转到网站首页
转为中文步骤:
1、请用电脑端360浏览器打开本页地址,如您电脑未安装360浏览器,请点这里下载;
2、点击360浏览器右上角的翻译插件,如右图红圈中所示:
3、点击所弹出窗口里的右下角的按钮 “翻译当前网页”;
4、弹窗提示翻译完毕后关闭弹窗即可;
To all our customers  
Regarding the change of names mentioned in the document, such as Mitsubishi  
Electric and Mitsubishi XX, to Renesas Technology Corp.  
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi  
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names  
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.  
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been  
made to the contents of the document, and these changes do not constitute any alteration to the  
contents of the document itself.  
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices  
and power devices.  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
MITSUBISHI SEMICONDUCTOR TRIAC  
BCR08AS  
LOW POWER USE  
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE  
Dimensions  
in mm  
BCR08AS  
OUTLINE DRAWING  
4.4±0.1  
1.6±0.2  
1.5±0.1  
1
2
3
0.5±0.07  
0.4±0.07  
+0.03  
0.05  
0.4  
1.5±0.11.5±0.1  
(Back side)  
2
T
T
1
2
TERMINAL  
TERMINAL  
1
2
3
3
1
GATE TERMINAL  
• IT (RMS) .....................................................................0.8A  
• VDRM ....................................................................... 600V  
• IFGT !, IRGT !, IRGT # ..............................................5mA  
• IFGT # .....................................................................10mA  
SOT-89  
APPLICATION  
Hybrid IC, solid state relay,  
control of household equipment such as electric fan · washing machine,  
other general purpose control applications  
MAXIMUM RATINGS  
Voltage class  
Symbol  
Parameter  
Unit  
12 (marked “BF”)  
  1  
VDRM  
VDSM  
Repetitive peak off-state voltage  
600  
720  
V
V
  1  
Non-repetitive peak off-state voltage  
Symbol  
Parameter  
RMS on-state current  
Surge on-state current  
Conditions  
Ratings  
Unit  
A
  3  
IT (RMS)  
ITSM  
Commercial frequency, sine full wave 360° conduction, Ta=40°C  
0.8  
8
60Hz sinewave 1 full cycle, peak value, non-repetitive  
A
Value corresponding to 1 cycle of half wave 60Hz, surge on-state  
current  
2
2
2
I
t
I
t for fusing  
0.26  
A s  
PGM  
PG (AV)  
VGM  
IGM  
Tj  
Peak gate power dissipation  
Average gate power dissipation  
Peak gate voltage  
1
W
W
V
0.1  
6
1
Peak gate current  
A
Junction temperature  
Storage temperature  
Weight  
–40 ~ +125  
–40 ~ +125  
48  
°C  
°C  
mg  
Tstg  
Typical value  
 1. Gate open.  
Mar. 2002  
MITSUBISHI SEMICONDUCTOR TRIAC  
BCR08AS  
LOW POWER USE  
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE  
ELECTRICAL CHARACTERISTICS  
Limits  
Unit  
Symbol  
Parameter  
Test conditions  
Tj=125°C, VDRM applied  
Min.  
0.1  
Typ.  
Max.  
1.0  
2.0  
2.0  
2.0  
2.0  
2.0  
5
mA  
V
IDRM  
Repetitive peak off-state current  
On-state voltage  
VTM  
Tc=25°C, ITM=1.2A, Instantaneous measurement  
!
@
#
$
!
@
#
$
V
VFGT !  
VRGT !  
VRGT #  
VFGT #  
IFGT !  
IRGT !  
IRGT #  
IFGT #  
VGD  
V
  2  
Gate trigger voltage  
Tj=25°C, VD=6V, RL=6, RG=330Ω  
V
V
mA  
mA  
mA  
mA  
V
5
  2  
Gate trigger current  
Tj=25°C, VD=6V, RL=6, RG=330Ω  
Tj=125°C, VD=1/2VDRM  
5
10  
Gate non-trigger voltage  
Thermal resistance  
  3  
65  
°C/W  
Rth (j-a)  
Junction to case  
 4  
Critical-rate of rise of off-state  
commutating voltage  
0.5  
V/µs  
(dv/dt)c  
Tj=125°C  
 2. Measurement using the gate trigger characteristics measurement circuit.  
 3. Mounted on 25mm × 25mm × t0.7mm ceramic plate with solder.  
 4. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below.  
Commutating voltage and current waveforms  
(inductive load)  
Test conditions  
SUPPLY  
VOLTAGE  
TIME  
TIME  
1. Junction temperature  
Tj=125°C  
(di/dt)c  
MAIN CURRENT  
2. Rate of decay of on-state commutating current  
(di/dt)c=0.4A/ms  
MAIN  
VOLTAGE  
3. Peak off-state voltage  
VD=400V  
TIME  
VD  
(dv/dt)c  
PERFORMANCE CURVES  
MAXIMUM ON-STATE CHARACTERISTICS  
RATED SURGE ON-STATE CURRENT  
101  
7
5
4
10  
8
3
2
6
Tj = 125°C  
100  
7
5
4
4
T
j
= 25°C  
3
2
2
101  
0
0
1
2
3
4
5
100  
2
3 4 5 7 101  
2
3 4 5 7 102  
ON-STATE VOLTAGE (V)  
CONDUCTION TIME  
(CYCLES AT 60Hz)  
Mar. 2002  
MITSUBISHI SEMICONDUCTOR TRIAC  
BCR08AS  
LOW POWER USE  
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE  
GATE TRIGGER CURRENT VS.  
JUNCTION TEMPERATURE  
103  
GATE CHARACTERISTICS  
102  
7
TYPICAL EXAMPLE  
7
5
5
4
3
3
2
V
GM = 10V  
I
FGT III  
FGT I IRGT III IRGT I  
P
GM = 1W  
I
101  
7
5
3
2
2
P
G(AV)  
= 0.1W  
102  
7
V
GT  
100  
7
5
4
3
I
GM = 1A  
I
I
FGT I  
,
5
RGT I, IRGT III  
3
2
2
I
FGT III  
VGD = 0.2V  
101  
101  
100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103  
604020 0 20 40 60 80 100120140  
GATE CURRENT (mA)  
JUNCTION TEMPERATURE (°C)  
MAXIMUM TRANSIENT THERMAL  
IMPEDANCE CHARACTERISTICS  
102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105  
GATE TRIGGER VOLTAGE VS.  
JUNCTION TEMPERATURE  
103  
103  
7
5
TYPICAL EXAMPLE  
7
5
4
3
3
2
102  
7
5
JUNCTION TO AMBIENT  
JUNCTION TO CASE  
2
V
FGT I  
V
FGT III  
102  
7
5
4
3
2
V
RGT I VRGT III  
101  
7
5
3
3
2
2
101  
100  
101 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102  
604020 0 20 40 60 80 100120140  
JUNCTION TEMPERATURE (°C)  
CONDUCTION TIME  
(CYCLES AT 60Hz)  
MAXIMUM ON-STATE POWER  
DISSIPATION  
ALLOWABLE CASE TEMPERATURE  
VS. RMS ON-STATE CURRENT  
2.0  
160  
CURVES APPLY REGARDLESS  
OF CONDUCTION ANGLE  
NATURAL CONVECTION  
RESISTIVE,  
140  
120  
100  
80  
1.6  
1.2  
0.8  
0.4  
0
INDUCTIVE  
LOADS  
360°  
CONDUCTION  
RESISTIVE,  
INDUCTIVE  
LOADS  
60  
40  
20  
0
0
0.4  
0.8  
1.2  
1.6  
2.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
RMS ON-STATE CURRENT (A)  
RMS ON-STATE CURRENT (A)  
Mar. 2002  
MITSUBISHI SEMICONDUCTOR TRIAC  
BCR08AS  
LOW POWER USE  
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE  
REPETITIVE PEAK OFF-STATE  
CURRENT VS. JUNCTION  
TEMPERATURE  
HOLDING CURRENT VS.  
JUNCTION TEMPERATURE  
103  
105  
7
TYPICAL EXAMPLE  
TYPICAL EXAMPLE  
7
5
5
3
2
3
2
104  
7
5
3
2
102  
7
103  
7
5
3
2
5
3
2
102  
101  
604020 0 20 40 60 80 100120140  
604020 0 20 40 60 80 100120140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
LACHING CURRENT VS.  
JUNCTION TEMPERATURE  
BREAKOVER VOLTAGE VS.  
JUNCTION TEMPERATURE  
102  
160  
7
5
TYPICAL EXAMPLE  
DISTRIBUTION  
T+  
TYPICAL EXAMPLE  
140  
120  
100  
80  
2
, G–  
3
2
101  
7
5
3
2
60  
100  
7
40  
5
T+  
T–  
T–  
2
, G+  
, G–  
, G+  
3
2
TYPICAL  
EXAMPLE  
20  
2
2
101  
0
40  
0
40  
80  
120  
160  
604020 0 20 40 60 80 100120140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
BREAKOVER VOLTAGE VS.  
RATE OF RISE OF  
OFF-STATE VOLTAGE  
COMMUTATION CHARACTERISTICS  
101  
160  
140  
120  
100  
80  
TYPICAL EXAMPLE  
TYPICAL  
EXAMPLE  
7
5
Tj = 125°C  
T
j
= 125°C  
I
T
= 1A  
3
2
τ = 500µs  
= 200V  
I QUADRANT  
V
D
f = 3Hz  
100  
7
5
III QUADRANT  
60  
III QUADRANT  
40  
MINIMUM  
CHARAC-  
TERISTICS  
VALUE  
3
2
I QUADRANT  
20  
101  
0
101  
2
3
5
7 100  
2
3
5
7 101  
100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103  
RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)  
RATE OF DECAY OF ON-STATE  
COMMUTATING CURRENT (A/ms)  
Mar. 2002  
MITSUBISHI SEMICONDUCTOR TRIAC  
BCR08AS  
LOW POWER USE  
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE  
GATE TRIGGER CURRENT VS.  
GATE CURRENT PULSE WIDTH  
GATE TRIGGER CHARACTERISTICS  
TEST CIRCUITS  
103  
7
TYPICAL EXAMPLE  
6  
6Ω  
5
4
3
A
A
2
6V  
6V  
RG  
RG  
V
V
102  
7
5
4
TEST PROCEDURE 1 TEST PROCEDURE 2  
66Ω  
I
RGT I  
I
I
RGT III  
FGT III  
IFGT I  
3
2
101  
A
A
6V  
6V  
100  
2
3 4 5 7 101  
2
3 4 5 7 102  
RG  
RG  
V
V
GATE CURRENT PULSE WIDTH (µs)  
TEST PROCEDURE 3 TEST PROCEDURE 4  
Mar. 2002