S-1740A18-A6T2U4 [ABLIC]

5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT;
S-1740A18-A6T2U4
型号: S-1740A18-A6T2U4
厂家: ABLIC    ABLIC
描述:

5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT

输入元件 输出元件
文件: 总47页 (文件大小:1622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-1740/1741 Series  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR  
WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
www.ablic.com  
© ABLIC Inc., 2016-2018  
Rev.1.3_00  
The S-1740/1741 Series, developed using CMOS technology, is a positive voltage regulator with the supply voltage divided  
output, which features super low current consumption and low dropout voltage.  
The regulator block has low current consumption of 0.35 μA typ. and high-accuracy output voltage of 1.0%.  
The function of the supply voltage divided output is prepared in the S-1740/1741 Series. The supply voltage divided output is  
a function that divides the input voltage (VIN) of the regulator into VIN/2 or VIN/3 and outputs the voltage. For example, this  
function makes it possible that the IC connects to a low voltage microcontroller A/D converter directly and the microcontroller  
monitors a battery voltage.  
Features  
Regulator block  
Output voltage:  
Input voltage:  
VOUT = 1.0 V to 3.5 V, selectable in 0.05 V step  
IN = 1.5 V to 5.5 V  
V
Output voltage accuracy:  
Dropout voltage:  
1.0% (1.0 V to 1.45 V output product: 15 mV) (Ta = +25°C)  
20 mV typ. (2.5 V output product, at IOUT = 10 mA) (Ta = +25°C)  
Current consumption during operation:  
Output current:  
Input capacitor:  
Output capacitor:  
Built-in overcurrent protection circuit:  
ISS1 = 0.35 μA typ. (Ta = +25°C)  
Possible to output 100 mA ( at VIN VOUT(S) + 1.0 V)*1  
A ceramic capacitor can be used. (1.0 μF or more)  
A ceramic capacitor can be used. (1.0 μF to 100 μF)  
Limits overcurrent of output transistor.  
Supply voltage divider block  
Output voltage:  
V
V
PMOUT = VIN/2 (S-1740 Series)  
PMOUT = VIN/3 (S-1741 Series)  
Current consumption during operation  
:
ISS1P = 0.15 μA typ. (Ta = +25°C)  
Output capacitor:  
A ceramic capacitor can be used. (100 nF to 220 nF)  
Built-in enable circuit:  
Ensures long battery life.  
Overall  
Operation temperature range:  
Lead-free (Sn 100%), halogen-free  
Ta = 40°C to +85°C  
*1. Please make sure that the loss of the IC will not exceed the power dissipation when the output current is large.  
Applications  
Constant-voltage power supply and battery voltage monitoring support for battery-powered device  
Constant-voltage power supply for portable communication device, digital camera, and digital audio player  
Constant-voltage power supply for home electric appliance  
Packages  
SOT-23-5  
HSNT-6(1212)  
HSNT-4(1010)  
1
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Block Diagram  
1. S-1740/1741 Series A / C type (SOT-23-5, HSNT-6(1212))  
*1  
VOUT  
VIN  
SW  
Overcurrent  
protection circuit  
+
PMOUT  
+
PMEN  
VSS  
Enable circuit  
Reference  
voltage circuit  
Product Type  
Output Voltage (VPMOUT  
VIN/2  
)
PMEN Pin Logic  
Active "H"  
S-1740 Series A type  
S-1740 Series C type  
S-1741 Series A type  
S-1741 Series C type  
Active "L"  
Active "H"  
VIN/3  
Active "L"  
*1. Parasitic diode  
Figure 1  
2
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
2. S-1740/1741 Series G type (HSNT-4(1010))  
*1  
VOUT  
VIN  
Overcurrent  
protection circuit  
+
PMOUT  
+
Reference  
voltage circuit  
VSS  
Product Type  
Output Voltage (VPMOUT  
)
PMEN Pin Logic  
Without PMEN pin  
S-1740 Series G type  
S-1741 Series G type  
VIN/2  
VIN/3  
*1. Parasitic diode  
Figure 2  
3
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Product Name Structure  
Users can select supply voltage divider block output voltage, product type, regulator block output voltage, and  
package type for the S-1740/1741 Series. Refer to "1. Product name" regarding the contents of product name, "2.  
Function list of product type" regarding the product type, "3. Packages" regarding the package drawings and "4.  
Product name list" for details of product names.  
1. Product name  
S-174x  
x
xx  
-
xxxx  
U
4
Environmental code  
U:  
Lead-free (Sn 100%), halogen-free  
Package abbreviation and IC packing specifications*1  
M5T1: SOT-23-5, Tape  
A6T2: HSNT-6(1212), Tape  
A4T2: HSNT-4(1010), Tape*2  
Regulator block output voltage*3  
10 to 35  
(e.g., when the output voltage is 1.0 V, it is expressed as 10.)  
Product type*4  
A, C, G  
Supply voltage divider block output voltage*4  
0: VIN/2  
1: VIN/3  
*1. Refer to the tape drawing.  
*2. Only S-1740/1741 Series G type  
*2. Contact our sales office when the product which has 0.05 V step is necessary.  
*3. Refer to "2. Function list of product type" and "2. 2 PMEN pin" in "2. Supply voltage divider  
block" in "Operation".  
2. Function list of product type  
Table 1  
Product Type  
Output Voltage (VPMOUT  
)
PMEN Pin Logic  
Active "H"  
Package  
S-1740 Series A type  
S-1740 Series C type  
S-1740 Series G type  
S-1741 Series A type  
S-1741 Series C type  
S-1741 Series G type  
HSNT-6(1212),  
SOT-23-5  
VIN/2  
Active "L"  
Without PMEN pin  
Active "H"  
HSNT-4(1010)  
HSNT-6(1212),  
SOT-23-5  
VIN/3  
Active "L"  
Without PMEN pin  
HSNT-4(1010)  
3. Packages  
Table 2 Package Drawing Codes  
Package Name  
SOT-23-5  
Dimension  
Tape  
Reel  
Land  
MP005-A-P-SD  
PM006-A-P-SD  
PL004-A-P-SD  
MP005-A-C-SD  
PM006-A-C-SD  
PL004-A-C-SD  
MP005-A-R-SD  
PM006-A-R-SD  
PL004-A-R-SD  
HSNT-6(1212)  
HSNT-4(1010)  
PM006-A-L-SD  
PL004-A-L-SD  
4
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
4. Product name list  
4. 1 S-1740 Series  
4. 1. 1 A type  
PMEN pin logic:  
Active "H"  
Output Voltage (VPMOUT):  
VIN/2  
Table 3  
SOT-23-5  
Output Voltage (VOUT  
)
HSNT-6(1212)  
1.0 V 15 mV  
1.7 V 1.0%  
1.8 V 1.0%  
2.0 V 1.0%  
2.1 V 1.0%  
3.0 V 1.0%  
S-1740A10-M5T1U4  
S-1740A17-M5T1U4  
S-1740A18-M5T1U4  
S-1740A20-M5T1U4  
S-1740A21-M5T1U4  
S-1740A30-M5T1U4  
S-1740A10-A6T2U4  
S-1740A17-A6T2U4  
S-1740A18-A6T2U4  
S-1740A20-A6T2U4  
S-1740A21-A6T2U4  
S-1740A30-A6T2U4  
Remark Please contact our sales office for products with specifications other than the above.  
4. 1. 2 C type  
PMEN pin logic:  
Active "L"  
Output Voltage (VPMOUT):  
VIN/2  
Table 4  
SOT-23-5  
Output Voltage (VOUT  
1.0 V 15 mV  
1.7 V 1.0%  
)
HSNT-6(1212)  
S-1740C10-M5T1U4  
S-1740C17-M5T1U4  
S-1740C18-M5T1U4  
S-1740C20-M5T1U4  
S-1740C21-M5T1U4  
S-1740C30-M5T1U4  
S-1740C10-A6T2U4  
S-1740C17-A6T2U4  
S-1740C18-A6T2U4  
S-1740C20-A6T2U4  
S-1740C21-A6T2U4  
S-1740C30-A6T2U4  
1.8 V 1.0%  
2.0 V 1.0%  
2.1 V 1.0%  
3.0 V 1.0%  
Remark Please contact our sales office for products with specifications other than the above.  
4. 1. 3 G type  
PMEN pin logic:  
Without PMEN pin  
Output Voltage (VPMOUT):  
VIN/2  
Table 5  
Output Voltage (VOUT  
1.0 V 15 mV  
)
HSNT-4(1010)  
S-1740G10-A4T2U4  
S-1740G17-A4T2U4  
S-1740G18-A4T2U4  
S-1740G20-A4T2U4  
S-1740G21-A4T2U4  
S-1740G30-A4T2U4  
1.7 V 1.0%  
1.8 V 1.0%  
2.0 V 1.0%  
2.1 V 1.0%  
3.0 V 1.0%  
Remark Please contact our sales office for products with specifications other than the above.  
5
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
4. 2 S-1741 Series  
4. 2. 1 A type  
PMEN pin logic:  
Active "H"  
Output Voltage (VPMOUT):  
VIN/3  
Table 6  
SOT-23-5  
Output Voltage (VOUT  
)
HSNT-6(1212)  
1.0 V 15 mV  
1.7 V 1.0%  
1.8 V 1.0%  
2.0 V 1.0%  
2.1 V 1.0%  
3.0 V 1.0%  
S-1741A10-M5T1U4  
S-1741A17-M5T1U4  
S-1741A18-M5T1U4  
S-1741A20-M5T1U4  
S-1741A21-M5T1U4  
S-1741A30-M5T1U4  
S-1741A10-A6T2U4  
S-1741A17-A6T2U4  
S-1741A18-A6T2U4  
S-1741A20-A6T2U4  
S-1741A21-A6T2U4  
S-1741A30-A6T2U4  
Remark Please contact our sales office for products with specifications other than the above.  
4. 2. 2 C type  
PMEN pin logic:  
Active "L"  
Output Voltage (VPMOUT):  
VIN/3  
Table 7  
SOT-23-5  
Output Voltage (VOUT  
1.0 V 15 mV  
1.7 V 1.0%  
)
HSNT-6(1212)  
S-1741C10-M5T1U4  
S-1741C17-M5T1U4  
S-1741C18-M5T1U4  
S-1741C20-M5T1U4  
S-1741C21-M5T1U4  
S-1741C30-M5T1U4  
S-1741C10-A6T2U4  
S-1741C17-A6T2U4  
S-1741C18-A6T2U4  
S-1741C20-A6T2U4  
S-1741C21-A6T2U4  
S-1741C30-A6T2U4  
1.8 V 1.0%  
2.0 V 1.0%  
2.1 V 1.0%  
3.0 V 1.0%  
Remark Please contact our sales office for products with specifications other than the above.  
4. 2. 3 G type  
PMEN pin logic:  
Without PMEN pin  
Output Voltage (VPMOUT):  
VIN/3  
Table 8  
Output Voltage (VOUT  
1.0 V 15 mV  
)
HSNT-4(1010)  
S-1741G10-A4T2U4  
S-1741G17-A4T2U4  
S-1741G18-A4T2U4  
S-1741G20-A4T2U4  
S-1741G21-A4T2U4  
S-1741G30-A4T2U4  
1.7 V 1.0%  
1.8 V 1.0%  
2.0 V 1.0%  
2.1 V 1.0%  
3.0 V 1.0%  
Remark Please contact our sales office for products with specifications other than the above.  
6
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Pin Configurations  
1. SOT-23-5  
Table 9 S-1740/1741 Series A / C type  
Symbol Description  
VIN  
Top view  
Pin No.  
1
2
3
4
5
Input voltage pin  
GND pin  
5
4
VSS  
PMEN  
PMOUT  
VOUT  
Supply voltage divided output enable pin  
Supply voltage divided output pin  
Output voltage pin  
1
2
3
Figure 3  
2. HSNT-6(1212)  
Table 10 S-1740/1741 Series A / C type  
Symbol Description  
VOUT Output voltage pin  
Pin No.  
Top view  
1
2
3
4
5
6
1
2
3
6
5
4
VSS  
GND pin  
PMOUT  
PMEN  
NC*2  
Supply voltage divided output pin  
Supply voltage divided output enable pin  
No connection  
Bottom view  
VIN  
Input voltage pin  
6
5
4
1
2
3
*1  
Figure 4  
*1. Connect the heat sink of backside at shadowed area to the board, and set electric potential GND.  
However, do not use it as the function of electrode.  
*2. The NC pin is electrically open.  
The NC pin can be connected to the VIN pin or the VSS pin.  
3. HSNT-4(1010)  
Table 11 S-1740/1741 Series G type  
Top view  
Pin No.  
Symbol  
VOUT  
Description  
Output voltage pin  
1
2
3
4
1
2
4
3
VSS  
GND pin  
PMOUT  
VIN  
Supply voltage divided output pin  
Input voltage pin  
Bottom view  
4
3
1
2
*1  
Figure 5  
*1. Connect the heat sink of backside at shadowed area to the board, and set electric potential GND.  
However, do not use it as the function of electrode.  
7
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Absolute Maximum Ratings  
Table 12  
(Ta = +25°C unless otherwise specified)  
Item  
Symbol  
VIN  
Absolute Maximum Rating  
VSS 0.3 to VSS + 6.0  
VSS 0.3 to VSS + 6.0  
VSS 0.3 to VIN + 0.3  
VSS 0.3 to VIN + 0.3  
120  
Unit  
V
Regulator block  
Input voltage  
Supply voltage divider block  
VPMEN  
VOUT  
V
Regulator block  
V
Output voltage  
Output current  
Supply voltage divider block  
VPMOUT  
IOUT  
V
mA  
°C  
°C  
Operation ambient temperature  
Storage temperature  
Topr  
40 to +85  
40 to +125  
Tstg  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical  
damage. These values must therefore not be exceeded under any conditions.  
Thermal Resistance Value  
Table 13  
Item  
Symbol  
Condition  
Board A  
Min.  
Typ.  
192  
160  
234  
193  
378  
317  
Max.  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Board B  
Board C  
Board D  
Board E  
Board A  
Board B  
Board C  
Board D  
Board E  
Board A  
Board B  
Board C  
Board D  
Board E  
SOT-23-5  
Junction-to-ambient thermal resistance*1 θJA  
HSNT-6(1212)  
HSNT-4(1010)  
*1. Test environment: compliance with JEDEC STANDARD JESD51-2A  
Remark Refer to "Power Dissipation" and "Test Board" for details.  
8
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Electrical Characteristics  
1. Regulator block  
Table 14  
(Ta = +25°C unless otherwise specified)  
Test  
Circuit  
Item  
Symbol  
Condition  
1.0 V  
Min.  
Typ.  
Max.  
Unit  
VOUT(S)  
0.015  
VOUT(S)  
VOUT(S)  
0.015  
VOUT(S)  
VOUT(S) < 1.5 V  
VOUT(S) 3.5 V  
VOUT(S)  
VOUT(S)  
V
1
+
V
IN = VOUT(S)  
+ 1.0 V,  
Output voltage*1  
Output current*2  
VOUT(E)  
IOUT = 10 mA  
1.5 V  
V
1
×
0.99  
×
1.01  
IOUT  
VIN  
VOUT(S)  
+
1.0 V  
100*5  
0.50  
0.40  
0.30  
0.20  
0.10  
mA  
V
V
V
V
V
V
V
V
V
V
V
V
3
1
1
1
1
1
1
1
1
1
1
1
1
1.0 V  
1.1 V  
1.2 V  
1.3 V  
1.4 V  
1.5 V  
1.7 V  
1.8 V  
2.0 V  
2.5 V  
2.8 V  
3.0 V  
VOUT(S) < 1.1 V  
VOUT(S) < 1.2 V  
VOUT(S) < 1.3 V  
VOUT(S) < 1.4 V  
VOUT(S) < 1.5 V  
VOUT(S) < 1.7 V  
VOUT(S) < 1.8 V  
VOUT(S) < 2.0 V  
VOUT(S) < 2.5 V  
VOUT(S) < 2.8 V  
VOUT(S) < 3.0 V  
0.050  
0.040  
0.040  
0.030  
0.020  
0.019  
0.018  
0.080  
0.060  
0.050  
0.040  
0.030  
0.021  
0.020  
Dropout voltage*3  
Vdrop  
IOUT = 10 mA  
VOUT(S)  
3.5 V  
Δ
VOUT1  
Line regulation  
Load regulation  
VOUT(S) + 0.5 V VIN 5.5 V, IOUT = 10 mA  
0.05  
0.2  
%/V  
mV  
1
Δ
Δ
VIN  
VOUT  
VOUT2  
VIN = VOUT(S)  
VIN = VOUT(S)  
+
+
1.0 V, 1  
μA IOUT 50 mA  
20  
40  
1
1
Δ
Ta  
VOUT  
VOUT  
Output voltage  
1.0 V, IOUT = 10 mA,  
130  
ppm/°C  
temperature coefficient*4  
40°C Ta ≤ +85°C  
Δ
Current consumption  
during operation  
ISS1  
VIN = VOUT(S)  
+
1.0 V, no load  
0.35  
0.53  
μ
A
2
Input voltage  
VIN  
1.5  
5.5  
V
Short-circuit current  
Ishort  
VIN = VOUT(S)  
+
1.0 V, VOUT = 0 V  
60  
mA  
3
*1. VOUT(S): Set output voltage  
VOUT(E): Actual output voltage  
Output voltage when fixing IOUT (= 10 mA) and inputting VOUT(S) + 1.0 V  
*2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current.  
*3. Vdrop = VIN1 (VOUT3 × 0.98)  
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing the input  
voltage.  
VOUT3 is the output voltage when VIN = VOUT(S) + 1.0 V and IOUT = 10 mA.  
*4. A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.  
ΔVOUT  
ΔTa  
ΔVOUT  
ΔTaVOUT  
mV/°C *1 = VOUT(S) V *2  
×
ppm/°C *3 ÷ 1000  
[ ]  
[
]
[ ]  
*1. Change in temperature of output voltage  
*2. Set output voltage  
*3. Output voltage temperature coefficient  
*5. Due to limitation of the power dissipation, this value may not be satisfied. Attention should be paid to the power  
dissipation when the output current is large.  
This specification is guaranteed by design.  
9
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
2. Supply voltage divider block  
Table 15  
(Ta = +25°C unless otherwise specified)  
Test  
Circuit  
Item  
Output voltage*1  
Symbol  
VPMOUT  
Condition  
Min.  
Typ.  
Max.  
Unit  
S-1740 Series  
S-1741 Series  
VIN/2  
10  
V
V
4
4
4
4
V
IN = 3.6 V,  
(S)  
10 IPMOUT  
μ
A
10 μA  
VIN/3  
Load current  
IPMOUT  
VPOF  
RPS  
VIN = 3.6 V  
VIN = 3.6 V,  
VIN = 3.6 V,  
10  
30  
μA  
mV  
Output offset voltage  
Output impedance  
10  
10  
μ
μ
A
A
IPMOUT  
IPMOUT  
10  
10  
μ
μ
A
A
30  
1000  
Ω
S-1740/1741 Series A / C type,  
Set-up time  
tPU  
5
10  
ms  
4
V
IN = 3.6 V, CPM = 220 nF, no load  
IN = 3.6 V, when supply voltage divided output is  
Current consumption  
during operation*2  
Input voltage  
V
ISS1P  
VIN  
0.15  
0.23  
5.5  
μ
A
5
6
enabled, no load  
1.5  
1.0  
V
VIN = 3.6 V, determined by  
PMEN pin input voltage "H"  
PMEN pin input voltage "L"  
VPSH  
V
V
VPMOUT output level  
IN = 3.6 V, determined by  
V
S-1740/1741  
VPSL  
0.25  
6
VPMOUT output level  
Series A / C type  
PMEN pin input current "H"  
PMEN pin input current "L"  
IPSH  
IPSL  
VIN = 3.6 V, VPMEN = VIN  
VIN = 3.6 V, VPMEN = 0 V  
0.1  
0.1  
0.1  
μ
μ
A
A
6
6
0.1  
S-1740/1741 Series A / C type,  
VIN = 3.6 V, when supply voltage divided output is  
disabled, VPMOUT = 0.1 V  
Discharge shunt resistance  
during power-off  
RPLOW  
2.8  
k
Ω
7
*1. VPMOUT(S): Set output voltage  
VPMOUT(S) + VPOF: Actual output voltage  
*2. Increased current value from the current consumption during operation (ISS1) of the regulator block when the supply  
voltage divided output is enabled.  
10  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Test Circuits  
+
VOUT  
VIN  
A
+
PMEN*1  
PMOUT  
VSS  
V
Set to Disable  
Figure 6 Test Circuit 1  
+
A
VOUT  
VIN  
PMEN*1  
PMOUT  
VSS  
Set to Disable  
Figure 7 Test Circuit 2  
+
VOUT  
A
VIN  
+
PMEN*1  
PMOUT  
VSS  
V
Set to Disable  
Figure 8 Test Circuit 3  
VIN  
VOUT  
+
PMEN*1  
A
PMOUT  
VSS  
+
V
Set to Enable  
Figure 9 Test Circuit 4  
+
A
VIN  
VOUT  
PMEN*1  
PMOUT  
VSS  
Set to Enable  
Figure 10 Test Circuit 5  
*1. Only S-1740/1741 Series A / C type  
11  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
VOUT  
VIN  
+
PMEN*1  
PMOUT  
VSS  
A
+
V
Figure 11 Test Circuit 6  
VOUT  
VIN  
+
PMEN*1  
PMOUT  
VSS  
A
+
V
Set to Enable  
Figure 12 Test Circuit 7  
*1. Only S-1740/1741 Series A / C type  
Standard Circuit  
Input  
CIN  
Output for regulator block  
VIN  
VOUT  
*2  
CL  
*1  
PMEN*4 PMOUT  
VSS  
Output for supply voltage  
divider block  
*3  
CPM  
Single GND  
GND  
*1. CIN is a capacitor for stabilizing the input.  
*2. CL is a capacitor for stabilizing the output.  
*3. CPM is a capacitor for stabilizing the output.  
*4. Only S-1740/1741 Series A / C type  
Figure 13  
Caution The above connection diagram and constants will not guarantee successful operation. Perform  
thorough evaluation including the temperature characteristics with an actual application to set the  
constants.  
12  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Condition of Application  
Input capacitor (CIN):  
Output capacitor (CL):  
Output capacitor (CPM):  
A ceramic capacitor with capacitance of 1.0 μF or more is recommended.  
A ceramic capacitor with capacitance of 1.0 μF to 100 μF is recommended.  
A ceramic capacitor with capacitance of 100 nF to 220 nF is recommended.  
Caution Generally, in a voltage regulator, an oscillation may occur depending on the selection of the external  
parts. Perform thorough evaluation including the temperature characteristics with an actual  
application using the above capacitors to confirm no oscillation occurs.  
Selection of Regulator Block Input Capacitor (CIN) and Output Capacitor (CL)  
The S-1740/1741 Series requires CL between the VOUT pin and the VSS pin for regulator phase compensation.  
The operation is stabilized by a ceramic capacitor with capacitance of 1.0 μF to 100 μF. When using an OS capacitor, a  
tantalum capacitor or an aluminum electrolytic capacitor, the capacitance must also be 1.0 μF to 100 μF. However, an  
oscillation may occur depending on the equivalent series resistance (ESR).  
Moreover, the S-1740/1741 Series requires CIN between the VIN pin and the VSS pin for a stable operation.  
Generally, an oscillaiton may occur when a voltage regulator is used under the conditon that the impedance of the power  
supply is high. Note that the output voltage transient characteristics vary depending on the capacitance of CIN and CL and  
the value of ESR.  
Caution Perform thorough evaluation including the temperature characteristics with an actual application to  
select CIN, CL.  
Selection of Supply Voltage Divider Block Output Capacitor (CPM)  
The S-1740/1741 Series requires CPM between the PMOUT pin and the VSS pin for supply voltage divider phase  
compensation.  
The operation is stabilized by a ceramic capacitor with capacitance of 100 nF to 220 nF. When using an OS capacitor, a  
tantalum capacitor or an aluminum electrolytic capacitor, the capacitance must also be 100 nF to 220 nF. However, an  
oscillation may occur depending on ESR.  
Note that the output voltage transient characteristics vary depending on the capacitance of CPM and the value of ESR.  
Caution Perform thorough evaluation including the temperature characteristics with an actual application to  
select CPM  
.
13  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Explanation of Terms  
1. Regulator block  
1. 1 Output voltage (VOUT  
)
This voltage is output at an accuracy of 1.0% or 15 mV*2 when the input voltage, the output current and the  
temperature are in a certain condition*1.  
*1. Differs depending on the product.  
*2. When VOUT < 1.5 V: 15 mV, when VOUT 1.5 V: 1.0%  
Caution If the certain condition is not satisfied, the output voltage may exceed the accuracy range of  
1.0% or 15 mV. Refer to Table 14 in "Electrical Characteristics" for details.  
ΔVOUT1  
ΔV V  
1. 2 Line regulation  
OUT   
IN  
Indicates the dependency of the output voltage against the input voltage. The value shows how much the  
output voltage changes due to a change in the input voltage after fixing output current constant.  
1. 3 Load regulation (ΔVOUT2  
)
Indicates the dependency of the output voltage against the output current. The value shows how much the  
output voltage changes due to a change in the output current after fixing input voltage constant.  
1. 4 Dropout voltage (Vdrop  
)
Indicates the difference between input voltage (VIN1) and the output voltage when the output voltage becomes  
98% of the output voltage value (VOUT3) at VIN = VOUT(S) + 1.0 V after the input voltage (VIN) is decreased  
gradually.  
Vdrop = VIN1 (VOUT3 × 0.98)  
14  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
ΔVOUT  
ΔTaV  
1. 5 Output voltage temperature coefficient  
OUT   
The shaded area in Figure 14 is the range where VOUT varies in the operation temperature range when the  
output voltage temperature coefficient is 130 ppm/°C.  
Example of S-1740/1741A10 typ. product  
VOUT  
[V]  
+0.13 mV/°C  
*1  
VOUT(E)  
0.13 mV/°C  
40  
+25  
+85  
Ta [°C]  
*1.  
V
OUT(E) is the value of the output voltage measured at Ta = +25°C.  
Figure 14  
A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.  
ΔVOUT  
ΔTa  
ΔVOUT  
ΔTaVOUT  
mV/°C *1 = VOUT(S) V *2  
×
ppm/°C *3 ÷ 1000  
[ ]  
[
]
[ ]  
*1. Change in temperature of output voltage  
*2. Set output voltage  
*3. Output voltage temperature coefficient  
15  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
2. Supply voltage divider block  
2. 1 Supply voltage divided output  
This is a function that divides the input voltage (VIN) of the regulator into VIN/2 or VIN/3 and outputs the voltage.  
For example, a microcontroller can monitor a battery voltage by inputting output voltage (VPMOUT) to the microcontroller  
A/D converter.  
2. 2 Output voltage (VPMOUT  
This is the voltage of the divided VIN, which is VIN/2 in the S-1740 Series and VIN/3 in the S-1741 Series.  
2. 3 Output offset voltage (VPOF  
)
)
This is the supply voltage divider block offset voltage when VIN, the load current and the temperature are in a certain  
condition.  
Caution If the certain condition is not satisfied, the output voltage may exceed the accuracy range of  
30 mV. Refer to "Electrical Characteristics" for details.  
2. 4 Output impedance (RPS  
)
This is the supply voltage divider block impedance. It shows how much VPMOUT changes when the load current  
changes.  
For example, the output impedance can be used in sampling rate calculation as signal source impedance when  
VPMOUT from the PMOUT pin is input to the A/D converter as a microcontroller input signal.  
2. 5 Set-up time (tPU) (S-1740/1741 Series A / C type)  
This is the time from when the supply voltage divided output is enabled until VPMOUT stabilizes.  
V
PMOUT, VPOF and RPS are not guaranteed until the set-up time elapses.  
2. 6 Discharge shunt resistance during power-off (RPLOW) (S-1740/1741 Series A / C type)  
The ON resistance of the N-channel transistor built into the supply voltage divider block.  
When the supply voltage divided output is disabled, VPMOUT is set to the VSS level by the built-in N-channel  
transistor.  
16  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Operation  
1. Regulator block  
1. 1 Basic operation  
Figure 15 shows the block diagram of the regulator block to describe the basic operation.  
The error amplifier compares the feedback voltage (Vfb) whose output voltage (VOUT) is divided by the feedback  
resistors (Rs and Rf) with the reference voltage (Vref). The error amplifier controls the output transistor,  
consequently, the regulator starts the operation that holds VOUT constant without the influence of the input  
voltage (VIN).  
VIN  
*1  
Current  
Supply  
Error amplifier  
VOUT  
Vref  
+
Rf  
Vfb  
Reference voltage  
circuit  
Rs  
VSS  
*1. Parasitic diode  
Figure 15  
1. 2 Output transistor  
In the S-1740/1741 Series, a low on-resistance P-channel MOS FET is used between the VIN pin and the  
VOUT pin as the output transistor. In order to keep VOUT constant, the ON resistance of the output transistor  
varies appropriately according to the output current (IOUT).  
Caution Since a parasitic diode exists between the VIN pin and the VOUT pin due to the structure of  
the transistor, the IC may be damaged by a reverse current if VOUT becomes higher than VIN.  
Therefore, be sure that VOUT does not exceed VIN + 0.3 V.  
1. 3 Overcurrent protection circuit  
The S-1740/1741 Series has a built-in overcurrent protection circuit to limit the overcurrent of the output  
transistor. When the VOUT pin is shorted to the VSS pin, that is, at the time of the output short-circuit, the  
output current is limited to 60 mA typ. due to the overcurrent protection circuit operation. The S-1740/1741  
Series restarts regulating when the output transistor is released from the overcurrent status.  
Caution This overcurrent protection circuit does not work as for thermal protection. For example,  
when the output transistor keeps the overcurrent status long at the time of output short-  
circuit or due to other reasons, pay attention to the conditions of the input voltage and the  
load current so as not to exceed the power dissipation.  
17  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
2. Supply voltage divider block  
2. 1 Basic operation  
2. 1. 1 S-1740/1741 Series A / C type  
Figure 16 shows the block diagram of the S-1740/1741 Series A / C type to describe basic operation.  
Reference voltage (Vrefpm) is generated by dividing the input voltage (VIN) to VIN/2 or VIN/3 using the dividing  
resistance (Rpm1 and Rpm2). Since the buffer amplifier constitutes a voltage follower, it can perform the  
feedback control so that the output voltage (VPMOUT) and Vrefpm are the same. Low output impedance is  
realized by the buffer amplifier, while outputting VPMOUT according to VIN.  
When "L" is input to the PMEN pin in the S-1740/1741 Series A type, or "H" is input to the PMEN pin in the C  
type, the current which flows to Rpm1 and Rpm2 and the current which flows to the buffer amplifier can be  
stopped. The buffer amplifier output is pulled down to VSS by the built-in N-channel transistor, and VPMOUT is  
set to the VSS level.  
VIN  
SW  
Buffer amplifier  
Rpm1  
Vrefpm  
+
PMOUT  
Rpm2  
PMEN  
VSS  
Enable circuit  
Figure 16  
2. 1. 2 S-1740/1741 Series G type  
Figure 17 shows the block diagram of the S-1740/1741 Series G type to describe basic operation.  
Vrefpm is made by dividing VIN to VIN/2 or VIN/3 using Rpm1 and Rpm2. Since the buffer amplifier constitutes a  
voltage follower, it can perform the feedback control so that VPMOUT and Vrefpm are the same. Low output  
impedance is realized by the buffer amplifier, while outputting VPMOUT according to VIN.  
VIN  
Buffer amplifier  
Rpm1  
Vrefpm  
+
PMOUT  
Rpm2  
VSS  
Figure 17  
18  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
2. 2 PMEN pin  
2. 2. 1 S-1740/1741 Series A / C type  
The PMEN pin controls the enable circuit.  
When "H" is input to the PMEN pin in the S-1740/1741 Series A type, or "L" is input to the PMEN pin in the C  
type, the enable circuit operates. This enables the supply voltage divided output and allows for monitoring of the  
power supply voltage. When "L" is input to the PMEN pin in the S-1740/1741 Series A type, or "H" is input to the  
PMEN pin in the C type, the enable circuit stops. This disables the supply voltage divided output, reducing the  
IC current consumption.  
In addition, the PMEN pin has absolutely no effect on the operation of the regulator block.  
Table 16  
Output Voltage  
Current  
Consumption  
VOUT Pin  
Voltage  
Product Type PMEN Pin Supply Voltage Divided Output  
(VPMOUT  
)
*1  
A
A
C
C
"H"  
"L"  
"L"  
"H"  
Enable  
Disable  
Enable  
Disable  
VPMOUT  
ISS1 + ISS1P  
ISS1  
ISS1 + ISS1P  
ISS1  
VOUT  
VOUT  
VOUT  
VOUT  
VSS level  
*1  
VPMOUT  
VSS level  
*1. Refer to *1 in Table 15 in "Electrical Characteristics".  
Figure 18 shows the internal equivalent circuit structure in relation to the PMEN pin. The PMEN pin is neither  
pulled up nor pulled down, so do not use it in the floating status. When not using the PMEN pin, connect it to the  
VIN pin. Note that the current consumption increases when a voltage of 0.25 V to VIN 0.3 V is applied to the  
PMEN pin.  
VIN  
PMEN  
VSS  
Figure 18  
19  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
2. 3 PMEN pin voltage and output voltage (VPMOUT  
)
2. 3. 1 S-1740/1741 Series A / C type  
Figure 19 shows the relation between the PMEN pin voltage and the supply voltage divided output.  
When "H" is input to the PMEN pin in the S-1740/1741 Series A type, or "L" is input to the PMEN pin in the C  
type, the supply voltage divided output is enabled. Once set-up time (tPU) = 10 ms max.*1 elapses, the output  
voltage (VPMOUT) will settle and the power supply voltage can be monitored.  
When "L" is input to the PMEN pin in the S-1740/1741 Series A type, or "H" is input to the PMEN pin in the C  
type, the supply voltage divided output is disabled. VPMOUT is set to the VSS level by the built-in N-channel  
transistor.  
By inputting "H" and "L" alternately to the PMEN pin, allowing for minimization of current consumption during  
the period when the power supply voltage is not monitored.  
*1. When Ta = +25°C, VIN = 3.6 V, CPM = 220 nF, no load  
Example of active "H"  
VPMEN  
tPU  
tPU  
VPMOUT(S) + VPOF  
VPMOUT(S) + VPOF  
VPMOUT  
Figure 19  
Remark  
VPMEN = VIN VSS  
20  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Typical Application in S-1740/1741 Series A / C Type  
Figure 20 shows the circuit diagram of the typical application in the S-1740/1741 Series A / C type, and Figure 21 shows  
the timing chart.  
As shown in Figure 20, connect the PMOUT pin to an analog input pin (AIN pin) of the A/D converter in the  
microcontroller. The microcontroller can monitor the battery voltage by inputting the output voltage (VPMOUT) to the A/D  
converter.  
The input voltage from the battery is converted to output voltage by the regulator operation, and the microcontroller starts  
driving with the voltage. The supply voltage divided output can be controlled by inputting "H" and "L" signals output from  
the microcontroller I/O pin to the PMEN pin. Control the supply voltage divided output according to the A/D converter  
operation timing.  
When inputting "H" to the PMEN pin in the S-1740/1741 Series A type, or "L" to the PMEN pin in the C type, the  
microcontroller monitors the battery voltage. The IC current consumption can be minimized by inputting "L" to the PMEN  
pin in the S-1740/1741 Series A type, or "H" to the PMEN pin in the C type when battery voltage is not monitored.  
S-1740/1741 Series  
Microcontroller  
A / C type  
VDD  
VOUT  
VIN  
CL  
A/D  
converter  
AIN  
PMOUT  
VSS  
PMEN  
CIN  
Battery  
VSS  
I/O  
CPM  
Figure 20  
Example of active "H"  
VPMEN  
tPU  
tPU  
tPU  
VPMOUT(S) + VPOF  
VPMOUT  
Voltage monitoring timing  
Figure 21  
21  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Precautions  
Generally, when a voltage regulator is used under the condition that the load current value is small (1.0 μA or less), the  
output voltage may increase due to the leakage current of an output transistor.  
Generally, when a voltage regulator is used under the condition that the temperature is high, the output voltage may  
increase due to the leakage current of an output transistor.  
Generally, when a voltage regulator is used under the condition that the impedance of the power supply is high, an  
oscillation may occur. Perform thorough evaluation including the temperature characteristics with an actual application  
to select CIN.  
Generally, in a voltage regulator, an oscillation may occur depending on the selection of the external parts. The  
following use conditions are recommended in the S-1740/1741 Series, however, perform thorough evaluation including  
the temperature characteristics with an actual application to select CIN, CL and CPM  
.
Input capacitor (CIN):  
Output capacitor (CL):  
Output capacitor (CPM):  
A ceramic capacitor with capacitance of 1.0 μF or more is recommended.  
A ceramic capacitor with capacitance of 1.0 μF to 100 μF is recommended.  
A ceramic capacitor with capacitance of 100 nF to 220 nF is recommended.  
Generally, in a voltage regulator, the values of an overshoot and an undershoot in the output voltage vary depending  
on the variation factors of input voltage start-up, input voltage fluctuation and load fluctuation etc., or the capacitance of  
CIN, CL or CPM and the value of the equivalent series resistance (ESR), which may cause a problem to the stable  
operation. Perform thorough evaluation including the temperature characteristics with an actual application to select  
CIN, CL and CPM  
.
Generally, in a voltage regulator, if the VOUT pin is steeply shorted with GND, a negative voltage exceeding the  
absolute maximum ratings may occur in the VOUT pin due to resonance phenomenon of the inductance and the  
capacitance including CL on the application. The resonance phenomenon is expected to be weakened by inserting a  
series resistor into the resonance path, and the negative voltage is expected to be limited by inserting a protection  
diode between the VOUT pin and the VSS pin.  
Make sure of the conditions for the input voltage, output voltage and the load current so that the internal loss does not  
exceed the power dissipation.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic  
protection circuit.  
When considering the output current value that the IC is able to output, make sure of the output current value specified  
in Table 14 in "Electrical Characteristics" and footnote *5 of the table.  
Wiring patterns on the application related to the VIN pin, the VOUT pin and the VSS pin should be designed so that the  
impedance is low. When mounting CIN between the VIN pin and the VSS pin and CL between the VOUT pin and the  
VSS pin, connect the capacitors as close as possible to the respective destination pins of the IC.  
In the package equipped with heat sink of backside, mount the heat sink firmly. Since the heat radiation differs  
according to the condition of the application, perform thorough evaluation with an actual application to confirm no  
problems happen.  
ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products  
including this IC of patents owned by a third party.  
22  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Characteristics (Typical Data)  
1. Regulator block  
1. 1 Output voltage vs. Output current (When load current increases) (Ta = +25°C)  
1. 1. 1 VOUT = 1.0 V  
1. 1. 2 VOUT = 2.5 V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN = 1.3 V  
VIN = 1.5 V  
VIN = 2.0 V  
VIN = 3.0 V  
VIN = 5.5 V  
V
V
V
V
V
IN = 2.8 V  
IN = 3.0 V  
IN = 3.5 V  
IN = 4.5 V  
IN = 5.5 V  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
IOUT [mA]  
IOUT [mA]  
1. 1. 3 VOUT = 3.5 V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
IN = 3.8 V  
IN = 4.0 V  
IN = 4.5 V  
IN = 5.5 V  
Remark In determining the output current, attention should  
V
V
V
be paid to the following.  
1. The minimum output current value and  
footnote *5 of Table 14 in "Electrical  
Characteristics"  
2. Power dissipation  
0
100  
200  
300  
400  
500  
I
OUT [mA]  
1. 2 Output voltage vs. Input voltage (Ta = +25°C)  
1. 2. 1  
VOUT = 1.0 V  
1. 2. 2 VOUT = 2.5 V  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
2.7  
2.6  
2.5  
2.4  
I
I
I
I
OUT = 1 mA  
OUT = 10 mA  
OUT = 50 mA  
OUT = 100 mA  
I
I
I
I
OUT = 1 mA  
OUT = 10 mA  
OUT = 50 mA  
OUT = 100 mA  
2.3  
2.2  
2.1  
2.0  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
IN [V]  
VIN [V]  
1. 2. 3 VOUT = 3.5 V  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VIN [V]  
23  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
1. 3 Dropout voltage vs. Output current  
1. 3. 1 VOUT = 1.0 V  
1. 3. 2 VOUT = 2.5 V  
1.2  
0.40  
0.35  
0.30  
0.25  
Ta = +85C  
Ta = +25C  
Ta = 40C  
1.0  
Ta = +85C  
0.8  
Ta = +25C  
Ta = 40C  
0.6  
0.4  
0.2  
0.0  
0.20  
0.15  
0.10  
0.05  
0.00  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
IOUT [mA]  
IOUT [mA]  
1. 3. 3 VOUT = 3.5 V  
0.40  
0.35  
0.30  
0.25  
Ta = +85C  
Ta = +25C  
Ta = 40C  
0.20  
0.15  
0.10  
0.05  
0.00  
0
20  
40  
60  
80  
100  
I
OUT [mA]  
1. 4 Dropout voltage vs. Set output voltage  
1.2  
1.0  
I
OUT = 0.1 mA  
0.8  
0.6  
0.4  
0.2  
0.0  
IOUT = 1 mA  
IOUT = 10 mA  
I
OUT = 50 mA  
I
OUT = 100 mA  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OUT(S) [V]  
24  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
1. 5 Output voltage vs. Ambient temperature  
1. 5. 1 VOUT = 1.0 V  
1. 5. 2 VOUT = 2.5 V  
1.10  
2.70  
1.05  
1.00  
0.95  
0.90  
2.60  
2.50  
2.40  
2.30  
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [°C]  
Ta [°C]  
1. 5. 3 VOUT = 3.5 V  
3.80  
3.70  
3.60  
3.50  
3.40  
3.30  
3.20  
40  
25  
0
25  
50  
75 85  
Ta [°C]  
1. 6 Current consumption vs. Input voltage  
1. 6. 1 VOUT = 1.0 V  
1. 6. 2 VOUT = 2.5 V  
0.7  
0.7  
Ta = +85C  
Ta = +25C  
Ta = +85C  
Ta = +25C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Ta = 40C  
Ta = 40C  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
V
IN [V]  
V
IN [V]  
1. 6. 3 VOUT = 3.5 V  
0.7  
Ta = +85C  
Ta = +25C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Ta = 40C  
1.0 2.0 3.0  
0.0  
4.0  
5.0  
6.0  
V
IN [V]  
25  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
1. 7 Current consumption vs. Ambient temperature  
1. 7. 1 VOUT = 1.0 V  
1. 7. 2 VOUT = 2.5 V  
0.7  
0.6  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 2.0 V  
VIN = 3.5 V  
V
IN = 5.5 V  
VIN = 5.5 V  
40  
25  
0
25  
Ta [C]  
50  
75 85  
40  
25  
0
25  
Ta [C]  
50  
75 85  
1. 7. 3 VOUT = 3.5 V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 4.5 V  
V
IN = 5.5 V  
40  
25  
0
25  
Ta [C]  
50  
75 85  
1. 8 Current consumption vs. Output current  
1. 8. 1 VOUT = 1.0 V  
1. 8. 2 VOUT = 2.5 V  
40  
35  
30  
40  
35  
30  
25  
20  
15  
10  
5
25  
VIN = 2.0 V  
VIN = 3.5 V  
20  
15  
10  
5
0
VIN = 5.5 V  
80  
VIN = 5.5 V  
80 100  
0
0
20  
40  
60  
100  
0
20  
40  
60  
IOUT [mA]  
IOUT [mA]  
1. 8. 3 VOUT = 3.5 V  
40  
35  
30  
25  
20  
15  
10  
5
VIN = 4.5 V  
VIN = 5.5 V  
0
0
20  
40  
60  
80 100  
I
OUT [mA]  
26  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
2. Supply voltage divider block  
2. 1 Output voltage vs. Load current  
VPMOUT = VIN/2, VIN = 3.6 V  
VPMOUT = VIN/3, VIN = 3.6 V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta = 85C  
Ta = 85C  
Ta = 25C  
Ta = 25C  
Ta = 40C  
Ta = 40C  
10  
5  
0
5
10  
10  
5  
0
5
10  
I
PMOUT [A]  
I
PMOUT [A]  
2. 2 Output voltage vs. Input voltage (Ta = +25°C)  
VPMOUT = VIN/2  
VPMOUT = VIN/3  
3.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
PMOUT = 0 A  
IPMOUT = 0 A  
I
PMOUT = 10 A  
IPMOUT = 10 A  
I
PMOUT = 10 A  
IPMOUT = 10 A  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V
IN [V]  
V
IN [V]  
2. 3 Output voltage vs. Ambient temperature  
VPMOUT = VIN/2  
VPMOUT = VIN/3  
3.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
PMOUT = 10 A  
IPMOUT = 0 A  
IPMOUT = 10 A  
IPMOUT = 0 A  
IPMOUT = 10 A  
I
PMOUT = 10 A  
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [C]  
Ta [C]  
27  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Reference Data  
1. Characteristics of input transient response (Ta = +25°C)  
1. 1 VOUT = 1.0 V  
IOUT = 1 mA, CIN = CL = 1  
μ
F, VIN = 2.0 V  
3.0 V, tr = tf = 5.0  
μ
μ
μ
s
s
s
IOUT = 50 mA, CIN = CL = 1  
μ
F, VIN = 2.0 V  
3.0 V, tr = tf = 5.0  
μs  
μs  
μs  
1.5  
1.4  
1.3  
1.2  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.5  
1.4  
1.3  
1.2  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN  
V
IN  
1.1  
1.0  
0.9  
0.8  
0.7  
1.1  
1.0  
0.9  
0.8  
0.7  
V
OUT  
V
OUT  
200  
0
200 400 600 800 1000 1200  
200  
0
200 400 600 800 1000 1200  
t [s]  
t [s]  
1. 2 VOUT = 2.5 V  
IOUT = 1 mA, CIN = CL = 1  
μ
F, VIN = 3.5 V  
4.5 V, tr = tf = 5.0  
IOUT = 50 mA, CIN = CL = 1  
μF, VIN = 3.5 V  
4.5 V, tr = tf = 5.0  
3.0  
2.9  
2.8  
2.7  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
3.0  
2.9  
2.8  
2.7  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
VIN  
V
IN  
2.6  
2.5  
2.4  
2.3  
2.2  
2.6  
2.5  
2.4  
2.3  
2.2  
V
OUT  
V
OUT  
200  
0
200 400 600 800 1000 1200  
200  
0
200 400 600 800 1000 1200  
t [s]  
t [s]  
1. 3 VOUT = 3.5 V  
IOUT = 1 mA, CIN = CL = 1  
μ
F, VIN = 4.5 V  
5.5 V, tr = tf = 5.0  
IOUT = 50 mA, CIN = CL = 1  
μF, VIN = 4.5 V  
5.5 V, tr = tf = 5.0  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
V
IN  
V
IN  
VOUT  
VOUT  
200  
0
200 400 600 800 1000 1200  
200  
0
200 400 600 800 1000 1200  
t [s]  
t [s]  
28  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
2. Characteristics of load transient response (Ta = +25°C)  
2. 1 VOUT = 1.0 V  
VIN = 2.0 V, CIN = CL = 1  
μ
F, IOUT = 1 mA  
10 mA, tr = tf = 5.0  
μ
μ
μ
s
s
s
VIN = 2.0 V, CIN = CL = 1  
μ
F, IOUT = 10 mA  
50 mA, tr = tf = 5.0  
μ
μ
μ
s
s
s
1.5  
1.4  
1.3  
1.2  
75  
50  
25  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
75  
50  
25  
0
IOUT  
I
OUT  
1.1  
1.0  
0.9  
0.8  
0.7  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
V
OUT  
V
OUT  
200  
0
200 400 600 800 1000 1200  
200  
0
200 400 600 800 1000 1200  
t [s]  
t [s]  
2. 2 VOUT = 2.5 V  
VIN = 3.5 V, CIN = CL = 1  
μ
F, IOUT = 1 mA  
10 mA, tr = tf = 5.0  
VIN = 3.5 V, CIN = CL = 1  
μ
F, IOUT = 10 mA  
50 mA, tr = tf = 5.0  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
75  
50  
25  
0
3.0  
2.9  
2.8  
75  
50  
25  
0
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
I
OUT  
I
OUT  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
V
OUT  
V
OUT  
100  
0
100 200 300 400 500 600  
100  
0
100 200 300 400 500 600  
t [s]  
t [s]  
2. 3 VOUT = 3.5 V  
VIN = 4.5 V, CIN = CL = 1  
μ
F, IOUT = 1 mA  
10 mA, tr = tf = 5.0  
VIN = 4.5 V, CIN = CL = 1  
μ
F, IOUT = 10 mA  
50 mA, tr = tf = 5.0  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
75  
50  
25  
0
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
75  
50  
25  
0
I
OUT  
I
OUT  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
V
OUT  
V
OUT  
400  
0
400 800 1200 1600 2000 2400  
800  
0
800 1600 2400 3200 4000 4800  
t [s]  
t [s]  
29  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
3. Transient response characteristics of PMEN pin (Ta = +25°C)  
3. 1 VPMOUT = VIN/2  
VIN = 3.6 V, CPM = 220 nF, VPMEN = 0 V  
10  
3.6 V, tr = tf = 1.0 μs  
VIN = 5.5 V, CPM = 220 nF, VPMEN = 0 V  
10  
5.5 V, tr = tf = 1.0  
μ
s
6
6
8
6
4
8
6
4
4
2
0
4
2
0
V
PMEN  
VPMEN  
2
0
2
2  
4  
6  
2
0
2
2  
4  
6  
V
PMOUT  
V
PMOUT  
2  
0
2
4
6
8
10  
12  
2  
0
2
4
6
8
10  
12  
t [ms]  
t [ms]  
3. 2 VPMOUT = VIN/3  
VIN = 3.6 V, CPM = 220 nF, VPMEN = 0 V  
10  
3.6 V, tr = tf = 1.0 μs  
V
10  
IN = 5.5 V, CPM = 220 nF, VPMEN = 0 V  
5.5 V, tr = tf = 1.0  
μ
s
6
6
8
6
4
8
4
2
0
4
2
0
6
4
V
PMEN  
V
PMEN  
2
0
2
2  
4  
6  
2
2  
4  
6  
0
V
PMOUT  
V
PMOUT  
2  
2  
0
2
4
6
8
10  
12  
2  
0
2
4
6
8
10  
12  
t [ms]  
t [ms]  
4. Ripple rejection (Ta = +25°C)  
4. 1 VOUT = 1.0 V  
4. 2  
VOUT = 2.5 V  
VIN = 2.0 V, CL = 1.0 μF  
VIN = 3.5 V, CL = 1.0 μF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
Frequency [Hz]  
4. 3 VOUT = 3.5 V  
VIN = 4.5 V, CL = 1.0 μF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
10  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
30  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
5. Example of equivalent series resistance vs. Output current characteristics (Ta = +25°C)  
CIN = CL = 1.0 μF  
CPM = 0.1 μF  
100  
100  
Stable  
Stable  
0
0
0.01  
100  
10  
10  
IOUT [mA]  
Figure 22  
IPMOUT [μA]  
Figure 23  
VIN  
VIN  
PMOUT  
VOUT  
PMOUT  
VOUT  
S-1740/1741  
Series  
A / C type  
S-1740/1741  
Series  
CIN  
CIN  
*2  
*2  
CPM  
CPM  
*1  
*1  
CL  
CL  
G type  
PMEN  
VSS  
VSS  
RESR  
RESR  
RESR  
RESR  
*1. CL: TDK Corporation C3216X7R1H105K160AB  
*1. CL: TDK Corporation C3216X7R1H105K160AB  
*2.  
CPM: TDK Corporation C2012X7R1H104K  
*2.  
CPM: TDK Corporation C2012X7R1H104K  
Figure 24  
Figure 25  
31  
5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT  
Rev.1.3_00  
S-1740/1741 Series  
Power Dissipation  
SOT-23-5  
HSNT-6(1212)  
T
j
= 125C max.  
T
j
= 125C max.  
1.0  
0.8  
1.0  
0.8  
B
0.6  
0.6  
B
A
0.4  
0.4  
0.2  
0.0  
A
0.2  
0.0  
0
25  
50  
75  
100 125 150 175  
0
25  
50  
75  
100 125 150 175  
Ambient temperature (Ta) [C]  
Ambient temperature (Ta) [C]  
Board  
Power Dissipation (PD)  
Board  
Power Dissipation (PD)  
A
B
C
D
E
0.52 W  
A
B
C
D
E
0.43 W  
0.63 W  
0.52 W  
HSNT-4(1010)  
Tj = 125C max.  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
B
A
0
25  
50  
75  
100 125 150 175  
Ambient temperature (Ta) [C]  
Board  
Power Dissipation (PD)  
A
B
C
D
E
0.26 W  
0.32 W  
32  
SOT-23-3/3S/5/6 Test Board  
No. SOT23x-A-Board-SD-2.0  
ABLIC Inc.  
HSNT-6(1212) Test Board  
No. HSNT6-A-Board-SD-1.0  
ABLIC Inc.  
HSNT-4(1010) Test Board  
No. HSNT4-B-Board-SD-1.0  
ABLIC Inc.  
2.9±0.2  
1.9±0.2  
4
5
+0.1  
-0.06  
1
2
3
0.16  
0.95±0.1  
0.4±0.1  
No. MP005-A-P-SD-1.3  
TITLE  
SOT235-A-PKG Dimensions  
MP005-A-P-SD-1.3  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
4.0±0.1(10 pitches:40.0±0.2)  
+0.1  
-0  
2.0±0.05  
0.25±0.1  
ø1.5  
+0.2  
-0  
4.0±0.1  
ø1.0  
1.4±0.2  
3.2±0.2  
3
4
2 1  
5
Feed direction  
No. MP005-A-C-SD-2.1  
TITLE  
SOT235-A-Carrier Tape  
MP005-A-C-SD-2.1  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. MP005-A-R-SD-1.1  
TITLE  
SOT235-A-Reel  
MP005-A-R-SD-1.1  
No.  
ANGLE  
UNIT  
QTY.  
3,000  
mm  
ABLIC Inc.  
1.00±0.05  
0.38±0.02  
0.40  
0.40  
4
6
+0.05  
-0.02  
3
0.08  
1
1.20±0.04  
he heat sink of back side has different electric  
potential depending on the product.  
Confirm specifications of each product.  
Do not use it as the function of electrode.  
0.20±0.05  
No. PM006-A-P-SD-1.1  
TITLE  
HSNT-6-B-PKG Dimensions  
No.  
PM006-A-P-SD-1.1  
ANGLE  
mm  
UNIT  
ABLIC Inc.  
4.0±0.1  
2.0±0.05  
+0.1  
-0  
ø1.5  
0.25±0.05  
+0.1  
-0  
ø0.5  
0.50±0.05  
4.0±0.1  
1.32±0.05  
3
1
6
4
Feed direction  
No. PM006-A-C-SD-2.0  
TITLE  
HSNT-6-B-Carrier Tape  
PM006-A-C-SD-2.0  
No.  
ANGLE  
mm  
UNIT  
ABLIC Inc.  
+1.0  
- 0.0  
9.0  
11.4±1.0  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. PM006-A-R-SD-1.0  
TITLE  
HSNT-6-B-Reel  
No.  
PM006-A-R-SD-1.0  
ANGLE  
5,000  
QTY.  
mm  
UNIT  
ABLIC Inc.  
1.04min.  
Land Pattern  
0.24min.  
1.02  
0.40±0.02 0.40±0.02  
(1.22)  
Caution It is recommended to solder the heat sink to a board  
in order to ensure the heat radiation.  
PKG  
Metal Mask Pattern  
Aperture ratio  
Aperture ratio  
Caution  
Mask aperture ratio of the lead mounting part is 100%.  
Mask aperture ratio of the heat sink mounting part is 40%.  
Mask thickness: t0.10mm to 0.12 mm  
100%  
40%  
t0.10mm ~ 0.12 mm  
HSNT-6-B  
TITLE  
-Land Recommendation  
No.  
PM006-A-L-SD-2.0  
ANGLE  
mm  
UNIT  
No. PM006-A-L-SD-2.0  
ABLIC Inc.  
0.38±0.02  
0.65  
3
4
+0.05  
-0.02  
1
2
0.08  
1.00±0.04  
he heat sink of back side has different electric  
potential depending on the product.  
Confirm specifications of each product.  
Do not use it as the function of electrode.  
0.20±0.05  
No. PL004-A-P-SD-1.1  
TITLE  
HSNT-4-B-PKG Dimensions  
PL004-A-P-SD-1.1  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
4.0±0.05  
2.0±0.05  
+0.1  
-0  
ø1.5  
0.25±0.05  
+0.1  
-0  
ø0.5  
2.0±0.05  
0.5±0.05  
1.12±0.05  
2
3
1
4
Feed direction  
No. PL004-A-C-SD-2.0  
HSNT-4-B-Carrier Tape  
PL004-A-C-SD-2.0  
TITLE  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
+1.0  
- 0.0  
9.0  
11.4±1.0  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. PL004-A-R-SD-1.0  
HSNT-4-B-Reel  
PL004-A-R-SD-1.0  
TITLE  
No.  
QTY.  
10,000  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
Land Pattern  
0.30min.  
0.38~0.48  
0.38~0.48  
0.07  
0.65±0.02  
(1.02)  
Caution It is recommended to solder the heat sink to a board  
in order to ensure the heat radiation.  
PKG  
Metal Mask Pattern  
Aperture ratio  
Aperture ratio  
Caution  
Mask aperture ratio of the lead mounting part is 100%.  
Mask aperture ratio of the heat sink mounting part is 40%.  
Mask thickness: t0.10mm to 0.12 mm  
100%  
40%  
t0.10mm ~ 0.12 mm  
HSNT-4-B  
TITLE  
-Land Recommendation  
No. PL004-A-L-SD-2.0  
No.  
PL004-A-L-SD-2.0  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application  
circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
ABLIC Inc. is not responsible for damages caused by the reasons other than the products described herein  
(hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use  
of the information described herein.  
3. ABLIC Inc. is not responsible for damages caused by the incorrect information described herein.  
4. Be careful to use the products within their specified ranges. Pay special attention to the absolute maximum ratings,  
operation voltage range and electrical characteristics, etc.  
ABLIC Inc. is not responsible for damages caused by failures and / or accidents, etc. that occur due to the use of the  
products outside their specified ranges.  
5. When using the products, confirm their applications, and the laws and regulations of the region or country where they  
are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related  
laws, and follow the required procedures.  
7. The products must not be used or provided (exported) for the purposes of the development of weapons of mass  
destruction or military use. ABLIC Inc. is not responsible for any provision (export) to those whose purpose is to  
develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use.  
8. The products are not designed to be used as part of any device or equipment that may affect the human body, human  
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control  
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,  
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do  
not apply the products to the above listed devices and equipments without prior written permission by ABLIC Inc.  
Especially, the products cannot be used for life support devices, devices implanted in the human body and devices  
that directly affect human life, etc.  
Prior consultation with our sales office is required when considering the above uses.  
ABLIC Inc. is not responsible for damages caused by unauthorized or unspecified use of our products.  
9. Semiconductor products may fail or malfunction with some probability.  
The user of the products should therefore take responsibility to give thorough consideration to safety design including  
redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or  
death, fires and social damage, etc. that may ensue from the products' failure or malfunction.  
The entire system must be sufficiently evaluated and applied on customer's own responsibility.  
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the  
product design by the customer depending on the intended use.  
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy  
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be  
careful when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.  
13. The information described herein contains copyright information and know-how of ABLIC Inc.  
The information described herein does not convey any license under any intellectual property rights or any other  
rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any  
part of this document described herein for the purpose of disclosing it to a third-party without the express permission  
of ABLIC Inc. is strictly prohibited.  
14. For more details on the information described herein, contact our sales office.  
2.2-2018.06  
www.ablic.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY