs are routed to external GPIO pins, the maximum pin voltage is limited to the lower of the IOVDD and AVDD supplies.  
2. ADC output resolution depends on the OSR and digital averaging settings. With no digital averaging, ADC output resolution is 12  
bits at OSR = 2, 13 bits at OSR = 4, 14 bits at OSR = 8, 15 bits at OSR = 16, 16 bits at OSR = 32 and 17 bits at OSR = 64. Digital  
averaging has a similar impact on ADC output resolution. See the product reference manual for additional details.  
3. High-Accuracy mode performance specifications are tested with inputs applied to the dedicated AIN pins.  
4. The relationship between ENOB and SNDR is specified according to the equation: ENOB = (SNDR - 1.76) / 6.02.  
5. Includes error from internal VREF drift.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 72  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.13 Analog Comparator (ACMP)  
Table 4.33. Analog Comparator (ACMP)  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
BIAS = 0 1, HYST = DISABLED  
(100 °C max)  
ACMP Supply current  
IACMP  
71  
nA  
BIAS = 1 1, HYST = DISABLED  
BIAS = 2 1, HYST = DISABLED  
270  
668  
2.5  
nA  
nA  
µA  
BIAS = 3 1, HYST = DISABLED  
BIAS = 4, HYST = DISABLED  
BIAS = 5, HYST = DISABLED  
BIAS = 6, HYST = DISABLED  
BIAS = 7, HYST = DISABLED  
5.4  
10.6  
27  
µA  
µA  
µA  
µA  
µA  
50  
100  
BIAS = 3 1, HYST = SYM30MV  
BIAS = 4, HYST = SYM30MV  
BIAS = 5, HYST = SYM30MV  
BIAS = 6, HYST = SYM30MV  
BIAS = 7, HYST = SYM30MV  
NEGSEL = VREFDIVAVDD  
NEGSEL = VREFDIV1V25  
NEGSEL = VREFDIV2V5  
ACMP Supply current with  
Hysteresis 2  
IACMP_WHYS  
3.4  
7.3  
15  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
nA  
nA  
nA  
µA  
38  
71  
Current consumption from  
VREFDIV in continuous  
mode  
IVREFDIV  
3.2  
4.3  
7.1  
81  
Current consumption from  
VREFDIV in sample/hold  
mode  
IVREFDIV_SH  
NEGSEL = VREFDIV2V5LP  
NEGSEL = VREFDIV1V25LP  
NEGSEL = VREFDIVAVDDLP  
NEGSEL = VSENSE01DIV4  
74  
76  
Current consumption from  
VSENSEDIV in continuous  
mode  
IVSENSEDIV  
1.7  
Hysteresis (BIAS = 4) 2  
HYST = SYM10MV3  
HYST = SYM20MV3  
VHYST  
18  
33  
47  
mV  
mV  
mV  
HYST = SYM30MV3  
Reference Voltage  
Input offset voltage  
VACMPREF  
Internal 1.25 V Reference  
Internal 2.5 V Reference  
1.19  
2.34  
-25  
1.25  
2.5  
1.31  
2.75  
25  
V
V
VOFFSET  
BIAS = 0, VCM = 0.15 to AVDD -  
0.15 V  
mV  
BIAS = 3, VCM = 0.15 to AVDD -  
0.15 V  
-25  
-25  
-30  
25  
25  
30  
mV  
mV  
mV  
BIAS = 4, VCM = 0.15 to AVDD -  
0.15 V  
BIAS = 7, VCM = 0.15 to AVDD -  
0.15 V  
silabs.com | Building a more connected world.  
Rev. 1.0 | 73  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
VIN  
Test Condition  
Input Voltage Range  
BIAS = 0, (100 °C max)  
BIAS = 1  
Min  
0
Typ  
Max  
AVDD  
Unit  
V
Input Range  
Comparator delay with 100  
mV overdrive  
TDELAY  
10  
µs  
µs  
µs  
µs  
ns  
2.7  
BIAS = 2  
1.4  
BIAS = 3  
0.58  
224  
133  
80  
BIAS = 4  
BIAS = 5  
ns  
BIAS = 6  
ns  
BIAS = 7  
63  
ns  
Capacitive Sense Oscillator RCSRESSEL  
Resistance  
CSRESSEL = 0  
CSRESSEL = 1  
CSRESSEL = 2  
CSRESSEL = 3  
CSRESSEL = 4  
CSRESSEL = 5  
CSRESSEL = 6  
15.9  
25.3  
43.6  
61.9  
80.2  
98.6  
117  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
Note:  
1. When using the 1.25 V or 2.5 V VREF in continuous mode (VREFDIV1V25 or VREFDIV2V5) and BIAS < 4, an additional 1 µA of  
supply current is required.  
2. Hysteresis is not supported for BIAS=0/1/2. Software should set HYST=DISABLED if using BIAS=0/1/2.  
3. VCM = 1.25 V  
silabs.com | Building a more connected world.  
Rev. 1.0 | 74  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.14 Digital to Analog Converter (VDAC)  
Table 4.34. Digital to Analog Converter (VDAC)  
Parameter  
Symbol  
VDACOUT  
IDACOUT  
fDAC  
Test Condition  
Min  
0
Typ  
Max  
VREF  
10  
Unit  
V
Output voltage  
Output Current  
DAC clock frequency  
Sample rate  
-10  
mA  
MHz  
ksps  
bits  
pF  
1
SRDAC  
fDAC = fDAC(max)  
500  
Resolution  
NRESOLUTION  
CLOAD  
12  
Load Capacitance1  
High Power and Lower Power  
Modes  
50  
High Capacitance Load Mode  
25  
5
nF  
kΩ  
µA  
µA  
Load Resistance  
RLOAD  
Current consumption, Dy-  
namic, 500 ksps, 1 channel  
active2  
IDAC_1_500  
High Power Mode  
Low Power Mode  
281  
179  
Current consumption, Dy-  
namic, 500 ksps, 2 channels  
active2  
IDAC_2_500  
High Power Mode  
Low Power Mode  
445  
242  
µA  
µA  
Current consumption, Static, IDAC_1_STAT  
1 channel active3  
High Power Mode  
135  
31  
4.9  
µA  
µA  
µA  
µA  
µA  
µA  
µs  
Low Power Mode  
High Capacitance Mode  
High Power Mode  
43  
Current consumption, Static, IDAC_2_STAT  
2 channels active3  
262  
53  
Low Power Mode  
High Capacitance Mode  
78  
Startup time  
Settling time  
tDACSTARTUP  
Enable to 90% full scale output,  
settling to 10 LSB  
4.5  
tDACSETTLE  
High Power Mode, 25% to 75% of  
full scale, settling to 10 LSB  
1.1  
2.7  
1.6  
µs  
µs  
Low Power Mode, 25% to 75% of  
full scale, settling to 1%  
Output impedance  
ROUT  
Main Output, High Power Mode  
Main Output, Low Power Mode  
Vout = 50% full scale, DC output  
2.1  
3.4  
Power supply rejection ratio4  
PSRR  
88.6  
dB  
Signal to noise and distortion SNDRDAC  
ratio  
High Power mode, 500 ksps, in-  
ternal 2.5 V reference, 1 kHz sine  
wave input, BW limited to 250 kHz  
65.8  
68.0  
67.2  
70.6  
-72.5  
dB  
dB  
dB  
High Power mode, 500 ksps, in-  
ternal 2.5 V reference, 1 kHz sine  
wave input, BW limited to 22 kHz  
Total Harmonic Distortion  
THD  
High Power Mode, internal 2.5 V  
reference, 1 kHz sine wave input  
-68.7  
silabs.com | Building a more connected world.  
Rev. 1.0 | 75  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Integral Non-Linearity  
INLDAC  
High Power Mode, Across full  
temperature range  
-5  
5
LSB  
Differential Non-Linearity5  
Offset error6  
DNLDAC  
High Power Mode, Across full  
temperature range  
-1  
1.3  
LSB  
VOFFSET  
High Power mode  
-15  
-25  
-35  
-1.5  
-2  
15  
25  
mV  
mV  
mV  
%
Low Power Mode  
High Capacitance Load mode  
1.25 V internal reference  
2.5 V internal reference  
External Reference  
35  
Gain error6  
VGAIN  
1.5  
2
%
-0.6  
1.1  
0.6  
%
External Reference Voltage7  
VEXTREF  
V_AVDD  
V
Note:  
1. Main outputs only.  
2. Dynamic current specifications are for VDAC circuitry operating at max clock frequency with the output updated at the specified  
sampling rate using DMA transfers. Output is a 1 kHz sine wave from 10% to 90% full scale. Specified current does not include  
current required to drive the external load. Measurement includes all current from AVDD and DVDD supplies.  
3. Static current specifications are for VDAC circuitry operating after a one-time update to a static output at 50% full scale, with the  
VDAC APB clock disabled. Specified current does not include current required to drive the external load. Measurement includes  
all current from AVDD and DVDD supplies.  
4. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT).  
5. Entire range is monotonic and has no missing codes.  
6. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at  
10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.  
7. External reference voltage on VREFP pin or PA00 when used for VREFP  
silabs.com | Building a more connected world.  
Rev. 1.0 | 76  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.15 Temperature Sensor  
Table 4.35. Temperature Sensor  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Temperature sensor range1  
TRANGE  
-40  
125  
°C  
Temperature sensor resolu- TRESOLUTION  
tion  
0.25  
°C  
Measurement noise (RMS)  
TNOISE  
Single measurement  
0.6  
°C  
°C  
16-sample average (TEMPAVG-  
NUM = 0)  
0.17  
64-sample average (TEMPAVG-  
NUM = 1)  
0.12  
3.2  
°C  
°C  
°C  
°C  
°C  
Temperature offset  
TOFF  
Mean error of uncorrected output  
across full temperature range  
Temperature sensor accura- TACC  
cy2 3  
Direct output accuracy after mean  
error (TOFF) removed  
+/-3  
After linearization in software, no  
calibration  
+/-2  
After linearization in software, with  
single-temperature calibration at  
25 °C4  
+/-1.5  
Measurement interval  
tMEAS  
250  
ms  
Note:  
1. The sensor reports absolute die temperature in Kelvin (K). All specifications are in °C to match the units of the specified product  
temperature range.  
2. Error is measured as the deviation of the mean temperature reading from the expected die temperature. Accuracy numbers rep-  
resent statistical minimum and maximum using ± 4 standard deviations of measured error.  
3. The raw output of the temperature sensor is a predictable curve. It can be linearized with a polynomial function for additional ac-  
curacy.  
4. Assuming calibration accuracy of ± 0.25 °C.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 77  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.16 Brown Out Detectors  
4.16.1 DVDD BOD  
BOD thresholds on DVDD in EM0 and EM1 only, unless otherwise noted. Typical conditions are at TA = 25 °C. Minimum and maximum  
values in this table represent the worst conditions across process variation, operating supply voltage range, and operating temperature  
range.  
Table 4.36. DVDD BOD  
Parameter  
Symbol  
Test Condition  
Supply Rising  
Supply Falling  
Min  
Typ  
1.67  
1.65  
0.95  
Max  
1.71  
Unit  
V
BOD threshold  
VDVDD_BOD  
1.62  
V
BOD response time  
BOD hysteresis  
Note:  
tDVDD_BOD_DE-  
Supply dropping at 100 mV/µs  
slew rate1  
µs  
LAY  
VDVDD_BOD_HYS  
25  
mV  
T
1. If the supply slew rate exceeds the specified slew rate, the BOD may trip later than expected (at a threshold below the minimum  
specified threshold), or the BOD may not trip at all (e.g., if the supply ramps down and then back up at a very fast rate)  
4.16.2 Low-Energy DVDD BOD  
BOD thresholds on DVDD pin for low energy modes EM2 to EM4, unless otherwise noted.  
Table 4.37. Low-Energy DVDD BOD  
Parameter  
Symbol  
Test Condition  
Min  
1.5  
Typ  
Max  
1.71  
Unit  
V
BOD threshold  
BOD response time  
VDVDD_LE_BOD  
Supply Falling  
tDVDD_LE_BOD_D Supply dropping at 2 mV/µs slew  
50  
µs  
rate1  
ELAY  
BOD hysteresis  
VDVDD_LE_BOD_  
20  
mV  
HYST  
Note:  
1. If the supply slew rate exceeds the specified slew rate, the BOD may trip later than expected (at a threshold below the minimum  
specified threshold), or the BOD may not trip at all (e.g., if the supply ramps down and then back up at a very fast rate)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 78  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.16.3 AVDD and IOVDD BODs  
BOD thresholds for AVDD BOD and IOVDD BOD. Available in all energy modes.  
Table 4.38. AVDD and IOVDD BODs  
Parameter  
Symbol  
VBOD  
Test Condition  
Min  
1.45  
Typ  
Max  
1.71  
Unit  
V
BOD threshold  
BOD response time  
Supply falling  
tBOD_DELAY  
Supply dropping at 2 mV/µs slew  
rate1  
50  
µs  
BOD hysteresis  
VBOD_HYST  
24  
mV  
Note:  
1. If the supply slew rate exceeds the specified slew rate, the BOD may trip later than expected (at a threshold below the minimum  
specified threshold), or the BOD may not trip at all (e.g., if the supply ramps down and then back up at a very fast rate)  
4.17 Pulse Counter (PCNT)  
Table 4.39. Pulse Counter (PCNT)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input frequency  
FIN  
Asynchronous Single and Quad-  
rature Modes  
1.0  
MHz  
Sampled Modes with Debounce  
filter set to 0.  
53  
47  
8
kHz  
ns  
Setup time in asynchronous tSU_S1N_S0N  
external clock mode  
S1N (data) to S0N (clock)  
Hold time in asynchronous  
external clock mode  
tHD_S0N_S1N  
S0N (clock) to S1N (data)  
ns  
silabs.com | Building a more connected world.  
Rev. 1.0 | 79  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.18 USART SPI Main Timing  
tCS_MO  
CS  
tSCLK_MO  
SCLK  
CLKPOL = 0  
tSCLK  
SCLK  
CLKPOL = 1  
MOSI  
MISO  
tSU_MI  
tH_MI  
Figure 4.1. SPI Main Timing (SMSDELAY = 0)  
tCS_MO  
CS  
tSCLK_MO  
SCLK  
CLKPOL = 0  
tSCLK  
SCLK  
CLKPOL = 1  
MOSI  
MISO  
tSU_MI  
tH_MI  
Figure 4.2. SPI Main Timing (SMSDELAY = 1)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 80  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.18.1 USART SPI Main Timing, Voltage Scaling = VSCALE2  
Timing specifications are for all SPI signals routed to the same DBUS (DBUSAB or DBUSCD). All GPIO set to slew rate = 6.  
Table 4.40. USART SPI Main Timing, Voltage Scaling = VSCALE2  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period1 2 3  
CS to MOSI1 2  
SCLK to MOSI1 2  
MISO setup time1 2  
tSCLK  
2*tPCLK  
ns  
tCS_MO  
tSCLK_MO  
tSU_MI  
-15  
-6  
15  
13  
ns  
ns  
IOVDD = 1.62 V  
IOVDD = 3.0 V  
40  
31  
-9  
ns  
ns  
ns  
MISO hold time1 2  
tH_MI  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1.  
2. Measurement done with 8 pF output loading at 10% and 90% of the I/O supply.  
3. tPCLK is one period of the selected PCLK.  
4.18.2 USART SPI Main Timing, Voltage Scaling = VSCALE1  
Timing specifications are for all SPI signals routed to the same DBUS (DBUSAB or DBUSCD). All GPIO set to slew rate = 6.  
Table 4.41. USART SPI Main Timing, Voltage Scaling = VSCALE1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period1 2 3  
CS to MOSI1 2  
SCLK to MOSI1 2  
MISO setup time1 2  
tSCLK  
2*tPCLK  
ns  
tCS_MO  
tSCLK_MO  
tSU_MI  
-26  
-7  
25  
24  
ns  
ns  
IOVDD = 1.62 V  
IOVDD = 3.0 V  
50  
42  
-9  
ns  
ns  
ns  
MISO hold time1 2  
tH_MI  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1.  
2. Measurement done with 8 pF output loading at 10% and 90% of the I/O supply.  
3. tPCLK is one period of the selected PCLK.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 81  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.19 USART SPI Secondary Timing  
tCS_ACT_MI  
CS  
tCS_DIS_MI  
SCLK  
CLKPOL = 0  
tSCLK_HI  
tSCLK_LO  
SCLK  
tSU_MO  
CLKPOL = 1  
tSCLK  
tH_MO  
MOSI  
MISO  
tSCLK_MI  
Figure 4.3. SPI Secondary Timing (SSSEARLY = 0)  
tCS_ACT_MI  
CS  
tCS_DIS_MI  
SCLK  
CLKPOL = 0  
tSCLK_HI  
tH_MO  
tSCLK_LO  
SCLK  
CLKPOL = 1  
tSCLK  
tSU_MO  
MOSI  
MISO  
tSCLK_MI  
Figure 4.4. SPI Secondary Timing (SSSEARLY = 1)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 82  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.19.1 USART SPI Secondary Timing, Voltage Scaling = VSCALE2  
Timing specifications are for all SPI signals routed to the same DBUS (DBUSAB or DBUSCD). All GPIO set to slew rate = 6.  
Table 4.42. USART SPI Secondary Timing, Voltage Scaling = VSCALE2  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period1 2 3  
tSCLK  
6*tPCLK  
ns  
SCLK high time1 2 3  
SCLK low time1 2 3  
CS active to MISO1 2  
CS disable to MISO1 2  
MOSI setup time1 2  
MOSI hold time1 2 3  
SCLK to MISO1 2 3  
tSCLK_HI  
tSCLK_LO  
tCS_ACT_MI  
tCS_DIS_MI  
tSU_MO  
2.5*tPCLK  
67  
89  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.5*tPCLK  
19  
24  
12  
13  
tH_MO  
tSCLK_MI  
14 +  
1.5*tPCLK  
24 +  
2.5*tPCLK  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. Measurement done with 8 pF output loading at 10% and 90% of the I/O supply (figure shows 50%).  
3. tPCLK is one period of the selected PCLK.  
4.19.2 USART SPI Secondary Timing, Voltage Scaling = VSCALE1  
Timing specifications are for all SPI signals routed to the same DBUS (DBUSAB or DBUSCD). All GPIO set to slew rate = 6.  
Table 4.43. USART SPI Secondary Timing, Voltage Scaling = VSCALE1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period1 2 3  
tSCLK  
6*tPCLK  
ns  
SCLK high time1 2 3  
SCLK low time1 2 3  
CS active to MISO1 2  
CS disable to MISO1 2  
MOSI setup time1 2  
MOSI hold time1 2 3  
SCLK to MISO1 2 3  
tSCLK_HI  
tSCLK_LO  
tCS_ACT_MI  
tCS_DIS_MI  
tSU_MO  
2.5*tPCLK  
96  
87  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.5*tPCLK  
25  
24  
13  
14  
tH_MO  
tSCLK_MI  
17 +  
1.5*tPCLK  
33 +  
2.5*tPCLK  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. Measurement done with 8 pF output loading at 10% and 90% of the I/O supply (figure shows 50%).  
3. tPCLK is one period of the selected PCLK.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 83  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.20 EUSART SPI Main Timing  
tCS_MO  
CS  
tSCLK_MO  
SCLK  
CLKPOL = 0  
tSCLK  
SCLK  
CLKPOL = 1  
MOSI  
MISO  
tSU_MI  
tH_MI  
Figure 4.5. SPI Main Timing  
4.20.1 EUSART SPI Main Timing, Voltage Scaling = VSCALE2  
Timing specifications are for all SPI signals routed to the same DBUS (DBUSAB or DBUSCD) on consecutive pins. All GPIO set to slew  
rate = 6.  
Table 4.44. EUSART SPI Main Timing, Voltage Scaling = VSCALE2  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period1 2 3  
CS to MOSI1 2  
SCLK to MOSI1 2  
MISO setup time 1 2  
tSCLK  
t_CLK  
ns  
tCS_MO  
tSCLK_MO  
tSU_MI  
-10  
-3  
9
8
ns  
ns  
ns  
ns  
6
MISO hold time1 2  
tH_MI  
-21  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1.  
2. Measurement done with 15 pF output loading at 10% and 90% of VDD  
.
3. tCLK is one period of the selected peripheral clock: EM01GRPCCLK for EUSART1/2, EUSART0CLK for EUSART0.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 84  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.20.2 EUSART SPI Main Timing, Voltage Scaling = VSCALE1  
Timing specifications are for all SPI signals routed to the same DBUS (DBUSAB or DBUSCD) on consecutive pins. All GPIO set to slew  
rate = 6.  
Table 4.45. EUSART SPI Main Timing, Voltage Scaling = VSCALE1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period1 2 3  
CS to MOSI1 2  
SCLK to MOSI1 2  
MISO setup time 1 2  
tSCLK  
t_CLK  
ns  
tCS_MO  
tSCLK_MO  
tSU_MI  
-19  
-6  
15  
13  
ns  
ns  
ns  
ns  
10  
-13  
MISO hold time1 2  
tH_MI  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1.  
2. Measurement done with 15 pF output loading at 10% and 90% of VDD  
.
3. tCLK is one period of the selected peripheral clock: EM01GRPCCLK for EUSART1/2, EUSART0CLK for EUSART0.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 85  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.21 EUSART SPI Secondary Timing  
tCS_ACT_MI  
CS  
tCS_DIS_MI  
SCLK  
CLKPOL = 0  
tSCLK_HI  
tSCLK_LO  
SCLK  
tSU_MO  
CLKPOL = 1  
tSCLK  
tH_MO  
MOSI  
MISO  
tSCLK_MI  
Figure 4.6. SPI Secondary Timing  
4.21.1 EUSART SPI Secondary Timing, Voltage Scaling = VSCALE2  
Timing specifications are for all SPI signals routed to the same DBUS (DBUSAB or DBUSCD) on consecutive pins. All GPIO set to slew  
rate = 6.  
Table 4.46. EUSART SPI Secondary Timing, Voltage Scaling = VSCALE2  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK high time1 2  
SCLK low time1 2  
CS active to MISO1 2  
CS disable to MISO1 2  
MOSI setup time1 2  
MOSI hold time1 2  
SCLK to MISO1 2  
tSCLK_HI  
50  
ns  
tSCLK_LO  
tCS_ACT_MI  
tCS_DIS_MI  
tSU_MO  
50  
4
49  
34  
ns  
ns  
ns  
ns  
ns  
5
5
tH_MO  
6
tSCLK_MI  
IOVDD = 1.8 V  
IOVDD = 3.0 V  
8
8
40  
30  
ns  
ns  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. Measurement done with 15 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).  
silabs.com | Building a more connected world.  
Rev. 1.0 | 86  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.21.2 EUSART SPI Secondary Timing, Voltage Scaling = VSCALE1  
Timing specifications are for all SPI signals routed to the same DBUS (DBUSAB or DBUSCD) on consecutive pins. All GPIO set to slew  
rate = 6.  
Table 4.47. EUSART SPI Secondary Timing, Voltage Scaling = VSCALE1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK high time1 2  
SCLK low time1 2  
CS active to MISO1 2  
CS disable to MISO1 2  
MOSI setup time1 2  
MOSI hold time1 2  
SCLK to MISO1 2  
tSCLK_HI  
50  
ns  
tSCLK_LO  
tCS_ACT_MI  
tCS_DIS_MI  
tSU_MO  
50  
6
75  
56  
ns  
ns  
ns  
ns  
ns  
5
4
tH_MO  
6
tSCLK_MI  
IOVDD = 1.8 V  
IOVDD = 3.0 V  
9
9
49  
41  
ns  
ns  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. Measurement done with 15 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).  
4.21.3 EUSART SPI Secondary Timing, Voltage Scaling = VSCALE0  
Timing specifications at VSCALE0 apply to EUSART0 only, routed to DBUSAB on consecutive pins. All GPIO set to slew rate = 6.  
Table 4.48. EUSART SPI Secondary Timing, Voltage Scaling = VSCALE0  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK high time1 2  
SCLK low time1 2  
CS active to MISO1 2  
CS disable to MISO1 2  
MOSI setup time1 2  
MOSI hold time1 2  
SCLK to MISO1 2  
tSCLK_HI  
100  
ns  
tSCLK_LO  
tCS_ACT_MI  
tCS_DIS_MI  
tSU_MO  
100  
8
100  
70  
ns  
ns  
ns  
ns  
ns  
7
9
tH_MO  
32  
tSCLK_MI  
IOVDD = 1.8 V  
IOVDD = 3.0 V  
11  
11  
86  
78  
ns  
ns  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. Measurement done with 15 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).  
silabs.com | Building a more connected world.  
Rev. 1.0 | 87  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.22 I2C Electrical Specifications  
4.22.1 I2C Standard-mode (Sm)  
CLHR set to 0 in the I2Cn_CTRL register.  
Table 4.49. I2C Standard-mode (Sm)  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCL clock frequency1  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
100  
kHz  
tLOW  
4.7  
4
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
250  
0
SDA hold time  
Repeated START condition tSU_STA  
set-up time  
4.7  
Repeated START condition tHD_STA  
hold time  
4.0  
µs  
STOP condition set-up time tSU_STO  
4.0  
4.7  
µs  
µs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. The maximum SCL clock frequency listed is assuming that an arbitrary clock frequency is available. The maximum attainable  
SCL clock frequency may be slightly less using the HFXO or HFRCO due to the limited frequencies available. The CLKDIV  
should be set to a value that keeps the SCL clock frequency below the max value listed.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 88  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.22.2 I2C Fast-mode (Fm)  
CLHR set to 1 in the I2Cn_CTRL register.  
Table 4.50. I2C Fast-mode (Fm)  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCL clock frequency1  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
400  
kHz  
tLOW  
1.3  
0.6  
100  
0
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
SDA hold time  
Repeated START condition tSU_STA  
set-up time  
0.6  
Repeated START condition tHD_STA  
hold time  
0.6  
µs  
STOP condition set-up time tSU_STO  
0.6  
1.3  
µs  
µs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. The maximum SCL clock frequency listed is assuming that an arbitrary clock frequency is available. The maximum attainable  
SCL clock frequency may be slightly less using the HFXO or HFRCO due to the limited frequencies available. The CLKDIV  
should be set to a value that keeps the SCL clock frequency below the max value listed.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 89  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.22.3 I2C Fast-mode Plus (Fm+)  
CLHR set to 1 in the I2Cn_CTRL register.  
Table 4.51. I2C Fast-mode Plus (Fm+)  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCL clock frequency1  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
1000  
kHz  
tLOW  
0.5  
0.26  
50  
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
SDA hold time  
0
Repeated START condition tSU_STA  
set-up time  
0.26  
Repeated START condition tHD_STA  
hold time  
0.26  
µs  
STOP condition set-up time tSU_STO  
0.26  
0.5  
µs  
µs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. The maximum SCL clock frequency listed is assuming that an arbitrary clock frequency is available. The maximum attainable  
SCL clock frequency may be slightly less using the HFXO or HFRCO due to the limited frequencies available. The CLKDIV  
should be set to a value that keeps the SCL clock frequency below the max value listed.  
4.23 Boot Timing  
Secure boot impacts the recovery time from all sources of device reset. In addition to the root code authentication process, which can-  
not be disabled or bypassed, the root code can authenticate a bootloader, and the bootloader can authenticate the application. In  
projects that include only an application and no bootloader, the root code can authenticate the application directly. The duration of each  
authentication operation depends on two factors: the computation of the associated image hash, which is proportional to the size of the  
image, and the verification of the image signature, which is independent of image size.  
The duration for the root code to authenticate the bootloader will depend on the SE firmware version as well as on the size of the boot-  
loader.  
The duration for the bootloader to authenticate the application can depend on the size of the application.  
The configurations below assume that the associated bootloader and application code images do not contain a bootloader certificate or  
an application certificate. Authenticating a bootloader certificate or an application certificate will extend the boot time by an additional 6  
to 7 ms.  
The table below provides the durations from the termination of reset until the completion of the secure boot process (start of main()  
function in the application image) under various conditions.  
Conditions:  
• SE firmware version 2.1.5  
• Gecko Bootloader size 24 KB  
Timing is expected to be similar for subsequent SE firmware versions. Refer to SE firmware release notes for any significant changes.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 90  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Table 4.52. Boot Timing  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Boot time1  
tBOOT  
Secure boot application check dis-  
abled, 50 kB application size  
37.7  
ms  
Secure boot application check en-  
abled, 50 kB application size  
48.3  
51.0  
56.4  
ms  
ms  
ms  
Secure boot application check en-  
abled, 150 kB application size  
Secure boot application check en-  
abled, 350 kB application size  
Note:  
1. Secure boot check of second stage bootloader enabled for all measurements.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 91  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.24 Crypto Operation Timing for SE Manager API  
Values in this table represent timing from SE Manager API call to return. The Cortex-M33 HCLK frequency is 39.0 MHz. The timing  
specifications below are measured at the SE Manager function call API. Each duration in the table contains some portion that is influ-  
enced by SE Manager build compilation and Cortex-M33 operating frequency and some portion that is influenced by the Hardware Se-  
cure Engine's firmware version and its operating speed (typically 80 MHz). The contributions of the Cortex-M33 properties to the overall  
specification timing are most pronounced for the shorter operations such as AES and hash when operating on small payloads. The  
overhead of command processing at the mailbox interface can also dominate the timing for shorter operations.  
Conditions:  
• SE firmware version 2.1.5  
• GSDK version 3.2  
Timing is expected to be similar for subsequent SE firmware versions. Refer to SE firmware release notes for any significant changes.  
Table 4.53. Crypto Operation Timing for SE Manager API  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
AES-128 timing  
tAES128  
AES-128 CCM encryption, PT 1  
kB  
571  
µs  
AES-128 CCM encryption, PT 32  
kB  
1751  
474  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
AES-128 CTR encryption, PT 1  
kB  
AES-128 CTR encryption, PT 32  
kB  
1043  
522  
AES-128 GCM encryption, PT 1  
kB  
AES-128 GCM encryption, PT 32  
kB  
1087  
585  
AES-256 timing  
tAES256  
AES-256 CCM encryption, PT 1  
kB  
AES-256 CCM encryption, PT 32  
kB  
2184  
482  
AES-256 CTR encryption, PT 1  
kB  
AES-256 CTR encryption, PT 32  
kB  
1255  
529  
AES-256 GCM encryption, PT 1  
kB  
AES-256 GCM encryption, PT 32  
kB  
1306  
ECC P-256 timing  
ECC P-521 timing1  
tECC_P256  
ECC key generation, P-256  
ECC signing, P-256  
5.5  
5.9  
ms  
ms  
ms  
ms  
ms  
ms  
ECC verification, P-256  
ECC key generation, P-521  
ECC signing, P-521  
6.2  
tECC_P521  
30.2  
31.0  
36.2  
ECC verification, P-521  
silabs.com | Building a more connected world.  
Rev. 1.0 | 92  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
4.5  
Max  
Unit  
ms  
ms  
ms  
ms  
ECC P-25519 timing2  
tECC_P25519  
ECC key generation, P-25519  
ECC signing, P-25519  
ECC verification, P-25519  
8.9  
6.3  
ECDH compute secret, P-5211  
ECDH compute secret timing tECDH  
30.5  
ECDH compute secret, P-255192  
ECDH compute secret, P-256  
ECJPAKE client write round one  
ECJPAKE client read round one  
ECJPAKE client write round two  
ECJPAKE client read round two  
ECJPAKE client derive secret  
ECJPAKE server write round one  
ECJPAKE server read round one  
ECJPAKE server write round two  
ECJPAKE server read round two  
ECJPAKE server derive secret  
POLY-1305, PT 1 kB  
4.5  
ms  
5.6  
21.4  
11.7  
15.2  
6.3  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
µs  
ECJPAKE client timing  
tECJPAKE_C  
8.8  
ECJPAKE server timing  
tECJPAKE_S  
21.4  
11.7  
15.3  
6.4  
8.8  
POLY-1305 timing1  
SHA-256 timing  
tPOLY1305  
tSHA256  
tSHA512  
514  
1177  
308  
737  
305  
620  
POLY-1305, PT 32 kB  
µs  
SHA-256, PT 1 kB  
µs  
SHA-256, PT 32 kB  
µs  
SHA-512 timing1  
SHA-512, PT 1 kB  
µs  
SHA-512, PT 32 kB  
µs  
Note:  
1. Option is only available on OPNs with Secure Vault High feature set.  
2. Option is not available on Secure Vault Mid devices with SE firmware earlier than v2.1.7.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 93  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.25 Crypto Operation Average Current for SE Manager API  
Values in this table represent current consumed by security core during the operation, and represent additions to the current consumed  
by the Cortex-M33 application CPU due to the Hardware Secure Engine CPU and its associated crypto accelerators. The current meas-  
urements below represent the average value of the current for the duration of the crypto operation. Instantaneous peak currents may be  
higher.  
Conditions:  
• SE firmware version 2.1.5  
• GSDK version 3.2  
Current consumption is expected to be similar for subsequent SE firmware versions. Refer to SE firmware release notes for any signifi-  
cant changes.  
Table 4.54. Crypto Operation Average Current for SE Manager API  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
AES-128 current  
IAES128  
AES-128 CCM encryption, PT 1  
kB  
0.9  
mA  
AES-128 CCM encryption, PT 32  
kB  
3.9  
0.8  
3.8  
0.8  
3.8  
1.0  
4.0  
0.8  
4.0  
0.8  
3.9  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
AES-128 CTR encryption, PT 1  
kB  
AES-128 CTR encryption, PT 32  
kB  
AES-128 GCM encryption, PT 1  
kB  
AES-128 GCM encryption, PT 32  
kB  
AES-256 current  
IAES256  
AES-256 CCM encryption, PT 1  
kB  
AES-256 CCM encryption, PT 32  
kB  
AES-256 CTR encryption, PT 1  
kB  
AES-256 CTR encryption, PT 32  
kB  
AES-256 GCM encryption, PT 1  
kB  
AES-256 GCM encryption, PT 32  
kB  
ECC P-256 current  
ECC P-521 current1  
IECCP256  
ECC key generation, P-256  
ECC signing, P-256  
1.7  
1.6  
1.7  
1.8  
1.8  
1.8  
mA  
mA  
mA  
mA  
mA  
mA  
ECC verification, P-256  
ECC key generation, P-521  
ECC signing, P-521  
IECCP521  
ECC verification, P-521  
silabs.com | Building a more connected world.  
Rev. 1.0 | 94  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
1.6  
1.6  
1.6  
1.8  
Max  
Unit  
mA  
mA  
mA  
mA  
ECC P-25519 current2  
IECCP25519  
ECC key generation, P-25519  
ECC signing, P-25519  
ECC verification, P-25519  
ECDH compute secret, P-5211  
ECDH compute secret cur-  
rent  
IECDH  
ECDH compute secret, P-255192  
ECDH compute secret, P-256  
ECJPAKE client write round one  
ECJPAKE client read round one  
ECJPAKE client write round two  
ECJPAKE client read round two  
ECJPAKE client derive secret  
ECJPAKE server write round one  
ECJPAKE server read round one  
ECJPAKE server write round two  
ECJPAKE server read round two  
ECJPAKE server derive secret  
POLY-1305, PT 1 kB  
1.5  
mA  
1.6  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.6  
1.7  
0.6  
1.6  
0.7  
2.3  
0.7  
1.9  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ECJPAKE client current  
IECJPAKE_C  
ECJPAKE server current  
IECJPAKE_S  
POLY-1305 current1  
SHA-256 current  
IPOLY1305  
ISHA256  
ISHA512  
POLY-1305, PT 32 kB  
SHA-256, PT 1 kB  
SHA-256, PT 32 kB  
SHA-512 current1  
SHA-512, PT 1 kB  
SHA-512, PT 32 kB  
Note:  
1. Option is only available on OPNs with Secure Vault High feature set.  
2. Option is not available on Secure Vault Mid devices with SE firmware earlier than v2.1.7.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 95  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.26 Matrix Vector Processor (MVP)  
All measurements are in comparison to EM1 baseline current at given VSCALE and Clock settings. Matrix dimensions are X = 24 x 32,  
Y = 32 x 24 and Z = 24 x 24.  
Table 4.55. Matrix Vector Processor (MVP)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
16.8  
41.2  
Max  
Unit  
µA  
MVP Enable Current  
IEN  
VSCALE1, HFXO @ 39 MHz  
VSCALE2, HFRCO w/ DPLL @  
78 MHz  
µA  
Matrix Multiplication Duration TMVP_MULTIPLY 16-bit complex numbers, fully  
504.0  
252.0  
596.2  
298.2  
41.0  
20.5  
19.7  
9.9  
µs  
µs  
using MVP Hardware  
banked memory, VSCALE1,  
HFXO @ 39 MHz  
16-bit complex numbers, fully  
banked memory, VSCALE2,  
HFRCO w/ DPLL @ 78 MHz  
16-bit complex numbers, inter-  
leaved memory, VSCALE1, HFXO  
@ 39 MHz  
µs  
16-bit complex numbers, inter-  
leaved memory, VSCALE2,  
HFRCO w/ DPLL @ 78 MHz  
µs  
Matrix Multiplication Duration TSW_MULTIPLY  
using Software  
16-bit complex numbers, inter-  
leaved memory, VSCALE1, HFXO  
@ 39 MHz  
ms  
16-bit complex numbers, inter-  
leaved memory, VSCALE2,  
HFRCO w/ DPLL @ 78 MHz  
ms  
32-bit complex numbers, inter-  
leaved memory, VSCALE1, HFXO  
@ 39 MHz  
ms  
32-bit complex numbers, inter-  
leaved memory, VSCALE2,  
HFRCO w/ DPLL @ 78 MHz  
ms  
Matrix Multiplication Current IMVP_MULTIPLY  
using MVP Hardware  
16-bit complex numbers, fully  
banked memory, VSCALE1,  
HFXO @ 39 MHz  
61.3  
62.4  
53.2  
53.8  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
16-bit complex numbers, fully  
banked memory, VSCALE2,  
HFRCO w/ DPLL @ 78 MHz  
16-bit complex numbers, inter-  
leaved memory, VSCALE1, HFXO  
@ 39 MHz  
16-bit complex numbers, inter-  
leaved memory, VSCALE2,  
HFRCO w/ DPLL @ 78 MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 96  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Matrix Multiplication Current ISW_MULTIPLY  
using Software  
16-bit complex numbers, inter-  
leaved memory, VSCALE1, HFXO  
@ 39 MHz  
41.7  
µA/MHz  
16-bit complex numbers, inter-  
leaved memory, VSCALE2,  
HFRCO w/ DPLL @ 78 MHz  
44.7  
31.9  
33.8  
µA/MHz  
µA/MHz  
µA/MHz  
32-bit complex numbers, inter-  
leaved memory, VSCALE1, HFXO  
@ 39 MHz  
32-bit complex numbers, inter-  
leaved memory, VSCALE2,  
HFRCO w/ DPLL @ 78 MHz  
4.27 Typical Performance Curves  
Typical performance curves indicate typical characterized performance under the stated conditions.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 97  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.27.1 Supply Current  
Figure 4.7. EM0 and EM1 Typical Supply Current vs. Temperature  
silabs.com | Building a more connected world.  
Rev. 1.0 | 98  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Figure 4.8. EM2 and EM4 Typical Supply Current vs. Temperature  
silabs.com | Building a more connected world.  
Rev. 1.0 | 99  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.27.2 RF Characteristics  
Figure 4.9. 2.4 GHz 20 dBm PA RF Transmitter Output Power (Pout=19.5 dBm)  
Figure 4.10. 2.4 GHz 10 dBm PA RF Transmitter Output Power (Pout=10 dBm)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 100  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Figure 4.11. 2.4 GHz 0 dBm PA RF Transmitter Output Power (Pout=0 dBm)  
Figure 4.12. 2.4 GHz 802.15.4 RF Receiver Sensitivity  
silabs.com | Building a more connected world.  
Rev. 1.0 | 101  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
Figure 4.13. 2.4 GHz BLE RF Receiver Sensitivity  
4.27.3 DC-DC Converter  
Performance characterized with Murata DFE2HCAH2R2MJ0 (LDCDC = 2.2 uH ) and TDK CGA5L3X8R1C475K160AB (CDCDC = 4.7 uF)  
Figure 4.14. DC-DC Efficiency  
silabs.com | Building a more connected world.  
Rev. 1.0 | 102  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.27.4 IADC  
Typical performance is shown using 10 MHz ADC clock for fastest sampling speed and adjusting oversampling ratio (OSR).  
Figure 4.15. Typical ENOB vs. Oversampling Ratio  
silabs.com | Building a more connected world.  
Rev. 1.0 | 103  
EFR32MG24 Wireless SoC Family Data Sheet  
Electrical Specifications  
4.27.5 GPIO  
Figure 4.16. VOH and VOL vs. Load Current  
silabs.com | Building a more connected world.  
Rev. 1.0 | 104  
EFR32MG24 Wireless SoC Family Data Sheet  
Typical Connections  
5. Typical Connections  
5.1 Power  
Typical power supply connections are shown in the following figures.  
Note: PAVDD, RFVDD, AVDD, and IOVDD supply connections are flexible. They may be connected in other configurations or to exter-  
nal supplies as long as the supply limits described in 4.1 Electrical Characteristics are met.  
VDD  
Main  
Supply  
+
VREGVDD  
AVDD  
IOVDD  
VREGSW  
HFXTAL_I  
HFXTAL_O  
LFXTAL_I  
39.0 MHz  
VREGVSS  
DVDD  
32.768 kHz  
(optional)  
LFXTAL_O  
DECOUPLE  
VDD  
RFVDD  
PAVDD  
CDECOUPLE  
Figure 5.1. EFR32MG24 Typical Application Circuit: Direct Supply Configuration without DCDC  
VDD  
Main  
Supply  
+
CIN  
VREGVDD  
AVDD  
IOVDD  
LDCDC  
CDCDC  
VDCDC  
VREGSW  
VREGVSS  
HFXTAL_I  
HFXTAL_O  
LFXTAL_I  
39.0 MHz  
DVDD  
32.768 kHz  
(optional)  
LFXTAL_O  
DECOUPLE  
CDECOUPLE  
RFVDD  
PAVDD  
Figure 5.2. EFR32MG24 Typical Application Circuit: DCDC Configuration, PAVDD and RFVDD from DCDC output, AVDD and  
IOVDD from main supply  
silabs.com | Building a more connected world.  
Rev. 1.0 | 105  
EFR32MG24 Wireless SoC Family Data Sheet  
Typical Connections  
VDD  
VDCDC  
Main  
Supply  
+
CIN  
VREGVDD  
AVDD  
IOVDD  
LDCDC  
CDCDC  
VDCDC  
VREGSW  
VREGVSS  
HFXTAL_I  
HFXTAL_O  
LFXTAL_I  
39.0 MHz  
DVDD  
32.768 kHz  
(optional)  
LFXTAL_O  
DECOUPLE  
CDECOUPLE  
RFVDD  
PAVDD  
Figure 5.3. EFR32MG24 Typical Application Circuit: DCDC Configuration with PAVDD, RFVDD, AVDD, and IOVDD from DCDC  
output  
5.2 Other Connections  
Other components or connections may be required to meet the system-level requirements. Application Note AN0002.2: "EFR32 Wire-  
less Gecko Series 2 Hardware Design Considerations" contains detailed information on these connections. Application Notes can be  
accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).  
silabs.com | Building a more connected world.  
Rev. 1.0 | 106  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
6. Pin Definitions  
6.1 QFN48 / Standard Device Pinout  
Figure 6.1. QFN48 / Standard Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.5 Alternate Function Table, 6.6 Analog Peripheral Connectivity, and 6.7 Digital Peripheral  
Connectivity.  
Table 6.1. QFN48 / Standard Device Pinout  
Pin Name  
PC00  
Pin(s) Description  
Pin Name  
PC01  
Pin(s) Description  
1
3
5
7
9
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
2
4
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PC02  
PC03  
PC04  
PC05  
6
PC06  
PC07  
8
PC08  
PC09  
10  
silabs.com | Building a more connected world.  
Rev. 1.0 | 107  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
Pin Name  
Pin(s) Description  
Pin Name  
Pin(s) Description  
HFXTAL_I  
11  
13  
High Frequency Crystal Input  
HFXTAL_O  
12  
14  
High Frequency Crystal Output  
Radio power supply  
Reset Pin. The RESETn pin is internally  
pulled up to DVDD.  
RESETn  
RFVDD  
RFVSS  
PAVDD  
PB04  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
Radio Ground  
RF2G4_IO  
PB05  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
2.4 GHz RF input/output  
Power Amplifier (PA) power supply  
GPIO  
GPIO  
PB03  
GPIO  
PB02  
GPIO  
PB01  
GPIO  
PB00  
GPIO  
VREFN  
PA00  
Dedicated ADC VREF Negative Input  
VREFP  
PA01  
Dedicated ADC VREF Positive Input  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PA02  
PA03  
PA04  
PA05  
PA06  
PA07  
PA08  
Decouple output for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
PA09  
35  
GPIO  
DECOUPLE  
36  
VREGSW  
VREGVSS  
AVDD  
37  
39  
41  
43  
45  
47  
DCDC regulator switching node  
VREGVDD  
DVDD  
IOVDD  
PD04  
38  
40  
42  
44  
46  
48  
DCDC regulator input supply  
Digital power supply  
I/O power supply  
GPIO  
DCDC ground  
Analog power supply  
GPIO  
PD05  
PD03  
GPIO  
PD02  
GPIO  
PD01  
GPIO  
PD00  
GPIO  
silabs.com | Building a more connected world.  
Rev. 1.0 | 108  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
6.2 QFN48 / ADC Device Pinout  
Figure 6.2. QFN48 / ADC Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.5 Alternate Function Table, 6.6 Analog Peripheral Connectivity, and 6.7 Digital Peripheral  
Connectivity.  
Table 6.2. QFN48 / ADC Device Pinout  
Pin Name  
PC00  
Pin(s) Description  
Pin Name  
PC01  
Pin(s) Description  
1
3
GPIO  
2
4
GPIO  
PC02  
GPIO  
PC03  
GPIO  
PC04  
5
GPIO  
PC05  
6
GPIO  
PC06  
7
GPIO  
PC07  
8
GPIO  
PC08  
9
GPIO  
PC09  
10  
12  
GPIO  
HFXTAL_I  
11  
High Frequency Crystal Input  
HFXTAL_O  
High Frequency Crystal Output  
silabs.com | Building a more connected world.  
Rev. 1.0 | 109  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
Pin Name  
Pin(s) Description  
Pin Name  
Pin(s) Description  
Reset Pin. The RESETn pin is internally  
pulled up to DVDD.  
RESETn  
13  
RFVDD  
14  
Radio power supply  
RFVSS  
PAVDD  
PB02  
PB00  
AIN3  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
Radio Ground  
RF2G4_IO  
PB03  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
2.4 GHz RF input/output  
Power Amplifier (PA) power supply  
GPIO  
GPIO  
PB01  
GPIO  
GPIO  
VREFN  
AIN2  
Dedicated ADC VREF Negative Input  
Dedicated ADC Input 3  
Dedicated ADC Input 2  
AIN1  
Dedicated ADC Input 1  
AIN0  
Dedicated ADC Input 0  
VREFP  
PA01  
PA03  
PA05  
Dedicated ADC VREF Positive Input  
PA00  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PA02  
PA04  
PA06  
Decouple output for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
PA07  
35  
GPIO  
DECOUPLE  
36  
VREGSW  
VREGVSS  
AVDD  
37  
39  
41  
43  
45  
47  
DCDC regulator switching node  
VREGVDD  
DVDD  
IOVDD  
PD04  
38  
40  
42  
44  
46  
48  
DCDC regulator input supply  
Digital power supply  
I/O power supply  
GPIO  
DCDC ground  
Analog power supply  
GPIO  
PD05  
PD03  
GPIO  
PD02  
GPIO  
PD01  
GPIO  
PD00  
GPIO  
silabs.com | Building a more connected world.  
Rev. 1.0 | 110  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
6.3 QFN40 / Standard Device Pinout  
Figure 6.3. QFN40 / Standard Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.5 Alternate Function Table, 6.6 Analog Peripheral Connectivity, and 6.7 Digital Peripheral  
Connectivity.  
Table 6.3. QFN40 / Standard Device Pinout  
Pin Name  
PC00  
Pin(s) Description  
Pin Name  
PC01  
Pin(s) Description  
1
3
5
7
9
GPIO  
2
4
GPIO  
PC02  
GPIO  
PC03  
GPIO  
PC04  
GPIO  
PC05  
6
GPIO  
PC06  
GPIO  
PC07  
8
GPIO  
HFXTAL_I  
High Frequency Crystal Input  
HFXTAL_O  
10  
High Frequency Crystal Output  
Reset Pin. The RESETn pin is internally  
pulled up to DVDD.  
RESETn  
11  
RFVDD  
12  
Radio power supply  
silabs.com | Building a more connected world.  
Rev. 1.0 | 111  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
Pin Name  
RFVSS  
PAVDD  
PB03  
Pin(s) Description  
Pin Name  
RF2G4_IO  
PB04  
Pin(s) Description  
13  
15  
17  
19  
21  
23  
25  
27  
Radio Ground  
14  
16  
18  
20  
22  
24  
26  
28  
2.4 GHz RF input/output  
Power Amplifier (PA) power supply  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PB02  
PB01  
PB00  
PA00  
PA01  
PA02  
PA03  
PA04  
PA05  
PA06  
PA07  
Decouple output for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
PA08  
29  
GPIO  
DECOUPLE  
30  
VREGSW  
VREGVSS  
AVDD  
31  
33  
35  
37  
39  
DCDC regulator switching node  
DCDC ground  
VREGVDD  
DVDD  
32  
34  
36  
38  
40  
DCDC regulator input supply  
Digital power supply  
I/O power supply  
GPIO  
Analog power supply  
GPIO  
IOVDD  
PD02  
PD03  
PD01  
GPIO  
PD00  
GPIO  
silabs.com | Building a more connected world.  
Rev. 1.0 | 112  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
6.4 QFN40 / HFCLKOUT Device Pinout  
Figure 6.4. QFN40 / HFCLKOUT Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.5 Alternate Function Table, 6.6 Analog Peripheral Connectivity, and 6.7 Digital Peripheral  
Connectivity.  
Table 6.4. QFN40 / HFCLKOUT Device Pinout  
Pin Name  
PC00  
Pin(s) Description  
Pin Name  
PC01  
Pin(s) Description  
1
3
5
7
9
GPIO  
2
4
GPIO  
PC02  
GPIO  
PC03  
GPIO  
PC04  
GPIO  
PC05  
6
GPIO  
PC06  
GPIO  
HFCLKOUT  
HFXTAL_O  
8
High Frequency Clock Output  
High Frequency Crystal Output  
HFXTAL_I  
High Frequency Crystal Input  
10  
Reset Pin. The RESETn pin is internally  
pulled up to DVDD.  
RESETn  
11  
RFVDD  
12  
Radio power supply  
silabs.com | Building a more connected world.  
Rev. 1.0 | 113  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
Pin Name  
RFVSS  
PAVDD  
PB03  
Pin(s) Description  
Pin Name  
RF2G4_IO  
PB04  
Pin(s) Description  
13  
15  
17  
19  
21  
23  
25  
27  
Radio Ground  
14  
16  
18  
20  
22  
24  
26  
28  
2.4 GHz RF input/output  
Power Amplifier (PA) power supply  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PB02  
PB01  
PB00  
PA00  
PA01  
PA02  
PA03  
PA04  
PA05  
PA06  
PA07  
Decouple output for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
PA08  
29  
GPIO  
DECOUPLE  
30  
VREGSW  
VREGVSS  
AVDD  
31  
33  
35  
37  
39  
DCDC regulator switching node  
DCDC ground  
VREGVDD  
DVDD  
32  
34  
36  
38  
40  
DCDC regulator input supply  
Digital power supply  
I/O power supply  
GPIO  
Analog power supply  
GPIO  
IOVDD  
PD02  
PD03  
PD01  
GPIO  
PD00  
GPIO  
silabs.com | Building a more connected world.  
Rev. 1.0 | 114  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
6.5 Alternate Function Table  
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows GPIO pins with support  
for dedicated functions across the different package options.  
Table 6.5. GPIO Alternate Function Table  
QFN48 /  
Standard  
Package1  
QFN40 /  
Standard  
QFN40 /  
HFCLKOUT  
QFN48 / ADC  
Package2  
GPIO  
Alternate Functions  
Package3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Package4  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PA00  
PA01  
PA02  
IADC0.VREFP  
GPIO.SWCLK  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GPIO.SWDIO  
GPIO.SWV  
PA03  
GPIO.TDO  
GPIO.TRACEDATA0  
GPIO.TDI  
PA04  
PA05  
GPIO.TRACECLK  
GPIO.TRACEDATA1  
GPIO.EM4WU0  
PA06  
PA07  
PB00  
GPIO.TRACEDATA2  
GPIO.TRACEDATA3  
VDAC0.VDAC_CH0_MAIN_OUTPUT  
GPIO.EM4WU3  
PB01  
PB02  
PB03  
VDAC0.VDAC_CH1_MAIN_OUTPUT  
VDAC1.VDAC_CH0_MAIN_OUTPUT  
GPIO.EM4WU4  
VDAC1.VDAC_CH1_MAIN_OUTPUT  
GPIO.EM4WU6  
PC00  
PC01  
PC02  
GPIO.EFP_TX_SDA  
GPIO.EFP_TX_SCL  
GPIO.EFP_INT  
PC05  
PC06  
GPIO.EM4WU7  
GPIO.THMSW_EN  
GPIO.THMSW_HALFSWITCH  
GPIO.EM4WU8  
Yes  
Yes  
Yes  
Yes  
Yes  
PC07  
GPIO.THMSW_EN  
GPIO.THMSW_HALFSWITCH  
GPIO.THMSW_EN  
GPIO.THMSW_HALFSWITCH  
LFXO.LFXTAL_O  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PC09  
PD00  
Yes  
Yes  
silabs.com | Building a more connected world.  
Rev. 1.0 | 115  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
QFN48 /  
Standard  
Package1  
QFN40 /  
Standard  
Package3  
QFN40 /  
HFCLKOUT  
Package4  
QFN48 / ADC  
Package2  
GPIO  
Alternate Functions  
LFXO.LFXTAL_I  
LFXO.LF_EXTCLK  
GPIO.EM4WU9  
GPIO.EM4WU10  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PD01  
Yes  
Yes  
Yes  
PD02  
PD05  
Note:  
Yes  
Yes  
Yes  
Yes  
1. QFN48 / Standard Package includes OPNs EFR32MG24A010F1024IM48-B, EFR32MG24A010F1536IM48-B,  
EFR32MG24A020F1024IM48-B, EFR32MG24A020F1536IM48-B, EFR32MG24A410F1536IM48-B,  
EFR32MG24A420F1536IM48-B, EFR32MG24B010F1024IM48-B, EFR32MG24B010F1536IM48-B,  
EFR32MG24B020F1024IM48-B, EFR32MG24B020F1536IM48-B, EFR32MG24B210F1536IM48-B, and  
EFR32MG24B220F1536IM48-B  
2. QFN48 / ADC Package includes OPNs EFR32MG24A110F1024IM48-B, EFR32MG24B110F1536IM48-B,  
EFR32MG24B120F1536IM48-B, and EFR32MG24B310F1536IM48-B  
3. QFN40 / Standard Package includes OPNs EFR32MG24A010F1024IM40-B, EFR32MG24A010F1536IM40-B,  
EFR32MG24A020F1024IM40-B, EFR32MG24A020F1536IM40-B, EFR32MG24A410F1536IM40-B,  
EFR32MG24A420F1536IM40-B, EFR32MG24B010F1536IM40-B, and EFR32MG24B020F1536IM40-B  
4. QFN40 / HFCLKOUT Package includes OPN EFR32MG24A021F1024IM40-B  
6.6 Analog Peripheral Connectivity  
Many analog resources are routable and can be connected to numerous GPIO's. The table below indicates which peripherals are avail-  
able on each GPIO port. When a differential connection is being used Positive inputs are restricted to the EVEN pins and Negative  
inputs are restricted to the ODD pins. When a single ended connection is being used positive input is available on all pins. See the  
device Reference Manual for more details on the ABUS and analog peripherals. Note that some functions may not be available on all  
device variants.  
Table 6.6. ABUS Routing Table  
Peripheral  
ACMP0  
ACMP1  
IADC0  
Signal  
PA  
ODD  
PB  
ODD  
PC  
ODD  
PD  
ODD  
EVEN  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
EVEN  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
EVEN  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
EVEN  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
ANA_NEG  
ANA_POS  
ANA_NEG  
ANA_POS  
ANA_NEG  
ANA_POS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
VDAC0  
VDAC_CH0_ABUS_OUT-  
PUT  
VDAC_CH1_ABUS_OUT  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
VDAC1  
VDAC_CH0_ABUS_OUT-  
PUT  
VDAC_CH1_ABUS_OUT  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
silabs.com | Building a more connected world.  
Rev. 1.0 | 116  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
6.7 Digital Peripheral Connectivity  
Many digital resources are routable and can be connected to numerous GPIO's. The table below indicates which peripherals are availa-  
ble on each GPIO port. Note that some functions may not be available on all device variants.  
Table 6.7. DBUS Routing Table  
Peripheral.Resource  
PORT  
PC  
PA  
PB  
PD  
ACMP0.DIGOUT  
ACMP1.DIGOUT  
CMU.CLKIN0  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
CMU.CLKOUT0  
CMU.CLKOUT1  
CMU.CLKOUT2  
EUSART0.CS  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
EUSART0.CTS  
EUSART0.RTS  
EUSART0.RX  
EUSART0.SCLK  
EUSART0.TX  
EUSART1.CS  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
EUSART1.CTS  
EUSART1.RTS  
EUSART1.RX  
EUSART1.SCLK  
EUSART1.TX  
FRC.DCLK  
FRC.DFRAME  
FRC.DOUT  
HFXO0.BUFOUT_REQ_IN_ASYNC  
I2C0.SCL  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
I2C0.SDA  
I2C1.SCL  
I2C1.SDA  
KEYSCAN.COL_OUT_0  
KEYSCAN.COL_OUT_1  
KEYSCAN.COL_OUT_2  
KEYSCAN.COL_OUT_3  
KEYSCAN.COL_OUT_4  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
silabs.com | Building a more connected world.  
Rev. 1.0 | 117  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
Peripheral.Resource  
PORT  
PC  
PA  
PB  
PD  
KEYSCAN.COL_OUT_5  
KEYSCAN.COL_OUT_6  
KEYSCAN.COL_OUT_7  
KEYSCAN.ROW_SENSE_0  
KEYSCAN.ROW_SENSE_1  
KEYSCAN.ROW_SENSE_2  
KEYSCAN.ROW_SENSE_3  
KEYSCAN.ROW_SENSE_4  
KEYSCAN.ROW_SENSE_5  
LETIMER0.OUT0  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
LETIMER0.OUT1  
MODEM.ANT0  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
MODEM.ANT1  
MODEM.ANT_ROLL_OVER  
MODEM.ANT_RR0  
MODEM.ANT_RR1  
MODEM.ANT_RR2  
MODEM.ANT_RR3  
MODEM.ANT_RR4  
MODEM.ANT_RR5  
MODEM.ANT_SW_EN  
MODEM.ANT_SW_US  
MODEM.ANT_TRIG  
MODEM.ANT_TRIG_STOP  
MODEM.DCLK  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
MODEM.DIN  
MODEM.DOUT  
PCNT0.S0IN  
PCNT0.S1IN  
PRS.ASYNCH0  
PRS.ASYNCH1  
PRS.ASYNCH2  
PRS.ASYNCH3  
PRS.ASYNCH4  
PRS.ASYNCH5  
PRS.ASYNCH6  
Available  
Available  
silabs.com | Building a more connected world.  
Rev. 1.0 | 118  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
Peripheral.Resource  
PORT  
PC  
PA  
PB  
PD  
PRS.ASYNCH7  
PRS.ASYNCH8  
PRS.ASYNCH9  
PRS.ASYNCH10  
PRS.ASYNCH11  
PRS.ASYNCH12  
PRS.ASYNCH13  
PRS.ASYNCH14  
PRS.ASYNCH15  
PRS.SYNCH0  
PRS.SYNCH1  
PRS.SYNCH2  
PRS.SYNCH3  
RAC.LNAEN  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
RAC.PAEN  
TIMER0.CC0  
TIMER0.CC1  
TIMER0.CC2  
TIMER0.CDTI0  
TIMER0.CDTI1  
TIMER0.CDTI2  
TIMER1.CC0  
TIMER1.CC1  
TIMER1.CC2  
TIMER1.CDTI0  
TIMER1.CDTI1  
TIMER1.CDTI2  
TIMER2.CC0  
TIMER2.CC1  
TIMER2.CC2  
TIMER2.CDTI0  
TIMER2.CDTI1  
TIMER2.CDTI2  
TIMER3.CC0  
Available  
Available  
Available  
Available  
Available  
Available  
TIMER3.CC1  
TIMER3.CC2  
silabs.com | Building a more connected world.  
Rev. 1.0 | 119  
EFR32MG24 Wireless SoC Family Data Sheet  
Pin Definitions  
Peripheral.Resource  
PORT  
PC  
PA  
PB  
PD  
TIMER3.CDTI0  
TIMER3.CDTI1  
TIMER3.CDTI2  
TIMER4.CC0  
TIMER4.CC1  
TIMER4.CC2  
TIMER4.CDTI0  
TIMER4.CDTI1  
TIMER4.CDTI2  
USART0.CLK  
USART0.CS  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
USART0.CTS  
USART0.RTS  
USART0.RX  
USART0.TX  
silabs.com | Building a more connected world.  
Rev. 1.0 | 120  
EFR32MG24 Wireless SoC Family Data Sheet  
QFN40 Package Specifications  
7. QFN40 Package Specifications  
7.1 QFN40 Package Dimensions  
Figure 7.1. QFN40 Package Drawing  
silabs.com | Building a more connected world.  
Rev. 1.0 | 121  
EFR32MG24 Wireless SoC Family Data Sheet  
QFN40 Package Specifications  
Table 7.1. QFN40 Package Dimensions  
Dimension  
Min  
0.80  
0.00  
Typ  
0.85  
Max  
0.90  
0.05  
A
A1  
A3  
b
0.02  
0.20 REF  
0.20  
0.15  
4.90  
4.90  
3.55  
3.55  
0.25  
5.10  
5.10  
3.85  
3.85  
D
5.00  
E
5.00  
D2  
E2  
e
3.70  
3.70  
0.40 BSC  
0.40  
L
0.30  
0.20  
0.50  
K
R
0.075  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.07  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
5. Package external pad (epad) may have pin one chamfer.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 122  
EFR32MG24 Wireless SoC Family Data Sheet  
QFN40 Package Specifications  
7.2 QFN40 PCB Land Pattern  
Figure 7.2. QFN40 PCB Land Pattern Drawing  
Table 7.2. QFN40 PCB Land Pattern Dimensions  
Dimension  
Typ  
4.25  
4.25  
3.85  
3.85  
0.40  
0.22  
0.74  
0.11  
S1  
S
L1  
W1  
e
W
L
R
silabs.com | Building a more connected world.  
Rev. 1.0 | 123  
EFR32MG24 Wireless SoC Family Data Sheet  
QFN40 Package Specifications  
Dimension  
Typ  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
4. The stencil thickness should be 0.101 mm (4 mils).  
5. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.  
6. A 3x3 array of 0.90 mm square openings on a 1.20 mm pitch can be used for the center ground pad.  
7. A No-Clean, Type-3 solder paste is recommended.  
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
9. Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use  
different parameters and fine tune their SMT process as required for their application and tooling.  
7.3 QFN40 Package Marking  
PPPP  
PPPPPP  
TTTTTT  
YYWW  
Figure 7.3. QFN40 Package Marking  
The package marking consists of:  
• Line 1: PPPP – The product family codes (BG24 | MG24)  
• Line 2: PPPPPP – The product option codes:  
• 1) Security ( A = Secure Vault Mid | B = Secure Vault High )  
• 2-4) Product Feature Codes  
• 5) Flash ( J = 1024k | V = 1536k )  
• 6) Temperature grade (G = -40 to 85 °C | I = -40 to 125 °C )  
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.  
• YY – The last 2 digits of the assembly year.  
• WW – The 2-digit workweek when the device was assembled.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 124  
EFR32MG24 Wireless SoC Family Data Sheet  
QFN48 Package Specifications  
8. QFN48 Package Specifications  
8.1 QFN48 Package Dimensions  
Figure 8.1. QFN48 Package Drawing  
silabs.com | Building a more connected world.  
Rev. 1.0 | 125  
EFR32MG24 Wireless SoC Family Data Sheet  
QFN48 Package Specifications  
Table 8.1. QFN48 Package Dimensions  
Dimension  
Min  
0.80  
0.00  
Typ  
0.85  
0.02  
0.20 REF  
0.2  
Max  
0.90  
0.05  
A
A1  
A3  
b
0.15  
5.90  
5.90  
0.25  
6.10  
6.10  
D
6.00  
6.00  
0.40 BSC  
4.30  
4.30  
0.4  
E
e
D2  
E2  
L
4.15  
4.15  
0.30  
0.20  
0.075  
4.45  
4.45  
0.50  
K
R
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.07  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020C specification for small body, lead-free components.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 126  
EFR32MG24 Wireless SoC Family Data Sheet  
QFN48 Package Specifications  
8.2 QFN48 PCB Land Pattern  
Figure 8.2. QFN48 PCB Land Pattern Drawing  
Table 8.2. QFN48 PCB Land Pattern Dimensions  
Dimension  
Typ  
0.86  
0.22  
0.40  
5.01  
5.01  
4.45  
4.45  
0.11  
L
W
e
S
S1  
L1  
W1  
R
silabs.com | Building a more connected world.  
Rev. 1.0 | 127  
EFR32MG24 Wireless SoC Family Data Sheet  
QFN48 Package Specifications  
Dimension  
Typ  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
5. The stencil thickness should be 0.101 mm (4 mils).  
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.  
7. A 3x3 array of 1.10mm x 1.10mm openings on 1.30mm pitch should be used for the center ground pad.  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
10. Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use  
different parameters and fine tune their SMT process as required for their application and tooling.  
8.3 QFN48 Package Marking  
PPPP  
PPPPPP  
TTTTTT  
YYWW  
Figure 8.3. QFN48 Package Marking  
The package marking consists of:  
• Line 1: PPPP – The product family codes (BG24 | MG24)  
• Line 2: PPPPPP – The product option codes:  
• 1) Security ( A = Secure Vault Mid | B = Secure Vault High )  
• 2-4) Product Feature Codes  
• 5) Flash ( J = 1024k | V = 1536k )  
• 6) Temperature grade (G = -40 to 85 °C | I = -40 to 125 °C )  
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.  
• YY – The last 2 digits of the assembly year.  
• WW – The 2-digit workweek when the device was assembled.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 128  
EFR32MG24 Wireless SoC Family Data Sheet  
Revision History  
9. Revision History  
Revision 1.0  
August, 2022  
• Updated "TBD" values in 4.1 Electrical Characteristics tables  
• Updates to System Overview Table 3.3 Configuration Summary on page 21 table  
• Added 4.27 Typical Performance Curves  
• Corrected DCDC output capacitor part number in 4.4 DC-DC Converter  
• Modified ACMP Electrical Specifications to show that hysteresis is only supported when BIAS >= 3 in 4.13 Analog Comparator  
(ACMP)  
• Added "T=25°C" condition to all timing specs in 4.7 Flash Characteristics  
Revision 0.6  
April, 2022  
• Updated values in 4.1 Electrical Characteristics tables  
Revision 0.5  
March, 2022  
• Updated front page block diagram  
• Updated typical power consumption and performance numbers and Protocol Support in 1. Feature List  
• Updated values in 4.1 Electrical Characteristics tables  
• Updated 5. Typical Connections Diagrams  
• Updated Package Marking diagrams for 40QFN and 48QFN packages  
Revision 0.4  
Jan 2022  
• Updated front page content  
• Updated typical power consumption numbers and Protocol Support in 1. Feature List  
• Updated list of OPNs in table  
• Removed -G temperature grade information from Electrical Specification tables  
• Added typical EM2/3/4 current data to 4.6 Current Consumption tables  
• Revised EM2/3 spec format in 4.6 Current Consumption tables  
• Added Startup Time and Current Consumption data to 4.10.5 Precision Low Frequency RC Oscillator (LFRCO) table  
silabs.com | Building a more connected world.  
Rev. 1.0 | 129  
EFR32MG24 Wireless SoC Family Data Sheet  
Revision History  
Revision 0.3  
Oct 2021  
• Updated typical power consumption numbers in 1. Feature List  
• Added IADC High Speed / High Accuracy information and Package Pinout information to table  
• Updated IADC information in System Overview  
• Corrected "RTCC" to "SYSRTC" in 1. Feature List  
• Added 20-bit ADC resolution and sampling rate to 1. Feature List  
• Added DALI function to EUSART in 1. Feature List  
• In Table 3.2 Peripheral Power Subdomains on page 18 table  
• Removed "Tamper"  
• Corrected "LFRCO" cells  
• Removed "EUSART1"  
• Removed footnote from FSRCO suggesting it operates in EM4  
• Revised table to show PD0A and PDHV columns  
• Revised section text content  
• Removed AVDD/DVDD power mux from Figure 3.1 Detailed EFR32MG24 Block Diagram on page 9  
Revision 0.2  
June 2021  
In Electrical Specifications section:  
• Added EUSART timing and specifications  
• Renamed USART specifications  
• Added RX Sensitivity Specifications  
• Removed Wi-Fi Notch Filter from Electrical Specifications  
Revision 0.1  
March 2021  
Initial release.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 130  
Simplicity Studio  
One-click access to MCU and wireless  
tools, documentation, software,  
source code libraries & more. Available  
for Windows, Mac and Linux!  
IoT Portfolio  
SW/HW  
Quality  
Support & Community  
www.silabs.com/IoT  
www.silabs.com/simplicity  
www.silabs.com/quality  
www.silabs.com/community  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-  
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each  
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon  
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the  
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or  
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-  
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or  
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent  
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in  
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used  
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims  
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.  
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more  
information, visit www.silabs.com/about-us/inclusive-lexicon-project  
Trademark Information  
®
®
®
®
®
®
®
®
®
®
Silicon Laboratories Inc. , Silicon Laboratories , Silicon Labs , SiLabs and the Silicon Labs logo , Bluegiga , Bluegiga Logo , EFM , EFM32 , EFR, Ember , Energy Micro, Energy  
®
®
®
®
®
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals , WiSeConnect , n-Link, ThreadArch , EZLink , EZRadio , EZRadioPRO ,  
®
®
®
®
®
®
Gecko , Gecko OS, Gecko OS Studio, Precision32 , Simplicity Studio , Telegesis, the Telegesis Logo , USBXpress , Zentri, the Zentri logo and Zentri DMS, Z-Wave , and others  
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered  
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
www.silabs.com