转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
Document Number: MPC18730  
Rev. 4.0, 8/2006  
Freescale Semiconductor  
Advance Information  
Power Management IC with Five  
Regulated Outputs  
18730  
Programmed Through 3-Wire  
Serial Interface  
POWER MANAGEMENT IC  
The MPC18730 Power Management IC (PMIC) regulates five  
independent output voltages from either a single cell Li-Ion (2.7 V to  
4.2 V input range) or from a single cell Ni-MH or dry cell (0.9 V to  
2.2 V input range).  
The PMIC includes 2 DC-DC converters and 3 low drop out (LDO)  
linear regulators. The output voltage for each of the 5 output voltages  
is set independently through a 3-wire serial interface. The serial  
interface also configures the PMIC's versatile start-up control system,  
which includes multiple wakeup, sleep, standby, and reset modes to  
minimize power consumption for portable equipment.  
EP SUFFIX (PB-FREE)  
98ARL10571D  
64-PIN QFN  
In single cell Li-Ion applications two DC-DC converters are  
configured as buck (step-down) regulators. In single cell Ni-MH or dry  
cell applications, one DC-DC converter is configured as a boost  
(step-up) regulator, and the other as buck-boost regulator. The DC-  
DC converters' output voltages have set ranges 1.613 V to 3.2 V at  
up to 120 mA, and 0.805 V to 1.5 V up to 100 mA.  
ORDERING INFORMATION  
Temperature  
Package  
Device  
Range (T )  
A
MPC18730EP/R2  
-10°C to 65°C  
64 QFN  
Features  
• Operates from single cell Li-Ion, Ni-MH, or Alkaline  
• 2 DC-DC Converters  
• 3 Low Drop Regulators  
• Serial Interface Sets Output Voltages  
• 4 Wake Inputs  
• Low Current Standby Mode  
• Pb-Free Packaging Designated by Suffix Code EP  
MPC18730  
VB  
Programmable  
1.613 V to 3.2 V  
VBATT  
VREF  
VOUT1  
VO1_SENSE  
VO  
SW1  
Programmable  
0.805 V to 1.5 V  
VOUT2  
PGOOD1  
VGATE_EXT  
VO2_SENSE  
SW2  
VO  
SREGI1  
Programmable  
0.865 V to 2.8 V  
SREGO1  
PGOOD2  
SREGI2  
SREGO2  
Programmable  
0.011 V to 2.8 V  
CONTROL  
LOGIC  
SREGI3  
MCU  
Programmable  
2.08 V to 2.8 V  
{
SREGO3  
INPUTS  
GND  
VGATE  
VB  
GNDGATE  
SWGATE  
Figure 1. MPC18730 Simplified Application Diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
INTERNAL BLOCK DIAGRAM  
INTERNAL BLOCK DIAGRAM  
VMODE  
VBATT  
HVB  
LVB  
VBATT  
LVB  
Driver  
VMODE  
VO1_SENSE  
PGOOD1(Int)  
VREF  
VO1_SENSE  
PGOOD1(Int)  
CLEAR  
BANDGAP  
REFERENCE  
V_STDBY  
VOUT1  
VREF  
VGATE  
LSWO  
PGOOD1(Int)  
PGOOD1(Int)  
VO1_SENSE  
POWER  
SWITCH1  
VO1_SENSE  
VO1_SENSE  
VIN1  
PGOOD1  
VGATE  
RESET  
Block 1  
REF1  
Step-UpDown  
DC/DC  
PGOOD1_DELAY  
Converter  
CH1  
SW1  
RESET1_TH  
EAIN1  
PGND1  
VOUT2  
EAOUT1  
VGATE  
DMAX1  
POWER  
SWITCH2  
PGOOD2(Int)  
VGATE  
VO1_SENSE  
VO2_SENSE_IN  
VO2_SENSE  
PGOOD2(Int)  
PGOOD2  
RESET  
Block 2  
HG  
REF2  
LG  
Step-UpDown  
PGOOD2_DELAY  
EAOUT2  
DC/DC  
Converter  
CH2  
VIN2  
EAIN2  
SW2  
DMAX2  
PGND2  
SREGI1  
VGATE  
REF3  
Series Pass  
Regulator1  
SREGC1  
SREGO1  
SREGI2  
VGATE  
SREGC2  
SREGC3  
Series Pass  
Regulator2  
REF4  
V_STDBY  
SREGO2  
SREG2G  
SREGI3  
VGATE  
VO1_SENSE  
VBATT  
WAKE1B  
WAKE2B  
Series Pass  
Regulator3  
REF5  
WAKE3B  
WAKE4B  
SREGO3  
VBATT  
EXT_CLOCK  
PGOOD1(Int)  
PGOOD2  
SEQ_SELECT  
DATA  
CH_PUMP  
CPoff  
STRB  
VBATT  
VGATE  
O(LInt)  
Control  
Logic  
SEQ_SELECT  
SCKIN  
VO1_SENSE  
VGATE  
CLEAR  
SLEEP  
Step-Up  
DC/DC  
Convertor  
VG_SELECT  
SWGATE  
EXT_CLOCK  
VGATE_DUTY  
REF4  
GNDGATE  
GND  
REF2  
REF1  
VGATE  
REF3  
REF5  
VGATESEL1  
VGATESEL2  
EXT gate  
On  
VREF  
VGATE_EXT  
On  
Buffer  
REF DAC  
WATCHDOG  
Figure 2. MPC18730 Simplified Internal Block Diagram  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
2
PIN CONNECTIONS  
PIN CONNECTIONS  
SREGC2  
49  
1
CLEAR  
50  
48  
64 63 62 61 60 59 58 57 56 55 54 53 52 51  
WAKE4B  
WAKE3B  
WAKE2B  
WAKE1B  
LSWO  
SREGI3  
2
3
SREGO3  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
4
SREGC3  
VGATE_EXT  
LG  
5
6
LVB  
HG  
7
HVB  
8
VO2_SENSE  
VO2_SENSE_IN  
V_STDBY  
VO1_SENSE  
9
VOUT2  
VIN2  
10  
11  
12  
13  
14  
15  
16  
TOP VIEW  
VOUT1  
VIN1  
SW2  
SW1  
SW2  
SW1  
PGND2  
PGND2  
PGND1  
PGND1  
PGOOD2  
19 20 21 22 23 24 25 26 27 28 29 30 31 32  
18  
17  
PGOOD2_DELAY  
33  
Figure 3. MPC18730 Pin Connections  
Table 1. MPC18730 Pin Definitions  
A functional description of each pin can be found in the Functional Pin Description section beginning on page 14.  
Pin  
Function  
Pin Number  
Pin Name  
Formal Name  
Definition  
Start-up Signal Input Latch/Clear  
1
2
3
4
5
6
CLEAR  
WAKE4B  
WAKE3B  
WAKE2B  
WAKE1B  
LSWO  
Input  
Input  
Input  
Input  
Input  
Output  
Clear  
Start-up Signal Input 4  
Start-up Signal Input 3  
Start-up Signal Input 2  
Start-up Signal Input 1  
Low-Side Switch Output Pin  
Wake Signal 4  
Wake Signal 3  
Wake Signal 2  
Wake Signal 1  
Low-Side Switch  
Output  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
3
PIN CONNECTIONS  
Table 1. MPC18730 Pin Definitions (continued)  
A functional description of each pin can be found in the Functional Pin Description section beginning on page 14.  
Pin  
Function  
Pin Number  
Pin Name  
Formal Name  
Definition  
VB Power Supply Connection for Ni_mh  
VB Power Supply Connection for Li_ion  
V_STDBY Voltage Output  
7
8
LVB  
HVB  
Input  
Input  
Low Voltage Battery  
High Voltage Battery  
Standby Voltage  
9
V_STDBY  
VO1_SENSE  
Output  
Input  
Switching Power Supply Circuit 1, VO1_SENSE Voltage Input,  
VO1_SENSE Power Supply  
10  
Voltage Input 1  
Power Switch 1 Output  
11  
12  
13  
14  
15  
16  
17  
VOUT1  
VIN1  
Output  
Output  
Power  
Power  
Ground  
Ground  
Output  
Voltage Output 1  
Voltage Output 1  
Switching 1  
Switching Power Supply Circuit 1 Output  
Switching Power Supply Circuit 1 Coil Connection  
Switching Power Supply Circuit 1 Coil Connection  
Switching Power Supply Circuit 1 Power GND  
Switching Power Supply Circuit 1 Power GND  
Reset Circuit 1 Reset Signal Output  
SW1  
SW1  
Switching 1  
PGND1  
PGND1  
PGOOD1  
Power Ground 1  
Power Ground 1  
Inverted Reset  
Output 1  
Reset Circuit 1 Reset Signal Delaying Capacitor Connection  
18  
PGOOD1_DELAY  
Input  
Reset Delay  
Capacitor 1  
Switching Power Supply Circuit 1 Reset Voltage Reference Output  
Switching Power Supply Circuit 1 Maximum Duty Setting  
Switching Power Supply Circuit 1 Error Amp Output  
19  
20  
21  
RESET1_TH  
DMAX1  
Output  
Power  
Output  
Reset1 Adjustment  
Duty Control  
EAOUT1  
Reference Feedback  
1
Switching Power Supply Circuit 1 Error Amp Inverse Input  
22  
23  
EAIN1  
Input  
Input Minus 1  
VGATE Power Supply Circuit Charge Pump Capacitor Connection  
CH_PUMP  
Power  
Charge Pump  
Capacitor  
VGATE Power Supply Circuit Voltage Output, Pre-Diver Circuit Power  
Supply  
24  
VGATE  
Output  
Gate Voltage  
VGATE Power Supply Circuit Coil Connection  
VGATE Power Supply Circuit Power GND  
25  
26  
27  
28  
29  
30  
31  
SWGATE  
GNDGATE  
VBATT  
Power  
Ground  
Power  
Output  
Output  
Input  
Switching  
Power Ground 3  
Battery Voltage  
VGATE Select 2  
VGATE Select 1  
Input Minus  
VB Power Supply Connection  
VG Power Supply Circuit Output Voltage Setting 2  
VGATE Power Supply Circuit Output Voltage Setting 1  
Switching Power Supply Circuit 2 Error Amp Inverting Input  
Switching Power Supply Circuit 2 Error Amp Output  
VGATESEL2  
VGATESEL1  
EAIN2  
EAOUT2  
Output  
Reference Feedback  
2
Switching Power Supply Circuit 2 Maximum Duty Setting  
Reset Circuit 2 Reset Signal Delay Capacitor Connection  
32  
33  
DMAX2  
Power  
Input  
Duty Control  
PGOOD2_DELAY  
Reset Delay  
Capacitor 1  
Reset Circuit 2 Reset Signal Output  
34  
PGOOD2  
Output  
Inverted Reset  
Output 2  
Switching Power Supply Circuit 2 Power GND  
Switching Power Supply Circuit 2 Power GND  
35  
36  
PGND2  
PGND2  
Ground  
Ground  
Power Ground 2  
Power Ground 2  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
4
PIN CONNECTIONS  
Table 1. MPC18730 Pin Definitions (continued)  
A functional description of each pin can be found in the Functional Pin Description section beginning on page 14.  
Pin  
Function  
Pin Number  
Pin Name  
Formal Name  
Definition  
Switching Power Supply Circuit 2 Coil Connection  
Switching Power Supply Circuit 2 Coil Connection  
Switching Power Supply Circuit 2 Output  
Power Switch 2 Output  
37  
38  
39  
40  
41  
42  
43  
SW2  
SW2  
Power  
Power  
Output  
Output  
Input  
Switching  
Switching  
VIN2  
Voltage Output  
Voltage Output  
Voltage Input  
VOUT2  
Power Switch 2 Voltage Input  
VO2_SENSE_IN  
VO2_SENSE  
HG  
Switching Power Supply Circuit 2 VO2_SENSE Voltage Input  
Input  
Voltage Input  
Switching Power Supply Circuit 2 Step down Top side FET Gate  
Output for Ni_mh  
Output  
Step Down Top FET 2  
Switching Power Supply Circuit 2 Step down Bottom side FRT Gate  
Output for Ni_mh  
44  
LG  
Output  
Step Down Bottom  
FET 2  
External Transistor Gate Signal Output  
45  
46  
47  
48  
49  
50  
VGATE_EXT  
SREGC3  
SREGO3  
SREGI3  
Output  
Power  
Output  
Power  
Power  
Output  
Gate Switch  
Series Pass Power Supply Circuit 3 External Feedback Connection  
Series Pass Power Supply Circuit 3 Output  
Regulator Capacitor 3  
Regulator Output 3  
Regulator Input 3  
Series Pass Power Supply Circuit 3 Power Supply  
Series Pass Power Supply Circuit 2 External Feedback Connection  
SREGC2  
SREG2G  
Regulator Capacitor 2  
Series Pass Power Supply Circuit 2 External Transistor Gate Signal  
Output  
Regulator Gate  
Output 2  
Series Pass Power Supply Circuit 2 Output  
Series Pass Power Supply Circuit 2 Power Supply  
Series Pass Power Supply Circuit 1 External Feedback Connection  
Series Pass Power Supply Circuit 1 Output  
Series Pass Power Supply Circuit 1 Power Supply  
GND  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
SREGO2  
SREGI2  
SREGC1  
SREGO1  
SREGI1  
GND  
Output  
Power  
Power  
Output  
Power  
Ground  
Output  
Input  
Regulator Output 2  
Regulator Input 2  
Regulator Capacitor 1  
Regulator Output 1  
Regulator Input 1  
Ground  
Reference Voltage Output  
VREF  
Reference Voltage  
Data Signal  
Serial Interface Data Signal Input  
DATA  
Serial Interface Strobe Signal Input  
Serial Interface Clock Signal Input  
Watchdog Timer Capacitor Connection  
Start-Up Sequence Setting Input  
STRB  
Input  
Strobe  
SCKIN  
Input  
Serial Clock  
WATCHDOG  
SEQ_SELECT  
EXT_CLOCK  
SLEEP  
Input  
Watch Dog Timer  
Sequence Input  
Clock Input  
Input  
External Synchronous Clock Signal Input  
Sleep Signal Input  
Input  
Input  
Sleep Signal  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
5
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 2. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or  
permanent damage to the device.  
Ratings  
Symbol  
Value  
Unit  
ELECTRICAL RATINGS  
Power Supply Voltage  
Analog Signal Input (1)  
VBATT  
VINAN  
-0.5 to 5.0  
V
V
V
-0.5 to VO1+0.5  
Logic Signal Input  
WAKE1~4B  
VILRSTB  
VILGC  
-0.5 to V_STDBY+0.5  
-0.5 to VO1_SENSE+0.5  
-0.5 to VBATT+0.5  
CLEAR, SLEEP, EXT_CLOCK, SCKIN, DATA, STRB  
VGATESEL1,2  
VILGSEL  
Output Power Current  
mA  
VOUT1 Power Supply Circuit (2)  
VOUT2 Power Supply Circuit  
SREG1 Power Supply Circuit  
SREG2 Power Supply Circuit  
SREG3 Power Supply Circuit  
VGATE Power Supply Circuit  
PGOOD1 Power Supply Circuit  
IOVO1  
IOVO2  
120  
100  
80  
IOREG1  
IOREG2  
IOREG3  
IOVG  
100  
80  
8
IOPGOOD1  
-20  
Open-Drain Output Apply Voltage  
V
V
PGOOD1  
LSWO  
VIODR  
VIODV  
-0.5 to 3.3  
-0.5 to 3.3  
ESD Voltage (3)  
Human Body Model (HBM)  
Machine Model (MM)  
Charge Device Model (CDM)  
V
V
±1500  
± 200  
± 750  
ESD1  
ESD2  
VCDM  
THERMAL RATINGS  
Operating Temperature  
Ambient  
°C  
T
-10 to 65  
150  
A
Junction  
T
J
Storage Temperature  
TSTG  
-50 to 150  
69  
°C  
Thermal Resistance (4)  
Junction to Ambient  
R
°C/W  
θJA  
Lead Soldering Temperature(5)  
T
260  
°C  
SOLDER  
Notes  
1. VREF, DMAX1, DMAX2, SREGC1, SREGC2, SREGC3 and RESET1_TH.  
2. Includes the series pass power supply circuit output current  
3. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 ), the Machine Model (MM)  
(CZAP = 200 pF, RZAP = 0 ), and the Charge Device Model (CDM), Robotic (CZAP = 4.0pF).  
4. Device mounted on a 2s2p test board, in accordance with JEDEC JESD51-6 and JESD51-7.  
5. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause malfunction or permanent damage to the device.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
6
ELECTRICAL CHARACTERISTICS  
STATIC  
STATIC  
Table 3. Static Electrical Characteristics  
Characteristics noted under conditions VBATT = 1.2 V, VO1_SENSE = 2.4 V, VGATE= 6.0 V, fCLK = 176.4 kHz unless  
otherwise noted. Typical values noted reflect the approximate parameter means at TA = 27°C under nominal conditions unless  
otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
GENERAL  
VB Power Supply Voltage  
Power Supply Voltage 1  
Power Supply Voltage 2  
V
VLVB  
VHVB  
0.9  
2.7  
1.2  
3.5  
2.2  
4.2  
Series Regulator Input Voltage (6), (7)  
VSREGI  
VBST  
VSREG+0.2(8)  
VSREG+0.3  
VSREG+0.4  
-
V
V
V
V
Start-Up Voltage  
0.9  
0
-
-
Analog Signal Input (9)  
VIANA  
VO1_SENSE  
Logic Signal Input  
WAKE1~4B  
VILRSTB  
VILGC  
0
0
0
-
-
-
V_STDBY  
VO1_SENSE  
VBATT  
CLEAR, SLEEP, EXT_CLOCK, DATA, STRB and SCKIN  
VGATESEL1, 2  
VILGSEL  
Output Power Current  
mA  
VOUT1 Power Supply Circuit (10)  
IOVOUT1  
IOVOUT2  
IOSREG1  
IOSREG2  
IOSREG3  
IOVG  
0
0
-
-
-
-
-
-
-
100  
80  
60  
80  
60  
6.0  
0
VOUT2 Power Supply Circuit (10)  
SREG1 Power Supply Circuit  
SREG2 Power Supply Circuit  
SREG3 Power Supply Circuit  
VGATE Power Supply Circuit  
PGOOD  
5.0  
6.0  
5.0  
-5.0  
-
IOPGOOD  
Supply Current in Stand-by mode  
VB Supply Current (VB = 1.2 V for Ni_MH)  
(HVB = 3.5 V for Li-Ion)  
µA  
IBSNi  
IBSLi  
-
-
5.0  
8.0  
10  
12  
Supply Current in Operating mode  
VB Supply Current (VB = 1.2 V for Ni_MH)  
(HVB = 3.5 V for Li-Ion)  
mA  
IBNi  
IBLi  
-
-
9.0  
7.0  
18  
14  
Reference Power Supply Circuit  
Output Voltage  
VREF  
1.255  
-0.3  
1.275  
-
1.295  
0.3  
V
Output Current  
IOREF  
mA  
Switching Power Supply 1  
VOUT1  
2.3  
2.4  
2.5  
V
VOUT1 Output Voltage (Io = 0~100 mA)  
Notes  
6. When applying voltage from an external source.  
7. 0.3 V when VGATE is 4.5 V.  
8. Provide 2 V or higher for the voltage difference (VGATE - VO1_SENSE).  
9. VREF, DMAX1, DMAX2, SREGC1, SREGC2, SREGC3 and RESET1_TH.  
10. Includes the series pass power supply circuit output current.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
7
ELECTRICAL CHARACTERISTICS  
STATIC  
Table 3. Static Electrical Characteristics (continued)  
Characteristics noted under conditions VBATT = 1.2 V, VO1_SENSE = 2.4 V, VGATE= 6.0 V, fCLK = 176.4 kHz unless  
otherwise noted. Typical values noted reflect the approximate parameter means at TA = 27°C under nominal conditions unless  
otherwise noted.  
Characteristic  
Switching Power Supply 2  
Symbol  
Min  
Typ  
Max  
Unit  
V
VOUT2 Output Voltage (Io = 0~80 mA)  
VOUT2  
VDW2TH  
VDW2TL  
VDW2BH  
VDW2BL  
1.05  
5.2  
0
1.15  
1.25  
VGATE  
0.3  
HG Output Voltage (11) (Isource = 400 µA)  
(Isink = 400 µA)  
-
-
-
-
5.2  
0
VGATE  
0.3  
LG Output Voltage (11) (Isource = 400 µA)  
(Isink = 400 µA)  
Series Pass Power Supply Circuit  
SREG1 Control Voltage (Io = 5~60 mA) (12)  
VSREG1  
SR1OFST  
VSREG2  
2.7  
-13.5  
2.7  
-17  
2.7  
-11  
5.0  
0
2.8  
2.9  
24.5  
2.9  
V
mV  
V
-
SREG1-Error AMP Input offset voltage (13)  
SREG2 Control Voltage (Io = 6~80 mA) (12)  
2.8  
SR2OFST  
VSREG3  
-
17  
mV  
V
SREG2-Error AMP Input offset voltage (14)  
SREG3 Control Voltage (Io = 5~60 mA) (12)  
2.8  
2.9  
SR3OFST  
SREG2GH  
SREG2GL  
-
-
-
23  
mV  
V
SREG3-Error AMP Input offset voltage (15)  
SREG2G Output Voltage (16) (Isource = 2.5 µA)  
(Isink = 2.5 µA)  
VGATE  
0.5  
V
Power Switch On Resistance  
VOUT1 Circuit  
W
V
RVOUT1  
RVOUT2  
-
-
0.4  
0.4  
0.6  
0.6  
VOUT2 Circuit  
VGATE Power Supply Circuit  
(Io = 0~6 mA) (17)  
VGATE_00  
VGATE_10  
5.5  
6.0  
6.5  
5.4  
4.6  
5.0  
(Io = 0~6 mA) (18)  
VO1_SENSE1LH  
VO1_SENSE_1LL  
VGH  
VB x 0.85  
-
-
-
VB  
CH_PUMP Output Voltage (Isource = 2.5 mA)  
(Isink = 2.5 mA)  
0
-
0.4  
10.5  
VGH Voltage (Certified value)  
V_STDBY Output Voltage for Li_ion (Io = 300 µA) (19)  
VLVB  
1.75  
-
2.45  
V
Notes  
11. Connect a transistor with gate capacity of 200 pF or smaller to HG and LG  
12. If a capacitor with capacitance of 22 µF is connected to SREGO, use a phase compensation capacitor between SREGO and SREGC  
when the load is 5 mA (6 mA for SREG2) or lower. The output voltage values shown in the table assume that external resistance is  
connected as follows:  
SREGI1 = 3.0 V to 3.3 V, 65.14Kbetween SREGO1 and SREGC1, 34.86Kbetween SREGC1 and GND.  
SREGI2 = 3.0 V to 3.3 V, 54.46Kbetween SREGO2 and SREGC2, 45.54Kbetween SREGC2 and GND.  
SREGI3 = 3.0 V to 3.3 V, 73.84Kbetween SREGO3 and SREGC3, 26.16Kbetween SREGC3 and GND.  
13. Calculated by the right formula for input offset: SR1OFST = (Vref x 0.77) - (SREGO1 ÷ (100k ÷ 34.86k))  
14. Calculated by the right formula for input offset: SR2OFST = (Vref x 1) - (SREGO1 ÷ (100k ÷ 45.54k))  
15. Calculated by the right formula for input offset: SR3OFST = (Vref x 0.58) - (SREGO1 ÷ (100k ÷ 26.16k))  
16. Connect a transistor with gate capacity of 300 pF or smaller to REG2G.  
17. When VGATESEL1 is Low and VGATESEL2 is Low, I/O = 3 mA or higher is certified by specification.  
18. When VGATESEL1 is High and VGATESEL2 is Low, I/O = 3 mA or higher is certified by specification.  
19. When HVB is 4.2 V and the load from V_STDBY is 0.5 µA or higher.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
8
ELECTRICAL CHARACTERISTICS  
STATIC  
Table 3. Static Electrical Characteristics (continued)  
Characteristics noted under conditions VBATT = 1.2 V, VO1_SENSE = 2.4 V, VGATE= 6.0 V, fCLK = 176.4 kHz unless  
otherwise noted. Typical values noted reflect the approximate parameter means at TA = 27°C under nominal conditions unless  
otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Reset Circuit  
Reset Voltage 1  
VRST1  
VRST2  
0.85 x  
0.88 x  
0.91 x  
V
V
VO1_SENSE VO1_SENSE VO1_SENSE  
0.80 x 0.85 x 0.90 x  
VO1_SENSE VO1_SENSE VO1_SENSE  
Reset Voltage 2  
Hysteresis Voltage 1 (@RST1)  
Hysteresis Voltage 2 (@RST2)  
PGOOD (VPGOOD = 2.4 V)  
VHYRS1  
VHYRS2  
40  
50  
0
78  
75  
-
115  
100  
10  
mV  
mV  
µA  
V
IPGOOD1,2  
VPGOOD1,2  
VOLCR1,2  
VIHCR1,2  
VILCR1,2  
(Isink = 2 mA)  
0
-
0.5  
PGOOD_DELAY (Isink = 100 µA)  
0
-
0.7  
V
High Level Threshold Voltage  
Low Level Threshold Voltage  
PGOOD_DELAY Pull-Up Resistance  
1.25  
0.75  
50  
1.42  
1.00  
100  
1.65  
1.15  
150  
V
V
RPUPRC1,2  
KΩ  
V_STDBY Output Resistance  
Output Resistance (VO1_SENSE)  
Output Resistance (VBATT)  
W
RVO1_SENSE  
RVB  
-
-
30  
45  
200  
400  
LSWO Output Resistance  
Output Resistance  
RLSWO  
-
42  
50  
W
V
VGATE_EXT  
VGATE_EXT Output Voltage (Isource = 100 µA)  
(Isink = 100 µA)  
VOHEXTG  
VOLEXTG  
VGATE x 0.9  
0
-
-
VGATE  
VGATE x 0.1  
Logic Input  
"H" Level Input Voltage (20)  
"L" Level Input Voltage (20)  
"H" Level Input Voltage (21)  
"L" Level Input Voltage (21)  
"H" Level Input Voltage (22)  
"L" Level Input Voltage (22)  
"H" Level Input Current (20), (22)  
"L" Level Input Current (22), (23)  
Pull Up Resistance (24)  
VIHVS  
VILVS  
VIH  
V_STDBY - 0.2  
-
-
V
V
-
1.5  
-
0.2  
-
-
V
VIL  
-
-
0.4  
-
V
VIHVB  
VILVB  
IIH  
VB - 0.2  
-
-
V
-
-
0.2  
1.0  
1.0  
770  
625  
V
-1.0  
-1.0  
410  
330  
µA  
µA  
KΩ  
KΩ  
IIL  
-
RPUP  
RPDW  
590  
480  
Pull Down Resistance (25)  
Notes  
20. Applied to WAKEB1 ~ 4 and SEQ_SELECT.  
21. Applied to CLEAR, SLEEP, EXT_CLOCK, DATA, STRB and SCKIN.  
22. Applied to VGATESEL1 and 2.  
23. Applied to WAKEB1 ~ 3, CLEAR, SLEEP, EXT_CLOCK, DATA, STRB, SCKIN and SEQ_SELECT.  
24. Applied to WAKEB4.  
25. Applied to CLEAR, SLEEP, EXT_CLOCK, DATA, STRB and SCKIN.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
9
ELECTRICAL CHARACTERISTICS  
DYNAMIC  
DYNAMIC  
Table 4. Dynamic Electrical Characteristics  
Characteristics noted under conditions VBATT = 1.2 V, VO1_SENSE = 2.4 V, VGATE = 6.0 V, fCLK = 176.4 kHz unless  
otherwise noted. Typical values noted reflect the approximate parameter means at TA = 27°C under nominal conditions unless  
otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OSCILLATOR  
Internal Oscillation Frequency  
fICK  
150  
-
200  
250  
-
kHz  
kHz  
MICRO CONTROLLER INTERFACE  
Clock Signal Input (26)  
fCLK  
176.4  
Serial Interface (Refer to Figure 5, Serial Interface Timing Diagrams)  
DATA Set Up Time  
ts  
20  
20  
-
-
-
-
-
-
-
-
-
-
nsec  
nsec  
MHz  
nsec  
nsec  
nsec  
nsec  
nsec  
DATA Hold Time  
th  
-
SCKIN Clock Frequency  
SCKIN 'H' Pulse Width  
fsck  
twckh  
twckl  
thck  
tssb  
twsb  
6.0  
50  
50  
50  
50  
50  
-
-
-
-
-
SCKIN 'L' Pulse Width  
SCKIN Hold Time  
STRB Set Up Time  
STRB Pulse Width  
Notes  
26. Duty 50%.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
10  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
TIMING DIAGRAMS  
WAKE1~4(int)  
EXT_CLOCK  
V_STDBY  
VBATT  
INT  
EXT(Serial setting)  
VO1_SENSE  
VBATT  
VBATT  
VBATT  
VGATE  
VGATE  
VBATT  
VBATT  
VO1_SENSE  
PGOOD1(Int)  
PGOOD_DELAY set value  
VO1_SENSE  
VO1_SENSE  
PGOOD1  
VBATT  
VBATT  
VO1_SENSE  
VOUT1  
VO1_SENSE  
VO2_SENSE  
VO2_SENSE  
VO2_SENSE  
VOUT2  
VO1_SENSE  
PGOOD2(Int)  
PGOOD_DELAY set value  
VO1_SENSE  
PGOOD1  
SREG1~3  
SEQ_SELECT setting  
DATA  
DATA  
STRB  
SEQ_SELECT setting  
CLEAR  
SLEEP  
Standby Mode  
Start-Up  
Operation Mode  
Standby Mode  
*1: When using Ni_mh. High-Z when using Li_ion.  
Figure 4. Power Supply Start-Up Timing Diagram  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
11  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
t
t
t
WCKL  
t
SSB  
WCKH  
HCK  
SCKIN  
t
t
H
S
A2  
DATA  
STRB  
D0  
A3  
t
WSB  
Figure 5. Serial Interface Timing Diagrams  
DATA1  
Table 5. Serial Interface Functions  
Register Name Address  
DATA2  
0 CLEAR, SLEEP 1000  
CLEAR  
PSW1  
SLEEP  
PSW2  
Reserved  
PGOOD1  
Reserved  
VOUT2  
Reserved  
SREG1  
Reserved  
SREG2  
Reserved  
SREG3  
Reserved  
PGOOD2  
1
2
3
4
5
6
7
Power Mode  
Clock Select  
VO1_SENSE  
VO2_SENSE  
SREG1  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Ext / Int Half Freq RSTB sleep S_Off_VGATE VG_Duty[3] VG_Duty[2] VG_Duty[1]  
VG_Duty[0]  
S_Off_VO1_SENSE  
S_Off_VO2_SENSE  
Reserved  
MSB  
MSB  
MSB  
MSB  
MSB  
VO1_SENSE Output Voltage  
VO2_SENSE Output Voltage  
SREG1 Output Voltage  
LSB  
LSB  
LSB  
SREG2  
SREG2 Output Voltage  
LSB  
SREG3  
SREG3 Output Voltage  
LSB  
CP Off  
EXTG On  
Twelve bits immediately before start-up of STRB are  
always effective. Upon power on, the internal power on reset  
works to initialize the registers. Serial data is fetched in the  
order of Add_[3], Add_[2], ..., Add_[0], DATA1_[3],  
DATA1_[2], ...., DATA2_[0].  
Table 6. Block Operation  
INPUT  
OUTPUT  
WAKE  
(Int)  
PGOOD1  
(Int)  
REG  
1,2,3  
PGOOD1  
PGOOD2(Int)  
SEQ_SELECT  
VGATE  
VO1_SENSE  
VO2_SENSE  
VOUT1,2  
L
X
L
X
L
X
L
X
L
-
-
-
-
-
-
-
-
H
H
H
H
H
O
O
O
O
O
O
O
O
O
O
H
H
H
H
L
L
L
-
-
O
-
L
L
H
L
-
-
H
H
H
H
O
O
O
O
O
O
H
O : Operation, - : Stop, X : Don’t care  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
12  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
Table 7. Start-Up Sequence Settings  
SEQ_SELE  
CT  
CLEAR/  
SLEEP  
Series Regulators  
V_STDBY  
GND  
PGOOD2(Ext)  
PGOOD1(Ext)  
PGOOD2(Int)  
PGOOD1(Int)  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
13  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
The 18730 power management integrated circuit provides  
five independent output voltages for the micro controller from  
either a single cell Li-Ion or from a single cell Ni-MH or dry  
cell. The PMIC includes two DC to DC converters and three  
low drop out linear regulators. The output voltage for each of  
the five output voltages is set independently through a 3-wire  
serial interface. The PMIC has multiple wakeup, sleep, and  
reset modes to minimize power consumption for portable  
equipment. In single cell Li-Ion applications two DC-DC  
converters are configured as buck regulators. In single cell  
Ni-MH or dry cell applications, one DC-DC converter is  
configured as a boost regulator, and the other as buck-boost  
regulator.  
FUNCTIONAL PIN DESCRIPTION  
Channel-1 or Channel-2 DC/DC converter as  
‘VO1_SENSEor VO2_SENSE.  
CLEAR PIN (CLEAR)  
This Clear input signal makes clear internal latches for  
WAKE signal holding. The WAKE control circuit can not  
receive another WAKE input until the latch is cleared by this  
Clear input.  
VOLTAGE OUTPUT PINS (VOUT1, VOUT2)  
Output ‘VO1_SENSE or ‘VO2_SENSE’ voltage controlled  
internal power switch.  
WAKE SIGNAL PINS (WAKE1B, WAKE2B,  
WAKE3B, WAKE4B) ... ACTIVE LOW  
POWER INPUT PINS (VIN1, VIN2)  
Any one WAKE input signal of these four WAKE inputs  
awakes this device from sleep mode. The WAKE signals can  
be made with external low side mechanical switch and  
resistance that is pulled up to VSTB rail.  
The power input pins (VIN1, VIN2) are drain pins on the  
top side FET of the DC/DC converter switcher. They are the  
power input for the buck converter and output for the boost  
converter.  
LOW-SIDE SWITCH OUTPUT PIN (LSWO)  
SWITCHING PINS (SW1, SW2)  
Low-Side switch output that is turned on with ‘CLEAR’  
signal. It can be used for external key input latches clear.  
Switching Pins (SW1, SW2) are the output of the half  
bridge and connect to the external inductance.  
LOW VOLTAGE BATTERY PIN (LVB)  
POWER GROUND PINS (PGND1, PGND2,  
GNDGATE)  
This input pin is used for temporarily power supply while  
wake up for 1cell Ni-MH battery or 1 cell dry cell battery (=  
Low Voltage Battery) use. It has to be connected to VB rail.  
When Li-Ion battery is used, the pin has to be open.  
Ground level node for DC/DC converter and Charge Pump  
portion.  
INVERTED RESET OUTPUT PINS (PGOOD1,  
PGOOD2)  
HIGH VOLTAGE BATTERY PIN (HVB)  
This input pin is used for temporarily power supply while  
wake up for Li-Ion battery (= High Voltage Battery) use. It has  
to be connected to the VB rail. When a Ni-MH battery is used,  
the pin has to be connected to ground level.  
Reset signal output for external MPU or the something  
controller. PGOOD1 keeps ‘Low’ level while the  
VO1_SENSE voltage is less than internal reference voltage.  
PGOOD2 follows to VO2_SENSE voltage.  
STANDBY VOLTAGE PIN (V_STDBY)  
RESET DELAY CAPACITOR PINS  
Standby Voltage is made from LVB or HVB that depends  
on which battery is used. This voltage is used for internal  
logic and analog circuit at standby (sleep) mode temporarily  
before ‘VO1_SENSE’ voltage is established.  
(PGOOD1_DELAY, PGOOD2_DELAY)  
The capacitor connected to this pin decides delay time to  
negate the Reset signal from exceeding the reference  
voltage level.  
VOLTAGE INPUT PINS (VO1_SENSE, VO2_SENSE)  
RESET 1 ADJUSTMENT PIN (RESET1_TH)  
This power supply input pin named ‘VO1_SENS or  
VO2_SENSE’ is for internal logic and analog circuits and for  
input of ‘VOUT1’ output via power switch. Input for ‘VOUT2’  
is ‘VO2_SENSE_IN’ pin. It is supplied from the output of  
Used to adjust the reset level with external resistance  
which is connected to VO1_SENSE for PGOOD1.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
14  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL PIN DESCRIPTION  
DUTY CONTROL PINS (DMAX1, DMAX2)  
REGULATOR CONTROL PINS (SREGC1, SREGC2,  
SREGC3)  
Connected external voltage to this pin via capacitance can  
control the duty of DC/DC converter switching. Use of the pin  
for this is not recommended.  
Feed back pin for each series regulators. This pin voltage  
is compared with internal reference voltage. Input the feed  
back voltage that divided SREGO voltage by resistances.  
REFERENCE FEEDBACK PINS (EAOUT1, EAOUT2)  
REGULATOR OUTPUT PINS (SREGO1, SREGO2,  
SREGO3)  
Output node of internal error amp. for DC/DC converter 1  
and 2. Used for phase compensation.  
Series regulator output pins. All output voltages can be  
variable with internal DAC via serial I/F.  
INPUT MINUS PINS (EAIN1, EAIN2)  
Minus input of internal error amp. for DC/DC converter 1  
and 2. Used for phase compensation.  
REGULATOR INPUT PINS (SREGI1, SREGI2,  
SREGI3)  
CHARGE PUMP CAPACITOR PIN (CH_PUMP)  
Series regulator power input pins. To be connected to  
battery voltage in general.  
In case of use higher voltage than VGATE externally,  
connect capacitance and diodes between VGATE. The  
charge pump structure can output VGATE + VB - 2 x VF  
voltage. There is no meaning for Ni-MH or dry cell battery,  
because the VB voltage is almost same as 2 x VF voltage.  
Recommend to use for Li-Ion battery use.  
GROUND PIN (GND)  
Ground pin for logic and analog circuit portion (not power  
portion). Recommend to connect to clean ground which  
separated with power ground line.  
GATE VOLTAGE PIN (VGATE)  
REFERENCE VOLTAGE PIN (VREF)  
Output pin of boost converter for gate drive voltage. The  
output voltage is decided by VGSEL input.  
Output of internal reference voltage. It can be used  
externally. Output current capacity is less than 300 µA.  
SWITCHING FOR GATE VOLTAGE PIN (SWGATE)  
DATA INPUT PIN (DATA)  
Switching pin for VGATE boost converter. Connect to  
external inductance.  
Serial data input pin for the serial interface. The last 12 bits  
received before the strobe signal’s low to high transition are  
latched.  
BATTERY VOLTAGE PIN (VBATT)  
Power supply input that connects to Ni-MH or Dry cell or  
Li-Ion battery.  
STROBE PIN (STRB)  
Strobe signal input pin for serial interface. It latches the 12  
bits of data input to the internal control registers.  
VGATE SELECT PINS (VGATESEL1, VGATESEL2)  
VGATE output voltage is decided with these two bits input.  
SERIAL CLOCK PIN (SCKIN)  
Clock input pin for serial interface. Input data are taken in  
to I/F with this clock.  
VOLTAGE INPUT FOR POWER SWITCH 2 PIN  
(VO2_SENSE_IN)  
WATCH DOG TIMER PIN (WATCHDOG)  
Input of VOUT2 output via power switch. Connect to  
VO2_SENSE pin externally.  
Watch dog timer prevent unstable wake up (flips between  
wake-up and failure). If there is no ‘CLEAR’ input after any  
WAKEnB input before this WATCHDOG is expired, this  
device moves to ‘SLEEP’ mode to prevent wake failure  
hanging-up situation.  
STEP DOWN FET GATE DRIVE PINS (HG, LG)  
Gate drive output pins for external FETs to use DC/DC  
converter 2 as Buck / Boost converter.  
SEQUENCE SELECT PIN (SEQ_SELECT)  
GATE SWITCH PIN (VGATE_EXT)  
Select judgement Reset channel for wake-up complete  
with this input. If this input level is V_STDBY voltage, this  
device judges the wake-up completion with Reset2 (DC/  
DC2). If it is Ground, judge with Reset1 (DC/DC1). See  
Table 7, on page 13.  
Gate drive output pin for external low side switch. It can be  
used for power switch turning On/OFF for remote controller  
part.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
15  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL PIN DESCRIPTION  
CLOCK INPUT PIN (EXT_CLOCK)  
SLEEP MODE PIN (SLEEP)  
Clock input pin for internal switching part. This device has  
a oscillator internally, but can use this input clock for internal  
switching frequency. It is selected by Clock select bit. See  
Table 19, on page 25.  
The sleep input signal puts the device in sleep mode. All  
output voltages are down, and internal current consumption  
will be minimum.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
16  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
If SLEEP goes High to place the chip into the standby  
mode while any of the WAKEB pins is Low, the chip can be  
awakened again. This may happen if, when an WAKEB pin  
and LSWO are connected, SLEEP goes High earlier than the  
period of time (*1) specified by the external component of the  
WAKEB pin.  
START-UP CONTROL INPUT (SYSTEM CONTROL)  
The latch is set at the rising edge of any WAKE1B-4B input  
pin, and WAKE(int) goes High. WAKE1~4B inputs consist of  
OR logic. At this time, the input pin which went Low keeps  
latched until CLEAR goes High. After the latch is reset by  
CLEAR, WAKE(int) goes Low when SLEEP goes High. The  
latch is also cleared and WAKE(int) goes Low when SLEEP  
goes High before the latch is cleared by CLEAR. In this case,  
CLEAR keeps negated while PGOOD1, 2(Ext) is Low.  
SLEEP keeps negated while PGOOD1, 2(Ext) is Low or  
CLEAR is High. The period of time for which CLEAR and  
SLEEP are negated can be set by the SEQ_SELECT pin.  
Refer to Truth Table 5, on page 12 for the correspondence  
between the SEQ_SELECT pin settings and negation period.  
Also, if the period of time after WAKE(int) goes High until  
CLEAR goes High from Low is longer than the time specified  
by WATCHDOG, internal sleep will start up to place the chip  
into the standby mode.  
(*1: It is 30 µsec when a capacitor is not connected as the  
external component.)  
WAKEB  
CLEAR  
Time specified by WATCHDOG  
WATCHDOG  
WAKE(Int)  
Figure 6. Start-Up Timing Diagram  
STANDBY POWER SUPPLY CIRCUIT  
LSWO  
Short-circuit VBATT and LVB, and connect a  
Schottky diode between VBATT and V_STDBY  
only when using Ni_mh.  
CLEAR  
VBATT  
VO1_SENSE  
VBATT  
LVB  
HVB  
Standby  
Power  
Supply  
Control  
PGOOD1  
PGOOD1(Int)  
V_STDBY  
When using Li_ion, leave LVB open, and short-  
circuit HVB and VBATT.  
V_STDBY  
Figure 7. Standby Power Supply Circuit Diagram  
When PGOOD1(int) is Low, output LVB voltage to  
V_STDBY pin. When PGOOD1(int) is High, output  
VO1_SENSE voltage to V_STDBY pin. When CLEAR is Low,  
LSWO is open. When PGOOD1(int) is High and CLEAR is  
High, LSWO output voltage turns GND. When PGOOD1(int)  
is Low and PGOOD1 is High, discharge the external  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
17  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
capacitor which is connected to V_STDBY. When using  
Ni_mh, short-circuit VBATT and LVB to external components  
and HVB to GND. When using Li_ion, short-circuit HVB to  
VBATT, and leave LVB open. When using Ni_MH, the VB  
voltage is output from V_STDBY in Standby mode. When  
using Li-Ion, 50% of the VBATT voltage is output to  
V_STDBY pin in Standby Mode.  
Table 8. HVB and LVB Connection  
MODE  
HVB  
LVB  
Li_ion  
Ni_mh  
VBATT(27)  
GND  
open  
VBATT(27)  
Notes  
27. Externally connect to VBATT.  
Table 9. V_STDBY and LSWO Operation  
INPUT  
OUTPUT  
V_STDBY  
WAKE(Int)  
PGOOD2(Int)  
CLEAR  
LSWO  
L
H
H
H
X
L
X
X
L
VBATT  
VBATT  
Z
Z
Z
L
H
H
VO1_SENSE  
VO1_SENSE  
H
Z : High Impedance, X : Don’t care  
RESET CIRCUIT  
PGOOD1_DELAY,  
PGOOD2_DELAY  
VO1_SENSE  
VO1_SENSE,  
VO2_SENSE  
VGATE  
PGOOD1, 2  
RESET1_TH  
VO1_SENSE  
Reset  
Control  
PGOOD1_DELAY,  
PGOOD2_DELAY  
(PGOOD1 side only)  
BANDGAP  
REFERENCE  
PGOOD1, 2B(Int)  
Figure 8. Reset Circuit Block Diagram  
When the VO1_SENSE or VO2_SENSE voltage is higher  
than the reference value, PGOOD1 or 2B goes High. When  
PGOOD1(int) is Low and PGOOD1 is High, SLEEP(int) is  
forced to place the chip into the standby mode.  
Connect the capacitor between RESET1_TH and PGOOD  
as directed below.  
When SEQ_SELECT is Low:Between RESET1_TH and  
PGOOD1_DELAY  
Connect a capacitor between RESET1_TH and  
PGOOD_DELAY. The capacitor is not necessary if a resistor  
of 330Kor less is inserted between RESET1_TH and  
VO1_SENSE for reset adjustment  
When SEQ_SELECT is High:Between RESET1_TH and  
PGOOD2_DELAY  
Use a capacitor with approximately half of the capacitance  
between PGOOD_DELAY and GND  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
18  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
PGOOD1(Int)  
PGOOD1  
SLEEP(Int)  
Figure 9. Reset Timing Diagram  
The VBATT voltage rises or falls and is output to VIN2.  
When PGOOD2(int) is High, the power switch turns ON to  
output the VO2_SENSE_IN voltage to VOUT2. If you turn  
DDC2 OFF using the register, the power switch 2 also turns  
OFF. Capacitance value which is connected to  
VO2_SENSE_IN should be higher than the capacitor  
connected to VOUT2.  
POWER SUPPLY VO1_SENSE, VO2_SENSE:  
NI_MH  
The VBATT voltage rises and is output to VIN1. When  
PGOOD2(int) is High, the power switch turns ON to output  
the VO1_SENSE voltage to VOUT1. Capacitance value  
which is connected to VO1_SENSE should be higher than  
the capacitor connected to VOUT1.  
Table 10. Output Voltage of VO1_SENSE  
(28)  
Address: 0011  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
S_Off_VO1_SENSE  
VO1_SENSE [V](29)  
L
L
L
L
L
L
L
H
L
L
L
L
L
L
H
H
L
L
L
L
L
H
L
L
L
L
L
L
H
L
H
L
L
L
L
H
L
L
L
L
L
L
H
L
L
H
L
L
L
H
L
L
L
L
L
L
H
L
L
L
H
L
L
H
L
L
L
L
L
L
H
L
L
L
L
H
L
H
L
L
L
L
L
L
H
L
L
L
L
L
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1.613  
1.625  
1.638  
1.663  
1.713  
1.813  
2.013  
2.413  
2.425  
2.438  
2.463  
2.513  
2.613  
2.813  
3.200  
L
L
L
L
L
L
H
H
H
H
H
H
H
H
Notes  
28. All combinations of input are not included.  
29. Operation is not guaranteed when VO1_SENSE input voltage is 1.8 V or lower. By connecting a diode between VIN1  
and VO1_SENSE, VIN1 can output voltage higher (with the voltage difference Vf) than VO1_SENSE.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
19  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
Table 11. Output Voltage of VO2_SENSE  
Address: 0100(33)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
S_Off_VO2_SENSE  
VO2_SENSE [V]  
L
L
L
L
L
L
L
H
L
L
L
L
L
L
H
H
L
L
L
L
L
H
L
L
L
L
L
L
H
L
H
L
L
L
L
H
L
L
L
L
L
L
H
L
L
H
L
L
L
H
L
L
L
L
L
L
H
L
L
L
H
L
L
H
L
L
L
L
L
L
H
L
L
L
L
H
L
H
L
L
L
L
L
L
H
L
L
L
L
L
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0.805  
0.811  
0.816  
0.827  
0.849  
0.893  
0.980  
1.155  
1.161  
1.166  
1.177  
1.199  
1.243  
1.330  
1.500  
L
L
L
L
L
L
H
H
H
H
H
H
H
H
Notes  
30. All combinations of input are not included  
ON to output the VO2_SENSE_IN voltage to VOUT2. If you  
turn DDC2 OFF using the register, the power switch 2 also  
turns OFF. Capacitance value which is connected to  
VO2_SENSE_IN should be higher than the capacitor  
connected to VOUT2.  
POWER SUPPLY VO1_SENSE, VO2_SENSE:  
LI-ION  
The VBATT voltage falls and is output to VO1_SENSE.  
When using Li_ion, duty limit due to DMAX1 is not applied to  
the switch. When PGOOD2(int) is High, the power switch  
turns ON to output the VO1_SENSE voltage to VOUT1.  
Capacitance value which is connected to VO1_SENSE  
should be higher than the capacitor connected to VOUT1.  
SERIES PASS POWER SUPPLY  
The series pass outputs the SREGI1 voltage to SREGO1,  
the SREGI2 voltage to SREGO2, and the SREGI3 voltage to  
SREGO3. If you use MOSFET as the external component in  
this case, connect the gate to SREG2G.  
The VBATT voltage falls using only the internal transistor  
and is output to VO2_SENSE. When using Li_ion, duty limit  
due to DMAX2 is not applied to the switch, and HG and LG  
are Low. When PGOOD2(int) is High, the power switch turns  
Table 12. Output Voltage of SREG1  
Address: 0101(31)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Reserved  
SREG1 [V](33)  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
L
H
L
L
L
L
H
L
L
L
L
H
L
L
L
L
H
H
H
H
H
H
0.865  
0.880  
0.895  
0.926  
0.986  
1.107  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
20  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
Table 12. Output Voltage of SREG1  
Address: 0101(31)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Reserved  
SREG1 [V](33)  
L
H
L
L
L
L
L
L
H
H
L
L
L
L
L
L
H
L
H
L
L
L
L
L
H
L
L
H
L
L
L
L
H
L
L
L
H
L
L
L
H
L
L
L
L
H
L
L
H
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
1.349  
1.833  
1.848  
1.863  
1.893  
1.954  
2.075  
2.317  
2.800  
H
H
H
H
H
H
H
H
Notes  
31. All combinations of input are not included.  
32. The SREG1 and 3 output voltages are determined by the combination of external resistances connected to  
SREGC1 and 3 (65.14Kbetween SREGO1 and SREGC1, 34.86Kbetween SREGC1 and GND,  
73.84Kbetween SREGO3 and SREGC3, and 26.16Kbetween SREGC3 and GND).  
Table 13. Output Voltage of SREG2  
Address: 0110(33)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SREG2 [V]  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
H
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
H
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
H
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
H
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
H
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
H
0.011  
0.022  
0.033  
0.055  
0.098  
0.186  
0.361  
0.711  
1.411  
1.422  
1.433  
1.455  
1.498  
1.586  
1.761  
2.111  
2.800  
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
Notes  
33. All combinations of input are not included.  
Table 14. Output Voltage of SREG3  
Address: 0111(34)  
B7  
B6  
B5  
B4  
B3  
B2  
CP Off  
EXTG On  
SREG3 [V](35)  
L
L
L
L
L
L
X
X
2.080  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
21  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
Table 14. Output Voltage of SREG3  
Address: 0111(34)  
B7  
B6  
B5  
B4  
B3  
B2  
CP Off  
EXTG On  
SREG3 [V](35)  
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
L
H
L
L
L
L
L
H
L
H
L
L
H
L
L
L
L
L
H
L
L
H
L
H
L
L
L
L
L
H
L
L
L
H
H
L
L
L
L
L
H
L
L
L
L
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2.091  
2.102  
2.125  
2.170  
2.260  
2.440  
2.451  
2.462  
2.485  
2.530  
2.620  
2.800  
L
L
L
L
H
H
H
H
H
H
H
Notes  
34. All combinations of input are not included.  
35. The SREG1 and 3 output voltages are determined by the combination of external resistances connected to  
SREGC1 and 3 (65.14Kbetween SREGO1 and SREGC1, 34.86Kbetween SREGC1 and GND, 73.84KΩ  
between SREGO3 and SREGC3, and 26.16Kbetween SREGC3 and GND).  
VG GENERATOR  
VBATT  
Start Up  
VGATE  
VGATE  
VGATE  
VGATE  
VBATT  
SWGATE  
Step-Up  
Pre Driver  
GNDGATE  
VG_select  
VG_duty  
Figure 10. Circuit when using a Step-Up Converter  
When WAKE (int) goes High from Low, the start-up circuit  
raises the VB voltage and outputs it to VGATE, then outputs  
the VGATE voltage when PGOOD1 (int) goes High. The  
charge pump circuit can be used for both Ni_mh and Li_ion  
by setting the necessary registers. The charge pump circuit is  
disabled by default.  
The VGATE voltage can be set in the range of 6 V to 4.5 V  
according to the combination of VGATESEL1 and 2 pin  
connections. Refer to Table 16, VGATE Voltage Settings and  
VGATESEL1 and 2 Pin Connection on page 23 for the VG  
voltage settings.  
When using a charge pump, please refer to Figure 11.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
22  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
VBATT  
CH_PUMP  
VGH  
VBATT  
CPoff  
VGATE  
VGATE  
VGATE  
Start Up  
VGATE  
VBATT  
SWGATE  
Step-Up  
VGATE  
Pre Driver  
GNDGATE  
VGATE_SELECT  
VG_duty  
Figure 11. Circuit When Using a Charge Pump  
Table 15. VGATE Duty Settings  
Address : 0010  
Ext/Int  
Half Freq  
RSTB sleep  
S_Off_VG  
VG_Duty[3]  
VG_Duty[2]  
VG_Duty[1]  
VG_Duty[0]  
Duty  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
H
L
90 %  
86 %  
82 %  
74 %  
58 %  
54 %  
50 %  
42 %  
30 %  
L
L
H
L
L
H
L
L
H
H
H
H
H
L
L
L
L
H
L
L
H
L
H
H
L
H
H
Table 16. VGATE Voltage Settings and VGATESEL1 and 2 Pin Connection  
VGATESEL1  
VGATESEL2  
VGATE [V]  
GND  
GND  
GND  
VBATT  
GND  
6.0  
5.5  
5.0  
4.5  
VBATT  
VBATT  
VBATT  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
23  
FUNCTIONAL DEVICE OPERATION  
LOGIC COMMANDS AND REGISTERS  
LOGIC COMMANDS AND REGISTERS  
REGISTER MAPPINGS  
Table 17. CLEAR and SLEEP Control Register  
1000  
Bit  
Data1  
Data2  
3
CLEAR  
0
2
SLEEP  
0
1
0
Reserved  
0
3
Reserved  
0
2
1
Reserved  
0
0
Reserved  
0
Name  
Default  
Reserved  
0
Reserved  
0
CLEAR: CLEAR Control  
1 = CLEAR is high  
Reserved : Freescale defined register *1  
1 = Forbidden  
0 = CLEAR is low  
0 = Required  
SLEEP: SLEEP Control  
1 = SLEEP is high  
Reserved : Freescale defined register *1  
1 = Forbidden  
0 = SLEEP is low  
0 = Required  
Reserved: Freescale defined register *1  
1 = Forbidden  
Reserved: Freescale defined register *1  
1 = Forbidden  
0 = Required  
0 = Required  
Reserved: Freescale defined register *1  
1 = Forbidden  
Note: Do NOT change Reserved Register from default  
value.  
0 = Required  
*1: Data write to this address (1000) is allowed for the  
most significant two bits only. The least significant 6 bits are  
only used for the factory test. When writing data, always write  
0 to these six bits.  
Reserved: Freescale defined register *1  
1 = Forbidden  
0 = Required  
Table 18. Power Mode Register  
0001  
Bit  
Data1  
Data2  
3
PSW1  
1
2
PSW2  
1
1
PGOOD1  
0
0
VOUT2  
1
3
SREG1  
1
2
SREG2  
1
1
SREG3  
1
0
PGOOD2  
0
Name  
Default  
PSW1: VOUT1 Power Switch control  
1 = Power Switch on  
SREG2: Series Pass Regulator Channel2 output  
Control *3  
0 = Power Switch off  
1 = Regulator off  
0 = Regulator on  
PSW2: VOUT2 Power Switch control  
1 = Power Switch on  
0 = Power Switch off  
SREG3: Series Pass Regulator Channel3 output Control  
1 = Regulator on  
0 = Regulator off  
PGOOD1: PGOOD1 Mask *1  
1 = PGOOD1 mask on  
0 = PGOOD1 mask off  
PGOOD2: PGOOD2 Mask  
1 = PGOOD2 mask on  
0 = PGOOD2 mask off  
*1  
VO2_SENSE: DC/DC Converter Channel 2 output Control  
*2  
*1: When switching the output voltage of VO1_SENSE (2),  
write 1 to the PGOOD1 (2) Mask bit in advance to fix the rest  
output to High for preventing erroneous operation.  
1 = DDC2 on  
0 = DDC2 off  
SREG1: Series Pass Regulator Channel1 output Control  
1 = Regulator on  
0 = Regulator off  
*2: When turning DDC2 OFF, set the PGOOD2 bit to High  
to Mask PGOOD2. If you turn DDC2 OFF, the power switch  
2 also turns OFF.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
24  
FUNCTIONAL DEVICE OPERATION  
LOGIC COMMANDS AND REGISTERS  
Table 19. Clock Select Register  
0010  
Data1  
Data2  
Bit  
3
Ext/Int  
0
2
Half Freq  
0
1
0
S_Off_VG  
0
3
2
1
0
Name  
Default  
RSTB sleep  
1
VG_Duty [3] VG_Duty[2] VG_Duty[1] VG_Duty[0]  
0
0
0
0
Ext / Int: Clock Select control 1  
1 = External Clock  
VG_Duty[2]: VG Duty Control Bit 2  
1 = VG Duty[2] is high  
0 = Internal Clock  
0 = VG Duty[2] is low  
2FS: Clock Select control 2  
1 = 2FS on  
VG_Duty[1]: VG Duty Control Bit1  
1 = VG Duty[1] is high  
0 = 2FS off  
0 = VG Duty[1] is low  
RSTB Sleep: RSTB Sleep Monitor  
1 = RSTB SLEEP Monitor off  
0 = RSTB SLEEP Monitor on  
*1  
VG_Duty[0]: VG Duty Control LSB  
1 = VG Duty[0] is high  
0 = VG Duty[0] is low  
S_Off_VG: VG Top side transistor off  
1 = Synchronous Rectification Off  
0 = Synchronous Rectification On  
VG is controlled by PFM method. This register can change  
the duty by 16 steps.  
Refer to Table 15, VGATE Duty Settings on page 23 for  
the correspondence between the VG Duty maximum values  
and register settings.  
VG_Duty[3]: VG Duty Control MSB  
1 = VG Duty[3] is high  
0 = VG Duty[3] is low  
Table 20. VO1_SENSE Output Voltage Register  
0011  
Bit  
Data1  
Data2  
3
2
1
0
3
2
1
0
VO1_SENSE  
[6]  
VO1_SENSE  
[5]  
VO1_SENSE  
[4]  
VO1_SENSE  
[3]  
VO1_SENSE  
[2]  
VO1_SENSE  
[1]  
VO1_SENSE  
[0]  
S_Off_VO1_SENSE  
Name  
Default  
1
0
0
0
0
0
0
0
VO1_SENSE[6]: Reference DAC MSB  
1 = VO1_SENSE[6] on  
0 = VO1_SENSE[6] off  
VO1_SENSE[1]: Reference DAC Bit1  
1 = VO1_SENSE[1] on  
0 = VO1_SENSE[1] off  
VO1_SENSE[5]: Reference DAC Bit5  
1 = VO1_SENSE5] on  
VO1_SENSE[0] on  
0 = VO1_SENSE[0] off  
0 = VO1_SENSE[5] off  
S_Off_VO1_SENSE: DDC1 Top side (Ni_mh) / Bottom  
side (Li_ion) transistor off  
1 = Synchronous Rectification Off  
VO1_SENSE[4]: Reference DAC Bit4  
1 = VO1_SENSE[4] on  
0 = VO1_SENSE[4] off  
0 = Synchronous Rectification On  
VO1_SENSE[3]: Reference DAC Bit3  
1 = VO1_SENSE[3] on  
0 = VO1_SENSE[3] off  
Refer to Table 10, Output Voltage of VO1_SENSE on  
page 19 for the correspondence between the output voltage  
and register settings.  
VO1_SENSE[2]: Reference DAC Bit2  
1 = VO1_SENSE[2] on  
0 = VO1_SENSE[2] off  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
25  
FUNCTIONAL DEVICE OPERATION  
LOGIC COMMANDS AND REGISTERS  
Table 21. VO2_SENSE Output Voltage Register  
0100  
Bit  
Data1  
Data2  
3
2
1
0
3
2
1
0
VO2_SENSE  
[6]  
VO2_SENSE  
[5]  
VO2_SENSE  
[4]  
VO2_SENSE  
[3]  
VO2_SENSE  
[2]  
VO2_SENSE  
[1]  
VO2_SENSE  
[0]  
S_Off_VO2_SENSE  
Name  
Default  
1
0
0
0
0
0
0
0
VO2_SENSE[6]: Reference DAC MSB  
1 = VO2_SENSE[6] on  
0 = VO2_SENSE[6] off  
VO2_SENSE[1]: Reference DAC Bit1  
1 = VO2_SENSE[1] on  
0 = VO2_SENSE[1] off  
VO2_SENSE[5]: Reference DAC Bit5  
1 = VO2_SENSE[5] on  
VO2_SENSE [0]: Reference DAC LSB  
1 = VO2_SENSE [0] on  
0 = VO2_SENSE[5] off  
0 = VO2_SENSE [0] off  
VO2_SENSE[4]: Reference DAC Bit4  
1 = VO2_SENSE[4] on  
S_Off_VO2_SENSE: DDC2 Top side & LG (Ni_mh) /  
Bottom side (Li_ion) transistor off  
0 = VO2_SENSE[4] off  
1 = Synchronous Rectification Off  
0 = Synchronous Rectification On  
VO2_SENSE[3]: Reference DAC Bit3  
1 = VO2_SENSE[3] on  
0 = VO2_SENSE[3] off  
Refer to Table 11, Output Voltage of VO2_SENSE on  
page 20 for the correspondence between the output voltage  
and register settings.  
VO2_SENSE[2]: Reference DAC Bit2  
1 = VO2_SENSE[2] on  
0 = VO2_SENSE[2] off  
Table 22. Regulator1 Output Voltage Register  
0101  
Bit  
Data1  
Data2  
3
2
1
0
3
2
1
0
Reserved  
1
Name  
Default  
SREG1_V[6]  
1
SREG1_V[5]  
1
SREG1_V[4]  
1
SREG1_V[3]  
1
SREG1_V[2]  
1
SREG1_V[1]  
1
SREG1_V[0]  
1
SREG1_V[6]: Reference DAC MSB  
1 = SREG1_V[6] on  
SREG1 [1]: Reference DAC Bit1  
1 = SREG1_V[1] on  
0 = SREG1_V[6] off  
0 = SREG1_V[1] off  
SREG1_V[5]: Reference DAC Bit5  
1 = SREG1_V[5] on  
SREG1_V[0]: Reference DAC LSB  
1 = SREG1_V[0] on  
0 = SREG1_V[5] off  
0 = SREG1_V[0] off  
SREG1_V[4]: Reference DAC Bit4  
1 = SREG1_V[4] on  
Reserved : Blank register bit (Freescale Pre-Defined  
Register)  
0 = SREG1_V[4] off  
1 = Preferred  
0 = Forbidden  
SREG1_V[3]: Reference DAC Bit3  
1 = SREG1_V[3] on  
0 = SREG1_V[3] off  
Note: Do NOT change Reserved Register from default  
value.  
SREG1_V[2] : Reference DAC Bit2  
1 = SREG1_V[2] on  
0 = SREG1_V[2] off  
Refer to Table 12, Output Voltage of SREG1 on page 20  
for the correspondence between the output voltage and  
register settings.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
26  
FUNCTIONAL DEVICE OPERATION  
LOGIC COMMANDS AND REGISTERS  
Table 23. Regulator2 Output Voltage Register  
0110  
Bit  
Data1  
Data2  
3
2
1
0
3
2
1
0
Name  
Default  
SREG2_V[7]  
1
SREG2_V[6]  
1
SREG2_V[5]  
1
SREG2_V[4]  
1
SREG2_V[3]  
1
SREG2_V[2]  
1
SREG2_V[1]  
1
SREG2_V[0]  
1
SREG2_V[7]: Reference DAC MSB  
1 = SREG2_V[7] on  
0 = SREG2_V[7] off  
SREG2_V[2]: Reference DAC Bit2  
1 = SREG2_V[2] on  
0 = SREG2_V[2] off  
SREG2_V[6]: Reference DAC Bit6  
1 = SREG2_V[6] on  
SREG2_V[1]: Reference DAC Bit1  
1 = SREG2_V[1] on  
0 = SREG2_V[6] off  
0 = SREG2_V[1] off  
SREG2_V[5]: Reference DAC Bit5  
1 = SREG2_V[5] on  
SREG2_V[0]: Reference DAC LSB  
1 = SREG2_V[0] on  
0 = SREG2_V[5] off  
0 = SREG2_V[0] off  
SREG2_V[4]: Reference DAC Bit4  
1 = SREG2_V[4] on  
0 = SREG2_V[4] off  
Refer to Table 13, Output Voltage of SREG2 on page 21  
for the correspondence between the output voltage and  
register settings.  
SREG2_V[3]: Reference DAC Bit3  
1 = SREG2_V[3] on  
0 = SREG2_V[3] off  
Table 24. Regulator3 Output Voltage Register  
0111  
Bit  
Data1  
Data2  
3
2
1
0
3
2
1
CP Off  
1
0
EXTG On  
1
Name  
Default  
SREG3_V[5]  
1
SREG3_V[4]  
1
SREG3_V[3]  
1
SREG3_V[2]  
1
SREG3_V[1]  
1
SREG3_V[0]  
1
SREG3_V[5]: Reference DAC MSB  
1 = SREG3_V[5] on  
SREG3_V[0]: Reference DAC LSB  
1 = SREG3_V[0] on  
0 = SREG3_V[5] off  
0 = SREG3_V[0] off  
SREG3_V[4]: Reference DAC Bit4  
1 = SREG3_V[4] on  
CP Off: Charge Pump Control  
1 = Charge Pump off  
0 = SREG3_V[4] off  
0 = Charge Pump on  
SREG3_V[3]: Reference DAC Bit3  
1 = SREG3_V[3] on  
0 = SREG3_V[3] off  
EXTG On: VGATE_EXT Control *  
1 = VGATE_EXT is low (GND level)  
0 = VGATE_EXT is high (VG level)  
SREG3_V[2] : Reference DAC Bit2  
1 = SREG3_V[2] on  
EXTG On Register is assumed to use Pch FET as external  
MOSFET.  
0 = SREG3_V[2] off  
If Nch FET will be used, Control logic should be inverted.  
SREG3_V[1] : Reference DAC Bit1  
1 = SREG3_V[1] on  
0 = SREG3_V[1] off  
Refer to Table 14, Output Voltage of SREG3 on page 21  
for the correspondence between the output voltage and  
register settings.  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
27  
TYPICAL APPLICATIONS  
TYPICAL APPLICATIONS  
HVB  
VBATT  
VMODE  
VBATT  
VBATT  
LVB  
LVB  
Driver  
VMODE  
VO1_SENSE  
PGOOD1(Int)  
VO1_SENSE  
V_STDBY  
VOUT1  
VREF  
PGOOD1(Int)  
CLEAR  
VREF  
BANDGAP  
REFERENCE  
VGATE  
LSWO  
VO1_SENSE  
PGOOD1(Int)  
VO1_SENSE  
POWER  
SWITCH1  
VO1_SENSE  
VGATE  
VO1_SENSE  
VIN1  
PGOOD1  
PGOOD1_DELAY  
PGOOD1(Int)  
REF1  
RESET  
Block 1  
Step-UpDown  
DC/DC  
VBATT  
VO1_SENSE  
SW1  
Converter  
CH1  
RESET1_TH  
EAIN1  
PGND1  
EAOUT1  
VREF  
VGATE  
PGOOD1_DELAY  
or  
PGOOD2_DELAY  
VOUT2  
DMAX1  
POWER  
PGOOD2(Int)  
VGATE  
VO2_SENSE_IN  
VO2_SENSE  
VO1_SENSE  
PGOOD2  
SWITCH2  
VO1_SENSE  
PGOOD2(Int)  
VBATT  
HG  
LG  
RESET  
Block 2  
REF2  
PGOOD2_DELAY  
EAOUT2  
Step-UpDown  
DC/DC  
Converter  
VIN2  
CH2  
SW2  
EAIN2  
VREF  
DMAX2  
PGND2  
SREGI1  
VGATE  
SREGO1  
REF3  
Series Pass  
Regulator1  
SREGC1  
SREGO1  
SREG12  
SREGO2  
VGATE  
SREGC2  
SREGC3  
Series Pass  
Regulator2  
SREGO3  
REF4  
SREGO2  
V_STDBY  
SREG2G  
SREGI3  
VGATE  
VO1_SENSE  
VBATT  
WAKE1B  
WAKE2B  
Series Pass  
Regulator3  
REF5  
WAKE3B  
SREGO3  
VBATT  
WAKE4B  
SEQ_SELECT  
DATA  
EXT_CLOCK  
CPoff  
PGOOD1(Int)  
PGOOD2  
CH_PUMP  
VGATE  
STRB  
VO1_SENSE  
VBATT  
(Int)  
VGATE  
SEQ_SELECT  
SCKIN  
CLEAR  
SLEEP  
Control  
Logic  
VBATT  
Step-Up  
DC/DC  
Convertor  
VG_select  
VG_duty  
SWGATE  
EXT_CLOCK  
GNDGATE  
GND  
VGATE  
REF2  
REF1  
REF4  
VGATESEL1  
VGATESEL2  
REF3  
REF5  
EXT gate  
On  
Buffer  
VGATE_EXT  
On  
WATCHDOG  
REF DAC  
VREF  
Figure 12. MPC18730 Typical Application Diagram (Ni-MH Battery)  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
28  
TYPICAL APPLICATIONS  
VBATT  
HVB  
VMODE  
VBATT  
VBATT  
VBATT  
LVB  
Driver  
LVB  
VMODE  
PGOOD1(Int)  
VO1_SENSE  
VO1_SENSE  
VREF  
PGOOD1(Int)  
CLEAR  
V_STDBY  
VREF  
BANDGAP  
REFERENCE  
VGATE  
VOUT1  
LSWO  
VO1_SENSE  
PGOOD1(Int)  
VO1_SENSE  
POWER  
VO1_SENSE  
SWITCH1  
PGOOD1(Int)  
VO1_SENSE  
VGATE  
VBATT  
VIN1  
PGOOD1  
RESET  
Block 1  
PGOOD1_DELAY  
REF1  
Step-UpDown  
DC/DC  
VO1_SENSE  
SW1  
Converter  
RESET1_TH  
EAIN1  
CH1  
PGND1  
EAOUT1  
VGATE  
PGOOD1_DELAY  
or  
PGOOD2_DELAY  
VOUT2  
POWER  
SWITCH2  
DMAX1  
VO1_SENSE  
PGOOD2(Int)  
VGATE  
VO2_SENSE_IN  
VO2_SENSE  
VO1_SENSE  
PGOOD2(Int)  
PGOOD2  
HG  
RESET  
Block 2  
LG  
REF2  
PGOOD2_DELAY  
EAOUT2  
Step-UpDown  
DC/DC  
Converter  
VBATT  
VIN2  
EAIN2  
CH2  
SW2  
PGND2  
SREGI1  
DMAX2  
VGATE  
SREGO1  
REF3  
Series Pass  
Regulator1  
SREGC1  
SREGO1  
SREG12  
SREGO2  
VGATE  
Series  
Pass  
Regulator2  
SREGC2  
SREGC3  
SREGO3  
REF4  
SREGO2  
V_STDBY  
SREG2G  
SREGI3  
VGATE  
VO1_SENSE  
VBATT  
WAKE1B  
WAKE2B  
Series Pass  
Regulator3  
REF5  
WAKE3B  
SREGO3  
WAKE4B  
SEQ_SELECT  
DATA  
VBATT  
EXT_CLOCK  
PGOOD1(Int)  
PGOOD2  
CH_PUMP  
VGH  
CPoff  
STRB  
VGATE  
VBATT  
SEQ_SELECT  
(Int)  
SCKIN  
VGATE  
VO1_SENSE  
VBATT  
CLEAR  
SLEEP  
Control  
Logic  
Step-Up  
DC/DC  
Convertor  
VG_select  
VG_duty  
SWGATE  
EXT_CLOCK  
GND  
GNDGATE  
VGATE  
REF2  
REF4  
VGATESEL1  
VGATESEL2  
REF3  
REF5  
REF1  
EXT gate  
VGATE_EXT  
On  
On  
Buffer  
WATCHDOG  
REF DAC  
VREF  
Figure 13. MPC18730 Typical Application Diagram (Li-Ion Battery)  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
29  
PACKAGING  
PACKAGE DIMENSIONS  
PACKAGING  
PACKAGE DIMENSIONS  
For the most current package revision, visit www.freescale.com and perform a keyword search using the “98A” listed below.  
EP (Pb-FREE) SUFFIX  
64-PIN 0.5 mm pitch  
PLASTIC PACKAGE  
98ARL10571D  
ISSUE B  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
30  
PACKAGING  
PACKAGE DIMENSIONS  
EP (Pb-FREE) SUFFIX  
64-PIN 0.5 mm pitch  
PLASTIC PACKAGE  
98ARL10571D  
ISSUE B  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
31  
PACKAGING  
PACKAGE DIMENSIONS  
EP (Pb-FREE) SUFFIX  
64-PIN 0.5 mm pitch  
PLASTIC PACKAGE  
98ARL10571D  
ISSUE B  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
32  
PACKAGING  
PACKAGE DIMENSIONS  
EP (Pb-FREE) SUFFIX  
64-PIN 0.5 mm pitch  
PLASTIC PACKAGE  
98ARL10571D  
ISSUE B  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
33  
REVISION HISTORY  
REVISION HISTORY  
REVISION  
3.0  
DATE  
DESCRIPTION OF CHANGES  
04/2006  
8/2006  
• Changed 34 of 64 Pin names to align with Application Note, AN3247 Rev 1.0.  
• Minor changes to correct errors and inconsistencies.  
• Updated form and style.  
4.0  
18730  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
34  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are not  
designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or  
for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
MPC18730  
Rev. 4.0  
8/2006