S-1142D2JI-E6T1U [ABLIC]

HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR;
S-1142D2JI-E6T1U
型号: S-1142D2JI-E6T1U
厂家: ABLIC    ABLIC
描述:

HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR

文件: 总32页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-1142C/D Series  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION  
LOW DROPOUT CMOS VOLTAGE REGULATOR  
www.ablic.com  
© ABLIC Inc., 2012-2019  
Rev.1.3_00  
The S-1142C/D Series, developed by using high-withstand voltage CMOS technology, is a positive voltage regulator  
with a high-withstand voltage, low current consumption, and high-accuracy output voltage.  
The S-1142C/D Series operates at a high maximum operating voltage of 50 V and a low current consumption of 4.0 μA  
typ. In addition to a built-in low on-resistance transistor which provides a very small dropout voltage and a large output  
current, this voltage regulator also has a built-in ON / OFF circuit.  
An overcurrent protection circuit prevents the load current from exceeding the current capacity of the output transistor,  
and a built-in thermal shutdown circuit prevents damage caused by heat.  
A high heat radiation HSOP-6 package enables high-density mounting.  
Features  
Output voltage:  
Input voltage:  
2.0 V to 15.0 V, selectable in 0.1 V step  
3.0 V to 50 V  
Output voltage accuracy:  
1.0% (Tj = +25°C)  
3.0% (Tj = 40°C to +105°C)  
Current consumption:  
During operation: 4.0 μA typ., 9.0 μA max. (Ta = 40°C to +85°C)  
During power-off: 0.1 μA typ., 1.0 μA max. (Ta = 40°C to +85°C)  
Possible to output 200 mA (VIN VOUT(S) + 2.0 V)*1  
A ceramic capacitor of 0.1 μF or more can be used.  
Limits overcurrent of output transistor.  
Prevents damage caused by heat.  
Ensures long battery life.  
Output current:  
Input and output capacitors:  
Built-in overcurrent protection circuit:  
Built-in thermal shutdown circuit:  
Built-in ON / OFF circuit:  
Operation temperature range:  
Lead-free (Sn 100%), halogen-free  
Ta = 40°C to +85°C  
*1. Attention should be paid to the power dissipation of the package when the output current is large.  
Application  
Constant-voltage power supply for home electric appliance  
Package  
HSOP-6  
1
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
Block Diagram  
*1  
VIN  
VOUT  
Overcurrent  
protection circuit  
Thermal shutdown circuit  
+
ON / OFF circuit  
ON / OFF  
Reference  
voltage circuit  
VSS  
*1. Parasitic diode  
Figure 1  
2
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
Product Name Structure  
Users can select the product type and output voltage for the S-1142C/D Series. Refer to "1. Product name"  
regarding the contents of product name, "2. Package" regarding the package drawings and "3. Product name  
list" for details of product names.  
1. Product name  
S-1142  
x
xx  
I
-
E6T1  
U
Environmental code  
U:  
Lead-free (Sn 100%), halogen-free  
Package abbreviation and IC packing specifications*1  
E6T1: HSOP-6, Tape  
Operation temperature  
I:  
Ta = 40°C to +85°C  
Output voltage  
20 to F0  
(e.g., when the output voltage is 2.0 V, it is expressed as 20.  
when the output voltage is 10 V, it is expressed as A0.  
when the output voltage is 11 V, it is expressed as B0.  
when the output voltage is 12 V, it is expressed as C0.  
when the output voltage is 15 V, it is expressed as F0.)  
Product type*2  
C:  
D:  
ON / OFF pin negative logic  
ON / OFF pin positive logic  
*1. Refer to the tape drawing.  
*2. Refer to "3. ON / OFF pin" in "Operation".  
2. Package  
Table 1 Package Drawing Codes  
Package Name  
HSOP-6  
Dimension  
Tape  
Reel  
Land  
FH006-A-P-SD  
FH006-A-C-SD  
FH006-A-R-SD  
FH006-A-L-SD  
3
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
3. Product name list  
Table 2  
Output Voltage  
2.0 V 1.0%  
2.5 V 1.0%  
2.7 V 1.0%  
2.8 V 1.0%  
2.85 V 1.0%  
3.0 V 1.0%  
3.2 V 1.0%  
3.3 V 1.0%  
3.5 V 1.0%  
3.7 V 1.0%  
3.9 V 1.0%  
4.0 V 1.0%  
5.0 V 1.0%  
8.0 V 1.0%  
11.5 V 1.0%  
12.5 V 1.0%  
15.0 V 1.0%  
HSOP-6  
S-1142D20I-E6T1U  
S-1142D25I-E6T1U  
S-1142D27I-E6T1U  
S-1142D28I-E6T1U  
S-1142D2JI-E6T1U  
S-1142D30I-E6T1U  
S-1142D32I-E6T1U  
S-1142D33I-E6T1U  
S-1142D35I-E6T1U  
S-1142D37I-E6T1U  
S-1142D39I-E6T1U  
S-1142D40I-E6T1U  
S-1142D50I-E6T1U  
S-1142D80I-E6T1U  
S-1142DB5I-E6T1U  
S-1142DC5I-E6T1U  
S-1142DF0I-E6T1U  
Remark Please contact our sales office for products with an output voltage  
other than those listed above or type C products.  
4
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
Pin Configuration  
1. HSOP-6  
Top view  
Table 3  
6
5
4
Pin No.  
Symbol  
VOUT  
Description  
Output voltage pin  
1
2
3
4
5
6
VSS  
GND pin  
ON / OFF  
NC*1  
ON / OFF pin  
No connection  
GND pin  
VSS  
VIN  
Input voltage pin  
1
2
3
*1. The NC pin is electrically open.  
The NC pin can be connected to the VIN pin or the VSS pin.  
Figure 2  
5
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
Absolute Maximum Ratings  
Table 4  
Absolute Maximum Rating  
(Ta = +25°C unless otherwise specified)  
Item  
Symbol  
Unit  
V
VIN  
VSS 0.3 to VSS + 60  
VSS 0.3 to VIN + 0.3  
VSS 0.3 to VIN + 0.3  
1900*1  
Input voltage  
VON / OFF  
VOUT  
PD  
V
Output voltage  
V
Power dissipation  
mW  
°C  
°C  
°C  
Junction temperature  
Operation ambient temperature  
Storage temperature  
Tj  
40 to +125  
40 to +85  
40 to +125  
Topr  
Tstg  
*1. When mounted on board  
[Mounted board]  
(1) Board size:  
50 mm × 50 mm × t1.6 mm  
(2) Board material: Glass epoxy resin (two layers)  
(3) Wiring ratio: 50%  
(4) Test conditions: When mounted on board (wind speed: 0 m/s)  
(5) Land pattern: Refer to the recommended land pattern (drawing code: FH006-A-L-SD)  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical  
damage. These values must therefore not be exceeded under any conditions.  
2400  
2000  
1600  
1200  
800  
400  
0
100  
150  
50  
0
Ambient temperature (Ta) [°C]  
Figure 3 Power Dissipation of Package (When Mounted on Board)  
Table 5  
Condition  
HSOP-6 (When mounted on board)  
Power Dissipation  
1900 mW  
Thermal Resistance Value (θj a)  
53°C/W  
6
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
Power dissipation of HSOP-6 (reference)  
Package power dissipation differs depending on the mounting conditions.  
The power dissipation characteristics under the following test conditions should be taken as reference values  
only.  
[Mounted board]  
(1) Board size:  
(2) Board material: Glass epoxy resin (two layers)  
(3) Wiring ratio: 90%  
(4) Test conditions: When mounted on board (wind speed: 0 m/s)  
(5) Land pattern: Refer to the recommended land pattern (drawing code: FH006-A-L-SD)  
50 mm × 50 mm × t1.6 mm  
2400  
2000  
1600  
1200  
800  
400  
0
100  
150  
50  
0
Ambient temperature (Ta) [°C]  
Figure 4 Power Dissipation of Package (When Mounted on Board)  
Table 6  
Condition  
HSOP-6 (When mounted on board)  
Power Dissipation (Reference)  
2000 mW  
Thermal Resistance Value (θj a)  
50°C/W  
7
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
Electrical Characteristics  
Table 7  
(Tj = 40°C to +125°C, Ta = 40°C to +85°C unless otherwise specified)  
Test  
Circuit  
Item  
Symbol  
VOUT(E)  
Condition  
Min.  
Typ.  
Max. Unit  
VOUT(S)  
× 0.97  
200*4  
VOUT(S)  
VIN = VOUT(S) + 1.0 V,  
IOUT = 30 mA, 40°C Tj ≤ +105°C  
VIN VOUT(S) + 2.0 V  
Output voltage*1  
Output current*2  
VOUT(S)  
V
1
× 1.03  
IOUT  
mA  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.0  
0.8  
0.6  
2.0 V VOUT(S) < 2.2 V  
2.2 V VOUT(S) < 2.4 V  
2.4 V VOUT(S) < 2.6 V  
2.6 V VOUT(S) < 3.0 V  
3.0 V VOUT(S) < 3.5 V  
3.5 V VOUT(S) < 4.0 V  
4.0 V VOUT(S) < 5.0 V  
5.0 V VOUT(S) < 7.0 V  
7.0 V VOUT(S) < 9.0 V  
9.0 V VOUT(S) 15.0 V  
2.0 V VOUT(S) < 2.2 V  
2.2 V VOUT(S) < 2.4 V  
2.4 V VOUT(S) < 2.6 V  
2.6 V VOUT(S) < 3.0 V  
3.0 V VOUT(S) < 3.5 V  
3.5 V VOUT(S) < 4.0 V  
4.0 V VOUT(S) < 5.0 V  
5.0 V VOUT(S) < 7.0 V  
7.0 V VOUT(S) < 9.0 V  
9.0 V VOUT(S) 15.0 V  
0.45  
0.35  
0.3  
0.27  
0.23  
0.2  
0.18  
1.12  
1.02  
0.92  
0.82  
0.72  
0.62  
0.55  
0.5  
IOUT = 100 mA  
Ta = +25°C  
Dropout voltage*3  
Vdrop  
IOUT = 200 mA  
Ta = +25°C  
0.45  
0.4  
ΔVOUT1  
ΔVIN VOUT  
Line regulation  
Load regulation  
0.05  
0.3  
%/V  
1
VOUT(S) + 1.0 V VIN 30 V, IOUT = 30 mA  
V
IN = VOUT(S) + 1.0 V, 2.0 V VOUT(S) < 5.1 V,  
20  
20  
20  
4.0  
40  
60  
80  
9.0  
mV  
mV  
mV  
μA  
1
1
1
2
0.1 mA IOUT 40 mA  
VIN = VOUT(S) + 1.0 V, 5.1 V VOUT(S) < 12.1 V,  
0.1 mA IOUT 40 mA  
VIN = VOUT(S) + 1.0 V, 12.1 VVOUT(S) 15.0 V,  
0.1 mA IOUT 40 mA  
ΔVOUT2  
Current consumption  
during operation  
V
IN = VOUT(S) + 1.0 V,  
ISS1  
ON / OFF pin = ON, no load  
Current consumption  
during power-off  
Input voltage  
ON / OFF pin input  
voltage "H"  
ON / OFF pin input  
voltage "L"  
ON / OFF pin input  
current "H"  
ON / OFF pin input  
current "L"  
VIN = VOUT(S) + 1.0 V,  
ISS2  
VIN  
0.1  
1.0  
50  
2
4
μA  
V
ON / OFF pin = OFF, no load  
3.0  
1.5  
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ,  
determined by VOUT output level  
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ,  
determined by VOUT output level  
VSH  
V
VSL  
ISH  
ISL  
0.3  
0.1  
0.1  
V
4
4
4
V
IN = VOUT(S) + 1.0 V, VON / OFF = VOUT(S) + 1.0 V  
IN = VOUT(S) + 1.0 V, VON / OFF = 0 V  
0.1  
0.1  
μA  
μA  
V
50  
45  
40  
35  
30  
dB  
dB  
dB  
dB  
dB  
5
5
5
5
5
2.0 V VOUT(S) < 2.3 V  
2.3 V VOUT(S) < 3.6 V  
3.6 V VOUT(S) < 6.1 V  
6.1 V VOUT(S) < 10.1 V  
10.1 V VOUT(S) 15.0 V  
VIN = VOUT(S) + 1.0 V,  
f = 100 Hz,  
Ripple rejection  
ΔVrip = 0.5 Vrms,  
|RR|  
I
OUT = 30 mA,  
Ta = +25°C  
VIN = VOUT(S) + 1.0 V, ON / OFF pin = ON,  
Short-circuit current Ishort  
80  
mA  
°C  
3
VOUT = 0 V, Ta = +25°C  
Thermal shutdown  
TSD  
Junction temperature  
Junction temperature  
150  
125  
detection temperature  
Thermal shutdown  
release temperature  
TSR  
°C  
8
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
*1.  
V
V
OUT(S): Set output voltage  
OUT(E): Actual output voltage  
The output voltage when fixing IOUT (= 30 mA) and inputting VOUT(S) + 1.0 V  
*2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output  
current.  
*3. Vdrop = VIN1 (VOUT3 × 0.98)  
V
OUT3 is the output voltage when VIN = VOUT(S) + 2.0 V, and IOUT = 100 mA or 200 mA.  
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing the input  
voltage.  
*4. The output current can be at least this value.  
Due to limitation of the package power dissipation, this value may not be satisfied. Attention should be paid to the  
power dissipation of the package when the output current is large.  
This specification is guaranteed by design.  
9
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
Test Circuits  
+
VOUT  
VSS  
VIN  
A
+
ON / OFF  
V
Set to ON  
Figure 5 Test Circuit 1  
+
A
VOUT  
VSS  
VIN  
ON / OFF  
Set to VIN or GND  
Figure 6 Test Circuit 2  
+
VOUT  
VSS  
A
VIN  
+
ON / OFF  
V
Set to ON  
Figure 7 Test Circuit 3  
VOUT  
VSS  
VIN  
+
+
ON / OFF  
A
V
RL  
Figure 8 Test Circuit 4  
VOUT  
VSS  
VIN  
+
ON / OFF  
V
RL  
Set to ON  
Figure 9 Test Circuit 5  
10  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
Standard Circuit  
Input  
Output  
VIN  
VOUT  
*1  
*2  
CIN  
ON / OFF  
CL  
VSS  
Single GND  
GND  
*1. CIN is a capacitor for stabilizing the input.  
*2. A ceramic capacitor of 0.1 μF or more can be used as CL.  
Figure 10  
Caution The above connection diagram and constants will not guarantee successful operation. Perform  
thorough evaluation using an actual application to set the constants.  
Condition of Application  
Input capacitor (CIN):  
0.1 μF or more  
Output capacitor (CL): 0.1 μF or more  
Caution Generally a series regulator may cause oscillation, depending on the selection of external parts.  
Confirm that no oscillation occurs in the application for which the above capacitors are used.  
Selection of Input and Output Capacitors (CIN, CL)  
The S-1142C/D Series requires an output capacitor between the VOUT pin and the VSS pin for phase compensation.  
Operation is stabilized by a ceramic capacitor with an output capacitance of 0.1 μF or more over the entire  
temperature range. When using an OS capacitor, a tantalum capacitor, or an aluminum electrolytic capacitor, the  
capacitance must be 0.1 μF or more.  
The values of output overshoot and undershoot, which are transient response characteristics, vary depending on the  
value of the output capacitor.  
The required value of capacitance for the input capacitor differs depending on the application.  
Set the value for input capacitor (CIN) and output capacitor (CL) as follows.  
CIN 0.1 μF  
CL 0.1 μF  
Caution Define the capacitance of CIN and CL by sufficient evaluation including the temperature  
characteristics under the actual usage conditions.  
11  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
Explanation of Terms  
1. Low dropout voltage regulator  
This voltage regulator has the low dropout voltage due to its built-in low on-resistance transistor.  
2. Output voltage (VOUT  
)
The accuracy of the output voltage is ensured at 3.0% under specified conditions of fixed input voltage*1, fixed  
output current, and fixed temperature.  
*1. Differs depending on the product.  
Caution If the above conditions change, the output voltage value may vary and exceed the accuracy  
range of the output voltage. Refer to "Electrical Characteristics" and "Characteristics  
(Typical Data)" for details.  
ΔVOUT1  
ΔVIN VOUT  
3. Line regulation  
Indicates the dependency of the output voltage against the input voltage. That is, the value shows how much the  
output voltage changes due to a change in the input voltage after fixing output current constant.  
4. Load regulation (ΔVOUT2  
)
Indicates the dependency of the output voltage against the output current. That is, the value shows how much the  
output voltage changes due to a change in the output current after fixing input voltage constant.  
5. Dropout voltage (Vdrop  
)
Indicates the difference between input voltage (VIN1) and the output voltage when; decreasing input voltage (VIN)  
gradually until the output voltage has dropped out to the value of 98% of output voltage (VOUT3), which is at VIN  
=
VOUT(S) + 2.0 V.  
Vdrop = VIN1 (VOUT3 × 0.98)  
12  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
Operation  
1. Basic operation  
Figure 11 shows the block diagram of the S-1142C/D Series.  
The error amplifier compares the reference voltage (Vref) with feedback voltage (Vfb), which is the output voltage  
resistance-divided by feedback resistors (Rs and Rf). It supplies the gate voltage necessary to maintain the  
constant output voltage which is not influenced by the input voltage and temperature change, to the output  
transistor.  
VIN  
*1  
Current  
supply  
Error amplifier  
VOUT  
+
Vref  
Rf  
Vfb  
Reference voltage  
circuit  
Rs  
VSS  
*1. Parasitic diode  
Figure 11  
2. Output transistor  
In the S-1142C/D Series, a low on-resistance P-channel MOS FET is used as the output transistor.  
Be sure that VOUT does not exceed VIN + 0.3 V to prevent the voltage regulator from being damaged due to  
reverse current flowing from the VOUT pin through a parasitic diode to the VIN pin, when the potential of VOUT  
became higher than VIN.  
13  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
3. ON / OFF pin  
This pin starts and stops the regulator.  
When the ON / OFF pin is set to OFF level, the entire internal circuit stops operating, and the built-in P-channel  
MOS FET output transistor between the VIN pin and the VOUT pin is turned off, reducing current consumption  
significantly. The VOUT pin is set to the VSS level by the internal dividing resistor of several MΩ between the  
VOUT pin and the VSS pin.  
Note that the current consumption increases when a voltage of 0.3 V to VIN 0.3 V is applied to the ON / OFF  
pin.  
The ON / OFF pin is configured as shown in Figure 12. Since the ON / OFF pin is neither pulled down nor pulled  
up internally, do not use it in the floating status. When not using the ON / OFF pin, connect it to the VSS pin in  
the product C type, and connect it to the VIN pin in the D type.  
Table 8  
Product Type  
ON / OFF Pin Internal Circuit VOUT Pin Voltage Current Consumption  
C
C
D
D
"L": ON  
"H": OFF  
"L": OFF  
"H": ON  
Operate  
Stop  
Set value  
ISS1  
ISS2  
ISS2  
ISS1  
V
V
SS level  
SS level  
Stop  
Operate  
Set value  
VIN  
ON / OFF  
VSS  
Figure 12  
4. Overcurrent protection circuit  
The S-1142C/D Series includes an overcurrent protection circuit having the characteristics shown in "1. Output  
voltage vs. Output current (When load current increases) (Ta = +25°C)" in "Characteristics (Typical  
Data)", in order to protect the output transistor against an excessive output current and short circuiting between  
the VOUT pin and the VSS pin. The current when the output pin is short-circuited (Ishort) is internally set at approx.  
80 mA typ., and the normal value is restored for the output voltage, if releasing a short circuit once.  
Caution This overcurrent protection circuit does not work as for thermal protection. If this IC long  
keeps short circuiting inside, pay attention to the conditions of input voltage and load  
current so that, under the usage conditions including short circuit, the loss of the IC will  
not exceed power dissipation of the package.  
14  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
5. Thermal shutdown circuit  
The S-1142C/D Series has a thermal shutdown circuit to protect the device from damage due to overheat. When  
the junction temperature rises to 150°C typ., the thermal shutdown circuit operates to stop regulating. When the  
junction temperature drops to 125°C typ., the thermal shutdown circuit is released to restart regulating.  
Due to self-heating of the S-1142C/D Series, if the thermal shutdown circuit starts operating, it stops regulating  
so that the output voltage drops. When regulation stops, the S-1142C/D Series does not itself generate heat and  
the IC’s temperature drops. When the temperature drops, the thermal shutdown circuit is released to restart  
regulating, thus this IC generates heat again. Repeating this procedure makes the waveform of the output voltage  
into a pulse-like form. Stop or restart of regulation continues unless decreasing either or both of the input voltage  
and the output current in order to reduce the internal power consumption, or decreasing the ambient temperature.  
Table 9  
Thermal Shutdown Circuit  
Operate: 150°C typ.*1  
Release: 125°C typ.*1  
VOUT Pin Voltage  
VSS level  
Set value  
*1. Junction temperature  
15  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
6. Overshoot of output voltage  
Overshoot of output voltage occurs depending on the condition such as the rising speed of input voltage (VIN).  
Overshoot voltage is the difference between the maximum value of output voltage generated by the fluctuation of  
V
IN and the actual output voltage (VOUT(E)) value.  
6. 1 At normal operation  
As shown in Figure 13, Vgs is the voltage difference between VIN and gate voltage of output driver.  
The error amplifier controls Vgs in order to keep the output voltage constant depending on the fluctuation of VIN  
and the output load.  
VIN  
Vgs  
Vref  
Output driver  
+
Output voltage  
Output  
capacitance  
Output load  
Figure 13 Circuit Diagram  
6. 2 Occurrence of overshoot  
If VIN voltage rises at a fast speed, Vgs may become large when gate voltage of output driver can not follow the  
speed of VIN. When Vgs becomes large, the current supplied from output driver is increased transiently. Thereby,  
output voltage rises, and then overshoot occurs.  
Note that overshoot voltage is greatly affected by the following use conditions or temperature, etc.  
When VIN rises in the range of 2.0 V to VOUT(E)  
When the rising speed of VIN is fast.  
When the output capacitance is small.  
When the output load is small.  
.
ΔV  
t
Input voltage (VIN)  
Rising speed of VIN =  
ΔV  
V
IN = 2.0 V to VOUT(E)  
Overshoot voltage  
Output voltage (VOUT(E)  
)
VOUT(E)  
IN = 2.0 V to VOUT(E)  
V
Rising time (t)  
Figure 14 VIN and Overshoot Voltage  
Caution Under the following conditions, overshoot voltage tends to become larger especially.  
When VIN rises from around 98% of VOUT(E)  
When the rising speed of VIN is 200 mV/μs or more.  
.
16  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
Precautions  
Wiring patterns for the VIN pin, the VOUT pin and GND should be designed so that the impedance is low. When  
mounting an output capacitor between the VOUT pin and the VSS pin (CL) and a capacitor for stabilizing the input  
between the VIN pin and the VSS pin (CIN), the distance from the capacitors to these pins should be as short as  
possible.  
Note that generally the output voltage may increase when a series regulator is used at low load current (0.1 mA or  
less).  
Note that generally the output voltage may increase due to the leakage current from an output driver when a series  
regulator is used at high temperature.  
Note that the output voltage may increase due to the leakage current from an output driver even if the ON / OFF  
pin is at OFF level when a series regulator is used at high temperature.  
Generally a series regulator may cause oscillation, depending on the selection of external parts. The following  
conditions are recommended for the S-1142C/D Series. However, be sure to perform sufficient evaluation under  
the actual usage conditions for selection, including evaluation of temperature characteristics. Refer to "6.  
Example of equivalent series resistance vs. Output current characteristics (Ta = +25°C)" in "Reference  
Data" for the equivalent series resistance (RESR) of the output capacitor.  
Input capacitor (CIN):  
Output capacitor (CL):  
0.1 μF or more  
0.1 μF or more  
The voltage regulator may oscillate when the impedance of the power supply is high and the input capacitance is  
small or an input capacitor is not connected.  
Sufficiently evaluate the output voltage fluctuations caused by the power supply or the load fluctuations with the  
actual device.  
Overshoot may occur in the output voltage momentarily if the voltage is rapidly raised at power-on or when the  
power supply fluctuates. Sufficiently evaluate the output voltage at power-on with the actual device.  
The application conditions for the input voltage, the output voltage, and the load current should not exceed the  
package power dissipation.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic  
protection circuit.  
In determining the output current, attention should be paid to the output current value specified in Table 7 in  
"Electrical Characteristics" and footnote *4 of the table.  
ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by  
products including this IC of patents owned by a third party.  
17  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
Characteristics (Typical Data)  
1. Output voltage vs. Output current (When load current increases) (Ta = +25°C)  
1. 1 VOUT = 2.0 V  
1. 2 VOUT = 5.0 V  
2.5  
6
13.5 V  
7.0 V  
13.5 V  
5
4
3
2
1
2.0  
1.5  
V
IN = 5.5 V  
VIN = 3.0 V  
4.0 V  
6.0 V  
1.0  
0.5  
0
0
0
100 200 300 400 500 600 700 800  
IOUT [mA]  
0
100 200 300 400 500 600 700 800  
IOUT [mA]  
1. 3 VOUT = 12.0 V  
14  
12  
10  
8
13.5 V  
Remark In determining the output current, attention should  
V
IN = 12.5 V  
be paid to the following.  
13.0 V  
6
1. The minimum output current value and  
footnote *4 of Table 7 in "Electrical  
Characteristics"  
4
2
2. Power dissipation of the package  
0
0
100 200 300 400 500 600 700 800  
IOUT [mA]  
2. Output voltage vs. Input voltage (Ta = +25°C)  
2. 1 VOUT = 2.0 V  
2. 2 VOUT = 5.0 V  
2.2  
5.2  
2.1  
2.0  
1.9  
5.1  
5.0  
4.9  
I
OUT = 1 mA  
I
OUT = 1 mA  
30 mA  
1.8  
1.7  
1.6  
1.5  
4.8  
4.7  
4.6  
4.5  
30 mA  
50 mA  
50 mA  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
VIN [V]  
VIN [V]  
2. 3 VOUT = 12.0 V  
12.4  
12.2  
12.0  
11.8  
I
OUT = 1 mA  
30 mA  
50 mA  
11.6  
11.4  
11.2  
11.0  
10  
15  
20  
25  
30  
VIN [V]  
18  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
3. Dropout voltage vs. Output current  
3. 1 VOUT = 2.0 V  
3. 2 VOUT = 5.0 V  
0.7  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Tj = +125C  
Tj = 125C  
25C  
+25C  
40C  
40C  
150 200  
0
0
0
50  
100  
150  
200  
250  
50  
100  
250  
IOUT [mA]  
I
OUT [mA]  
3. 3 VOUT = 12.0 V  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
Tj = 125C  
25C  
40C  
150 200  
0
50  
100  
250  
I
OUT [mA]  
4. Dropout voltage vs. Temperature  
4. 1 VOUT = 2.0 V  
4. 2 VOUT = 5.0 V  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT = 100 mA  
I
OUT = 100 mA  
10 mA  
10 mA  
0
40 25  
0
25  
50  
75 100 125  
40 25  
0
25  
50  
75 100 125  
Tj [C]  
Tj [C]  
4. 3 VOUT = 12.0 V  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
I
OUT = 100 mA  
10 mA  
0
40 25  
0
25  
50  
75 100 125  
Tj [C]  
19  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
5. Dropout voltage vs. Set output voltage (Tj = +25°C)  
1.2  
I
OUT = 200 mA  
100 mA  
30 mA  
1.0  
0.8  
0.6  
0.4  
0.2  
10 mA  
1 mA  
0
0
2
4
6
8
10 12 14  
VOUT(S) [V]  
6. Output voltage vs. Temperature  
6. 1 VOUT = 2.0 V  
6. 2 VOUT = 5.0 V  
V
IN = 3.0 V  
VIN = 6.0 V  
2.04  
5.2  
2.02  
2.00  
1.98  
1.96  
5.1  
5.0  
4.9  
4.8  
40 25  
0
25  
50  
75 100 125  
40 25  
0
25  
50  
75 100 125  
Tj [C]  
Tj [C]  
6. 3 VOUT = 12.0 V  
V
IN = 13.0 V  
12.4  
12.2  
12.0  
11.8  
11.6  
40 25  
0
25  
50  
75 100 125  
Tj [C]  
20  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
7. Current consumption during operation vs. Input voltage (When ON / OFF pin is ON, no load)  
7. 1 VOUT = 2.0 V  
7. 2 VOUT = 5.0 V  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
Tj = 125C  
25C  
Tj = 125C  
25C  
40C  
40C  
6
6
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
V
IN [V]  
V
IN [V]  
7. 3 VOUT = 12.0 V  
16  
14  
12  
10  
8
Tj = 125C  
25C  
40C  
6
4
2
0
0
5
10  
15  
20  
25  
30  
V
IN [V]  
8. Current consumption during operation vs. Temperature  
8. 1 VOUT = 2.0 V  
8. 2 VOUT = 5.0 V  
V
IN = 3.0 V  
VIN = 6.0 V  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.5  
40 25  
0
25  
50  
75 100 125  
40 25  
0
25  
50  
75 100 125  
Tj [C]  
Tj [C]  
8. 3  
V
OUT = 12.0 V  
V
IN = 13.0 V  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
40 25  
0
25  
50  
75 100 125  
Tj [C]  
21  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
9. Current consumption during operation vs. Output current (Ta = +25°C)  
9. 1 VOUT = 2.0 V  
9. 2 VOUT = 5.0 V  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
V
IN = 13.5 V  
3.0 V  
V
IN = 13.5 V  
6.0 V  
60  
60  
40  
40  
20  
20  
0
0
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
IOUT [mA]  
IOUT [mA]  
9. 3 VOUT = 12.0 V  
160  
140  
120  
100  
80  
V
IN = 20.0 V  
13.0 V  
60  
40  
20  
0
0
25  
50  
75  
100 125 150  
IOUT [mA]  
10. Output current vs. Input voltage*1  
10. 1 VOUT = 3.3 V  
10. 2 VOUT = 5.0 V  
250  
250  
+25C  
+25C  
200  
150  
200  
150  
Ta = +85C  
Ta = +85C  
100  
100  
50  
0
50  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
VIN [V]  
V
IN [V]  
*1. When mounted on board  
[Mounted board]  
(1) Board size:  
50 mm × 50 mm × t1.6 mm  
(2) Board material: Glass epoxy resin (two layers)  
(3) Wiring ratio:  
Surface approx. 75%, reverse side approx. 90%  
(4) Through hole:  
Diameter 0.5 mm × 24  
22  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
11. Ripple rejection (Ta = +25°C)  
11. 1 VOUT = 2.0 V  
11. 2  
VOUT = 5.0 V  
VIN = 13.5 V, CL = 0.1 μF  
VIN = 13.5 V, CL = 0.1 μF  
80  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
I
OUT = 1 mA  
I
OUT = 1 mA  
30 mA  
30 mA  
100 mA  
100 mA  
0
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
Frequency [Hz]  
11. 3 VOUT = 12.0 V  
VIN = 13.5 V, CL = 0.1 μF  
60  
50  
40  
30  
20  
10  
I
OUT = 1 mA  
30 mA  
100 mA  
0
10  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
23  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
Reference Data  
1. Characteristics of input transient response (Ta = +25°C)  
1. 1 VOUT = 2.0 V  
IOUT = 30 mA, CIN = 0.1  
2.5  
1. 2 VOUT = 5.0 V  
IOUT = 30 mA, CIN = 0.1  
μ
F, VIN = 11.5 V  
13.5 V, tr = tf = 5.0  
μ
s
μ
F, VIN = 11.5 V  
13.5 V, tr = tf = 5.0 μs  
14  
6.0  
14  
2.4  
13  
12  
11  
10  
9
5.8  
13  
12  
11  
10  
9
VIN  
VIN  
2.3  
5.6  
CL  
= 10 μF  
22 μF  
2.2  
5.4  
CL  
= 10 μF  
22 μF  
VOUT  
VOUT  
2.1  
2.0  
1.9  
5.2  
5.0  
4.8  
8
8
200  
0
200 400 600 800 1000 1200  
200  
0
200 400 600 800 1000 1200  
t [μs]  
t [μs]  
1. 3 VOUT = 12.0 V  
IOUT = 30 mA, CIN = 0.1  
μ
F, VIN = 13.5 V  
15.5 V, tr = tf = 5.0 μs  
13.2  
16  
15  
14  
13  
12  
11  
10  
9
13.0  
12.8  
12.6  
12.4  
12.2  
12.0  
11.8  
V
IN  
C
L
= 10 μF  
22 μF  
VOUT  
200  
0
200 400 600 800 1000 1200  
t [μs]  
2. Characteristics of load transient response (Ta = +25°C)  
2. 1 VOUT = 2.0 V  
2. 2  
VOUT = 5.0 V  
VIN = 13.5 V, CIN = 0.1 μF, IOUT = 50 mA 100 mA  
VIN = 13.5 V, CIN = 0.1 μF, IOUT = 50 mA 100 mA  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
150  
100  
50  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
150  
100  
50  
I
OUT  
I
OUT  
0
0
C
L
= 10 μF  
C = 10 μF  
L
V
OUT  
V
OUT  
50  
50  
100  
150  
100  
150  
22 μF  
22 μF  
200  
0
200 400 600 800 1000 1200  
200  
0
200 400 600 800 1000 1200  
t [μs]  
t [μs]  
2. 3 VOUT = 12.0 V  
VIN = 13.5 V, CIN = 0.1 μF, IOUT = 50 mA 100 mA  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
150  
100  
50  
I
OUT  
0
C = 22 μF  
L
V
OUT  
50  
100  
150  
10 μF  
200  
0
200 400 600 800 1000 1200  
t [μs]  
24  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
3. Transient response characteristics of ON / OFF pin (Ta = +25°C)  
3. 1 VOUT = 3.3 V  
VIN = 13.5 V, CL = 10 μF, CIN = 0.1 μF,  
3. 2 VOUT = 5.0 V  
VIN = 13.5 V, CL = 10 μF, CIN = 0.1 μF,  
OUT = 100 mA, VON / OFF = 0 V 13.5 V  
I
OUT = 100 mA, VON / OFF = 0 V 13.5 V  
18  
I
18  
12  
6
15  
12  
9
15  
12  
9
12  
6
V
ON/OFF  
V
ON/OFF  
6
6
0
0
3
3
6  
6  
V
OUT  
VOUT  
12  
18  
2000  
12  
18  
2000  
0
0
3  
500  
3  
500  
0
500  
1000 1500  
0
500  
1000 1500  
t [μs]  
t [μs]  
4. Load transient response characteristics dependent on capacitance (Ta = +25°C)  
4. 1 VOUT = 5.0 V  
VIN = 13.5 V, CIN = 0.1 μF, IOUT = 50 mA 100 mA  
VIN = 13.5 V, CIN = 0.1 μF, IOUT = 100 mA 50 mA  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
0
20  
40  
60  
[μF]  
80  
100  
0
20  
40  
60  
[μF]  
80  
100  
C
L
C
L
5. Input transient response characteristics dependent on capacitance (Ta = +25°C)  
5. 1 VOUT = 5.0 V  
VIN = 7.0 V  
0.7  
12.0 V, tr = 5.0  
μ
s, CIN = 0.1  
μ
F, IOUT = 30 mA  
VIN = 12.0 V  
0.7  
7.0 V, tr = 5.0  
μ
s, CIN = 0.1 μF, IOUT = 30 mA  
0.6  
0.6  
0.5  
0.5  
0.4  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
0
0
20  
40  
60  
80  
100  
20  
40  
60  
80  
100  
CL [μF]  
CL [μF]  
25  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
S-1142C/D Series  
Rev.1.3_00  
6. Example of equivalent series resistance vs. Output current characteristics (Ta = +25°C)  
CIN = CL = 0.1 μF  
100  
VIN  
VOUT  
CL  
RESR  
CIN  
S-1142  
C/D Series  
Stable  
*1  
ON / OFF  
0
VSS  
0.1  
200  
IOUT [mA]  
*1. CL: TDK Corporation C3216X8R2A104K (0.1 μF)  
Figure 15  
Figure 16  
26  
HIGH-WITHSTAND VOLTAGE LOW CURRENT CONSUMPTION LOW DROPOUT CMOS VOLTAGE REGULATOR  
Rev.1.3_00  
S-1142C/D Series  
Marking Specification  
1. HSOP-6  
Top view  
(1) to (5):  
(6):  
Product name: S1142 (Fixed)  
Product type  
6
5
4
(7), (8):  
(9):  
(10) to (16):  
Value of output voltage  
Operation temperature  
Lot number  
(1) (2) (3) (4) (5) (6)  
(7) (8) (9) (10) (11) (12)  
(13) (14) (15) (16)  
1
2
3
27  
5.02±0.2  
5
6
4
1
3
2
0.20±0.05  
1.67±0.05  
0.4±0.05  
1.91  
1.91  
No. FH006-A-P-SD-2.1  
TITLE  
HSOP6-A-PKG Dimensions  
FH006-A-P-SD-2.1  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
4.0±0.1(10 pitches:40.0±0.2)  
2.0±0.05  
ø1.55±0.05  
0.3±0.05  
8.0±0.1  
ø2.0±0.05  
2.1±0.1  
6.7±0.1  
6
4
1
3
Feed direction  
No. FH006-A-C-SD-2.0  
HSOP6-A-Carrier Tape  
FH006-A-C-SD-2.0  
TITLE  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
60°  
2±0.5  
13.5±0.5  
Enlarged drawing in the central part  
ø21±0.8  
2±0.5  
ø13±0.2  
No. FH006-A-R-SD-1.0  
HSOP6-A-Reel  
FH006-A-R-SD-1.0  
TITLE  
No.  
QTY.  
2,000  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
2.03  
0.76  
1.91  
1.91  
No. FH006-A-L-SD-2.0  
HSOP6-A  
-Land Recommendation  
TITLE  
No.  
FH006-A-L-SD-2.0  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application  
circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
ABLIC Inc. is not responsible for damages caused by the reasons other than the products described herein  
(hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use  
of the information described herein.  
3. ABLIC Inc. is not responsible for damages caused by the incorrect information described herein.  
4. Be careful to use the products within their specified ranges. Pay special attention to the absolute maximum ratings,  
operation voltage range and electrical characteristics, etc.  
ABLIC Inc. is not responsible for damages caused by failures and / or accidents, etc. that occur due to the use of the  
products outside their specified ranges.  
5. When using the products, confirm their applications, and the laws and regulations of the region or country where they  
are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related  
laws, and follow the required procedures.  
7. The products must not be used or provided (exported) for the purposes of the development of weapons of mass  
destruction or military use. ABLIC Inc. is not responsible for any provision (export) to those whose purpose is to  
develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use.  
8. The products are not designed to be used as part of any device or equipment that may affect the human body, human  
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control  
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,  
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do  
not apply the products to the above listed devices and equipments without prior written permission by ABLIC Inc.  
Especially, the products cannot be used for life support devices, devices implanted in the human body and devices  
that directly affect human life, etc.  
Prior consultation with our sales office is required when considering the above uses.  
ABLIC Inc. is not responsible for damages caused by unauthorized or unspecified use of our products.  
9. Semiconductor products may fail or malfunction with some probability.  
The user of the products should therefore take responsibility to give thorough consideration to safety design including  
redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or  
death, fires and social damage, etc. that may ensue from the products' failure or malfunction.  
The entire system must be sufficiently evaluated and applied on customer's own responsibility.  
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the  
product design by the customer depending on the intended use.  
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy  
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be  
careful when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.  
13. The information described herein contains copyright information and know-how of ABLIC Inc.  
The information described herein does not convey any license under any intellectual property rights or any other  
rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any  
part of this document described herein for the purpose of disclosing it to a third-party without the express permission  
of ABLIC Inc. is strictly prohibited.  
14. For more details on the information described herein, contact our sales office.  
2.2-2018.06  
www.ablic.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY