转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
ASDL-3212  
IrDAData Compliant Low Power ꢀ.ꢀ52 Mbit/s Infrared Transceiver  
Data Sheet  
Description  
General Features  
TheASDL-3212isanewgenerationultrasmalllowcostꢀ ꢀ Operatingꢀtemperatureꢀfromꢀ-25°Cꢀ~ꢀ85°C  
infraredꢀtransceiverꢀmoduleꢀwhichꢀisꢀcomplianceꢀtoꢀIrDAꢀ  
Physicalꢀ Layersꢀ specificationsꢀ versionꢀ 1.4ꢀ lowꢀ powerꢀ  
from9.6Kbits/sto1.152Mbit/s(MIR)withextendedlinkꢀ  
distance.ꢀ Itꢀ isꢀ IEC825-Classꢀ 1ꢀ eyeꢀ safeꢀ andꢀ designedꢀ forꢀ  
veryꢀ lowꢀ powerꢀ consumptionꢀ whichꢀ isꢀ idealꢀ forꢀ batteryꢀ  
operatedꢀ handheldꢀ devices.ꢀ ASDL-3212ꢀ featuresꢀ lowerꢀ  
pincountthroughintegratedinput-outputfunctionforꢀ  
interfacingꢀwithꢀlowꢀvoltageꢀ1.5V  
-ꢀ Criticalꢀparametersꢀareꢀguaranteedꢀoverꢀ  
temperatureꢀandꢀsupplyꢀvoltage  
ꢀ VccꢀSupplyꢀ2.4ꢀtoꢀ3.6ꢀVꢀ  
ꢀ InterfaceꢀtoꢀVariousꢀSuperꢀI/OꢀandꢀControllerꢀDevices  
-SupportIntegratedInput/OutputInterfaceVoltageꢀ  
ofꢀ1.5ꢀV  
ꢀ MiniatureꢀPackageꢀ  
-ꢀ Heightꢀ:ꢀ1.64ꢀmm  
Applications  
-ꢀ Widthꢀ:ꢀ7.00mm  
ꢀ Mobileꢀdataꢀcommunicationꢀ  
-ꢀ MobileꢀPhones  
-ꢀ Depthꢀ:ꢀ2.73mm  
ꢀ MoistureꢀLevelꢀ3  
-ꢀ PDAs  
ꢀ NoꢀProgrammingꢀrequired  
ꢀ LEDꢀStuck-HighꢀProtection  
ꢀ HighꢀEMIꢀPerformance  
-ꢀ DigitalꢀStillꢀCameras  
-ꢀ Printer  
-ꢀ HandyꢀTerminals  
-ꢀ IndustrialꢀandꢀMedicalꢀInstrument  
ꢀ DesignedtoAccommodateLightLosswithCosmeticꢀ  
Windows  
ꢀ IECꢀ825-Classꢀ1ꢀEyeꢀSafe  
Application Support Information  
TheApplicationEngineeringGroupisavailabletoassistꢀ  
youꢀ withꢀ theꢀ applicationꢀ designꢀ associatedꢀ withꢀ ASDL-  
3212infraredtransceivermodule.ꢀYoucancontactthemꢀ  
throughꢀ yourꢀ localꢀ salesꢀ representativesꢀ forꢀ additionalꢀ  
details.  
IrDAFeatures  
ꢀ FullyComplianttoIrDAꢀ1.4ꢀPhysicalꢀLayerꢀLowꢀPowerꢀ  
Specificationsꢀfromꢀ9.6ꢀkbit/sꢀtoꢀꢀ1.15ꢀMbit/sꢀ  
ꢀ-ꢀTypicalꢀLinkꢀDistanceꢀ>ꢀ50cm  
ꢀ Completeꢀshutdownꢀ  
ꢀ LowꢀPowerꢀConsumption  
-ꢀ Lowꢀshutdownꢀcurrentꢀ  
-ꢀ Lowꢀidleꢀcurrent  
Order Information  
Part Number  
Packaging Type  
Package  
Quantity  
ASDL-32ꢀ2-02ꢀ  
Tape and Reel  
Front Option  
2500  
Marking Information  
Theꢀunitꢀisꢀmarkedꢀwithꢀ.PYWWLL’  
Pꢀ  
Yꢀ  
=ꢀProductꢀcode  
=ꢀ1ꢀdigitꢀnumericꢀcodeꢀforꢀyear  
WWꢀ =ꢀ2ꢀdigitsꢀnumericꢀcodeꢀforꢀworkꢀweek  
LLꢀ =ꢀ2ꢀdigitsꢀhexadecimalꢀcodeꢀforꢀlotꢀinformation  
Vcc  
CX2  
CX1  
GnD  
5
6
PD  
Low  
Pass  
Filter  
RXD  
3
Ambient DC Cancellation  
Regulated  
Voltage  
Supply  
VLED  
SD  
4
AGC  
LEDA  
R1  
1
2
CX3  
Stuck One  
Protection  
TXD  
ASDL-3212 Transceiver Module  
Figure 1. Functional Block Diagram  
2
Recommended Application Circuit Components  
Recommended Value  
Note  
Rꢀ  
2.7Ω 5ꢁ,0.25 watt for 2.4 ≤ VLED < 2.6  
3.3Ω 5ꢁ,0.25 watt for 2.6 ≤ VLED < 2.8  
3.9Ω 5ꢁ,0.25 watt for 2.8 ≤ VLED < 3.0  
4.7Ω 5ꢁ,0.25 watt for 3.0 ≤ VLED < 3.3  
5.6Ω 5ꢁ,0.25 watt for 3.3 ≤ VLED < 3.5  
6.8Ω 5ꢁ,0.25 watt for 3.5 ≤ VLED < 3.8  
8.2Ω 5ꢁ,0.25 watt for 3.8 ≤ VLED < 4.2  
ꢀ0Ω 5ꢁ,0.25 watt for 4.2 ≤ VLED < 4.7  
ꢀ2Ω 5ꢁ,0.25 watt for 4.7 ≤ VLED < 5.0  
ꢀ00 nF, 20ꢁ, X7R Ceramic  
CX2  
7
7
CXꢀ, CX3  
6.8 mF, 20ꢁ, Tantalum  
Note:  
7.ꢀ CX1ꢀ &ꢀ CX2ꢀ mustꢀ beꢀ placedꢀ withinꢀ 0.7cmꢀ ofꢀ ASDL-3212ꢀ toꢀ obtainꢀ  
optimumꢀnoiseꢀimmunity  
I/O Pins Configuration Table  
Pin  
Symbol  
LEDA  
TxD  
Description  
I/O Type  
Notes  
Note ꢀ  
Note 2  
Note 3  
Note 4  
Note 5  
Note 6  
Rear View  
LED Anode  
2
IrDA transmitter data input.  
IrDA receive data  
Shutdown  
Input, Active High  
Output, Active Low  
Input, Active High  
3
RxD  
4
SD  
6
5
4
3
2
1
5
Vcc  
Supply Voltage  
Ground  
Figure 2. Pin out  
6
GND  
Note:  
1.ꢀ Tiedꢀthroughꢀexternalꢀresistor,ꢀR1,ꢀtoꢀVled.ꢀReferꢀtoꢀtheꢀtableꢀbelowꢀforꢀrecommendedꢀseriesꢀresistorꢀvalue.  
2.ꢀ ThisꢀpinꢀisꢀusedꢀtoꢀtransmitꢀserialꢀdataꢀwhenꢀSDꢀpinꢀisꢀlow.ꢀIfꢀheldꢀhighꢀforꢀlongerꢀthanꢀ50ꢀms,ꢀtheꢀLEDꢀisꢀturnedꢀoff.ꢀDoꢀNOTꢀfloatꢀthisꢀpin.  
3.ꢀ ThisꢀpinꢀisꢀcapableꢀofꢀdrivingꢀaꢀstandardꢀCMOSꢀorꢀTTLꢀload.ꢀNoꢀexternalꢀpull-upꢀorꢀpull-downꢀresistorꢀisꢀrequired.ꢀTheꢀpinꢀisꢀinꢀtri-stateꢀwhenꢀtheꢀ  
transceiverꢀisꢀinꢀshutdownꢀmode  
4.ꢀ CompleteꢀshutdownꢀofꢀICꢀandꢀPINꢀdiode.ꢀDoꢀNOTꢀfloatꢀthisꢀpin.ꢀ  
5.ꢀ Regulated,ꢀ2.4Vꢀtoꢀ3.6V  
6.ꢀ Connectꢀtoꢀsystemꢀground.  
CAUTION: The BiCMOS inherent to the design of this component increases the component’s susceptibility to  
damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling  
and assembly of this component to prevent damage and/or degradation which may be induced by ESD.  
3
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Max.  
+ꢀ00  
+ꢀ00  
+85  
6
Units  
°C  
Conditions  
Ref  
Storage Temperature  
Junction Temperature  
Operating Temperature  
LED Anode Voltage  
Supply Voltage  
T
S
-40  
T
J
°C  
T
A
-25  
0
°C  
V
LEDA  
V
V
V
V
0
6
V
CC  
Input Voltage : TXD, SD/Mode  
Output Voltage : RXD  
Peak LED Current  
0
6
V
I
0
6
V
O
I
I
300  
60  
mA  
mA  
≤ 20ꢁ duty cycle, ≤ 2ꢀ7ns pulse width  
Fig. 5  
Fig. 6  
LED (PK)  
LED (DC)  
DC LED Current  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
+85  
3.6  
Units  
Conditions  
Operating Temperature  
Supply Voltage  
T
A
-25  
2.4  
°C  
V
CC  
V
IH  
V
IL  
V
Logic Input Voltage for TXD, SD/Mode  
ꢀ.3  
ꢀ.8  
V
0
0.5  
V
2
[8]  
Receiver Input Irradiance  
Logic High EI  
0.0090  
500  
mW/cm  
For in-band signals≤ ꢀꢀ5.2kbit/s  
H
0.576 Mbit/s ≤ in-band signals ≤ꢀ.ꢀ52  
[8]  
0.0225  
0.0096  
500  
0.3  
Mbit/s  
2
[8]  
Logic Low  
EI  
L
mW/cm  
For in-band signals  
LED (Logic High) Current Pulse  
Amplitude  
I
250  
mA  
V
I
= 3.0V, R = 4.7W,  
LEDA  
LED LED  
V (TxD) V  
IH  
Receiver Data Rate  
Ambient Light  
ꢀ.ꢀ52  
Mbit/s  
See IrDA Serial Infrared Physical Layer  
Link Specification, Appendix A for  
ambient levels  
Noteꢀ :ꢀ [8]ꢀ Anꢀ in-bandꢀ opticalꢀ signalꢀ isꢀ aꢀ pulse/sequenceꢀ whereꢀ theꢀ peakꢀ wavelength,ꢀ lp,ꢀ isꢀ definedꢀ asꢀ 850ꢀ mpꢀ ꢀ 900ꢀ nm,ꢀ andꢀ theꢀ pulseꢀ  
characteristicsꢀareꢀcompliantꢀwithꢀtheꢀIrDAꢀSerialꢀInfraredꢀPhysicalꢀLayerꢀLinkꢀSpecificationꢀv1.4.  
4
Electrical and Optical Specifications  
Specificationsꢀ(Min.ꢀ&ꢀMax.ꢀvalues)ꢀholdꢀoverꢀtheꢀrecommendedꢀoperatingꢀconditionsꢀunlessꢀotherwiseꢀnoted.ꢀUnspeci-  
fiedꢀtestꢀconditionsꢀmayꢀbeꢀanywhereꢀinꢀtheirꢀoperatingꢀrange.ꢀAllꢀtypicalꢀvaluesꢀ(Typ.)ꢀareꢀatꢀ25°CꢀandꢀVccꢀsetꢀtoꢀ3.0Vꢀ  
unlessꢀotherwiseꢀnoted.  
Receiver  
Parameter  
Symbol  
2q  
Min.  
Typ.  
Max.  
Units  
°
Conditions  
Viewing Angle  
30  
ꢀ/2  
Peak Sensitivity Wavelength  
RxD_IrDA Output Voltage  
l
875  
nm  
V
P
Logic High  
Logic Low  
V
OH  
ꢀ.3  
0
ꢀ.8  
0.4  
I = -ꢀ00 mA, EI ≤ 0.3 mW/cm2  
OH  
V
OL  
V
[9, ꢀ0]  
RxD_IrDA Pulse Width (SIR)  
RxD_IrDA Pulse Width (MIR)  
RxD_IrDA Rise & Fall Times  
t
t
ꢀ.5  
250  
60  
ms  
ns  
q
q
≤ ꢀ5°, C =9pF, EI = ꢀ0 mW/cm2  
L
RPW(SIR)  
RPW(MIR)  
ꢀ/2  
ꢀ/2  
[9, ꢀꢀ]  
≤ ꢀ5°, C =9pF, EI = ꢀ0 mW/cm2  
L
t , t  
r f  
ns  
CL=9pF  
[ꢀ2]  
Receiver Latency Time  
t
t
ꢀ20  
200  
ms  
ms  
EI = 9.0 mW/cm2  
EI = ꢀ0 mW/cm2  
L
[ꢀ3]  
Receiver Wake Up Time  
RW  
Infrared (IR) Transmitter  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
IR Radiant Intensity  
I
EH  
9
80  
mW/sr  
I
= 250mA,  
LEDA  
q
ꢀ/2  
≤ ꢀ5°, VI (TxD) ≤ VIH,  
IR Viewing Angle  
2q  
ꢀ/2  
30  
60  
°
IR Peak Wavelength  
TxD_IrDA Logic Levels  
l
870  
nm  
V
P
High  
Low  
High  
Low  
V
ꢀ.3  
0
ꢀ.8  
0.5  
ꢀ0  
IH  
IL  
V
V
TxD_IrDA Input Current  
I
I
mA  
mA  
ns  
ms  
ms  
ns  
V V  
I IH  
H
ꢀ0  
0 ≤ V ≤ V  
I IL  
L
[ꢀ4]  
Wake Up Time  
t
t
t
t
200  
70  
TW  
[ꢀ5]  
Maximum Optical Pulse Width  
TXD Pulse Width (SIR)  
PW(Max)  
PW(SIR)  
PW(MIR)  
ꢀ.6  
2ꢀ7  
t
t
=ꢀ.6ms at ꢀꢀ5.2 kbit/s  
PW (TXD)  
TXD Pulse Width (MIR)  
=2ꢀ7ns at ꢀ.ꢀ52 Mbit/s  
PW (TXD)  
TxD Rise & Fall Times (Optical)  
t , t  
r f  
600  
40  
ns  
ns  
t
t
=ꢀ.6ms at ꢀꢀ5.2 kbit/s  
=2ꢀ7ns at ꢀ.ꢀ5 Mbit/s  
PW(TXD)  
PW(TXD)  
IR LED Anode On-State Voltage  
V
2.0  
V
I
= 250mA,  
ON (LEDA)  
LEDA  
V
I(TxD)  
V  
IH  
Transceiver  
Parameters  
Symbol Min.  
Typ.  
Max.  
Units  
mA  
Conditions  
V V  
Input Current  
High  
I
I
I
I
H
I
IH  
Low  
mA  
0 ≤ V ≤ V  
I IL  
L
Supply Current  
Shutdown  
mA  
V
V
> V -ꢀ.3, T =25°C, no DC ambient  
CCꢀ  
CC5  
SD  
CC  
A
Idle (Standby)  
445  
570  
mA  
≤ V  
I(TxD)  
IL, EI=0  
5
Note:  
[9]ꢀAnꢀin-bandꢀopticalꢀsignalꢀisꢀaꢀpulse/sequenceꢀwhereꢀtheꢀpeakꢀwavelength,ꢀl ,ꢀisꢀdefinedꢀasꢀ850ꢀnmꢀ≤ꢀl ꢀ≤ꢀ900ꢀnm,ꢀandꢀtheꢀpulseꢀcharacteristicsꢀ  
P
P
areꢀcompliantꢀwithꢀtheꢀIrDAꢀSerialꢀInfraredꢀPhysicalꢀLayerꢀLinkꢀSpecificationꢀversionꢀ1.4.  
[10]ꢀForꢀin-bandꢀsignalsꢀ115.2ꢀkbit/sꢀwhereꢀ9ꢀmW/cm2ꢀ≤ꢀEIꢀ≤ꢀ500ꢀmW/cm2.  
[11]ꢀForꢀin-bandꢀsignalsꢀ1.152ꢀMbit/sꢀwhereꢀ22ꢀmW/cm2ꢀ≤ꢀEIꢀ≤ꢀ500ꢀmW/cm2.  
[12]ꢀLatencyꢀisꢀdefinedꢀasꢀtheꢀtimeꢀfromꢀtheꢀlastꢀTxDꢀlightꢀoutputꢀpulseꢀuntilꢀtheꢀreceiverꢀhasꢀrecoveredꢀfullꢀsensitivity.  
[13]ꢀReceiverꢀWakeꢀUpꢀTimeꢀisꢀmeasuredꢀfromꢀVccꢀpowerꢀONꢀtoꢀvalidꢀRxDꢀoutput.  
[14]ꢀTransmitterꢀWakeꢀUpꢀTimeꢀisꢀmeasuredꢀfromꢀVccꢀpowerꢀONꢀtoꢀvalidꢀlightꢀoutputꢀinꢀresponseꢀtoꢀaꢀTxDꢀpulse.  
[15]ꢀTheꢀMaxꢀOpticalꢀPWꢀisꢀdefinedꢀasꢀtheꢀmaximumꢀtimeꢀwhichꢀtheꢀIRꢀLEDꢀwillꢀturnꢀon,ꢀthis,ꢀisꢀtoꢀpreventꢀtheꢀlongꢀTurnꢀOnꢀtimeꢀforꢀtheꢀIRꢀLED.  
2.20  
2.10  
2.00  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
120  
100  
80  
60  
40  
20  
0
000.0E+0 50.0E-3 100.0E-3 150.0E-3 200.0E-3 250.0E-3 300.0E-3 350.0E-3  
000.0E+0 50.0E-3 100.0E-3 150.0E-3 200.0E-3 250.0E-3 300.0E-3 350.0E-3  
ILED (A)  
ILED (A)  
Figure 3. VLED_A vs. ILED  
Figure 4. Radiant Intensity vs ILED  
Max. Permissible DC LED Current  
70  
Max. Permissible Peak LED Current  
350  
300  
250  
200  
150  
100  
50  
60  
50  
40  
Rθja = 400degC/W  
30  
20  
10  
0
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
TA- Ambient Temperature - oC  
o
TA - Ambient Temperature - C  
Figure 6 Maximum DC LED current vs. ambient temperature. Derated based  
on TJMAX = 100°C.  
Figure 5. Maximum Peak LED current vs. ambient temperature. Derated  
based on TJMAX = 100°C.  
6
ASDL-3212 (Option -021) Package Dimensions  
Figure 7. Package Dimension for ASDL-3212-021  
7
ASDL-3212 (Option -021) Tape & Reel Dimensions  
4.0 ± 0.1  
2.0 ± 0.1  
Unit: mm  
1.75 ± 0.1  
7.5 ± 0.1  
+0.1  
0
1.5  
POLARITY  
Pin 6: GND  
16.0 ± 0.2  
Pin 1: LEDA  
7.4 ± 0.1  
0.3 ± 0.05  
2.7 ± 0.1  
1.85 ± 0.1  
8.0 ± 0.1  
Progressive Direction  
Empty  
Parts Mounted  
Leader  
(400mm min)  
(40mm min)  
Empty  
(40mm min)  
Option #  
021  
"B"  
330  
"C" Quantity  
80  
2500  
Unit: mm  
Detail A  
2.0 ± 0.5  
B
C
13.0 ± 0.5  
R1.0  
LABEL  
21 ± 0.8  
Detail A  
+2  
16.4  
0
2.0 ± 0.5  
Figure 8. Tape and Reel dimensions  
8
Moisture Proof Packaging  
ASDL-3212ꢀ optionsꢀ areꢀ shippedꢀ inꢀ moistureꢀ proofꢀ  
package.ꢀOnceꢀopened,ꢀmoistureꢀabsorptionꢀbegins.  
ThisꢀpartꢀisꢀcompliantꢀtoꢀJEDECꢀLevelꢀ3.  
Units in A Sealed  
Mositure-Proof  
Package  
Package Is  
Opened (Unsealed)  
Environment  
less than 30 deg C, and  
less than 60% RH ?  
Yes  
Package Is  
Opened less  
than 168 hours ?  
Yes  
No Baking  
Is Necessary  
No  
No  
Perform Recommended  
Baking Conditions  
Figure 9. Baking Conditions Chart  
Recommended Storage Conditions  
Baking Conditions  
Ifꢀtheꢀpartsꢀareꢀnotꢀstoredꢀinꢀdryꢀconditions,ꢀtheyꢀmustꢀbeꢀ  
bakedꢀbeforeꢀreflowꢀtoꢀpreventꢀdamageꢀtoꢀtheꢀparts.ꢀ  
Storage Temperature  
Relative Humidity  
ꢀ0°C to 30°C  
below 60ꢁ RH  
Package  
In reels  
In bulk  
Temp  
60 °C  
Time  
Time from unsealing to soldering  
48hours  
4hours  
ꢀ00 °C  
Afterꢀremovalꢀfromꢀtheꢀbag,ꢀtheꢀpartsꢀshouldꢀbeꢀsolderedꢀ  
withinꢀ7ꢀdaysꢀifꢀstoredꢀatꢀtheꢀrecommendedꢀstorageꢀcon-  
ditions.ꢀIfꢀtimesꢀlongerꢀthanꢀ7ꢀdaysꢀareꢀneeded,ꢀtheꢀpartsꢀ  
Bakingꢀshouldꢀonlyꢀbeꢀdoneꢀonce.  
9
Recommended Reflow Profile  
MAX 260C  
R3  
255  
R4  
230  
220  
200  
R2  
60 sec  
MAX  
Above 220 C  
180  
160  
R5  
R1  
120  
80  
25  
0
100  
P2  
150  
200  
P3  
SOLDER  
REFLOW  
250  
P4  
COOL DOWN  
300  
50  
P1  
HEAT  
UP  
t-TIME  
(SECONDS)  
SOLDER PASTE DRY  
Process Zone  
Heat Up  
Symbol  
DT  
Maximum DT/Dtime  
Pꢀ, Rꢀ  
P2, R2  
25°C to ꢀ60°C  
ꢀ60°C to 200°C  
3°C/s  
Solder Paste Dry  
Solder Reflow  
0.5°C/s  
P3, R3  
P3, R4  
200°C to 255°C (260°C at ꢀ0 seconds max)  
255°C to 200°C  
4°C/s  
-6°C/s  
Cool Down  
P4, R5  
200°C to 25°C  
-6°C/s  
Theꢀ reflowꢀ profileꢀ isꢀ aꢀ straight-lineꢀ representationꢀ ofꢀ  
aꢀ nominalꢀ temperatureꢀ profileꢀ forꢀ aꢀ convectiveꢀ reflowꢀ  
solderꢀ process.ꢀ Theꢀ temperatureꢀ profileꢀ isꢀ dividedꢀ intoꢀ  
fourꢀ processꢀ zones,ꢀ eachꢀ withꢀ differentꢀ DT/Dtimeꢀ tem-  
peratureꢀ changeꢀ rates.Theꢀ DT/Dtimeꢀ ratesꢀ areꢀ detailedꢀ  
inꢀtheꢀaboveꢀtable.ꢀTheꢀtemperaturesꢀareꢀmeasuredꢀatꢀtheꢀ  
componentꢀtoꢀprintedꢀcircuitꢀboardꢀconnections.  
Process zone P3ꢀ isꢀ theꢀ solderꢀ reflowꢀ zone.ꢀ Inꢀ zoneꢀ P3,ꢀ  
theꢀ temperatureꢀ isꢀ quicklyꢀ raisedꢀ aboveꢀ theꢀ liquidusꢀ  
pointꢀofꢀsolderꢀtoꢀ255°Cꢀ(491°F)ꢀforꢀoptimumꢀresults.ꢀTheꢀ  
dwelltimeabovetheliquiduspointofsoldershouldbeꢀ  
betweenꢀ 20ꢀ andꢀ 60ꢀ seconds.ꢀ Itꢀ usuallyꢀ takesꢀ aboutꢀ 20ꢀ  
secondsꢀ toꢀ assureꢀ properꢀ coalescingꢀ ofꢀ theꢀ solderꢀ ballsꢀ  
intoꢀliquidꢀsolderꢀandꢀtheꢀformationꢀofꢀgoodꢀsolderꢀcon-  
nections.Beyondadwelltimeof60seconds,theinter-  
metallicgrowthwithinthesolderconnectionsbecomesꢀ  
excessive,ꢀ resultingꢀ inꢀ theꢀ formationꢀ ofꢀ weakꢀ andꢀ un-  
reliableꢀ connections.ꢀ Theꢀ temperatureꢀ isꢀ thenꢀ rapidlyꢀ  
reducedꢀtoꢀaꢀpointꢀbelowꢀtheꢀsolidusꢀtemperatureꢀofꢀtheꢀ  
solder,ꢀ usuallyꢀ 200°Cꢀ (392°F),ꢀ toꢀ allowꢀ theꢀ solderꢀ withinꢀ  
theꢀconnectionsꢀtoꢀfreezeꢀsolid.ꢀ  
In process zone P1,ꢀ theꢀ PCꢀ boardꢀ andꢀ ASDL-3212ꢀ cas-  
tellationꢀ pinsꢀ areꢀ heatedꢀ toꢀ aꢀ temperatureꢀ ofꢀ 160°Cꢀ toꢀ  
activateꢀ theꢀ fluxꢀ inꢀ theꢀ solderꢀ paste.ꢀ Theꢀ temperatureꢀ  
rampꢀupꢀrate,ꢀR1,ꢀisꢀlimitedꢀtoꢀ3°Cꢀperꢀsecondꢀtoꢀallowꢀforꢀ  
evenꢀheatingꢀofꢀbothꢀtheꢀPCꢀboardꢀandꢀASDL-3212ꢀcastel-  
lations.  
Process zone P2ꢀshouldꢀbeꢀofꢀsufficientꢀtimeꢀdurationꢀ(60ꢀ  
toꢀ120ꢀseconds)ꢀtoꢀdryꢀtheꢀsolderꢀpaste.ꢀTheꢀtemperatureꢀ  
isꢀ raisedꢀ toꢀ aꢀ levelꢀ justꢀ belowꢀ theꢀ liquidusꢀ pointꢀ ofꢀ theꢀ  
solder,ꢀusuallyꢀ200°Cꢀ(392°F).ꢀ  
Process zone P4ꢀ isꢀ theꢀ coolꢀ downꢀ afterꢀ solderꢀ freeze.ꢀ  
Theꢀ coolꢀ downꢀ rate,ꢀ R5,ꢀ fromꢀ theꢀ liquidusꢀ pointꢀ ofꢀ theꢀ  
solderto25°C(77°F)shouldnotexceed6°Cpersecondꢀ  
maximum.ꢀ Thisꢀ limitationꢀ isꢀ necessaryꢀ toꢀ allowꢀ theꢀ PCꢀ  
boardꢀandꢀASDL-3212ꢀcastellationsꢀtoꢀchangeꢀdimensionsꢀ  
evenly,ꢀputtingꢀminimalꢀstressesꢀonꢀtheꢀASDL-3212ꢀtrans-  
ceiver.  
ꢀ0  
Appendix A: ASDL-3212 (Option -021) SMT Assembly Application Note  
Solder Pad, Mask and Metal Stencil  
Metal Stencil  
for Solder  
Paste Printing  
Aperture As Per  
Land Dimensions  
t
Stencil  
Aperture  
Land  
Pattern  
w
l
Solder  
Mask  
Figure A3. Solder stencil aperture  
PCBA  
Aperture size (mm)  
Stencil thickness,  
t (mm)  
Length, l  
Width, w  
0.ꢀ27mm  
0.ꢀꢀ0mm  
ꢀ.75 +/- 0.05  
2.40 +/- 0.05  
0.55 +/- 0.05  
0.55 +/- 0.05  
Figure A1. Stencil and PCBA  
Recommended land pattern  
Adjacent Land Keepout and Solder Mask Areas  
C
L
Adjacentlandkeepoutisthemaximumspaceoccupiedꢀ  
bytheunitrelativetothelandpattern.ꢀThereshouldbeꢀ  
noꢀotherꢀSMDꢀcomponentsꢀwithinꢀthisꢀarea.ꢀTheꢀminimumꢀ  
solderꢀresistꢀstripꢀwidthꢀrequiredꢀtoꢀavoidꢀsolderꢀbridgingꢀ  
adjacentpadsis0.2mm.Itisrecommendedthattwo-  
duciallycrossesbeplacedatmidlengthofthepadsforꢀ  
unitꢀalignment.  
Mounting  
Center  
0.10  
0.775  
j
1.75  
fiducial  
0.60  
h
1.425  
k
2.375  
0.95  
Unit: mm  
Pitch  
l
Figure A2. Land Pattern  
Solder mask  
Units: mm  
Recommended Metal Solder Stencil Aperture  
Itꢀ isꢀ recommendedꢀ thatꢀ onlyꢀ aꢀ 0.11mmꢀ (0.004ꢀ inch)ꢀ orꢀ  
aꢀ 0.127mmꢀ (0.005ꢀ inch)ꢀ thickꢀ stencilꢀ beꢀ usedꢀ forꢀ solderꢀ  
pasteprinting.ꢀThisistoensureadequateprintedsolderꢀ  
pastevolumeandnoshorting.Seethetablebelowtheꢀ  
drawingforcombinationsofmetalstencilapertureandꢀ  
metalꢀstencilꢀthicknessꢀthatꢀshouldꢀbeꢀused.ꢀComparedꢀtoꢀ  
0.127mmstencilthickness0.11mmstencilthicknesshasꢀ  
longerꢀ lengthꢀ inꢀ landꢀ pattern.ꢀ Itꢀ isꢀ extendedꢀ outwardlyꢀ  
fromꢀ transceiverꢀ toꢀ captureꢀ moreꢀ solderꢀ pasteꢀ volume.ꢀ  
Seeꢀfigureꢀ3.  
Dimension  
mm  
0.2  
3.0  
3.0  
8.6  
h
l
k
j
Note:ꢀWet/LiquidꢀPhoto-imaginableꢀsolderꢀresist/maskꢀisꢀrecommended.  
Figure A4. Adjacent Land Keepout and solder mask areas  
ꢀꢀ  
Appendix B: PCB Layout Suggestion  
Theꢀ ASDL-3212isꢀ aꢀ shieldlessꢀ partꢀ andꢀ henceꢀ doesꢀ notꢀ  
containashieldtraceunliketheothertransceivers.Theꢀ  
effectsꢀ ofꢀ EMIꢀ andꢀ powerꢀ supplyꢀ noiseꢀ canꢀ potentiallyꢀ  
reduceꢀtheꢀsensitivityꢀofꢀtheꢀreceiver,ꢀresultingꢀinꢀreducedꢀ  
linkꢀdistance.ꢀTheꢀfollowingꢀPCBꢀlayoutꢀguidelinesꢀshouldꢀ  
beꢀ followedꢀ toꢀ obtainꢀ aꢀ goodꢀ PSRRꢀ andꢀ EMꢀ immunityꢀ  
resultingꢀinꢀgoodꢀelectricalꢀperformance.ꢀThingsꢀtoꢀnote:  
Theꢀareaꢀunderneathꢀtheꢀmoduleꢀatꢀtheꢀsecondꢀlayer,ꢀandꢀ  
3cmꢀinꢀallꢀdirectionꢀaroundꢀtheꢀmoduleꢀisꢀdefinedꢀasꢀtheꢀ  
criticalgroundplanezone.ꢀThegroundplaneshouldbeꢀ  
maximizedinthiszone.ꢀThelayoutbelowisbasedonaꢀ  
2-layerꢀPCB.  
1.ꢀ Theꢀ groundꢀ planeꢀ shouldꢀ beꢀ continuousꢀ underꢀ theꢀ  
part.  
2.ꢀ VLEDꢀ andVccꢀ canꢀ beꢀ connectedꢀ toꢀ eitherꢀ unfilteredꢀ  
orꢀ unregulatedꢀ powerꢀ supply.ꢀ IfVLEDꢀ andVccꢀ shareꢀ  
theꢀ sameꢀ powerꢀ supply,ꢀ CX3ꢀ needꢀ notꢀ beꢀ used.Theꢀ  
connectionsꢀ forꢀ CX1ꢀ andꢀ CX2ꢀ shouldꢀ beꢀ connectedꢀ  
beforeꢀtheꢀcurrentꢀlimitingꢀresistorꢀR1.ꢀ  
3.ꢀ CX2ꢀisꢀgenerallyꢀaꢀceramicꢀcapacitorꢀofꢀlowꢀinductanceꢀ  
providingawidefrequencyresponsewhileCX1andꢀ  
CX3ꢀ areꢀ tantalumꢀ capacitorꢀ ofꢀ bigꢀ volumeꢀ andꢀ fastꢀ  
frequencyresponse.Theuseofatantalumcapacitorꢀ  
ismorecriticalontheꢀVLEDꢀline,ꢀwhichꢀcarriesꢀaꢀhighꢀ  
current.ꢀ  
Top Layer  
Bottom Layer  
4.ꢀ Preferablyꢀ aꢀ multi-layeredꢀ boardꢀ shouldꢀ beꢀ usedꢀ  
toꢀ provideꢀ sufficientꢀ groundꢀ plane.ꢀ Useꢀ theꢀ layerꢀ  
underneathꢀ andꢀ nearꢀ theꢀ transceiverꢀ moduleꢀ asVcc,ꢀ  
andsandwichthatlayerbetweengroundconnectedꢀ  
boardꢀ layers.ꢀ Theꢀ diagramsꢀ belowꢀ demonstrateꢀ anꢀ  
exampleꢀofꢀaꢀ4-layerꢀboardꢀ:  
Top layer  
Connect the module ground pin to  
bottom ground layer  
Layer 2  
Critical ground plane zone. Do not connect  
directly to the module ground pin  
Layer 3  
Keep data bus away from critical ground  
plane zone  
Bottom layer (GND)  
ꢀ2  
Appendix C: General Application Guide for the ASDL-3212 Infrared IrDA® Compliant 1.15Mb/s Transceiver  
Description  
Selection of Resistor R1  
Theꢀ ASDL-3212ꢀ isꢀ aꢀ low-costꢀ andꢀ ultraꢀ smallꢀ infraredꢀ  
transceivermodulethatprovidestheinterfacebetweenꢀ  
logicandinfrared(IR)signalsforthroughair,serial,halfꢀ  
duplexꢀIRꢀdataꢀlink.ꢀTheꢀdeviceꢀisꢀdesignedꢀtoꢀaddressꢀtheꢀ  
mobileꢀcomputingꢀmarketꢀsuchꢀasꢀPDAs,ꢀasꢀwellꢀasꢀsmallꢀ  
embeddedꢀmobileꢀproductsꢀsuchꢀasꢀdigitalꢀcamerasꢀandꢀ  
cellularꢀphones.ꢀItꢀisꢀfullyꢀcompliantꢀtoꢀIrDAꢀ1.4ꢀlowꢀpowerꢀ  
specificationꢀ fromꢀ 9.6kb/sꢀ toꢀ 1.15Mb/s.ꢀ Theꢀ designꢀ ofꢀ  
ASDL-3212ꢀalsoꢀincludesꢀtheꢀfollowingꢀuniqueꢀfeatures:  
ResistorR1shouldbeselectedtoprovidetheappropri-  
atepeakpulseLEDcurrentatdifferentrangesofꢀVccasꢀ  
shownꢀ underRecommendedꢀ Applicationꢀ Circuitꢀ Com-  
ponents.  
Interface to the Recommended I/O chip  
Theꢀ ASDL-3212’sꢀ TXDꢀ dataꢀ inputꢀ isꢀ bufferedꢀ toꢀ allowꢀ  
forꢀ CMOSꢀ driveꢀ levels.ꢀ Noꢀ peakingꢀ circuitꢀ orꢀ capacitorꢀ  
isꢀ required.ꢀ Dataꢀ rateꢀ fromꢀ 9.6kb/sꢀ upꢀ toꢀ 1.15Mb/sꢀ isꢀ  
availableꢀatꢀRXDꢀpin.ꢀ  
ꢀ Lowꢀpassiveꢀcomponentꢀcount;  
ꢀ Shutdownꢀ modeꢀ forꢀ lowꢀ powerꢀ consumptionꢀ  
FiguresꢀC1ꢀandꢀC2ꢀshowꢀhowꢀASDL-3212ꢀfitsꢀintoꢀaꢀmobileꢀ  
phoneꢀandꢀPDAꢀplatformꢀrespectively.  
requirement;  
ꢀ DirectꢀinterfaceꢀwithꢀSuperꢀI/Oꢀlogicꢀcircuit.  
Key Pad  
STN/TFT LCD Panel  
LCD Control  
Peripherial  
PWM  
LCD Backlight Contrast  
interface  
Touch Panel  
A/D  
*ASDL -  
3212  
Mobile Application  
chipset  
IrDA  
interface  
AC97  
sound  
PCM Sound  
Audio Input  
Memory I/F  
Memory Expansion  
Logic Bus Driver  
I2S  
Baseband  
controller  
ROM  
Power Management  
Antenna  
FLASH  
SDRAM  
Figure C1. Mobile Application Platform  
ꢀ3  
Color  
Display  
LCD Data/Timing  
Control  
*ASDL-3212  
Camera  
Antenna  
LCD  
Interface  
Key Pad  
Flash/  
ROM/DRAM  
OS/Apps  
Configuration  
EEPROM  
Smart Card  
MMC SD  
PDA Application Chipset  
Stereo  
Speaker  
Stereo  
Audio  
Stereo  
Headphone  
Wired  
Connectivity  
USB  
USB Controller  
Reset  
Microphone  
Touch  
Screen  
Controller  
To Battery  
Fuel Gauge  
Figure C2. PDA Platform  
Theꢀ linkꢀ distanceꢀ testingꢀ wasꢀ doneꢀ usingꢀ typicalꢀ ASDL-  
3212ꢀunitsꢀwithꢀSMC’sꢀFDC37C669ꢀandꢀFDC37N769ꢀSuperꢀ  
I/Oꢀ controllers.ꢀ Anꢀ IRꢀ linkꢀ distanceꢀ ofꢀ upꢀ toꢀ 50ꢀ cmꢀ wasꢀ  
demonstrated.  
ꢀ4  
Appendix D: Window Design for ASDL-3212  
Window Dimension  
OPAQUE MATERIAL  
IR Transparent Window  
Y
IR Transparent Window  
OPAQUE MATERIAL  
X
K
Z
A
D
Figure D1. Window Design for ASDL-3212  
Theꢀ aboveꢀ equationsꢀ assumeꢀ thatꢀ theꢀ thicknessꢀ ofꢀ theꢀ  
windowꢀ isꢀ negligibleꢀ comparedꢀ toꢀ theꢀ distanceꢀ ofꢀ theꢀ  
moduleꢀfromꢀtheꢀbackꢀofꢀtheꢀwindowꢀ(Z).ꢀIfꢀtheyꢀareꢀcom-  
parable,ꢀZ’ꢀreplacesꢀZꢀinꢀtheꢀaboveꢀequation.ꢀZisꢀdefinedꢀ  
asꢀ  
Toꢀ ensureꢀ IrDAꢀ compliance,ꢀ someꢀ constraintsꢀ onꢀ theꢀ  
heightꢀ andꢀ widthꢀ ofꢀ theꢀ windowꢀ exist.ꢀ Theꢀ minimumꢀ  
dimensionsꢀ ensureꢀ thatꢀ theꢀ IrDAꢀ conesꢀ anglesꢀ areꢀ metꢀ  
withoutvignetting.ꢀThemaximumdimensionsminimizeꢀ  
theeffectsofstraylight.ꢀTheꢀminimumꢀsizeꢀcorrespondsꢀ  
toꢀ aꢀ coneꢀ angleꢀ ofꢀ 300ꢀ andꢀ theꢀ maximumꢀ sizeꢀ corre-  
spondsꢀtoꢀaꢀconeꢀangleꢀofꢀ600.  
Z’=Z+t/n  
whereꢀ‘t’isꢀtheꢀthicknessꢀofꢀtheꢀwindowꢀandꢀ‘nisꢀtheꢀre-  
fractiveꢀindexꢀofꢀtheꢀwindowꢀmaterial.  
InꢀfigureꢀD1,ꢀXꢀisꢀtheꢀwidthꢀofꢀtheꢀwindow,ꢀYꢀisꢀtheꢀheightꢀ  
ofꢀtheꢀwindowꢀandꢀZꢀisꢀtheꢀdistanceꢀfromꢀtheꢀASDL-3212ꢀ  
toꢀtheꢀbackꢀofꢀtheꢀwindow.ꢀTheꢀdistanceꢀfromꢀtheꢀcenterꢀ  
oftheLEDlenstothecenterofthephotodiodelens,K,ꢀ  
is5.1mm.ꢀTheꢀequationsꢀforꢀcomputingꢀtheꢀwindowꢀdi-  
mensionsꢀareꢀasꢀfollows:ꢀ  
ThedepthoftheLEDimageinsidetheASDL-3212,D,isꢀ  
4.32mm.ꢀ‘A’ꢀisꢀtheꢀrequiredꢀhalfꢀangleꢀforꢀviewing.ꢀForꢀIrDAꢀ  
compliance,ꢀ theꢀ minimumꢀ isꢀ 150ꢀ andꢀ theꢀ maximumꢀ isꢀ  
300.Assumingthethicknessofthewindowtobeneg-  
ligible,ꢀ theꢀ equationsꢀ resultꢀ inꢀ theꢀ followingꢀ tableꢀ andꢀ  
figures:  
Xꢀ=ꢀKꢀ+ꢀ2*(Z+D)*tanA  
Yꢀ=ꢀ2*(Z+D)*tanA  
ꢀ5  
Theꢀrecommendedꢀminimumꢀapertureꢀwidthꢀandꢀheightꢀ  
isꢀbasedꢀonꢀtheꢀassumptionꢀthatꢀtheꢀcenterꢀofꢀtheꢀwindowꢀ  
andthecenterofthemodulearethesame.Itꢀisꢀrecom-  
mendedꢀ thatꢀ theꢀ toleranceꢀ forꢀ assemblyꢀ beꢀ consideredꢀ  
aswell.Theminimumwindowsizewhichwilltakeintoꢀ  
accountꢀofꢀtheꢀassemblyꢀtoleranceꢀisꢀdefinedꢀas:  
Module Depth  
Aperture Width (x, mm) Aperture height (y, mm)  
(z) mm  
Max  
min  
Max  
4.99  
Min  
2.32  
2.85  
3.39  
3.92  
4.46  
4.99  
5.53  
6.07  
6.60  
7.ꢀ4  
0
2
3
4
5
6
7
8
9
ꢀ0.09  
ꢀꢀ.24  
ꢀ2.40  
ꢀ3.55  
ꢀ4.7ꢀ  
ꢀ5.86  
ꢀ7.02  
ꢀ8.ꢀ7  
ꢀ9.33  
20.48  
7.42  
7.95  
6.ꢀ4  
Xꢀ (minꢀ +ꢀ assemblyꢀ tolerance)ꢀ =ꢀ Xminꢀ +ꢀ 2*(assemblyꢀ  
tolerance)ꢀ(Dimensionsꢀareꢀinꢀmm)  
8.49  
7.30  
9.02  
8.45  
Yꢀ (minꢀ +ꢀ assemblyꢀ tolerance)ꢀ =ꢀ Yminꢀ +ꢀ 2*(assemblyꢀ  
tolerance)ꢀ(Dimensionsꢀareꢀinꢀmm)  
9.56  
9.6ꢀ  
ꢀ0.09  
ꢀ0.63  
ꢀꢀ.ꢀ7  
ꢀꢀ.70  
ꢀ2.24  
ꢀ0.76  
ꢀꢀ.92  
ꢀ3.07  
ꢀ4.23  
ꢀ5.38  
Window Material  
Almostꢀ anyꢀ plasticꢀ materialꢀ willꢀ workꢀ asꢀ aꢀ windowꢀ  
material.ꢀ Polycarbonateꢀ isꢀ recommended.ꢀ Theꢀ surfaceꢀ  
finishꢀ ofꢀ theꢀ plasticꢀ shouldꢀ beꢀ smooth,ꢀ withoutꢀ anyꢀ  
texture.ꢀ Anꢀ IRꢀ filterꢀ dyeꢀ mayꢀ beꢀ usedꢀ inꢀ theꢀ windowꢀ toꢀ  
makeitlookblacktotheeye,butthetotalopticallossꢀ  
ofꢀ theꢀ windowꢀ shouldꢀ beꢀ 10%ꢀ orꢀ lessꢀ forꢀ bestꢀ opticalꢀ  
performance.Lightlossshouldbemeasuredat885nm.ꢀ  
Theꢀrecommendedꢀplasticꢀmaterialsꢀforꢀuseꢀasꢀaꢀcosmeticꢀ  
windowꢀareꢀavailableꢀfromꢀGeneralꢀElectricꢀPlastics.ꢀ  
25  
20  
15  
10  
5
Xmax  
Xmin  
Recommended Plastic Materials:  
Material #  
Lexan ꢀ4ꢀ  
Lexan 920A  
Lexan 940A  
Haze  
ꢀꢁ  
Refractive Index  
ꢀ.586  
88ꢁ  
85ꢁ  
85ꢁ  
ꢀꢁ  
ꢀ.586  
ꢀꢁ  
ꢀ.586  
Note:ꢀ920Aꢀandꢀ940Aꢀareꢀmoreꢀflameꢀretardantꢀthanꢀ141.  
0
0
1
2
3
4
5
6
7
8
9
RecommendedꢀDye:ꢀVioletꢀ#21051ꢀ(IRꢀtransmissantꢀaboveꢀ  
625mm)  
Module Depth (z) mm  
Figure D2. Aperture Height (x) vs. Module Depth (z)  
Shape of the Window  
Fromꢀ anꢀ opticsꢀ standpoint,ꢀ theꢀ windowꢀ shouldꢀ beꢀ flat.ꢀ  
Thisꢀ ensuresꢀ thatꢀ theꢀ windowꢀ willꢀ notꢀ alterꢀ eitherꢀ theꢀ  
radiationꢀpatternꢀofꢀtheꢀLED,ꢀorꢀtheꢀreceiveꢀpatternꢀofꢀtheꢀ  
photodiode.ꢀIfꢀtheꢀwindowꢀmustꢀbeꢀcurvedꢀforꢀmechani-  
calꢀorꢀindustrialꢀdesignꢀreasons,ꢀplaceꢀtheꢀsameꢀcurveꢀonꢀ  
theꢀbacksideꢀofꢀtheꢀwindowꢀthatꢀhasꢀanꢀidenticalꢀradiusꢀasꢀ  
theꢀfrontꢀside.ꢀWhileꢀthisꢀwillꢀnotꢀcompletelyꢀeliminateꢀtheꢀ  
lensꢀeffectꢀofꢀtheꢀfrontꢀcurvedꢀsurface,ꢀitꢀwillꢀsignificantlyꢀ  
reduceꢀtheꢀeffects.ꢀTheꢀamountꢀofꢀchangeꢀinꢀtheꢀradiationꢀ  
patternꢀ isꢀ dependentꢀ uponꢀ theꢀ materialꢀ chosenꢀ forꢀ theꢀ  
window,ꢀtheꢀradiusꢀofꢀtheꢀfrontꢀandꢀbackꢀcurves,ꢀandꢀtheꢀ  
distancefromthebacksurfacetothetransceiver.Onceꢀ  
theseꢀitemsꢀareꢀknown,ꢀaꢀlensꢀdesignꢀcanꢀbeꢀmadeꢀwhichꢀ  
willꢀ eliminateꢀ theꢀ effectꢀ ofꢀ theꢀ frontꢀ surfaceꢀ curve.Theꢀ  
followingꢀdrawingsꢀshowꢀtheꢀeffectsꢀofꢀaꢀcurvedꢀwindowꢀ  
onꢀtheꢀradiationꢀpattern.ꢀInꢀallꢀcases,ꢀtheꢀcenterꢀthicknessꢀ  
ofꢀtheꢀwindowꢀisꢀ1.5ꢀmm,ꢀtheꢀwindowꢀisꢀmadeꢀofꢀpolycar-  
bonateplastic,andthedistancefromthetransceivertoꢀ  
theꢀbackꢀsurfaceꢀofꢀtheꢀwindowꢀisꢀ3ꢀmm.  
18  
Ymax  
Ymin  
16  
14  
12  
10  
8
6
4
2
0
0
1
2
3
4
5
6
7
8
9
Module Depth (z) mm  
Figure D3. Aperture Height (y) vs. Module Depth (z)  
ꢀ6  
Curved Front and Back, (Second Choice)  
Curved Front, Flat Back, (Do not use)  
Flat Window, (First Choice)  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved.  
AV02-0055EN - January 3ꢀ, 2007