S-1002CA17I-M5T1U [ABLIC]

VOLTAGE DETECTOR WITH SENSE PIN;
S-1002CA17I-M5T1U
型号: S-1002CA17I-M5T1U
厂家: ABLIC    ABLIC
描述:

VOLTAGE DETECTOR WITH SENSE PIN

文件: 总39页 (文件大小:2217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-1002 Series  
VOLTAGE DETECTOR WITH SENSE PIN  
www.ablic.com  
© ABLIC Inc., 2014-2016  
Rev.1.1_03  
The S-1002 Series is a high-accuracy voltage detector developed using CMOS technology. The detection voltage is fixed  
internally with an accuracy of 1.0% (VDET(S) 2.2 V). It operates with current consumption of 500 nA typ.  
Apart from the power supply pin, the detection voltage input pin (SENSE pin) is also prepared, so the output is stable even  
if the SENSE pin falls to 0 V.  
Two output forms Nch open-drain output and CMOS output are available.  
Features  
Detection voltage:  
Detection voltage accuracy:  
1.0 V to 5.0 V (0.1 V step)  
1.0% (2.2 V  VDET(S) 5.0 V)  
22 mV (1.0 V  VDET(S) 2.2 V)  
500 nA typ.  
0.95 V to 10.0 V  
5% 2%  
Nch open-drain output (Active "L")  
CMOS output (Active "L")  
Ta = 40°C to 85°C  
Current consumption:  
Operation voltage range:  
Hysteresis width:  
Output form:  
Operation temperature range:  
Lead-free (Sn 100%), halogen-free  
Applications  
Power supply monitor for microcomputer and reset for CPU  
Constant voltage power supply monitor for TV, Blu-ray recorder and home appliance  
Power supply monitor for portable devices such as notebook PC, digital still camera and mobile phone  
Packages  
SOT-23-5  
SC-82AB  
1
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Block Diagrams  
1. S-1002 Series NA / NB type (Nch open-drain output)  
SENSE  
Function  
Status  
Output logic Active "L"  
VDD  
  
*1  
*1  
OUT  
  
*1  
VREF  
VSS  
*1. Parasitic diode  
Figure 1  
2. S-1002 Series CA / CB type (CMOS output)  
SENSE  
Function  
Status  
Output logic Active "L"  
VDD  
*1  
  
*1  
*1  
  
OUT  
*1  
VREF  
VSS  
*1. Parasitic diode  
Figure 2  
2
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Product Name Structure  
Users can select the output form, detection voltage value, and package type for the S-1002 Series.  
Refer to "1. Product name" regarding the contents of product name, "2. Function list of product types" regarding  
the product types, "3. Packages" regarding the package drawings and "4. Product name list" regarding details of  
product name.  
1. Product name  
S-1002  
x
x
xx  
I
-
xxxx  
U
Environmental code  
U:  
Lead-free (Sn 100%), halogen-free  
Package abbreviation and IC packing specifications*1  
M5T1: SOT-23-5, Tape  
N4T1: SC-82AB, Tape  
Operation temperature  
I:  
Ta = 40C to 85C  
Detection voltage value  
10 to 50  
(e.g., when the detection voltage is 1.0 V, it is expressed as 10.)  
Pin configuration*2  
A, B  
Output form*3  
N:  
C:  
Nch open-drain output (Active "L")*4  
CMOS output (Active "L")*4  
*1. Refer to the tape drawing.  
*2. Refer to "Pin Configurations".  
*3. Refer to "2. Function list of product types".  
*4. If you request the product with output logic active "H", contact our sales office.  
2. Function list of product types  
Table 1  
Product Type  
Output Form  
Output Logic  
Active "L"  
Pin Configuration  
Package  
SOT-23-5  
NA  
NB  
CA  
CB  
A
B
A
B
Nch open-drain output  
Active "L"  
Active "L"  
Active "L"  
SOT-23-5, SC-82AB  
SOT-23-5  
CMOS output  
SOT-23-5, SC-82AB  
3. Packages  
Table 2 Package Drawing Codes  
Package Name  
SOT-23-5  
Dimension  
Tape  
Reel  
MP005-A-P-SD  
MP005-A-C-SD  
NP004-A-C-SD  
NP004-A-C-S1  
MP005-A-R-SD  
SC-82AB  
NP004-A-P-SD  
NP004-A-R-SD  
3
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
4. Product name list  
4. 1 S-1002 Series NA type  
Output form: Nch open-drain output (Active "L")  
Table 3  
Detection Voltage  
1.0 V 22 mV  
1.1 V 22 mV  
1.2 V 22 mV  
1.3 V 22 mV  
1.4 V 22 mV  
1.5 V 22 mV  
1.6 V 22 mV  
1.7 V 22 mV  
1.8 V 22 mV  
1.9 V 22 mV  
2.0 V 22 mV  
2.1 V 22 mV  
2.2 V 1.0%  
2.3 V 1.0%  
2.4 V 1.0%  
2.5 V 1.0%  
2.6 V 1.0%  
2.7 V 1.0%  
2.8 V 1.0%  
2.9 V 1.0%  
3.0 V 1.0%  
3.1 V 1.0%  
3.2 V 1.0%  
3.3 V 1.0%  
3.4 V 1.0%  
3.5 V 1.0%  
3.6 V 1.0%  
3.7 V 1.0%  
3.8 V 1.0%  
3.9 V 1.0%  
4.0 V 1.0%  
4.1 V 1.0%  
4.2 V 1.0%  
4.3 V 1.0%  
4.4 V 1.0%  
4.5 V 1.0%  
4.6 V 1.0%  
4.7 V 1.0%  
4.8 V 1.0%  
4.9 V 1.0%  
5.0 V 1.0%  
SOT-23-5  
S-1002NA10I-M5T1U  
S-1002NA11I-M5T1U  
S-1002NA12I-M5T1U  
S-1002NA13I-M5T1U  
S-1002NA14I-M5T1U  
S-1002NA15I-M5T1U  
S-1002NA16I-M5T1U  
S-1002NA17I-M5T1U  
S-1002NA18I-M5T1U  
S-1002NA19I-M5T1U  
S-1002NA20I-M5T1U  
S-1002NA21I-M5T1U  
S-1002NA22I-M5T1U  
S-1002NA23I-M5T1U  
S-1002NA24I-M5T1U  
S-1002NA25I-M5T1U  
S-1002NA26I-M5T1U  
S-1002NA27I-M5T1U  
S-1002NA28I-M5T1U  
S-1002NA29I-M5T1U  
S-1002NA30I-M5T1U  
S-1002NA31I-M5T1U  
S-1002NA32I-M5T1U  
S-1002NA33I-M5T1U  
S-1002NA34I-M5T1U  
S-1002NA35I-M5T1U  
S-1002NA36I-M5T1U  
S-1002NA37I-M5T1U  
S-1002NA38I-M5T1U  
S-1002NA39I-M5T1U  
S-1002NA40I-M5T1U  
S-1002NA41I-M5T1U  
S-1002NA42I-M5T1U  
S-1002NA43I-M5T1U  
S-1002NA44I-M5T1U  
S-1002NA45I-M5T1U  
S-1002NA46I-M5T1U  
S-1002NA47I-M5T1U  
S-1002NA48I-M5T1U  
S-1002NA49I-M5T1U  
S-1002NA50I-M5T1U  
4
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
4. 2 S-1002 Series NB type  
Output form: Nch open-drain output (Active "L")  
Table 4  
SOT-23-5  
Detection Voltage  
1.0 V 22 mV  
1.1 V 22 mV  
1.2 V 22 mV  
1.3 V 22 mV  
1.4 V 22 mV  
1.5 V 22 mV  
1.6 V 22 mV  
1.7 V 22 mV  
1.8 V 22 mV  
1.9 V 22 mV  
2.0 V 22 mV  
2.1 V 22 mV  
2.2 V 1.0%  
2.3 V 1.0%  
2.4 V 1.0%  
2.5 V 1.0%  
2.6 V 1.0%  
2.7 V 1.0%  
2.8 V 1.0%  
2.9 V 1.0%  
3.0 V 1.0%  
3.1 V 1.0%  
3.2 V 1.0%  
3.3 V 1.0%  
3.4 V 1.0%  
3.5 V 1.0%  
3.6 V 1.0%  
3.7 V 1.0%  
3.8 V 1.0%  
3.9 V 1.0%  
4.0 V 1.0%  
4.1 V 1.0%  
4.2 V 1.0%  
4.3 V 1.0%  
4.4 V 1.0%  
4.5 V 1.0%  
4.6 V 1.0%  
4.7 V 1.0%  
4.8 V 1.0%  
4.9 V 1.0%  
5.0 V 1.0%  
SC-82AB  
S-1002NB10I-M5T1U  
S-1002NB11I-M5T1U  
S-1002NB12I-M5T1U  
S-1002NB13I-M5T1U  
S-1002NB14I-M5T1U  
S-1002NB15I-M5T1U  
S-1002NB16I-M5T1U  
S-1002NB17I-M5T1U  
S-1002NB18I-M5T1U  
S-1002NB19I-M5T1U  
S-1002NB20I-M5T1U  
S-1002NB21I-M5T1U  
S-1002NB22I-M5T1U  
S-1002NB23I-M5T1U  
S-1002NB24I-M5T1U  
S-1002NB25I-M5T1U  
S-1002NB26I-M5T1U  
S-1002NB27I-M5T1U  
S-1002NB28I-M5T1U  
S-1002NB29I-M5T1U  
S-1002NB30I-M5T1U  
S-1002NB31I-M5T1U  
S-1002NB32I-M5T1U  
S-1002NB33I-M5T1U  
S-1002NB34I-M5T1U  
S-1002NB35I-M5T1U  
S-1002NB36I-M5T1U  
S-1002NB37I-M5T1U  
S-1002NB38I-M5T1U  
S-1002NB39I-M5T1U  
S-1002NB40I-M5T1U  
S-1002NB41I-M5T1U  
S-1002NB42I-M5T1U  
S-1002NB43I-M5T1U  
S-1002NB44I-M5T1U  
S-1002NB45I-M5T1U  
S-1002NB46I-M5T1U  
S-1002NB47I-M5T1U  
S-1002NB48I-M5T1U  
S-1002NB49I-M5T1U  
S-1002NB50I-M5T1U  
S-1002NB10I-N4T1U  
S-1002NB11I-N4T1U  
S-1002NB12I-N4T1U  
S-1002NB13I-N4T1U  
S-1002NB14I-N4T1U  
S-1002NB15I-N4T1U  
S-1002NB16I-N4T1U  
S-1002NB17I-N4T1U  
S-1002NB18I-N4T1U  
S-1002NB19I-N4T1U  
S-1002NB20I-N4T1U  
S-1002NB21I-N4T1U  
S-1002NB22I-N4T1U  
S-1002NB23I-N4T1U  
S-1002NB24I-N4T1U  
S-1002NB25I-N4T1U  
S-1002NB26I-N4T1U  
S-1002NB27I-N4T1U  
S-1002NB28I-N4T1U  
S-1002NB29I-N4T1U  
S-1002NB30I-N4T1U  
S-1002NB31I-N4T1U  
S-1002NB32I-N4T1U  
S-1002NB33I-N4T1U  
S-1002NB34I-N4T1U  
S-1002NB35I-N4T1U  
S-1002NB36I-N4T1U  
S-1002NB37I-N4T1U  
S-1002NB38I-N4T1U  
S-1002NB39I-N4T1U  
S-1002NB40I-N4T1U  
S-1002NB41I-N4T1U  
S-1002NB42I-N4T1U  
S-1002NB43I-N4T1U  
S-1002NB44I-N4T1U  
S-1002NB45I-N4T1U  
S-1002NB46I-N4T1U  
S-1002NB47I-N4T1U  
S-1002NB48I-N4T1U  
S-1002NB49I-N4T1U  
S-1002NB50I-N4T1U  
5
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
4. 3 S-1002 Series CA type  
Output form: CMOS output (Active "L")  
Table 5  
Detection Voltage  
1.0 V 22 mV  
1.1 V 22 mV  
1.2 V 22 mV  
1.3 V 22 mV  
1.4 V 22 mV  
1.5 V 22 mV  
1.6 V 22 mV  
1.7 V 22 mV  
1.8 V 22 mV  
1.9 V 22 mV  
2.0 V 22 mV  
2.1 V 22 mV  
2.2 V 1.0%  
2.3 V 1.0%  
2.4 V 1.0%  
2.5 V 1.0%  
2.6 V 1.0%  
2.7 V 1.0%  
2.8 V 1.0%  
2.9 V 1.0%  
3.0 V 1.0%  
3.1 V 1.0%  
3.2 V 1.0%  
3.3 V 1.0%  
3.4 V 1.0%  
3.5 V 1.0%  
3.6 V 1.0%  
3.7 V 1.0%  
3.8 V 1.0%  
3.9 V 1.0%  
4.0 V 1.0%  
4.1 V 1.0%  
4.2 V 1.0%  
4.3 V 1.0%  
4.4 V 1.0%  
4.5 V 1.0%  
4.6 V 1.0%  
4.7 V 1.0%  
4.8 V 1.0%  
4.9 V 1.0%  
5.0 V 1.0%  
SOT-23-5  
S-1002CA10I-M5T1U  
S-1002CA11I-M5T1U  
S-1002CA12I-M5T1U  
S-1002CA13I-M5T1U  
S-1002CA14I-M5T1U  
S-1002CA15I-M5T1U  
S-1002CA16I-M5T1U  
S-1002CA17I-M5T1U  
S-1002CA18I-M5T1U  
S-1002CA19I-M5T1U  
S-1002CA20I-M5T1U  
S-1002CA21I-M5T1U  
S-1002CA22I-M5T1U  
S-1002CA23I-M5T1U  
S-1002CA24I-M5T1U  
S-1002CA25I-M5T1U  
S-1002CA26I-M5T1U  
S-1002CA27I-M5T1U  
S-1002CA28I-M5T1U  
S-1002CA29I-M5T1U  
S-1002CA30I-M5T1U  
S-1002CA31I-M5T1U  
S-1002CA32I-M5T1U  
S-1002CA33I-M5T1U  
S-1002CA34I-M5T1U  
S-1002CA35I-M5T1U  
S-1002CA36I-M5T1U  
S-1002CA37I-M5T1U  
S-1002CA38I-M5T1U  
S-1002CA39I-M5T1U  
S-1002CA40I-M5T1U  
S-1002CA41I-M5T1U  
S-1002CA42I-M5T1U  
S-1002CA43I-M5T1U  
S-1002CA44I-M5T1U  
S-1002CA45I-M5T1U  
S-1002CA46I-M5T1U  
S-1002CA47I-M5T1U  
S-1002CA48I-M5T1U  
S-1002CA49I-M5T1U  
S-1002CA50I-M5T1U  
6
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
4. 4 S-1002 Series CB type  
Output form: CMOS output (Active "L")  
Table 6  
SOT-23-5  
Detection Voltage  
SC-82AB  
1.0 V 22 mV  
1.1 V 22 mV  
1.2 V 22 mV  
1.3 V 22 mV  
1.4 V 22 mV  
1.5 V 22 mV  
1.6 V 22 mV  
1.7 V 22 mV  
1.8 V 22 mV  
1.9 V 22 mV  
2.0 V 22 mV  
2.1 V 22 mV  
2.2 V 1.0%  
2.3 V 1.0%  
2.4 V 1.0%  
2.5 V 1.0%  
2.6 V 1.0%  
2.7 V 1.0%  
2.8 V 1.0%  
2.9 V 1.0%  
3.0 V 1.0%  
3.1 V 1.0%  
3.2 V 1.0%  
3.3 V 1.0%  
3.4 V 1.0%  
3.5 V 1.0%  
3.6 V 1.0%  
3.7 V 1.0%  
3.8 V 1.0%  
3.9 V 1.0%  
4.0 V 1.0%  
4.1 V 1.0%  
4.2 V 1.0%  
4.3 V 1.0%  
4.4 V 1.0%  
4.5 V 1.0%  
4.6 V 1.0%  
4.7 V 1.0%  
4.8 V 1.0%  
4.9 V 1.0%  
5.0 V 1.0%  
S-1002CB10I-M5T1U  
S-1002CB11I-M5T1U  
S-1002CB12I-M5T1U  
S-1002CB13I-M5T1U  
S-1002CB14I-M5T1U  
S-1002CB15I-M5T1U  
S-1002CB16I-M5T1U  
S-1002CB17I-M5T1U  
S-1002CB18I-M5T1U  
S-1002CB19I-M5T1U  
S-1002CB20I-M5T1U  
S-1002CB21I-M5T1U  
S-1002CB22I-M5T1U  
S-1002CB23I-M5T1U  
S-1002CB24I-M5T1U  
S-1002CB25I-M5T1U  
S-1002CB26I-M5T1U  
S-1002CB27I-M5T1U  
S-1002CB28I-M5T1U  
S-1002CB29I-M5T1U  
S-1002CB30I-M5T1U  
S-1002CB31I-M5T1U  
S-1002CB32I-M5T1U  
S-1002CB33I-M5T1U  
S-1002CB34I-M5T1U  
S-1002CB35I-M5T1U  
S-1002CB36I-M5T1U  
S-1002CB37I-M5T1U  
S-1002CB38I-M5T1U  
S-1002CB39I-M5T1U  
S-1002CB40I-M5T1U  
S-1002CB41I-M5T1U  
S-1002CB42I-M5T1U  
S-1002CB43I-M5T1U  
S-1002CB44I-M5T1U  
S-1002CB45I-M5T1U  
S-1002CB46I-M5T1U  
S-1002CB47I-M5T1U  
S-1002CB48I-M5T1U  
S-1002CB49I-M5T1U  
S-1002CB50I-M5T1U  
S-1002CB10I-N4T1U  
S-1002CB11I-N4T1U  
S-1002CB12I-N4T1U  
S-1002CB13I-N4T1U  
S-1002CB14I-N4T1U  
S-1002CB15I-N4T1U  
S-1002CB16I-N4T1U  
S-1002CB17I-N4T1U  
S-1002CB18I-N4T1U  
S-1002CB19I-N4T1U  
S-1002CB20I-N4T1U  
S-1002CB21I-N4T1U  
S-1002CB22I-N4T1U  
S-1002CB23I-N4T1U  
S-1002CB24I-N4T1U  
S-1002CB25I-N4T1U  
S-1002CB26I-N4T1U  
S-1002CB27I-N4T1U  
S-1002CB28I-N4T1U  
S-1002CB29I-N4T1U  
S-1002CB30I-N4T1U  
S-1002CB31I-N4T1U  
S-1002CB32I-N4T1U  
S-1002CB33I-N4T1U  
S-1002CB34I-N4T1U  
S-1002CB35I-N4T1U  
S-1002CB36I-N4T1U  
S-1002CB37I-N4T1U  
S-1002CB38I-N4T1U  
S-1002CB39I-N4T1U  
S-1002CB40I-N4T1U  
S-1002CB41I-N4T1U  
S-1002CB42I-N4T1U  
S-1002CB43I-N4T1U  
S-1002CB44I-N4T1U  
S-1002CB45I-N4T1U  
S-1002CB46I-N4T1U  
S-1002CB47I-N4T1U  
S-1002CB48I-N4T1U  
S-1002CB49I-N4T1U  
S-1002CB50I-N4T1U  
7
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Pin Configurations  
1. S-1002 Series NA / CA type  
1. 1 SOT-23-5  
Top view  
Table 7 Pin Configuration A  
Symbol Description  
5
4
Pin No.  
1
2
3
4
5
OUT  
Voltage detection output pin  
Power supply pin  
VDD  
VSS  
NC*1  
GND pin  
1
2
3
No connection  
SENSE  
Detection voltage input pin  
Figure 3  
*1. The NC pin is electrically open.  
The NC pin can be connected to the VDD pin or the VSS pin.  
2. S-1002 Series NB / CB type  
2. 1 SOT-23-5  
Top view  
Table 8 Pin Configuration B  
5
4
Pin No.  
Symbol  
OUT  
Description  
Voltage detection output pin  
GND pin  
1
2
3
4
5
VSS  
VDD  
Power supply pin  
1
2
3
SENSE  
NC*1  
Detection voltage input pin  
No connection  
Figure 4  
*1. The NC pin is electrically open.  
The NC pin can be connected to the VDD pin or the VSS pin.  
2. 2 SC-82AB  
Top view  
Table 9 Pin Configuration B  
4
3
Pin No.  
Symbol  
SENSE  
Description  
Detection voltage input pin  
Power supply pin  
1
2
3
4
VDD  
OUT  
VSS  
Voltage detection output pin  
GND pin  
1
2
Figure 5  
8
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Absolute Maximum Ratings  
Table 10  
(Ta = 25°C unless otherwise specified)  
Item  
Power supply voltage  
Symbol  
VDDVSS  
VSENSE  
Absolute Maximum Rating  
12.0  
Unit  
V
SENSE pin input voltage  
VSS 0.3 to 12.0  
VSS 0.3 to 12.0  
VSS 0.3 to VDD 0.3  
50  
V
Nch open-drain output product  
V
Output voltage  
Output current  
Power dissipation  
VOUT  
IOUT  
PD  
CMOS output product  
V
mA  
mW  
mW  
°C  
°C  
SOT-23-5  
SC-82AB  
600*1  
350*1  
Operation ambient temperature  
Storage temperature  
Topr  
Tstg  
40 to 85  
40 to 125  
*1. When mounted on board  
[Mounted board]  
(1) Board size: 114.3 mm 76.2 mm t1.6 mm  
(2) Name: JEDEC STANDARD51-7  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer  
physical damage. These values must therefore not be exceeded under any conditions.  
700  
600  
500  
SOT-23-5  
400  
SC-82AB  
300  
200  
100  
0
100  
150  
50  
0
Ambient Temperature (Ta) [C]  
Figure 6 Power Dissipation of Package (When Mounted on Board)  
9
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Electrical Characteristics  
1. Nch open-drain output product  
Table 11  
(Ta = 25°C unless otherwise specified)  
Test  
Circuit  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
V
VDET(S)  
0.022  
VDET(S)  
0.99  
VDET(S)  
0.022  
VDET(S)  
1.01  
1.0 V  VDET(S) 2.2 V  
VDET(S)  
1
Detection voltage*1 VDET  
0.95 V VDD 10.0 V  
2.2 V  VDET(S) 5.0 V  
VDET(S)  
VDET  
V
1
1
2
VDET  
VDET  
Hysteresis width  
VHYS  
ISS  
V
0.03 0.05 0.07  
Current  
VDD = 10.0 V, VSENSE = VDET(S) 1.0 V  
0.50  
0.90  
A  
consumption*2  
Operation voltage VDD  
V
0.95  
0.59  
0.73  
1.47  
1.86  
10.0  
V
1
3
3
3
3
DD = 0.95 V  
1.00  
1.33  
2.39  
2.50  
mA  
mA  
mA  
mA  
Output transistor  
Nch  
VDD = 1.2 V  
VDD = 2.4 V  
VDD = 4.8 V  
Output current  
IOUT  
VDS*3 = 0.5 V  
VSENSE = 0.0 V  
Output transistor  
Nch  
Leakage current  
ILEAK  
0.08  
A  
3
VDD = 10.0 V, VDS*3 = 10.0 V, VSENSE = 10.0 V  
Detection voltage  
temperature  
coefficient*4  
Detection  
VDET  
Ta VDET  
1
4
ppm/C  
s  
Ta = 40°C to 85°C  
100  
350  
tDET  
VDD = 5.0 V  
40  
delay time*5  
Release  
VDET(S) 2.4 V  
VDD = 5.0 V  
5.0  
6.0  
40  
80  
42.0  
98.0  
s  
s  
M  
M  
4
4
2
2
tRESET  
delay time*6  
2.4 V  VDET(S)  
1.0 V  VDET(S) 1.2 V  
1.2 V  VDET(S) 5.0 V  
19.0  
30.0  
SENSE pin  
resistance  
RSENSE  
*1. VDET: Actual detection voltage value, VDET(S): Set detection voltage value (the center value of the detection voltage  
range in Table 3 or Table 4)  
*2. The current flowing through the SENSE pin resistance is not included.  
*3.  
VDS: Drain-to-source voltage of the output transistor  
*4. The temperature change of the detection voltage [mV/°C] is calculated by using the following equation.  
VDET  
Ta  
VDET  
Ta  VDET  
mV/°C *1 = VDET(S) (typ.) V *2   
ppm/°C *3 1000  
]
[
]
[ ]  
[
*1. Temperature change of the detection voltage  
*2. Set detection voltage  
*3. Detection voltage temperature coefficient  
*5. The time period from when the pulse voltage of 6.0 V  VDET(S) 2.0 V or 0 V is applied to the SENSE pin to when  
VOUT reaches VDD / 2, after the output pin is pulled up to 5.0 V by the resistance of 470 k.  
*6. The time period from when the pulse voltage of 0 V  VDET(S) 2.0 V or 6.0 V is applied to the SENSE pin to when  
VOUT reaches VDD / 2, after the output pin is pulled up to 5.0 V by the resistance of 470 k.  
10  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
2. CMOS output product  
Table 12  
(Ta = 25°C unless otherwise specified)  
Test  
Circuit  
Item  
Symbol  
Condition  
1.0 V  VDET(S) 2.2 V  
Min.  
Typ.  
Max.  
Unit  
V
VDET(S)  
0.022  
VDET(S)  
0.99  
VDET(S)  
0.022  
VDET(S)  
1.01  
VDET(S)  
1
Detection voltage*1 VDET  
0.95 V VDD 10.0 V  
2.2 V  VDET(S) 5.0 V  
VDET(S)  
VDET  
V
1
1
2
VDET  
VDET  
Hysteresis width  
VHYS  
ISS  
V
0.03 0.05 0.07  
Current  
VDD = 10.0 V, VSENSE = VDET(S) 1.0 V  
0.50  
0.90  
A  
consumption*2  
Operation voltage VDD  
0.95  
0.59  
0.73  
1.47  
1.86  
10.0  
V
1
3
3
3
3
VDD = 0.95 V  
VDD = 1.2 V  
VDD = 2.4 V  
VDD = 4.8 V  
1.00  
1.33  
2.39  
2.50  
mA  
mA  
mA  
mA  
Output transistor  
Nch  
VDS*3 = 0.5 V  
VSENSE = 0.0 V  
Output current  
IOUT  
Output transistor  
Pch  
VDS*3 = 0.5 V  
VSENSE = 10.0 V  
V
V
DD = 4.8 V  
DD = 6.0 V  
1.62  
1.78  
2.60  
2.86  
mA  
mA  
5
5
  
Detection voltage  
temperature  
coefficient*4  
Detection  
VDET  
Ta VDET  
1
ppm/C  
Ta = 40°C to 85°C  
100  
350  
tDET  
VDD = 5.0 V  
VDD = 5.0 V  
40  
s  
4
delay time*5  
Release  
VDET(S) 2.4 V  
2.4 V  VDET(S)  
5.0  
6.0  
40  
80  
42.0  
98.0  
s  
s  
M  
M  
4
4
2
2
tRESET  
delay time*6  
1.0 V  VDET(S) 1.2 V  
1.2 V  VDET(S) 5.0 V  
19.0  
30.0  
SENSE pin  
resistance  
RSENSE  
*1. VDET: Actual detection voltage value, VDET(S): Set detection voltage value (the center value of the detection voltage  
range in Table 5 or Table 6)  
*2. The current flowing through the SENSE pin resistance is not included.  
*3.  
VDS: Drain-to-source voltage of the output transistor  
*4. The temperature change of the detection voltage [mV/°C] is calculated by using the following equation.  
VDET  
Ta  
VDET  
Ta  VDET  
mV/°C *1 = VDET(S) (typ.) V *2   
ppm/°C *3 1000  
]
[
]
[ ]  
[
*1. Temperature change of the detection voltage  
*2. Set detection voltage  
*3. Detection voltage temperature coefficient  
*5. The time period from when the pulse voltage of 6.0 V  VDET(S) 2.0 V or 0 V is applied to the SENSE pin to when  
VOUT reaches VDD / 2.  
*6. The time period from when the pulse voltage of 0 V  VDET(S) 2.0 V or 6.0 V is applied to the SENSE pin to when  
VOUT reaches VDD / 2.  
11  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Test Circuits  
R
VDD  
VDD  
100 k  
VDD  
VDD  
OUT  
OUT  
SENSE  
VSS  
SENSE  
VSS  
  
V
V
V
V
Figure 7 Test Circuit 1  
(Nch open-drain output product)  
Figure 8 Test Circuit 1  
(CMOS output product)  
  
A
VDD  
VDD  
VDD  
SENSE  
VSS  
VDD  
OUT  
V
A
  
VDS  
A
OUT  
SENSE  
VSS  
  
V
Figure 9 Test Circuit 2  
Figure 10 Test Circuit 3  
R
VDD  
VDD  
470 k  
VDD  
VDD  
OUT  
OUT  
SENSE  
VSS  
SENSE  
VSS  
Oscilloscope  
Oscilloscope  
P.G.  
P.G.  
Figure 11 Test Circuit 4  
(Nch open-drain output product)  
Figure 12 Test Circuit 4  
(CMOS output product)  
VDS  
  
V
VDD  
VDD  
  
SENSE  
VSS  
V
OUT  
A
Figure 13 Test Circuit 5  
12  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Standard Circuits  
1. Nch open-drain output product  
R
100 k  
VDD  
SENSE  
OUT  
VSS  
Figure 14  
2. CMOS output product  
VDD  
SENSE  
OUT  
VSS  
Figure 15  
Caution The above connection diagram and constant will not guarantee successful operation.  
Perform thorough evaluation using the actual application to set the constant.  
13  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Explanation of Terms  
1. Detection voltage (VDET  
)
The detection voltage is a voltage at which the output in Figure 18 or Figure 19 turns to "L". The detection voltage  
varies slightly among products of the same specification. The variation of detection voltage between the specified  
minimum (VDET min.) and the maximum (VDET max.) is called the detection voltage range (Refer to Figure 16).  
Example: In the S-1002Cx18, the detection voltage is either one in the range of 1.778 V  VDET 1.822 V.  
This means that some S-1002Cx18 have VDET = 1.778 V and some have VDET = 1.822 V.  
2. Release voltage (VDET  
)
The release voltage is a voltage at which the output in Figure 18 or Figure 19 turns to "H". The release voltage  
varies slightly among products of the same specification. The variation of release voltage between the specified  
minimum (VDET min.) and the maximum (VDET max.) is called the release voltage range (Refer to Figure 17). The  
range is calculated from the actual detection voltage (VDET) of a product and is in the range of VDET 1.03   
VDET  VDET 1.07.  
Example: For the S-1002Cx18, the release voltage is either one in the range of 1.832 V  VDET 1.949 V.  
This means that some S-1002Cx18 have VDET = 1.832 V and some have VDET = 1.949 V.  
VSENSE  
Detection voltage  
Release voltage  
VDET max.  
VDET max.  
VDET min.  
Release voltage  
range  
Detection voltage  
range  
VDET min.  
VSENSE  
VOUT  
VOUT  
tRESET  
tDET  
Figure 16 Detection Voltage  
Figure 17 Release Voltage  
R
VDD  
VDD  
100 k  
VDD  
VDD  
OUT  
OUT  
SENSE  
VSS  
SENSE  
VSS  
  
V
V
V
V
Figure 18 Test Circuit of Detection Voltage  
and Release Voltage  
Figure 19 Test Circuit of Detection Voltage  
and Release Voltage  
(Nch open-drain output product)  
(CMOS output product)  
14  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
3. Hysteresis width (VHYS  
)
The hysteresis width is the voltage difference between the detection voltage and the release voltage (the voltage at  
point B the voltage at point A = VHYS in "Figure 22 Timing Chart of S-1002 Series NA / NB Type" and "Figure  
24 Timing Chart of S-1002 Series CA / CB Type"). Setting the hysteresis width between the detection voltage  
and the release voltage, prevents malfunction caused by noise on the input voltage.  
4. Feed-through current  
The feed-through current is a current that flows instantaneously to the VDD pin at the time of detection and release  
of a voltage detector. The feed-through current is large in CMOS output product, small in Nch open-drain output  
product.  
5. Oscillation  
In applications where an input resistor is connected (Figure 20), taking a CMOS output (active "L") product for  
example, the feed-through current which is generated when the output goes from "L" to "H" (at the time of release)  
causes a voltage drop equal to [feed-through current] [input resistance]. Since the VDD pin and the SENSE pin  
are shorted as in Figure 20, the SENSE pin voltage drops at the time of release. Then the SENSE pin voltage  
drops below the detection voltage and the output goes from "H" to "L". In this status, the feed-through current stops  
and its resultant voltage drop disappears, and the output goes from "L" to "H". The feed-through current is then  
generated again, a voltage drop appears, and repeating the process finally induces oscillation.  
VDD  
RA  
VIN  
VDD  
OUT  
SENSE  
VSS  
RB  
(CMOS output product)  
GND  
Figure 20 Example for Bad Implementation Due to Detection Voltage Change  
15  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Operation  
1. Basic operation  
1. 1 S-1002 Series NA / NB type  
(1) When the power supply voltage (VDD) is the minimum operation voltage or higher, and the SENSE pin voltage  
(VSENSE) is the release voltage (VDET) or higher, the Nch transistor is turned off to output VDD ("H") when the  
output is pulled up. Since the Nch transistor (N1) is turned off, the input voltage to the comparator is  
(RB RC ) VSENSE  
.
RA RB RC  
(2) Even if VSENSE decreases to VDET or lower, VDD is output when VSENSE is higher than the detection voltage  
(VDET).  
When VSENSE decreases to VDET or lower (point A in Figure 22), the Nch transistor is turned on. And then VSS  
("L") is output from the OUT pin after the elapse of the detection delay time (tDET).  
RB VSENSE  
At this time, N1 is turned on, and the input voltage to the comparator is  
.
RA RB  
(3) Even if VSENSE further decreases to the IC's minimum operation voltage or lower, the output from the OUT pin is  
stable when VDD is minimum operation voltage or higher.  
(4) Even if VSENSE exceeds VDET, VSS is output when VSENSE is lower than VDET  
.
(5) When VSENSE increases to VDET or higher (point B in Figure 22), the Nch transistor is turned off. And then VDD  
is output from the OUT pin after the elapse of the release delay time (tRESET) when the output is pulled up.  
SENSE  
VDD  
R
100 k  
RA  
VDD  
  
  
OUT  
*1  
*1  
VSENSE  
RB  
*1  
VREF  
N1  
Nch  
V
RC  
VSS  
*1. Parasitic diode  
Figure 21 Operation of S-1002 Series NA / NB Type  
(2) (3) (4) (5)  
(1)  
B
Hysteresis width  
(VHYS  
Release voltage (VDET  
)
A
)
Detection voltage (VDET  
)
VSENSE  
Minimum operation voltage  
VSS  
VDD  
VSS  
Output from OUT pin  
tDET  
tRESET  
Figure 22 Timing Chart of S-1002 Series NA / NB Type  
16  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
1. 2 S-1002 Series CA / CB type  
(1) When the power supply voltage (VDD) is the minimum operation voltage or higher, and the SENSE pin voltage  
(VSENSE) is the release voltage (VDET) or higher, the Nch transistor is turned off and the Pch transistor is turned  
on to output VDD ("H"). Since the Nch transistor (N1) is turned off, the input voltage to the comparator is  
(RB RC ) VSENSE  
.
RA RB RC  
(2) Even if VSENSE decreases to VDET or lower, VDD is output when VSENSE is higher than the detection voltage  
(VDET).  
When VSENSE decreases to VDET or lower (point A in Figure 24), the Nch transistor is turned on and the Pch  
transistor is turned off. And then VSS ("L") is output from the OUT pin after the elapse of the detection delay time  
(tDET).  
RB VSENSE  
RA RB  
At this time, N1 is turned on, and the input voltage to the comparator is  
.
(3) Even if VSENSE further decreases to the IC's minimum operation voltage or lower, the output from the OUT pin is  
stable when VDD is minimum operation voltage or higher.  
(4) Even if VSENSE exceeds VDET, VSS is output when VSENSE is lower than VDET  
.
(5) When VSENSE increases to VDET or higher (point B in Figure 24), the Nch transistor is turned off and the Pch  
transistor is turned on. And then VDD is output from the OUT pin after the elapse of the release delay time  
(tRESET).  
SENSE  
VDD  
Pch  
RA  
*1  
VDD  
  
  
OUT  
*1  
*1  
VSENSE  
RB  
*1  
VREF  
N1  
Nch  
V
RC  
VSS  
*1. Parasitic diode  
Figure 23 Operation of S-1002 Series CA / CB Type  
(2) (3) (4) (5)  
(1)  
B
Hysteresis width  
(VHYS  
Release voltage (VDET  
)
A
)
Detection voltage (VDET  
)
VSENSE  
Minimum operation voltage  
VSS  
VDD  
VSS  
Output from OUT pin  
tDET  
tRESET  
Figure 24 Timing Chart of S-1002 Series CA / CB Type  
17  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
2. SENSE pin  
2. 1 Error when detection voltage is set externally  
By connecting a node that was resistance-divided by the resistor (RA) and the resistor (RB) to the SENSE pin as  
seen in Figure 25, the detection voltage can be set externally.  
For conventional products without the SENSE pin, RA cannot be too large since the resistance-divided node must  
be connected to the VDD pin. This is because a feed-through current will flow through the VDD pin when it goes  
from detection to release, and if RA is large, problems such as oscillation or larger error in the hysteresis width may  
occur.  
In the S-1002 Series, RA and RB are easily made larger since the resistance-divided node can be connected to the  
SENSE pin through which no feed-through current flows. However, be careful of error in the current flowing through  
the internal resistance (RSENSE) that will occur.  
Although RSENSE in the S-1002 Series is large (5 Mmin.) to make the error small, RA and RB should be selected  
such that the error is within the allowable limits.  
2. 2 Selection of RA and RB  
In Figure 25, the relation between the external setting detection voltage (VDX) and the actual detection voltage  
(VDET) is ideally calculated by the equation below.  
RA  
RB  
VDX = VDET  
1   
··· (1)  
(
)
However, in reality there is an error in the current flowing through RSENSE  
.
When considering this error, the relation between VDX and VDET is calculated as follows.  
RA  
VDX = VDET  
= VDET  
1   
(
)
RB || RSENSE  
RA  
1   
RB RSENSE  
RB RSENSE  
RA  
RB  
RA  
= VDET  
1   
 VDET  
··· (2)  
(
)
RSENSE  
RA  
RSENSE  
By using equations (1) and (2), the error is calculated as VDET  
.
The error rate is calculated as follows by dividing the error by the right-hand side of equation (1).  
RA RB  
RSENSE (RA RB)  
RA || RB  
RSENSE  
100 [%] =  
100 [%]  
··· (3)  
As seen in equation (3), the smaller the resistance values of RA and RB compared to RSENSE, the smaller the error  
rate becomes.  
Also, the relation between the external setting hysteresis width (VHX) and the hysteresis width (VHYS) is calculated  
by equation below. Error due to RSENSE also occurs to the relation in a similar way to the detection voltage.  
RA  
RB  
VHX = VHYS  
1   
··· (4)  
(
)
RA  
VDD  
SENSE  
RSENSE  
OUT  
VDX  
VDET  
RB  
VSS  
Figure 25 Detection Voltage External Setting Circuit  
Caution If RA and RB are large, the SENSE pin input impedance becomes higher and may cause a  
malfunction due to noise. In this case, connect a capacitor between the SENSE pin and the VSS  
pin.  
18  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
2. 3 Power on sequence  
Apply power in the order, the VDD pin then the SENSE pin.  
As seen in Figure 26, when VSENSE  VDET, the OUT pin output (VOUT) rises and the S-1002 Series becomes the  
release status (normal operation).  
VDD  
VDET  
VSENSE  
tRESET  
VOUT  
Figure 26  
Caution If power is applied in the order the SENSE pin then the VDD pin, an erroneous release may occur  
even if VSENSE  VDET  
.
2. 4 Precautions when shorting between the VDD pin and the SENSE pin  
2. 4. 1 Input resistor  
Do not connect the input resistor (RA) when shorting between the VDD pin and the SENSE pin.  
A feed-through current flows through the VDD pin at the time of release. When connecting the circuit shown as  
Figure 27, the feed-through current of the VDD pin flowing through RA will cause a drop in VSENSE at the time of  
release.  
At that time, oscillation may occur if VSENSE  VDET  
.
RA  
VDD  
VSS  
OUT  
SENSE  
VDD  
Figure 27  
2. 4. 2 Parasitic resistance and parasitic capacitance  
Due to the difference in parasitic resistance and parasitic capacitance of the VDD pin and the SENSE pin,  
power may be applied to the SENSE pin first.  
Note that an erroneous release may occur if this happens (refer to "2. 3 Power on sequence").  
Caution In CMOS output product, make sure that the VDD pin input impedance does not become too  
high, regardless of the above. Since a feed-through current is large, a malfunction may occur if  
the VDD pin voltage changes greatly at the time of release.  
19  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
2. 5 Malfunction when VDD falls  
As seen in Figure 28, note that if the VDD pin voltage (VDD) drops steeply below 1.2 V when VDET VSENSE  
VDET, erroneous detection may occur.  
When VDD_Low 1.2 V, erroneous detection does not occur.  
When VDD_Low 1.2 V, the more the VDD falling amplitude increases or the shorter the falling time becomes, the  
easier the erroneous detection.  
Perform thorough evaluation in actual application.  
VDD_High  
VDD  
VDD_Low (Voltage drops below 1.2 V.)  
VDET  
VSENSE  
VDET  
V
OUT falling influenced by VDD falling  
(erroneous detection)  
VOUT  
Figure 28  
The S-1002Cx50 example in Figure 29 shows an example of erroneous detection boundary conditions.  
12  
10  
8
6
4
2
0
Danger of erroneous  
detection  
0.1  
1
10  
100  
1000  
t
F
[s]  
Figure 29  
Remark Test conditions  
Product name: S-1002Cx50  
VSENSE VDET(S) 0.1 V  
VDD_High  
VDD_Low  
:
:
:
VDD pin voltage before falling  
VDD pin voltage after falling (0.95 V)  
VDD_High VDD_Low  
VDD  
:
tF:  
Falling time of VDD from VDD_High  VDD 10% to VDD_Low  VDD 10%  
V
V
DD_High  
DD_High  VDD 10%  
VDD  
VDD_Low  VDD 10%  
V
DD_Low  
t
F
Figure 30  
20  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
3. Other characteristics  
3. 1 Temperature characteristics of detection voltage  
The shaded area in Figure 31 shows the temperature characteristics of detection voltage in the operation  
temperature range.  
VDET [V]  
0.945 mV/°C  
*1  
VDET25  
0.945 mV/°C  
40  
25  
85  
Ta [°C]  
*1. VDET25 is a detection voltage value at Ta = 25°C.  
Figure 31 Temperature Characteristics of Detection Voltage (Example for VDET = 2.7 V)  
3. 2 Temperature characteristics of release voltage  
VDET  
Ta  
The temperature change  
of the release voltage is calculated by using the temperature change  
VDET  
Ta  
of the detection voltage as follows:  
VDET  
Ta  
VDET  
VDET  
VDET  
Ta  
=
The temperature change of the release voltage and the detection voltage has the same sign consequently.  
3. 3 Temperature characteristics of hysteresis voltage  
VDET  
Ta  
VDET  
Ta  
The temperature change of the hysteresis voltage is expressed as  
follows:  
and is calculated as  
VDET  
Ta  
VDET  
Ta  
VHYS  
VDET  
VDET  
Ta  
=
21  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Precautions  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic  
protection circuit.  
In CMOS output product of the S-1002 Series, the feed-through current flows at the time of detection and release. If  
the VDD pin input impedance is high, malfunction may occur due to the voltage drop by the feed-through current  
when releasing.  
In CMOS output product, oscillation may occur if a pull-down resistor is connected and falling speed of the SENSE  
pin voltage (VSENSE) is slow near the detection voltage when the VDD pin and the SENSE pin are shorted.  
When designing for mass production using an application circuit described herein, the product deviation and  
temperature characteristics of the external parts should be taken into consideration. ABLIC Inc. shall not bear any  
responsibility for patent infringements related to products using the circuits described herein.  
ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by  
products including this IC of patents owned by a third party.  
22  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Characteristics (Typical Data)  
1. Detection voltage (VDET), Release voltage (VDET) vs. Temperature (Ta)  
S-1002Cx10  
VDD = 5.0 V  
S-1002Cx24  
VDD = 5.0 V  
1.2  
2.6  
VDET  
VDET  
1.1  
1.0  
0.9  
0.8  
2.5  
2.4  
2.3  
2.2  
VDET  
VDET  
40  
25  
0
25  
Ta [C]  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [C]  
S-1002Cx50  
VDD = 5.0 V  
5.4  
VDET  
5.2  
5.0  
4.8  
4.6  
VDET  
40  
25  
0
25  
Ta [C]  
50  
75 85  
2. Hysteresis width (VHYS) vs. Temperature (Ta)  
S-1002Cx10  
V
DD = 5.0 V  
S-1002Cx24  
VDD = 5.0 V  
7.0  
7.0  
6.0  
5.0  
4.0  
3.0  
6.0  
5.0  
4.0  
3.0  
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [C]  
Ta [C]  
S-1002Cx50  
V
DD = 5.0 V  
7.0  
6.0  
5.0  
4.0  
3.0  
40  
25  
0
25  
50  
75 85  
Ta [C]  
23  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
3. Detection voltage (VDET) vs. Power supply voltage (VDD)  
S-1002Cx10  
S-1002Cx24  
1.030  
2.430  
2.420  
2.410  
2.400  
2.390  
2.380  
2.370  
1.020  
1.010  
1.000  
0.990  
0.980  
Ta = 25C  
Ta = 25C  
Ta = 85C  
Ta =  
40C  
Ta = 85C  
6.0 8.0  
Ta =  
40C  
4.0  
0.970  
0.0  
2.0 4.0  
6.0  
8.0  
10.0  
0.0  
2.0  
10.0  
V
DD [V]  
VDD [V]  
S-1002Cx50  
5.050  
5.025  
Ta = 25C  
40C  
Ta =  
Ta = 85C  
5.000  
4.975  
4.950  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
V
DD [V]  
4. Hysteresis width (VHYS) vs. Power supply voltage (VDD)  
S-1002Cx10  
S-1002Cx24  
7.0  
7.0  
6.0  
5.0  
4.0  
6.0  
5.0  
4.0  
Ta = 40C  
Ta =  
40C  
Ta = 85C  
Ta = 25C  
Ta = 85C  
Ta = 25C  
3.0  
0.0  
3.0  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
2.0  
4.0  
6.0  
8.0  
10.0  
VDD [V]  
VDD [V]  
S-1002Cx50  
7.0  
6.0  
5.0  
4.0  
Ta = 40C  
Ta = 85C  
Ta = 25C  
3.0  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
VDD [V]  
24  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
5. Current consumption (ISS) vs. Power supply voltage (VDD)  
S-1002Cx10  
VSENSE = VDET(S) 0.1 V (during detection)  
1.00  
Ta = 25°C,  
S-1002Cx10  
Ta = 25°C,  
V
SENSE = VDET(S) 1.0 V (during release)  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
V
DD [V]  
VDD [V]  
S-1002Cx24  
Ta = 25°C,  
S-1002Cx24  
Ta = 25°C,  
V
SENSE = VDET(S) 0.1 V (during detection)  
V
SENSE = VDET(S) 1.0 V (during release)  
1.00  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
V
DD [V]  
VDD [V]  
S-1002Cx50  
Ta = 25°C,  
S-1002Cx50  
Ta = 25°C,  
V
SENSE = VDET(S) 0.1 V (during detection)  
V
SENSE = VDET(S) 1.0 V (during release)  
1.00  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
V
DD [V]  
VDD [V]  
25  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
6. Current consumption (ISS) vs. SENSE pin input voltage (VSENSE  
)
S-1002Cx10  
Ta = 25°C,  
S-1002Cx24  
Ta = 25°C,  
VDD = VDET(S) 1.0 V, VSENSE = 0.0 V 10.0 V  
V
DD = VDET(S) 1.0 V, VSENSE = 0.0 V 10.0 V  
1.00  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
V
SENSE [V]  
VSENSE [V]  
S-1002Cx50  
Ta = 25°C,  
V
DD = VDET(S) 1.0 V, VSENSE = 0.0 V 10.0 V  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
V
SENSE [V]  
7. Current consumption (ISS) vs. Temperature (Ta)  
S-1002Cx10  
VDD = VDET(S) 1.0 V,  
S-1002Cx24  
VDD = VDET(S) 1.0 V,  
V
SENSE = VDET(S) 1.0 V (during release)  
V
SENSE = VDET(S) 1.0 V (during release)  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [C]  
Ta [C]  
S-1002Cx50  
VDD = VDET(S) 1.0 V,  
V
SENSE = VDET(S) 1.0 V (during release)  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
40  
25  
0
25  
50  
75 85  
Ta [°C]  
26  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
8. Nch transistor output current (IOUT) vs. VDS  
9. Pch transistor output current (IOUT) vs. VDS  
S-1002Nx12  
Ta = 25°C,  
S-1002Cx12  
Ta = 25°C,  
V
SENSE = 0.0 V (during detection)  
VSENSE = VDET(S) 1.0 V (during release)  
20.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
DD = 6.0 V  
V
DD = 8.4 V  
V
DD = 4.8 V  
V
DD = 0.95 V  
15.0  
V
DD = 1.2 V  
V
DD = 7.2 V  
V
DD = 3.6 V  
10.0  
V
DD = 6.0 V  
DD = 4.8 V  
VDD = 2.4 V  
V
5.0  
V
DD = 3.6 V  
V
DD = 1.2 V  
V
DD = 2.4 V  
V
DD = 0.95 V  
0.0  
0.0  
1.0  
2.0 3.0  
4.0  
5.0  
6.0  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
V
DS [V]  
V
DS [V]  
10.  
Nch transistor output current (IOUT) vs. Power supply voltage (VDD)  
11.  
Pch transistor output current (IOUT) vs.  
Power supply voltage (VDD  
)
S-1002Nx12  
VDS = 0.5 V,  
S-1002Cx12  
VDS = 0.5 V,  
VSENSE = 0.0 V (during detection)  
V
SENSE = VDET(S) 1.0 V (during release)  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Ta = 40C  
Ta = 40C  
Ta = 25C  
Ta = 85C  
Ta = 25C  
Ta = 85C  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
VDD [V]  
V
DD [V]  
12. Minimum operation voltage (VOUT) vs. Power supply voltage (VDD)  
S-1002Nx10  
VSENSE = VDD  
,
S-1002Nx10  
Pull-up to 10 V, Pull-up resistance: 100 k  
12.0  
VSENSE = VDD,  
Pull-up to VDD, Pull-up resistance: 100 k  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
Ta = 40C  
Ta = 25C  
Ta = 85C  
Ta = 40C  
Ta = 25C  
Ta = 85C  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
V
DD [V]  
VDD [V]  
13. Minimum operation voltage (VOUT) vs. SENSE pin input voltage (VSENSE  
)
S-1002Nx10  
VDD = 0.95 V,  
S-1002Nx10  
Pull-up to 10 V, Pull-up resistance: 100 k  
12.0  
VDD = 0.95 V,  
Pull-up to VDD, Pull-up resistance: 100 k  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
Ta = 40C  
Ta = 85C  
Ta = 40C  
Ta = 25C  
Ta = 25C  
Ta = 85C  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
V
SENSE [V]  
VSENSE [V]  
Remark VDS: Drain-to-source voltage of the output transistor  
27  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
14. Dynamic response vs. Output pin capacitance (COUT  
)
S-1002Cx10  
Ta = 25°C,  
DD = VDET(S) 1.0 V  
S-1002Cx24  
Ta = 25°C,  
VDD = VDET(S) 1.0 V  
V
1
1
t
PLH  
t
PHL  
0.1  
0.01  
0.1  
0.01  
t
PHL  
t
PLH  
0.001  
0.001  
0.00001 0.0001  
0.001  
0.01  
0.1  
0.00001 0.0001  
0.001  
0.01  
0.1  
Output pin capacitance [F]  
Output pin capacitance [F]  
S-1002Cx50  
Ta = 25°C,  
DD = VDET(S) 1.0 V  
V
1
t
PLH  
0.1  
0.01  
t
PHL  
0.001  
0.00001 0.0001  
0.001  
0.01  
0.1  
0.1  
0.1  
Output pin capacitance [F]  
S-1002Nx10  
Ta = 25°C,  
DD = VDET(S) 1.0 V  
S-1002Nx24  
Ta = 25°C,  
VDD = VDET(S) 1.0 V  
V
100  
10  
100  
10  
tPLH  
tPLH  
1
1
t
PHL  
t
PHL  
0.1  
0.1  
0.01  
0.01  
0.00001 0.0001  
0.001  
0.01  
0.00001 0.0001  
0.001  
0.01  
0.1  
Output pin capacitance [F]  
Output pin capacitance [F]  
S-1002Nx50  
Ta = 25°C,  
DD = VDET(S) 1.0 V  
V
100  
10  
tPLH  
1
t
PHL  
0.1  
0.01  
0.00001 0.0001  
0.001  
0.01  
Output pin capacitance [F]  
28  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
1 s  
1 s  
*1  
IH  
V
SENSE pin  
voltage  
*2  
V
IL  
t
PHL  
t
PLH  
VDD  
V
DD 90%  
Output voltage  
DD 10%  
V
*1. VIH = 10 V  
*2. VIL = 0.95 V  
Figure 32 Test Condition of Response Time  
R
VDD  
VDD  
100 k  
VDD  
VDD  
Oscilloscope  
Oscilloscope  
OUT  
OUT  
SENSE  
VSS  
SENSE  
VSS  
P.G.  
P.G.  
Figure 33 Test Circuit of Response Time  
(Nch open-drain output product)  
Figure 34 Test Circuit of Response Time  
(CMOS output product)  
Caution The above connection diagram and constant will not guarantee successful operation.  
Perform thorough evaluation using the actual application to set the constant.  
29  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
Application Circuit Examples  
1. Microcomputer reset circuits  
In microcomputers, when the power supply voltage is lower than the minimum operation voltage, an unspecified  
operation may be performed or the contents of the memory register may be lost. When power supply voltage  
returns to the normal level, the microcomputer needs to be initialized. Otherwise, the microcomputer may  
malfunction after that. Reset circuits to protect microcomputer in the event of current being momentarily switched  
off or lowered.  
Using the S-1002 Series which has the low minimum operation voltage, the high-accuracy detection voltage and  
the hysteresis width, reset circuits can be easily constructed as seen in Figure 35 and Figure 36.  
VDD  
VDD  
VDD1  
VDD1  
VDD  
VDD  
SENSE  
SENSE  
Microcomputer  
Microcomputer  
OUT  
OUT  
VSS  
VSS  
GND  
GND  
Figure 35 Example of Reset Circuit  
(Nch open-drain output product)  
Figure 36 Example of Reset Circuit  
(CMOS output product)  
Caution The above connection diagram and constant will not guarantee successful operation.  
Perform thorough evaluation using the actual application to set the constant.  
30  
VOLTAGE DETECTOR WITH SENSE PIN  
S-1002 Series  
Rev.1.1_03  
2. Change of detection voltage  
If there is not a product with a specified detection voltage value in the S-1002 Series, the detection voltage can be  
changed by using a resistance divider or a diode, as seen in Figure 37 to Figure 40.  
In Figure 37 and Figure 38, hysteresis width also changes.  
VDD  
VDD  
R
RA  
RA  
100 k  
VDD  
SENSE  
VSS  
VDD  
SENSE  
VSS  
VIN  
VIN  
OUT  
OUT  
RB  
RB  
GND  
GND  
Figure 37 Detection voltage change  
when using a resistance divider  
(Nch open-drain output product)  
Figure 38 Detection voltage change  
when using a resistance divider  
(CMOS output product)  
RA RB  
Remark Detection voltage =  
 VDET  
VHYS  
RB  
RA RB  
Hysteresis width =  
RB  
VDD  
VDD  
Vf1  
Vf1  
R
100 k  
VIN  
VIN  
VDD  
SENSE  
VSS  
VDD  
SENSE  
VSS  
OUT  
OUT  
GND  
GND  
Figure 39 Detection voltage change  
when using a diode  
Figure 40 Detection voltage change  
when using a diode  
(Nch open-drain output product)  
(CMOS output product)  
Remark Detection voltage = Vf1 (VDET  
)
Caution 1. The above connection diagram and constant will not guarantee successful operation.  
Perform thorough evaluation using the actual application to set the constant.  
2. Set the constants referring to "2. 1 Error when detection voltage is set externally" in  
"Operation".  
31  
2.9±0.2  
1.9±0.2  
4
5
+0.1  
-0.06  
1
2
3
0.16  
0.95±0.1  
0.4±0.1  
No. MP005-A-P-SD-1.3  
TITLE  
SOT235-A-PKG Dimensions  
MP005-A-P-SD-1.3  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
4.0±0.1(10 pitches:40.0±0.2)  
+0.1  
-0  
2.0±0.05  
0.25±0.1  
ø1.5  
+0.2  
-0  
4.0±0.1  
ø1.0  
1.4±0.2  
3.2±0.2  
3
4
2 1  
5
Feed direction  
No. MP005-A-C-SD-2.1  
TITLE  
SOT235-A-Carrier Tape  
MP005-A-C-SD-2.1  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. MP005-A-R-SD-1.1  
TITLE  
SOT235-A-Reel  
MP005-A-R-SD-1.1  
No.  
ANGLE  
UNIT  
QTY.  
3,000  
mm  
ABLIC Inc.  
2.0±0.2  
1.3±0.2  
4
3
0.05  
+0.1  
-0.06  
0.16  
2
1
+0.1  
-0.05  
0.4  
+0.1  
-0.05  
0.3  
No. NP004-A-P-SD-2.0  
TITLE  
No.  
SC82AB-A-PKG Dimensions  
NP004-A-P-SD-2.0  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
2.0±0.05  
+0.1  
-0  
1.1±0.1  
ø1.5  
4.0±0.1  
4.0±0.1  
0.2±0.05  
ø1.05±0.1  
(0.7)  
2.2±0.2  
2
3
1
4
Feed direction  
No. NP004-A-C-SD-3.0  
SC82AB-A-Carrier Tape  
NP004-A-C-SD-3.0  
TITLE  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
1.1±0.1  
+0.1  
-0  
2.0±0.1  
4.0±0.1  
ø1.5  
0.2±0.05  
4.0±0.1  
ø1.05±0.1  
2.3±0.15  
2
3
1
4
Feed direction  
No. NP004-A-C-S1-2.0  
TITLE  
SC82AB-A-Carrier Tape  
NP004-A-C-S1-2.0  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. NP004-A-R-SD-1.1  
TITLE  
No.  
SC82AB-A-Reel  
NP004-A-R-SD-1.1  
QTY.  
ANGLE  
UNIT  
3,000  
mm  
ABLIC Inc.  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application  
circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
ABLIC Inc. is not responsible for damages caused by the reasons other than the products described herein  
(hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use  
of the information described herein.  
3. ABLIC Inc. is not responsible for damages caused by the incorrect information described herein.  
4. Be careful to use the products within their specified ranges. Pay special attention to the absolute maximum ratings,  
operation voltage range and electrical characteristics, etc.  
ABLIC Inc. is not responsible for damages caused by failures and / or accidents, etc. that occur due to the use of the  
products outside their specified ranges.  
5. When using the products, confirm their applications, and the laws and regulations of the region or country where they  
are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related  
laws, and follow the required procedures.  
7. The products must not be used or provided (exported) for the purposes of the development of weapons of mass  
destruction or military use. ABLIC Inc. is not responsible for any provision (export) to those whose purpose is to  
develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use.  
8. The products are not designed to be used as part of any device or equipment that may affect the human body, human  
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control  
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,  
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do  
not apply the products to the above listed devices and equipments without prior written permission by ABLIC Inc.  
Especially, the products cannot be used for life support devices, devices implanted in the human body and devices  
that directly affect human life, etc.  
Prior consultation with our sales office is required when considering the above uses.  
ABLIC Inc. is not responsible for damages caused by unauthorized or unspecified use of our products.  
9. Semiconductor products may fail or malfunction with some probability.  
The user of the products should therefore take responsibility to give thorough consideration to safety design including  
redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or  
death, fires and social damage, etc. that may ensue from the products' failure or malfunction.  
The entire system must be sufficiently evaluated and applied on customer's own responsibility.  
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the  
product design by the customer depending on the intended use.  
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy  
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be  
careful when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.  
13. The information described herein contains copyright information and know-how of ABLIC Inc.  
The information described herein does not convey any license under any intellectual property rights or any other  
rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any  
part of this document described herein for the purpose of disclosing it to a third-party without the express permission  
of ABLIC Inc. is strictly prohibited.  
14. For more details on the information described herein, contact our sales office.  
2.2-2018.06  
www.ablic.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY